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Abstract
This paper describes a new approach to program optimization that allows general purpose code
to benefit from the optimization power of domain-specific compilers. The key to this approach
is a synthesis-based technique to raise the level of abstraction of general-purpose code to enable
aggressive domain-specific optimizations.

We have been implementing this approach in an extensible system called Herd. The system
is designed around a collection of parameterized kernel translators. Each kernel translator is
associated with a domain-specific compiler, and the role of each kernel translator is to scan the
input code in search of code fragments that can be optimized by the domain-specific compiler
embedded within each kernel translator. By leveraging general synthesis technology, it is possible
to have a generic kernel translator that can be specialized by compiler developers for each domain-
specific compiler, making it easy to build new domain knowledge into the overall system.

We illustrate this new approach to build optimizing compilers in two different domains, and
highlight research challenges that need to be addressed in order to achieve the ultimate vision.

1998 ACM Subject Classification I.2.2 Program Synthesis

Keywords and phrases compilers, domain-specific languages, program synthesis, cross compila-
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1 Introduction

Despite significant advances in compiler optimization over the last thirty years, the promise
of actual optimality in generated code remains elusive; even today, clean and high-level
code cannot compete with heavily optimized hand-tuned, low-level code, even if the former
is compiled with the best optimizing compilers. Part of the problem is that the kind of
aggressive, high-level, global optimization that a performance engineer can perform by hand
often requires domain knowledge about the implementation strategies that are best for
particular classes of programs. For a general-purpose compiler, it is often difficult to tell that
a piece of code comes from a particular domain, and it is also difficult to incorporate the
requisite domain knowledge in a traditional compiler architecture.

Domain-specific languages (DSLs) have emerged as a solution to the challenge of obtaining
high performance from high-level code. Compilers for domain-specific languages leverage
specialized internal representations and domain-specific transformations to encode the domain
knowledge necessary to optimize a given class of programs. In a number of different
domains [32, 24, 29, 23, 4], it has been shown that domain-specific compilers can outperform
traditional compilers – and in some cases can even surpass hand-tuned code created by
performance experts – because they can combine the domain knowledge embedded in them
with exhaustive exploration to produce truly optimal implementations.
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While DSLs ease the job of the compiler developer in generating efficient programs, they
often come at a cost for application developers. First, given the proliferation of DSLs even
within a given domain, the developers must understand the pros and cons of each DSL in
order to choose the best one for their applications. Once chosen, developers might need to
rewrite their existing applications into the DSL. Worse yet, developers might only want to
express fragments of their computation in the DSL. As a result, the program might become
a collage of code fragments written in various DSLs – database backed applications, where
for years it has been customary to combine a general-purpose language like Java with query
languages like SQL, provide a cautionary tale of the software engineering challenges inherent
in this approach [19, 5].

In this paper, we present a system called Herd that we are building for bridging the gap
between general-purpose compilers and DSLs. Given a program written in a general-purpose
language, our system relies on a new technology called Synthesis Enabled Translation (Set)
which systematically identifies code fragments that can be translated into DSLs. Set derives
provably correct translations for each identified code fragment, and the translations are then
given to domain-specific compilers for aggressive optimizations. We have demonstrated Set
on two domains for which efficient domain-specific notations exist: stencil computations and
database queries, but the generality of the Set approach should make it possible to extend
the system to other domains for which high-performance DSLs are available.

With Set, compiler developers can add support for a new DSL by describing the semantics
of the target language, together with high-level filtering rules to help guide the compiler
towards more promising code fragments. The compiler can then leverage recent advances in
program synthesis and software verification techniques [6, 13] to dynamically search for code
fragments that can be rewritten into the target DSL. Using the provided specification of the
target DSL, the compiler will automatically weave the generated DSL code back into the
original program in order to complete the optimization process.

