
Obstacle Detection and Tracking in an Urban Environment

Using 3D LiDAR and a Mobileye 560

by Veronica M. Lane

S.B., E.E.C.S. M.I.T., 2015

Submitted to the

Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 2017

c© 2017 Veronica M. Lane. All rights reserved

The author hereby grants to M.I.T. permission to reproduce and to distribute publicly paper and electronic

copies of this thesis document in whole and in part in any medium now known or hereafter created.

Author:

Department of Electrical Engineering and Computer Science

July 26, 2017

Certified by:

Sertac Karaman, Associate Professor of Aeronautics and Astronautics, Thesis Supervisor

July 26, 2017

Accepted by:

Christopher Terman, Chairman, Masters of Engineering Thesis Committee

Obstacle Detection and Tracking in an Urban Environment Using 3D LiDAR and a Mobileye 560

by Veronica M. Lane

Submitted to the Department of Electrical Engineering and Computer Science

July 26, 2017

In Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical Engineering

and Computer Science

Abstract

In order to navigate in an urban environment, a vehicle must be able to reliably detect and track dynamic ob-

stacles such as vehicles, pedestrians, bicycles, and motorcycles. This paper presents a sensor fusion algorithm

which combines tracking information from a Mobileye 560 and a Velodyne HDL-64E. The Velodyne tracking

module first extracts obstacles by removing the ground plane points and then segmenting the remaining

points using Euclidean Cluster Extraction. The Velodyne tracking module then uses the Kuhn-Munkres

algorithm to associate Velodyne obstacles of the same type between time steps. The sensor fusion module

associates and tracks obstacles from both the Velodyne and Mobileye tracking modules. It is able to reliably

associate the same Velodyne and Mobileye obstacle between frames, although the Velodyne tracking module

only provides robust tracking in simple scenes such as bridges.

2

Chapter 1

Introduction

Autonomous vehicle technology will enable people and goods to move more safely and efficiently without the

need for human operation. New driver assistance systems and fully autonomous systems are currently being

developed by commercial companies and academic institutions to navigate in urban environments, which

are uniquely challenging because they are more unstructured than highways. For example, urban traffic is

more heterogeneous and an autonomous vehicle must be able to detect and track bicycles and pedestrians

in addition to vehicles, trucks, and motorcycles. To safely navigate through intersections, a vehicle must be

able to track oncoming and crossing traffic and predict their movements. For instance, the vehicle must be

able to predict if an oncoming vehicle plans to make an unprotected left turn. The vehicle must be able

to detect pedestrians and predict whether or not they will cross the intersection. Furthermore, different

types of traffic obstacles behave very differently, such as city buses, which stop much more often than other

vehicles.

A multi-sensor approach for tracking dynamic obstacles is more reliable than a single-sensor approach, but

also adds complexity to the system. Different types of sensors can provide complementary information about

the scene. For example, the Velodyne HDL-64E sensor provides a 3D map of the environment with a 360

field of view. It can detect passing, oncoming, and crossing traffic. However, while the Velodyne provides

more detailed range information and a wider field of view than a camera, it costs about $75, 000, its range

is more limited than a camera, and the refresh rate (about 10 Hz) is lower. Furthermore, it is unreliable in

adverse weather conditions such as snow, fog, and rain. On the other hand, since a camera provides RGB

information it can better classify objects in the scene such as vehicles and pedestrians.

Recently, a few companies, including Mobileye, have marketed vision-based advanced driver-assistance sys-

tems which warn drivers of potential collisions and lane departures. The Mobileye vision systems do not

3

provide the raw camera image, but instead provide information about the visible obstacles and lanes. The

Mobileye can only be safely used on highways since it cannot detect passing, oncoming, or crossing traffic.

However, in urban environments, the Mobileye is still able to detect some obstacles, particularly the closest

in path vehicle. Tesla used the Mobileye technology in their Model S car to allow the hands-off driving on

freeways. However, the driver was expected monitor the vehicle and be ready to intervene at all times.

The Mobileye enables a vehicle to drive semi-autonomously. Fusing Mobileye data with information from a

Velodyne HDL-64E can enable a vehicle to better track the obstacles in its environment, since the Velodyne

can detect passing, oncoming and crossing traffic. This paper describes an architecture for sensor data

fusion of an off-the-shelf vision system, the Mobileye 560, and a Velodyne HDL-64E to enable a vehicle to

track dynamic obstacles in an urban environment, as well as the systems integration of the Mobileye 560.

Both sensors have a specific module which track detected objects. The tracking data is then fused together

to provide a list of obstacles in the scene. The sensor fusion module reliably fuses tracked Velodyne and

Mobileye obstacles, but the Velodyne tracker is only robust in simple scenes like bridges. However, the sensor

fusion module is able to correctly match obstacles even when the Velodyne label for a given obstacle changes.

4

Chapter 2

Related Works

Darms et al. [1] presented a multi-obstacle tracking algorithm used in the DARPA Urban Grand Challenge.

The algorithm combines information from 13 different sensors including planar LIDAR sensors, a Velodyne

HDL-64E, radar sensors, and a fixed beam laser sensor. The tracking algorithm is switched based on available

sensor information, and all obstacles are described using a box or point model. The sensor fusion architecture

is separated into individual sensor layers and a fusion layer. The sensor layers extract the features, associate

the features with a current obstacle, and determine the obstacle state of movement. The fusion layer selects

the best model for the obstacle and determines the global movement of the obstacle. The tracking algorithm

was able to reliably detect and track obstacles in the scene, but it required information from 13 different

sensors. The algorithm was very computationally expensive and each additional sensor increased the cost of

the vehicle.

Himmelsbach et al. [2] presented a system which classified and tracked vehicles in a 3D point cloud. The

cloud is first segmented using a 2D occupancy grid. Then segmented objects are classified by passing the

histograms of the point features to an SVM classifier. Finally, only obstacles classified as vehicles are tracked,

and the tracked vehicle states are estimated using a multiple model Kalman Filter. Although the system

was able to robustly track vehicles, it could not detect other dynamic obstacles in the scene.

Morton et al. [3] evaluated various object tracking methods with 3D LIDAR. Early methods projected the 3D

point cloud onto a 2D representation and used model based tracking. A later method uses a learning classifier

and multi-hypothesis tracking to detect and track pedestrians in a scene. Douillard [4] and Moosman [5]

presented algorithms which are able to fully segment the point cloud. Morton proposed the Mesh-Voxel

Segmentation algorithm creates a terrain mesh from the LiDAR data, extracts the ground from the computed

gradient field in the terrain mesh, and clusters the ground points based on voxel grid connectivity. The

5

method iteratively grows the ground partition proceeding from the center onwards. Once the points were

segmented, Morton divided the tracking problem into four separate tasks: motion estimation, registration,

appearance modeling and data association. Each obstacle is represented by a vector including the time,

global position, local position in the LIDAR frame, surface normal, and ID. Each tracking method uses

a motion model to predict the likely future location and matches the new observation with the current

tracked objects. It also adds objects which are not currently being tracked. The simplest tracking model

tested used the newly observed centroid to update the tracked position. Morton tested this tracking method

both with and without a Kalman filter, using a constant velocity motion model. Another tracking method

aligned each tracked object individually using ICP. This method used appearance models to track objects

and combined the appearance model with new observations and filtered based on uncertainty. However,

this caused blurring over time, and methods which gradually replaced points performed better. Morton’s

analysis showed that the ICP based tracking methods did not have significant advantages over the simple

centroid based tracking method, which is used in this paper. The sensor fusion algorithm in this paper uses

simple tracking model presented by Morton, which tracks obstacle centroids and associates obstacles with

the Kuhn-Munkres Algorithm [6].

Chavez-Garcia et al. [7] proposed a sensor fusion architecture for tracking obstacles which fuses data from

radar, 3D LiDAR, and a camera. They use a 2D occupancy grid map to represent the LIDAR data. If a

previously unoccupied cell is marked as occupied, the cell belongs to a moving object. Before fusing the

data, the camera module first detects and classifies the objects as either a pedestrian, bicycle, car, or truck.

