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Abstract
Spatio-temporal matching of services to customers online is
a problem that arises on a large scale in many domains asso-
ciated with shared transportation (ex: taxis, ride sharing, su-
per shuttles, etc.) and delivery services (ex: food, equipment,
clothing, home fuel, etc.). A key characteristic of these prob-
lems is that matching of services to customers in one round
has a direct impact on the matching of services to customers
in the next round. For instance, in the case of taxis, in the sec-
ond round taxis can only pick up customers closer to the drop
off point of the customer from the first round of matching.
Traditionally, greedy myopic approaches have been adopted
to address such large scale online matching problems. While
they provide solutions in a scalable manner, due to their my-
opic nature the quality of matching obtained can be improved
significantly (demonstrated in our experimental results). In
this paper, we present a two stage stochastic optimization for-
mulation to consider expected future demand. We then pro-
vide multiple enhancements to solve large scale problems
more effectively and efficiently. Finally, we demonstrate the
significant improvement provided by our techniques over my-
opic approaches on two real world taxi data sets.

1 Introduction
In shared transportation (Agatz et al. 2011; Ghosh et al.
2015; Santos and Xavier 2013) which includes taxis, ride
sharing, super shuttles, etc., customers have to be assigned to
services in an online fashion to optimize revenue or quality
of service. Also in case of emergency services (Saisubrama-
nian, Varakantham, and Lau 2015) such as ambulances, fire
trucks, etc. and delivery services (Yang, Jaillet, and Mah-
massani 2004; Ritzinger, Puchinger, and Hartl 2015) involv-
ing pickup and delivery of food, equipment, clothing, home
fuel etc., online matching of customers to services is essen-
tial. Specifically, in the case of taxis, the wide usage of ap-
plications such as Uber, Lyft, etc. is a testament to the im-
portance of doing such matching. In these applications, a set
of available taxis are matched to customers that are looking
for taxis. An aspect that is typically not considered in such
applications and most existing work is that, after taking the
matched customer to their destination location, the taxi will
be available for another round of assignment to customers
around the destination location.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we are specifically interested in considering
such dependence (ex: assignment for a taxi in second round
is dependent on the assignment in first round) in matching
across multiple steps in an online fashion in domains where
(a) customer demand is uncertain and time dependent, with
data available about past customer demand; (b) problems are
at a societal scale with thousands of customers and services
with a need to make online decisions; and (c) there is a need
to optimize revenue or quality of service (ex: time to pick up
customers or time to delivery);

Given the challenging nature of the problems (stochastic-
ity, dynamism, societal scale, online, multi-step), most ex-
isting work on relevant problems (described in Section 2)
has focussed on myopic algorithms like bipartite matching,
greedy and randomised ranking. While these approaches
have good competitive ratios, they have obvious inefficien-
cies due to myopic nature of matching. To address these,
there has been research on two-stage stochastic models that
consider samples of expected demand for the next stage.
However, these approaches have been limited to small scale
problems and in restricted settings. In this work, we also em-
ploy two-stage stochastic models to represent future uncer-
tain and time dependent customer demand. Specifically, we
make the following key contributions:
(1) After formalizing the online spatio-temporal matching
problem, we first provide a two stage stochastic optimiza-
tion formulation, which considers expected future customer
demand (typically obtained from historial data) for finding
assignment of taxis to customers.
(2) Given the large scale problems of interest, we provide
a decomposition of the above formulation to improve paral-
lelism in handling expected future demand.
(3) Apart from considering randomly generated problems,
we also evaluated our approach on datasets of two major taxi
companies. We compare against myopic algorithms (typi-
cally employed by standard taxi matching applications) such
as greedy and one step bipartite optimal assignment. We
show that two-stage problems can be solved in times that
are competitive to the myopic approaches, while providing
significantly better solutions.

2 Related Work
Most existing relevant research in online matching has fo-
cussed on online bipartite matching (Karp, Vazirani, and



Vazirani 1990), where one side of vertices (services) are
fixed and the other side of vertices (customers) arrive incre-
mentally. This problem has applications in online advertis-
ing employed by Google and other companies. It is shown
that myopic algorithms such as greedy (that makes the best
match when nodes arrive) and randomized ranking have
competitive ratios1 of 1

2 and 1 − 1
e respectively. Recently

a significant progress has been made on models that repre-
sent stochastic arrivals of customers (Goel and Mehta 2008;
Feldman et al. 2009; Manshadi, Gharan, and Saberi 2010;
Bahmani and Kapralov 2010) and competitive ratio can be
shown to increase to 0.729 (Jaillet and Lu 2014). Although
most work in online bipartite matching addresses the prob-
lem where one side is fixed, results in (Blum, Sandholm,
and Zinkevich 2006) show that greedy algorithm achieves
a competitive ratio of 1/2 when both sides of vertices ap-
pear online. Recently in Wang et al. (Wang and Wong 2015)
an algorithm based on water-filling algorithm has been pro-
posed which achieves a competitive ratio of 0.526 in case of
both sides of vertices appearing online. Unlike online bipar-
tite matching that assigns one service to only one customer,
in this paper, we match one service to multiple customers
(with one customer at any specific point) over time. Spatio-
temporal aspects also impacts the computational complexity
of the matching.

Another line of existing research that is similar to the
online multi-step matching problems is the online vehi-
cle routing problem (Ritzinger, Puchinger, and Hartl 2015).
Yang et al. (Yang, Jaillet, and Mahmassani 2004) present
a MIP formulation for the offline problem which is ap-
plied at each decision epoch in the online strategy. Zhang et
al. (Zhang, Smilowitz, and Erera 2011) present a sample sce-
nario approach and a capacity reservation approach, both de-
signed as two stage stochastic models within a rolling hori-
zon framework for a multi resource routing problem. There
has also been research on heuristic algorithms that con-
sider two stage models to solve dynamic taxi and rideshar-
ing problems (Agatz et al. 2011; Herbawi and Weber 2012;
Santos and Xavier 2013). While, we also consider a two
stage stochastic model in our work, our differentiating con-
tributions are in (a) providing techniques (abstraction and
benders decomposition) that help perform matching on real
world societal scale problems online; and (b) demonstrating
the utility of our techniques over the widely used myopic
approaches on real world taxi data sets where there are up
to 3000 requests at each time step and thousands of taxis
assigned to those requests.

3 Online Spatio-Temporal Matching
An Online Spatio-Temporal Matching problem is described
using the following tuple:〈

Z,D,N , C, ξD, ξS
〉

1Competitive ratio for an online algorithm is defined as the
worst case value for the ratio of the obtained solution by the on-
line algorithm to the optimal offline solution (assuming the arrival
of nodes is known before hand).

TSS(Z,D,N , C, ξD, ξS):

max
∑
i∈Z

∑
j∈D

Ci,oj ,dj ∗ x
1
ij+

1

|ξD|
∑

k≤|ξD|

∑
j∈ξD,k

∑
i∈Z

Ci,oj ,dj ∗ x
2,k
ij (1)

s.t.
∑
j∈D

x1ij ≤ N 1
i ::: ∀i ∈ Z (2)

∑
i∈Z

x1ij ≤ 1 ::: ∀j ∈ D (3)

∑
j∈ξD,k

x2,kij ≤ N
1
i −

∑
j∈D

x1ij + ξSi

+
∑

j∈D,dj=i

∑
m∈Z

δ1,2mj ∗ x
1
mj ::: ∀i ∈ Z, k ≤ |ξD|

(4)∑
i∈Z

x2,kij ≤ 1 ::: ∀k ≤ |ξD|, j ∈ ξD,k (5)

x1ij ∈ {0, 1} ::: ∀i ∈ Z, j ∈ D (6)

x2,kij ∈ {0, 1} ::: ∀i ∈ Z, ∀k ≤ |ξ
D|, j ∈ ξD,k (7)

- Z is the set of all zones. A zone is appropriately defined
based on the specific problem domain.
- D represents the demand or the set of customer requests
for services. Each request j ∈ D is characterized by a tuple
of the origin and destination zones: 〈oj , dj〉.
- N t

i indicates number of suppliers in zone i ∈ Z at time t.
- C represents the objective (ex: revenue, number of requests
served, negative of waiting time), with Ci,oj ,dj denoting the
objective value obtained by matching customer request, j
(having origin and destination zones 〈oj , dj〉) with a sup-
plier in zone i.
- ξD is the set of customer request samples for the next time
step, where ξD,k represents customer requests in sample k.
- ξS is the set of suppliers that will become available in next
time step, where ξSi represents the number of suppliers that
will be available in zone i.
Our goal is to identify the assignment of requests to suppli-
ers so as to maximize the sum of objective values for the
current time step and the expected objective values for the
next time step.

Given the online nature of decision making, we now pro-
vide a two stage stochastic optimization formulation for
computing the best match at this time step (t = 1) while con-
sidering multiple samples of potential requests and suppliers
in the next time step (t = 2). We refer to this as TSS(). We
use binary variables, xtij to indicate if request j is assigned

to supplier in zone i at decision epoch t. δt,t
′

mj is a constant
that is set to 1 if a zone m supplier assigned to request j at
decision epoch t completes its service on or before t′, t′ > t.

While the first component of the objective computes
objective value corresponding to the current time step,
the second component computes the expected value
corresponding to the future requests (provided in ξD).
Constraints (2) and (4) ensure that at any decision epoch,



the number of assigned suppliers from zone i is less than
the number of available suppliers. In Constraint (4) the
number of suppliers available at decision epoch ”2” in
zone i is calculated by considering the remaining suppliers
in zone i after doing assignment for decision epoch ”1”.
Constraints (3) and (5) ensure that at any decision epoch
each request is assigned to only one supplier. The above
program is an integer program but for a special case,
Proposition 1 shows that the relaxed linear program has an
integer optimal solution.
We know that for linear programs of the form
max cx s.t. Ax ≤ b, the solution of the optimization
program will always be integer if b contains all integer
values and A is a totally unimodular matrix (Hoffman and
Kruskal 2010).
In the optimization formulation of TSS(), the right hand
side is always integer. For a special case when there is a sin-
gle sample and all the suppliers finish servicing the requests
between two decision epochs, we show that the constraint
matrix is totally unimodular, so the linear program will have
integral optima.

Proposition 1. If |ξD| = 1 and ∀m, j, t δt,t+1
mj = 1, then

the constraint matrix for TSS() problem is unimodular.
Proof Sketch. From integer program theory (Bertsimas and
Weismantel 2005), a matrix A is totally unimodular if every
square submatrix of A has determinant in the set {−1, 0, 1}.
An equivalent definition of total unimodularity (TU) and of-
ten easier to establish is captured in the following theorem
by Bertsimas et al.:
Theorem 1. (Bertsimas and Weismantel 2005): Let A be a
matrix. Then A is TU iff for any subset of rows S of A, there
exists a coloring of rows of S, with 1 or -1 such that the
weighted sum of every column (while restricting the sum to
rows in S) is -1, 0 or 1.

For a single sample, we can express the constraints in
TSS() in the form Au ≤ b where u is the vector

u =
[
x111 .. x1|Z||D| x2,111 .. x2,1|Z||ξD,1|

]T
i.e. u will have |Z||D|+ |Z||ξD,1| elements.
The block matrix A is of the form

A =

A1

A2

A3

A4

 =

A11 A12

A21 A22

A31 A32

A41 A42

=

A11 0
A21 0
A31 A32

0 A42


where A1 corresponds to constraints in equation (2), A2

corresponds to constraints in equation (3), A3 corresponds
to constraints in equation (4) and A4 corresponds to con-
straints in equation (5). MatricesA11, A21, A31 andA41 cor-
respond to decision epoch ”1” variables (columns) and ma-
trices A12, A22, A32 and A42 correspond to decision epoch
”2” variables (columns). Let S be the subset of rows of A
and S = S1 ∪ S2 ∪ S3 ∪ S4 where Si ∈ Ai. We can then
show2 for each of the cases (over subsets of rows), that there
exists a coloring of rows such that weighted sum of columns
is -1, 0, or 1. �

2Details omitted due to space constraints

For a general case with multiple samples, the constraint
matrix is not totally unimodular. When all the suppli-
ers don’t finish servicing between 2 consecutive decision
epochs, we were able to find an example where the solu-
tion obtained by solving the relaxed version of the problem
was not integral. At this juncture, we are unable to find a
formal proof to demonstrate the integrality when suppliers
finish servicing customers between 2 consecutive decision
epochs. However, in our experiments on synthetic domains
and the two real world datasets, we always (irrespective of
whether suppliers finish servicing within 2 consecutive de-
cision epochs or not) obtained integral solutions on solving
the relaxed problem. Therefore, our approach is to solve the
relaxed version of the problem and in case the solution is not
integral, we round to an integer solution as described below.

While converting a fractional solution to integer, only the
parts of the solution that are fractional are modified. From
the fractional part, variables x1ij are rounded in such a way
that the number of suppliers assigned from each zone at de-
cision epoch ”1” and the number of supplier arriving in any
zone at decision epoch ”2” remain close to the fractional op-
timal solution. This ensures that suppliers which were left
unassigned by the TSS, remain unassigned and the assign-
ments at second stage are the least affected. At each itera-
tion of the algorithm, requests which can be completed be-
fore the next decision epoch are assigned a supplier from the
zone which has the maximum number of suppliers available
(based on the fractional part of solution). When the number
of supplier arriving in any zone i at decision epoch ”2” be-
comes greater than or equal to the number of supplier arriv-
ing in fractional solution, no other request with destination
in zone i is served. If after assigning suppliers in this man-
ner, there is still any unassigned supplier(based on the frac-
tional part of solution), it is greedily assigned to an unserved
request.

3.1 Benders Decomposition
Given the scale of problems of interest in this paper (i.e.:
thousands of taxis serving thousands of customers spread
across hundreds of zones) , we reduce the complexity asso-
ciated with increasing the number of samples by exploiting
the following observation:

Observation 1. In TSS(), once the assignment at first deci-
sion epoch, {x1ij} is given, optimization models for comput-
ing assignment at second decision epoch, {x2,kij } for each of
the samples k, are independent of each other.

We exploit Observation 1 by using the Benders Decom-
position (Benders 1962) method, a master slave decompo-
sition technique where the Master Problem is responsible
for obtaining solutions for the ”difficult” variables; and the
Slave problem(s) is (are) responsible for other variables and
obtaining cuts (that are added to the master) based on fixed
assignment of values to ”difficult” variables.

Based on Observation 1, {x1ij} are the difficult variables
as they impact the values assigned to all other variables.
Therefore, the master is responsible for obtaining assign-
ments for {x1ij} variables and the slave(s) are responsible for



obtaining assignments to {x2,kij }. For the master (Table 1),
in the optimization provided in TSS() ,we replace the part
of the objective dealing with future variables, {x2,kij } by the
recourse function Q({x1ij}i∈Z,j∈D, k) which becomes the
objective function in the slave problems. The recourse func-

Master:

max
∑
i∈Z

∑
j∈D

Ci,oj ,dj ∗ x
1
ij

+
1

|ξD|
∑

k≤|ξD|

Q({x1ij}i∈Z,j∈D, k) (8)

s.t.
∑
j∈D

x1ij ≤ N 1
i ::: ∀i ∈ Z (9)∑

i∈Z

x1ij ≤ 1 ::: ∀j ∈ D (10)

Table 1: Master Formulation

tion Q() needs to be computed for each value of x1ij . In the
slaves (Table 2), we consider fixed values of x1ij and to avoid
confusion, we refer to them using the capital letter notation,
X1
ij . By duality theory (Murphy 2013) we can show that

Slave ({X1
ij}i∈Z,j∈D, k)

max
∑
i∈Z

∑
j∈ξD,k

Ci,oj ,dj ∗ x
2,k
ij (11)∑

j∈ξD,k

x2,kij ≤ N
1
i −

∑
j∈D

X1
ij + ξSi

+
∑

j∈D,dj=i

∑
m∈Z

δ1,2mj ∗X
1
mj ::: ∀i ∈ Z (12)∑

i∈Z

x2,kij ≤ 1 ::: ∀j ∈ ξD,k (13)

Table 2: Slave Formulation
by taking the dual of slave problems, we can find an up-
per bound on the value of the recourse function in terms of
the master problem variables x1ij . These can then be added
as an optimality cut to the master problem for generating
better first stage assignments3. The dual for the slave prob-
lem is provided in Table 3. Let θk be the approximation of
Q() function then the master problem with optimality cuts
is provided in Table 4. It should be noted that we are using
x1ij variables in the ”master with optimality cuts” and not
the fixed values, X1

ij . In each iteration we solve the master
problem and the computed x1ij variable values are passed to
dual slave problems. After solving dual slave problems, op-
timality cuts are generated. If the current values of θk(∀k)
satisfy the optimality cut conditions then we have obtained
an optimal solution else cuts are added to the master prob-
lem and the master problem is solved again. As we can see
in the ”Dual Slave” linear programs, the slave problems are

3As the slave problems are always feasible for any value of
master variables we only need to add optimality cuts to the mas-
ter problem.

Dual Slave ({X1
ij}i∈Z,j∈D, k)) :

min
∑
i∈Z

αi ∗ (N 1
i −

∑
j∈D

X1
ij + ξSi

+
∑

j∈D,dj=i

∑
m∈Z

δ1,2mj ∗X
1
mj) +

∑
j∈ξD,k

βj

(14)
s.t. αi + βj − Ci,oj ,dj ≥ 0 ::: ∀i ∈ Z, j ∈ ξD,k (15)

αi ≥ 0 ::: ∀i ∈ Z (16)
βj ≥ 0 ::: ∀j ∈ ξD,k (17)

Table 3: Dual Slave Formulation

Master Formulation with Optimality Cuts:

max
∑
i∈Z

∑
j∈D

Ci,oj ,dj ∗ x
1
ij +

1

|ξD|
∑

k≤|ξD|

θk (18)

s.t. θk ≤
∑
i∈Z

αi ∗ (N 1
i −

∑
j∈D

x1ij + ξSi

+
∑

j∈D,dj=i

∑
m∈Z

δ1,2mj ∗ x
1
mj) +

∑
j∈ξD,k

βj

(19)∑
j∈D

x1ij ≤ N 1
i ::: ∀i ∈ Z (20)∑

i∈Z

x1ij ≤ 1 ::: ∀j ∈ D (21)

Table 4: Master Formulation with Optimality Cuts

independent of each other and are only connected by the
choice of the master variables (”difficult” variables). There-
fore, once the master variables are fixed, the slave problems
can be solved in a parallel fashion.

3.2 Competitive Ratio
Proposition 2. In an adversarial model, when the objec-
tive of multi round matching is to maximize the number of
requests satisfied, the competitive ratio of any deterministic
one step algorithm4 (i.e with no future information avail-
able) is bounded from above by 1/2, provided no new suppli-
ers arrive in second stage.

Proof: Let N 1 is the total number of suppliers available at
t=1 and D1 and D2 are the demand at t=1 and 2 respec-
tively. The worst case will occur when D1 >> N 1 and at
t=1, a one step algorithm matches N 1 suppliers to requests
such that none of the matched supplier will be available5 at
t=2 and two stage offline optimal algorithm finds a match-
ing such that all the matched suppliers at t=1 are available at
t=2.
At t=2,in that case an offline optimal algorithm will be able
to serve min(N 1, D2) requests and the one step approach

4with respect to a 2-step optimal algorithm
5Demand can be created at second stage in such a way that no

supplier will be able to serve any request



Optimal(M, {Dt}):

max

M∑
t=1

∑
i∈Z

∑
j∈Dt

Ci,oj ,dj ∗ x
t
ij (22)

s.t.
∑
j∈Dt

xtij ≤ N t
i ::: ∀i, t = 1 (23)

∑
i∈Z

xtij ≤ 1 ::: ∀t, j ∈ Dt (24)

∑
j∈Dt

xtij ≤ N 1
i −

t−1∑
t′=1

∑
j∈Dt′

xt
′
ij

+

t−1∑
t′=1

∑
j∈Dt′ ,
dj=i

∑
m∈Z

δt
′,t
mj ∗ x

t′
mj ::: ∀i, t > 1 (25)

xtij ∈ {0, 1} ∀i, j, t (26)

will not be able to serve any requests. So the competitive ra-
tio of this one step algorithm is N 1

(N 1+min(N 1,D2)) , which is
smallest when D2 > N 1 resulting in a competitive ratio of

N 1

(N 1+N 1) = 1
2 . So, in case of multi round matching, any de-

terministic one step algorithm can be at most 1/2 optimal.�
Proposition 2 provides the competitive ratio for the case

when the objective function is to maximize the number of
requests satisfied. However, we do not have any theoreti-
cal guarantees when the objective is to maximize revenue.
So, for TSS() formulation and other one step approaches,
we compute the competitive ratio experimentally by com-
paring the solution values obtained in comparison with the
M-Stage optimal solution i.e., when all the requests at all the
M-stages are known in advance. We use the integer program
in Optimal() to compute the M-Stage optimal offline solu-
tion. Number of suppliers available at any stage depends on
assignments at all previous stages.Dt is the demand or set of
customer requests at decision epoch t. Constraints (24) en-
sure that each request is assigned to only one supplier at each
decision epoch. Constraints (23) and (26) ensure that at any
decision epoch the number of assigned suppliers from zone
i is less than the number of available suppliers.

4 Experiments
In this section, we compare the performance of our ap-
proaches, Two Stage Stochastic optimization (TSS) and
Benders Decomposition (BD) with the optimal approach
(Section 3.2) and myopic approaches: Greedy (GD) algo-
rithm, One Step optimization (OS). We employ the follow-
ing metrics over M (=10) decision epochs:
(1) Total revenues of the taxis .
(2) Number of requests satisfied.
(2) Average wait time for customers.
(4) Run-time to compute a single assignment.

4.1 Setup
We conducted our experiments by taking demand distri-
bution from real world datasets (henceforth referred to as
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Figure 2: Dataset 1: |Z| = 483,
∑
i∈Z N 1

i = 2000,
1
10

∑10
t=1Dt = 486

Dataset1 and Dataset2) of two taxi companies6 in a big asian
city. These datasets contain data of past customer requests
for taxis, revenues and times for travelling between different
locations/zones at different times of the day and for different
days of the week. To capture taxi movements and customer
demand accurately, we divided the city into 483 zones. This
division entails that in any zone, the maximum distance be-
tween any two points is less than 0.5 KM7.

While computing an assignment at decision epoch t, for
our approaches TSS and BD, we consider samples of cus-
tomer requests at t+1 from past data (at the same time on a
weekday/weekend depending on whether t+1 is on a week-
day/weekend). Once the assignment is computed, we evalu-
ate the assignment on realized requests (which are samples
from past data that are not considered while computing the
assignment at t+ 1).

We consider a decision epoch every 15 minutes and we
evaluate our online approach over 10 sequential decision
epochs. At the start of the experiment taxis are distributed
uniformly in different zones. Based on the assignment ob-
tained by algorithms at any decision epoch availability of
taxis at the next decision epoch is updated. We evaluate the
approaches by running them on 10 different days and tak-
ing the average values over 10 days. The objective for all
the four algorithms is to maximize revenue. To provide the
right tradeoff between run-time and solution quality, we ter-
minated BD after 3 iterations.

4.2 Results
We first provide results on Dataset1 by varying the number
of samples8. We performed experiments with requests at var-
ious times of the day, 8:00 AM, 12:00 Noon, 3:00 PM, 6:00
PM and on weekday and weekend. Here, we provide results
for requests at 8:00 AM, because of the high variance in re-
quests at that time (minimum: 1514, maximum: 8946). The
average number of requests over the 10 time steps was 3332
and the number of available taxis was set at 2000. Figure 1
provides the results for revenue, number of requests satis-
fied and runtime for computing assignment. In Figure 1a

6Names not revealed due to confidentiality agreements.
7We had a similar set of results for a division of 927 zones with

a maximum of 0.2 KM between any two points in any zone.
8We obtained similar results on Dataset2.
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Figure 1: Dataset 1: |Z| = 483,
∑
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Figure 3: Dataset 1: In (a),(b) and (c) |Z| = 483,|ξD| = 10, 1
10

∑10
t=1Dt = 3332

and Figure 1b, X-axis denotes the number of samples con-
sidered while computing the assignment and Y-axis denotes
the competitive ratio (from Section 3.2). The key observa-
tions are as follows:
(1) The most significant result is that TSS and BD are able to
achieve more than 85% of optimal revenue at 11 samples. (2)
Even with 1 sample, there is a clear improvement provided
by TSS and BD over the myopic approaches (OS and GD).
(3) TSS provides 5% additional improvement with respect
to revenue and 10% improvement with respect to requests
over BD. (4) BD provides the right tradeoff between run-
time and solution quality. While TSS provides high quality
solutions, it takes significantly more time (up to 100 sec-
onds when making online decisions) and myopic approaches
provide solutions very quickly but solution quality is signifi-
cantly lower. (5) Since, the reported run-time for BD is based
on sequential solving of slaves, the actual run-time when
slaves are run in parallel on multiple cores will be lower.
In figure 1c, we show the expected time which will be taken
by BD, if slaves are solved in parallel(denoted by BD(P) in
the figure). We calculated this time by considering the time
taken to solve slaves in parallel as the maximum time taken
by any slave in each iteration. Moreover, we performed our
experiments on academic systems,on commercial systems,
runtime should be much lower.

Figure 2 provides the results for revenue and number of
requests satisfied on a weekend day at 8:00 AM. In this case,
the key difference in set up is that the average number of re-
quests (486) is lower than the number of taxis (2000). Both
our approaches were able to complete within 10-15 seconds.
Even in this example, where there are so many additional

taxis, adding one sample improves the competitive ratio by
3% and at 5 samples, the difference is close to 5% with re-
spect to both revenue and number of requests served.

Next we compare the algorithms by experimenting with
different number of taxis for a fixed number of samples (10).
We experimented by considering demand distributions from
both datasets. Figure 3 provides results for Dataset1 and here
are the key observations:
(1) With respect to revenue and number of requests served,
when number of taxis is lower, the gap between TSS, BD
and myopic approaches is significant. With respect to rev-
enue, TSS and BD in the best case provided close to 20$ im-
provement per taxi and with respect to number of requests,
our approaches are able to serve an additional 3500 requests.
This is a significant result, because in most cities at rush
hours, the number of taxis is almost always lower than the
actual demand available. (2) While it is not the optimiza-
tion criterion for our approaches, we are still able to perform
better than myopic approaches with respect to average wait
time. (3) As we increase the number of taxis gap between
TSS, BD and myopic approaches (GD and OS) decreases.
This is because when more taxis are available, taxis will be
free even after assigning taxis at current decision epoch, so
future demands can be met irrespective of current assign-
ment. Furthermore, when there are significantly more taxis
than demand, sophisticated matching approaches are not re-
quired.

We did a similar comparison of revenue, number of re-
quests and waittime on Dataset2 and obtained similar re-
sults, with TSS and BD outperforming GD and OS on rev-
enue and number of requests. Unlike in Dataset1, the quality



1000 2000 3000 5000 8000

NumberOfTaxis

0

10

20

30

40

50

60

70

80

Re
ve

nu
e(

pe
r t

ax
i)

TSS
BD
GD
OS

Revenue Comparison

(a)

1000 2000 3000 5000 8000

NumberOfTaxis

0

10000

20000

30000

40000

50000

60000

Nu
m

be
r O

f R
eq

ue
sts

TSS
BD
GD
OS

Number Of Request Comparison

(b)

1000 2000 3000 5000 8000

NumberOfTaxis

0

50

100

150

200

Av
gW

ai
tT

im
e(

in
 se

co
nd

s)

TSS
BD
GD
OS

Average WaitTime Comparison

(c)

Figure 4: Dataset 2: In (a),(b) and (c)|Z| = 483,|ξD| = 10, 1
10

∑10
t=1Dt = 5261

of BD solutions was equivalent to TSS solutions even with
early termination.

5 Conclusion
In this paper, we presented a two stage stochastic formula-
tion for online assignment of suppliers to customers. We also
presented a Benders decomposition of the formulation to
deal with large number of future scenarios. We compared the
assignment computed by our our algorithms against greedy
and one step algorithms and found that even with one sam-
ple of future demand, we can get a large gain in competitive
ratio which will in turn help in increasing revenue and cus-
tomer satisfaction. In the future, we plan on implementing
this for operations of a real taxi company and technically,
extend this work to consider multiple stages of sampling in-
stead of only one future sampling stage.
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