
MIT Open Access Articles

A Formally Reliable Cognitive Middleware for
the Security of Industrial Control Systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Khan, Muhammad et al. "A Formally Reliable Cognitive Middleware for the Security of
Industrial Control Systems." Electronics 6, 3 (August 2017): 58 © 2017 The Author(s)

As Published: http://dx.doi.org/10.3390/electronics6030058

Publisher: MDPI AG

Persistent URL: http://hdl.handle.net/1721.1/113337

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/113337
http://creativecommons.org/licenses/by/4.0/

electronics

Article

A Formally Reliable Cognitive Middleware for the
Security of Industrial Control Systems

Muhammad Taimoor Khan 1,*, Dimitrios Serpanos 2 and Howard Shrobe 3

1 Institute of Informatics, Alpen-Adria University, A-9020 Klagenfurt, Austria
2 Industrial Systems Institute/RC-Athena & ECE, University of Patras, GR 26504 Patras, Greece;

serpanos@ece.upatras.gr
3 MIT CSAIL, Cambridge, MA 02139, USA; hes@csail.mit.edu
* Correspondence: muhammad.khan@aau.at; Tel.: +43-463-2700-3529

Received: 31 May 2017; Accepted: 8 August 2017; Published: 11 August 2017

Abstract: In this paper, we present our results on the formal reliability analysis of the behavioral
correctness of our cognitive middleware ARMET. The formally assured behavioral correctness of
a software system is a fundamental prerequisite for the system’s security. Therefore, the goal of
this study is to, first, formalize the behavioral semantics of the middleware and, second, to prove
its behavioral correctness. In this study, we focus only on the core and critical component of the
middleware: the execution monitor. The execution monitor identifies inconsistencies between runtime
observations of an industrial control system (ICS) application and predictions of the specification
of the application. As a starting point, we have defined the formal (denotational) semantics of the
observations (produced by the application at run-time), and predictions (produced by the executable
specification of the application). Then, based on the formal semantices, we have formalized the
behavior of the execution monitor. Finally, based on the semantics, we have proved soundness
(absence of false alarms) and completeness (detection of arbitrary attacks) to assure the behavioral
correctness of the monitor.

Keywords: run-time monitoring; security monitor; absence of false alarms; ICS; CPS

1. Introduction

Defending industrial control systems (ICS) against cyber-attack requires us to be able to rapidly
and accurately detect that an attack has occurred in order to, on one hand, assure the continuous
operation of ICS and, on the other, to meet ICS real-time requirements. Today’s detection systems
are woefully inadequate, suffering from both high false positive and false negative rates. There are
two key reasons for this. First, the systems do not understand the complete behavior of the system
they are protecting. The second is that they do not understand what an attacker is trying to achieve.
Most systems that exhibit this behavior, in fact, are retrospective, that is they understand some
surface signatures of previous attacks and attempt to recognize the same signature in current traffic.
Furthermore, they are passive in character, they sit back and wait for something similar to what
has already happened to reoccur. Attackers, of course, respond by varying their attacks, so as to
avoid detection.

ARMET [1] is a representative of a new class of protection systems that employ a different, active
form of perception, one that is informed both by knowledge of what the protected application is trying
to do and by knowledge of how attackers think. It employs both bottom-up reasoning (going from
sensors data to conclusions about what attacks might be in progress) and top-down reasoning (given a
set of hypotheses about what attacks might be in progress, it focuses its attention to those events most
likely to significantly help in discerning the ground truth).