The sensor data is fused using an evidential framework.

Zhang et al. [8] propose a vehicle tracking method which uses a Velodyne HDL-64E and combines a Multiple

Hypothesis (MHT) with Dynamic Point Cloud Registration (DPCR). The method does not need the vehicle’s

GPS or IMU to track the targets, instead the DPCR is used to estimate the vehicle pose. The tracking method

is able to track obstacles which become occluded between frames. Although this method provides robust

tracking of vehicles, it cannot track other dynamic obstacles.

Mirzaei et al. [9] describe a 3D LiDAR and camera intrinsic and extrinsic calibration method. The algorithm

estimates unknown parameters by dividing the estimation problem into two least-squares sub-problems.

The estimates are improved through batch nonlinear least squares minimization. However, this calibration

method cannot be used for the Mobileye and the Velodyne since the camera intrinsics are unknown and the

Mobileye camera image cannot be accessed.

6

Chapter 3

System Description

3.1 The Vehicle

The vehicle used for testing is a 2015 Toyota Prius V, shown in Figure 3.1.1. The vehicle’s brake pedal,

gear selector, and steering column are controlled by electric motors which can be controlled by the vehicles

Controller Area Network (CAN). The CAN bus allows vehicle devices to communicate with each other

without a host computer.

A combination of 10 sensors are integrated into the vehicle. A Velodyne HDL-64E S3 is mounted on top

of the vehicle. Additionally, a Mobileye 560 and Point Grey Ladybug 3 camera are mounted on the front

windshield. Two SICK TIM551 sensors are mounted on the left and right of the back bumper. Furthermore,

SICK LMS151 sensors are mounted on the front bumper and on the top of the vehicle in the front. Finally,

the vehicle is also equipped with a LORD Microstrain 3DM-GX4-25 AHRS, and encoders mounted on the

back wheels.

3.2 Sensor Descriptions

3.2.1 Velodyne-64E

The Velodyne HDL-64E S3, shown in Figure 3.2.1, is a high definition LIDAR sensor which provides a

real-time 3D point cloud of the surrounding environment. The sensor uses a rotating head and 64 LiDAR

channels aligned between 2.0◦ and −24.9◦, for a total vertical field of view of 26.9◦. It has a 360◦ horizontal

field of view and a range of up to 120 m. The Velodyne can spin at a rate between 5 Hz and 20 Hz. As

the spin rate increases, the resolution decreases. We set the spin rate to 10 Hz. The Velodyne detects

7

Figure 3.1.1: The Toyota Prius V

approximately 1.3 million points per second. We used the ROS Velodyne packages to collect data from the

sensor [10].

Figure 3.2.1: The Velodyne HDL-64E [11]

3.2.2 Mobileye 560

The Mobileye 560, shown in Figure 3.2.2a, is an Advanced Driver Assistance System (ADAS), which includes

a High Dynamic Range CMOS (HDRC) camera, an image processing board, and a display for visual warnings

to the driver as shown in Figure 3.2.2b. The camera is mounted on the front windshield and the system

communicates via the a vehicle’s CAN. The Mobileye transmits a series of messages every 66-100 ms on a

500 kbps channel.

The Mobileye does not transmit the raw camera image, but instead transmits information about the dynamic

obstacles, lanes, and traffic signs around the vehicle, as well as collision warnings, lane departure warnings,

8

headway monitoring, and intelligent high beam control decisions. The Mobileye 5 series is developed for

paved roads with clear lane markings. It can operate at night and during adverse weather conditions, but

the recognition is not guaranteed to be as robust. It can only reliably detect the fully visible rear ends of

vehicles and bicycles as well as fully visible pedestrians. It does not provide robust detection of crossing,

oncoming, and passing traffic.

(a) Mobileye Sensor [12] (b) Mobileye Display [13]

Figure 3.2.2: The Mobileye System

Kvaser Leaf Light v2

To communicate with the Mobileye we used a Kvaser Leaf Light v2 which connects a computer to the CAN

bus via a USB port. Kvaser provides a Linux library with device drivers as well SDKs written in C and

Python, which provide methods for CAN channel configuration and communication.

When starting up the vehicle, we consistently had issues connecting to the Leaf Light. Each user had a laptop

with with Ubuntu 16.04 and the Kvaser Linux library installed. During installation the Kvaser library did

not sign the kernel modules for the device drivers. When UEFI secure boot is enabled, Linux kernel versions

4.4.0-20 onwards will only load kernel modules which have been digitally signed with the proper key. Since

Kvaser did not sign the module, users either had to manually sign the module or disable UEFI secure boot

to load the Leaf Light kernel module.

Even with signed kernel modules or secure boot disabled, we found that each of our systems would often

fail to recognize the Kvaser device. Common troubleshooting techniques, such as unplugging and replugging

the device and restarting the computer failed to solve the problem. However, removing and reinstalling the

Kvaser library (then signing the kernel if necessary) and restarting the computer solved the problem. This

troubleshooting process was often needed when first connecting to the device. However, once the Leaf Light

connected to a laptop, it worked consistently without issues.

9

Chapter 4

Approach

The sensor fusion system fuses data from the Velodyne and the Mobileye to track obstacles in the environ-

ment. An overview of the architecture is shown in Figure 4.0.1. Each sensor has its own module which

tracks the detected obstacles. The Mobileye Node processes the CAN data and keeps track of the obstacles

reported by the Mobileye. The Velodyne Tracking Node processes the point cloud, extracts the features,

and tracks the obstacles detected by the Velodyne. The Fusion Node then associates Velodyne and Mobileye

obstacles.

Fusion Node

Mobileye
Node

Velodyne
Tracker
Node

Tracked Mobileye Obstacles

Tracked Velodyne Obstacles

Sensor Layer

Fused
Obstacles

CAN

Point Cloud

Figure 4.0.1: An overview of the sensor fusion system architecture

4.1 Sensor Calibration and Registration

4.1.1 Mobileye Calibration

Upon installation, the Mobileye must be calibrated. The user can adjust the camera angle to point directly

forward. Then, the user provides the Mobileye with the camera height from the ground and must mark

10

the camera height on a TAC target with a line. Next, the user places the TAC target as close to the front

bumper as possible and adjusts camera angle to align the marked line on the target to be between two red

lines displayed on the camera image. Additionally, the user provides the Mobileye with the width of the

vehicle’s front wheel base, and the driving side of the road (e.g. "left" for the United Kingdom). If the

car hood is visible in the image, the user also indicates the location of the highest point of the hood in the

image by adjusting the position of a red line in the calibration application. Furthermore, the user provides

the distance to the left and right windshield edges and distance to the front bumper. The final calibration

step can be completed using a TAC target or automatic calibration during the first drive.

In addition to the guided Mobileye calibration, we measured the position of the Mobileye relative to the

SICK LiDAR on the front bumper. The ROS transform tree transforms between coordinate frames which are

linked together [14]. In this case, the positions of the SICK mounted on the front bumper and the Velodyne

were both measured relative to the position of the vehicle’s IMU. Therefore, the transform tree can be used

to approximate the transform from the Mobileye to the Velodyne frame.

4.2 Mobileye Interface

Using the Kvaser library, the ROS Mobileye node sets up a CAN channel and processes incoming Mobileye

messages. Each CAN message is composed of a 64-bit identification header followed by 8 data bytes. For the

purposes of data collection, there are two Mobileye ROS nodes, the Raw Mobileye CAN Node which processes

the CAN messages and publishes the CAN message ID and data bytes in MobileyeRaw ROS messages and

the Mobileye CAN Node which processes the CAN messages and publishes the corresponding ROS message.

