
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2018-003 January 29, 2018

Decision Uncertainty Minimization and
Autonomous Information Gathering
Lawrence A. M. Bush

Decision Uncertainty Minimization
and

Autonomous Information Gathering
by

Lawrence A. M. Bush
Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2013

c©Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Aeronautics and Astronautics

August 22, 2013

Certified by .
Brian Williams

Professor of Aeronautics and Astronautics
Massachusetts Institute of Technology

Thesis Supervisor

Certified by .
Sridhar Mahadevan

Professor in Computer Science
University of Massachusetts, Amherst

Certified by .
Pierre Lermusiaux

Doherty Associate Professor in Ocean Utilization
Massachusetts Institute of Technology

Accepted by. .
Eytan H. Modiano

Associate Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

Decision Uncertainty Minimization

and

Autonomous Information Gathering

by

Lawrence A. M. Bush

Submitted to the Department of Aeronautics and Astronautics
on August 22, 2013, in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Abstract
Over the past several decades, technologies for remote sensing and exploration have be-
come increasingly powerful but continue to face limitations in the areas of information
gathering and analysis. These limitations affect technologies that use autonomous agents,
which are devices that can make routine decisions independent of operator instructions.
Bandwidth and other communications limitation require that autonomous differentiate be-
tween relevant and irrelevant information in a computationally efficient manner.

This thesis presents a novel approach to this problem by framing it as an adaptive
sensing problem. Adaptive sensing allows agents to modify their information collection
strategies in response to the information gathered in real time. We developed and tested
optimization algorithms that apply information guides to Monte Carlo planners. Informa-
tion guides provide a mechanism by which the algorithms may blend online (realtime) and
offline (previously simulated) planning in order to incorporate uncertainty into the decision-
making process. This greatly reduces computational operations as well as decisional and
communications overhead.

We begin by introducing a 3-level hierarchy that visualizes adaptive sensing at synop-
tic (global), mesocale (intermediate) and microscale (close-up) levels (a spatial hierarchy).
We then introduce new algorithms for decision uncertainty minimization (DUM) and rep-
resentational uncertainty minimization (RUM). Finally, we demonstrate the utility of this
approach to real-world sensing problems, including bathymetric mapping and disaster re-
lief. We also examine its potential in space exploration tasks by describing its use in a
hypothetical aerial exploration of Mars. Our ultimate goal is to facilitate future large-scale
missions to extraterrestrial objects for the purposes of scientific advancement and human
exploration.

Brian Williams
Title: Professor of Aeronautics and Astronautics
Massachusetts Institute of Technology
Thesis Supervisor

Acknowledgments

Graduate research never occurs in a vacuum. I would like to express my deep gratitude

to members of both my professional and personal community who supported me during

the completion of this thesis. My foremost supporter in the professional realm was my

advisor Brian Williams who has offered encouragement, guidance and many other forms

of support. Brian facilitated my collaborations with researchers at MBARI and the NASA

Ames Research Center and has played an active role in my career development, especially

in the areas of grant writing and funding acquisition. The amount of time Brian contributed

to developing the concepts in this thesis, improving my writing skills and telling me funny

stories is a debt that I hope I will have the opportunity to repay in future collaborative ef-

forts. My minor advisor Patrick Winston has always supported and inspired me, especially

during coursework with him, in which I learned oral and written presentation skills. Com-

mittee members Sridhar Mahadavan and Pierre Lermusiaux provided encouragement and

helpful advice through all stages of my research.

I am also grateful to Richard Lippmann and Sai Ravela for their service as thesis read-

ers. Early in my career, through his course Rich provided me with an unbelievably thorough

background in pattern recognition. I was also inspired by his enthusiasm and the generos-

ity with which he gave his attention to my research efforts. Sai Ravela taught me about

uncertainty quantification and provided invaluable discussions on the subject as a reader.

Sai’s good nature and intelligence has also offered me a great example of collegiality at its

best.

I have also enjoyed collegial relations with my fellow students including Alborz Geram-

ifard, Tony Jimenez, Andrew Wang, Eric Timmons, James Patterson, James McGrew and

Lars Blackmore. My peers Pedro Santana, Shawn Kraut and Ben Landon have contributed

by reading and offering feedback on this thesis. Julie Shah provided perspective, moral

support and strategy throughout my graduate career. I am grateful to Robert Morris for

hosting me at the NASA-Ames Research Institute and to Nico Mealeau for his mentorship

there at Moffett Field. Our interactions inspired my interest in active sensing, space ap-

plications and reinforcement learning. Kanna Rajan collaborated with and hosted me at

MBARI (the Monterey Bay Aquarium Research Institute) where I also had the privilege of

working with David Caress in field testing my algorithm on their autonomous underwater

vehicle. I also wish to acknowledge my former boss, Joe Chapa for always recognizing the

forward looking and innovative aspects of my work. I was also inspired by his unwavering

willingness to stand up for his employees. I also fondly recall Douglas Marquis, another

former boss, who encouraged me to “go put a Dr. in front of [my] name.”

I am deeply grateful to the Lincoln Scholars program and Ken Estebrooke for finan-

cially supporting the greater part of my Ph.D. career. 1 I will always appreciate Bob Shin

and Lou Bellaire for continuing to have faith in me and support me to the end of my PhD.

Karen Wilcox and Brian Williams also helped me identify sources of financial support.

Bernadette Johnson and Andy Vidan who supported me in numerous ways, especially dur-

ing some uphill sections of my journey. Sara Peterson, our group’s administrative assistant

has been generous and diligent in helping me put out fires and find my way around the

Institute. My graduate studies have also provided me with a number of enriching oppor-

tunities, not directly related to uncertainty minimization. Over the past 3 years I have

mentored 6 RSI (Research Science Institute) students: Changlin Ke, Lukas Missik, Albert

Chu, Maxwell Wang, Jon Xia and Fredric Moezinia. These exceptional 12th graders each

came to MIT for 6-weeks of a summer during which I had the privilege of sharing my re-

search with them. They were always elated by the opportunity, and fanatical in their efforts.

Their zeal carried me through some of the less inspiring parts of my research.

My brother Chris has happily answered many statistics questions for me and supported

me like only a brother can. Finally I am most grateful to my loving and supportive wife,

Nancy, and our three wonderful children who are a deep inspiration to me, and are the real

secret of my success.

1This work is sponsored by the Department of Air Force under Air Force Contract #FA8721-05-C-0002.
Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily
endorsed by the United States Government

5

1 Forward

This thesis addresses the integration of data collection and processing needs of orbital

and airborne missions. The motivating purpose is to develop a consistent strategy for ex-

ploration in support of long-term human missions to terrestrial planets. The thesis specifi-

cally addresses the informational requirements for large-scale adaptive sensing missions on

Earth and Mars. This research addresses several remote adaptive sensing concepts through

ocean sensing, disaster response and Mars exploration applications. Using these tasks as

a framework, the thesis lays out a quantitative model for how to make decisions to gather

information intelligently and dynamically. The primary objective of this thesis is to intro-

duce algorithms that improve the quality of automated decisions made in real time and to

incorporate uncertainty terms into informational value estimates used in remote sensing.

The thesis makes a critical contribution by developing algorithms that address information

and decision uncertainty, and using them to define an information-gathering architecture.

The central application question is: how to autonomously navigate and characterize an

unknown space such as a planetary surface?

1.1 Motivation: Greater Automation in Sensing and Ex-

ploration

The need to gather information more intelligently and navigate complex state spaces be-

comes more pronounced as humans create more powerful remote sensing devices and ex-

tend the reach of their exploration activities. Adaptive sensing is a form of remote sensing

that collects information selectively, according to a policy that can incorporates informa-

tion as the task progresses (see Sec. below). Adaptive sensing can modify its information

collection strategy as more information comes in, so as to moderate overall informational

possibilities that unfold with devices such as drones, smart phones, GPS, and robots. Identi-

fying the valuable information in a large state space means sorting through possible actions

and sensing tasks that include relatively large uncertainties. This kind of strategic infor-

6

mation gathering and processing can benefit larger scale exploration tasks by automating

environmental characterization. Exploration also requires a method of using current infor-

mation to sort through alternative actions and identify the most valuable action according

to mission objectives. This thesis addresses those needs in anticipation of expanded remote

sensing and exploration activities in the coming decades. This research is also applicable

to many Earth-based applications, but planetary exploration offers some of the greatest re-

wards, including potentially habitable environments and even evidence of life outside of

Earth. As pointed out in a quote that’s often attributed (with some uncertainty) to Carl

Sagan,“somewhere, something incredible is waiting to be known.”

The successes celebrated by ESA, NASA over the last decade, and more recently by the

Chinese National Space Agency (CNSA), and commercial space travel firms have demon-

strated new possibilities in planetary exploration, and a global competitive interest in the

endeavor. It is reasonable to assume that some combination of energy-related economic in-

centives, scientific impetus and perhaps even a geopolitical catalyst (akin to the Cold War

space race) will induce humans to continue and expand their exploration activities solar

system. The technological challenges of this eventuality require us to begin developing

the technology that automates this process wherever possible, making it cheaper and faster,

and circumventing current exploration bottlenecks. Adaptive sensing offers extensive re-

connaissance of promising objects (both planets and moons) and their environs. Europa,

Titan and Mars are three objects that hold particular promise as potentially habitable envi-

ronments.

Jupiter’s moon Europa (Figure 1-1) was discovered by Galileo in 1610 and is slightly

smaller than Earth’s moon. Investigation by the Pioneer, Voyager, Galileo (NASA) and

New Horizons (ESA) space probes indicate that Europa includes a metallic core and a

rocky mantle that are enveloped by a deep, salty, ice-covered surface ocean. These infer-

ences have rendered Europa the subject of many discussions concerning future mission and

potential habitability. Numerous studies and proposed missions seek to explore the subter-

ranean oceans of Europa, using submersibles equipped with active sensing algorithms.

Titan (Figure 2-5) is Saturn’s largest moon and includes a dense atmosphere with stable

bodies of liquid hydrocarbons on its surface. While Titan may be habitable for microbial

7

life, its surface liquids also suggest potential economic incentives for human space explo-

ration. Titan may serve as an important energy reserve in our solar system. Ligeia Mare,

a liquid body in Titan’s north polar region, is larger than Lake Superior, (Figure 2-5) and

consists of a liquid mixture of methane and ethane according to data returned in 2006 by

NASA’s Cassini mission.

Figure 1-1: Europa, one of the four Galilean moons of Jupiter, has been the subject of ex-
tensive satellite-based research. The first photos of Europa were taken by Pioneer 10 and 11
in the early 1970s; the most recent data were collected by the Galileo probe, which crashed
into Jupiter in 2003. NASA made the decision to direct it into the Jovian atmosphere to
avoid the risk of it carrying terrestrial bacteria into the seas of Europa.

Mars (Figure 1-3), the fourth planet from the sun, was named for its red color which

evokes the Roman god of war. The planet’s landscape is characterized by volcanic fea-

tures, impact craters and a giant rift likely caused nascent extensional forces, the Valles

Marineris. Recent orbital and landed missions to Mars have demonstrated that liquid water

once flowed on Mars and had a similar chemistry to the liquid water found on Earth. Simple

organic molecules have also been detected on Mars. The Mars Curiosity Rover is currently

exploring the Gale crater, with the broad directive of looking for signs and conditions for

life.

8

Figure 1-2: As seen in the image on the right, Titan’s Ligeia Mare is larger than Lake
Superior, and filled with liquid hydrocarbons (methane and ethane). Interestingly, there is
some dispute over the age of Titan due to its low crater count. A low crater count could
indicate that the planet’s surface was refreshed by a natural process, or that it is simply
young.

Figure 1-3: Nineteenth-century astronomical observations, made with low-powered tele-
scopes, led to widespread speculation that the Red Planet was not only habitable, but in-
habited. More recent data, including samples taken by the Mars Curiosity Rover, have
found evidence that liquid water once flowed across the planet’s surface, and its polar caps
are composed largely of water ice.

9

1.2 Current Technological Challenges

In the current age of planetary exploration, landed and orbital missions provide data for

Earth-based analysis. Few decisions are automated in this framework. Agency planning in-

dicates a transition to sample return missions and eventual human exploration. Human ex-

ploration will require more detailed planetary surveys using orbital, airborne, submersible

and landed missions. One of the novel challenges that has arisen during the on-going MSL

mission is that the shear volume of data sent by Curiosity is overwhelming the current sci-

entific team assigned to processing and interpreting it. Future missions will thus require a

more integrated and automated exploration model that differs from the current system in

its framing of mission objectives, operational architecture and its use of algorithms.

The task of automated exploration specifically calls for an architecture and algorithms

that operate from different vantage points and at different scales to achieve informational

goals. The architecture and algorithms can both simulate alternatives and adapt to a chang-

ing informational landscape. The planetary survey is framed as a large and complex control

space addressed through both online and offline analysis. 1 The survey control space be-

haves in a stochastic manner due to the evolving informational landscape. We do not know

what information will be collected, nor do we know its value in terms of the mission’s in-

formational goals. Uncertainties however can be quantified and minimized by algorithms.

The architectures thus guides the algorithms through an evolving landscape of stochastic

rewards, which is typically the value of information relative to informational goals.

1.2.1 Technical Problem

How do we improve automated decision-making given real-time constraints? This thesis

focuses on decision-making for remote sensing surveys, the problem we address can be

classified as an active sensing task. Active sensing addresses the problem of collecting the

right information in an environment of infinite informational possibilities. This is an appli-

cation of adaptive sampling techniques, applied to real-world problems of remote-sensing

1Online refers to real-time simulations and action in the real-world environment whereas offline refers
simulated action conducted prior to entering the environment.

10

data collection similar to that described in Krause and Guestrin [2009]. It mathematically

defines the optimal solution of the active sensing problem. The findings of this thesis are

therefore relevant to anyone who would like to optimize according to an informational

criteria.

Exploration tasks applied to large-scale environments also face an infinite number of

possible actions to take. How do we decide among these alternatives using information

gathered from the environment and simulated through learning models? This thesis de-

scribes an architecture for the active sensing problem, and goes on to design and test

several appropriate optimization algorithms using terrestrial information-gathering appli-

cations and a hypothetical aerial survey of Mars. Here, we apply an algorithmic mech-

anism we call information guides to a Monte Carlo search algorithm. Decisions tend to

focus on the known, and assume that the optimal path of action is evident from the value

function. Information guides explicitly incorporate the unknown into decision-making and

offer alternatives when the optimal path is not evident. Information guides use uncertainty

concerning an observation derived from a posterior distribution (or current reality as we

know it) to guide the search through a set of actionable alternatives in a given situation.

This method offers a novel way of applying empirical observations to reoptimize the value

function concerning a particular decision (see below). Previous research concerning de-

cision making in uncertain environments using value functions and simulated models is

summarized in Sec. .

Monte Carlo (MC) information guides

Adaptive sampling is the mathematical approach to selecting the right samples (see Guestrin

et al. [2005] and Bush et al. [2008a]). In this thesis we develop and test appropriate op-

timization algorithms for solving the adaptive sampling problem. The thesis describes

a novel algorithmic mechanism we call information guides. Information guides are ap-

plied to a Monte Carlo planning algorithm and help integrate online and offline computer

simulation models. The mechanism and applications described here demonstrate the key

innovation of approximate planning in real time for remote sensing operations.

Information guides specifically quantify uncertainty implicit in a given current decision

11

and compare it to the uncertainty of alternatives. We assume that the ’correct’ or most de-

sirable decision offers greater rewards than an alternative decision. Information guides ad-

ditionally may reveal alternatives that hold promising outcomes. How do we avoid subjec-

tive resolution of these different outcomes? Given the right inputs and software, a computer

can quantify the alternatives assigning them values that can be directly compared. Online

search is an everyday application wherein information guides steer search algorithms to

appropriate content. The ideas explored here thus apply to much broader information and

planning applications.

Architecture

The technical challenges of defining our problem space are primarily ones of architecture

and framing. Given our overriding task, how do we design and frame a complex plan-

etary survey? This challenge calls for a framework that meets informational needs and

dynamically adapts to a landscape of stochastic rewards. Properly framing this problem

means defining our strategy, routing sensors and incorporating the information they gather

into our model. Active sensing at different scales and resolutions also calls for different

approaches. Our proposed solution consists of a 3-level hierarchy presented in Chapter 2,

which describes how large scale adaptive sampling problems are parsed and framed so as

to address unique challenges that at different scales and with different types of sensors.

1.3 Unifying Theme: Incorporating uncertainty reduction

into decision making

The unifying theme of this thesis is uncertainty quantification and minimization. Explo-

ration seeks to reduce or constrain what we do not know. As we explore, our knowl-

edge about previously unknown areas and phenomena increases, while our uncertainty de-

creases. In a more specific context, a planetary survey must focus on mission objectives

such as finding habitable conditions on another planet. The principle of guidance by mis-

sion objective is also applicable to other levels of decision-making. Exploration requires

12

a clear and quantitative (wherever possible) understanding of what we know and its asso-

ciated uncertainty. Only then can we proceed upon a course of action for improving our

understanding. Likewise, as we explore the unknown, we gain a better awareness of the

existence of things we do not know. This idea is captured in the following statement made

by U.S. Secretary of Defense Donald Rumsfeld during a press briefing in February of 2002:

THE UNKNOWN (SEELY [2003])

As we know,

There are known knowns.

There are things we know we know.

We also know

There are known unknowns.

That is to say

We know there are some things

We do not know.

But there are also unknown unknowns,

The ones we don’t know we don’t know.

Donald Rumsfeld

These remarks were controversial at the time given public concern about the quality of

planning that went into the invasion and occupation of Iraq. The actual statement itself was

a concise and accurate description of the situation (if not a little too honest for a press brief-

ing) and incisively conveys the nature informational uncertainty and how we conceptualize

parameters from prior distributions. There is uncertainty in our knowledge with respect to

the current situation, i.e., the state (the known unknowns). The existence of this uncertainty

and our acknowledgment that the state is not fully represented in our current understand-

ing indicates additional uncertainties (the unknown unknowns). Accurate representation

of uncertainty in our situational model or state enhances mission decision-making. We can

thus use knowledge more effectively when we fully understand the nature of its uncertainty.