Overall, our approach has the following advantages over both general-purpose compilers
and direct use of DSLs:

Compared to direct use of DSLs, our approach does not require programmers to learn
new formalisms, or even to know about the existence of DSLs for particular domains.
The translations to DSLs performed by our system are provably correct, so there is less
risk of introducing bugs in the program through the translation process.
The compiler can automatically search through transformations across multiple DSLs
simultaneously given an input program, and rewrite appropriate fragments into the
optimal DSL according to a cost metric. This eliminates the application developers’ need
to rewrite their code into multiple DSLs and maintain each implementation.

In the rest of this paper, we first briefly describe constraint-based synthesis in Sec. 2
and outline the proposed architecture of Herd in Sec. 3. Then, in Sec. 4 and Sec. 5 we
describe instances where we have applied Set in constructing compilers for two very different
application domains, namely, applications that interact with databases for persistent storage
and stencil computations. The Herd architecture is designed after our experience from the
two application domains. After that, we discuss related work in Sec. 6 and conclude in Sec. 7.

2 Constraint-Based Synthesis

In this section we describe the synthesis technology that forms the basis of Set. Set uses
constraint-based program synthesis [28, 1], which provides mechanisms to efficiently search
a space of candidate implementations for one that satisfies a given functional specification.
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Specifically, the synthesis problem is formulated as solving the Doubly Quantified Boolean
Formula problem (2QBF):

∃c.∀x.Q(fc, x)

Here fc represents the unknown function parameterized by a set of control values c. Given
c, the predicate Q checks to see whether fc satisfies all the constraints under all possible
inputs x. The job of the synthesizer is to find such c. Since the number of possible inputs is
infinite, in practice, synthesizers perform bounded verification where the size of x is limited.
For instance, if the inputs are lists, then one way to perform bounded verification is to limit
the maximum number of elements in each list, or the size of the elements in each list. If the
inputs are integers, then bounded verification can be done by checking constraint satisfaction
for all integers up to a certain value.

In Set, we use synthesis to discover the DSL program and any program invariants that
are necessary to prove equivalence to the original program. Thus, the constraints in Q consist
of clauses that ensure equivalence to the semantic meaning of the original snippet.

Unlike typical compiler analysis techniques, which use semantics-preserving rewrites to
transform the input code to the target language in a deductive way, the synthesis technology in
Set uses inductive reasoning: it works by searching for solutions that satisfy the specification
in concrete scenarios (i.e., pairs of program inputs and outputs), and then checks whether
the solution generalizes for all possible program inputs. This approach is formalized in an
algorithm called cegis [28]. cegis avoids the universal quantifier from the 2QBF problem
shown above when searching for c by instead solving a simpler problem: given a small set of
representative inputs Xi, it attempts to find ci such that

∀in ∈ Xi.Q(f i
c, in)

cegis constructs the set of inputs Xi in an iterative manner. First, X0 is constructed
from a single random input, and cegis uses a constraint solver to solve the problem to obtain
c0 (and the resulting f0

c ). These control values are then passed to a checking procedure that
checks whether the resulting program is correct for all inputs. If so, then we have found c.
Otherwise, the checking procedure generates a counterexample input in0. in0 is then added
to X0 to construct X1, and the process is repeated until a c is found that generalizes to all
possible inputs. To speed up the search process, the search for ci during each iteration is
done in a symbolic manner: rather than enumerating and checking each c one by one, cegis
encodes the parameterized program Q and as a constraint system, with fc as the solution.
Hence during each iteration solving the constraint system will identify the next f i

c to use.

3 Herd Architecture

We now describe the overall architecture of Herd based on Set methodology, as shown in
Fig. 1. After parsing the input code, Herd passes the AST to a series of static program
analyzers to annotate the program with type, aliasing, and other structural information
about the input. The language broker then takes the AST, along with analysis results, and
sends them to the kernel translators registered with Herd. Each kernel translator represents
a target DSL. The goal of each translator is to identify and translate code fragments from
the input AST into the target DSL, and return the translated code fragment to the fragment
reassembler. After receiving the translated code fragments from each of the kernel translators,
the reassembler combines them to produce the final executable, potentially using a cost model
to evaluate among different options in case the same code fragment has been translated by
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Figure 1 (a) Architecture of Herd (top); (b) kernel translator detail (bottom), with dotted
components representing inputs from the DSL compiler developer when constructing a new kernel
translator.

multiple translators. In the rest of this section, we describe the details of kernel translators
and how compiler maintainers can use Herd to generate them for new target DSLs.