Electronics 2017, 6, 58; doi:10.3390/electronics6030058 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://dx.doi.org/10.3390/electronics6030058
http://www.mdpi.com/journal/electronics

Electronics 2017, 6, 58 2 of 12

Based on AWDRAT [2], ARMET is a general purpose middleware system that provides
survivability to any kind of new and legacy software system and to ICS in particular. As shown
in Figure 1, the run-time monitor (RSM) of ARMET checks consistency between the run-time behavior
of the application implementation (AppImpl) and the specified behavior (AppSpec) of the system.
If there is an attack, then the diagnostic engine identifies an attack (an illegal behavioral pattern)
and the corresponding set of resources that were compromised during the attack. After identifying
an attack, a larger system (e.g., AWDRAT) attempts to repair and then regenerate the compromised
system into a safer state, to only allow fail-safe, if possible. The task of regeneration is based on the
dependency-directed reasoning [3] engine of the system that contributes to self-organization and
self-awareness. It does so by recording execution steps intrinsically, the states of the system and their
corresponding justification (reason). The details on diagnosis and recovery are beyond the scope of this
paper. Based on the execution monitor and the reasoning engine of ARMET, not only is the detection of
known attacks possible but also the detection of unknown attacks and potential bugs in the application
implementation is possible.

The RSM has been developed as prototype implementations in a general-purpose, computing
environment (laptop) using a general-purpose functional programming environment (Lisp).
In addition to the software’s ability to be easily ported to a wide range of systems, the software can
be directly developed in any embedded OS and RTOS middleware environment, such as RTLinux,
Windows CE, LynxOS, VxWorks, etc. The current trend toward sophisticated PLC and SCADA
systems with advanced OS and middleware capabilities provides an appropriate environment for
developing highly advanced software systems for control and management [4].

The rest of this paper is organized as follows: Section 2 presents the syntax and semantics of the
specification language of ARMET, while Section 3 explains the syntax and semantics of the monitor.
The proof of behavioral correctness (i.e., soundness and completeness) of the monitor is discussed in
Section 4. Finally, we conclude in Section 5.

Figure 1. ARMET—Run-time security monitor.

2. A Specification Language of ARMET

A specification language of ARMET allows the description of the behavior of ICS application
implementation (AppImpl) based on a fairly high-level description written in a language of
“Plan Calculus” [3], which is a decomposition of pre- and post-conditions and invariant for each
computing component (module) of the system. The description can be considered as an executable
specification of the system. The specification is a hierarchical nesting of a system’s components such
that the input and output ports of each component are connected by data and control flow links of

Electronics 2017, 6, 58 3 of 12

respective specifications. Furthermore, each component is specified with corresponding pre- and
post-conditions. However, the specification also includes a variety of event specifications.

In detail, the behavioral specification (“AppSpec”—as shown in Figure 2) of an application
implementation (“AppImpl”—as shown in Figure 3) is described at the following two logical levels:

1. The control level describes the control structure of each of the component (e.g., sub-components,
control flow and data flow links), which is:

• Defined by the syntactic domain “StrModSeq”, while the control flow can further be
elaborated with syntactic domain “SplModSeq”

2. The behavior level describes the actual method’s behavioral specification of each of component,
which is defined by the syntactic domain “BehModSeq”.

Furthermore, the registration of the observations is given by the syntactic domain “RegModSeq”,
at the top of the above domains. All four of the aforementioned domains are the top-level syntactic
domains of the specification. Our specification is hierarchical, i.e., it specifies the components of
the implementations as hierarchical modules. In the following, we discuss the syntax of control and
behavioral elements of the specification using the specification of a temperature control as an example,
shown in Figure 2.

1. The description of each component type consists of

(a) Its interface, which is comprised of:

• a list of inputs
• a list of its outputs
• a list of the resources it uses (e.g., files it reads, the code in memory that represents

this component)
• a list of sub-components required for the execution of the subject component
• a list of events that represent entry into the component
• a list of events that represent exit from the component
• a list of events that are allowed to occur during any execution of this component
• a set of conditional probabilities between the possible modes of the resources and the

possible modes of the whole component
• a list of known vulnerabilities occurred to the component

(b) and a structural model that is a list of sub-components, some of which might be splits or
joins of:

• data-flows between linking ports of the sub-components (outputs of one to inputs of
another)

• control-flow links between cases of a branch and a component that will be enabled if
that branch is taken.