4.2.1 Mobileye CAN ROS Node

Upon receiving the a message, the Mobileye CAN ROS node processes the data bytes and sends the corre-

sponding ROS message. Table 4.2.1 below shows an overview of the CAN message IDs from the Mobileye

and the corresponding ROS message. Since the CAN message packets are exactly 8 data bytes, obstacle and

lane marking descriptions are split into multiple messages with sequential headers. The ROS node combines

the information from the lane A & B CAN messages and obstacle A, B, & C CAN messages into one ROS

message, respectively. To prevent errors, upon receiving an Obstacle A (or B) or Lane Marking A CAN

message the node checks the ID of the next incoming CAN message. If the following message is not the

corresponding B (or C) message, the node displays an error message which includes the expected ID number

and received ID number and then processes the received message.

11

CAN Header ID(s) Mobileye Message Name ROS Message
0x650 Fixed Focus of Energy (FOE) MobileyeFixedFoe
0x669 Lane MobileyeEgoLane
0x700 Automatic Warning System (AWS) Display MobileyeAws
0X720 - 0x726 Traffic Sign MobileyeTrafficSign
0x727 Vision Only Traffic Sign MobileyeVisionOnlyTsr
0x728 Active High Beam Control (AHBC) MobileyeAhbc
0x729 AHBC Gradual MobileyeLights
0x737 Lane MobileyeLane
0x738 Obstacle Status MobileyeObstacleStatus
0x739 - 0x75F Obstacle Data A/B/C MobileyeObstacle
0x760 Car Info MobileyeVehicleState
0x766 - 0x767 Lane Keeping Assistant (LKA) Left Lane A & B

MobileyeLaneMarking0X768 - 0x769 LKA Right Lane A & B
0x76C - 0x77A Details Next Lane A & B
0x76A Reference Points MobileyeRefPoint
0x76B Number of Next Lanes MobileyeNextLanes

Table 4.2.1: Mobileye CAN message protocol to ROS message protocol.

The Mobileye Obstacle and Lane ROS messages are described further in the following sections, and the other

messages are described in the Appendix A.

Obstacle Messages

As stated previously, the Mobileye does not reliably detect oncoming, passing, or crossing traffic. It only

reliably detects fully visible pedestrians and bicycles, trucks, motorcycles, vehicles with fully visible rear

ends.

The MobileyeObstacle message describes a detected dynamic obstacle in the scene. The types of dynamic

obstacles detected include vehicles, trucks, motorcycles, bicycles, and pedestrians. The message includes the

obstacle’s ID number, type, position relative to the reference point, relative x (forward) velocity, acceleration,

width, length (if the front of the vehicle is viewable), and lane position. If the obstacle is in the ego lane,

which is the vehicle’s current lane, or the next lane, the message indicates whether or not the vehicle is

cutting in or out of the ego lane. Furthermore, it includes the angle to the center of the obstacle and the

scale change from the previous frame. If the obstacle is a vehicle it also includes information about the

obstacle’s blinker status, brake light status, and whether it is the closest-in-path vehicle (CIPV). Finally, it

includes whether or not it was a newly detected obstacle and the age of the obstacle in number of frames.

The documentation of the Mobileye states that the Obstacle positions are relative to a reference point which

is one second ahead of the vehicle, likely based on the Mobileye’s estimation of the vehicle velocity based

on visual odometry [15]. However, the reference point was always set to 0.0, 0.0. It is unclear whether

12

the reference point is used, or the Mobileye failed to transmit the reference point location. We contacted

Mobileye to resolve this question several times but they did not respond.

Table 4.2.2 describes each of the parameters of the MobileyeObstacle message. Some of the parameter names

are different than the names used in the AutonomousStuff documentation for clarity [15].

13

Parameter Description
uint8 id New obstacles are given the last free used ID
uint8 type The obstacle’s classification
uint8 status The obstacle’s moving status (e.g. moving, parked)
bool isCipv Whether or not this obstacle is the Closest in Path Vehicle (CIPV)
float32 position.x The X (longitudinal) position of the obstacle in meters relative to the

reference point. It is computed from the pixel position and detected
width of the obstacle and is filtered. The error is generally below 10%
or two meters (the larger of the two) in 85% of cases.

float32 position.y The Y (lateral) position of the obstacle. The y position is computed from
the pixel position and the position.x value and is filtered. The error is
correlated with the x error.

float32 relVelX The relative longitudinal velocity of the obstacle computed from the
obstacle scale change in the image

float32 accelX The longitudinal acceleration of the obstacle
float32 length The length of the obstacle [m] (longitude axis). This is only updated

for next lane vehicles which are fully visible and if the front edge of the
vehicle has been identified.

float32 width The width of the obstacle [m] (lateral axis) calculated from the pixel
width and the obstacle distance. The value is filtered to avoid outliers.
The expected performance within an error margin of 10% in 90% of the
cases. At night, the width measured is between the vehicle’s taillights.

uint8 hostLaneStatus The obstacle state with respect to host lane (e.g. in host lane, entering
host lane) based on an estimation of where the target is now relative to
the lanes, its rate of change, and estimation of where it is going to be
within one second. It does not distinguish between left and right lanes.

uint8 lane The lane of the obstacle (e.g. ego lane, next lane). This is calculated
from the obstacle position and the lane detection or the headway model
of the vehicle. The lane assignment decision takes up to 5 frames from
the first detection of the obstacle.

uint8 blinker The blinker status (e.g. left blinker on)
bool brakeLights Whether or not the obstacle brake lights are on
float32 angleToCenter The angle to the center of the obstacle [deg] from the reference point.

The values is negative if obstacle has moved to left.
float32 angRate Angle rate of the center of the obstacle [deg/s]
float32 scaleChange Scale change [pixels/s]
bool isNew Whether or not the obstacle was first detected this frame
bool replaced Whether or not the obstacle was replaced in this frame
uint8 age The age of the obstacle in number of frames, remains 254 if larger

Table 4.2.2: MobileyeObstacle message parameter descriptions.

14

Lane Messages

The Mobileye sends four different lane messages, some of which contain redundant information. The AWS

Message also warns of lane departures. The Lane Departure Warnings (LDWs) are only available when the

vehicle’s speed is above 55 km/h (34 mph). The MobileyeLane ROS message contains lane information and

measurements for the current lane including the lane curvature and heading as well as the yaw and pitch

angle of the vehicle derived from the lane measurements. It also indicates if the vehicle is in a construction

area and if the lane departure warning is enabled for the left and right lane marks. The MobileyeEgoLane

message describes the left and right lane markings. For both markings it includes the distance to the lane

marking, the marking type, whether or not lane departure warnings are available, and a confidence value on

a 0-3 scale.

The MobileyeLaneMarking message describes an individual lane marking, both for the ego lane markings

and next lane markings. The message id parameter indicates whether the marking is for the current lane’s

markings (left or right) or the next lane’s marking. The message describes the distance between the camera

and the lane mark, the parameters of a cubic equation describing the shape of the lane, the width of

the marking, the physical view range of the marking, and the validity of the view range. Finally, the

MobileyeNextLanes message indicates the number of next lane markers which were reported.

4.3 Velodyne Feature Extraction

Voxel Grid
Down-

sampling

Estimate
Ground
Plane

Plane Model Coefficients

Select Above
Ground
Points

Euclidean
Cluster

Extraction

Velodyne
point cloud Obstacles

Figure 4.3.1: Velodyne Feature Extraction. First the point cloud is downsampled. Then the ground plane
is estimated and the points above the ground are selected. Finally, the remaining points are clustered.

The Velodyne feature extraction module uses the Point Cloud Library (PCL) [16]. As shown in 4.3.1, first

the point cloud is downsampled using a voxel grid filter then the ground plane is removed and the remaining

points are clustered.

In the ground plane estimation step, first a pass through filter extracts points in the region around the

ground plane, based on the z value of the points in the Velodyne frame. Then an approximate model for

the ground plane is calculated. The Random Sample Consensus Algorithm (RANSAC) and the Progressive

15

Sample Consensus (PROSAC) algorithm were compared for extracting the ground plane. RANSAC is an

iterative algorithm which uses random sampling and estimates the parameters of a mathematical model, in

this case a plane, from a dataset. It is robust to outliers. However, the RANSAC method was much slower

than the PROSAC method, and did not work in real time. PROSAC uses guided sampling and converges to

the solution of RANSAC. It is more suited for real time applications. Furthermore, constraining the plane

to be approximately parallel to the previous ground plane resulted in a better model with more inliers than

a generic unconstrained plane model. A comparison of the unconstrained and constrained plane models is

shown in the results section.

