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Abstract. This paper considers the anisotropy associated with the interparticle contact network and intercon-

nected pore space, which is quantified through a scalar quantity based on the fabric tensor. The study focused

on the anisotropy associated with subsets of contacts and pores. It is shown that the stress ratio can be di-

rectly related to the geometric anisotropy of strong and non-sliding contacts, and that the anisotropy of pores is

correlated with the anisotropy of contacts.

1 Introduction

Understanding the micro-scale origins of the complex

macroscopic behaviour of granular media is essential to

develop better predictive models. This requires the char-

acterisation of micro-scale features including the net-

work of interparticle contacts and the interconnected pore

space. Numerous studies have suggested that anisotropy of

micro-scale features plays a crucial role in the behaviour

of granular materials [1–3]. While most prior studies

have focused on the contact network, this paper explores

the evolving anisotropy of both contacts and pores. In-

terparticle contacts contribute to the stress transmission

process, while pores influence deformation characteris-

tics and hence, both play distinct roles in the behaviour

of granular materials. Micro-scale features are explored

through numerical simulations of two-way cyclic axisym-

metric tests on monodisperse assemblies of spherical par-

ticles. A novel feature of this study is that anisotropy is

quantified for subsets of contacts and pores, thereby pro-

viding an indication of which micro-scale features have

dominant contribution on the macroscopic behaviour.

2 Numerical Simulations

Discrete element simulations were conducted using the

open-source software LIGGGHTS [4]. Details of these

simulations are presented in [5]. Axisymmetric simula-

tions mimicking a drained triaxial test were carried out for

loose (CP-L) and dense (CP-D) samples. Samples were

generated by randomly inserting particles within a cubical

domain (with no contact between particles), and then com-

pressing the assembly by applying isotropic pressure on

the rigid frictionless walls of the domain. The current sim-

ulations were conducted using a monodisperse assembly
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Figure 1: Stress-strain and volumetric response for numer-

ical simulations. Note that the colour scheme for loading,

unloading, and reloading, along with the line type distin-

guishing CP-L and CP-D samples is maintained for the

rest of the paper, unless stated otherwise.
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Figure 2: Evolution of geometric anisotropy for the inter-

particle contact network in the CP-D simulation.

of elastic spherical particles (diameter ds = 1mm, elastic

modulus E = 70MPa, and Poisson ratio ν = 0.25) com-

pressed to a pressure, p = 200kPa. Particle contacts are

represented using the Hertz-history model in LIGGGHTS.

The interparticle friction, μ, is varied during isotropic

compression to achieve samples with different pre-shear

densities, but a constant value, μ = 0.25, was used for all

shear simulations. The numerical analyses simulate quasi-

static cyclic shearing (with an inertia number of I ≈ 10−3)

to a target axial strain of |εa| = 20% through loading, un-

loading and reloading phases (Fig. 1).

The macroscopic shear stress (Fig. 1a) and volumetric

strain (void ratio, e, Fig. 1b) show behaviour that is qual-

itatively consistent with the measured behaviour of dense

and loose sands. A critical state condition is approached in

the loading phase, where the loose and dense sample ex-

hibit similar stress state and void ratio at large axial strain.

It should be noted that the void ratio was computed over a

subset of the sample to avoid boundary irregularities asso-

ciated with the rigid walls.

3 Anisotropy of Interparticle Contacts

The anisotropy of interparticle contacts can be quantified

through a fabric tensor [6, 7]. This study is particularly

concerned with the anisotropy associated with subsets of

the interparticle contact network as forces are predomi-

nantly transmitted through a sparse subset of contacts.

In this study, a quad-partition is considered compris-

ing four subnetworks: (i) strong and sliding contacts; (ii)

strong and non-sliding contacts; (iii) weak and sliding

contacts; and (iv) weak and non-sliding contacts, where

the subnetworks are denoted {sμ, sη, wμ, wη} respectively.

Strong contacts are defined as those contacts with an inter-

particle normal force ( fn) greater than the mean, fn ≥ 〈 fn〉,
while weak contacts are those with fn < 〈 fn〉. Sliding con-

tacts are at the Coulomb friction limit, that is, | ft | = μ | fn|,
where ft is the interparticle tangential force.

The anisotropy of these subnetworks is quantified by

considering the directional distribution of contact normals.