The description of the component type is represented by the syntactical domain “StrMod”, which
is defined as follows:

StrMod ::= define-ensemble CompName
:entry-events :auto | (EvntSeq)
:exit-events (EvntSeq)
:allowable-events (EvntSeq)
:inputs (ObjNameSeq)
:outputs (ObjNameSeq)
:components (CompSeq)
:controlflows (CtrlFlowSeq)
:splits (SpltCFSeq)
:joins (JoinCFSeq)
:dataflows (DataFlowSeq)
:resources (ResSeq)

Electronics 2017, 6, 58 4 of 12

:resource-mapping (ResMapSeq)
:model-mappings (ModMapSeq)
:vulnerabilities (VulnrabltySeq)

Example 1. For instance, a room temperature controller: control, periodically receives the current
temperature value (sens-temp) from a sensor. The controller may also receive a user command (set-temp)
to set (either increase or decrease) the current temperature of the room. Based on the received user
command, the controller either raises the temperature through the sub-component temp-up or reduces the
temperature through the sub-component temp-down, after computing the error compute-epsilon of the
given command as shown in Figure 2. Furthermore, the controller issues a command as an output (com),
which contains an updated temperature value. Figure 3 reflects the corresponding implementation parts of
the controller.

2. The behavioral specification of a component (a component type may have one normal behavioral
specification and many abnormal behavioral specifications, each one representing some failure
mode) consists of:

• inputs and outputs
• preconditions on the inputs (logical expressions involving one or more of the inputs)
• postconditions (logical expressions involving one or more of the outputs and the inputs)
• allowable events during the execution in this mode

The behavioral specification of a component is represented by a corresponding syntactical domain
“BehMod”, as follows:

BehMod ::= defbehavior-model (CompName normal | compromised)
:inputs (ObjNameSeq1)
:outputs (ObjNameSeq2)
:allowable-events (EvntSeq)
:prerequisites (BehCondSeq1)
:post-conditions (BehCondSeq2)

Example 2. For instance, in our temperature control example, the normal and compromised behavior
of a controller component temp-up is modeled in Figure 2. The normal behavior of a temperature raising
component temp-up describes the: (i) input condition prerequisites, i.e., the component receives a
valid input new-temp; and (ii) output conditions post-conditions, i.e., the new computed temperature
new-temp is equal to the sum of the current temperature old-temp and the computed delta (error). The
computed temperature respects the temperature range (1-40). Similarly, the compromised behavior of the
component illustrates the corresponding input and output conditions. Figure 3 reflects the corresponding
implementation parts of the temp-up component.

The complete syntactic details of the specification language are discussed in [5].
Based on the core idea of Lamport [6], we have defined the semantics of the specification as a state

relationship to achieve the desired insight of the program’s behavior. This does so by relating pre- and
post-states [7]. For simplicity, we chose to discuss semantics of the behavioral domain “BehMod”. The
denotational semantics of the specification language is based on denotational algebras [8]. We define
the result of semantic valuation function as a predicate. The behavioral relation (BehRel) is defined as a
predicate over an environment, a pre-state, and a post-state. The corresponding relation is defined as:

BehRel := P(Environment × State × State⊥)

The valuation function for the abstract syntax domain “BehMod” values is defined as:

[[BehMod]]: Environment→ BehRel

Electronics 2017, 6, 58 5 of 12

Figure 2. An example specification (AppSpec) of a temperature control.

Electronics 2017, 6, 58 6 of 12

Semantically, normal and compromised behavioral models result in modifying the corresponding
elements of the environment value “Component” as defined below:

[[BehMod]](e)(e’, s, s’)⇔
∀ e1 ∈ Environment, nseq ∈ EvntNameSeq, eseq ∈ ObsEvent*, inseq, outseq ∈ Value∗:

[[ObjNameSeq1]](e)(inState⊥(s), inseq) ∧ [[BehCondSeq1]](e) (inState⊥(s)) ∧
[[EvntSeq]](e) (e1, s, s’, nseq, eseq)
[[ObjNameSeq2]](e1)(s’, outseq) ∧ [[BehCondSeq2]](e1) (s’) ∧
∃ c ∈ Component: [[CompName]](e1)(inValue(c)) ∧
IF eqMode(inState⊥(s’), “normal”) THEN

