

MIT Open Access Articles

Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly 13C-labeled proteins

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

Citation: Williams, Jonathan K. et al. "Aromatic Spectral Editing Techniques for Magic-Angle-Spinning Solid-State NMR Spectroscopy of Uniformly ¹³C-Labeled Proteins." Solid State Nuclear Magnetic Resonance 72 (November 2015): 118–126. © 2015 Elsevier Inc

As Published: http://dx.doi.org/10.1016/J.SSNMR.2015.09.006

Publisher: Elsevier

Persistent URL: http://hdl.handle.net/1721.1/113323

Version: Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

HHS Public Access

Solid State Nucl Magn Reson. Author manuscript; available in PMC 2016 November 01.

Published in final edited form as:

Author manuscript

Solid State Nucl Magn Reson. 2015 November ; 72: 118–126. doi:10.1016/j.ssnmr.2015.09.006.

Aromatic Spectral Editing Techniques for Magic-Angle-Spinning Solid-State NMR Spectroscopy of Uniformly ¹³C-Labeled Proteins

Jonathan K. Williams¹, Klaus Schmidt-Rohr², and Mei Hong¹

Mei Hong: meihong@mit.edu

¹Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139

²Department of Chemistry, Brandeis University, Waltham, MA 02453

Abstract

The four aromatic amino acids in proteins, namely histidine, phenylalanine, tyrosine, and tryptophan, give highly overlapped ¹³C chemical shifts between 100 and 160 ppm, and have so far been largely neglected in solid-state NMR determination of protein structures. Yet aromatic residues play important roles in biology through π – π and cation- π interactions. To better resolve and assign aromatic residues' ¹³C signals in magic-angle-spinning (MAS) solid-state NMR spectra, we introduce two spectral editing techniques. The first method uses gated ¹H decoupling in a proton-driven spin-diffusion (PDSD) experiment to remove all protonated ¹³C signals and retain only quaternary ¹³C signals in the aromatic region of the ¹³C spectra. The second technique uses chemical shift filters and ¹H-¹³C dipolar dephasing to selectively detect the C α , C β and CO cross peaks of aromatic residues while suppressing the signals of all aliphatic residues. We demonstrate these two techniques on amino acids, a model peptide, and the microcrystalline protein GB1, and show that they significantly simplify the 2D NMR spectra and both reveal and permit the ready assignment of the aromatic residues' signals.

Graphical abstract

Correspondence to: Mei Hong, meihong@mit.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Keywords

aromatic residues; gated decoupling; ASSET; PDSD

1. Introduction

Spectral overlap in solid-state NMR MAS spectra remains a challenge in structure determination of proteins and other biological macromolecules. While 2D and 3D correlation experiments are now routinely employed in structure determination [1-7], for dynamically or statically disordered or conformationally polymorphic proteins, the ¹³C and ¹⁵N linewidths often exceed 1 ppm [8], which make even 3D correlation spectroscopy often insufficient for complete resolution of the signals except for the smallest proteins [9]. A number of strategies have been proposed to address this challenge. Optimized sample preparation methods can produce conformational homogeneity, although the biological relevance of the selected conformation is usually unclear. Sparse isotopic labeling [10–13] and segmental labeling based on chemical ligation [14] decrease the complexity of the NMR spectra and thus increase the reliability of the assignment, but they contain lower information content per spectrum. Semi-automated resonance assignment protocols have been designed to explicitly address ambiguities in resonance assignment of broad-line spectra [15-18], but do not indicate to what extent the assignment ambiguity is due to incomplete information or due to structural polymorphism.

13C (ppm)

Spectral editing is a complementary approach to simplify and resolve protein solid-state NMR spectra without requiring the production of multiple samples. Spectral editing was first developed for natural abundance organic compounds. Opella and Frey described a modification of the 1D cross polarization (CP)-MAS experiment that selectively detects non-protonated ¹³C signals by inserting a period without ¹H decoupling [19]. Zilm and coworkers distinguished between and assigned CH, CH₂ and CH₃ groups by combining CP with polarization inversion and depolarization, taking advantage of different polarization transfer rates of the differently protonated carbons [20-22]. Schmidt-Rohr and coworkers

Solid State Nucl Magn Reson. Author manuscript; available in PMC 2016 November 01.

13C (ppm)

developed various spectral editing methods based on chemical shift filtering [23–25], multiple-quantum dipolar transfer [26; 27], and dipolar dephasing to assign the chemical shifts of materials such as soil organic matter and carbon materials.