This follows the stress-force-fabric relationship proposed

in [5] for partitioned subnetworks, where further details

can be found. If n is a unit vector along the contact normal

direction, then the probability density function of contact

normals with orientation n in the kth subnetwork (where k
can have the values {sμ, sη, wμ, wη}) can be expressed by

the second-order approximation:

Ek (n) =
1

4π

(
1 + Dk

i jnin j

)
(1)

where the subscripts {i, j} are indices of the vector and ten-

sorial quantities. Dk
i j is termed the deviatoric directional

probability density tensor in the kth subnetwork which is

given by:

Dk
i j =

15

2

⎛⎜⎜⎜⎜⎝Nk
i j −

Nk
kk

3
δi j

⎞⎟⎟⎟⎟⎠ (2)

where

Nk
i j =

1

Nk
c

Nk
c∑
α=1

nαi nαj (3)

is termed the moment tensor (or fabric tensor) for interpar-

ticle contacts. δi j is the Kronecker delta and Nk
c is the num-

ber of contacts in the kth subnetwork. A scalar measure of

anisotropy can be calculated by considering the second-

invariant of the directional probability density tensor:

ak
c =

√
3

2
Dk

i jD
k
i j (4)

ak
c provides a measure of geometric anisotropy, as it is

purely concerned with the arrangement of contacts rather

than the forces transmitted through the contacts. Figures

2a-2d illustrate the evolution of ak
c for each of the four

subnetworks in the CP-D simulation (similar trends oc-

cur for the CP-L sample). Note that a signed measure

of anisotropy is considered, where positive values imply

preferential orientation in the axial direction, while neg-

ative values indicate preferential orientation in the radial

direction.

Figures 2a and 2b show that contacts in the {sμ, sη}
subnetworks are preferentially orientated in the direction

of loading, while contacts in the {wμ, wη} subnetworks are

orientated perpendicular to the direction of loading (Fig.

2c-2d). This reflects the force chain description of the con-

tact network [8], where contacts with relatively large force

magnitudes form columnar structures, which are braced

laterally by contact with relatively small force magnitudes.

The subnetwork of strong and non-sliding contacts,

{sη}, is clearly the dominant contributor to the geomet-

ric anisotropy of the contact network (Fig. 2b). What is

particularly interesting about the behaviour of this subnet-

work is that it virtually mimics the stress-strain response in

Figure 1a. In fact, the relationship between anisotropy of

the strong and non-sliding contacts and the stress ratio can
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Figure 3: Unique relationship between stress ratio and

the anisotropy associated with strong and non-sliding con-

tacts.

Figure 4: Example of an individual pore comprising two

Delaunay cells. Note that the particle sectors have been

removed leaving just the pore space.

be expressed as
q
p =

2
5
asη

c . This is demonstrated in Figure

3, which indicates that stress ratio can be directly related

to the geometric configuration of strong and non-sliding

contacts throughout the two-way cyclic test. The potential

implications of this relationship is discussed further in [5].

4 Anisotropy of Pores

The anisotropy of pores can be quantified in a similar man-

ner to Section 3 but requires a clear and unambiguous

identification of individual pore bodies. In this study, in-

dividual pores are identified using the modified Delaunay

tessellation detailed in [9]. Initially, a classical Delaunay

tessellation is performed to identify tetrahedral Delaunay

cells, where the vertices of the tetrahedron are the parti-

cle centres. These Delaunay cells are merged together ac-

cording to a connectivity criterion based on the inscribed

sphere associated with each Delaunay cell. If the inscribed

spheres of two adjacent Delaunay cells overlap, then the

Delaunay cells are merged together (Fig. 4). This results

in pores that are described as polyhedral cells, providing a

physically intuitive delineation of the pore space that bet-
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Figure 5: Evolution of anisotropy in pore orientation for

the CP-D simulation.

ter captures local density fluctuations. This approach has

been shown to describe water retention characteristics in

monodisperse assemblies [10].