LET sbeh = c[1], nbeh = <inseq, outseq, s, s’>, cbeh = c[3] IN
e’ = push(e1, store(inState(s’))([[CompName]](e1)), c(sbeh, nbeh, cbeh, s, s’))

END
ELSE

LET sbeh = c[1], nbeh = c[2], cbeh = <inseq, outseq, s, s’> IN
e’ = push(e1, store(inState(s’))([[CompName]](e1)), c(sbeh, nbeh, cbeh, s, s’))

END
END

In detail, if the semantics of the syntactic domain “BehMod” holds in a given environment e,
resulting in environment e′ and transforming a pre-state s into a corresponding post-state s′, then:

• The inputs “ObjNameSeq1” evaluate to a sequence of values inseq in a given environment e and a
given state s, which satisfies the corresponding pre-conditions “BehCondSeq1” in the same e and s.

• The allowable events happen and their evaluation results in new environment e1 and a given
post-state s′ with some auxiliary sequences nseq and eseq.

• The outputs “ObjNameSeq2” evaluates to a sequence of values outseq in an environment e1 and
given post-state s′, which satisfies the corresponding post-conditions “BehCondSeq2” in the same
environment e1. State s′ and the given environment e′ may be constructed such that:

– If the post-state is “normal” then e′ is an update to the normal behavior “nbeh” of the
component “CompName” in environment e1, otherwise

– e′ is an update to the compromised behavior “cbeh” of the component.

In the construction of the environment e′, the rest of the semantics of the component do not change
as represented in the corresponding LET-IN constructs.

The complete definitions of the auxiliary functions, predicates, and semantics are presented in [5].

3. An Execution Monitor of ARMET

In principle, an execution monitor interprets the event stream (traces of the execution of the target
system, i.e., observations) against the system specification (the execution of the specification is also
called predictions) by detecting inconsistencies between observations and the predictions, if there are any.

When the system implementation “AppImpl” (as shown in Figure 3) starts execution, an initial
“startup” event is generated and dispatched to the top level component (module) of the system that
transforms the execution state of the component into “running” mode. If there is a subnetwork of
components, the component instantiates it and propagates the data along its data links by enabling the
corresponding control links, if involved. When the data arrives on the input port of the component,
the execution monitor checks if it is complete. If so, the execution monitor checks the preconditions of
the component for the data and, if they succeed, it transforms the state of the component into “ready”
mode. In the case that any of the preconditions fail, it enables the diagnosis engine.

After the startup of the implementation, described above, the execution monitor starts monitoring
the arrival of every observation (runtime event) as follows:

Electronics 2017, 6, 58 7 of 12

1. If the event is a “method entry”, the execution monitor checks if this is one of the “entry events”
of the corresponding component in the “ready” state. If so, after receiving the data and when the
respective preconditions are checked, if they succeed, the data is applied on the input port of the
component and the mode of the execution state is changed to “running”.

2. If the event is a “method exit”, the execution monitor checks if this one of the “exit events” of the
component is in the “running” state. If so, it changes its state into “completed” mode, collects
the data from the output port of the component, and checks for corresponding postconditions.
Should the checks fail, the execution monitor enables the diagnosis engine.

3. If the event is one of the “allowable events” of the component, it continues execution.
4. If the event is an unexpected event (i.e., it is neither an “entry event”, an “exit event”, nor in the

“allowable events”), the execution monitor starts its diagnosis.

Figure 3. An example implementation (AppImpl) of a temperature control.