Recently, spectral editing has also been introduced to facilitate the structure determination of uniformly ¹³C, ¹⁵N-labeled proteins. We showed how to selectively detect CH-containing Val, Leu and Ile signals using a dipolar DEPT (distortionless enhancement by polarization transfer) technique, distinguish carboxyl-containing Asp and Glu sidechains from amide-containing Asn and Gln by asymmetric ¹³C-¹⁵N REDOR, and selectively detect dynamic residues by gated ¹H decoupling [28]. In addition to spectral editing based on chemical structure and molecular motion, differences in the C α chemical shift anisotropies (CSAs) and backbone φ torsion angle between β -strand and α -helical residues have been exploited to simplify 2D correlation spectra and selectively detect helical or strand residues [29; 30]. Similarly, another structural property, which is the differential water contact of protein residues, has been used to edit the spectra of membrane proteins [8; 31–33].

However, so far most protein spectral editing techniques target aliphatic residues, and no methods are yet available to enhance the resolution of aromatic residues. Trp, His, Tyr and Phe play important roles in biology through π – π and cation- π interactions among themselves and with polar residues [34–36] and by functionally relevant ring motions [37; 38]. Trp is also well known to stabilize membrane protein structure and topology by acting as an anchoring residue at the membrane-water interface [39]. Aromatic carbons in these four amino acids largely resonate between 140 and 100 ppm, giving rise to a highly congested spectral region. Fig. 1 shows the ¹³C chemical shift distribution, extracted from the BMRB database [40], of 23 aromatic carbons in proteins. For residue-type assignment, the only well resolved signals are the non-protonated Tyr C ζ peak at ~158 ppm and to some extent the Trp C γ signal at ~110 ppm, which occupy the outer limits of the aromatic chemical shift range. The other non-protonated carbons, including Phe C γ , Tyr C γ , His C γ , Trp C δ 2 and Trp C ϵ 2, resonate between 140 and 130 ppm. For histidine, the protonation state of the sidechain significantly affects the ¹³C chemical shifts [41], causing the non-protonated C γ chemical shift to vary between 128 and 138 ppm.

Two other factors that complicate the assignment of aromatic ¹³C signals are their large CSAs and the difficulty of avoiding rotational-resonance (R²) [42] line broadening that arises when the chemical-shift difference matches the MAS frequency v_r or $2v_r$ (n = 1 and $n = 2 \text{ R}^2$ condition). The large aromatic ¹³C CSAs give rise to spinning sidebands in the spectra that usually extend into the aliphatic region. More insidiously, the C β and C γ isotropic chemical shift differences of aromatic residues are typically 80–100 ppm [15], which fall between the n = 1 and $n = 2 \text{ R}^2$ conditions of 120 ppm and 60 ppm for backbone C α and CO chemical shifts. Thus, MAS frequencies are often accidentally close to some of the aromatic residues' C β and C γ isotropic shift differences, broadening both peaks. Fig. 2a shows the ¹³C CP-MAS spectra of uniformly ¹³C, ¹⁵N-labeled Trp under 4–12 kHz MAS at 1 kHz intervals. At the ¹³C Larmor frequency of 100 MHz used to measure these spectra, these MAS frequencies correspond to 40–120 ppm. The C γ and C β isotropic shift difference for Trp is 80.1 ppm, which gives an $n = 1 \text{ R}^2$ condition of 8 kHz (80 ppm) MAS and an $n = 2 \text{ R}^2$ condition of 4 kHz (40 ppm) MAS. Thus, the C γ and C β peaks are split and broadened

at 4 kHz and 8 kHz MAS, as well as within 1 kHz windows of these two frequencies (Fig. 2b). Moreover, at MAS frequencies lower than 6 kHz (or 60 ppm), significant aromatic sidebands exist that overlap with the aliphatic signals. Under 12 kHz (or 120 ppm) MAS, the CO and C α peaks are severely split by the R² effect. These multiple R² conditions restrict the choice of MAS frequencies to 11 kHz (or 110 ppm) for Trp, which gives the best compromise of avoiding R² broadening as well as minimizing spinning sidebands (Fig. 2a,

b). For uniformly ¹³C-labeled proteins with multiple aromatic residues, choosing an appropriate MAS frequency that avoids all R^2 conditions is thus crucial for minimizing misassignment of aromatic residues' C β and C γ signals.

In this study, we describe two techniques for reducing spectral overlap and facilitating assignment of the ¹³C signals of aromatic residues in proteins. The first technique is a simple modification of the 2D ¹³C-¹³C PDSD experiment to include a gated ¹H decoupling period before direct detection. The resulting 2D PDSD spectrum correlates all ¹³C signals in the indirect dimension with only the signals of non-protonated carbons in the direct dimension. The second technique is designed to suppress all Ca-C β cross peaks of aliphatic residues, leaving only the Ca, C β and CO cross peaks of aromatic residues. The Ca and C β magnetization of all residues is first removed by chemical shift filters and ¹³C-¹H dipolar filters, then the remaining aromatic ¹³C magnetization is transferred to the Ca, C β and CO of only the aromatic residues by a short spin diffusion period. We demonstrate these two techniques on amino acids, a model peptide, and the microcrystalline model protein GB1.