In order to quantify anisotropy of pores, the orientation

of individual pores must be calculated. This is achieved

using the pore orientation tensor [9]:

Pi j =
1

Ns

Ns∑
α=1

aαtαi tαj (5)

where tα and aα are the unit normal vector and surface area

of the triangular faces forming the polyhedral pore (Fig. 4)

and Ns is the number of faces. The major principal orien-

tation can be determined by an eigen-decomposition. If p
is the unit vector along the major principal direction, then

the probability density function of pores with an orienta-

tion p is given by:

Ek (p) =
1

4π

(
1 +Ck

i j pi p j

)
(6)

This is analogous to the expression in Equation 1, and

in a similar manner to Section 3:

Ck
i j =

15

2

⎛⎜⎜⎜⎜⎝Mk
i j −

Mk
kk

3
δi j

⎞⎟⎟⎟⎟⎠ (7)

where

Mk
i j =

1

Nk
p

Nk
p∑

α=1

pαi pαj (8)

is the moment tensor for the pore space. Nk
p is the number

of pores in the kth subset of pores. As per the contact sub-

networks considered in Section 3, the anisotropy associ-

ated with distinct subsets of pores will be determined. Two

dual-partitions are considered: (i) merged and unmerged

pores, denoted {m, u} respectively, and (ii) contracting and

dilating pores, denoted {c, d}.
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Figure 6: Correlation between anisotropy parameters for

contacts and pores. The Pearson correlation coefficient is

also presented.

Merged and unmerged pores are delineated through

the modified Delaunay tessellation mentioned above. Un-

merged pores have tetrahedral geometry, while merged

pores are polyhedral (Fig. 4). This partition also reflects

the contribution of pore volume, as unmerged pores have

relatively small pore volume (and vice versa).

Contracting and dilating pores are delineated by con-

sidering the incremental change in pore volume. This is

calculated by performing the classical Delaunay tessella-

tion at time step t + Δt, and applying this tessellation to

the previous time step t. If the incremental time step Δt is

small, then the error in applying the same Delaunay tes-

sellation to two time steps is minimal. The incremental

volume change for a given pore is simply the summation

of volume change associated with the corresponding De-

launay cells.

A scalar measure of anisotropy in pore orientation is

defined by:

ak
p =

√
3

2
Ck

i jC
k
i j (9)

The evolution of ak
p for both dual-partitions of the pore

space is shown in Figure 5 for the CP-D simulation. Un-

merged pores have a preferential orientation perpendicular

to the loading direction (Fig. 5a), while merged pores have

a slight degree of anisotropy in the direction of loading

(Fig. 5b). This observation can be explained by consider-

ing the particle contacts along the edges of the polyhedral

pore cell. Merged pores (which have large pore volumes)

can only be sustained by particle contacts with substantial

interparticle normal forces. It has been observed that the

average interparticle normal force increases with pore vol-

ume. Section 3 demonstrated that contacts with relatively

large normal force magnitudes tend to align parallel with

the loading direction and hence merged pores will align in

this direction. Further, Figure 5c shows that contracting

pores are approximately isotropically orientated, while di-

lating pores tend to align perpendicular to the loading di-

rection (Fig. 5d). This agrees with the intuitive notion of

lateral expansion under compression in a drained triaxial

test.

These observations suggests that anisotropy of pores

and contacts are somehow related. This is confirmed in

Figure 6, which shows the correlation between anisotropy

parameters of contacts and pores, along with their respec-

tive Pearson correlation coefficient. Certain parameters

(for example, awηc vs. au
p) exhibit a strong linear corre-

lation throughout the entire two-way cycle. Other sets

of parameters have strong correlation for the individual

loading, unloading and reloading branches (for example,

awμc vs. au
p). Figure 6 suggests that links can be estab-

lished between the contact and pore space networks. The

anisotropy of unmerged pores, au
p, appears to be highly

correlated with the anisotropy of weak contacts (awμc and

awηc ). This suggests that unmerged pores predominantly

comprise weak contacts, which agrees with the above dis-

cussion. Of particular interest is the observations that the

anisotropy of dilating pores is correlated with strong con-

tacts, while the anisotropy of contracting pores is some-

what correlated with weak contacts. This provides a con-

nection between deformation characteristics (which may

be controlled by the behaviour of pores) and stress trans-

mission (which is governed by contacts). This presents an

interesting angle to approach the constitutive behaviour of

granular materials and is the subject of ongoing research.

5 Conclusion

This study quantifies the anisotropy of contacts and pores

in a numerical simulation of a drained triaxial test. The

anisotropy of subsets of contacts and pores are consid-

ered. This revealed that the stress ratio can be described

uniquely as a function of geometric anisotropy of strong

and non-sliding contacts and that the anisotropy of pores

can be related to the anisotropy of contacts.
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