Based on the above behavioral description of the execution monitor, we have formalized the
corresponding semantics of the execution monitor as follows:

∀ app ∈ AppImpl, sam ∈ AppSpec, c ∈ Component,
s, s’ ∈ State, t, t’ ∈ States, d, d’ ∈ Environments, e, e’ ∈ Environment, rte ∈ RTEvent:
[[sam]](d)(d’, t, t’) ∧ [[app]](e)(e’, s, s’) ∧ startup(s, app) ∧ isTop(c, [[app]](e)(e’, s, s’)) ∧
setMode(s, “running”) ∧ arrives(rte, s) ∧ equals(t, s) ∧ equals(d, e)
⇒
∀ p, p’ ∈ Environment∗, m, n ∈ State∗⊥: equals(m(0), s) ∧ equals(p(0), e)
⇒
∃ k ∈ N, p, p’ ∈ Environment∗, m, n ∈ State∗⊥:
∀ i ∈ Nk : monitors(i, rte, c, p, p’, m, n) ∧

((eqMode(n(k), “completed”) ∧ eqFlag(n(k), “normal”) ∧ equals(s’, n(k))
∨
eqFlag(n(k), “compromised”))

Electronics 2017, 6, 58 8 of 12

⇒
enableDiagnosis(p’(k))(n(k), inBool(true)) ∧ equals(s’, n(k)))

The semantics of recursive monitoring is determined by two sequences of states: pre and post,
constructed from the pre-state of the monitor. Any ith iteration of the monitor transforms the pre(i)
state into the post(i + 1) state, from which the pre(i + 1) state is constructed. No event can be
accepted in an Error state and the corresponding monitoring terminates when either the application
has terminated with “normal” mode or when some misbehavior is detected, as indicated by the
respective “compromised” state. This recursive idea of monitoring is formalized as a “monitors”
predicate, as follows:

monitors ⊂ N × RTEvent × Component × Environment∗ × Environment∗ × State∗ × State∗⊥
monitors(i, [[rte]], [[c]], e, e’, s, s’)⇔
(eqMode(s(i), “running”) ∨ eqMode(s(i), “ready”)) ∧ [[c]](e(i))(e’(i), s(i), s’(i)) ∧
∃ oe ∈ ObEvent: equals(rte, store([[name(rte)]])(e(i))) ∧
IF entryEvent(oe, c) THEN

data(c, s(i), s’(i)) ∧
(preconditions(c, e(i), e’(i), s(i), s’(i), “compromised”)⇒ equals(s(i+1), s(i)) ∧ equals(s’(i+1), s(i+1))
∧ setFlag(inState(s’(i+1)), “compromised”)) ∨ (preconditions(c, e(i), e’(i), s(i), s’(i), “normal”)
⇒ setMode(s(i), “running”) ∧
LET cseq = components(c) IN

equals(s(i+1), s’(i)) ∧ equals(e(i+1), e’(i)) ∧
∀ c1 ∈ cseq, rte1 ∈ RTEvent:

arrives(rte1, s(i+1)) ∧monitor(i+1, rte1, c1, e(i+1), e’(i+1), s(i+1), s’(i+1))
END)

ELSE IF exitEvent(oe, c) THEN
data(c, s(i), s’(i)) ∧ eqMode(inState(s’(i)), “completed”) ∧
(postconditions(c, e(i), e’(i), s(i), s’(i), “compromised”)⇒ equals(s(i+1), s(i)) ∧ equals(s’(i+1), s(i+1))
∧ setFlag(inState(s’(i+1)), “compromised”)) ∨
(postconditions(c, e(i), e’(i), s(i), s’(i), “normal”)⇒ equals(s(i+1), s’(i)) ∧ equals(e(i+1), e’(i)) ∧
setMode(inState(s’(i+1), “completed”))

ELSE IF allowableEvent(oe, c) THEN equals(s(i+1), s’(i)) ∧ equals(e(i+1), e’(i))
ELSE equals(s(i+1), s(i)) ∧ equals(s’(i+1), s(i+1)) ∧ setFlag(inState(s’(i+1)), “compromised”)
END

The predicate “monitors” are defined as a relation on

• the number of observation i, with respect to the iteration of a component
• an observation (runtime event) rte
• the corresponding component c under observation
• a sequence of pre-environments e
• a sequence of post-environments e′