After the ground plane model is estimated, the points above the ground are extracted. All points which

are between 50 cm and 3 meters above the ground are selected. The above ground points are passed to the

cluster extraction module, which uses euclidean cluster extraction. This method uses a KD-tree to represent

the point cloud. It processes each point, adding all unprocessed points within a threshold radius to the

queue. Once all of the points in the queue have been processed, the points are added to the list of clusters.

This process repeats until all of the points have been processed and are part of the list of clusters. Clusters

with too few or too many points, based on user defined parameters, are not included in the final list of

clusters.

Obstacle representations of the extracted clusters are then passed to the tracking algorithms. The obstacles

passed to the tracking algorithm describe the time of detection, the x, y, z position of the cluster centroid,

the standard deviations of the x, y, and z coordinates of the points in the cluster, and a bounding box

representing the height, width, and length of the cluster calculated from the minimum and maximum x, y,

and z coordinates of the cluster.

4.4 Velodyne Tracking

The segmented clusters are passed to the tracking algorithm. The tracking problem is split into three

subproblems, data association, registration, and motion estimation.

4.4.1 Obstacle Representation

The obstacles position is estimated to be the cluster centroid and the size is estimated by a bounding box.

Each new obstacle is assigned a unique ID number between 0 and 200. New obstacles are assigned the

last free used ID. Since ID numbers are reused, a boolean value indicates whether or not the obstacle was

replaced in a given frame. The obstacle object also indicates the time of the first and last detection. The

initial estimate of the relative velocity is set to 0.

16

4.4.2 Data Association

In the data association step, obstacles from the current time step are matched to obstacles from the previous

time step. If a tracked obstacle from the previous time step is not matched in the current frame, it is removed

from the list of tracked obstacles. The data association step is treated as a linear assignment problem, a

the Kuhn-Munkres algorithm is used to match obstacles. The cost of an assignment is the distance between

a current obstacle’s position and the interpolated position of an object from the previous time step. If the

distance between two matched is above a set threshold value, the obstacles are not considered a match,

unless the previous obstacle is from the first detection, in which case its position estimate is unreliable.

Velodyne obstacles are represented by three models, an box model, a point model, and line model. Obstacles

are modeled as points if the x and y dimensions are below a threshold value and the standard deviation of

the x and y coordinates of the cluster points are below a threshold value. Very large obstacles and long line

segments are ignored, but short line segments are occasionally vehicles or bicycles, so they are tracked as

well. Boxes, points, and lines are tracked and matched separately.

If the estimated position an obstacle from the previous time step is outside of the boundary box of the

current clusters, it is not matched with the new list of obstacles. This prevents obstacles which move beyond

the Velodyne’s field of view from matching with obstacles just entering the Velodyne’s field of view.

4.4.3 Registration

Currently, no filtering is applied after data association. The registration step simply updates the vehicle’s

current position and size with the current position and size of the latest update.

4.4.4 Motion Estimation

The motion model assumes that the velocity of an obstacle is constant between frames. The relative velocity

of a tracked obstacle is estimated from the change in position of the obstacle between two time steps.

The position, r of an obstacle at a given time, t, is estimated from the relative velocity through linear

interpolation, r(t) = r(t0) + vrel ∗ (t− t0).

4.4.5 ROS Publishing

The tracked obstacles in a given time step are published in a single ROS message, the VelodyneObstacleStatus

message. This message includes the number of tracked obstacles and a vector of VelodyneObstacles describing

the unique ID, model type, position, size, relative velocity, time of first detection, and whether or not the

obstacle is new.

17

4.5 Sensor Fusion

The Sensor Fusion node matches detected Mobileye Obstacles with detected Velodyne Obstacles. Both sensor

modules track detected obstacles across frames independently. The Sensor Fusion node receives Obstacle

messages and Obstacle Status messages from the Mobileye node and Velodyne Obstacle Status Messages

from the Velodyne node, which describe all of the detected obstacles from a Velodyne point cloud.

The fusion node associates and registers Velodyne and Mobileye obstacles each Velodyne frame, but does not

do independent tracking across frames. The Mobileye tracking is fairly unreliable in urban environments,

and tracking labels frequently switch between different obstacles of the same type. Between frames, Mobileye

obstacles frequently disappear and reappear, sometimes tracking the same obstacle, sometimes tracking a

different one, while the old obstacle is no longer tracked. Furthermore, the Velodyne tracking is also unreliable

in busy scenes, and obstacle labels are frequently changed between frames. Therefore, it cannot be assumed

that a given Mobileye obstacle matched to a Velodyne obstacle in on frame will match to the same obstacle

in the next frame. Furthermore, the Velodyne’s field of view is 360 degrees, and it can detect obstacles which

are occluded, unlike the Mobileye. In contrast to the Mobileye, the Velodyne detects oncoming, passing,

crossing and trailing traffic. It can also vehicles traveling in the same direction ahead of the vehicle which

are not fully visible to the Mobileye. However, the Velodyne’s obstacle detection range in front of the vehicle

is much shorter, and the Mobileye can more reliably detect vehicles which are far away. Therefore, the vast

majority of the obstacles detected by both sensors do not match. Typically, only 1 or 2 obstacles detected

by the both sensors correspond to the same obstacle.

4.5.1 Coordinate Transformation

Both the Mobileye and the Velodyne provide the data in their local reference frames. The obstacle locations

therefore must be converted to a common reference frame. During association the position of the Mobileye

Obstacle is transformed into the Velodyne frame using the ROS Transform Listener [14].

4.5.2 Mobileye Tracking

The sensor fusion node keeps track of the current Mobileye obstacles. Mobileye Obstacles frequently disap-

pear and reappear between frames, therefore the node removes obstacles from the Mobileye list if it does not

receive a new message for a given obstacle within a timeout threshold.

18

4.5.3 Mobileye and Velodyne Obstacle Association

When the sensor fusion node receives a message from the Velodyne node, it associates the Velodyne and

Mobileye obstacles using the Kuhn-Munkres algorithm in the same manner as the data association for the

Velodyne tracking node. The cost of an association is the distance between the obstacles at a given time

in the Velodyne frame. The distance between the obstacles is then calculated as the distance between the

transformed Mobileye position and the interpolated position of the Velodyne obstacle at the time of detection

of the Mobileye obstacle. If the distance between two obstacles matched by the Kuhn-Munkres algorithm is

above a threshold value, the obstacles are not associated.

4.5.4 Registration

If a Mobileye and Velodyne obstacle are matched, the position, size, relative velocity are set to the position,

size, and relative velocity of the Velodyne obstacle, since the Velodyne position and size is much more

accurate and reliable, while the type of the obstacle is set to the Mobileye type, either a vehicle, truck,

motorcycle, bicycle, or pedestrian.

19

Chapter 5

Results

5.1 Velodyne Feature Extraction

5.1.1 Downsampling

The voxel grid filter used to downsample the cloud uses a leaf size of 0.10 m for the x, y, and z coordinates. The

original point cloud is approximately 222,000 points, and after downsampling the point cloud is approximately

55,000 points.

(a) Original point cloud (b) Downsampled point cloud

Figure 5.1.1: Point cloud at an intersection before and after downsampling

20

5.1.2 Ground plane estimation

The ground plane estimator was tested with both an unconstrained plane model and a plane model with

the normal vector constrained to be within a threshold angle of the normal vector of the ground plane from

the previous frame. Threshold angles between 1◦ and 5◦ were tested. The performance of the ground plane

estimation module was compared in several different environments, including while driving along a bridge,

while the vehicle was stopped at a busy intersection, during a sharp left turn, and while turning and driving

up. For all of the tests, the inlier distance threshold was set at 0.20 m and the maximum number of iterations

was set to 500. The number of points matching the ground plane model was used as the comparison metric

since the ground plane estimator slightly under-segments the ground plane.