13

We can also use properly characterized uncertainty to determine where to focus future data

collection efforts.

Uncertainty reduction can also be used to enhance specifications of mission objectives.

This functionality arises from how we assign a value to minimum success criteria. We can

quantify for direct comparison, the outcomes from a strategy or path of action as well as

those of an alternative strategy, including uncertainty for both. We then use that awareness

to simulate through viable alternatives, potentially enhancing our understanding of these

alternatives, and identifying the most rewarding path of action. In Chapter 3, we introduce

Algorithm (Sec. 3.8) and specify how it performs these operations. The process of reduc-

ing the uncertainty associated with our optimal decision is guided by decision uncertainty

information.

Kurt Gödel, the parent of modern mathematical logic, searched for certainty but could

only prove uncertainty, thus proving that there are some things we can never know for

sure. Given its persistence, I prefer the approach of embracing uncertainty at every level

in problem solving. In doing so, we make better decisions with respect to some of human-

kind’s greatest challenges and endeavors.

1.4 Tasks: Enhancing exploration strategies and address-

ing uncertainty

This thesis contains the following elements and discussions intended to enhance explo-

ration strategies and address uncertainty:

• Formulates active sensing at each level as a Markov Decision Process.

• Develops a new Monte Carlo planning algorithm using information guides

• Describes a 3-level hierarchy architecture for active sensing problems

• Demonstrates the functionality of the architecture by applying it to marine explo-

ration and disaster relief operations

14

• Outlines rationale for a compact representation and develops a discovery method that

includes uncertainty representation

1.4.1 3-level hierarchical architecture for active sensing problems

The 3-level Hierarchy

Real world active sensing problems include planetary exploration and Earth-based endeav-

ors such as submarine exploration and disaster relief. These cover large geographic areas,

incorporate many different types of information and thus require multiple sensor types. The

complexities of the real world require a sophisticated, multi-scale architecture.

Figure 1-4 shows a 3-level hierarchy designed for exploration of an object like Europa.

The 3-level hierarchy includes synoptic, mesoscale and microscale aerial designations. The

synoptic level covers the maximum area addressed in the survey, which could be planetary

in scale, or the scale of an ocean basin or the combined area of several states affected by

a disaster. This scale would range in practice from about 103 to 106 km (in the case of

Europa). The mesoscale level covers an intermediate area, and the microscale level covers

the smallest area that can be addressed by the algorithms described here, in a non-trivial

manner. A microscale sensor would cover an approximate area of a square kilometer. The

mesoscale sensor would thus cover areas ranging from 10 - 103 km. In the applications

described in Chapter 2, sensor coverage at the synoptic level is provided by a satellite.

Coverage at the mesoscale and microscale levels is provided by an autonomous aircraft or

submersible. The system works as follows: The satellite coarsely surveys a large swath of

Europa’s surface. That information is processed and relayed to a group of vehicles which

then deploy to the areas that are most likely to meet mission objectives. The vehicles survey

the areas and return information for the next iteration of discovery.

15

Figure 1-4: The 3-level hierarchy shown above includes a synoptic level (covering a wide
area), a mesoscale level (covering an intermediate scale area) and a microscale level (cover-
ing a small local area). The synoptic sensing (satellite) optimization algorithm concentrates
on dwell time and the value of the collected information. The mesoscale system is opti-
mized with respect to travel time (e.g., for autonomous unmanned aircraft or other sensors).
Travel and dwell time are simultaneously adjusted at the microscale to optimize free-form
exploration by sensing devices.

1.4.2 Mapping each level of the architecture as a Markov Decision

Process

This thesis describes two detailed Earth-based applications of the 3-level architecture, an

algae bloom ocean sensing project and disaster relief. The first application involves au-

tonomous underwater vehicles (AUVs) collectively mapping the biological phenomena of

algae blooms. The second application involves air vehicles surveying a disaster area in

order to reporting road conditions and transportation related information to a ground crew

assigned to locate and rescue survivors. In both applications, the mapping response takes

place at two levels of abstraction. At one level, the vehicles are assigned and routed to the

mapping locations. The second level is a sensing platform that collates the data and takes

steps to maximize the amount of useful information collected. Operations from both levels

can be mapped into a special type of Markov decision process, referred to as an information

state Markov decision process (info-MDP).

The info-MDP formulation is especially suitable for information gathering problems

because these situations are inherently a problem of imperfect information. The core objec-

16

tive in other words, is to improve the information state. This process can then be reduced to

a state of perfect information that includes statistics measuring the available observations.

Given this formulation, paths of action can be chosen according to the available observa-

tions. Similar info-MDP applications can be found in Liu [2013] and Bush et al. [2008a]).

Section 2.3 offers a full definition of an info-MDP. Chapter 4 describes how an info-MDP

can be applied to an active sensing problem.

1.4.3 Approximate inference driven by decision uncertainty minimiza-

tion

With each level of the problem framed as an info-MDP, we can then use dynamic program-

ming, and specifically approximate dynamic programming (ADP) to solve the problem.

Solving the problem in this case means defining a consistent policy that will control the

data collection system. Chapter 2 presents a series of algorithms developed for this pur-

pose, and describes a framework for applying these algorithms. We initially use ADP to

develop a policy for how a sensor navigates through space and searches for information,

assuming basic informational goals (i.e., accurate navigation, finding evidence of water on

Mars, etc.). The second step entails modifying that policy online, during operational phases

of the mission, using forward search. The online search sets initial conditions according to

initial observations of the mission and searches forward through possible outcomes. The

search space can be narrow or broad, shallow or deep (i.e., set according so scale level

and mission objectives). The process uses the uncertainty about the expected value of each

search branch to decide which actions are worthy of simulating. These information guides

point the search toward promising path of action or avenues that have a high probability of

yielding the best outcome. This process finally leads to use of Algorithm (see Sec. 4.6),

decision uncertainty minimization via time limited branching. This algorithm applies state

action value iteration with variable depth information guides and a Gaussian Process based

uncertainty representation.

Figure 1-5 illustrates how decision uncertainty minimization via time limited branching

(Algorithm) works. The search is set according to scale level and mission objectives,

17

Figure 1-5: Online reoptimization algorithm : The online optimizer starts with policy π,
which was produced offline. Combined with the world simulation, we can reoptimize
for the current situation. For the given situation, policy π can convey its confidence in
choosing one action over another, as well as which action value is most in question. Using
this information as a guide, the online optimizer will simulate that action followed by a
series of subsequent actions (chosen in the same manner) in order to re-estimate the value
of that trajectory.

18

across a search space that can be narrow or broad, shallow or deep. This process uses the

uncertainty about the expected value of each search branch to decide which actions are

worthy of online simulation. Information guides point the search towards promising paths

of action or avenues that have a high probability of yielding the best outcome.

Chapter 4 also describes two precursors algorithms related to Algorithm . Algorithm

is referred to as the closed form least squares value iteration algorithm (see Sec. 5.1.5).

This operation exploits the certainty equivalence property of the root mean squared error

uncertainty metric in a way that accelerates the policy search algorithm. The root mean

squared error uncertainty metric is a consistent alternative to Shannon entropy but has better

mathematical properties. Algorithm is referred to as the closed form least squares value

iteration with rollout (see Sec. 5.1.7). This operation extends Algorithm by employing a

deep limited breadth online forward search. These two algorithms were natural extensions

of Algorithm .

1.4.4 Demonstrating the framework in marine exploration and disas-

ter relief applications

Highly automated, intelligent devices such as drones, submersibles and landers like Cu-

riosity have tremendous potential to survey and explore. Exploring unknown areas involves

sensing the environment with measuring devices for the purposes of scientific discovery,

reconnaissance and logistical support. In Chapter 4, we frame the active sensing problem

as a 3-level hierarchy (see Sec. above) and formulate it as an information state Markov de-

cision process. The chapter goes on to demonstrate this framework in a scientific research

campaign and in mission support operations. The algorithms described in Chapters 3 and

4 are specifically applied and tested to a data collection effort addressing a marine algal

bloom and a disaster relief scenario. Both of these applications pertain to planetary explo-

ration technology, which may include exploring the oceans of Europa and liquid bodies of

natural gas on Titan.

19

1.4.5 A Compact representation and a discovery method that incor-

porates uncertainty

Decision uncertainty minimization depends on representation that is both accurate and con-

veys that accuracy as value prediction uncertainty. This in turn requires an approach to

value function approximation with low uncertainty representation that also captures and

expresses the uncertainty that remains (the unknown unknowns). This latter form of un-

certainty is an important component of the overall certainty of our prediction. Identifying

a solution or representation that minimizes uncertainty depends on accurate uncertainty

estimates.

The utility of a value function distribution strongly depends on its having a manageable

degree of variance. Excessive variance renders the ‘guidance’ steps ineffective and leads

to a device response that is essentially random. Luckily the inaccuracy of a value function

is a causal phenomenon: it stems from the underlying representation and can be modeled.

While state-action value functions do not typically include expressions of representational

uncertainty, our method constructs functions that can be assessed as ‘more sure’ in some

places and ’less sure’ in others. This method provides a representation that a) accurately

represents the value function and therefore has low uncertainty and b) given whatever un-

certainty is present, captures that uncertainty about the posterior value estimate. In this

way, we use the uncertainty instead of ignoring it.

Chapter 3 describes how to find a value function representation with low posterior un-

certainty relative to the value estimate. An online search algorithm that is guided by the

uncertainty in the state-action value function requires a function that represents the un-

certainty in its estimate. We also need a way to minimize the uncertainty function. To

these ends, Chapter 3 outlines the design of such a value function. Specifically, we use

non-negative matrix factorization to find good basis functions that capture the structure of

the underlying data. We then use a Gaussian process to map the distribution over differ-

ent value ranges. We integrate these complementary methods with the overall objective of

representational uncertainty minimization.

20

1.5 Prior Research and Thesis Overview

1.5.1 Prior Research

Previous research in the field of information guides, active sensing and info-MDPs has

provided a strong foundation for this project and demonstrated some additional areas of

development addressed by this thesis. A number of the approaches such as approximate

dynamic programming (ADP) and info-MDPs have been described and applied elsewhere

(Bertsekas and Tsitsiklis [1996b] and Littman [1996]). However, the research presented

in this thesis makes the novel contribution of combining several of these techniques and

implementing them in navigational or exploration applications. In other areas such as deci-

sion uncertainty, the research described here presents new algorithms and approaches that

have not been previously reported. Our initial efforts in combing offline simulation with

online operations to complete adaptive sensing tasks were presented in Bush et al. [2009].

Previous researchers introduced the same approach of using ADP results to support online

decision-making. Gelly and Silver [2007] considered several ways in which offline and on-

line operations could be combined to improve value function learning. Boyan and Moore

[2001] demonstrated iterative re-optimization of an MDP policy that improved search per-

formance. The ADP methods used here to construct offline policies as well as an exhaustive

list of re-optimization strategies are surveyed by Bertsekas [2005a].

Dearden et al. [1998] also performed traditional online reinforcement learning, using

information guides (uncertainty about the value function) to improve policy learning. Their

model conflates environmental uncertainty and uncertainty due to approximate inference.

This approach differentiates between certainty and habitual actions in decision-making,

while creating an inverse model of the environment online (see Dearden et al. [1998]). In

contrast, our model-based approach separates these functions, using a previously learned

model, and a previously learned policy, and then tailors the policy online to the partic-

ular situation. Kocsis and Szepesvari [2006] also demonstrated the use a crude form of

state-action value uncertainty in guiding an online Monte Carlo sampling process. These

workers (Kocsis and Szepesvari [2006]) presented an algorithm that retains information

from previous states sampled to estimate uncertainty and formulate decisions. The entirely

21

online method and simple state space representation outlined in Kocsis and Szepesvari

[2006] differs from the methods described in Chapters 2 and 3. MacKay [1992b] uses a

Bayesian active learning approach related to information guides to select training samples

for a neural network, and thus provided our research with ideas and approaches concerning

sample selection. MacKay [1992b] is an application agnostic sample selection idea for the

purpose of providing data to a function. Other methods in the reinforcement learning com-

munity have developed action selection methods for the purpose of in situ learning. These

methods attempt to optimize an exploration-exploitation tradeoff (Brafman and Tennen-

holtz [2003],Meuleau and Bourgine [1999],Auer [2003]). These works have informed our

work, as we are making a related tradeoff. However our work differs from these methods

namely because our method is model-based and we learn our policy offline.

Because active sensing has so many real-world applications, numerous studies have

sought to automate and develop models for adaptive sensing tasks. The works most relevant

to this thesis have focused on MDPs, state-space representations and how to measure the

real world environment. Murphy [1999] describes how sensor information can be used to

create and update a map of a given area, and then fed into a decision-making framework

concerning a given area. Thrun [2003] explored the use of occupancy grid in adaptive

sensing and introduced methods similar to those outlined in Chapter 2 of this thesis. The

literature concerning the use of info-MDPs in active sensing is limited and relatively recent.

Mihaylova et al. [2002] used partially observable MDPs (POMDPs) to optimize active

sensing algorithms and points out computational difficulties that may arise from applying

MDPs to large state spaces. Ahmad and Yu [2013], Liu [2013] and Bush et al. [2008a] also

use POMDPs in active sensing.

1.5.2 Thesis Overview

The remaining body of this dissertation is organized as follows:

Chapter 2 defines active sensing and applies the aforementioned algorithms into the

context of two active sensing tasks. The chapter describes a hierarchical mission archi-

tecture based according to different scales at which exploration tasks are carried out. We

22

define information state Markov Decision Processes (info-MDPs) and frame active sensing

tasks as MDPs. Tasks at each hierarchal level are specifically formulated as info-MDPs.

Chapter 2 also demonstrates the performance improvement of the three level approach over

a single level, micro scale approach. A marine bathymetric mapping task and a hypothetical

Mars exploration mission are framed as info-MDPs using this 3-level hierarchy.

Chapter 3 introduces the new algorithm of decision uncertainty minimization via time

limited branching. Several precursor algorithms are discussed as background to the pri-

mary algorithm. Chapter 3 defines and discusses the prior art of exact value iteration with

value functions and with Q-values, approximate Q-value iteration, Monte Carlo planning in

an MDP, open-loop feedback control, certainty equivalence planning and rollout. Chapter

3 also defines decision uncertainty minimization and puts it into the context of online and

offline approximate dynamic programming. The chapter then discusses quantifying the un-

certainty of a policy, and the dependence of its accuracy on the uncertainty representation.

It then discusses the new idea of using representational uncertainty to direct the blending

of online and offline computation.

Chapter 4 defines representational uncertainty and outlines the rationale for a low un-

certainty representation that also captures the uncertainty that remains following observa-

tion. The use of value function uncertainty is discussed in the context of blending online

and offline decision methods. The techniques discussed include basis function discovery,

linear architectures, transition matrix factoring, and uncertainty directed transition matrix

factoring.

Chapter 5 describes active sensing applications using the 3-level hierarchy in greater

detail. The chapter describes an active sensing task that occupies the synoptic level of

the hierarchy and a task that occupies the microscale level of the hierarchy. The results

demonstrate the utility of the presented methods. [Additional copy needed]

23

Nomenclature

Markov decision process

〈•, · · · , •〉 = tuple brackets : ordered heterogeneous non-removable set

M = 〈S,A,P ,R, γ〉 = Markov decision process model

S = state set

A = action set

P = state transition probability distribution

R = reward function

γ = discount factor

Pass′ = probability of transitioning to state s′ from state s when executing action a

Ra
ss′ = reward associated with transitioning from state s to state s′ given action a

MDP Solutions

π∗ = optimal policy, which maximizes the value (expected future discounted

= reward) of every state

V = refers to the ethereal & theoretical true value (expected discounted

future reward) over the entire state space S

Vπ(s) = average future rewards obtained when policy π is followed, starting in state s

V ∗(s), Vπ∗(s) = optimal value of state s

V̄ (s) = value lookup table where s ∈ S̄ ⊆ S

V̄ = refers to the subset of points v ∈ V̄ ⊆ V pertaining to states s ∈ S̄ ⊆ S

V̂ = value function approximation architecture

V̂ (s, a) = approximated value

Vπ(s, a) = true value under policy π

V ∗(s), Vπ∗(s) = optimal value

ṽ = Ṽ (s) ∈ Ṽ = the improved value approximation obtained via a Bellman backup

Q̄(s, a) = state-action value lookup table where s ∈ S̄ ⊆ S

Q̂ = state-action value function approximation architecture

Q̂(s, a) = approximated state action value

24

Qπ(s, a) = true state-action value under policy π

Q∗(s, a), Qπ∗(s, a) = optimal state action value

Q̃(s, a) = the improved state-action value approximation obtained via a Bellman backup

Abbreviations

info-MDP Information State Markov Decision Process

RUM Representational Uncertainty Minimization

DUM Decision Uncertainty Minimization

NMF Non-negative Matrix Factorization

GP Gaussian Process

Gaussian Process

cov(f∗) Gaussian process posterior covariance

Function Approximation

∼ = distributed according to ; example q ∼ N (µ, σ)
obs← = realization or observation of; example b obs← B,

where b is a realization of random variable B

25

Glossary

3-level hierarchy A way of structuring and characterizing sensing problems at the global

(synoptic), mesoscale (intermediate), and microscale (close-up) levels.

Action space The set of all possible actions A = a1, a2, ..., an, e.g. in our problems, an

action entails sensing at a particular grid location.

Active sensing The application of an adaptive sample design to a sensing task.

Adaptive sampling The mathematical optimization of information gathering.

Approximate dynamic programming (ADP) A method of developing control policies

by approximating value functions, where those functions cannot be determined reli-

ably.

Approximate value iteration An approach to learning the value function of a Markov

decision process by combining function approximation and dynamic programming.