2. Experimental conditions

Solid-state NMR experiments were carried out on Bruker 400 MHz (9.4 T) and 800 MHz (18.8 T) spectrometers using 4 mm or 3.2 mm MAS probes. The samples were spun at frequencies between 4.0 kHz and 16.5 kHz. Typical radiofrequency field strengths were 71–83 kHz for ¹H and 50–71 kHz for ¹³C. ¹³C chemical shifts were referenced to the CH₂ peak of adamantane at 38.48 ppm on the TMS scale [43]. Four uniformly ¹³C and ¹⁵N labeled model compounds were used to test the pulse sequences: amino acid Trp, a five-amino-acid mixture, WYIEN, the tripeptide formyl-Met-Leu-Phe (MLF) [2; 44; 45], and the microcrystalline protein GB1. These model systems provide increasing levels of complexity for spectral editing, culminating in GB1, which contains six aromatic residues out of a total of 56 residues [46].

3. Pulse sequences

3.1 ¹H gated decoupling PDSD (gPDSD) experiment

The conventional 2D PDSD experiment gives ¹³C-¹³C correlation peaks within an amino acid residue at short mixing times and both short and long-range correlations at long mixing times. With a T₁-relaxation compensation scheme, difference spectra showing only long-range cross peaks can also be obtained [47]. To detect only non-protonated aromatic ¹³C signals in the aromatic region of the PDSD spectrum, we add a ¹H gated decoupling period after the spin diffusion mixing time and before t₂ detection (Fig. 3a). The gate during which ¹H decoupling is turned off consists of a total delay of $\tau_1 + \tau_2$, which spans part of two rotor periods. They are demarcated by a ¹³C 180° pulse on the rotor echo to refocus

the ¹³C chemical shift, and also recouple the ¹³C-¹H dipolar coupling to better dephase the ¹³C magnetization. The remaining periods during which ¹H decoupling is on are τ_{D1} and τ_{D2} , where $\tau_{D1} + \tau_1$ and $\tau_2 + \tau_{D2}$ equal one rotor period. τ_1 and τ_2 are in general not the same. In the current work, under 10.3 kHz MAS, we found that the optimal delays for maximal dephasing of the protonated aromatic signals are $\tau_1 = 60 \ \mu s$ and $\tau_2 = 40 \ \mu s$.

3.2 The Aromatic Selection via Spectral Editing (ASSET) experiment

Fig. 3b shows the pulse sequence for obtaining only aromatic $C\alpha$ -C β cross peaks in the aliphatic region of the 2D PDSD spectra. At the beginning of the pulse sequence, the ¹³C carrier frequency is set in the middle of the aromatic region, around 123 ppm. A ¹³C 90° pulse together with ¹H-¹³C CP allow the detection of both dynamic and rigid functional groups. A subsequent spin diffusion period, $t_{m,l}$, of ~500 ms further enhances the aromatic ¹³C intensities by equilibrating the aliphatic and aromatic ¹³C magnetization, since the low proton density of aromatic residues causes lower signals in a conventional ¹³C CP spectrum [25]. After the pre-equilibration period, a 90° pulse flips all ¹³C magnetization to the transverse plane, where chemical shift evolution with aromatic residues on or near resonance is allowed to occur for a period t_{0} , which alternates between 0 and a finite time that creates antiparallel magnetization vectors between Ca and aromatic carbons. For experiments at a 13 C Larmor frequency of 100 MHz (9.4 Tesla), the best t_{cl} is 0 and 83 µs. A subsequent 90° pulse with suitable phase cycling every two scans then stores the aromatic ¹³C magnetization along +z while the C α magnetization alternates between +z and -z. Any transverse magnetization is then dephased by ${}^{13}C{}^{-1}H$ dipolar coupling, which is recoupled using a ¹H 180° pulse every half rotor period. After this z-filter, the stored ¹³C zmagnetization is returned to the transverse plane by another 90° pulse, and a similar chemical shift filter together with a z-filter is used to destroy the C β magnetization. At 100 MHz ¹³C Larmor frequency, the optimal C β chemical shift filter time, t_{β} , is 0 and 47 µs. Due to the sufficiently high MAS frequency, t_{α} and t_{β} need not be rotor-synchronized. The zfilter periods can also have different lengths, and were optimized to be 2 and 4 rotor periods at an MAS frequency of ~10 kHz. At this point, the remaining ¹³C magnetization is mostly aromatic, and is allowed to re-polarize the adjacent C β and C α during a t_{arom} period of 5–25 ms. The ¹³C carrier frequency is moved to ~73 ppm at the beginning of the t_{arom} period to keep potential zero-frequency artifacts outside the relevant spectral region and avoid significant off-resonance effects. This is followed by a standard 2D PDSD module with a mixing time of $t_{m,2}$, with optional echo detection.

4. Results and Discussion

We demonstrate these two spectral editing techniques on several model compounds. Fig. 4a, c show the full 2D PDSD spectra of Trp and WYIEN, where all intra-residue cross-peaks can be assigned. The gPDSD spectra show a greatly simplified aromatic region. For Trp, all protonated ¹³C signals are removed in the direct dimension, leaving only cross-peaks of the indole C γ , C δ 2 and C ϵ 2 (Fig. 4b). For the amino-acid mixture, Trp C ϵ , C δ and C γ and Tyr C γ and C ζ signals are retained with efficiencies of 42–75% compared to the full spectrum while the protonated aromatic carbons are suppressed to 0–9% of the full intensity (Fig. 4d). In the aliphatic-aliphatic region of the 2D gPDSD spectrum (not shown), residual Ile C δ and

C ϵ methyl signals are also present due to their motionally averaged ${}^{13}C{}^{-1}H$ dipolar couplings, but the intensities are only ~6% of the full intensities. In the aliphatic-aromatic correlation region, the suppression of the protonated ${}^{13}C$ signals significantly simplified the assignment of the Trp and Tyr C β and C α chemical shifts.

The gated-decoupling sequence similarly simplified the aromatic region of the GB1 2D spectrum (Fig. 5a, b). Although the high resolution afforded by the 800 MHz spectrometer allowed us to resolve many aromatic 13 C peaks of the three Tyr residues (Y3, Y33, Y45), two Phe residues (F30, F52) and one Trp (W43) [46], resonance overlap remains among Phe C\delta and C ϵ and Tyr C γ and C δ signals, which cluster around 130 ppm. With gated ¹H decoupling, most of the F30 and F52 cross peaks in the 126–133 ppm region are suppressed, revealing the underlying Tyr C γ and C δ signals Fig. 5b). Compared to the regular PDSD spectrum, the non-protonated ¹³C signals are retained to an average of 86% of the full intensities while the protonated aromatic carbons' signals are suppressed to an average of 18% of the full intensities. The slightly higher residual intensities of the protonated aromatic carbons in GB1 compared to the amino acids can be attributed to two reasons. The WYIEN sample was measured on a 400 MHz spectrometer under 10.3 kHz MAS, while GB1 was measured on a 800 MHz spectrometer under 16.5 kHz MAS. The higher MAS frequency was necessary to avoid overlap between the carbonyl spinning sidebands and the aromatic signals, and the resulting shorter rotor period caused a shorter gate, thus reducing the efficiency of dipolar dephasing. The GB1 gPDSD spectrum was measured using a total gating delay of $\tau_1 + \tau_2 = 60 \,\mu$ s, while the amino acid mixture was measured with a total delay of 100 µs. The incomplete suppression under faster MAS can be remedied by extending the dipolar dephasing period. In addition, molecular motion, which may be present for the less hydrophobically embedded aromatic residues in GB1, can also reduce the efficiency of gated decoupling. For example, we observe 33% residual intensity of the Tyr C δ and Tyr C ϵ peak in the gated decoupling spectrum (Fig. 5b). This can be assigned to one of the three Tyr residues, Y33, which is located on the surface of the protein with its sidechain pointed away from the hydrophobic pore. Indeed, Y33 was found to undergo twosite ring flips [46], which average the ${}^{13}C{}^{-1}H$ dipolar couplings, thus reducing the efficiency of gated decoupling.

While gPDSD simplifies the aromatic region of 2D ¹³C PDSD spectra, the ASSET technique selectively detects the C β -C α , C α -C β , C β -CO and C α -CO cross peaks of aromatic residues while suppressing those of aliphatic residues. Fig. 6a and 6d show the full 2D spectra of the WYIEN mixture and the tripeptide MLF. All intra-residue cross peaks are observed for WYIEN with a 20 ms mixing time (Fig. 6a) while intra- and inter-residue correlations are both observed in MLF with 30 ms mixing (Fig. 6d). When the ASSET technique is applied without the transfer, i.e. $t_{arom} = 0$, the aliphatic signals are nearly completely suppressed, except for a few weak methyl signals (Fig. 6b, e) and Asn and Trp C α -C β peaks, which may result from incomplete chemical shift filtering. When the aromatic transfer is turned on ($t_{arom} = 10$ ms), the C α and C β signals of Trp and Tyr in the mixture are selectively enhanced, as shown by C α -C β and C β -C α cross peaks on both sides of the diagonal (Fig. 6c, f). These Trp and Tyr cross peaks are 20–40% of the full intensities, compared to the incompletely suppressed Ile sidechain methyl signals, which are ~3% of the

Page 7

full intensities. A similar result is found for MLF. Here, the Phe shows a C β -C α cross peak but not the C α -C β peak, indicating that the 10 ms t_{arom} is sufficiently short that polarization transfer is dominated by the C γ to C β transfer while C γ to C α transfer is reduced. Such cross peak asymmetry can be helpful for spectral editing of larger proteins.

Fig. 7 shows the 2D DARR and ASSET spectra of GB1 using a mixing time of 100 ms between the t_1 and t_2 dimensions. The 2D spectra were measured on an 800 MHz spectrometer under 16.5 kHz MAS, and the DARR spectrum (Fig. 7a) exhibits comparable resolution as the published literature [46]. The ASSET sequence dramatically simplified the aliphatic and carbonyl regions of the spectrum (Fig. 7b), displaying only C α/β -C β/α and C α/β -CO cross peaks of the six aromatic residues with efficiencies of 10–20%. The C β -C α cross peaks of W43, Y33, and F30 are well resolved, while the C β -C α cross peaks of Y3, Y45 and F52 partially overlap. But the latter three residues are well dispersed by their carbonyl chemical shifts. The aliphatic region of the ASSET spectrum has moderate intensity asymmetry, with the C β -C α cross peaks stronger than C α -C β peaks, indicating that the aromatic carbon magnetization is transferred more readily to C β than to C α with the *t_{arom}* mixing time of 25 ms used here.

5. Conclusions

We have demonstrated two pulse sequences for measuring simplified and higher-resolution 2D ¹³C-¹³C correlation spectra of aromatic residues in proteins. The gPDSD technique results in a non-protonated aromatic ¹³C sub-spectrum in the direct dimension, correlated with all carbons in the indirect dimension. The ASSET technique yields aromatic residues' $C\beta$, $C\alpha$ and CO cross peaks while suppressing all aliphatic residues' cross peaks. The efficiency of the gPDSD technique for aromatic carbons is 62-86%, while the protonated ¹³C signals are suppressed to less than 20% of the original intensities. The efficiency of the ASSET experiment is 20-40% on small molecules and 10-20% on GB1. The lower efficiency of GB1 may be due to the inherent isotropic shift dispersion, which makes the chemical shift filter imperfect. Overall, the selectivity against non-aromatic residues is excellent for both techniques, thus increasing the repertoire of spectral editing techniques for complex and disordered proteins. In principle, the aromatic-residue-only Ca-C_β sub-spectrum can also be obtained in a 3D $^{13}C^{-13}C^{-13}C$ correlation experiment [48], provided that the aromatic ¹³C chemical shifts are reasonably well resolved, but the signalaveraging time for these 3D experiments is significantly longer than for the 2D spectrally edited ASSET experiment.

Acknowledgements

This work is supported by NIH grant GM088204 to M. H. The authors would like to thank Dr. Robert Silvers for providing the GB1 sample used in this work.

References

 Hong M. Resonance Assignment of ¹³C/¹⁵N Labeled Proteins by Two- and Three- Dimensional Magic-Angle-Spinning NMR. J. Biomol. NMR. 1999; 15:1–14. [PubMed: 10549131]

- Rienstra CM, Hohwy M, Hong M, Griffin RG. 2D and 3D ¹⁵N-¹³C-¹³C NMR chemical shift correlation spectroscopy of solids: assignment of MAS spectra of peptides. J. Am. Chem. Soc. 2000; 122:10979–10990.
- 3. Baldus M, Petkova AT, Herzfeld J, Griffin RG. Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol. Phys. 1998; 95:1197–1207.
- Comellas G, Rienstra CM. Protein structure determination by magic-angle spinning solid-state NMR, and insights into the formation, structure, and stability of amyloid fibrils. Annu. Rev. Biophys. 2013; 42:515–536. [PubMed: 23527778]
- McDermott AE. Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu. Rev. Biophys. 2009; 38:385–403. [PubMed: 19245337]
- 6. Luca S, Heise H, Baldus M. High-resolution solid-state NMR applied to polypeptides and membrane proteins. Acc. Chem. Res. 2003; 36:858–865. [PubMed: 14622033]
- Hong M. Solid-state NMR studies of the structure, dynamics, and assembly of β-sheet membrane peptides and α-helical membrane proteins with antibiotic activities. Acc. Chem. Res. 2006; 39:176– 183. [PubMed: 16548506]
- Liao SY, Fritzsching KJ, Hong M. Conformational analysis of the full-length M2 protein of the influenza A virus using solid-state NMR. Protein Sci. 2013; 22:1623–1638. [PubMed: 24023039]
- Tycko R. Prospects for resonance assignments in multidimensional solid-state NMR spectra of uniformly labeled proteins. J. Biomol. NMR. 1996; 22:239–251. [PubMed: 8953215]
- 10. Hong M. Determination of multiple φ torsion angles in solid proteins by selective and extensive ¹³C labeling and two-dimensional solid-state NMR. J. Magn. Reson. 1999; 139:389–401. [PubMed: 10423377]
- Hong M, Jakes K. Selective and extensive ¹³C labeling of a membrane protein for solid-state NMR investigations. J. Biomol. NMR. 1999; 14:71–74. [PubMed: 10382307]
- Loquet A, Lv G, Giller K, Becker S, Lange A. ¹³C spin dilution for simplified and complete solidstate NMR resonance assignment of insoluble biological assemblies. J. Am. Chem. Soc. 2011; 133:4722–4725. [PubMed: 21401039]
- Castellani F, vanRossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H. Structure of a protein determined by solid-state magic-angle spinning NMR spectroscopy. Nature. 2002; 420:98–102. [PubMed: 12422222]
- Kwon B, Tietze D, White PB, Liao SY, Hong M. Chemical Ligation of the Influenza M2 Protein for Solid-State NMR Characterization of the Cytoplasmic Domain Structure. Protein Sci. 2015; 24:1087–1099. [PubMed: 25966817]
- Fritzsching KJ, Yang Y, Schmidt-Rohr K, Hong M. Practical use of chemical shift databases for protein solid-state NMR 2D chemical shift maps and amino-acid assignment with secondarystructure information. J. Biomol. NMR. 2013; 56:155–167. [PubMed: 23625364]
- Hu KN, Qiang W, Tycko R. A general Monte Carlo/simulated annealing algorithm for resonance assignment in NMR of uniformly labeled biopolymers. J. Biomol. NMR. 2011; 50:267–276. [PubMed: 21710190]
- Tycko R, Hu KN. A Monte Carlo/simulated annealing algorithm for sequential resonance assignment in solid state NMR of uniformly labeled proteins with magic-angle spinning. J. Magn. Reson. 2010; 205:304–314. [PubMed: 20547467]
- Yang Y, Fritzsching KJ, Hong M. Resonance Assignment of Disordered Proteins Using a Multi-Objective Non-Dominated Sorting Genetic Algorithm. J. Biomol. NMR. 2013; 57:281–296. [PubMed: 24132778]
- Opella SJ, Frey MH. Selection of Nonprotonated Carbon Resonances in Solid-State Nuclear Magnetic Resonance. J. Am. Chem. Soc. 1979; 101:5854–5856.
- Wu X, Burns ST, Zilm KW. Spectral Editing in CPMAS NMR. Generating Subspectra Based on Proton Multiplicities. J. Magn. Reson. 1994; 111:29–36.
- Wu XL, Zilm KW. Complete spectral editing in CPMAS NMR. J. Magn. Reson. 1993; 102:205– 213.
- Wu X, Zhang S, Wu X. Selective Polarization Inversion in Solid State High-Resolution CP MAS NMR. J. Magn. Reson. 1988; 77:343–347.

- Mao JD, Schmidt-Rohr K. Accurate Quantification of Aromaticity and Nonprotonated Aromatic Carbon Fraction in Natural Organic Matter by ¹³C Solid-State Nuclear Magnetic Resonance. Environ. Sci. Technol. 2004; 38:2680–2684. [PubMed: 15180065]
- Mao JD, Schmidt-Rohr K. Separation of aromatic-carbon ¹³C NMR signals from dioxygenated alkyl bands by a chemical-shift-anisotropy filter. Solid State Nuc. Magn. Reson. 2004; 26:36–45.
- 25. Johnson RL, Anderson JM, Shanks BH, Fang X, Hong M, Schmidt-Rohr K. Spectrally edited 2D ¹³C-¹³C NMR spectra without diagonal ridge for characterizing ¹³C-enriched low-temperature carbon materials. J. Magn. Reson. 2013; 234:112–124. [PubMed: 23871898]
- Schmidt-Rohr K, Mao JD. Efficient CH-Group Selection and Identification in ¹³C Solid-State NMR by Dipolar DEPT and ¹H Chemical-Shift Filtering. J. Am. Chem. Soc. 2002; 124:13938– 13948. [PubMed: 12431126]
- Mao J-D, Schmidt-Rohr K. Methylene Spectral Editing in Solid-State ¹³C NMR by Three-Spin Coherence Selection. J. Magn. Reson. 2005; 176:1–6. [PubMed: 15941664]
- Schmidt-Rohr K, Fritzsching KJ, Liao SY, Hong M. Spectral editing of two-dimensional magicangle-spinning solid-state NMR spectra for protein resonance assignment and structure determination. J. Biomol. NMR. 2012; 54:343–353. [PubMed: 23053913]
- Hong M. Solid-State NMR Determination of ¹³Ca Chemical Shift Anisotropies for the Identification of Protein Secondary Structure. J. Am. Chem. Soc. 2000; 122:3762–3770.
- Huster D, Yamaguchi S, Hong M. Efficient β-sheet Identification in Proteins by Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 2000; 122:11320–11327.
- Ader C, Schneider R, Seidel K, Etzkorn M, Becker S, Baldus M. Structural rearrangements of membrane proteins probed by water-edited solid-state NMR spectroscopy. J. Am. Chem. Soc. 2009; 131:170–176. [PubMed: 19063626]
- 32. Kumashiro KK, Schmidt-Rohr K, Murphy OJ, Ouellette KL, Cramer WA, Thompson LK. A novel tool for probing membrane protein structure: solid-state NMR with proton spin diffusion and Xnucleus detection. J. Am. Chem. Soc. 1998; 120:5043–5051.
- Sergeyev IV, Bahri S, Day LA, McDermott AE. Pf1 bacteriophage hydration by magic angle spinning solid-state NMR. J. Chem. Phys. 2014; 141:22D533.
- Gallivan JP, Dougherty DA. Cation-π interactions in structural biology. Proc. Natl. Acad. Sci. U. S. A. 1999; 96:9459–9464. [PubMed: 10449714]
- 35. Liao SY, Yang Y, Tietze D, Hong M. The Influenza M2 Cytoplasmic Tail Changes the Proton-Exchange Equilibria and the Backbone Conformation of the Transmembrane Histidine Residue to Facilitate Proton Conduction. J. Am. Chem. Soc. 2015; 137:6067–6077. [PubMed: 25892574]
- 36. Williams JK, Zhang Y, Schmidt-Rohr K, Hong M. pH-Dependent Conformation, Dynamics, and Aromatic Interaction of the Gating Tryptophan Residue of the Influenza M2 Proton Channel from Solid-State NMR. Biophys. J. 2013; 104:1698–1708. [PubMed: 23601317]
- Hu W, Lazo ND, Cross TA. Tryptophan dynamics and structural refinement in a lipid bilayer environment: solid state NMR of the Gramicidin channel. Biochemistry. 1995; 34:14138–14146. [PubMed: 7578011]
- Gall CM, Cross TA, DiVerdi JA, Opella SJ. Protein dynamics by solid-state NMR: aromatic rings of the coat protein in fd bacteriophage. Proc. Natl. Acad. Sci. U. S. A. 1982; 79:101–105. [PubMed: 6948294]
- de Planque MR, Bonev BB, Demmers JA, Greathouse DV, Koeppe REn, Separovic F, Watts A, Killian JA. Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions. Biochemistry. 2003; 42:5341–5348. [PubMed: 12731875]
- 40. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Wenger RK, Yao HY, Markley JL. BioMagResBank. Nucleic Acids Res. 2007; 35:D402–D408. [PubMed: 17984079]
- Li S, Hong M. Protonation, Tautomerization, and Rotameric Structure of Histidine: A Comprehensive Study by Magic-Angle-Spinning Solid-State NMR. J. Am. Chem. Soc. 2011; 133:1534–1544. [PubMed: 21207964]
- 42. Raleigh DP, Levitt MH, Griffin RG. Rotational resonance in solid state NMR. Chem. Phys. Lett. 1988; 146:71–76.

- Morcombe CR, Zilm KW. Chemical shift referencing in MAS solid state NMR. J. Magn. Reson. 2003; 162:479–486. [PubMed: 12810033]
- 44. Hong M, Griffin RG. Resonance Assignment for Solid Peptides by Dipolar-Mediated ¹³C/¹⁵N Correlation Solid-State NMR. J. Am. Chem. Soc. 1998; 120:7113–7114.
- 45. Rienstra CM, Tucker-Kellogg L, Jaroniec CP, Hohwy M, Reif B, McMahon MT, Tidor B, Lozano-Perez T, Griffin RG. De novo determination of peptide structure with solid-state magic-angle spinning NMR spectroscopy. Proc. Natl. Acad. Sci. USA. 2002; 99:10260–10265. [PubMed: 12149447]
- 46. Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM. Magic-Angle Spinning Solid-State NMR Spectroscopy of the b1 Immunoglobulin Binding Domain of Protein G (GB1): ¹⁵N and ¹³C Chemical Shift Assignments and Conformational Analysis. J. Am. Chem. Soc. 2005; 127:12291–12305. [PubMed: 16131207]
- Wang T, Williams JK, Schmidt-Rohr K, Hong M. Relaxation-compensated difference spin diffusion NMR for detecting 13C-13C long-range correlations in proteins and polusaccharides. J. Biomol. NMR. 2014; 61:97–107. [PubMed: 25510834]
- Li S, Zhang Y, Hong M. 3D ¹³C-¹³C-¹³C correlation NMR for de novo distance determination of solid proteins and application to a human alpha defensin. J. Magn. Reson. 2010; 202:203–210. [PubMed: 19963419]

Highlights

• Two methods are described to selectively detect the signals of aromatic residues.

- Gated ¹H decoupling selectively detects unprotonated aromatic ¹³C signals.
- Chemical shift filters select the C α , C β and CO signals of aromatic residues.
- We successfully demonstrated these techniques on model peptides and proteins.

Williams et al.

Figure 1.

¹³C chemical shift distributions of the four aromatic residues in proteins from the Biological Magnetic Resonance Data Bank. A large degree of resonance overlap exists in the 110–140 ppm region. (a) All aromatic ¹³C signals. (b) Only non-protonated aromatic ¹³C signals. Small panels on the right show the chemical shift dispersions of the individual amino acids.

Williams et al.

Figure 2.

1D CP-MAS spectra of U-¹³C, ¹⁵N labeled Trp as a function of MAS frequencies. (a) Full 1D spectra measured at a 9.4 T magnetic field, corresponding to 100 MHz ¹³C Larmor frequency. At 8 kHz (80 ppm) and 12 kHz (120 ppm) MAS frequencies, rotational resonance broadening is observed for the C β -C γ spin pair and the C α -CO spin pair, respectively. (b) Expanded C γ and C β regions of the ¹³C spectra, showing R²–induced line broadening. MAS frequencies that are within 1 kHz (or 10 ppm) of the R² conditions are insufficient for removing line broadening. In all panels, spinning sidebands are marked with an asterisk. (c) Accurate ¹³C isotropic shifts of Trp, obtained from the 11 kHz MAS spectrum, which is free of R² effects and spinning sideband overlap.

Williams et al.

Figure 3.

Pulse sequences developed in this work. (a) 2D PDSD with gated ¹H decoupling. The gated decoupling period contains $\tau_1 = 60 \ \mu s$ and $\tau_2 = 40 \ \mu s$ for the MAS frequencies used in this work. (b) 2D Aromatic Selection by Spectral Editing (ASSET). The initial spin diffusion period is set relatively long ($t_{m,1} = 500 \ ms$) to ensure polarization of aromatic side chains. This is followed by two chemical shift filters, one for Ca suppression (t_{α}) and one for C β suppression (t_{β}). Each chemical shift filter is followed by a ¹³C-¹H dipolar recoupled z-filter period to destroy the transverse magnetization of other aliphatic carbons that are far off resonance from the aromatic region. A spin diffusion period, t_{arom} , then transfers the remaining aromatic ¹³C magnetization to the C β and C α of the aromatic residues. 2D correlation of C β and C α resonances is then conducted using a typical PDSD module with Hahn echo detection.

Williams et al.

Figure 4.

2D ¹³C-¹³C DARR (top) and gPDSD (bottom) spectra of U-¹³C Trp (a, b) and the amino acid mixture WYIEN (c, d). Spectra (a) and (b) were recorded under 11 kHz MAS using a mixing time of 2 ms and ¹H gate times of $\tau_1 = 60 \mu s$ and $\tau_2 = 40 \mu s$. Spectra (c) and (d) were measured under 10.3 kHz MAS using a mixing time of 10 ms and ¹H gate times of $\tau_1 = 60 \mu s$ and $\tau_2 = 40 \mu s$. The aromatic region in (b) and (d) retains only the non-protonated ¹³C signals in the direct dimension. For the amino acid mixture, the aliphatic – aromatic correlation region is also simplified after removal of the protonated aromatic ¹³C signals, facilitating assignment of the C β and C α chemical shifts of Tyr and Trp.

Williams et al.

Page 16

Figure 5.

2D ¹³C PDSD (a) and gPDSD (b) spectra of GB1 measured at 18.8 T (800 ¹H Larmor frequency) under 16.5 kHz MAS with a mixing time of 100 ms. ¹H gate times of τ_1 = 36 µs and τ_2 = 24 µs were used for spectra (b). (c) GB1 structure (PDB: 2QMT) showing the positions of the six aromatic residues.

Figure 6.

2D ¹³C-¹³C DARR and ASSET spectra of the amino acid mixture WYIEN (a–c) and tripeptide MLF (d–f). (a, d) Full DARR spectra showing all cross peaks. (b, e) Spectra with $t_{arom} = 0$, where most Ca and C β cross peaks are suppressed. (c, f) ASSET spectra with $t_{arom} = 10$ ms, which exhibit mostly aromatic Ca and C β cross peaks. The spectra in (c) and (f) are reproduced in red in (a) and (d) to compare with the full DARR spectra.

Figure 7.

2D ¹³C DARR (a) and ASSET (b) spectra of GB1. The ASSET spectrum was acquired with $t_{arom} = 25$ ms and shows only the C α - C β and C α/β -CO cross peaks of the six aromatic residues while suppressing the signals of all aliphatic residues. The ASSET spectrum is reproduced in red in (a) and superimposed on the full PDSD spectrum.