Table 5.1.1 shows the results of the ground plane segmentation test along a straight flat road with no crossing

traffic, as shown in Figure 5.1.2. The aggregate results for each model are shown for over 5 test runs. The

constrained ground plane with a tolerance of 5◦ performs the same as the unconstrained ground plane. In

this case, the high threshold is effectively the same as an unconstrained plane. The constrained plane with a

tolerance of 1◦ best segments the ground plane overall. It has the highest mean number of inliers and lowest

standard deviation. However, the minimum number of inliers is 40% lower than the minimum number of

inliers for the unconstrained ground plane model, indicating that for some clouds, the constrained model

poorly segments the ground plane even along flat terrain.

(a) Original point cloud (b) Segmented ground point cloud (c) Above ground point cloud

Figure 5.1.2: Ground estimation along a bridge

Mean Stdev Min max
Constrained ε = 1◦ 21, 011 1, 716 7, 570 23, 203

Constrained ε = 2.5◦ 20, 663 1, 997 7, 819 23, 342
Constrained ε = 5◦ 20, 606 1, 992 12, 865 23, 342

Unconstrained 20, 606 1, 992 12, 865 23, 342

Table 5.1.1: Comparison of ground plane extraction models on straight flat terrain. The comparison metric is
the number of inliers for the plane model. These values represent the aggregate mean and standard deviation
for 5 test runs. The minimums and maximums were the same for each test run. Each test was run for 30
seconds and the data represents the mean and standard deviation of the number of inliers over the duration
of the test.

Table 5.1.2 shows the results of the ground plane estimation test while the vehicle was stopped at a busy

intersection shown in Figure 5.1.3. The test was run for 50 seconds. The constrained plane model with a

21

threshold of ε = 1◦ performed better than the other models. The aggregate mean number of inliers was

slightly higher and the aggregate standard deviation was lower. Furthermore, the minimum number of inliers

for the 1◦ model was 12, 943 which was higher than the unconstrained model (10, 172) and the 2.5◦ model

(12, 630). Even the worst performance of the 1◦ constrained model was better than the other plane models.

(a) Original point cloud (b) Segmented ground point cloud (c) Above ground point cloud

Figure 5.1.3: Ground estimation at a busy intersection

Unconstrained Constrained
ε = 1◦ ε = 2.5◦ ε = 5◦

Mean σ Mean σ Mean σ Mean σ
1 21348.39 1960.83 21832.25 1459.55 21391.15 1866.79 21348.44 2036.50
2 21346.93 1966.14 21835.15 1504.20 21393.85 1865.99 21348.51 1961.56
3 21350.31 1967.97 21833.08 1460.47 21386.81 1866.67 21346.22 1962.85
4 21350.97 1963.04 21830.70 1460.60 21395.29 1861.90 21345.73 1967.67
5 21357.01 1960.15 21832.25 1459.55 21395.29 1861.90 21353.04 1964.19

Aggregate 21350.72 1963.63 21832.68 1468.88 21392.49 1864.64 21348.38 1977.35

Table 5.1.2: Comparison of the number of inliers points in the ground plane for constrained and unconstrained
plane models at a busy intersection. The duration of each test run was 50 seconds. The sampling algorithms
are non-deterministic, therefore the results varied slightly for each test.

The constrained plane model with a 1◦ threshold performed the best for tests while crossing an intersection

and making a sharp turn. However, in one environment when there were two sharp changes in incline, the

unconstrained plane model was slightly better. However, all of the models significantly undersegmented the

ground region by about 20% due to the sharp change in slope.

5.1.3 Clustering

The cluster extraction algorithm was tested on a variety of scenes. The minimum cluster size threshold was

50 points and the maximum was 1500 points. A maximum cluster size of under 1500 points caused clusters

from target vehicles which were very close to ego vehicle to be rejected. In this case target vehicles would

briefly disappear as they passed the ego vehicle. Rejecting clusters from static obstacles based on shape was

found to be more effective. The point distance threshold used for clustering was 0.50 m. Figure 5.1.4 shows

22

the results of the cluster extraction along a bridge. The three vehicles are all represented by distinct clusters

and the guardrails along the bridge are also separated into 6 different clusters. In some cases the clustering

algorithm under segmented the cloud, and grouped in pedestrians with the guardrails between the car and

the sidewalk.

Figure 5.1.5 shows the results of the cluster extraction at an intersection. This scene is much busier than the

bridge scene, there are six vehicles in the scene (shown in colors ranging from red to yellow), all of which are

separated into different clusters. The algorithm also clustered 2 trees as distinct clusters as well as features

from buildings and the road.

(a) Original point cloud (b) Above ground point cloud (c) Clustered point cloud

Figure 5.1.4: Cluster extraction in a bridge scene. 9 clusters are identified, each is marked with a different
color.

(a) Original point cloud (b) Above ground point cloud (c) Clustered point cloud

Figure 5.1.5: Cluster extraction at an intersection scene. 25 clusters are identified, each is marked with a
different color.

23

5.2 Velodyne Tracking

Figure 5.2.1 shows the results of the tracking algorithm while the vehicle drives across a bridge. The

algorithm is able to track cars as boxes and pedestrians as points across multiple frames as both the vehicle

and obstacles move. Figures 5.2.1a to 5.2.1f show how the algorithm tracks 2 cars with the box model across

several frames until the obstacles disappear out of frame. It is able to consistently label the cars with the

same ID numbers across several frames and recycles the ID numbers when the cars disappear from view.

As shown in Figures 5.2.1c to 5.2.1h, the algorithm is able to track obstacle 56, which is single trailing

vehicle traveling at approximately the same velocity for about 10 seconds. They also show that the tracking

algorithm is able to detect when obstacles disappear from view. In this particular example, only figure 5.2.1g

shows an obstacle modeled as a short line segment, in this case the obstacle is a false positive from ground

points which were not removed. The clusters from the guardrails of the bridge are not tracked because they

are rejected by the tracking algorithm since they are long line segments.

24

(a) Frame 1 (b) Frame 2

(c) Frame 3 (d) Frame 4

(e) Several frames later, each of the obstacles in frame 4 are still
tracked

(f) One frame later, a new obstacle is present

(g) About 5 seconds later, obstacle 56 is still tracked (h) Again, about 5 seconds later, obstacle 56 is still tracked.

Figure 5.2.1: Tracking Velodyne clusters in a bridge scene. The visualization of the clusters does not color
a given cluster the same each frame. Tracked obstacles are surrounded by bounding boxes and marked with
the tracking ID number. Obstacles which are modeled as points have red labels, those modeled as boxes
have green labels, and those modeled as lines have white labels.

25

Figure 5.2.2 shows the results of the tracking algorithm as the vehicle approaches an intersection. Several

obstacles switch IDs with nearby obstacles between frames. Between the first frame shown in 5.2.2a the

second frame shown in 5.2.2a, 5 vehicles switch ID numbers. With the Munkres algorithm, if one obstacle is

matched incorrectly, this can cause a cascading effect, such that several obstacles switch ID numbers.

In the third frame a new point cluster is detected and labeled with ID 189, but it is not detected again in

the fourth frame, however, a different point obstacle first in frame 4 across the intersection and is assigned

label 189 because it is the closest match. In this case, since the original point disappears and a new one

appears, it is matched to the new obstacle because it is the closest one.

Obstacles 44, 122, 143, and 156 remain stable across all of the frames since they do not move significantly

relative to the vehicle between frames. While the tracking algorithm fails to label obstacles correctly in this

scene, it does not lose track of any vehicles or pedestrians, but does switch labels. The label switching occurs

in part because the relative velocity is assumed to be constant between frames, but in this case, the vehicle

is decelerating as it approaches the intersection. Therefore, the interpolated position of the obstacles from

the previous used for matching will have higher error. Taking the vehicle’s velocity and acceleration into

account would result in more accurate matching.

26

(a) Frame 1 (b) Frame 2, Vehicles with IDs 128, 142, 138, 153, 174, and
138 all switch ID numbers

(c) Frame 3 (d) Frame 4

Figure 5.2.2: Tracking obstacles while approaching an intersection, the visualization of the clusters does not
color a given cluster the same each frame. Tracked obstacles are surrounded by bounding boxes and marked
with the tracking ID number. Obstacles which are modeled as points have red labels, those modeled as boxes
have green labels, and those modeled as lines have white labels.

27

5.3 Mobileye to Velodyne Coordinate Transform

As mentioned in previous sections, the transform between the Mobileye and Velodyne was estimated by

measuring the distance between the Mobileye and a common reference frame. This technique proved to be

robust enough to accurately associate Mobileye and Velodyne obstacles. As shown in 5.3.1, the transformed

Mobileye coordinates are very close (within 50 cm) to the closest sides of obstacles facing the front of the

vehicle in the Velodyne coordinate frame and thus can be correctly matched to the nearest Velodyne obstacle.

Across several frames, the error between transformed Mobileye positions and the location of the obstacles in

the Velodyne frame is not consistent. This is partly due to timing differences and the motion of the vehicle

and targets. The error in the Mobileye position estimation for pedestrians is typically larger than the error

in the estimated position of vehicles, and in this example shown in the figure the error in the estimation of

the pedestrian location is between 2 and 4 meters in both frames.

Errors in transformation are caused by calibration error, timing error, and the vehicle and obstacle motion.

Since the Mobileye does not provide intrinsic calibration information, it is not possible to isolate the source

of the error. However, by simply transforming using the extrinsic measurements, the position errors are

generally small enough (within 1 meter) that the fusion layer can correctly match obstacles in a single frame.

(a) Frame 1. Three vehicles are identified. (b) Frame 2. Three vehicles and one pedestrian are identified.

(c) Frame 3. Three vehicles and one pedestrian are identified.

Figure 5.3.1: An example showing the position of the Mobileye obstacles shown as dots transformed into
the Velodyne frame and overlayed onto the point cloud. Green dots represent vehicles and red represent
pedestrians. The bounding boxes around the Velodyne obstacles identified by the Mobileye are hand drawn
for this example.

28

5.4 Sensor Fusion

The Sensor Fusion Module associated Mobileye and Velodyne obstacles in busy scenes fairly robustly. How-

ever, in urban streets, the vehicle frequently accelerated or decelerated and therefore the Velodyne tracking

was not very robust. While the Velodyne module was able to reliably detect obstacles within it’s field of view,

the labels for obstacles frequently changed. Although the labeling of the Velodyne obstacles was unreliable,

the Sensor Fusion Module was still able to reliably match the Velodyne and Mobileye obstacles each frame.

Figure 5.4.2 shows the results of the fusion on a busy urban street shown in 5.4.1. The Mobileye reliably

tracks the closest in path vehicle, labeled M51. On the other hand, the Velodyne detects the vehicle in each

frame, it does not track it reliably across frames and switches its label. The Velodyne Tracker assumes the

velocity is constant between frames, and in this case the vehicle is decelerating, which results in an inaccurate

estimation of the target vehicle’s updated position. In spite of the Velodyne module’s inaccurate labeling,

the sensor fusion module matches the correct Velodyne obstacle to the detected Mobileye vehicle each frame.

As shown in each of the figures, the Mobileye also detects several pedestrians. The original point cloud

shows these pedestrians, but each of the clusters contains too few points, and are partially obscured by an

overhanging tree.

(a) The closest in path vehicle and pedestrians are clearly visible (b) The point cloud (partially cropped) correspond-
ing to the first frame of the scene. The closest in
path vehicle is visible, as are the pedestrians de-
tected by the Mobileye, but they are obscured by an
overhanging tree and walking too close together for
the feature extraction module to detect them prop-
erly.

Figure 5.4.1: To provide context for the results shown in Figure 5.4.2, this figure shows an image from the
Point Grey camera and the point cloud corresponding the first frame of the scene.

29

(a) Frame 1, Matches (M51, 111) (b) Frame 2, Matches (M51, 174))

(c) Frame 3, Matches (M51, 174) (d) Frame 4, Matches (M51, 162)

Figure 5.4.2: Fusion in an urban street scene. The visualization of the clusters does not color a given cluster
the same each frame. Tracked Velodyne obstacles are surrounded by bounding boxes and marked with the
tracking ID number. Obstacles which are modeled as points have red labels, those modeled as boxes have
green labels, and those modeled as lines have white labels. ID’s of tracked Mobileye obstacles are labeled
with M. For Mobileye obstacles, pedestrians are red and vehicles are green.

30

In a slightly less busy urban scene shown in Figure 5.4.3, the Sensor fusion module is able to track a few

obstacles across several frames, as shown in Figure 5.4.4. In each frame, the Mobileye detects a parked

vehicle, labeled M25, on the side of the road. This vehicle is not detected by the Velodyne in any of the

frames because the target returns too few points. The sensor fusion module instead matches the vehicle

with a nearby Velodyne feature along the side of the road which is not a vehicle. Furthermore, the Mobileye

identifies an oncoming vehicle, labeled M62, which is matched to the correct Velodyne target in each frame,

although the Velodyne label changes in the third frame. The Mobileye also identifies a pedestrian, labeled

M42, on the sidewalk. In each frame, the Velodyne identifies both the pedestrian and a light pole as point

features near the Mobileye target. In the first and last frame, the obstacle is correctly matched, but in the

other two frames it is matched with the light pole. Finally, the Mobileye detects a bicycle, labeled M59, but

classifies it as a pedestrian. The sensor fusion module attempts to match the Mobileye target with Velodyne

obstacles modeled as points, and finds no match.

(a) A pedestrian is walking along the sidewalk to the right
of the vehicle near a light pole, a bicycle is in front of the
vehicle turning into the vehicle’s lane, an oncoming car is
in the next lane, and parked vehicles are visible along the
right side.

(b) The bicycle and oncoming vehicle are visible, but the
parked vehicle is not.

Figure 5.4.3: To provide context for the results shown in Figure 5.4.4, this figure shows an image from the
Point Grey camera and the point cloud corresponding the first frame of the scene.

31

(a) Frame 1. Matches (M25, 173), (M42, 156), (M62, 38). (b) Frame 2. Matches (M25, 173), (M42, 67), (M62, 38)

(c) Frame 3. Matches (M25, 171), (M42, 67), (M62, 193) (d) Frame 4. Matches (M25, 171), (M42, 75), (M62, 193).

Figure 5.4.4: Fusion in an urban street scene. The visualization of the clusters does not color a given cluster
the same each frame. Tracked Velodyne obstacles are surrounded by bounding boxes and marked with the
tracking ID number. Obstacles which are modeled as points have red labels, those modeled as boxes have
green labels, and those modeled as lines have white labels. ID’s of tracked Mobileye obstacles are labeled
with M. For Mobileye obstacles, pedestrians are red, bicycles are magenta, and vehicles are green.

32

When approaching a busy intersection shown in Figure 5.4.5, the Sensor fusion module is able to track the

leading and neighboring vehicle for several seconds, as shown in Figure 5.4.6. The Mobileye detects the

closest in path vehicle, labeled M37, and a vehicles in the next lane, with labels M35 and M54, the Velodyne

tracker also detects these vehicles each frame and labels them consistently for several seconds. Each frame

the sensor fusion module correctly matches Mobileye obstacle 37 with Velodyne obstacle 44 and Mobileye

obstacle 35 with Velodyne obstacle 17. Furthermore, the Mobileye obstacle M54 is only detected by the

Velodyne in Figure 5.4.6d and it is associated correctly in this frame. In the other frames, the target is

incorrectly matched to the vehicle to the right of the Mobileye obstacle M54.

The Mobileye also detects parked vehicles, M29 and M31. The Velodyne Module initially does not detect the

obstacle corresponding to M31, and the Sensor Fusion Module incorrectly matches it to a nearby obstacle.

In the second frame, the Velodyne Module detects it and the sensor fusion module is able to track it for

1 second. Between the frames shown in Figure 5.4.6c and Figure 5.4.6d, the Velodyne Module changes

the label of the parked vehicle corresponding to M31, but the Sensor Fusion Module continues to correctly

match Mobileye Obstacle 31 to the new Velodyne label. The Velodyne Module only detects an obstacle

corresponding to M29 in the final frame and it is correctly matched.

(a) Both closest in path vehicle and leading next lane vehicle are
clearly visible, as well as a parked vehicle along the right.

(b) The closest in path vehicle and leading next lane
vehicle is visible. Oncoming vehicles are also visible.
But the parked vehicle only returns a few points.

Figure 5.4.5: To provide context for the results shown in Figure 5.4.6, this figure shows an image from the
Point Grey camera and the point cloud corresponding the first frame of the scene shown in 5.4.6a.

33

(a) Frame 1. Matches (M31, 46), (M35, 17), (M37, 44),
(M54, 20)

(b) Next frame. Matches (M31, 110), (M35, 17), (M37,
44), (M54, 112)

(c) 1 second later. Matches (M31, 110), (M35, 17), (M37,
44), (M54, 102)

(d) 1 second later. Matches (M29, 69), (M31, 46), (M35,
17), (M37, 44)

Figure 5.4.6: Fusion at an intersection. The visualization of the clusters does not color a given cluster
the same each frame. Tracked Velodyne obstacles are surrounded by bounding boxes and marked with the
tracking ID number. Velodyne obstacles which are modeled as points have red labels, those modeled as
boxes have green labels, and those modeled as lines have white labels. Mobileye Obstacle ID’s are indicated
with M. Mobileye pedestrians are red, bicycles are magenta, and vehicles are green.

34

The example shown in Figure 5.4.8 shows the results of the Sensor Fusion while the vehicle is turning in a

busy intersection shown in 5.4.7. As the lead vehicle turns, the Mobileye loses track of the target, but the

Velodyne module detects it in each frame, although it the label changes twice. The Sensor Fusion Module

correctly matches the target when both sensors detect it. In this scene, the Mobileye is only able to detect

the leading vehicle and no other obstacles, but the Velodyne is able to detect the leading vehicle and vehicles

ahead of it, as well as crossing traffic, oncoming traffic and pedestrians.

(a) The Point Grey image corresponding to Figure 5.4.8a. (b) The Point cloud corresponding to Figure 5.4.8a.

(c) The Point Grey image when the Mobileye loses track
of the vehicle, one frame after Figure 5.4.8c.

(d) The Point Grey image when the Mobileye detects the
vehicle, corresponding to Figure 5.4.8e.

Figure 5.4.7: To provide context for the results shown in Figure 5.4.8, this figure shows an image from the
Point Grey camera and the point cloud corresponding the first frame of the scene shown in 5.4.8a.

35

(a) Frame 1, before the turn, the clos-
est in path vehicle is turning. The Mo-
bileye and Velodyne both detect the
vehicle, and the targets are correctly
matched.

(b) Approximately 2 seconds later, the
target is labeled consistently and cor-
rectly matched.

(c) Approximately 1 second later, the
Velodyne label changes, but the tar-
get is matched correctly. The Mobileye
stops detecting the obstacle in the next
frame.

(d) Approximately 1.5 seconds later,
the Velodyne label changes again and
the Mobileye still does not see lead ve-
hicle.

(e) The next frame (approx. 0.10 sec-
onds later), the Mobileye again detects
the lead vehicle, and the targets are cor-
rectly matched.

(f) Approximately 0.5 seconds later,
the turn is complete. The Velodyne
labels persist and the targets are cor-
rectly matched.

Figure 5.4.8: Fusion while the vehicle is turning. The visualization of the clusters does not color a given
cluster the same each frame. Tracked Velodyne obstacles are surrounded by bounding boxes and marked with
the tracking ID number. Velodyne obstacles which are modeled as points have red labels, those modeled as
boxes have green labels, and those modeled as lines have white labels. Mobileye Obstacle ID’s are indicated
with M. Mobileye pedestrians are red, bicycles are magenta, and vehicles are green.

36

Chapter 6

Conclusion

The Mobileye is primarily useful for detecting lanes and the closest in path vehicle, but can not be relied

upon for more sophisticated target tracking. For navigation in urban environments, the Velodyne sensor

detects obstacle much more reliably. Furthermore, the Mobileye performance does not exactly match the

documentation provided by AutonomousStuff [15], for example, as mentioned previously, the reference point

message always reported a value of 0.0, 0.0, when the documentation stated that the reference point should

be located at a 1 second headway ahead of the vehicle. Since Mobileye does not provide confidence values

on the position, relative velocity, or types of obstacles, it is difficult to apply reliable filtering to the tracked

Mobileye objects. It is also difficult to calibrate the Mobileye with other sensors since the intrinsic calibration

measurements are not provided. The Mobileye would be a more useful sensor if these values were provided.

For feature extraction from the point cloud, estimating the ground as a plane and Euclidean Cluster Extrac-

tion provided reliable segmentation in urban environments. The Velodyne tracker node was able to reliably

detect obstacles within the Velodyne’s field of view, but the tracking was only robust in simple scenes like

bridges. The tracker can be improved in several ways, first by incorporating the road geometry to eliminate

off road obstacles. Furthermore, a better motion estimation model, such as the Constant Turn Rate Ac-

celeration Model, combined with either Unscented Kalman Filtering or an Extended Kalman Filter would

improve target tracking. Using Multi Hypothesis Tracking would also improve the trackers capabilities.

The Mobileye and Velodyne are primarily complimentary sensors. Most of the obstacles that the Velodyne

detects are not detectable by the Mobileye and vice versa. The Mobileye tracks the closest in path vehicle

robustly, but is not as reliable for tracking other obstacles in urban environments because of occlusions. The

Velodyne tracker works well in environments like bridges, where it does not detect as many obstacles and

can track obstacles more easily. Although the Velodyne tracker frequently incorrectly associated obstacles

37

between frames in busy scenes, it still was able to reliably detect the visible obstacles in the scene. The Sensor

Fusion module was therefore able to detect obstacles visible to either sensor in each scene and track them

reliably. The target Velodyne obstacle which was associated with a Mobileye Obstacle remained the same

between frames although the Velodyne labels sometimes changed. This demonstrates that with improved

Velodyne tracking, the Sensor Fusion module can provide robust tracking of fused Mobileye and Velodyne

obstacles.

38

Acknowledgments

Firstly, I would like to express my sincere gratitude to my thesis advisor Professor Sertac Karaman for the

continuous support of my research, for his patience, motivation, and immense knowledge. His guidance

helped me in all the time of research and writing of this thesis. I would also like to thank the Toyota

Research Institute for the opportunity to join the project and Professor Daniela Rus and Dr. Liam Paull

for their insightful comments and guidance. Finally, I am grateful to my fellow researchers on the project,

in particular Teddy Ort, who helped me collect data on several occasions, and Stephen Proulx, for working

on the hardware integration and calibration.

39

Bibliography

[1] Michael S. Darms, Paul E. Rybski, Christopher Baker, and Chris Urmson. Obstacle detection and

tracking for the urban challenge. In IEEE Transactions on Intelligent Transportation Systems, IEEE,

2009.

[2] M. Himmelsbach, T. Luettel, and H.-J. Wuensche. Real-time object classification in 3d point clouds using

point feature histograms. In IEEE/RSJ International Conference on Intelligent Robots and Systems,

2009.

[3] P. Morton, B. Douillard, and J. Underwood. An evaluation of dynamic object tracking with 3d lidar.

In Australasian Conference on Robotics and Automation, Dec 2011.

[4] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros, P. Morton, and A. Frenkel. On the

segmentation of 3d lidar point clouds. In IEEE International Conference on Robotics and Automation

(ICRA), 2011.

[5] F. Moosmann, O. Pink, and C. Stiller. Segmentation of 3d lidar data in non-flat urban environments

using a local convexity criterion. 2009.

[6] James Munkres. Algorithms for the assignment and transportation problems. In Journal of the Society

for Industrial and Applied Mathematics, 1957.

[7] R Omar Chavez-Garcia and Olivier Aycard. Multiple sensor fusion and classification for moving object

detection and tracking. In IEEE Transactions on Intelligent Transportation Systems, IEEE, 2015.

[8] Liang Zhang, Qingquan Li, Ming Li, Qinqzhou Mao, and Andreas Nuchter. Multiple vehicle-like target

tracking based on the velodyne lidar. In IFAC, 2013.

[9] Faraz M Mirzaei, Dimitrios G Kottas, and Stergios I Roumeliotis. 3d lidarâĂŞcamera intrinsic and ex-

trinsic calibration: Identifiability and analytical least-squares-based initialization. In The International

Journal of Robotics Research, 2012.

40

[10] Jack O’Quin. Ros: Velodyne package summary.

[11] Velodyne hdl-64e.

[12] Mobileye accident prevention system advanced driver assistance system.

[13] Mobileye 630 pro mit vibrationsalarm - incl. montage vor ort - bundesweit.

[14] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, ,

and Andrew Y. Ng. Ros: an open-source robot operating system. In ICRA Workshop on Open Source

Software, 2009.

[15] AutonomousStuff. Mobileye startup guide v 1.7, 2016.

[16] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In IEEE International

Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13 2011.

41

Appendices

42

Appendix A

Mobileye ROS Messages

A.1 Obstacle Messages

A.1.1 MobileyeObstacleStatus

CAN Message ID: 0x738 This message contains information about all of the obstacles in the scene including

the number of obstacles and whether a car is close in front of the vehicle. It also contains the stop/go

recommendation if the vehicle is stopped and the failsafe mode being used.

A.1.2 MobileyeObstacle

CAN Message IDs: 0x739 - 0x765 This message describes a dynamic obstacle in the scene. The types of

dynamic obstacles detected include vehicles, trucks, motorcycles, bicycles, and pedestrians. The message

includes the obstacle’s ID number, type, position relative to the reference point, relative x (forward) velocity,

acceleration, width, length (if the front of the vehicle is viewable), and lane position. If the obstacle is in

the ego lane or the next lane, it describes whether or not the vehicle is cutting in or out of the ego lane.

Furthermore it includes the angle to the center of the obstacle and the scale change from the previous frame.

If the obstacle is a vehicle it also includes information about the obstacle’s blinker status, brake light status,

and whether it is the closest-in-path vehicle (CIPV). Finally, it includes whether or not it was a newly

detected obstacle and the age of the obstacle in number of frames.

43

A.2 Lane Messages

A.2.1 MobileyeLane

CAN Message ID: 0x737 This contains lane information and measurements for the current lane including

the lane curvature and heading as well as the yaw and pitch angle of the vehicle derived from the lane

measurements. It also indicates if the vehicle is in a construction area and if the lane departure warning is

enabled for the left and right lane marks.

A.2.2 MobileyeEgoLane

CAN Message ID: 0x669 This message contains lane information for the left and right lane markings. In-

cluding the distance to the lane marking, the marking type, whether or not Lane Departure warnings are

available for each marking, and a confidence grade about the lane marking information.

A.2.3 MobileyeLaneMarking

CAN Message IDs: 0x766 - 0x769, 0x76C - 0x77A This message describes a lane marking. It is used for both

the next lane A and B messages and the Lane Keeping Assistant (LKA) A and B messages for both left and

right lane markings, all of which have the same parameters. The message âĂĲidâĂİ parameter indicates

whether the marking is for the current laneâĂŹs markings (left or right) or the next laneâĂŹs marking. For

the current lane, isLeft indicates whether the lane marking is on the left or right. For all lane markings, it

describes the distance between the camera and the lane mark, the parameters of a cubic equation describing

the shape of the lane, the width of the marking, the physical view range of the marking, and the validity of

the view range.

A.2.4 MobileyeNextLanes

CAN Message ID: 0x76B This message indicates the number of next lane markers which were reported.

A.3 Traffic Sign Messages

A.3.1 MobileyeTrafficSign

CAN Message ID: 0x720, ..., 0x726 These messages detail the Traffic Sign type and position relative to the

camera. The Mobileye only sends a traffic sign message once the sign has exited the frame. Up to 7 signs

can be detected per frame.

44

A.3.2 MobileyeVisionOnlyTSR

CANMessage ID: 0x727 This messages summarizes the types of detected traffic signs in each frame, including

any supplementary signs. The traffic signs are shown in the order they are detected.

A.4 Other Messages

A.4.1 MobileyeFixedFOE: Focus of Expansion

CAN Message ID: 0x650 This message describes the fixed focus of expansion yaw and horizon.

A.5 MobileyeAws: Warning System

CANMessage ID: 0x700 This message contains the Warning System and Display messages. It signals forward

collision warnings (FCW) for pedestrians and vehicles, lane departure warnings (LDW), and the headway

measurement and warning level. The headway is the minimum time between the vehicle and the next vehicle

assuming constant speed. It indicates when a sound should be played and the type of sound that should be

played. It also indicates if the Lane Detection algorithms are working properly, a failsafe mode is on, and

night or dusk mode is on. The failsafe modes are blur image, saturated image, low sun, partial blockage,

and partial transparent. The current failsafe mode is indicated in the obstacle status message.

A.5.1 MobileyeAhbc: Automatic High Beam Control

CAN Message ID: 0x728 This message contains the High Beam / Low Beam recommendation. If low beam

is recommended, it indicates the reasons for using low beam (e.g. an oncoming vehicle or fog).

A.5.2 MobileyeLights

CAN Message ID: 0x729 This message contains information about the left, right and lower boundaries of the

glare free area of the image and the range of the closest object defining the lower boundary. It indicates the

position of the boundary and the state of the boundary (e.g. defined by preceding vehicle). It also indicates

if there are too many light sources and if the scene is busy.

A.5.3 MobileyeVehicleState

CAN Message ID: 0x760 This message provides information about the status of the vehicles brakes, left and

right turn signal, wipers, and high and low beam, if available. It also provides the vehicle speed in km/h if

45

available.

A.5.4 MobileyeRefPoint

CAN Message ID: 0x76A This message describes the reference points 1 and 2. For each point it contains the

distance from the camera to the point and the lateral distance between the camera and the reference point.

The first reference points is located at the lane center at approximately the 1 second headway.

46

	Introduction
	Related Works
	System Description
	The Vehicle
	Sensor Descriptions
	Velodyne-64E
	Mobileye 560

	Approach
	Sensor Calibration and Registration
	Mobileye Calibration

	Mobileye Interface
	Mobileye CAN ROS Node

	Velodyne Feature Extraction
	Velodyne Tracking
	Obstacle Representation
	Data Association
	Registration
	Motion Estimation
	ROS Publishing

	Sensor Fusion
	Coordinate Transformation
	Mobileye Tracking
	Mobileye and Velodyne Obstacle Association
	Registration

	Results
	Velodyne Feature Extraction
	Downsampling
	Ground plane estimation
	Clustering

	Velodyne Tracking
	Mobileye to Velodyne Coordinate Transform
	Sensor Fusion

	Conclusion
	Appendices
	Mobileye ROS Messages
	Obstacle Messages
	MobileyeObstacleStatus
	MobileyeObstacle

	Lane Messages
	MobileyeLane
	MobileyeEgoLane
	MobileyeLaneMarking
	MobileyeNextLanes

	Traffic Sign Messages
	MobileyeTrafficSign
	MobileyeVisionOnlyTSR

	Other Messages
	MobileyeFixedFOE: Focus of Expansion

	MobileyeAws: Warning System
	MobileyeAhbc: Automatic High Beam Control
	MobileyeLights
	MobileyeVehicleState
	MobileyeRefPoint