This is one form of approximate dynamic programming.

Autonomy The ability of a robotic or software agent to choose its own actions, without

the intervention of a human operator.

Base policy The default approach of a function or heuristic to a given problem.

Basis function An element of a basis for a function space, similar to a feature when inde-

pendency is relaxed.

Bathymetric Relating to the study of underwater topography.

Belief map The probability that each space of an occupancy grid is inhabited. More gen-

erally, a representation of our belief about all of a map’s parameters.

Belief or mental state A way of categorizing an autonomous agent’s awareness of its un-

certainty regarding a map of its environment, via a distribution over all physically

possible world states.

26

Bellman optimality equation A necessary condition for optimality in dynamic program-

ming applications. It describes a one-step look-ahead with respect to the value func-

tion.

Branching factor The number of successors of a particular node, in tree-based data struc-

tures.

Certainty equivalence approximation A method of reducing analytical complexity by

assuming that the utility of the expected outcome is equal to the average utility over

all possible outcomes.

Decision uncertainty minimization (DUM) A method of blending offline and online com-

putation to improve realtime planning, by incorporating uncertainty into the online

decisions regarding reevaluation of an offline policy.

Dynamic programming (DP) An approach to solving complex problems by breaking them

into multiple subproblems, which are easier to solve.

Expected value In a Markov decision process, the expected value refers to the average

discounted sum of rewards obtained by following a given policy from state (s).

Gaussian process A stochastic process in which random variables are associated with

each point in a finite range, so that each variable has a normal distribution.

Information-state Markov decision process (info-MDP) An infinite state Markov deci-

sion process that makes decisions directly based on its belief about the world

Information-state partially observable Markov decision process (info-POMDP) A par-

tially observable Markov decision process in which the reward is a function of the

state estimate uncertainty.

Kalman filter A recursive algorithm that produce statistically optimal estimates of a sys-

tem’s state from observed sequential measurements, assuming a Gaussian linear

model.

27

Linear architecture An architecture that approximates V (s) by first mapping the state s

to feature vector Φ (s) ∈ <k and by computing a linear combination of those features

Φ (s) β, where β is a function parameter vector.

Markov decision process A decision making model where outcomes are ultimately stochas-

tic yet an agent makes certain choices in an effort to maximize the expected dis-

counted sum over future rewards.

Monte Carlo planning A method of comparing different policies by combining Monte

Carlo analysis with forward search. Monte Carlo planning considers all actions at

each state, but limits how thoroughly the action consequences are simulated.

Occupancy grid A mapping problem representation, where each cell in a grid conveys the

likelihood that the phenomena of interest is present.

Offline planning The policies an agent learns before a mission begins, which are based

upon simulated actions.

Online planning Policies generated in the field, based upon realtime simulations and ac-

tions in the real-world environment.

Open-loop feedback control An approach that generates an open loop (static non-reactive)

plan for the mission duration, limiting the analysis by ignoring future contingent

choices.

Partially observable Markov decision process (POMDP) A Markov decision process in

which the underlying state is only partially observable, so that decisions must be

made using the inferred probabilistic state estimate.

Policy iteration An algorithm that calculates a sequentially improving series of policies,

through evaluation, and improvement.

Q-value The value (expected discounted future reward) of taking a particular action when

in a given state of a Markov decision process.

28

Representational uncertainty minimization (RUM) A method using Gaussian processes

to capture uncertainty and factored state transition matrix based features, with the

goal of finding a state-action value function representation with low posterior uncer-

tainty for use in decision uncertainty minimization planning.

Rollout A method of reevaluating mission planning options by simulating ahead from

each possibility. Standard rollout evaluates only the first level in the policy tree,

while nested rollout allows branching at multiple levels.

Sensing task A means of surveying an area and quantifying the relevant phenomena by

measuring the environment.

State The current, future, or past condition of a given system.

State space The set of possible states in a dynamic system.

System dynamics A representation of the probability of transitioning from one state to

another when taking an action. For example, in a sensing mission, where the map

is a main part of your state, executing a sensing action will change your map and

therefor your state, in some way.

Unmanned aerial vehicle (UAV) An autonomous or semi-autonomous vehicle for aerial

survey and exploration.

Unmanned ground vehicle (UGV) An autonomous or semi-autonomous vehicle for ground-

based survey and exploration.

Value function approximation A method of estimating a value function, where the true

function cannot be accurately determined or represented.

Value function A function providing the expected discounted future reward to be gained

by following a given policy.

Value The expected discounted future reward to be gained by following a given policy,

from a given state. The term value in the context of an MDP solution always refers

to an expectation. It is used here in the same way that value and valuation are used in

29

finance, where they wish to determine the present value of an asset’s expected future

cash flows. The future cash flows may be stochastic, but the present value is not.

Vehicle routing problem with time windows (VRP-TW) A planning problem in which

a number of vehicles must visit specific locations within a defined period of time.

30

2 Active Sensing

Recent technological advances have revolutionized robotics, data storage and commu-

nication in ways that call for new developments in automation. Semi-autonomous devices

such as robotic landers, drones and even smart phones present us with extraordinary re-

mote sensing and data collection capabilities. We can use these technologies to conduct en-

vironmental surveys, or any task wherein we wish to constrain large-scale state spaces. One

of the foremost challenges of this technological revolution is processing data and achieving

informational goals in an efficient manner. Current technology simply offers too many data

collection opportunities and too much data to review. Adaptive sensing and automation

can greatly enhance the utility of remote sensing technology by optimizing its use in situa-

tions where valuable information is scarce relative to the overall information content of the

environment. Planetary exploration offers a good example of an exploration task wherein

valuable information, such as habitable conditions or resource availability, is scarce within

areas that we can access and survey. This thesis seeks to utilize advances in remote sensing

and manage their proliferating data collection capabilities to efficiently attain informational

objectives.

Chapter Outline

Adaptive sensing and other automation strategies are relatively untested as methods to solve

these problems, partly due to the novelty of advanced sensing technology. This chapter

describes how to apply adaptive algorithms within a planetary exploration architecture. An

autonomous bathymetric mapping application provided a foundation for remote sensing

tasks. This application informed a larger application task of exploring the surface of Mars.

Section 2.1 begins by defining terms used in the chapter as they relate to the marine

exploration and planetary survey applications. For the intermediate and small-scale state

spaces, we categorized adaptive sensing into vehicle routing and exploration tasks. These

two categories are described in Section 2.1, and later in Sections 2.4.2 and 2.4.3. Sec-

tion 2.1.1 goes on to describe how adaptive sensing can be framed as an information state

Markov Decision Process (info-MDP) and how info-MDPs can be optimized to perform ex-

31

ploration tasks. Adaptive sensing presents different challenges as the spatial scale changes.

Section 2.2 reviews info-MDPs in detail, and formulates the active sensing task for survey-

ing Mars as an info-MDP. Section 2.3 describes the assumptions and practice of adaptive

planning for a marine bathymetric mapping task and a hypothetical survey of Mars. Section

2.3.1 describes how algorithms can implement low level, real time adjustment to informa-

tion gathering plans on a short time scale and according to several variables in order to en-

hance marine bathymetric mapping. Section 2.3.2 describes the function and effectiveness

of adaptive planning strategies designed for a hypothetical Mars survey. In this application,

we assumed coordinated use of current or proposed satellite and airborne technologies and

discusses an active sensing platform that determines and optimal strategy in an evolving

environment. Both the vehicle routing and information collection tasks described in Sec-

tions 2.1 can be framed as info-MDPs, in which a policy can be learned offline, using a

simulated model of the state space. These tasks can be modeled as info-MDPs because

the chosen control actions are necessarily conditioned on previously collected observa-

tions(see Littman [1996], Bertsekas and Shreve [1978] and Bertsekas [2005b]). Combined

with adaptive sensing algorithms, our previously described 3-level hierarchy addresses is-

sues of how to expand the focus of sensing tasks to planetary scales. Section 5.1.1 describes

how the 3-level hierarchy integrates multiple sensors at different spatial scales, which can

then be addressed as info-MPDs.

Figure 2-1: Outline of the six applications discussed in this chapter.

32

2.1 Background

This Section describes the use of active sensing and sample design in information collec-

tion problems. In traditional remote sensing tasks, the sampling design is fixed prior to

beginning the task, and follows an open loop based on a priori guidance (Aeronautics and

Center, for Advanced Computer Science, Bresina et al. [2005]). An adaptive sample design

changes based on observations collected during the current survey or sensing task.

ACTIVE SENSING

Active sensing is the application of an adaptive sample strategy to a sensing task. A

sample strategy is the procedure used to select a sample. A sensing task is an operation in

which each sample measures the environment (i.e., for survey and mission support).

See Fedorov [1972a], MacKay [1992a], MacKay [1992b], Thompson et al. [1996], Thompson and

Collins [2002], MacKay [2003], Krause and Guestrin [2007], and Powell and Ryzhov [2012].

Sensing tasks allow us to survey an area and quantify the phenomena most relevant

to mission planning and execution. A sensing task, such as a survey, typically observes

relevant phenomena that can be characterized by one or more spatial variables. With adap-

tive sampling, the sampling procedure depends on the values of the observed variables

relative to mission objectives. The sampling plan adapts to observed patterns in order to

optimally survey the phenomena. Sensing tasks differ in terms of how much the decision

and planning processes are affected by incoming information. In the case of current terres-

trial surveys, including the marine exploration example described in the following section,

information collection is primarily determined by a priori survey goals. The theoretical

Mars exploration application described in Section 2.3.2 calls for an additional sensing task

whose guidance system responds to information in real time as it conducts a survey.

Given the different tasks implicit in larger scale exploration activities, we categorize

remote sensing activities as vehicle routing problems (See Soloman [1987], Lolla et al.

[2012], Desrochers et al. [1988], Kilby et al. [2000], Kolen et al. [1987], Larsen [1999],

Ralphs et al. [2003], and Fisher and Jörnsten [1997]) or adaptive sensing problems (See

33

Lermusiaux [2007], Mihaylova et al. [2003], Mihaylova et al. [2002], Ahmad and Yu

[2013], Murphy [1999] and Krause and Guestrin [2009]) according to informational ob-

jectives, sometimes referred to as freeform exploration. Vehicle routing refers to naviga-

tional guidance provided to a set of vehicles in order to perform the optimal survey of an

area. Vehicle routing treats parameters such as travel time, number of vehicles and area to

be surveyed in a different manner than adaptive sensing according to information objec-

tives. This latter activity receives guidance according to real-time information collection

and synthesis, and less according to fuel constraints and the current state rewards that deter-

mine vehicle routing procedures. These two categories comprise the first order challenges

for adaptive sensing at the meso- and micro-scale, and are explained in greater detail in

Sections 2.4.2 and 2.4.3.

One of the advantages to using fully autonomous agents is their ability to perform

adaptive planning and execution. These plans evolve with information gathered from the

environment and in so doing, perform better than static planners when changes in util-

ity are modeled at all levels of change in the environment. In order to perform adaptive

planning, we have used a hierarchical method that combines a meso scale planner for adap-

tive sampling, with a low level, kino-dynamic path planner that implements the sampling

planning(Léauté and Williams [2005a]) The architecture offers three critical features that

benefit large scale information gathering tasks. First, the upper level is performing adap-

tive sampling, which compensates for new information about the environment. The two

lower levels divide the planning into two problems with smaller state spaces, and fewer

constraints. Third, online replanning at both levels enables the system to compensate for

approximation errors introduced by he two level hierarchy, and because of model. Section

5.1.1 describes the development and deployment of the architecture.

2.1.1 Technical Problem

Vehicle routing (See Lolla et al. [2012]) and adaptive sensing are both computationally in-

tensive. The decision uncertainty minimization algorithm described in Chapter 3 addresses

this problem for all levels of planning. This chapter focuses on the task of characterizing an

34

environment using adaptive sensing (Lermusiaux [2007]). Two real-world applications of

adaptive sensing, satellite-based ocean sensing and unmanned aerial vehicle (UAV)-based

mapping for search and rescue mission (detailed in Sections 5.1 and 5.4) demonstrate how

adaptive sensing translated into large applications.

In the case of planetary surveys, the sensing platform ultimately attempts to build the

most accurate map with respect to a mission-related reward metric, which in this case could

be described as map uncertainty. In order to minimize uncertainty, the system state must

include an expression for map uncertainty. More generally, the state must contain a mental

state or projection of the optimizing model. This projection is distributed over all physi-

cally possible world states and is referred to as an information state because it reflects the

totality of all information collected thus far or some sufficient statistic thereof. Given that

the projection is represented as a sufficient statistic with respect to optimal behavior, we

can define the information state as an information state Markov decision process (MDP).

An info-MDP is an infinite state MDP that makes decisions directly based on its own in-

formation state, which allows it to optimize according to aspects of the real world map that

positively affect mission objectives.

2.2 Modeling active sensing as an information state Markov

decision process

Thus far this chapter has operations in which agents plan automatically and online in order

to gather information. Up to this point we have also assumed that exploration targets have

arbitrarily pre-determined informational value. An actual survey of Mars would involve

much greater uncertainty with respect to the informational value of potential exploration

sites. An appropriate plan for larger scale survey would seek to provide the most ’use-

ful’ information. To formalize this problem, we specify ’useful’ in terms of an objective

function over ’information states’. The planner then generates a plan that maximizes this

objective function. In this section we argue that this planning problem should be formulated

as an information-state Markov decision process.

35

In actual Mars exploration efforts, information value often corresponds to several asso-

ciated features that offer integrated evidence of a given phenomena of interest. In the case

of current Mars survey missions for example, objects or features of high information value

include geomorphologic patterns that suggest the presence of liquid water, mineral classes

such as sulfates that form in association with liquid water, and specific minerals, such as

montmorollinite clay, that are unique to habitable aqueous conditions. Each of these fea-

tures can be detected at the synoptic, meso- and micro- levels depending on their scale

and concentration, but definitive identification often requires reconnaissance of associated

features and confirmation with multiple sensors (e.g., imaging, geochemical analysis, etc.).

How then do we survey an area for high value information in an efficient manner?

We selected an MDP approach because of its efficiency at planning a trajectory that

maximizes value. To apply a Markov Decision framework to this problem, we begin by

assigning each location to be surveyed an information state, which is a probability distri-

bution over the states of its environment. States in the example of the Mars survey might

include variable weather conditions, local geography, such as, northern plains and south-

ern highlands, or geomorphic significance, such as younger versus older craters, layered

rock formations and dunes. The platform can then plan and conduct measurements that

maximize information rewards and reduce uncertainty. The model uses initial, synoptic

or mesoscale observations to assign information states and to encode past actions and ob-

servations as probabilities of informational rewards (with uncertainties) over states of the

environment. These partially observable Markov decision processes (POMDPs), when an

agent encodes its history of actions and observations as a probability distribution over states

of the environment, can then be converted to an information state Markov decision process

(info-MDP), or a fully observable problem. This section first describes the info-MDP ap-

proach (Sec. 2.2) and goes on to specify the variables and operations used to construct the

model (Sec. 2.2).

36

INFORMATION STATE MARKOV DECISION PROCESS

An info-MDP is a type of MDP in which the uncertainty regarding the real world state

is represented as an MDP or a component of an MDP state. Decisions are made based

on what is known and how well it is known. An agent consists of a state estimator and

a policy. The state estimator incorporates the latest observation into its belief, and the

policy is a function of that new belief Littman [1996].

The info-MDP differs from other methods which create a policy for every possible world

state then essentially create a compromise policy based on the probability that we are in

each of those states (See Sec. 3.6 for a comparison of planning methods). In an info-MDP

there is a direct mapping from belief to actions. An info-MDP policy is a function of the

info-state rather than the world state.

See Littman [1996], Bertsekas and Shreve [1978], Bertsekas [2005b], and Bertsekas and Castanon

[1999].

Experimental Approach

Information collection problems incorporate information from past iterations, referred to

as memory in this context. Consideration of past observations is preferable to treating

the current observation as a true state, due to uncertainties in observations and the state’s

evolving nature. In a true MDP, a subsequent state is conditionally independent of past

states, given the current states. For this to hold true in a problem involving observations,

37

we could consider all past states as part of the ‘memory’ of the current state. Policies that do

not assimilate previously collected information perform poorly on information collection

tasks, relative to those that have a memory component (Littman [1996]; Section 6.2.2).

Computing some statistic or belief from past observations, which approximate the required

conditional independence offers a better approach.

The value function of an info-MDP captures the value of the optimal experiment design,

given the known or represented facts. Optimal experimental design is the process of select-

ing a set of samples or experiments so as to maximize the knowledge gained from them. A

value function is the discounted future reward to be gained by following a given sequence

of actions, which may include contingencies. In an info-MDP, a reward metric captures the

information contribution produced by each action, to the situational model (our projected

belief). The cumulative future reward for subsequent experiments such as samples, data or

measurements, is thus a value function. In the Mars survey example, our sensing platform

is trying to map an area with respect to a mission-related reward metric, which we model as

uncertainty minimization. The agent’s belief regarding the current map uncertainty must be

included in the system state in order to reward actions that reduce uncertainty. This belief

represents a distribution over all physically possible world states. The optimizing agents

belief is an information state because it incorporates the sum total of all the information

it has collected thus far. By representing the agents belief with a sufficient statistic with

respect to optimal behavior, we can define an info-MDP (Littman [1996]), which includes

the agents awareness of its own information state, given the uncertain world state. This

framework rewards actions that leads to a better information state. See MacKay [1992a]

for more information.

Information-state Markov Decision Processes: Variables and operations

Uncertainty minimization is a key objective of the information gathering problem described

here. An MDP assumes that the state of the world is fully observable, but information-

gathering must often estimate the world’s state. How do we construct a model that captures

world state uncertainty? The most general formulation of planning with uncertainty is the

partially observable Markov decision process (POMDP). A POMDP is defined as a tuple

38

(S,A,O,Pass′ ,Ra
ss′ ,Zas′o, γ), where S,A, and, O are the set of states, control actions, and

observations. Pass′ is the probability of getting to state s′ when taking action a in state s and

Ra
ss′ is the corresponding scalar reward. Since states are not observable, Zas′o provides the

probability of receiving observation o when taking action a and reaching state s′. The γ

term is used as the discount factor to bound the total accumulated reward. Since the agent

is unable to observe the state, it maintains a probability distribution over states called the

belief. Hence a policy (π) maps such beliefs to actions. If the reward function depends on

the belief, which is often the case for the exploration tasks the state itself must reflect the

belief, since R : S × A × S → R. On the other hand, if the observation model is known

a priori, the belief can be updated on each time step, given the observation. These facts

allow us to operate in a fully observable domain, where the new state is the belief itself and

the new transition model incorporates the observation model.

This formulation specifies the problem as an info-MDP, where the MDP is defined as a

tuple (S,A,Pass′ ,Ra
ss′ , γ). Any situation with imperfect state information can be reduced to

a problem where the state is fully observable (Bertsekas [2005b] p. 218). The new problem

makes a decision based on the information state, which is fully observable. Thus, the

problem is equivalent to a problem where the state is fully observable. Bertsekas and Shreve

[1978] first introduced the info-MDP and Cassandra et al. [1994] and Littman [1996] offer

detailed descriptions of it.

2.2.1 Active sensing as an information-state MDP

The overall objective of active sensing objective is to construct an accurate map upon which

exploration decisions are based. The objective function must therefore include some mea-

sure of map accuracy given an unknown true world state, and the overall objective and

immediate reward must be information related. In framing this problem as an info-MDP,

our task entails measuring real-world variables in order to maximize the value of informa-

tional in a given area.

Suppose we wish to measure and map the presence of some phenomena of interest over

a geographic area. We can think of this problem as creating an accurate occupancy map

39

and model the area as a set of n cells arranged as a rectangular grid.

• State Space: S = [0, 1]n where n is the total number of grids and si indicates the

probability of grid cell i occupancy.

• Action Space: A(s) ⊂ A = {1, 2, . . . , n}, where an action a is to sense a particular

grid location a and the surrounding cells. A(s) ⊂ A is the set of currently available

sensing actions, those immediately reachable from the current location.

• System Dynamics: The system dynamics represents the probability of transitioning

from information state s to s′ when taking sensing action a, where s′ is our new

information state, given sensor return w (following Equation 2.2). Therefore, the

transition probability is equal to the probability of getting sensor return w given ac-

tion a in state s.

Pass′ = P (w|s, a) (2.1)

such that

s′ = P (x|w) = αP (w|x, a)s. (2.2)

Note that in the continuous case, s is a probability density function over continuous

variable x and in the general case the Bayesian update (Equation 2.2) may require

integrating over x. When we can compute the expected costs of state estimation er-

ror, we may select sensing actions specifically to reduce those costs. For example,

suppose an autonomous Mars airplane team is tasked with finding interesting sites to

investigate. Locations are optimized according to signal strength. Furthermore, iden-

tifying safe traversable paths for a ground rover to get to these locations is equally

important. On the other hand, when we cannot compute the expected cost of state

estimation errors, we use an information theoretic approach of maximizing reduc-

tion in uncertainty. One of the most common measures of reduction in uncertainty is

40

reduction in entropy:

Ra
ss′ = H (s)−H (s′) , (2.3)

where

H(s) = −
∑
i

(
si log2 si + (1− si) log2(1− si)

)
. (2.4)

and i indexes each cell.

The literature concerning the design of these experiments refers to this as a “D-

Optimal” objective function (Fedorov [1972a]). Another possible choice of an in-

formation theoretic objective is the “E-Optimal” reduction in expected root mean

squared error (RMSE). For a single variable binomial distribution with probability p

such as each grid cell in the occupancy map, the RMSE is:

RMSE(p) =
√

(1− p)2p+ (0− p)2(1− p)
=

√
p(1− p)

Ra
ss′ =

n∑
i=0

(
RMSE (si)−RMSE (s′i)

)

Figure 2-2 shows that RMSE is similar to entropy. RMSE may be a more appro-

priate reward because it is directly related to expected map error, computed as the

true occupancy (1 or 0) minus our estimate p squared, multiplied by the probabil-

ity with respect to occupancy. In addition to being computationally more tractable

than entropy when computing the expected outcome of a sensing action Bush et al.

[2008a].

41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE

Entropy

2×RMSE

Figure 2-2: RMSE versus Entropy.

2.3 Case Studies

2.3.1 Case Study 1: Planning and Control for Autonomous Bathymet-

ric Mapping

Before framing information gathering tasks as an info-MDP, we describe lessons learned

from a project initially developed in support of information gathering missions. We equipped

an autonomous underwater vehicle (AUV) operated by the Monterey Bay Aquarium Re-

search Institute (MBARI) with a novel autonomous sensing control algorithm. The AUV

mapped difficult to access region of Monterey Bay some three miles off shore (Monterey

Bay Aquarium Research Institute [2006]). This project is described in detail in Appendix

A. Briefly, the AUV produces a bathymetric map by descending to bathyal depths and by

tracking its position above the ocean floor via multiple navigation sensors. As long as the

sensors allow the AUV to maintain ground- lock, which occurs at about 50 meters above

the ocean floor, the AUV can accurately track its position. When it loses ground-lock, the

AUV must default to its inertial navigation system, which compromises accuracy. We im-

plemented a spliced linear programming algorithm that plans vehicle maneuvers based on

more accurate information concerning the vehicle’s depth and surroundings. The modified

strategy enhanced the AUV’s ability to maintain ground-lock in variable terrain and thus

improved its mapping capabilities.

42

This initial foray into planning for a sensing task fell short in two respects: a) it was a

non-adaptive survey strategy, and b) the strategy was narrowly focused on only one envi-

ronmental variable (depth).

Figure 2-3: Bathymetric mapping optimization project, motivated by the desire to explore
the oceans of Europa: The inset graph shows that the MBARI Dorado class AUV tracked
the target depth better when controlled by our new algorithm. The black line shows the
ocean floor. The red line shows the actual path followed when controlled by our new
algorithm. The grey line shows the actual altitude under the old algorithm. Our AUV
altitude planner uses a linearized dynamics model and controller, linear programming and
a novel problem decomposition method in order to optimize mission data collection quality.

If the AUV sensed an unmapped structural fault or unknown circulation current, for

example, we would have liked the algorithm to have responded by inspecting the potentially

valuable patterns associated with these phenomena. The existing AUV survey was narrowly

focused in terms of the limited information collected and the sensor use. These limitations

raise questions of how the planning can be scaled to much larger information gathering

tasks that, for example, included multiple sensors. Both of these limitations also relate to

the mission’s a priori planning. Broadly focused missions with adaptive sensing can enjoy

and benefit from dynamic planning.

43

2.3.2 Case Study 2: Adaptive Mission Planning for Mars Exploration

As a second example, we consider NASAs concept of UAV on the surface of Mars. In

current Mars surface missions, plans sent from Earth are essentially static given communi-

cation lag. Adaptive planning can help circumvent this challenge and provide a coordinated

response to changing conditions. This section describes how active sensing algorithms and

approaches can perform in more adaptive modes for a hypothetical autonomous aerial sur-

vey of Mars assuming use of current and concept aircraft. The model and architecture

presented here differ from previous work in that they includes continuous high-level plan-

ning, allowing agents to incorporate newly acquired information on an ongoing basis. The

following sections describe some of the assumptions necessary for adaptive planning and

its benefits over static planning, and how adaptive planning performs in simulated environ-

ments.

2.3.3 Adaptive Mission Planning for Aerial Exploration of Mars: As-

sumptions

Adaptive mission planning on planetary scales requires some assumptions regarding plan-

ning strategies. First we assume access to current satellite technology, such as the Mars

Reconnaissance Orbiter (MRO) (See NASA and JPL [2013] and Smrekar [2007]), as well

as a concept aircraft, the Aerial Regional-scale Environmental Survey of Mars (ARES)

(See NASA [2011a], Levine et al. [2003] and Braun et al. [2006]). MRO has mapped the

Martian surface with its high-resolution cameras since 2006. The instrument has played

an important role in choosing landing sites, providing navigation data and serving as a

telecommunication relay for landed missions. In addition to its imaging capabilities, MRO

also monitors the Martian climate and catalogs geomorphologic features of the Martian sur-

face. ARES is a concept mission developed by Dr. Joel Levine, intended to study crustal

magnetism, atmospheric chemistry and search for hydrologic clues on the Martian surface.

Adaptive sensing with these instruments then requires us to specify decision making strate-

gies according to our appraisal of the overall environment in which the survey takes place.

How do we maximize information rewards in environments that are not only changing, but

44

are likely to have variable rates of change?

To answer this question, we compared three mission planning strategies: static, greedy

and non-myopic adaptive, over a range of simulated stochastic environments (see Appendix

B). The results show that an adaptive non-myopic method performed better than both a

static (open-loop) and greedy approach. The adaptive approach behaved in a similar man-

ner to that of a greedy approach in a rapidly changing environment and in a similar manner

to that of an open-loop approach in a slowly evolving environment. The adaptive non-

myopic approach behaved better than both of the other approaches in an environment that is

changing at a moderate rate. Our results showed that the adaptive planner outperformed the

static finite-horizon and greedy planners in situations involving moderate rates of change,

and performed at least as well as the other two planners under more variable conditions.

2.3.4 Adaptive Planning for Aerial Exploration of Mars: Demonstra-

tion of Principle

We constructed a set of simulations that explored the feasibility and benefits of adaptive

planning for Mars exploration. These simulations combined high- and low-level planning

route UAVs among Mars localities of varying scientific value, subject to fuel and time con-

straints. The high-level planner performed site selection according to scientific objectives

in tandem with a low-level kino-dynamic path planner that transmitted waypoints for UAV

routing. The full experiment is described in Appendix B, and summarized below. These

simulations showed that the adaptive planning approach identified solutions that optimized

the value of information within the constraints of the simulation.

Briefly, this experiment assumes a set of location of unknown information value. The

adaptive mission planner calculates an exploration strategy that maximizes utility within

fuel constraints. The plan is then transferred to the kino-dynamic path planner, which cre-

ates waypoints to guide UAVs to the locations in the most efficient manner. Way- points are

designed based on a one-second time scale, so as to discretize each path unit on a relatively

fine scale. We interfaced the adaptive mission planner with the Mars Plane simulator. The

adaptive mission planner constructs a plan and calculates the fuel usage. Excessive fuel

45

Figure 2-4: The graph shows the results results of plan execution for three strategies. The
rate of change is along the x-axis and the average total utility gained is on the y-axis. The
blue line is the static finite-horizon plan, the green line is the adaptable finite-horizon plan
and the red line is the greedy plan (adaptable one-step receding-horizon plan). The static
planner outperforms the greedy planner under stable conditions and the greedy planner
outperforms the static planner under unstable conditions. The adaptive planning strategy
performs well in all situations. It performs at the same level as the static planner under
stable conditions, outperforms either planner under moderately changing conditions, and
matches the performance of the greedy planner under very unstable conditions. (See Ap-
pendix B for more details)

46

usage may lead the planner to construct and alternative plan. Figure 2-5 shows the oper-

ator interface for the simulated system. The simulated environment includes geographic

features, such as mountain ranges, that the UAVs should avoid, as well as craters, outcrops

and alluvial fans that have potential information value.

The sites are color coded in Fig. 2-5 along with the UAV starting location (a white

square), a set of utilities for each science site (yellow numbers) and the travel distance

implicit in the map area. As the planner receives the actual travel time to the current site

and the updated utilities, it creates a new plan (Fig. 2-4 e and f), which optimizes utility and

fuel use according to the new information and constraints. In this situation, the adaptive

planner can accrue greater utility while operating within the fuel constraints relative to that

accrued by a static plan across a range of environments that were changing at different rates

(see Appendix B for further details.)

2.4 3-level Hierarchy

The next set of challenges in framing a planetary survey in terms of an info-MDP con-

cern how to cover a large geographic area and integrate multiple sensor types in the active

sensing task. We designate a 3-level spatial hierarchy that allows us to address the unique

spatial and sensor integration challenges that arise in sample spaces of different scales. The

3-level hierarchy shown in Figure 5-3 includes a synoptic level, which represents a wide

area (103 km or more), a mesoscale level, representing an intermediate-sized area and a

microscale level, covering a small, local area (less than one km). This hierarchy allows us

to implement an integrated system of info-MDP algorithms to adaptively survey the sample

space according to basic information objectives.

The instruments, vehicles, objective and operations at each level are different, but may

overlap. A satellite provides coverage and support at the synoptic level, while UAVs operate

at the meso- and microscale levels (Fig. 5-3). The satellite coarsely surveys a large swath of

the terrain and then relays information to a group of UAVs. The UAVs deploy to the areas

that appear to have high value of information. Each level requires a different optimization

strategy due to the different sensor functionalities and the abstraction of the environmental

47

(a) (b)

(c) (d)

(e) (f)

Figure 2-5: Mars Airplane Adaptive Mission Planner: The ARES aircraft could explore
a diverse terrain in the equatorial Valles Marineris region shown in (a) at a vantage point
1.5 km above the surface. Our high-level adaptive mission planner performs site selection
based on an evolving science value estimate. A lower level kino-dynamic path planner
executes the resulting plan. The map shows the aircraft entry point and 3 categories of
sites to explore. (b) The numbers indicate the science value estimate (utility) of the 3 site
categories. (c) The Adaptive Mission Planner uses these utilities and fuel constraints to
construct a plan. The kino-dynamic path planner executes the plan. When the aircraft
visits and observes a site, it updates the utility estimate for that particular site category.
Panel (d) reflects the effect of observing a blue site. The adaptive Mission Planner uses the
new utility values to formulate a new plan. (e) The Adaptive Mission Planner also updates
its time horizon based on the actual distance traveled. A significant deviation from the
estimated distance results in a new plan. In this example, the Mars airplane took longer
than expected to reach a planned site and a new, shorter plan was constructed. (f) Our
system includes a low level path planner that can simultaneously avoid obstacles (weather,
mountains etc.) and navigate according to flight dynamics (Léauté and Williams [2005a]).

48

Figure 2-6: The Autonomous Mars Exploration Network: We extend the notion of au-
tonomously exploring Mars to a multi-level framework incorporating as satellite surveyor,
which provides synoptic information to a team of UAVs. These UAVs explore the surface
of Mars for features of scientific interest. Once located, the UAV can map out a set of
traverses that can be executed by a ground rover to the site.

49

Figure 2-7: The 3-level hierarchy shown above includes a synoptic level (covering a wide
area), a mesoscale level (covering a medium sized area) and a microscale (covering a small
local area). The synoptic sensing (satellite) algorithm concentrates on dwell time and the
value of the collected information. The mesoscale system is optimized with respect to
vehicle travel time. Travel and dwell time are simultaneously optimized at the microscale
during free-form AUV exploration.

model. A satellite can quickly refocus its survey within its sensor footprint. The sensing

algorithm therefore concentrates on dwell time and the value of the collected information.

The dwell time refers to how long the satellite looks at a particular location. The satellite

is therefore optimized to focus on areas of high interest and high uncertainty.

At the mesoscale level, the UAVs transit directly to the locations of interest. The infor-

mation gathered during transit is considered negligible, and is ignored in the formulation,

thus simplifying the model of reward. The mesoscale system is optimized with respect to

travel time and fuel constraints. The satellite provides a set of target areas that are divided

up among UAVs according to an optimized vehicle routing plan. The microscale plan-

ner handles the local sensing tasks. At the microscale level, the UAVs perform free-form

exploration, collecting data as they move. Travel and dwell time are thus simultaneously

optimized at the microscale. Next we examine and formulate the info-MPD for each levels

of the hierarchy.

50

Figure 2-8: Satellite-UAV collaboration can be broken into different levels. At the mission
level, we route the UAVs to the mapping task locations. In the local level, each location is
its own information gathering task with the goal of estimating key environment variables
in the area. Both problems can be solved with an uncertainty guided planning algorithm.

51

2.4.1 Synoptic Level Optimization (coarse global satellite surveying)

At the synoptic level, satellites identify areas of potential scientific interest that can then

be addressed at the meso- and micro-scale levels, using different sensors. The satellite

operates with a large footprint and a relatively low slew cost (the cost to change the platform

attitude and sensor aim-point). The survey is therefore optimized purely with respect to the

value of the information it collects.

Figure 5-7 depicts an occupancy grid representation of the satellite active sensing prob-

lem. The occupancy grid divides up the area into discrete locations, which we represent as

a belief map recording the probability of “occupancy” for each grid cell. Occupancy means

that the phenomena of interest is present. When we select a grid cell to point the sensor

at, the sensor observes that grid cell and the surrounding grid cells. We model the sensor’s

capability as a discrete Bayesian detection model, which has a probability of detecting the

activity of interest, and a probability of false alarm. The sensor will return a one if it de-

tects activity of interest and a zero if it does not. The process works as follows. We take a

sensing action which returns a one or a zero for each of the observed grid cells. We then

update or belief about the world. We then use that updated information to select the next

most informative sensing action. Our overall objective is to maximize map quality. That is

to maximize the certainty of our belief regarding the activity in the area. This framework

maps exactly to the information state MDP framework already described.

We specifically developed a fast adaptive sensing algorithm and then augmented the

results via online rollout based reevaluation. The results show clear improvement of reeval-

uation over approximate dynamic programming by itself.

Synoptic problem model

At the synoptic level, our task is to map an area and sequentially decide where to sense next.

We model the environment as an occupancy grid, as shown in Figure 2-8. The stochastic

sensor measurements cause uncertainty regarding the map state. Therefore, we infer the

probability of activity in a given cell using a Bayes filter:

pi = P (i|wi) = αP (wi|i)P (i) (2.5)

52

where pi represents the posterior probability that a grid cell is occupied, wi is the sensor

measurement for cell i, P (wi|i) is the sensor model and P (i) is the prior probability of

activity at cell i. Recall that the probabilities of the entire grid represent a “belief map.”

The exploration process of building an accurate activity map works as follows. We take a

sensing action, which returns a measurement for each of the 3× 3 observed grid cells. For

each sensed cell, we then update the belief map si using Equation 5.1. We then use the

updated belief map to select the next most informative sensing action.

Figure 2-9: Occupancy grid representation of our satellite active sensing problem depicting
Bayesian belief updating.

2.4.2 The Mesoscale Problem (routing UAVs to survey locations)

At the mesoscale level, multiple UAVs coordinate with external mission requirements to

accomplish an information-gathering task. To accomplish these goals, a high-level mission

planner assigns a set of mapping tasks to a UAV team (based on data, models and other

constraints). Each task includes a beginning and ending time constraints, assuming limited

fuel and energy resources, and each location becomes its own mapping task. At the mission

level, the autonomy objective is to minimize total travel time between locations, while the

local mapping objective is to maximize value of information.

We may view this also as in info-MDP. In this action hierarchy we abstract away the

53

mapping problem to a single temporally extended action (see Figure 2-10) with a stochastic

reward outcome. That reward is based on what we find at the exploration site. A discovery

at one site can have an impact on how we value other potential exploration sites. The

mesoscale level rewards evolve based on the information state and thus represent an info-

MDP.

For tractability, the following problem setup focuses on solving for the instant infor-

mation state. The problem is treated strictly as a vehicle routing problem with a set of

informational rewards. The optimization of that vehicle routing problem is framed as a

plan-space (Ghallab et al. [2004]) MDP, where the MDP state is actually a plan, actions

are changes to the plan and the reward reflects improvements to the plan. A DUM related

algorithm is then applied to that MDP to efficiently guide that process toward a good plan.

Figure 2-10: Mission level data collection planning: A set of vehicles must perform sensing
at various locations. An autonomous agent chooses a set of tasks and plans a route for each
UAV. The plan maximizes science gain while adhering to high-level scientific guidance.
The plan may need to adapt to mission changes.

Mesoscale multi-vehicle aerial survey coordination

The aerial survey at the mesoscale level of a Mars survey requires the survey application

to determine the most efficient way to route vehicles to the survey locations. We tested

an aspect of our algorithm on this problem, by framing it as a Markov decision process,

54

learning an off-line approximate policy, and refining the policy online using nested rollout

(See Sec. 3.6.2). Our approach starts with an off-the-shelf heuristic, which we enhance

using approximate dynamic programming, and further augment online through decision

uncertainty minimization planning.

Variable Definition
m number of vehicles
n number of locations including the UAV base
cij travel cost from location i to j
tij travel time from location i to j
si required mapping time at location i
ei earliest time allowed for arriving at location i
ui latest time allowed for arriving at location i
N {1. . . n} the set of locations to visit
N0 N∪{0} location set including the UAV base
M {1. . .m}

Figure 2-11: We formalize the mission-level mesoscale survey as a vehicle routing prob-
lem. A set of vehicles located at a common base must deploy to and survey various loca-
tions. The location arrival and departure times may be restricted, the mapping time allowed
at each location is predetermined and the distance between locations is computed as the Eu-
clidean distance on a plane. The objective is to minimize the travel time such that the UAVs
visit the assigned locations within the specified time constraints.

Vehicle Routing Problem Formulation

Our mesoscale vehicle routing problem follows Fisher and Jörnsten [1997]. The UAVs

are deployed from a common base and travel to assigned locations, where the distance

between the locations is computed as Euclidean distance on a plane. The times of their

departure from base and arrival at their destinations may be restricted, and the amount of

time they can spend at each site may be limited. The vehicle routing problem formulation

is optimized to minimize their travel time, so that they can visit all of the assigned sites

within the specified time window.

We have developed an approach to this problem based on approximation dynamic pro-

gramming (ADP). This method frames the planning problem as a sequential decision mak-

ing problem, and constructs the route in stages. It formalizes the problem in terms of states,

actions, rewards, system dynamics, and as an optimization function. Finally, it reformu-

55

lates the optimization as a dynamic program and defines an approximation architecture to

represent the cost-to-go.

2.4.3 Microscale Level Problem : local free-form exploration

At the microscale level of the hierarchy, autonomous agents must make decisions based on

the information they collect while exploring the local area. We use adaptive sampling to

maximize utility within the constraints with each location representing a separate mapping

problem.The planner guides the UAV to map the terrain, and determines its sequence of

operations. We model the environment as an occupancy grid (Fig. 2-11), and divides up

the area into discrete locations. When the UAV is at a particular grid cell i, it observes that

grid cell and each of the surrounding cells. Each of the measurements conducted by a single

sensing action is modeled with some probability of detecting informational rewards with

some probability of false positives. We then represent the map internally as a belief map

that records the probability that each grid cell contains an information reward, based on

the sensor measurements. This info-MDP representation is almost identical to the synoptic

scale representation, except that the vehicle (a UAV) is constrained to following a path.

Therefore, actions reflect local location changes.

56

Figure 2-12: Adaptive Sampling: Autonomous agents need to make decisions as the sys-
tem is running, in order to take advantage of newly collected information. We model the
environment as a 3 × 3 occupancy grid and represent the map internally, as a belief map,
which records the probability of informational rewards at each grid cell. When we take a
sensing action, we update our belief about the world, then use that updated information to
select the next most informative sensing action.

57

3 An Introduction to Decision Uncertainty Min-
imization Based Planning

Remote sensing and exploration tasks are guided by mission objectives which can be

parameterized as an information policy. Autonomous agents make sequential decisions re-

garding how to operate in and interact with the environment according to this policy. Real

world environments present a large amount of information and a number of different ac-

tionable possibilities. How can we program autonomous agents to make the best decisions

in remote sensing and exploration tasks? This chapter explores how agents can use decision

uncertainty to improve decision-making. Appendices A and B provide detailed background

information on decision uncertainty minimization (DUM) planning algorithm. The criti-

cal contribution of decision uncertainty minimization planning is the use of uncertainty in

guiding the online simulation-based planning process. DUM algorithms select the online

planning steps that maximize the probability of discovering the optimal action.

3.1 Sources of Uncertainty in Sequential Decisions

The primary sources of uncertainty affecting sequential decision making include a) the

stochastic dynamics of the environment and b) sensor measurement noise. We average

these stochastic elements out of our decision by computing the expected value (E[V]) under

a given policy. We build a value function covering the entire state-space, which provides

a basis for decisions. Uncertainty persists regarding the expected value however, due to

the impracticality of learning, storing or calculating the E[V]. We work instead with an

approximation of E[V], represented as a distribution.

The uncertainty associated with the approximate E[V] can be translated to decision un-

certainty. Simulation allows us to derive the expected value of a set of stochastic outcomes

upon which decisions can be based. Each course of action (COA) can be assigned an ex-

pected value. A COA consists of an immediate action plus subsequent actions dictated by

a given policy, which may include predetermined actions and conditional decisions. In our

case, the policy is governed by a value distribution. Each COA therefore has a unique E[V].

58

DEFINITION: EXPECTED VALUE E[V]

A policy determines and assigns an action to each problem state. The value

of a state (s) under a policy is the expected value of the discounted sum of

rewards for implementing the policy, starting from state s. The optimal

policy maximizes the expected value for every state. The optimal value

function solves the Bellman optimality equations (e.g., Bertsekas and Tsit-

siklis [1996a]). This function defines the optimal action for each state. In

this context, the value function is approximate but not optimal.

SELF AWARENESS

Decision Uncertainty Minimization (DUM) plan-

ning is aware of its own incomplete information

and makes decisions accordingly. If DUM plan-

ning is unsure about the precise value of a poten-

tially valuable alternative for example, it will sim-

ulate it in order to determine its value more accu-

rately. This process of projecting states into the

future improves decision making.

Decision uncertainty specifically refers to the case in which an agent faces a range of

possible actions with unknown expected values. The algorithms presented here provide

uncertainty estimates and other guidance concerning these expected values. Uncertainty

regarding expected values corresponds to an agent’s awareness of how well it knows the

answer. DUM uses model-based search to derive this information (in appropriate situa-

tions), which can then help guide the agent’s actions. Because the agent optimally manages

its own incomplete information using DUM, it classifies as a self-aware entity.

59

3.2 DUM Planning Algorithm Outline

DUM quantifies the uncertainty of a policy, which can then be used to guide online plan-

ning. The following description of DUM assumes that the reader has a good understanding

of Markov Decision Processes (MDP) and online search. The appendices cover these top-

ics in more detail. In the first part of DUM, we use ADP to determine a policy offline

that offers the highest probability of achieving mission objectives. This step creates an ap-

proximate solution. The quality of this approximation is typically ignored. DUM however

quantifies the uncertainty of this policy and codifies it as a value distribution, as outlined in

Section 3.5. The second part of DUM involves online reoptimization of the policy accord-

ing to the immediate situation using Monte Carlo sampling based planning. Section 3.3

reviews Monte Carlo sampling based planning as well as other less complex approximate

methods including certainty equivalence, open-loop feedback control and rollout. These

planning methods do not include uncertainty estimates. The DUM representation provides

us with information about the accuracy of that value function, which can then be used to

guide our online COA selection. This mechanism, referred to as an information guide, fo-

cuses and improves the reoptimization process by quantifying the accuracy of our estimates

and reducing uncertainty.

Decision uncertainty algorithms consist of steps to construct the value function distri-

bution and control the search process. As a secondary objective, the algorithm seeks to

find a basis function that approximates the value function with low estimation uncertainty.

Finally, the algorithm’s tertiary objective is to determine the online search depth and the

branching factor for each depth. Later in the thesis we construct and compare algorithms

to demonstrate their operation.

3.3 Offline Approximate MDP policies

This section defines the Markov decision processes, which we use as our framework. The

section also defines the relationship between the value function and the state-action value

function. The approximate dynamic programming approach learns a policy offline. The

60

suboptimality of this process can be modeled as representational uncertainty. This uncer-

tainty can then be used in our online reoptimization algorithm via decision uncertainty

minimization planning. Appendix A provides a review of offline policy learning through

the MDP. Section A.1 defines an MDP; Section A.2 reviews the value iteration algorithm

as it applies to small discrete problems. Section A.3 presents the more general framework

of policy iteration, and Section A.4 reviews approximate value iteration known as approx-

imation dynamic programming (ADP).

3.3.1 Markov decision process defined

A MDP is defined by its state set S, action set A, state transition probability distribution P ,

and reward function R. When executing action a, in state s, the probability of transitioning

to state s′ is denoted as Pass′ and the expected reward associated with that transition is

denotedRa
ss′ .

A policy assigns an action to each state of the MDP. The value (Vπ(s)) of a state under

a policy π is the expected value of the discounted sum of rewards obtained when π is

followed, starting in state s. The objective is to find an optimal policy π∗, that maximizes

the value of every state (Vπ∗(s) = V ∗(s) ∀s).
The optimal value function (V ∗) is the solution to the Bellman optimality equations

(e.g., Bertsekas and Tsitsiklis [1996a]): ∀s ∈ S

V (s) = max
a∈A

∑
s′∈S
Pass′ [Ra

ss′ + γV (s′)] (3.1)

where the discount factor 0 ≤ γ < 1 discounts future payoffs relative to immediate pay-

offs. The Bellman equation (Eq. 3.1) is also referred to as the dynamic programming equa-

tion, and describes a one-step future projection with respect to the value function. The opti-

mal policy π∗ can be determined from V ∗ as follows: π∗(s) = arg maxa∈A
∑

s′∈S Pass′ [Ra
ss′ + γV ∗(s′)].

Therefore, the optimal value function is virtually the MDP solution.

61

Figure 3-1: MDP mechanics: In the MDP framework, we find ourselves in state s where
policy π chooses an action to execute. Although the action is chosen, we do not know for
sure which state we will transition into. When executing action a in state s, the probability
of transitioning to state s′ is denoted as Pass′ . The MDP optimization finds the best policy,
i.e., the policy that maximizes the value of every state.

3.3.2 Relationship between value function V (s) and state-action value

function Q(s, a)

The state-action value functionQ(s, a) provides the value in state s of any action a, whereas

the value function V (s) provides the value in state s of the best action selection, as deter-

mined by policy π(s). This policy is as follows:

π(s) = arg max
a∈A

Q(s, a) = arg max
a∈A

∑
s′∈S
Pass′ [Ra

ss′ + γV (s′)] (3.2)

Thus, the value in state s is equal to the maximum Q-value ∀a ∈ A

V (s) = max
a∈A

Q(s, a) (3.3)

or simply the Q-value of the action selected by policy π(s).

V (s) = Q(s, π(s)) (3.4)

62

Similarly, the state-action value function can be defined as the value obtained by actions

that maximize the value function.

Q(s, a) =
∑
s′∈S
Pass′ [Ra

ss′ + γV (s′)]. (3.5)

3.3.3 Offline approximate dynamic programming solution

The above formulation and algorithms assume a discrete state set S. If the state space is

discrete, then V andQ can be represented as value arrays, one record for each discrete state.

The arrays are initialized arbitrarily and iteratively optimized. Many real word state spaces

however are continuous such that a discrete representation of them becomes intractable

with respect to current computational and memory resources. The approach also requires

us to perform a time-consuming value iteration backup for each state.

We address these complexities by representing Q using an estimation architecture (Q̂).

The estimation architecture stores the state action-value function in a compressed form,

such as a linear function over problem variables, rather than an explicit combination of

each possible variable assignment. When used in approximate value iteration (Bertsekas

and Tsitsiklis [1996a]), the estimation architecture alleviates the storage problem,shares

information across state variables and thus reduces learning time. The estimation architec-

ture therefore resolves both the value iteration validation and the state space proliferation

problems inherent in the overall approach.

Algorithm 1 outlines the approximate value iteration algorithm where Q̂ is the approx-

imate value function represented by an estimation architecture. Algorithm 1 takes as input

the MDP tuple 〈S,A,P ,R, γ〉, where |S| is very large, possibly infinite. Algorithm 1

begins by randomly initializing state-action value table Q̄(s, a) over state subset S̄. The

approximation architecture Q̂ is then initialized based on the Q̄ table. We then perform a

Bellman backup over state subset S̄, using Q̂ for future state-action value estimates. The

newly computed state-action values are stored in table Q̄ and the policy, approximation

architecture and state value table are then updated; this process repeats until a convergence

threshold is met. Algorithm 1 returns approximation architecture Q̂t.

63

Algorithm 1 Approximate state-action value iteration algorithm where Q̂ stands for an
approximation architecture representation of the state-action value function, Q̄ stands for
a lookup table of state action values over a subset S̄ of the full statespace S.

ApproxStateActionValueIteration(〈S,A,P ,R, γ〉)⇐ {
for all s ∈ S̄ ⊂ S do

for all a ∈ A do
Initialize (Q̄(s, a))

end for
end for
InitializeApproximationArchitecture(Q̄t, Q̂t)
t⇐ 0
repeat
t⇐ t+ 1
for all s ∈ S̄ ⊂ S do

for all a ∈ A do
Q̄(s, a)⇐∑

s′∈S Pass′ [Ra
ss′ + γmaxa Q̂(s′, a)]

end for
end for
Q̂⇐ UpdateApproximationArchitecture(Q̄, Q̂)
for all s ∈ S̄ do
π(s)⇐ arg maxa Q̂(s, a)
V̄t(s)⇐ Q̄(s, π(s))

end for
until maxs∈S̄ |V̄t(s)− V̄t−1(s)| < ε , ∀s ∈ S̄
return Q̂t

}

64

3.4 Decision uncertainty minimization defined

Decision uncertainty minimization consists of model-based reasoning concerning the value

of a decision and its leading alternatives, in order to remove as much uncertainty about the

correctness of that decision as possible. A decision uncertainty method defines a reasoning

process, identifies its steps, and constructs a definition of uncertainty for it to minimize.

In the context of our autonomous approaches to mission planning, ”reasoning” mani-

fests itself as performing online simulation, for the purpose of disambiguating the relative

value of an agent’s immediate options, such as real world control actions. The agent may be

unsure about the value of each option. Yet, it can reevaluate a given option online by simu-

lating the state in order to improve its value estimate. If the outcome is stochastic, it would

simulate it multiple times and compute the expected outcome from multiple simulations.

This reevaluation method is sometimes referred to as rollout Bertsekas [2005a].

DUM Planning example

Decision uncertainty minimization can be summarized as the question, “If an agent can

reevaluate just one option, which one would most likely change the agent’s decision?”

Before we formalize the answer to this question mathematically, it behooves us to concisely

restate the DUM approach and walk through an example of how DUM applies to the real

world. The DUM planner consists of an offline policy learning algorithm and an online

reoptimization algorithm. The offline algorithm learns a policy before the mission starts,

and the policy suggests paths for the agent to follow. In other words, the policy suggests

what to do in a given situation. The reoptimization algorithm reevaluates these suggestions

and selects the best one according to mission objectives and constraints.

To understand why we combine these two methods, consider the everyday task of com-

muting home from work. The regular nature of this task has led to development of a policy

(conscious or otherwise) about what to do at a given intersection, such as turning left or

right. On occasion, a commuter will encounter a situation about which their policy is un-

certain. Traffic jams, construction or a funeral procession pose a unique challenge to the

commuter’s policy. A commuter is likely to reason offline by referring to prior experience

65

concerning these situations and reason online about their various options by checking traffic

conditions, surveying the congestion, etc. These operations entail forward simulation or

projection of the consequences of alternative actions. Congestion in a given direction would

lead a commuter to project the consequences of traveling to the right, and what to do after

that. The forward simulations are guided by a policy (e.g., wanting to get home in time for

dinner), but they explicitly elaborate options and estimate their consequences.

Mathematical example

To translate these methods into mathematical language, we first assume that an agent’s

immediate options consist of action set a ∈ A. Its immediate choice will set the agent

on a course of action dictated by a previously obtained offline policy π(s), where s is the

agent’s current state. The agent may thus choose an initial action a0, but all future actions

at>0|t > 0 are selected by policy π(st>0), such that a = π(s).

For every state, we also have a prior estimate of the value of each action Q̂(s, a), where

the state-action value captures the expected reward for the immediate action a, plus the

future course of action determined by policy π(s). We do not know the exact value that

Q̂(s, a) represents, primarily due to representational errors. The value function is approxi-

mated by an analytical function in order to contend with the large state space and memory

limitations. Our uncertainty over estimate Q̂(s, a) is defined by the probability density

function pdfQ̂(s,a). The function Q̂(s, a) is a random variable (see Figure 3-2).

Given the opportunity to perform an online simulation of an immediate action ai and

follow on actions aπ = π(s), the simulation will provide us the true value (denoted as

Qπ(s, a)), as previously estimated by Q̂(s, a). But how do we decide which course of

action to simulate? We do this by evaluating each challenge action and then determining

the action expected to most strongly influence the value of an incumbent action. That action

warrants reevaluation. In practice, this means determining whether the probability that the

true value of an alternative action ac (the challenger), is actually higher than the true value

of the incumbent action aπ = π(s). First, consider the probability that random variable

Q̂(s, ac) exceeds random variable Q̂(s, aπ) by exactly t:

66

Figure 3-2: This figure shows how we map our value function into a more manageable
function that gives us an actionable value. Our state-action value function, indicated by the
letter Q̂, takes as input a state ’s’ (the situation an agent is in), and action ’a’ (what we
are going to do). Q̂ then provides the agent with a probability distribution function f (or
pdfQ̂(s,a)), which subsequently provides the probability distributed between two possible
state-action values, q1 and q2.
The state-action value is the discounted future reward of a course of action that follows from
taking the action under consideration from the initial state (assuming an optimal policy).
The pdf in other words, describes the benefit of the projected future state. The function
Q(s, a) provides us with an additional function that describes the probability that the value
of that state-action is between q1 and q2. The heuristic thus provides us with a PDF prob-
ability density function over the best action value. An agent can use this method to assess
the relative merits of every projected state and then determine the optimal course of action
from its current state.

67

pdf[Q̂(s,ac)−Q̂(s,aπ)]=t =
∫∞
−∞ pdfQ̂(s,ac)

(τ) pdfQ̂(s,aπ) (t+ τ)dτ

Integrating over positive values of t gives us the probability that a challenger’s action

value exceeds the incumbent action value:

P
(
Q̂(s, ac) ≥ Q̂(s, aπ)

)
=
∫∞

0

∫∞
−∞ pdfQ̂(s,ac)

(τ) pdfQ̂(s,aπ) (t+ τ)dτdt
(3.6)

The above calculation allows us to then reevaluate Q̂(s, ac) via simulation if it is likely

to supersede the incumbent. Simply exceeding the incumbent value however does not nec-

essarily provide the most worthy reevaluation. Instead we wish to identify those actions

whose value greatly exceeds that of the incumbent. Because we are optimizing relative

to the challenger, we only address margins that are positive. A positive value merits fur-

ther consideration, whereas a negative value does not. A layered rock formation imaged

at a distance by an agent on Mars for example, might offer a significant probability of

improvement over a path of action leading away from the formation. Expected marginal

improvement t is averaged over situations that offer an improved value.

E
[
Q̂(s, ac)− Q̂(s, aπ)|Q̂(s, ac) ≥ Q̂(si, aπ)

]
=

∫∞
0 t(

∫∞
−∞ pdf

Q̂(s,ac)
(τ)pdf

Q̂(s,aπ)
(t+τ)dτ)dt∫∞

0 (
∫∞
−∞ pdf

Q̂(s,ac)
(τ)pdf

Q̂(s,aπ)
(t+τ)dτ)dt

(3.7)

The above equation computes the degree of expected marginal improvement when there

is an improvement. In the example of the layered rock formation, the agent would estimate

the value of potential features associated with layered rocks (signs of water, chemical sig-

natures) according to the probability of locating them, relative to the incumbent path of

action that ignored the features. We also want to know the frequency of improvement; this

requires the above to be normalized by the probability that there is an improvement:

E
[
Qπ(s, ac)− Q̂(s, π(s))|Q̂(s, ac) ≥ Q̂(s, π(s))

]
× P

(
Q̂(s, ac) ≥ Q̂(s, π(s))

)
=
∫∞

0
t
(∫∞
−∞ pdfQ̂(s,ac)

(τ) pdfQ̂(s,π(s)) (t+ τ)dτ
)
dt

(3.8)

Finally, we wish to select an alternative action, relative to the incumbent, that maxi-

68

mizes the above equation. This equation represents the greatest value that the agent could

possibly realize through an alternative action, or a reward integrated with the probability of

realizing that reward.

arg maxac E
[
Qπ(s, ac)− Q̂(s, aπ)|Q̂(s, ac) ≥ Q̂(s, aπ)

]
× P

(
Q̂(s, ac) ≥ Q̂(s, aπ)

)
= arg maxac

∫∞
0
t
(∫∞
−∞ pdfQ̂(s,ac)

(τ) pdfQ̂(s,aπ) (t+ τ)dτ
)
dt

(3.9)

Decision uncertainty minimization summary

Figure 3-3: The offline policy learning algorithm develops a policy offline by simulating
numerous trajectories through the world. That simulated data is collected and passed to
a learning algorithm, which uses approximate dynamic programming or value iteration to
learn a policy. The policy captures the value of taking an action in any situation, as well as
the estimation accuracy of that value. By doing so, the policy can determine the uncertainty
of selecting a given action over another. The policy is used and possibly reoptimized online
for a given situation.

DUM seeks the optimal action to take and the optimal way to sample the unknown

action values in order to make this action. At each step, DUM selects an action for a

known reevaluation that is most likely to be better than the incumbent action. This choice

favors high uncertainty actions with estimated expected values that are not significantly

worse than the incumbent action. As a recursive process, these operations maximize the

chance of discovering the best course of action with the highest value following from real-

world observations. The a priori information about mean decision value and uncertainty

provide a sampling that reveals the maximum posterior decision value.

This section began with the objective of minimizing uncertainty regarding the optimal-

69

Figure 3-4: Online reoptimization algorithm: The online optimizer starts with policy π,
which is modeled offline. Combined with the world simulation, the agent can reoptimize
for the current situation. For the given situation, policy π can convey its confidence in
choosing one action over another, as well as which action value is most in question. Using
this information as a guide, the online optimizer will simulate that action followed by a
series of subsequent actions (chosen in the same manner) in order to re-estimate the value
of that trajectory.

70

ity of a given control action. The control action selections are provided by base policy

aπ = π(s) = arg maxa Q̂(s, a), which can reevaluate an action at run time. Given suffi-

cient time to perform an online simulation of an immediate action ai and execute actions aπ,

the simulation will provide us the true value of Q̂(s, a) denoted as Q∗(s, a). The procedure

now requires specification of which COA to simulate. The DUM algorithm provides this

information by simulating the COA that minimizes uncertainty regarding the next optimal

action.

DUM improves upon the accuracy-complexity tradeoff curve by measuring and repre-

senting the uncertainty of the learned off-line policy. This uncertainty can then guide the

online Monte Carlo planner to actions more likely to both improve upon the current plan

and reduce the uncertainty with respect to the value of that plan. Sections 3.7 and 3.8 de-

scribe the DUM algorithm in its entirety. Appendix B provides a review of online planning

and search.

3.5 Estimating Q̂(s, a)

This section presents algorithms for estimating Q̂(s, a) in terms of functions that are a

normal distribution about a mean Q − hat(s, a). ADP estimates the state action-value

function in a compressed form (Appendix A.4 reviews ADP.) A common example of a

compressed functional form is a linear function over problem variables. The linear function

assigns one value to each variable, representing the state more concisely than if it stored a

value for every possible combination of assigned variable values. This estimation alleviates

the storage problem and reduces learning time by sharing information across state variables.

While the above approximation method reduces memory requirements and learning

time, it may not adequately represent the state-action value function. This representational

uncertainty results in a suboptimal policy solution. The ensuing chapter addresses the sub-

ject of identifying a good representation for input into ADP algorithms. The remainder of

this chapter frames representational uncertainty as a concept, reviews existing online search

algorithms, and uses representational uncertainty to blend offline and online computation.

71

3.5.1 The accuracy of a policy depends on how it is represented

Agents routinely consider uncertainty within the environment, in order to make better de-

cisions. Agents make optimal decision by taking into account uncertainty both in the dy-

namics of the system and about the current state of the system. The value of an action

outcome consists of the immediate benefit of taking a given action, plus the future benefit

of subsequent actions naturally stemming from this initial action:

Q(s, a) = arg max
a∈A

E[Ra
ss′ + γV (s′)]

= arg max
ai∈A

E[
T∑
i=0

γiRa
sisi+1

]

Q(s, a) = arg max
ai∈A

E[
T∑
i=0

γiRai
sisi+1

] (3.10)

This formulation assumes that the expectation of an action outcome can be precisely

estimated. However if an agent is uncertain about an expected action outcome value, then

it is likewise uncertain of which action to take. When using ADP, the inaccuracy of the

value function stems from the underlying representation and can be modeled. For any

representation projected onto a reduced subspace, multiple points having different values

can be mapped onto the same point in the subspace. This results in uncertainty regarding

the true value of that point.

The notion of representational uncertainty is foreign to the standard model of the state-

action value function. Representational uncertainty can easily be integrated into approx-

imate state-action value iteration however, by using an approximation architecture that

learns a value distribution rather than just an expectation function. The architecture would

return a distribution estimate, such as a normal distribution parameterized by its mean and

variance:

N (µs,a, σ
2
s,a)⇐ Q̂(s, a) (3.11)

72

3.5.2 Using the representational uncertainty of a state-action value

function to enhance the blending of offline and online compu-

tation

We incorporate representational uncertainty into the approximate state-action value itera-

tion process so as to learn a distribution estimate over the values. Our offline value function

returns these distributions, not just an expectation function. This can be used by the online

algorithm when deciding between possible actions to specifically investigate the values of

less-known, yet viable alternative state-action pairs. In short, we can use an online search

algorithm that is guided by the state-action value function. We discuss this mechanism in

the next section.

Before moving on, we will first summarize the offline algorithm as background for the

ensuing sections. The agents use approximate dynamic programming to create a policy for

carrying out specific actions in the world. This operation uses a value function or policy

that is computed offline and approximately through value iteration before the mission starts.

The platform simulates the mission, saving simulation snapshots as data points. It then

generates an approximation architecture for each iteration by data point regression, thus

accounting for representational uncertainty. Before exploring how this value distribution

can be combined with real-time search to select an action, we first review the set of relevant

online search algorithms.

3.5.3 A value function distribution captures the representational un-

certainty over the expected outcome of a course of action

The unmodeled and unrepresented component of the value function is a random vari-

able. Suppose we wish to model a function given a complete set of inputs X and outputs

y, with no observation error in X or y. For example, the state of an MDP is perfectly

known and an expectation over the output value (V̄)is computed for each state. Suppose

that our value function (V) can be perfectly approximated by choosing from the set of linear

functions estimated from inputs X ∈ R|x| and outputs y as follows:

73

β̂ = (XTX)−1XTy

where ŷ ⇐ Xβ̂

The vector of residuals |y − Xβ̂| are orthogonal to the column space of X and arise

from the representational limitations of the linear function. The errors can be described

by a distribution function. Under ideal assumption, these errors are uncorrelated with the

inputs. The estimate has a constant variance across the entire function.

A value-function learned from the expected outcomes thus can also capture the uncer-

tainty of the value estimate. The residual is a random variable (ε) where:

y = ŷ + ε and

y = Xβ̂ + ε

In particular, in our algorithm we describe the residuals of a state-action value function

with a Gaussian distribution of zero mean and variance σ2
sa. The function also returns the

mean value:

N (µs,a, σ
2
s,a)⇐ Q̂(s, a) (3.12)

However, unlike the linear least-squares regression model, our variance is conditioned

on the function inputs. Specifically, the linear model y = Xβ̂ + ε ascribes a variance of

σ2 where ε ∼ N (0, σ2
ε) ascribes a single consistent variance over the span of the function.

However, we use a function without this limitation; a function-approximation method that

is deliberately more certain at some parts of the state space than others.

74

3.6 Guided versus unguided search algorithms

Our operations with Equation 3.12 facilitate online re-estimation steps. Re-estimation com-

putes an expected value over a simulated subset of possible future states that result from

taking an action. Before exploring this subset or subtree, this section reviews guided and

unguided search algorithms that can be combined with uncertainty estimates to perform

simulation based re-estimation followed by action selection.

3.6.1 Unguided Algorithms

Policy tree: The fully elicited policy tree is the most general, unguided but complete al-

gorithm. A policy tree consists of the simulation of every possible action and future state

resulting from those actions. This full elicitation of all futures is evaluated and maximized

at each time-step, starting from the final step and working backwards, such that the optimal

action is chosen in each situation. The solution is equivalent to exact dynamic program-

ming. The result is an optimal full-feedback policy. A walk-through of this algorithm is

given in Subsection D.2. Although this algorithm is computationally intensive, it elucidates

the general structure of the optimal full-feedback policy and how it is generated. Each of

the algorithms described below emulate this policy tree solution, but in a more efficient

way. Efficiency is achieved by sampling from the policy tree. The first of these methods is

Monte Carlo sampling based planning.

A Monte Carlo planning algorithm samples from the policy tree by only simulating a

limited number of randomly chosen future states. Monte Carlo planning is a combi-

nation of Monte Carlo analysis and forward search. While Monte Carlo analysis evaluates

a system under a given policy, Monte Carlo planning compares different policies. Like the

policy tree, Monte Carlo planning considers all actions within each state. It evaluates each

action, as does the policy tree. Efficiencies are realized by limiting the degree to which

we simulate the consequences of each action. Monte Carlo sampling limits the number of

times it samples the consequences and value of a policy choice to n forward samples per

evaluated action. Both of the algorithms above share these limitations in the number of

75

samples n. Details of this algorithm are presented in Appendix D.3.

The open-loop approximation: Open-loop planning simplifies the Monte Carlo analysis

by limiting it to specific plans. An open loop plan consists of a sequence of actions that

does not adapt to feedback from the environment. An extension of open-loop planning,

the open-loop feedback control algorithm, executes only a selected plan for a discrete time

interval. It then replans using the same open-loop plan comparison methodology. Conse-

quently, open-loop feedback control responds to stimuli in the environment, but does not

make plans that optimize with respect to future contingencies. Rather, open-loop feedback

control is optimized to specific hard future commitments. By doing so, the Monte Carlo

simulation and evaluation process is much easier. By ignoring contingencies, evaluation

consists solely of simulating an action sequence multiple times. The maximization is only

performed over the whole sequence, not at each step. Therefore, the analysis increases lin-

early rather than exponentially with mission length. Details of this algorithm are presented

in Appendix D.5.

The certainty equivalence approximation: Monte Carlo sampling limits how thoroughly

we sample each policy choice to n forward samples per evaluated action. Open-loop feed-

back control limits the analysis by ignoring future contingent choices. The next algorithm

reduces the complexity of its analysis by assuming that the utility of the expected outcome

is equal to the average utility over all possible outcomes. The insurance industry devel-

oped this approach and refers to it as certainty equivalence. This assumption allows us to

only simulate the nominal or expected path for a given policy or plan. It simplifies the

analysis by converting it to a deterministic problem. Assuming certainty equivalence is

tantamount to assuming that the system evolves deterministically. Policy and plan are the

same in certainty equivalent environments. The certainty equivalent approximate solution

is therefore more efficient to calculate than the open loop feedback control solution. The

certainty equivalent approximate solution may perform poorly however, especially if sys-

tem disturbances are chaotic, and the appropriate reaction to these disturbances drastically

deviates from the nominal plan. This is common in information gathering tasks such as

76

tracking, where the underlying process evolves chaotically and the uncertainty about that

process follows a similar path. Details of this algorithm are presented in Appendix D.4.

3.6.2 Guided Algorithms

The techniques mentioned so far—policy tree, Monte Carlo planning and the open-loop and

certainty-equivalent simplification—are all unguided search algorithms. These methods do

not benefit from heuristics, value functions or other tools for guiding the forward search

toward favored actions. The primary shortcoming of the algorithms described above is that,

in the absence of guidance, they fail to optimize the simulation process. The remaining

algorithms described in this section are guided algorithms (rollout, extended rollout and

DUM). Guided search algorithms generally follow cues regarding an optimal direction, in

the form of a value function. A guided algorithm can use past knowledge to inform where

future simulations can be performed, thereby, focusing the search on options that matter,

and areas where it is unclear which decision is best.

Standard Rollout

Rollout offers a way to compare polices that differ only in their initial action choice. The

comparison requires a Monte Carlo analysis of each policy. The term “rollout” comes from

the backgammon community, where it is sometimes used to compare two playing strate-

gies. To do this, one would perform Monte Carlo analysis on each available action from the

current board position and strictly following the original policy thereafter. In a backgam-

mon rollout, the die is cast many times in order to execute this alternate strategy. Rollout

results are computed by averaging the outcome of each game. Rollout is the preferred

method of comparing two strategies, such that backgammon experts use it as a justification

for strategy change.

Policy Iteration

In the MDP framework, we often learn a value function offline and determine the policy at

runtime by maximizing the dynamic programming equation. If we compare via rollout all

77

possible actions from a given state via rollout and then select the best one (Bertsekas and

Castanon [1999]), the expected outcome is always better than, or at least as good as the

choice made by the the base policy. Therefore, it stands to reason that choosing the action

at runtime via rollout would be better than the traditional policy-extraction method.

Standard Rollout and nested rollout

Rollout emulates traditional search algorithms except that it only branches on actions at

the very first level. It thus samples from the policy tree by severely limiting its policy

choices. In addition, it utilizes Monte Carlo sampling of each policy, instead of a complete

evaluation. These restrictions make rollout efficient but limited. Nested rollout extends the

rollout concept by allowing branching at multiple levels (see Rosin [2011]). For example,

nested rollout may branch at two or three levels. This makes nested rollout more costly, but

also more effective. The secret is to make the right trade-off between cost and effectiveness.

Details of this algorithm are presented in Appendix D.6 and Subsection D.7.

3.7 Using policy uncertainty to guide online planning

After consideration of the relevant algorithms that can perform evaluation, we want to de-

vise an algorithm with the strengths of a policy tree, but one that is more efficiently calcu-

lated and guided by uncertainty. Two operational steps help achieve these goals. First, we

reevaluate branches through Monte Carlo sampling and second, we only reevaluate some

of the branches. Decision uncertainty minimization thus relies upon online reevaluation

to compare policy choices at each sequential decision point, in order to enhance the base

policy. What we have just described is nested rollout with limited branching. This thesis

presents the novel innovation of utilizing the value function distribution to decide which

branch to follow.

We want our approach to avoid the computational overhead of previous algorithms. Our

approach uses Monte Carlo sampling when reevaluating a branch, because we want to mea-

sure the stochastic system dynamics, including the future policy choices, which are con-

tingent on the state that results from an action. By performing Monte Carlo reevaluation,

78

we avoid an open-loop approximation and a certainty-equivalent approximation. We use

a sufficient number of Monte Carlo samples to measure the expected value accurately, but

we avoid a costly complete reevaluation. Our algorithm evaluates choices more thoroughly

than standard rollout, because it compares choices at every decision point. However, we

compare fewer choices at each level than pure nested rollout. Yet our selection of actions

to reevaluate is more intelligent, because it relies on the offline value distribution to make

these choices.

During real-time search, our algorithm chooses which actions to explore by evaluating

uncertainty over the value of each COA. This corresponds to uncertainty with respect to

the optimal decision. We want to focus our computational energy on areas for which the

optimal decision is unclear. For example, an action that is nearly as good in terms of

expectation, as the best action, but whose action value is uncertain, would make a good

candidate for reevaluation. By selecting in this way, we restrict the search to branching over

actions and focus on actions of greater consequence, overcoming some of the shortcomings

of the other methods.

DUM Outline

The process of online reevaluation involves generating a tree of candidate actions sequences

to test. We generate the tree of paths with the help of the offline-generated state-action

value-function. Starting from the current state, the algorithm selects b actions to simulate,

where b is called the branching factor. Once an action is simulated we arrive at a new state.

At that point, the algorithm will reach b new states. From each of those new states, the

algorithm again selects b actions to simulate. This process proceeds to a predetermined

planning horizon h. Collectively, the algorithm simulates bd+1−1
b−1

paths. The algorithm’s

task is to re-estimate the value of each action sequence. Thus, the algorithm adds up the

cumulative reward garnered from each path. If the planning horizon is long enough to reach

the end of the mission, then the remaining value is estimated using the offline state-action

value-function.

79

Branching Factor

The above algorithm uses branching factor b and horizon h. While h is a parameter of the

algorithm, b is calculated by Algorithm 2 (see below). We select b and h such that we have

enough time to reevaluate c paths. To do this, we first determine how many computations

can be performed in the allotted time between decisions. We then select a planning horizon

and calculate a branching factor that will result in that number of calculations. Algorithm 2

finds a branching factor b that matches our search algorithm to our computational allowance

c, given search horizon h. We know that our search algorithm will perform bd+1−1
b−1

compu-

tations because the search tree uses b as follows. At the initial state (first level), we explore

b actions or branches. The term b can be a fraction, in which case we explore b branches

on average. At the next (second) level, we explore b branches for each of those branches.

Thus, we explore b2 branches at level 2, and so on. Cumulatively, we explore
∑d

i=1 b
i paths.

Algorithm 2 Compute Branching Factor: This algorithm computes the branching fac-
tor b that produces a tree with c nodes given a tree depth of d.

1: ComputeBranchingFactor(d ∈ N, c ∈ N))⇐ {
2: c̃bd =

∑d
i=0 b

i = bd+1−1
b−1

3: b⇐ arg minb |c̃bd − c|
4: return b⇐∈ R
5: }

c =
d∑
i=0

bi

=
bh+1 − b
(b− 1)

(3.13)

Using a standard minimization algorithm we find a branching factor that most closely

satisfies Equation 3.13. Figure 3-5 shows the range of values for a particular problem.

3.7.1 Selecting an action to reevaluate

A central question during each step of the simulation is how to choose the actions to reeval-

uate. We elect to evaluate actions that have a promising outcome, weighing the certainty of

80

Figure 3-5: Branching Factor Graph: Shows the difference between the computation al-
lowance and the number of computations that a range of branching factors would require.
The example uses a search horizon of 7 and a planning tree of 1,000 computations.

the estimated outcomes. At each step in the algorithm described above, we select b actions

to simulate, based on the offline state action value-function, which estimates the future cu-

mulative rewards of each action, if taken from the current state. These estimate include a

distribution, described by a mean and variance, which captures how well we know a given

value. A high-variance distribution means that the value is not precisely known, while low

variance means it is precisely known. We select a sample from these distributions, one for

each action, and then choose the action with the highest sample value. If one of the action-

distributions consistently produces a high sample value, this tells us that we have little rea-

son to evaluate other options. However, if there is a state-action value distribution with

an especially high variance, it sometimes produces a sample with the highest value, even

though its mean is lower. This phenomenon exactly mirrors the probability that said action

is the best, given what we know. In other words, we explore the actions in proportion to

their viability and our certainty of it. We may also evaluate apparently less-viable actions,

where high variance warrants reexamination.

Stepping through action Subset Selection The subset selection Algorithm 3 operates

as follows. In Line 1, the mean branching factor, state-action value distribution function

and the current state are passed in. Mean branching factor b̄ is essentially the parameter of

random variable B defined on Line 3, which returns the integer just above or just below

81

b̄, with an expected value of b̄. Line 2 initializes the action subset being selected. Line 4

through 9 is a loop that selects b actions, where b is the current value of random variable B.

Line 5 through 7 loops through all action value estimates as determined by the state-action

value distribution function Q̂(s, a) on Line 6. Line 8 adds the new action to the subset.

Line 9 returns the selected action subset.

Algorithm 3 Action Subset Selection

1: ActionSubsetSelection(b̄, Q̂, s)⇐ {
2: Ā = 0
3: B ∼ U(bb̄cdb̄e)
4: for count = 1 : b ∼ B) do
5: for all a ∈ A do
6: Q̄(s, a) = Q̂(s, a)
7: end for
8: Ā ∪ arg maxa Q̄(s, a)
9: end for

10: return Ā

3.8 Decision Uncertainty Minimization Based Planning

In this section we present the DUM planning algorithm based on the approach and equa-

tions outlined above. Algorithm 4 operates as follows. In Lines 1 and 2 enter the current

state, model, search depth, state-action value distribution function, and mean branching

factor are passed in. Again, the mean branching factor b̄ is essentially the parameter of a

random variable B, which returns the integer just above or just below b̄, with an expected

value of b̄. On average, the branching factor is b̄. If the recursive algorithm has reached the

end of its search depth, then Lines 3, 4, and 5 return and estimate of the cumulative future

rewards for the rest of the mission. Line 6 gets the set of actions to simulate using func-

tion actionSubsetSelection. Lines 7 and 11 loop through the process of exploring

those actions. Line 8 simulates the action to get the next state. Line 8 recursively calls

itself (function DecisionUncertaintyMinimization) in order to get the estimate

of the cumulative future rewards. Line 10 sums up the current and future rewards for the

current action. Line 12 returns the best action, together with the action’s value estimate.

82

Algorithm 4 Decision Uncertainty Minimization via time limited branching :
Deterministic System Dynamics

1: DecisionUncertaintyMinimization(

2: s ∈ S,M≡ 〈S,A,P ,R, γ〉 , d ∈ N, Q̂, b̄)⇐ {
3: if d = 0 then
4: return

〈
maxa∈A Q̂(s, a), arg maxa∈A Q̂(s, a)

〉
5: end if
6: Ā =actionSubsetSelection(b̄, Q̂, s)
7: for all a ∈ Ā ⊆ A do
8: s′ ⇐DeterministicSimulation(s, a,M)
9: 〈Q(s′a′), a′〉 ⇐DecisionUncertaintyMinimization(s′,M, d− 1)

10: Q̄(s, a)⇐ Ra
ss′ +Q(s′, a′))

11: end for
12: return

〈
maxa∈A Q̄(s, a), arg maxa∈A Q̄(s, a)

〉

Algorithm 5 The simulation function entails simulating one step of the system, starting
at state s and executing action a. The function assumes that the system is deterministic,
and that the most likely next state s′ has probability mass of 1. In the case that the system
dynamics probability matrix Pass′ is not fully deterministic, the simulation function will
choose the most likely future state. This behavior is consistent with a certainty equiva-
lence perspective. If there is a tie for the most likely state, the function deterministically
chooses the first encountered.
DeterministicSimulation (s ∈ s, a ∈ A,M ≡ 〈S,A, P,R, V 〉)⇐ {
Pass′
Select action s′|s, a such that s′ = arg max′sPass′
s′ ∈ S
where P (s′|s, a) = Pass′
return s′

}

83

Perspective

Our MDP planner consists of offline policy-learning and online reoptimization. The policy

induces action-sequence suggestions for the agents to follow. Reoptimization reevaluates

these suggestions and picks the best one. This process actually describes a family of algo-

rithms, because changing the search horizon and branching factor fundamentally changes

the algorithm. For example, if we use a very small branching factor with a long horizon,

the algorithm closely resembles the rollout algorithm. On the other hand, using use a short

horizon with a large branching factor closely resembles model-predictive control. Different

configurations will work better for different applications as well as at different points in the

mission. Towards the end of a mission for example, broader search could be helpful (larger

branching factor) so that the plan properly considers the end goal. Further extensions to

our algorithm may include using different branching factors at different levels of the search

tree. The function can capture long term objectives more easily than short term details. A

small extension would thus allow the algorithm to rely more on offline knowledge in the

middle of the mission but more on simulation for starting and ending the mission. The

method describing a broad family of algorithms via a set of configuration parameters en-

ables us to tune it, making it broadly applicable.

Algorithm 6 Decision Uncertainty Minimization via time limited branching :
Stochastic System Dynamics

1: DecisionUncertaintyMinimization(s ∈ S,M ≡ 〈S,A,P ,R, γ〉 , d ∈
N, Q̂, b)⇐ {

2: if d = 0 then
3: return

〈
maxa∈A Q̂(s, a), arg maxa∈A Q̂(s, a)

〉
4: end if
5: Ā =actionSubsetSelection(b, Q̂, s)
6: for all a ∈ Ā ⊆ A do
7: Q̂(s, a)⇐ 0
8: for n = 1 : N do
9: s′ ⇐MonteCarloSimulation(s, a,M)

10: 〈Q(s′a′), a′〉 ⇐DecisionUncertaintyMinimization(s′,M, d− 1)
11: Q̄(s, a)⇐ Q̄(s, a) +Ra

ss′ +Q(s′, a′))/N
12: end for
13: end for
14: return

〈
maxa∈A Q̄(s, a), arg maxa∈A Q̄(s, a)

〉
84

Algorithm 7 The Monte Carlo simulation function entails simulating one step of the
system, starting at state s and executing action a

MonteCarloSimulation (s ∈ s, a ∈ A,M ≡ 〈S,A, P,R, V 〉)⇐ {
Pass′
Select action s′|s, a proportional to Pass′
s′ ∈ S
where P (s′|s, a) = Pass′
return s′

}

Algorithm 8 Compute Monte Carlo Search Branching Factor: This algorithm com-
putes the branching factor b that produces a tree with c nodes given a tree depth of d
and a sampling rate of n. Tree depth refers to the lookahead of the search algorithm
and therefore includes a layer of action branching and simulation sampling branching.

1: ComputeMonteCarloSearchBranchingFactor(d ∈ N, n ∈ N, c ∈ N)⇐ {
2: c̃bdn ≡

∑d
i=0(bn)i +

∑d
i=1 b(bn)i−1

3: b⇐ arg minb |c̃bdn − c|
4: return b ∈ R
5: }

Monte Carlo Policy Tree Branching Factor

Algorithm 2 (Sec. 3.7 above) computes the appropriate branching factor, when simulating

multiple trajectories from a given state-action. The calculation takes a different form how-

ever if we are going to simulate and average over n samples at each level. Construction of

the policy tree was described above. Construction of a partial policy tree entails simulating

only some of the actions available. Because the model analyzes a stochastic system, the

outcomes will differ with each trial. We therefore simulate each outcome multiple times in

order to determine the best option.

Algorithm 8 computes a branching factor for creating a restricted policy graph. Given

computation allowance c, search horizon h, and sample size n, we would like to select

an appropriate b. Computation allowance c specifies how many computations can be per-

formed in the allotted time between decisions. The planning horizon is an algorithm pa-

rameter meant to be an effective compromise between long-term reasoning and decision

speed. We know that our search algorithm will do (bn)h+1−bn
(bn−1)

computations because the

85

search tree uses b and n as follows. At the initial state (first level), we explore b actions or

branches. Each action is simulated n times. That creates bn branches. At the next (second)

level, we explore bh branches for each of those branches. Thus, we explore (bn)2 branches

at level 2, and so on. Cumulatively, we explore
∑h

i=1(bh)i paths.

c =
h∑
i=0

(bn)i (3.14)

c = (bn)1 + (bn)2 . . . (bn)h (3.15)

Multiplying (3.14) by (bn) yields:

(bn)c = (bn)2 + (bn)3 . . . (bn)h+1 (3.16)

(3.17)

Subtracting (3.15) from (3.16) yields:

((bn)− 1)c = (bn)h+1 − bn (3.18)

(3.19)

Simplify:

c =
(bn)h+1 − bn

(bn− 1)
(3.20)

(3.21)

Using a standard minimization algorithm we find a branching factor that most closely

satisfies equation 3.20.

3.9 Experiment

We applied DUM to the microscale problem presented in Section 2.4.3. We used two dif-

ferent configurations. In the first configuration (3-6) the mission performance is measured

for 100 steps. In the second configuration, mission performance is measured for 200 steps.

Four algorithms are compared. The first algorithm is rollout. The second algorithm is

DUM with a branching factor of 1, meaning that it only re-examines one alternative. The

86

re-evaluated alternative is compared to the incumbent action value and the apparent best

action is selected for execution. The third algorithm is DUM, with a branching factor of

3 at the first step and a branching factor of 1 thereafter. The fourth algorithm is DUM

with a branching factor of 3 at the first step, a branching factor of 2 at the second step

and a branching factor of 1 thereafter. The DUM algorithm results show a very significant

improvement over rollout.

Figure 3-6: Rollout and DUM experiment results from 10 problems with a mission length
of 100.

3.10 Summary

Our online planning and re-optimization algorithm uses decision uncertainty to incorporate

offline information into online computation. This approach characterizes the state-action

value-function as a distribution and uses that uncertainty to guide online reoptimization. It

captures this representational uncertainty of the function over the predicted value. Value

uncertainty translates this into policy uncertainty or uncertainty with respect to the optimal

action. We can reduce the uncertainty regarding our decision via online reoptimization,

87

Figure 3-7: Rollout and DUM experiment results from 10 problems with a mission length
of 200.

directing computational operations towards decision uncertainty minimization. In other

words, we not only optimize the agent’s actions, but also its root thinking. Our objective

function seeks to perform select computations that contribute most to the decision at hand.

To do so, we must characterize our decision uncertainty.

This chapter focused primarily on the framework that integrates online and offline plan-

ning and the mechanics of the guided online reevaluation. Representational uncertainty (in-

troduced in Sec. 3.5) refers to the inadequate representation the state-action value function,

framed as uncertainty about the respective quantities. Representational uncertainty is a

unique form of uncertainty that requires different treatment than other types of uncertainty.

The next chapter explores the use of representational uncertainty and ADP to generate the

most accurate offline policies and value functions as inputs to the online framework de-

scribed in this chapter.

88

4 Representational Uncertainty Minimization

Context: autonomous agents blend online and offline decision methods using value

function uncertainty

Intelligent agents make sequential decisions regarding how to interact with the environment

by learning a policy offline that can be used online. The policy provides a path of action for

any given situation. Section C.2 explains how agents make these decisions using a state-

action value function. A state-action value function maps state-action combinations to val-

ues which represent the discounted future reward for taking action a in state s. The value of

an action outcome consists of the immediate benefit of taking a given action plus the future

benefit of subsequent actions stemming from this initial action. State-action value func-

tions can be computationally intensive, so we calculate them offline approximately through

value iteration prior to mission deployment. We do so by simulating mission operations,

sampling the state and then saving these simulation snapshots as data points.

Figure 4-1: The accuracy of approximate methods depends on how they are represented.
The linear value function shown here is represented over the basis φ. A linear architecture
approximates V (s) by first mapping state s to the new basis φ(s) ∈ <k, then computing
the linear combination: φ(s)β, where β is a parameter vector.

For most applications the value function is too large to calculate in its entirety. We

therefore approximate the function as shown in Figure 4-1. Approximation methods how-

89

ever cannot adequately represent the state-action value function, and this shortcoming can

lead to a suboptimal policy solution. The inability to adequately represent the state-action

value function can be interpreted as uncertainty about the respective quantities. Uncertainty

concerning an expected action outcome value will lead to uncertainty regarding which ac-

tion to take. The accuracy of a policy thus depends on its representation.

EPISTEMIC VERSUS ALEATORIC UNCERTAINTY

Aleatoric uncertainty (Kiureghian and Ditlevsen [2009]) manifests itself as

unknown stochastic outcomes, which differ each time a simulation or ex-

periment is run. For example, our sensing problem system dynamics inject

a form of aleatoric uncertainty. It simply exists as part of our dynamical

system. We can average out the aleatoric uncertainty, to make a decision,

but we cannot get rid of it.

On the other hand, epistemic uncertainty (Ferson et al. [2004]) is due to

things we theoretically could know but for practical purposes do not pre-

cisely know. This is because we have not learned, measured or modeled

the value sufficiently accurately. The fact that our value function does not

know or represent the true value is a form of epistemic uncertainty. In

principle, we could know the expected outcome value of an action and

subsequent actions, after averaging out the aleatoric uncertainty. Yet due

to the inherent complexities of doing so, we do not.

Decision uncertainty minimization (DUM) methods use uncertainty regarding the op-

timal action through integration of offline and online computational modelling. Previous

sections of this thesis describe how value distributions can be combined with real-time

search to select an action. The representational uncertainty of a state-action value function

can then be minimized according to online / offline parameters. We incorporate repre-

sentational uncertainty into the approximate state-action value iteration process so as to

model a distribution over state-action values, rather than making do with a mean value

90

point estimate. Our offline value function models these distribution and thus contains more

information than a simple mean estimate, as shown in Figure 4-2.

Figure 4-2: The figure shows that our state-action value function, indicated by the letter Q̂,
takes as input a state ‘s’ (the situation an agent is in), and action ‘a’ (what we are going
to do). Q̂ then provides us with a probability distribution function f (or pdfQ̂(s,a)), which
subsequently provides us with the probability mass between two state-action values.
The state-action value is the expected discounted future reward of acting out a mission
starting from that state and taking that action (presumably under an optimal policy). While
the actual outcome is stochastic, the expected outcome is not. Nevertheless, pdfQ̂(s,a) is
a probability distribution function, over what we know the expected future rewards to be.
Stated differently, the value is deterministic yet we know that value imprecisely. Based
upon that which we know, f can tell us the probability that the value is between two num-
bers indicated in the picture as q1 and q2.

We can then use an online search algorithm that uses the uncertainty when deciding

between possible actions. For example, the algorithm may investigate the values of lesser-

known, yet viable alternative state-actions.

Minimizing uncertainty representation and estimating the remaining uncertainty

The decision uncertainty minimization algorithm requires an accurate state-action value

function representation that communicates its accuracy as value prediction uncertainty. A

function approximation approach can provide us with a low uncertainty representation that

also captures the remaining uncertainty, which in turn informs us as to the certainty of our

prediction. From this point we can identify a representation that minimizes the uncertainty.

91

As a causal phenomenon, uncertainty in the value function can be modeled. Linear least

squares regression for example includes uncertainty measures but can suffer from simplis-

tic assumptions. These types of models calculate uncertainty as an estimate of residuals.

When representations are mapped into a reduced subspace, uncertainty arises from points

representing different values being projected onto the same point in the subspace. The un-

certainty is a trace of information regarding the true value of that point. State-action value

functions do not include terms for representational uncertainty. Methods such as linear least

squares regression can minimize a measure of uncertainty but may not interpret other distri-

butional parameters according to their implicit uncertainty. Linear least squares regression

also assumes that uncertainty is uniform over the entire supported function. It cannot ex-

press uncertainty as a variable that is potentially ‘surer’ of some parts of the function than

others.

Fortunately, representational uncertainty can be easily integrated into approximate state-

action value iteration by using an approximation architecture that learns a value distribution

rather than just an expectation function. The architecture would return a distribution esti-

mate when used, such as a normal distribution parameterized by its mean and variance and

is defined as follows:

〈µq̂, σq̂〉 ← Q̂(s, a) (4.1)

q̂ ∼ N (µq̂, σ
2
q̂) (4.2)

In order to apply this decision uncertainty minimization (DUM) to a given value func-

tion distribution, the distribution must have a manageable degree of variance. Excessive

variance trivializes distribution parameters and renders real world guidance based on those

parameters a virtually random activity. More manageable degrees of variance mean a more

accurate representation of the state-action value function. To whatever extent the func-

tion is inaccurate, we need to quantify its uncertainty about the posterior value estimate to

preserve its informational value and avoid risks.

Including representational uncertainty in the approximate state-action value iteration

92

process provides a distributional estimate of uncertainty for each value of the function.

Offline value functions described here return this distribution rather than a single expected

value. The distribution is thus more useful to the online algorithm as it decides among

possible actions to specifically investigate the values of lesser-known, alternative state-

action pairs.

Quantifying Uncertainty: Gaussian processes and non-negative matrix factorization

of the transition matrix to find a representative architecture

Autonomous exploration operates with an online search algorithm that is guided by uncer-

tainty in the state-action value function. This function must include uncertainty representa-

tion and comply with operations that minimize that uncertainty. This chapter explains how

to find a state-action value function representation that has low posterior uncertainty with

respect to the value estimate. We use a Gaussian process to learn and represent uncertainty

distributions over a set of state-action values. We then use non-negative matrix factoriza-

tion to identify basis functions that accurately capture the structure of the underlying data.

This method is prediction-directed rather than operating unsupervised, and can thus capture

structure related to value prediction. We therefore apply non-negative matrix factorization

to the transition matrix in the search for the best basis. Combining these methods allows us

to minimize representational uncertainty.

Section 4.4.2 discusses the origin of estimation uncertainty, while Sections 4.3 and 4.4

explain its mathematical representation and minimization, respectively. Our method com-

bines a basis discovery mechanism (e.g., pattern recognition and clustering) with a smooth-

ing step (interpolator). We specifically use non-negative matrix factorization coupled to a

Gaussian process.

93

4.1 Constructing an approximate architecture

Approximate Dynamic Programming

Approximate dynamic programming (ADP) combines function approximation and dynamic

programming to learn the value function of a Markov decision process (MDP). While

information-state MDPs (info-MDPs) offer a useful framework, their relatively large state

spaces make them impractical for solving real-world problems. If the problem state is

represented as discrete variable combinations for example, the number of states will then

increase exponentially with respect to the number of state variables. This “curse of dimen-

sionality” leads to prolonged computation time and memory bottlenecks. Value iteration

also requires additional backup steps, which also lengthen computation time and memory

requirements. Given its size, currently available memory devices cannot store the type of

state representation envisioned here. As shown in Bertsekas and Tsitsiklis [1996b]; Farrell

and Polycarpou [2006]; Powell [2007]; Schweitzer and Seidmann [1985] and Tsitsiklis and

Van Roy [1996], ADP can circumvent these issues.

ADP identifies a compact representation of the value function rather than representing

each state value individually. The representation captures the value of interrelated parts

of the state space. This facilitates sharing of information between states, which in turn

enhances learning.

ADP also represents the value function as a continuous distribution. ADP incorporates

calculated model data with every algorithmic iteration and therefore requires an appro-

priate approximation architecture. Conventions such as neural networks, support vector

machine or Gaussian mixture are non-ideal as architecture models due to their computa-

tionally requirements. These models also lack properties desirable for ADP, namely self-

regularization, tendency to converge and adaptability. Furthermore, the approximator must

be self regularizing or resistant to over-fitting by design because cross validation with each

iteration can become too computationally intensive. The approximation architecture also

requires adequate dynamic programming convergence properties (i.e., a linear architecture)

and adaptive capabilities that can capture the initial value function (V 0), the optimal value

function (V ∗) and all V k in between. A linear architecture with an adaptive basis function

94

satisfies these requirements.

Linear Architecture

In a linear architecture, the term V is a linear function of some combined representation

of the inputs s. In parametric regression we can express our unknown function V (s) in

terms of a nonlinear function V (s; β) parameterized by β (MacKay [1998]). The linear

architecture approximates V (s) first by mapping state s into the new basis φ(s) ∈ <k. We

then compute the linear combination: φ(s)β, where β is a parameter vector. An intercept

is also typically used. Using basis function set φi(x)
|φ|
i=1, we can write

V̂ (s; β) =

|φ|∑
i=1

βiφi(s) (4.3)

DEFINITION

V̄i ← ṽ (4.4)

where

ṽ ← max
a∈A

∑
s′∈S
Pass′ [Rass′ + γV̂ (s′)], ∀s ∈ S̄ (4.5)

and

discount factor 0 ≤ γ < 1 makes future payoffs

less valuable than more immediate payoffs.

The parametric function is subsequently used in value iteration to iteratively improve

the value estimate. In this case, a value iteration backup is performed over a sampling of

states S̄ ⊂ S resulting in the updated set of values V̄ and β is subsequently updated to

satisfy:

β ← arg min
β

∑
i

∥∥∥V̄i − V̂ (S̄i; β)
∥∥∥2

where S̄ ⊂ S (4.6)

The basis functions are typically nonlinear functions of s. Consider the following radial

basis function, which uses cluster centers {µi}|φ|i=1:

95

φi(s) = exp
−(s− µi)2

2σ2
(4.7)

Basis Function Discovery

Thus, V (s; β) is a nonlinear function of s, but a linear function of β. Many other possible

sets of fixed basis functions exist. A linear function has the advantage of simplicity com-

pared to, for example, a neural network. Basis functions however can contain extensive

representation of other functions. Given its suitability, we dedicate the solution effort pri-

marily towards finding the right basis function for our application, In this case, the basis

function should accomplish the following objective:

〈β, φ〉 ← arg min
β,φ

∑
i

∥∥V̄i − V (S̄i; β, φ)
∥∥2

where S̄ ⊂ S (4.8)

The above equation minimizes the function with respect to a particular set of samples.

In actuality, we want to minimize the function over the whole population space from which

the data points are drawn:

〈β, φ〉 ← arg min
β,φ

∫
s∈S

∥∥V̄s − V (s; β, φ)
∥∥2
f(s)ds (4.9)

where density function f(s) is the probability that the random variable S falls within a

given infinitesimally small range.

Pr [a ≤ S ≤ b] =

∫ b

a

f(s)ds (4.10)

The integral above weighs each point according to density and assumes that the updated

V̄ can be calculated from a sampling of the distribution using a value iteration backup,.

Various regularization methods allow us to deal with the fact that we do not and cannot use

the above idealized optimization function.

96

Prior research into basis function discovery

Previous research has explored basis function generation in great detail. One of the earli-

est works described a polynomial basis value function (Schweitzer and Seidmann [1985]).

Tsitsiklis and Van Roy [1996] have more recently popularized feature-based linear meth-

ods, wherein a feature is defined as a function of state space S, projected onto a set of

feature values. Some researchers have focused on specific feature types such as Gaussian

linear models (Roweis and Ghahramani [1999]), whereas others have focused on how state

values direct basis learning (Poupart and Boutilier [2003]), on state space topology (Johns

and Mahadevan [2007]; Mahadevan [2005]), and on temporal relationship among variables

(Ghahramani [1998]).

97

4.2 New transition matrix factoring basis discovery method

One way to improve value function approximation accuracy within a linear architecture is

to:

• partition the state-space,

• discovering better basis functions within each partition and

• learning a specialized function for each partition.

Basis function discovery serves the same purpose as humans learning a simplified represen-

tation of their environment through salient feature combinations. State-space partitioning

allows us to build simpler sub-functions instead of a complicated holistic function. Simi-

larly, state-space partitioning enables replacing a monolithic strategy with situation depen-

dent strategies. In the next subsection I discuss the rational for a new discovery mechanism

to accomplish both tasks.

Prediction Directed State-space Partitioning and Basis Function Discovery

Various methods have been used to construct expressive basis functions. One important

theme among methods is to select basis that relate to the prediction of interest. For exam-

ple, Johns and Mahadevan [2007] exploits the fact that value functions are related to the

geometry of the state-space as captured by the graph Laplacian, a relationship that can be

approximately derived from the Bellman equation. Other methods seek basis correlated to

the Bellman error. The commonality of these ideas is that they all have some notion of

supervision. In other words, they are not merely looking for prominent variable combina-

tions, rather they are looking for variable combinations that help predict.

Transition Matrix Factoring

Likewise, I look for basis that help predict state variable transitions. Specifically, I factor

the state variable transition matrix. The state variable transition matrix is constructed from

state sequences. Factoring this matrix creates a low-rank state transition model, which can

98

be used for state clustering and function approximation. Furthermore, if we constrain the

process to non-negative values, then the components can be interpreted as probabilities.

Thus, each component represents a different part of the transition model. Similarly, each

component represents a set of variable combinations. The method simultaneously discovers

a good representation and learns transition probabilities.

Non-negative Matrix Factorization

Figure 4-3: Three component matrix factorization: NMF decomposes a non-negative mul-
tivariate data matrix V such that V ≈ WH as shown.

Non-negative Matrix Factorization (NMF) was presented in Lee and Seung [1999] as

an unsupervised way to elicit a low-order representation of facial image data. NMF basis

can be interpreted simultaneously as latent attributes, variable combinations, conditional

probability models or simply clusters. In short, NMF produces mixture models. Due to the

non-negativity constraint, each component can be interpreted as a probability model.

Approximate Non-negative Matrix Factoring NMF decomposes a non-negative mul-

tivariate data matrix V such that V ≈ WH as shown in Figure 4-3. Specifically, Lee and

Seung [2000] indicates that NMF can compress matrix V , comprised of m, n-dimensional

data samples, into an n × r matrix W and an r ×m matrix H , where n < m. In general,

the r basis found via NMF represent latent variables, which constitute a low-order data

representation of the data.

Optimality Function The approximate factorization V ≈ WH seeks to MinimizeD(V ||WH)

subject to W,H ≥ 0, where D(A||B) =
∑

ij(Aijlog
Aij
Bij
− Aij + Bij). The optimization

99

function is lower bounded by zero, and is minimal if A = B. The function reduces to the

Kullback-Leibler divergence when
∑

ij Aij =
∑

ij Bij = 1. In that case, A and B can be

thought of as probability distributions.

Gradient Descent Algorithm NMF iteratively reduces D(V ||WH) using update rules:

Hau ← Hau

∑
iWiaV iu/(WH)iu∑

kWka

Wia ← Wia

∑
uHauV iu/(WH)iu∑

v Hav

Uncertainty Limited NMF

NMF can be made to observe the simplicity principle by starting with a simple model that

generalizes to new data, then cautiously increasing model complexity via feature combina-

tions as the data permits. A model is made more complex by allowing additional mixture

components. Choosing the right number of mixture components is equivalent to the ubiq-

uitous issue of choosing the right number of clusters. I solve this problem by considering

the likelihood of the posterior state estimates.

Specifically, NMF produces an ensemble of transition models. The posterior estimate is

a multinomial distribution. Each posterior is supported by prior data. The model becomes

more precise as the number of ensemble components increases because each component

becomes more specialized. The model likelihood tends to increase as a result. However,

the amount of data supporting each component decreases. The reduced support causes the

overall model likelihood to decrease because the within component uncertainty increases.

The correct trade-off is captured by the likelihood of the data given each model, computed

by integrating over the model prior. In this way, the proper number of components can be

determined.

Value Function Distribution for Uncertainty Based Restricted Search

Given the accuracy limitations of function approximation, it is helpful to augment the pol-

icy via simulation-based reasoning. Humans develop their own policies, which tell them

100

how to behave in a given situation. However, when people are having trouble deciding be-

tween two actions, they may reason forward in time about the consequences of each action.

A person typically has limited time to make a decision. Therefore, he or she must use the

time judiciously to resolve the uncertainty.

Because of this need, our function approximation technique uses a Gaussian Process

smoother to statistically combine the basis functions into a state-action value prediction.

The Gaussian Process produces a value distribution over the mean value of the action out-

come rather than a simple mean estimate.

Figure 4-4: Suppose we are estimating how good it is to take path A. Our dynamics model
provides a mean and variance about that number (shown in blue). We only care about the
mean. We are risk neutral, so we use the mean to make decisions. (Sometimes you are
not risk neutral, such as when you are going to the airport, and you may take a taxi to
make sure you are not late.) But we don’t exactly know what the mean is. But we have
learned distributions over those model parameters, shown in green. We have a distribution
over model parameter µa and σa. We only care about σa, but we do want to consider the
uncertainty over that parameter when making decisions. If we are positive about it, than
our decision is easy. If we are unsure about it, then we don’t know if we are making the
right choice.

101

Figure 4-5: This picture now shows that we have the choice of path ‘a’ or path ‘b’, based
upon the mean cost of each path, where that mean cost is not precisely known. We would
pose the question: “What is the probability that path ‘a’ is a better option than path ‘b’,
based on how well we know the expected outcome of a?” As a point of clarification, even
if travel time (cost) was deterministic, there would still be some uncertainty about what that
deterministic cost is.

4.3 Representational Uncertainty Defined

Representational uncertainty is caused by the inability of a functional form to accurately

map a set of inputs to a set of outputs. This inability is due to an insufficient representation.

The effect of this mapping inaccuracy is uncertainty in the posterior value estimate. The

sum of squared residuals is a common measure of representational uncertainty.

ε2 ←
∑
i

‖f(Xi)− yi‖2 where yi ≈ f(Xi) (4.11)

If we consider the linear case with the following functional form

yi ≈ f(Xi) =
∑
j

Xijβj (4.12)

then the residual is defined as

ε2 ←
∑
i

∥∥∥∥∥∑
j

Xijβj − yi
∥∥∥∥∥

2

(4.13)

thus implying that dependent variable yi can be modeled as

yi =
∑
j

Xijβj + ε (4.14)

102

where ε is a random variable. We can view the inputs to above solution in two different

ways, as statistical units or as an overdetermined system of linear equations.

We are given a set of n samples from a system, where each sampleXi is a feature vector

consisting of f features and 1 output yi. X represents the entire sample set and Xij denotes

feature j of sample i. We wish to learn the unknown parameters β with which to predict

dependent variable y given independent variable X . Assuming that the estimation errors

are uncorrelated with each other or with Xi and have equal variance, the lowest residual

unbiased linear estimator of is:

β̂ ⇐ (XTX)−1XTy (4.15)

Statistical view

In the statistical view, ε is typically assumed to be a Gaussian random vector of mean zero

and variance σ2.

ε ≡ N (0, σ2) (4.16)

This of course presupposes the above “best linear unbiased estimator” assumptions.

Regardless of the distribution type, the statistical view is that there are inherent system dy-

namics that are stochastic. