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Efficient design of wave energy converters based on floating body motion heavily depends on the capacity of the designer
to accurately predict the device’s dynamics, which ultimately leads to the power extraction. We present a (quasi-nonlinear)
time-domain hydromechanical dynamic model to simulate a particular type of pitch-resonant WEC which uses gyroscopes for
power extraction. The dynamic model consists of a time-domain three-dimensional Rankine panel method coupled, during time
integration, with a MATLAB algorithm that solves for the equations of the gyroscope and Power Take-Off (PTO). The former acts
as a force block, calculating the forces due to the waves on the hull, which is then sent to the latter through TCP/IP, which couples
the external dynamics and performs the time integration using a 4th-order Runge-Kuttamethod.The panel method, accounting for
the gyroscope and PTO dynamics, is then used for the calculation of the optimal flywheel spin, PTO damping, and average power
extracted, completing the basic design cycle of the WEC. The proposed numerical method framework is capable of considering
virtually any type of nonlinear force (e.g., nonlinear wave loads) and it is applied and verified in the paper against the traditional
frequency domain linear model. It proved to be a versatile tool to verify performance in resonant conditions.

1. Introduction

We will first introduce the standard mathematical approach
followed to evaluate performance of wave energy converters
(WECs), whose design requires early quantification of the
new device’s power extraction capabilities. Concepts which
rely on a floating body’smotion in waves for power extraction
have taken advantage of methods created to simulate motion
of ships and offshore structures. The very first objective is
to tune the converter’s natural frequency (of its translation
and rotation consideredmotions)with the predominantwave
period from the operating site spectrum. Traditionally, the
waves and equations of motion are linearized (i.e., small
wave amplitude and body motion compared to the device’s
nominal size), potential flow is assumed with Laplace as
the governing equation (i.e., ∇2𝜙 = 0), and the resulting
linear Boundary Value Problem (BVP) to be solved for is
summarized in Table 1.

The most common approach to study the body’s motion
is to assume harmonic inputs (i.e., force𝑋𝑖 cos(󳨀→𝑘󳨀→𝑥 −𝜔𝑡+𝜖𝑓)
due to an incident regular wave 𝐴 cos(󳨀→𝑘󳨀→𝑥 − 𝜔𝑡)), for which
the linear equation of motion, with frequency 𝜔, becomes

6∑
𝑗=1

𝜉𝑗 [−𝜔2 (𝑀𝑖𝑗 + 𝑎𝑖𝑗 (𝜔)) + 𝑖𝜔𝑏𝑖𝑗 (𝜔) + 𝑐𝑖𝑗] = 𝐴𝑋𝑖. (1)

The linearization of the motion allows a decomposition
of the total fluid potential as a summation of the classical
radiation and diffraction wave potentials [1]. The former
models the waves generated by the moving body (with the
same frequency as the incident wave) in calm water. It can
be represented by the summation of each degree of freedom
(DoF) displacement, subject to its own body BC [2].

𝜙 = 𝜙𝑅 + 𝜙𝐷 = 𝜙𝑅 + 𝜙𝐼 + 𝜙𝑆, where
𝜕𝜙𝑆𝜕𝑛 = 0. (2)
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Table 1: Boundary Value Problem (BVP) for a floating body in finite and infinite depth.

Boundary condition Finite depth (−ℎ < 𝑧 < 0) Infinite depth (ℎ → ∞)

Bottom
𝜕𝜙𝜕𝑧 = 0 at 𝑧 = −ℎ ∇𝜙 → 0 as 𝑧 → −∞

Free-surface kinematic
𝜕𝜙𝜕𝑧 = 𝜕𝜂𝜕𝑡 = 0 at 𝑧 = 0

Free-surface dynamic
𝜕𝜙𝜕𝑡 + 𝑔𝜂 = 0 at 𝑧 = 0

Floating body
𝜕𝜙𝜕𝑛 = V𝑛 at 𝑆𝑏

Radiation condition 𝜙, ∇𝜙 → 0 as |𝑥, 𝑦| → ∞
The radiation potential is

𝜙𝑅 = 𝑖𝜔 6∑
𝑗=1

𝜉𝑗𝜙𝑗,
𝜕𝜙𝑗𝜕𝑛 = 𝑛𝑗,

(3)

where 𝑛𝑗 is the normal vector 󳨀→𝑛 pointing out of the body and
into the fluid for 𝑗 = 1, 2, 3 and 󳨀→𝑥 × 󳨀→𝑛 for 𝑗 = 4, 5, 6. The
added-mass and damping come from the real and imaginary
components of the radiation forces [2]. The exciting forces
may be calculated straight from Haskind relations [3]. All of
these integral equations come from Green’s second identity
[4].

𝑎𝑖𝑗 − ( 𝑖𝜔) 𝑏𝑖𝑗 = 𝜌∬𝑆𝑏

𝜙𝑗 𝜕𝜙𝑖𝜕𝑛 𝑑𝑆,
𝑋𝑖 = −𝑖𝜔𝜌∬

𝑆𝑏

(𝜕𝜙𝑖𝜕𝑛 𝜙𝐼 − 𝜙𝑖 𝜕𝜙𝐼𝜕𝑛 ) 𝑑𝑆.
(4)

To bridge frequency and time domain, Cummins devel-
oped general equations of motion in time domain [5]. These
equations are based on impulsive motion, decomposing the
flow around the body into two components, one due to
an impulsive displacement on the body and the other one
representing the decaying wave motion generated by such
displacement. For a body translating on the water surface, the
equation of motion becomes

6∑
𝑖=1

[(𝑀𝑖𝑗 + 𝑎𝑜𝑖𝑗) ̈𝜉𝑗 + 𝑏𝑜𝑖𝑗 ̇𝜉𝑗 + 𝑐𝑖𝑗𝜉𝑗
+ ∫𝑡

−∞
𝐾𝑖𝑗 (𝑡 − 𝜏) ̇𝜉𝑗 (𝜏) 𝑑𝜏] = 𝑓𝑘 (𝑡) .

(5)

The kernel of the convolution integral is related to the
frequency dependent quantities through Fourier Transform
[5–8]. It is the radiation impulse response function and tells
us how the history of radiation forces influences the body
motion for some time (i.e., fluid memory effects).

𝑎𝑖𝑗 (𝜔) = 𝑎𝑜𝑖𝑗 − 1𝜔 ∫∞

0
𝐾 (𝑡) sin (𝜔𝑡) ,

𝑎𝑜𝑖𝑗 = lim
𝜔→∞

𝑎𝑖𝑗 (𝜔) ,

𝑏𝑖𝑗 (𝜔) = ∫∞

0
𝐾 (𝑡) cos (𝜔𝑡) 𝑑𝜔,

𝐾𝑖𝑗 (𝜏) = 2𝜋 ∫∞

0
𝑏𝑖𝑗 (𝜔) cos (𝜔𝑡) 𝑑𝜔.

(6)
Finally, to solve the BVP stated in Table 1 and find the

potential 𝜙 on the body, the second Green identity is used.
WAMIT, an industry standard frequency domain Boundary
Element Method (BEM) code, presents the equation in the
form below, solving it for discretized panels of the body

wetted surface with center at
󳨀→𝜉󸀠 [9].

𝛼 (󳨀→𝑥)𝜙 (󳨀→𝑥) +∬
𝑆𝑏

𝜙(󳨀→𝜉󸀠) 𝜕𝐺(󳨀→𝜉󸀠 ; 󳨀→𝑥)
𝜕𝑛󳨀→

𝜉󸀠

𝑑󳨀→𝜉󸀠

= ∬
𝑆𝑏

𝜕𝜙 (󳨀→𝜉󸀠)
𝜕𝑛󳨀→

𝜉󸀠

𝐺(󳨀→𝜉󸀠 ; 󳨀→𝑥)𝑑󳨀→𝜉󸀠 ,
(7)

󳨀→𝜉󸀠 = 𝜉𝑖̂ + 𝜂𝑗 + 𝜁𝑘̂, (8)

󳨀→𝑥 = 𝑥𝑖̂ + 𝑦𝑗 + 𝑧𝑘̂. (9)
The solid angle can be calculated by noting that a uniform

potential applied over a closed body produces no flux (i.e.,𝜙𝑛 = 0) [10]:
𝛼 (󳨀→𝑥) = −∬

𝜕𝑉

𝜕𝐺(󳨀→𝜉󸀠 ; 󳨀→𝑥)
𝜕𝑛󳨀→

𝜉󸀠

𝑑󳨀→𝜉󸀠 . (10)

TheGreen function𝐺(󳨀→𝜉󸀠 ; 󳨀→𝑥) used byWAMIT is the wave
source potential, where 𝐽𝑜(𝑥) is the zero-order Bessel function
and 󳨀→𝑥 and

󳨀→𝜉󸀠 are the position vectors of the point considered
and the source, respectively [9].

𝐺(󳨀→𝑥; 󳨀→𝜉󸀠) = 1𝑟 + 1𝑟󸀠󸀠
+ 2∫∞

0
𝑑𝑘(𝑘 + 𝐾) cosh 𝑘 (𝑧 + ℎ) cosh 𝑘 (𝜁 + ℎ)𝑘 sinh 𝑘ℎ − 𝐾 cosh 𝑘ℎ 𝑒−𝑘ℎ𝐽𝑜 (𝑘𝑅) ,

𝑟2 = (𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 + (𝑧 − 𝜁)2 ,
𝑟󸀠󸀠2 = (𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 + (𝑧 + 𝜁 + ℎ)2 .

(11)
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(a) (b)

Figure 1: (a) ISWEC hull, with its taper from bottom to top. (b) IOwec hull, with additional tapper at the stern and bow.

With the computation of the hydrodynamic coefficients
of (1) from the solution of the BVP through (7), the transfer
function, or Response Amplitude Operator (RAO), can be
calculated and the body’s response to a given sea state 𝑆(𝜔)
calculated through a simple multiplication [11]. This is what
justifies the predominance of frequency versus time-domain
approaches.

The frequency domain approach has seen consistent use
for WEC dynamics analysis. More recently, Rhinefrank et
al. have applied such methodology to evaluate the motion
of their respective devices [12–14]. The first, in particular,
improved the model of their cylinder-shaped WEC by intro-
ducing viscous effects in the form of Morrison’s equation.

Equation (5) is widely used, together with frequency
domain BEM, to describe the motion of WECs in time
domain. This is a very powerful approach for most situ-
ations, yielding accurate results in many cases with small
computational time. Works such as the two-body heave
converter from Andres et al., the SEAREV from Babarit et
al., and heaving WEC are all examples of recent successful
use of linear time-domain approach for WEC design [15–
19]. However, the description of the problem through Fourier
Transform makes it impossible to incorporate nonlinear
(potential flow wave-dependent) effects into these models.

In this work, we approach the design of a gyroscope
powered WEC using Kring’s time-domain Rankine panel
method AEGIR, which solves for both the body and free-
surface motions directly [8]. To model this, the state-space
vector and external forces calculated by AEGIR at every time
step will have to be corrected to account for the spinning
flywheel dynamics. The change in angular momentum of the
gyroscope will induce torques in all 3 directions, coupling
all the rotation degrees of freedom (DoF). The corrections
and time marching were implemented in a MATLAB code,
which constantly shares information with AEGIR through
TCP/IP protocol. This numerical model is the initial (linear)
framework for future inclusion of effects such as fully non-
linear boundary conditions, pressure integration up to the
deformed free-surface [17], and retention of high-order terms
in the Bernoulli equation for pressure calculation [20].

2. The IOwec Case Study

The WEC analyzed in this paper is the Inertial Ocean
Wave Energy Converter (IOwec), which originated from

T6 −T6

T5T5

 −

Figure 2: Pair of gyroscopes spinning counter to each other. The
yaw torque is canceled, while the pitch is doubled.

a collaboration project between the University of Torino,
Wave4Energy, and iShip lab at MIT (now moved to Virginia
Tech). This concept was developed and first presented as
a contender in the Department of Energy Wave Energy
Prize (WEP) [21]. It is an evolution of the ISWEC, another
gyroscope driven WEC designed in Italy [22], by modifying
the simple hull shape with the intent of increasing the
resonance period of the ISWEC up to the predominant
wave period of 8 s given by the WEP [23]. Figures 1(a) and
1(b) shows the hull change, from the ISWEC to the IOwec
shape.

Inside the IOwec, due to the precession motion of the
spinning masses, the gyroscope roll will induce torques in
both pitch and yaw directions. The former activates the
angular motion of the PTO shaft and it is used to directly
produce electric power from a variable frequency alternator.
The latter, however, is extremely undesirable, as it excites the
yaw motion of the hull. In this case an offset between the
prevalent sea direction and the hull’s longitudinal symmetry
plane will always exist, and part of the wave energy will be
transmitted to undesirable modes in the horizontal diametral
plane (i.e., sway, roll, and yaw).

To eliminate the yaw torque, a pair of counterrotating
gyroscopes is used. Both flywheels will generate the same
pitch torque, with equal magnitude and direction, but for
yaw the torque will be opposite, negating the 𝑧-axis induced
rotation completely (Figure 2). In fact, the counterrotating
gyroscope pair is also desirable to create redundancy in the
power extraction system.Thismeans the device will continue
to extract a reduced amount of energy, even if one of the
gyroscopes fails.
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Figure 3: Domain boundary surfaces 𝑆𝐹, 𝑆∞, and 𝑆𝐵, along with the
inertial frame of reference 𝑥𝑦𝑧0 [8].

The gyroscopes were sized to have the largest diameter
possible, while leaving sufficient clearance on the sides,
bottom, and top to allow for a complete 360∘ turn. Table 2
lists IOwec’s principal characteristics. The VCG is measured
from the free surface, with positive values above thewaterline,
while the rest of the vertical quantities are measured from the
keel.

2.1. Floating Body’s Mathematical Model. Consider an unre-
stricted, stationary, floating body, free to move in its six,
rigid-body degrees of freedom about a noninertial frame of
reference 𝑥𝑦𝑧0 fixed to its equilibrium position in calm water
(Figure 3) [8]. We assume small body motions with respect
to the equilibrium position and small wave disturbance with
respect to the body’s nominal size. The problem is linearized,
allowing the application of potential flow together with
impulse theory and the decomposition of the forcing into
impulsive (local) and wave (memory) forces, as proposed by
Cummins [5].

(𝑀𝑖𝑗 + 𝑎𝑜𝑖𝑗) ̈𝜉𝑗 (𝑡) + 𝑐𝑖𝑗𝜉𝑗
= 𝑋𝑗 (𝑡) − ∫𝑡

−∞
𝐾 (𝑡 − 𝜏) ̇𝜉𝑗 (𝜏) 𝑑𝜏, (12)

where 𝐾(𝑡) is the velocity impulse function and 𝑋𝑗(𝑡) is the
excitation force in the 𝑗th mode. The hydrostatic restoring
coefficients 𝑐𝑖𝑗 are easily calculated following classical naval
architecture theory [24]. Figure 4 shows the body-fixed 𝑥𝑦𝑧1
reference frame, where (12) is applicable, as well as the
gyroscope’s local frame 𝑥𝑦𝑧2.

The fully nonlinear gyroscopes equations of motion are
[25]

𝐼𝑥 ̈𝜃 = (𝐼𝑦 − 𝐼𝑧)
⋅ [ ̇𝜉5 ̇𝜉6 (cos2𝜃 − sin2𝜃) + ( ̇𝜉26 − ̇𝜉25) sin 𝜃 cos 𝜃]
− 𝐽𝜑̇ ( ̇𝜉5 cos 𝜃 + ̇𝜉6 sin 𝜃) − 𝑘𝑙𝜃 − 𝑐𝑙 ̇𝜃,

(13)

Table 2: IOwec main dimensions.

Part Dimension Value Unit

Hull

𝐿 45 m𝐵 20 m𝐷 10 m𝑇𝑑 7 m𝑉𝐶𝐺 −1.485 mΔ 5217.87 ton𝑅𝑥𝑥 8.45 m𝑅𝑦𝑦 14.65 m𝑅𝑧𝑧 3.84 m

Gyroscope

𝑑 6.8 m𝑚𝑓 140 ton𝐼𝑥𝑥 5.17 ⋅ 105 kg⋅m2

𝐼𝑦𝑦 5.17 ⋅ 105 kg⋅m2

𝐽 1.02 ⋅ 106 kg⋅m2

𝐼𝑓𝑥 3.82 ⋅ 103 kg⋅m2

𝐼𝑓𝑦 3.32 ⋅ 104 kg⋅m2

𝐼𝑓𝑧 3 ⋅ 104 m

z2

x2

y2

z1

x1

y1

4

5
6



Figure 4: Hull and gyroscope Frames of Reference. 𝜃 is the rotation
along the PTO axis and only unconstrained DoF of the gyroscope.

𝑇𝑦1 = (𝐼𝑦cos2𝜃 + 𝐼𝑧sin2𝜃) ̈𝜉5 + (𝐼𝑦 − 𝐼𝑧) sin 𝜃 cos 𝜃 ̈𝜉6
+ (2𝐼𝑧 − 𝐼𝑥 − 𝐼𝑦) ̇𝜉5 ̇𝜃 cos 𝜃 sin 𝜃 + (sin2𝜃 − cos2𝜃)
⋅ 𝐽 ̇𝜉6 ̇𝜃 + (𝐼𝑥 + 𝐼𝑦) cos2𝜃 ̇𝜉6 ̇𝜃 − 𝐽𝜑̇ ̇𝜃 cos 𝜃,

(14)

𝑇𝑧1 = (𝐼𝑦 − 𝐼𝑧) sin 𝜃 cos 𝜃 ̈𝜉5 + (𝐼𝑦sin2𝜃 + 𝐼𝑧cos2𝜃) ̈𝜉6
− (𝐼𝑥 + 𝐼𝑦 − 𝐼𝑧) ̇𝜉5 ̇𝜃sin2𝜃 − (𝐼𝑥 + 𝐼𝑦 − 2𝐼𝑧) ̇𝜉6 ̇𝜃 sin 𝜃
⋅ cos 𝜃 − 𝐼𝑧 ̇𝜉5 ̇𝜃cos2𝜃 − 𝐽𝜑̇ ̇𝜃 sin 𝜃.

(15)

It is important to notice how, in our present model, we
chose a linear PTO and disregarded possible control dynam-
ics. Nonetheless, such extra complications of a particular
system may be easily included in our framework through
careful consideration of the dynamics. Recent works have
considered, for example, mooring forces, nonlinear PTOs,
and control techniques such as latching [26–31].

The mathematical formulations regarding the hull are
written in a state-space format in AEGIR, so the MATLAB
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code which implements the gyroscope and PTO mechanics
must also follow the same convention. Going down the
same path as outlined by Kring, the six-DoF, second-order
equations of motion can be modified into twelve of first
degree, with the state vector 󳨀→𝑦 written as a combination of
displacements and velocities [8].

𝑑󳨀→𝑦𝑑𝑡 = 󳨀→𝑓 (𝑡) with 󳨀→𝑦 (𝑡) = [󳨀→𝑦 1 (𝑡)󳨀→𝑦 2 (𝑡)] = [ ̇𝜉𝑗 (𝑡)𝜉𝑗 (𝑡)] . (16)

Gyroscopic terms
󳨀→𝑇𝑎

𝑖 (𝑡), proportional to the hull’s accel-
eration, will go alongside mass terms, just like the added-
mass. The forcing vector becomes

󳨀󳨀󳨀→𝑓 (𝑡) = [[
[
−[𝑀 + 𝑎𝑜 + 𝑛∑

𝑖=1

𝑇𝑎𝑖 (𝑡)]
−1 [𝐶󳨀→𝑦 2 (𝑡) + ∫𝑡

0
𝐾 (𝑡 − 𝜏) 󳨀→𝑦 1 (𝜏) 𝑑𝜏 + 𝑛∑

𝑖=1

𝑇V
𝑖 (󳨀→𝑦 1, 𝑡)]󳨀→𝑦 1 (𝑡)

]]
]
, (17)

where 𝑛 is the total number of gyroscopes inside the hull.
Both acceleration and velocity proportional gyroscope torque
matrices, coming from (14) and (15), are nonzero only for
pitch and yaw.

𝑇𝑎𝑖 (󳨀̇→𝑦 1, 𝑡) =
[[[[[[
[

0 ⋅ ⋅ ⋅ 0... d
...

𝑇𝑎55,𝑖 𝑇𝑎56,𝑖0 ⋅ ⋅ ⋅ 𝑇𝑎65,𝑖 𝑇𝑎66,𝑖

]]]]]]
]
,

𝑇V
𝑖 (󳨀→𝑦 1, 𝑡) =

[[[[[[
[

0...
𝑇V
5,𝑖𝑇V
6,𝑖

]]]]]]
]
,

(18)

where, from (13), (14), and (15),

𝑇𝑎55,𝑖 = 𝐼𝑦cos2𝜃 + 𝐼𝑧sin2𝜃,
𝑇𝑎56,𝑖 = (𝐼𝑦 − 𝐼𝑧) sin 𝜃 cos 𝜃,
𝑇𝑎65,𝑖 = (𝐼𝑦 − 𝐼𝑧) sin 𝜃 cos 𝜃,
𝑇𝑎66,𝑖 = 𝐼𝑦sin2𝜃 + 𝐼𝑧cos2𝜃,
𝑇V
5 = − (2𝐼𝑧 − 𝐼𝑥 − 𝐼𝑦) ̇𝜉5 ̇𝜃 cos 𝜃 sin 𝜃

− (sin2𝜃 − cos2𝜃) 𝐽 ̇𝜉6 ̇𝜃
− (𝐼𝑥 + 𝐼𝑦) cos2𝜃 ̇𝜉6 ̇𝜃 + (−1)𝑖 𝐽𝜑̇ ̇𝜃 cos 𝜃,

𝑇V
6 = (𝐼𝑥 + 𝐼𝑦 − 𝐼𝑧) ̇𝜉5 ̇𝜃sin2𝜃

+ (𝐼𝑥 + 𝐼𝑦 − 2𝐼𝑧) ̇𝜉6 ̇𝜃 sin 𝜃 cos 𝜃
+ 𝐼𝑧 ̇𝜉5 ̇𝜃cos2𝜃 + (−1)𝑖 𝐽𝜑̇ ̇𝜃 sin 𝜃.

(19)

Assuming (13) can be linearized by getting rid of all
higher-order terms in 𝜉𝑗 and 𝜃 while, at the same time,
assuming small roll angles for the gyroscope, we may apply

the Fourier Transform and move into frequency domain to
express

Θ = 𝐽𝜑𝑖𝜔𝐼𝑥𝜔2 − 𝑖𝜔𝑐𝑙 − 𝑘𝑙Ξ5. (20)

Introducing the PTO natural frequency as 𝜔2PTO = 𝑘𝑙/𝐽
and substituting it in (20) [22],

Θ = 𝐽𝜑𝑖𝜔(𝐼𝑥𝜔2 − 𝐽𝜔2PTO) − 𝑖𝜔𝑐𝑙Ξ5. (21)

It is clear now that we must tune 𝜔PTO to match the
relevant incident wave frequency. The ideal PTO spring
constant becomes

𝑘𝑙 = 𝐼𝑥 ⋅ 𝜔2. (22)

The hull is designed to have a pitch resonance period𝑇𝑝 =
8 s in order to match the predominant sea given by the WEP
committee. Equation (22) can then be used to size our PTO
spring. At this stage, we will consider only the hull resonance
frequency as reference for the PTO tuning, since the motion
response is greatly magnified around that frequency. The
reactive control constant becomes

𝑘𝑙 = 𝐼𝑥 ⋅ 𝜔2𝑛 ≃ 604, 921.50 kg ⋅m2

s2
. (23)

The power is extracted by the PTO through the linear
damping coefficient 𝑐𝑙.Thepowermetric utilized for thiswork
is the average power extracted over one wave period, which
can be written as [22, 25]

𝑃𝐸 (𝜔) = 12𝑐𝑙 󵄨󵄨󵄨󵄨󵄨 ̇𝜃󵄨󵄨󵄨󵄨󵄨2 = 12𝑐𝑙𝜔2Θ2. (24)

Substituting (21) into (24) and considering an optimum
reactive control, the power extracted becomes

𝑃𝐸 (𝜔) = 𝐽𝜑𝜔2Ξ5Θ2 . (25)

We now have derived a direct way to estimate what would
be the power prediction of the device by just knowing the
hull and gyroscope motions. Also, the optimum reactive
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control can be designed for every incoming wave frequency,
guaranteeing resonance. It is important to note that the
damping would always be optimized for such condition.

Finally, we must choose a first guess for the nominal spin
rate of the gyroscopes. Scaling the ISWEC’s spin of 2150 RPM
from its 0.56m length we find

𝜑 = 𝜑ISWEC√0.5645 ≃ 240RPM. (26)

Our numerical model later showed us this value is too
high, taking us too long to converge to the optimal quantity.
We then define our first guess as half of the ISWEC’s scaled
value.

𝜑 = 120RPM. (27)

3. The Time-Domain Boundary Value Problem

Here, we also consider the fluid flow incompressible, irro-
tational, and inviscid so the flow can be represented by
a velocity potential Ψ(󳨀→𝑥, 𝑡), which must satisfy Laplace’s
equation (i.e., ∇2Ψ = 0). The flow pressure can also be
calculated in the 𝑥𝑦𝑧𝑜 frame Bernoulli’s equation [2]. The
fully nonlinear kinematic and dynamic free-surface, body
boundary, and radiation conditions are, respectively [8],

( 𝑑𝑑𝑡 + ∇Ψ (󳨀→𝑥, 𝑡) ⋅ ∇) [𝑧 − 𝜂 (𝑥, 𝑦, 𝑡)] = 0
on 𝑧 = 𝜂 (𝑥, 𝑦, 𝑡) ,

(28)

Ψ𝑑𝑡 = −𝑔𝜂 − 12∇Ψ ⋅ ∇Ψ on 𝑧 = 𝜂 (𝑥, 𝑦, 𝑡) , (29)

𝜕Ψ (󳨀→𝑥, 𝑡)
𝜕𝑛 = 󳨀→𝑉𝐵 ⋅ 󳨀→𝑛 on 𝑆𝐵, (30)

∇Ψ 󳨀→ 0 at 𝑆∞. (31)

The total disturbance potential Ψ(󳨀→𝑥, 𝑡) can be written as
a superposition of two flows, the local 𝜙𝑙 (i.e., instantaneous
fluid response due to the impulsive body motion) and the
memory 𝜓 (i.e., wave) [5, 8].

Ψ(󳨀→𝑥, 𝑡) = 𝜙𝑙 (󳨀→𝑥, 𝑡) + 𝜓 (󳨀→𝑥, 𝑡) . (32)

To arrive at the linear boundary conditions we apply a
Taylor expansion about the mean body position for the body
condition and about 𝑧 = 0 for the free surface, keeping only
its linear terms [8].

(1) Kinematic free-surface condition is

𝜕𝜂𝜕𝑡 = 𝜕𝜙𝑙𝜕𝑧 + 𝜕𝜓𝜕𝑧 applied on 𝑧 = 0. (33)

(2) Dynamic free-surface condition is

𝜕𝜕𝑡 (𝜙𝑙 + 𝜓) = −𝑔𝜂 − 12∇𝜙𝑙 ⋅ ∇𝜙𝑙 applied on 𝑧 = 0. (34)

(3) Body boundary condition is
𝜕𝜙𝑙𝜕𝑛 = 𝜕𝛿𝜕𝑡 ⋅ 󳨀→𝑛 − ∇𝜓 ⋅ 󳨀→𝑛 applied on 𝑆𝐵. (35)

Equations (33) and (34) will be our evolution equations
for the free-surface deformation 𝜂 and wave potential 𝜓.
Before, however, we must calculate the unknown 𝜙𝑙 and the
derivatives of 𝜓, as we are only given the value of the wave
potential at 𝑆𝐹 and the derivative of the local potential at 𝑆𝐵.

The displacement
󳨀→𝛿(󳨀→𝑥, 𝑡) of any point within the rigid

body can be described by combining translation
󳨀→𝜉 𝑇(𝑡) and

rotation
󳨀→𝜉 𝑅(𝑡) [8].󳨀→𝛿 (󳨀→𝑥, 𝑡) = 󳨀→𝜉 𝑇 (𝑡) + 󳨀→𝜉 𝑅 (𝑡) × 󳨀→𝑥. (36)

Substituting (36) into (35) yields the body boundary
condition in Ogilvie and Tuck’s notation, minus the𝑚-terms.
These omitted terms would be fundamental if our body had
a translation velocity [8, 32].

𝜕𝜙𝑙𝜕𝑛 = 6∑
𝑗=1

(𝜕𝜉𝑗𝜕𝑡 ) . (37)

Particularly for the pressure calculation, the linearized
Bernoulli equation can be decomposed into local 𝑝𝑙, memory𝑝𝑚, and hydrostatic 𝑝ℎ components. The total pressure is𝑝 = 𝑝𝑙 + 𝑝𝑚 + 𝑝ℎ [8].

𝑝𝑙 = −𝜌𝜕𝜙𝑙𝜕𝑡 ,
𝑝𝑚 = −𝜌𝜕𝜓𝜕𝑡 ,
𝑝ℎ = −𝜌𝑔𝑧.

(38)

Finally, the force acting on the body is the integration of
the pressure on 𝑆𝐵.

𝐹𝑗 = ∬
𝑆𝐵

𝑝 ⋅ 𝑛𝑗𝑑𝑆 for 𝑗 = 1, . . . , 6. (39)

3.1. The Local Flow Contribution. The local flow can be
decomposed into terms proportional to the acceleration,
velocity, and displacement of the body. Only the ones due to
acceleration are nonzero for a stationary body (i.e., the basis
flow is absent), yielding the 𝑎0 term written in [8]

𝑎0𝑗𝑘 = 𝜌∬
𝑆𝐵

(N𝑘) 𝑛𝑗𝑑𝑆, (40)

where
N𝑘 = 0 on 𝑧 = 0
N𝑘𝜕𝑛 = 𝑛𝑘 on 𝑆𝐵

for 𝑘 = 1, . . . , 6
(𝑛1, 𝑛2, 𝑛3) = 󳨀→𝑛
(𝑛4, 𝑛5, 𝑛6) = 󳨀→𝑥 × 󳨀→𝑛 .

(41)



Mathematical Problems in Engineering 7

3.2. The Memory Flow Contribution. If an incident wave
is imposed in the domain, it is represented as an extra
component of the memory flow (𝜓 = 𝜓 + Ψ𝐼 and 𝜂 = 𝜂 + 𝜂𝐼).
The body boundary condition becomes [8]

𝜕𝜓𝜕𝑛 = −Ψ𝐼𝜕𝑛 on 𝑆𝐵. (42)

The free-surface conditions outlined in (33) and (34)
have the unknown velocity potentials. They will be solved
by AEGIR at every time step, calculating the free-surface
deformation [8].

3.3. The Boundary Integral Formulation. As stated before, we
are only given the value of the wave potential at 𝑆𝐹 and the
derivative of the local potential at 𝑆𝐵. To calculate for the
derivatives of 𝜓, Green’s second identity is applied to the
Boundary Value Problem, yielding a very similar equation to
(7) [8]:

2𝜋Ψ (󳨀→𝑥) −∬
𝑆𝐹 ∪ 𝑆𝐵

𝜕Ψ(󳨀→𝑥 󸀠)
𝜕𝑛 𝐺 (󳨀→𝑥 󸀠; 󳨀→𝑥)𝑑𝑥󸀠

+∬
𝑆𝐹 ∪ 𝑆𝐵

Ψ(󳨀→𝑥 󸀠) 𝜕𝐺 (󳨀→𝑥
󸀠; 󳨀→𝑥)

𝜕𝑛 𝑑𝑥󸀠 = 0.
(43)

Finally, AEGIR is called a Rankine panel method due
to its choice on the Rankine source potential as the known
function in the integral:

𝐺(󳨀→𝑥 󸀠; 󳨀→𝑥) = 1󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝑥 − 󳨀→𝑥 󸀠󵄨󵄨󵄨󵄨󵄨󵄨
. (44)

4. Numerical Model

4.1. Spatial Discretization. AEGIR is a high-order panel
method, meaning the surfaces are broken down into the
desired number of discrete quadrilateral facets and repre-
sented mathematically as nonuniform basic spline surfaces
(NURBS). The variables of interest become

𝜓 (󳨀→𝑥, 𝑡) ≃ ∑
𝑗

𝜓𝑗 (𝑡) 𝐵𝑗 (󳨀→𝑥) ,
𝜂 (󳨀→𝑥, 𝑡) ≃ ∑

𝑗

𝜂𝑗 (𝑡) 𝐵𝑗 (󳨀→𝑥) ,
𝜕𝜓𝜕𝑛 (󳨀→𝑥, 𝑡) ≃ ∑𝑗 (𝜓𝑧)𝑗 (𝑡) 𝐵𝑗 (󳨀→𝑥)

(45)

with

𝐵 (𝑥, 𝑦) = 𝑏 (𝑥) 𝑏 (𝑦) . (46)

The basis function within a panel is a second-order B-
spline, meaning first and second derivatives can be obtained
analytically [8]:

𝑏 (𝑥) =
{{{{{{{{{{{{{{{{{{{{{

12𝑙2𝑝 (𝑥 +
3𝑙𝑝2 )2 , on − 3𝑙𝑝2 < 𝑥 < −𝑙𝑝2

1𝑙2𝑝 (−𝑥2 +
3𝑙2𝑝4 ) , on − 𝑙𝑝2 < 𝑥 < 𝑙𝑝2

12𝑙2𝑝 (−𝑥 +
3𝑙𝑝2 )2 , on

𝑙𝑝2 < 𝑥 < 3𝑙𝑝2 ,
(47)

where 𝑙𝑝 is the panel width. Applying such basis function
on (33), (34), and (43) yields the discrete formulation of the
kinematic and dynamic boundary conditions and boundary
integral formulation, respectively. The first two are time
dependent, while the last is a linear system of equations(𝐴𝑥 = 𝑏) whose size depends on the number of panels in
the problem [8].

𝜕𝜂𝑗𝜕𝑡 𝐵𝑖𝑗 = 𝜕𝜙𝑙𝜕𝑧 + 𝜓𝑗𝜕𝑧𝐵𝑖𝑗,
𝜕𝜓𝑗𝜕𝑡 𝐵𝑖𝑗 = −𝜂𝑗𝑔𝐵𝑖𝑗,

2𝜋𝜓𝑗𝐵𝑖𝑗 + 𝜓𝑗𝐷𝑖𝑗 − 𝜕𝜓𝑗𝜕𝑧 𝑆𝑖𝑗 = 0,
(48)

where 𝐷𝑖𝑗 and 𝑆𝑖𝑗 are the dipole and source influence
coefficients, respectively:

𝐵𝑖𝑗 = 𝐵𝑗 (󳨀→𝑥 𝑖) = 𝐵𝑖−𝑗,
𝐷𝑖𝑗 = ∬∞

−∞
𝐵𝑗 (󳨀→𝑥 󸀠) 𝑑𝐺 (󳨀→𝑥 𝑖; 󳨀→𝑥 󸀠)

𝑑𝑛 𝑑󳨀→𝑥 󸀠 = 𝐷𝑖−𝑗,
𝑆𝑖𝑗 = ∬∞

−∞
𝐵𝑗 (󳨀→𝑥 󸀠)𝐺 (󳨀→𝑥 𝑖; 󳨀→𝑥 󸀠) 𝑑󳨀→𝑥 󸀠 = 𝑆𝑖−𝑗.

(49)

4.2. Temporal Discretization

4.2.1. Free-Surface Boundary Conditions. The free-surface
temporal discretization uses an “implicit” method, which is a
mix of explicit and implicit Euler schemes [8]. The following
discretization is used to integrate equations (48) in time:

𝜂𝑛+1𝑗 − 𝜂𝑛𝑗Δ𝑡 𝐵𝑖𝑗 = 𝜕𝜙𝑙𝜕𝑧 + 𝜕𝜓𝑛𝑗𝜕𝑧 𝐵𝑖𝑗,
𝜓𝑛+1𝑗 − 𝜓𝑛𝑗Δ𝑡 𝐵𝑖𝑗 = −𝜂𝑛+1𝑗 𝑔𝐵𝑖𝑗,

2𝜋𝜓𝑛+1𝑗 𝐵𝑖𝑗 + 𝜓𝑛+1𝑗 𝐷𝑖𝑗 − 𝜕𝜓𝑛+1𝑗𝜕𝑧 𝑆𝑖𝑗 = 0,
(50)

where 𝑛 is the variable value at the current (𝑛th) time step.

4.2.2. Body Motion. The time marching scheme for the body
motion is the Runge-Kutta 4th order. It consists of four steps,
the first is a forward Euler of half step, and the second is an
implicit Euler corrector, still with half step, but now using the
previous prediction as current state vector.The third is a full-
step midpoint rule, using the predicted value. Finally, the last
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Figure 5: Schematics describing the information change between AEGIR and the MATLAB code for each time step, where 󳨀→𝐹 𝐼(𝑡) and 󳨀→𝐹𝑚(𝑡)
are the incident and memory force vectors, respectively.

consists of a Simpson’s rule which uses all previous steps to
build the true state vector [33]. Using a multipoint method
allows the use of larger time-steps while still maintaining
numerical stability, while, in particular for the Runge-Kutta,
not needing extra points for calculation.

(1) Forward Euler predictor is

󳨀→𝑦∗

𝑛+1/2 = 󳨀→𝑦 𝑛 + Δ𝑡2 𝑑󳨀→𝑦 𝑛𝑑𝑡 . (51)

(2) Implicit Euler corrector is

󳨀→𝑦∗∗

𝑛+1/2 = 󳨀→𝑦 𝑛 + Δ𝑡2 𝑑󳨀→𝑦∗

𝑛+1/2𝑑𝑡 . (52)

(3) Midpoint rule predictor is

󳨀→𝑦∗

𝑛+1 = 󳨀→𝑦 𝑛 + Δ𝑡𝑑
󳨀→𝑦∗∗

𝑛+1/2𝑑𝑡 . (53)

(4) Simpson’s rule corrector is

󳨀→𝑦 𝑛+1

= 󳨀→𝑦 𝑛

+ Δ𝑡6 (𝑑󳨀→𝑦 𝑛𝑑𝑡 + 𝑑󳨀→𝑦∗

𝑛+1/2𝑑𝑡 + 𝑑󳨀→𝑦∗∗

𝑛+1/2𝑑𝑡 + 𝑑󳨀→𝑦∗

𝑛+1𝑑𝑡 ) .
(54)

Figure 5 better illustrates the information exchange
between AEGIR and theMATLAB code.The latter calculates
the true state vector from AEGIR’s bare hull estimation.

4.2.3. Radiation Condition. Finally, in a discrete scenario, our
domain is bounded. This means the radiation condition (see
(31)) must be imposed on the edges of the domain. This is
achieved in AEGIR by placing “numerical beaches” which
artificially damp the outgoingwaves far from the body [8, 34].

𝑑𝜓𝑑𝑡 = −𝑔𝜂,
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Figure 6: NURBS representation of IOwec’s hull.

Table 3: Initial domain size.

Extent Direction Reference Value Unit

Domain
Upstream 𝜆 112.5 m

Downstream −3 ⋅ 𝜆 −337.5 m
Side 3 ⋅ 𝐿 135 m

Beach
Upstream - 45 m

Downstream - 112.5 m
Side - 54 m

𝑑𝜂𝑑𝑡 = 𝑑𝜓𝑑𝑧 − 2]𝜂 + ]2𝑔 𝜓,
(55)

where ] is an artificial viscosity imposed on thewaves for their
decay near the edges.

5. Results

5.1. Sensibility Analysis. All the analyses carried out are
done with monochromatic waves in head seas, with periods
ranging from 5 s to 12 s. The numerical simulation has to
prove its stability and convergence within the wave range.
Considering infinite depth (i.e., linear dispersion relation𝜔2 = 𝑔𝑘, where 𝜔 and 𝑘 are the wave frequency and number,
resp.), the wave lengths range from 39m to 225m, the higher
one driving the domain size. Time step and mesh density
must then be fine enough to perceive the one with the lowest
period (i.e., 𝑇 = 5 s).

5.1.1. Domain Size. Figure 6 shows the final geometry utilized
for the sensibility analyses.

The domain initial sizing was based on the model length
and the longest wave to be simulated, which has a period of
12 s and length 𝜆 = 225m. Table 3 presents the values used.

To be certain the domain was sized correctly, the longest
wave (𝑇= 12 s)with amplitude𝐴= 1mwas simulated for three
domain sizes of 1.0, 1.5, and 2.0 times the dimension of the
initial one.The pitch motion is plotted against the simulation
time in Figure 7. For this run a 60 s of ramp time and 0.1 s time
step was used, which should be more than enough for the
considered wave. Also, a simulation time of 150 s was enough
to achieve steady state motion. No noticeable difference was
observed between the first two multipliers, while the last
diverged in less than 0.2%. The domain size corresponding
to the 1.5multiplier was selected.
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Figure 7: Domain sensitivity analysis.
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Figure 8: Free-surface mesh sensitivity analysis.

5.1.2. Mesh Density. Three mesh density factors of 0.5, 1.0,
and 1.5, corresponding to panel sizes of 3.75m and 2.50m
and 1.25m, respectively, were tested against the smallest wave
(39m). For this run, the same ramp time and time-step size
presented in Section 5.1.1 were used. Since no noticeable
difference was observed between the two finest meshes, and
the coarsest ones diverged about 2.36% (Figure 8), the 2.5m
panel width was chosen for subsequent runs.

5.1.3. Time Step. The simulation time step has to be chosen
to accurately solve the smallest wave period. To select a
proper step, four values were tested while simulating the𝑇 = 5 s wave: 0.05 s, 0.1 s, 0.2 s, and 0.5 s. Figure 9 shows
the pitch motion versus simulation time for each step, with
the exception of 0.5 s which diverged. The largest one (i.e.,
0.2 s) had a deviation of only 0.35% from the smallest one.
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Figure 9: Time-step sensitivity analysis.

Table 4: Final domain size.

Extent Direction Reference Value Unit

Domain
Upstream 1.5 ⋅ 𝜆 168.75 m

Downstream −4.5 ⋅ 𝜆 −506.25 m
Side 4.5 ⋅ 𝐿 202.5 m

Beach
Upstream - 67.5 m

Downstream - 202.5 m
Side - 81 m

Time Ramp time - 60 s
Time step - 0.2 s

Therefore, a good compromise between accuracy and speed
for our simulations is achieved with Δ𝑡 = 0.2 s, which was
chosen for all subsequent runs.

Finally, Table 4 summarizes the domain size, mesh
density, and time step chosen based on the aforementioned
sensibility analyses. Figure 10 shows the free surface and body
surfaces after meshing.

5.2. Bare Hull Motion. Before assessing the gyroscope dy-
namics and power extraction we will take a look into the
hull’s bare motion. Figures 11 and 12 show the heave and pitch
RAO, respectively. The former has an excellent agreement
with WAMIT results, while the latter is just slightly off at the
resonant peak.

WAMIT solves the radiation potential and, through (4),
calculate the added-mass, damping, and exciting forces [9].
Figures 13 and 14 show the comparison between AEGIR
and WAMIT exciting force and moment, which are in
good agreement, with minimal discrepancy between both
methods.

We now oscillate the hull under a prescribed motion
of amplitude 𝐴 and frequency 𝜔 on an undisturbed free
surface. It will generate outgoingwaves whose pressure, when

Figure 10: Free-surface and body surfaces after meshing.
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Figure 11: Heave RAO comparison between WAMIT and AEGIR
for the bare hull case (i.e., no gyroscope).
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Figure 12: Pitch RAO comparison betweenWAMIT andAEGIR for
the bare hull case (i.e., no gyroscope).

integrated on the hull, describes a force out of phase with the
motion. Breaking the force into a component in phase with
the acceleration and another in phase with the velocity yields
the added-mass and damping components, respectively. The
diagonal coefficients are

𝑎𝑖𝑖 = 𝑋𝑖 cos (𝜖𝑓 − 𝜖𝑚)Ξ𝑖𝜔2 ,
𝑏𝑖𝑖 = −𝑋𝑖 sin (𝜖𝑓 − 𝜖𝑚)Ξ𝑖𝜔 .

(56)

Figures 15(a)–15(d) show both AEGIR and WAMIT
added-mass and damping coefficients for heave and pitch.
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Figure 13: Heave scattering force coefficient.

We can see an excellent agreement for the former, while
pitch presents higher damping at resonance and a slight
offset on the added-mass for 𝜆/𝐿 starting at 3. This means
the memory potential in AEGIR, which accounts for the
radiation problem, yields a slightly different solution than
WAMIT.The extra damping may explain why the pitch RAO
peak is a bit smaller for AEGIR.

5.3. Gyroscope Spin Sensibility. Thebase spin rate was defined
by (27). We would now like to determine the optimal PTO
damping. Equation (25), which only uses hull pitch and
gyroscope roll amplitudes, will be utilized to estimate the
averaged power extraction over one wave period. Figure 16
shows such power by different multipliers of the base spin
rate.

We can notice that, starting from low spin rates, the
power extracted increases until an optimum value. After that
the peak extraction moves to longer waves, until it is not
noticeable within the selected wave bandwidth. Increasing
the flywheel spin makes the system stiffer, moving the hull’s
natural frequency towards longer waves, as can be seen in
Figure 17.

The best spin found, considering our 8 s resonant period,
is 1.25𝜑̇ (i.e., 150 RPM). This rate will be used for the
subsequent runs.

5.4. PTO Damping Sensibility. Maintaining the same PTO
spring, optimized for the hull natural frequency, and with
the chosen spin rate, we can do a sensibility analysis with the
PTO damping. Equation (24) can be utilized, using the power
predicted during the spin analysis, to estimate the required
damping.

𝑐𝑙 = 2𝑃𝐸 (𝜔)𝜔2Θ2
≃ 455, 667.00 kg ⋅m2/s. (57)

The actual instantaneous power extracted can now be
integrated to calculate the average power:

𝑃𝐸 (𝑡) = 1𝑇 ∫𝑇

0
𝑐𝑙 ̇𝜃2𝑑𝑡. (58)
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Figure 14: Pitch scattering moment coefficient.

We can observe, from Figure 18, a shift of the peak energy
extracted towards smaller waves as the damping is increased,
due to the decrease of gyroscopic roll. An optimum damping
of 5𝑐𝑙 is attained, after which the device quickly loses energy
extraction efficiency, especially for longer waves.

The effects of damping are evident on the hull’s pitch
as well. The optimum damping guarantees that its natural
frequency remains at 8 s, while minimizing the motion as
much as possible. Figure 19 shows how the pitchRAOchanges
for all the damping variation.

Reporting power extracted by itself is not a good repre-
sentation of IOwec’s capabilities, especially since it varies with
the wave amplitude. A better way to quantify efficiency is to
plot the capture width, which is the ratio between the average
powers extracted and incoming from a 2D section of thewave
profile.

𝐶𝑊 = 𝑃𝐸 (𝑡)
F

= 32𝜋𝜌𝑔2𝑇2𝐻2
∫𝑡+𝑇

𝑡
𝑃 (𝑡) 𝑑𝑡. (59)

Figure 20 shows the IOwec is able to, at resonance, extract
a monochromatic wave 25m wide, 1.25 times its beam.

In all cases, the yaw torques induced by both counter-
rotating flywheels are seen to cancel one another. Figure 21
shows the torques from both gyroscopes for the 𝑇 = 8 s wave,
with frequency exactly twice that of the wave.

6. Conclusions

We presented the mathematical formulation of the hydrome-
chanics time-domain simulation model for a gyroscopic,
pitch-resonant, floating WEC. First the initial design of the
WEC to be simulated was outlined, the hull was sized to
guarantee resonance for themost energetic wave period given
by the WEP committee, while the gyroscopes’ diameter was
maximized while guaranteeing clearance. A maximization of
the flywheel size allowed the use of a smaller nominal spin of
120 RPM, which is easier to maintain.

Next, the Boundary Value Problem was outlined under a
potential flow assumption. Green’s second identity provided
a boundary integral equation to be solved for the unknown
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Figure 15: (a) Heave added-mass coefficient. (b) Heave damping coefficient. (c) Pitch added-mass coefficient. (d) Pitch damping coefficient.

derivatives of 𝜓 on the free surface, which, after being
discretized into quadratic panels, allowed for the calculation
of the potential on the surface of the hull. The free-surface
boundary conditions and body equation of motion can then
be integrated in time, giving values for 𝜓, 𝜂 and the body’s
state vector for the next time step.

The time-domain numerical method, after validation
against a state-of-the-art frequency domain panel method,
was fitted with the gyroscope and PTO dynamics, allowing
for a quick evaluation of the optimal flywheel spin, PTO
damping, and average power extracted. In fact, the gyro-
scope mathematical model presented in Section 2.1 could

be reformulated for any different type of external mechanics
(e.g., a pendulum),making this a very versatile framework for
designers and engineers.

One could also envision the extension of the present
method to account for nonlinear effects (while also abandon-
ing the state-space format), particularly important around
resonance.The higher-order terms of the free-surface bound-
ary conditions could be retained for a more accurate repre-
sentation of steeper wave profiles. Integration of pressures on
the hull could also be done up to the deformed free-surface,
while also retaining the nonlinear Bernoulli terms. An even
better extension would be a Mixed Eulerian-Lagrangian
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Figure 16: Average power extracted for different multiples of the
base spin rate. This is estimated through (25), since we still do not
know the appropriate PTO damping. The waves have amplitude of
0.1m.
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Figure 17: Pitch RAO for different multipliers of the basis spin rate.
We can see a shift in the natural frequency towards longer waves as
the spin is increased and the system gets stiffer.

approach, in which collocation points are translated at each
time step to the regions of higher gradient of the free-surface,
guaranteeing better resolution at highly nonlinear areas [35–
38].

Next steps of the IOwec design must include thorough
and consistent experimental testing of a scale model of the
WEC, including flywheel and PTO systems.This will provide
much needed data for further validation of the present linear
numerical model and future implementation of nonlinear
mechanics.

Symbols

𝑎𝑖𝑗: Added-mass matrix𝑎𝑜𝑖𝑗: Added-mass matrix due to impulsive
motion of the body
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Figure 18: Average power extracted over one wave period. The
optimum damping identified is 2𝑐𝑙, after which the device quickly
loses efficiency for longer lengths. All waves have amplitude of 0.1m.
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Figure 19: Pitch RAO for all the damping values considered. The
optimal damping of 2𝑐𝑙 tries to minimize the motion throughout all
wave lengths, while still retaining the natural frequency at 8 s.
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Figure 20: Capture width of the IOwec. The device is able to, at
resonance, extract a wave front equivalent to 1.25 times its beam.
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Figure 21: Yaw torque from both counterrotating gyroscopes for
the 𝑇 = 8 s wave. Their summation goes perfectly to zero, and the
frequency is exactly twice that of the wave.

𝐴: Wave amplitude
B: Hull’s maximum beam𝑏𝑖𝑗: Damping matrix𝑏𝑜𝑖𝑗: Damping matrix due to body impulsive

motion𝑐𝑖𝑗: Restoring forces matrix𝑐𝑙: Power Take-Off linear damping constant
D: Hull’s depth𝑑: Gyroscope diameter𝑓𝑘(𝑡): Wave force signal exciting the body motion𝑔: Gravitational accelerationℎ: Water depth (𝑦 < 0)𝐻: Wave height𝐼𝑥𝑥: Gyroscope’s flywheel roll inertia𝐼𝑦𝑦: Gyroscope’s flywheel pitch inertia𝐽: Gyroscope’s flywheel spin inertia𝐼𝑓𝑥 : Gyroscope frame roll inertia𝐼𝑓𝑦 : Gyroscope frame pitch inertia𝐼𝑓𝑧 : Gyroscope frame yaw inertia𝑘: Wave number𝑘𝑙: Power Take-Off spring constant
L: Length Over All, the hull’s maximum length𝑀𝑖𝑗: Body mass matrix𝑚𝑓: Gyroscope’s flywheel mass𝑅𝑥𝑥: IOwec’s roll radius of gyration𝑅𝑦𝑦: IOwec’s pitch radius of gyration𝑅𝑧𝑧: IOwec’s yaw radius of gyration𝑆𝑏: Submerged body wetted surface𝑇: Wave period𝑇𝑑: Hull’s design draft (submergence)
VCG: Vertical position of the center of gravity,

measured from the undisturbed free surface,
with positive values above the waterline

V𝑛: Normal velocity on the surface of the body.
The normal vector points into the fluid𝑋𝑖: Wave excitation forceΔ: Device’s displaced mass at the design draft𝜂: Wave elevation𝜔: Wave radian frequency

𝜖𝑓: Force signal phase angle𝜖𝑚: Motion signal phase angleΨ: Total disturbance velocity potential of the
Boundary Value Problem𝜙: Velocity potential of the fluid𝜙𝐷: Diffracted wave potential𝜑: Flywheel spin rotation𝜙𝐼: Incident wave potential𝜙𝑙: Local flow potential. One of the three
components of the total disturbance
potential𝜙𝑅: Radiated wave potential𝜙𝑆: Scattered wave potential𝜓: Wave flow potential. One of the three
components of the total disturbance
potential𝜌: Fluid density𝜃: Gyroscope roll rotation𝜉𝑗: Body displacement for the 𝑗th degree of
freedom due to wave excitatioṅ𝜉𝑗: Body velocity for the 𝑗th degree of
freedom due to wave excitation̈𝜉𝑗: Body acceleration for the 𝑗th degree of
freedom due to wave excitation.
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