3.1 Kernel Translators
Kernel translators take in general-purpose ASTs and attempt to transform portions of the
input into the given DSL. The translation consists of the steps described below.

3.1.1 Label potential code fragments
The first step in DSL translation is to identify candidate code fragments from the input
AST that might be amenable to translation. To aid in fragment identification, the compiler
maintainer provides Herd with filtering conditions. For instance, to compile for a DSL that
targets parallel computation, the developer might specify all loop nests with array writes as
candidates. Examples of such hints are discussed in Sec. 4 and Sec. 5. Using such conditions,
the Herd code identifier automatically labels a number of candidate code fragments from
the input program during compilation, and passes them to the next component in the kernel
translator.

3.1.2 Search for rewrites
For each candidate code fragment that the code identifier found, the kernel translator then
tries to express it in the target DSL. The search for semantically-equivalent constructs in
the target DSL is framed as a synthesis problem, with the goal to find DSL expressions
that can be proved to be semantically equivalent to the original code using Hoare-style
program verification. This is done in two steps. First, compiler maintainers provide Herd
with a high-level language that abstracts and formalizes the target DSL. The postcondition
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synthesizer then takes the formalized DSL and tries to find postcondition expressions written
using that language. The search space for each postcondition expression is limited to only
non-trivial expressions (i.e., no expression such as “x = x”). In addition to the postcondition,
the synthesizer also searches for invariants that are needed to verify loop constructs in
the candidate code fragment. However, unlike prior work in inferring loop invariants, we
only need to find loop invariants that are strong enough to establish the validity of the
postcondition.

3.1.3 Verify and convert

To reduce the time needed to synthesize postconditions, the kernel translator uses a bounded
synthesis procedure as described in Sec. 2, where it checks validity of the found postcondition
up to a fixed heap size, and only expressions up to a fixed length are considered. Other search
techniques can be used as well. Due to bounded reasoning, any candidate postcondition that
is discovered by the synthesizer needs to be formally verified. If the candidate fails formal
verification, the kernel translator will ask the synthesizer to generate another postcondition
candidate (by increasing the space of expressions considered, for instance). Otherwise, the
DSL rewriter translates the postcondition into the target DSL using the syntax specification
provided by the compiler maintainer.

3.1.4 Generate connector code

The translated DSL code is then compiled using the DSL compiler provided by the maintainer.
At the same time, the connector code generator produces any wrapper code that is necessary
to invoke the compiled DSL code fragment, for instance passing parameters and return values
between the general-purpose and DSL runtimes. The DSL compiler maintainer provides an
API specification of the DSL runtime to the system to facilitate the generation of wrapper
code.

The final output of the kernel translator consists of the compiled DSL code along with
any wrapper code, both of which are returned to the fragment reassembler. As mentioned
earlier, the fragment reassembler replaces the original source code AST with translated DSL
code fragments. In some cases, multiple kernel translators can find rewrites for a given
code fragment. For instance, a code fragment that can be converted into SQL may also be
expressible in Hadoop for parallel processing. In such cases, the reassembler chooses the
translation that is most optimal. To estimate the cost of each translation, Herd executes
each translation using input test cases, generating random test data if necessary. The
reassembler then chooses the translation with the lowest cost (e.g., with the lowest expected
execution time) and replaces the input source code with most optimal translation. Herd
can use other mechanisms to estimate cost and choose the optimal translation as well (e.g.,
using auto-tuning [2]), and a runtime component can also be added to adaptively choose the
optimal translation based on program input, and we leave that as future work.

In the next sections, we highlight two application domains where we have used the Set
methodology to build DSL compilers. We constructed kernel translators for each domain
to convert fragments of general-purpose code into different DSLs, and the converted code
fragments achieve up to multiple orders of magnitude performance speedup compared to the
original general-purpose code by utilizing domain-specific optimizations. Without translating
to DSL, it would be very difficult for the original program to utilize the optimizations
provided by the DSL runtime.

SNAPL 2015
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4 Transforming Java Code Fragments to SQL

In this section we describe our experience in building a kernel translator to enable general-
purpose code to utilize specialized data retrieval functionality provided by database engines
in the context of qbs (Query By Synthesis) [9]. qbs takes in Java code fragments that
compute on persistently-stored data, and automatically converts them into database queries
(SQL in this case).

4.1 Background
Many applications make use of database systems for data persistence. Database systems
typically provide an API for applications to issue queries written in a query language such as
SQL, while application frameworks [12, 26, 15, 21] encourage developers to modularize data
persistence operations into libraries. This results in an intermixing of database queries and
application code, making code maintenance more difficult. Moreover, as implementors of
persistent data libraries cannot anticipate all possible ways that persistent data will be used
in the application, this leads to application developers writing custom data manipulation
code in the application rather than making use of the highly-optimized implementations
provided by database engines, potentially resulting in substantial application slowdown. The
goal of qbs is to address such issues by converting general-purpose application code that
computes on persistent data into semantically-equivalent queries in SQL.

4.2 Kernel Translator
qbs was built as a kernel translator registered with Herd. In this section we describe the
different inputs used to construct the kernel translator.

Fragment filtering. qbs considers all code fragments that can potentially use persistent
data as candidate fragments for translation. To identify such code fragments, qbs first
finds all statements that retrieve data from persistent storage (by identifying standard API
calls [17]) and have no side-effects (since those have no semantic equivalence in standard
SQL). An interprocedural taint analysis is then used to identify all statements that might
take in persistent data as input, and a greedy algorithm is used to group together such
statements to form candidate code fragments.

Domain-specific Logic. qbs defines its formalized DSL as shown in Fig. 2(a). The language
is an imperative one that includes a number of operators derived from relational algebra
(e.g., selection, projection, etc), except that they operate on ordered collections rather than
relations, since the Java data persistence API (like many other popular ones) is based on
ordered collections. The semantics are defined using axioms based on the theory of lists, a
sample of which are shown in Fig. 2(b). Given this DSL, qbs makes use of the components
included in the kernel translator to search for possible rewrites for each candidate code
fragment, as described in Sec. 3.1.

Output DSL Syntax. The formalized DSL used by qbs was designed to enable easy
translation to the target domain language (SQL). As such, qbs defines syntax-driven rules
to transform postcondition expressions into appropriate SQL queries, the details of which
are discussed in [9].
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c ∈ lit ::= True | False
| number literal | string literal

e ∈ exp ::= c | program var
| {fi = ei} | e1 op e2 | ¬ e
| [ ] | Query(. . .)
| size(e) | get(er, es)
| top(er, es) | π(e, fπ) | σ(e, fσ)
| ./(e1, e2, f./) | append(e1, e2)
| sort(e, [e.fi]) | unique(e)
| sum(e) | max(e) | min(e)

fπ(e) ::= {e.fi}
fσ(es) ::= ∧ e.fi op c | e.fi op e.fj

| contains(es, e)
f./(e1, e2) ::= ∧ e1.fi op e2.fj

op ∈ bop ::= ∧ | ∨ | > | =

axioms for top operator

top([ ], i) = [ ]

i = 0→ top(r, i) = [ ]
i > 0→ top(h : t, i) = h : top(t, i− 1)

axioms for projection (π)

π([ ], f) = [ ] π(h : t, f) = f(h) : π(t, f)

axioms for selection (σ)

σ([ ], f) = [ ]

f(h) = True→ σ(h : t, f) = h : σ(t, f)
f(h) = False→ σ(h : t, f) = σ(t, f)

Figure 2 (a) Formalized DSL used by qbs (left); (b) Semantic axioms defining the language
operators (right).

Connector API Spec. The Java data persistence API defines a number of methods for
Java applications to issue SQL queries to the database. qbs makes use of this API to pass
the inferred queries to the database. Optionally, the inferred queries can be pre-compiled by
the database as stored procedures for efficient execution. In both cases, the kernel translator
returns the compiled queries and rewritten code fragments back to the Herd toolchain.

4.3 Results

We used two large-scale open source web applications to evaluate qbs, with the goal of
quantifying its ability to convert Java code fragments into SQL. A selection of the results
are shown in Fig. 3(a), which shows that qbs can convert a majority of the candidate code
fragments. The cases that failed were mostly due to lack of expressivity in the formalized
DSL (e.g., the application code uses custom aggregate functions). The maximum amount of
time spent in synthesis for any code fragment was 5 minutes, with the largest code fragment
consisting of about 200 lines of code.

Fig. 3(b) shows a representative result comparing the execution time containing a converted
code fragment. In this code fragment, the original code loops through two lists of persistent
data in a nested loop and returns a subset of the objects. qbs converted this code fragment
into a SQL join query. By doing so, the converted code can take advantage of the specialized
join query implementations in the database system (in this case a hash join based on the
object’s ID was used), and that resulted in a significant performance gain.

5 Converting Stencil Codes

We now turn to describe our experience in building a kernel translator for converting
fragments of serial Fortran that express stencil computations into a DSL called Halide [24].
The resulting system, Stng, generates Halide programs from general-purpose Fortran code.
The translated Halide programs compile into vectorized, parallel code that outperforms code
produced by general-purpose compilers.

SNAPL 2015
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itracker (bug tracking system)
operation type # benchmarks # translated
projection 3 2
selection 3 2
join 1 1
aggregation 9 7
total 16 12
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Figure 3 (a) Number of code fragments converted by qbs on one of the applications (left);
(b) Performance comparison of converted code fragment (right).

5.1 Background
Stencil computations describe an important computational pattern used in many areas of
computing, including image processing, linear algebra solvers, and scientific simulations. A
stencil computation consists of updating each point in a multidimensional grid with a function
of a subset of its neighbors. Such computations are difficult to optimize using libraries,
because the optimizations depend heavily on the sequence of stencils and the particular
function being applied. General compiler loop transformations based on the polyhedral
method [16] can optimize some stencils, but do not usually obtain peak performance due
to their limited scope – they only optimize traversals in an existing loop nest, and they
cannot optimize across loop nests due to a lack of high-level knowledge about the overall
computation.

A number of domain-specific languages and compilers [29, 18, 10] have been built for
stencils, with excellent performance, matching or beating hand-tuned code. We choose
to convert stencils to code written in the Halide [24] language, which supports empirical
auto-tuning to find best-performing computation schedules for the overall stencil computation.

5.2 Kernel Translator
Fragment Filtering. We search for code fragments that could be stencil computations by
examining all loop nests and finding ones that write to arrays, where the indices of the writes
are dependent on loop iteration variables. In this process, we also filter out computations
and structures that cannot be handled by our domain-specific logic, for instance loop nests
that contain side-effect computations.

Domain-Specific Logic. Stng’s formalized DSL uses a stylized representation of the space
of stencil computations, using the theory of arrays. This representation includes the common
constructs found in stencils, including neighbor access, and operations using neighboring
points. The major difficulty in synthesis is the complexity of the verification conditions; they
include universal quantifiers over arrays, resulting in very large synthesis problems. Our
implementation aggressively optimizes the synthesis problem, eliminating symmetries and
using domain-specific information where possible to make the problem easier to solve.

Output DSL Syntax. We translate from the formalized DSL to Halide’s high-level compu-
tation language, which is embedded in C++. In addition, we output a default computation
schedule which parallelizes the stencil along the outermost dimension and vectorizes the
innermost. We also output utility code that can be used for auto-tuning the schedule.
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App LoC Found Translated
StencilMark 245 3 3
CloverLeaf 6635 45 25
NAS MG 1770 9 1
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Figure 4 Summary of application results using Stng (top); Performance results (bottom).

Connector API Spec. Connector code is needed to replace the original stencil computation
with one using Halide, including creating Halide buffers for each input and output grid.
While buffer creation is tedious to write by hand, the automation is fairly straightforward,
as it includes converting from Fortran array declarations to Halide buffers that wrap the
arrays, and determining the array bounds for each Halide buffer.

5.3 Results
We evaluated Stng on two applications and a set of microbenchmarks for stencil computa-
tions, and compare against the state-of-the-art fully automated optimization method using
PolyOpt/Fortran [22], a polyhedral compiler for Fortran. Selected results are shown in Fig. 4.
As shown in the figure, Stng was able to translate most of the candidate code fragments,
and the resulting code outperforms the version that is manually-parallelized or compiled
using the polyhedral method.

The Stng prototype has some limitations that we are actively working to address; none
of these are due to fundamental issues with the methodology. Currently, we do not support
a number of Fortran constructs, including syntax for exponentiation, and do not support
conditionals within stencil kernels. These limitations result in only a subset of kernels being
translated, as shown in Fig. 4. We are extending the prototype to support these constructs
and increase the effectiveness of translation.

6 Related Work

Herd builds on the successes of DSLs in improving application performance across different
specialized domains. In this section we discuss other approaches in translating general-purpose
to domain-specific code and structuring optimizing compilers.

The usual approach for compiler transformations is deductive: analysis and transformation
rules determine which transformations are valid based on deducing characteristics of the
original program text. Such approaches are fragile and tiny changes in the program can
result in transformation failure [20]. In contrast, Set uses inductive techniques, by searching
over combinations of possible constructs to find one with equivalent semantics to the original.
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6.1 From General-Purpose to Domain-Specific Code
When converting from general-purpose code to domain-specific code, automated systems
derive programmer intent in one of three ways. Pragmas or other annotations (such as
those used in OpenMP [11]) require programmers to explicitly denote portions of the code
to transform. Alternatively, there has been work on using language features such as types
or specific classes [7, 8, 25, 31] for programmers to convey domain-specific information and
intent. To our knowledge, Set is the first to use synthesis and verification technology to
automatically determine domain-specific intent.

6.2 Code Generation as Search
Traditional optimizing compilers are constructed as a pipeline of code transformations, with
each stage making structural changes to the code to improve its performance. Unfortunately,
deciding the optimal order to execute each stage is a difficult problem [30]. Recent work
has instead focused on using search techniques to find optimized code sequences. For
instance, STOKE [27] uses stochastic search to solve the superoptimization problem. Like
superoptimization, Herd casts the optimization problem as a search over all possible programs
that can be constructed from a number of base operators (constructs in the target DSL in
this case). Unlike Herd, however, STOKE performs search over low-level instructions rather
than high-level logic expressions.

Meanwhile, inductive synthesis techniques have been used to search for optimal code
sequences in data-parallel programs [3] and bitvector manipulation codes [14], although the
search was not over multiple potential target languages, as in the case of Herd.

7 Conclusion

In this paper, we describe the Set methodology for building compilers that can automatically
convert general-purpose code fragments into DSLs. Furthermore, we constructed Herd
to allow DSL designers to use this methodology for building compilers by building kernel
translators. We describe our experience applying Herd to build compilers to translate
general-purpose code fragments into DSLs (SQL and Halide). A number of challenges
remain, such as the limitations of synthesis technologies in finding postcondition expressions,
and studying the relative ease of developing kernel translators in comparison to traditional
syntax-driven compilers. Future work will extend Herd with new kernel translators, applying
the methodology to other application domains.
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