• a sequence of pre-states s
• a sequence of post-states s′

The predicate "monitors" are defined such that when an any arbitrary observation is made, if the
current execution state s(i) of component c is “ready” or “running”, the behavior of component c has
been evaluated, and there is a prediction oe that is semantically equal to an observation rte, any of the
following can happen:

• The prediction or observation is an entry event of the component c and it waits until the complete
data for the component c arrives. If this occurs then either:

Electronics 2017, 6, 58 9 of 12

– Preconditions of “normal” behavior of the component hold.If so, the subnetwork of the
component is initiated and the components in the subnetwork are monitored iteratively with
the corresponding arrival of the observation, or

– Preconditions of “compromised” behavior of the component hold. In this case, the state is
marked as “compromised” and returns.

• The observation is an exit event and, after the completion of the data arrival, the postconditions
hold and the resulting state is marked as “completed”.

• The observation is an allowable event and just continues the execution.
• The observation is an unexpected event (or any of the above does not hold) and the state is marked

as “compromised”, and returns.

4. Proof of Behavioral Correctness

Based on the formalization of the denotational semantics of the specification language and the
monitor, we have proved that the monitor is sound and complete, i.e., if the application implementation
(AppImpl) is consistent with its specification (AppSpec), the security monitor will produce no false
alarms (soundness) and the monitor will detect any deviation of the application execution from the
behavior sanctioned by the specification language (completeness). In the following subsections, we
articulate soundness and completeness statements and sketch their corresponding proofs.

4.1. Soundness

The intent of the soundness statement is to articulate whether the system’s behavior is consistent
with behavioral specification. Essentially, the goal is to show the absence of a false negative alarm such
that whenever the security monitor alarms, there is a semantic inconsistency between the post-state of
the program execution and the post-state of the specification execution. The soundness theorem is
stated as follows:

Theorem 1 (Soundness). The result of the security monitor is sound for any execution of the target system
and its specification, iff, the specification is consistent with the program and the program executes in a safe
pre-state and in an environment that is consistent with the environment of the specification, then

• for the pre-state of the program, there is an equivalent safe pre-state for which the specification can be
executed and the monitor can be observed and

• if we execute the specification in an equivalent safe pre-state and observe the monitor at any arbitrary
(combined) post-state, then

– either there is no alarm, and then the post-state is safe and the program execution (post-state) is
semantically consistent with the specification execution (post-state)

– or there is an alarm, and then the post-state is compromised and the program execution (post-state) and
the specification execution (post-state) are semantically inconsistent.

Formally, the soundness theorem has the following signatures and definition.

Soundness ⊆ P(AppImpl × AppSpec × Bool)
Soundness(κ, ω, b)⇔
∀ es ∈ Environments, er, er’ ∈ Environmentr, s, s’ ∈ Stater: consistent(es, er) ∧ consistent(κ, ω) ∧

[[κ]](er)(er’, s, s’) ∧ eqMode(s, "normal")
⇒
∃ t, t’ ∈ States, es’ ∈ Environments: equals(s, t) ∧ [[ω]](es)(es’, t, t’) ∧monitor(κ, ω)(er;es)(s;t, s’;t’) ∧
∀ t, t’ ∈ States, es’ ∈ Environments: equals(s, t) ∧ [[ω]](es)(es’, t, t’) ∧monitor(κ, ω)(er;es)(s;t, s’;t’)
⇒
LET b = eqMode(s’, "normal") IN

IF b = True THEN equals(s’, t’) ELSE ¬ equals(s’, t’)

Electronics 2017, 6, 58 10 of 12

In detail, the soundness statement says that, if the following are satisfied:

1. a specification environment (es) is consistent with a run-time environment (er), and
2. a target system (κ) is consistent with its specification (ω), and
3. in a given run-time environment (er), execution of the system (κ) transforms the pre-state (s) into

a post-state (s’), and
4. the pre-state (s) is safe, i.e., the state is in “normal” mode,

Then the following occurs:

• there exist the pre- and post-states (t and t’, respectively) and the environment (es’) of the
specification execution such that in a given specification environment (es), the execution of
the specification (ω) transforms the pre-state (t) into a post-state (t’)

• the pre-states s and t are equal and monitoring of the system (κ) transforms the combined pre-state
(s; t) into a combined post-state (s’; t’)

• if both the following occur: in a given specification environment (es), execution of the specification
(ω) transforms pre-state (t) into a post-state (t’); and the pre-states s and t are equal and monitoring
of the system (κ) transforms the pre-state (s) into a post-state (s’), then either:

– there is no alarm (b is True), the post-state s’ of a program execution is safe, and the resulting
states s’ and t’ are semantically equal, or

– the security monitor alarms (b is False), the post-state s’ of program execution is compromised,
and the resulting states s’ and t’ are semantically not equal.

In the following section we present proof of the soundness statement.

Proof. The proof is essentially a structural induction on the elements of the specification (ω) of the
system (κ). We have proved only the interesting case β of the specification to show that the proof
works in principle. However, the proof of the remaining parts can easily be rehearsed following a
similar approach.

The proof is based on certain lemmas, which are mainly about the relationships between different
elements of the system and its specification (being at different levels of abstraction). These lemmas
and relations can be proved based on the defined auxiliary functions and predicates that are based on
the method suggested by Hoare [9]. The complete proof is presented in [10].

4.2. Completeness

The goal of the completeness statement is to show the absence of false positive alarms such that
whenever there is a semantic inconsistency between the post-state of the program execution and the
post-state of the specification execution, the security monitor alarms. The completeness theorem is stated
as follows:

Theorem 2 (Completeness). The result of the security monitor is complete for a given execution of the target
system and its specification, iff, the specification is consistent with the program and the program executes in a
safe pre-state and in an environment that is consistent with the environment of the specification, then

• for the pre-state of the program, there is an equivalent safe pre-state for which the specification can be
executed and the monitor can be observed and

• if we execute the specification in an equivalent safe pre-state and observe the monitor at any arbitrary
(combined) post-state, then

– either the program execution (post-state) is semantically consistent with the specification execution
(post-state), then there is no alarm and the program execution is safe

– or the program execution (post-state) and the specification execution (post-state) are semantically
inconsistent, then there is an alarm and the program execution has been compromised.

Electronics 2017, 6, 58 11 of 12

Formally, the completeness theorem has the following signatures and definition.

Completeness ⊆ P(AppImpl × AppSpec × Bool)
Completeness(κ, ω, b)⇔
∀ es ∈ Environments, er, er’ ∈ Environmentr, s, s’ ∈ Stater: consistent(es, er) ∧ consistent(κ, ω) ∧

[[κ]](er)(er’, s, s’) ∧ eqMode(s, "normal")
⇒
∃ t, t’ ∈ States, es’ ∈ Environments: equals(s, t) ∧ [[ω]](es)(es’, t, t’) ∧monitor(κ, ω)(er;es)(s;t, s’;t’) ∧
∀ t, t’ ∈ States, es’ ∈ Environments: equals(s, t) ∧ [[ω]](es)(es’, t, t’) ∧monitor(κ, ω)(er;es)(s;t, s’;t’)
⇒

IF equals(s’, t’) THEN b = True ∧ b = eqMode(s’, “normal”)
ELSE b = False ∧ b = eqMode(s’, "normal")

In detail, the completeness statement says that, if the following are satisfied:

1. a specification environment (es) is consistent with a run-time environment (er), and
2. a target system (κ) is consistent with its specification (ω), and
3. in a given run-time environment (er), execution of the system (κ) transforms the pre-state (s) into

a post-state (s’), and
4. the pre-state (s) is safe, i.e., the state is in "normal" mode,

Then the following occurs:

• there exist the pre- and post-states (t and t’, respectively) and the environment (es’) of specification
execution such that, in a given specification environment (es), execution of the specification (ω)
transforms the pre-state (t) into a post-state (t’)

• the pre-states s and t are equal and monitoring of the system (κ) transforms the combined pre-state
(s; t) into a combined post-state (s’; t’)

• if both: in a given specification environment (es), the execution of the specification (ω) transforms
the pre-state (t) into a post-state (t’); and the pre-states s and t are equal and monitoring of the
system (κ) transforms the pre-state (s) into a post-state (s’), then either

– the resulting two post-states s’ and t’ are semantically equal and there is no alarm, or
– the resulting two post-states s’ and t’ are semantically not equal and the security monitor

alarms.

Proof. The proof of completeness is very similar to the proof of soundness. The complete proof is
presented in [10].

5. Conclusions

We have presented a formalization of the semantics of the specification language and monitor of
the cognitive middleware ARMET. In order to assure the continuous operation of ICS applications
and to meet the real-time requirements of ICS, we have proved that our run-time security monitor
produces no false alarm and always detects behavioral deviation of the ICS application. We plan to
integrate our run-time security monitor with a security-by-design component to ensure comprehensive
security solution for ICS applications.

Acknowledgments: The authors thank the anonymous reviewers on the earlier version of this work.

Author Contributions: All authors of the paper have contributed to the presented results. The ARMET prototype
is based on the AWDRAT software developed by Howard Shrobe.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2017, 6, 58 12 of 12

References

1. Khan, M.T.; Serpanos, D.; Shrobe, H. A Rigorous and Efficient Run-time Security Monitor for Real-time
Critical Embedded System Applications. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of
Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 100–105.

2. Shrobe, H.; Laddaga, R.; Balzer, B.; Goldman, N.; Wile, D.; Tallis, M.; Hollebeek, T.; Egyed, A. AWDRAT:
A Cognitive Middleware System for Information Survivability. In Proceedings of the IAAI’06, 18th
Conference on Innovative Applications of Artificial Intelligence, Boston, MA, USA, 16–20 July 2006; AAAI
Press: San Francisco, CA, USA, 2006; pp. 1836–1843.

3. Shrobe, H.E. Dependency Directed Reasoning for Complex Program Understanding; Technical Report;
Massachusetts Institute of Technology: Cambridge, MA, USA, 1979.

4. Lynx Software Technologies. LynxOS. Available online: http://www.lynx.com/industry-solutions/
industrial-control/ (accessed on 20 July 2017).

5. Khan, M.T.; Serpanos, D.; Shrobe, H. On the Formal Semantics of the Cognitive Middleware AWDRAT; Technical
Report MIT-CSAIL-TR-2015-007; Computer Science and Artificial Intelligence Laboratory, MIT: Cambridge,
MA, USA, 2015.

6. Lamport, L. The temporal logic of actions. ACM Trans. Program. Lang. Syst. 1994, 16, 872–923.
7. Khan, M.T.; Schreiner, W. Towards the Formal Specification and Verification of Maple Programs. In Intelligent

Computer Mathematics; Jeuring, J., Campbell, J.A., Carette, J., Reis, G.D., Sojka, P., Wenzel, M., Sorge, V., Eds.;
Springer: Berlin, Germany, 2012; pp. 231–247.

8. Schmidt, D.A. Denotational Semantics: A Methodology for Language Development; William, C., Ed.;
Brown Publishers: Dubuque, IA, USA, 1986.

9. Hoare, C.A.R. Proof of correctness of data representations. Acta Inform. 1972, 1, 271–281.
10. Khan, M.T.; Serpanos, D.; Shrobe, H. Sound and Complete Runtime Security Monitor for Application Software;

Technical Report MIT-CSAIL-TR-2016-017; Computer Science and Artificial Intelligence Laboratory, MIT:
Cambridge, MA, USA, 2016.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.lynx.com/industry-solutions/industrial-control/
http://www.lynx.com/industry-solutions/industrial-control/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	A Specification Language of ARMET
	An Execution Monitor of ARMET
	Proof of Behavioral Correctness
	Soundness
	Completeness

	Conclusions

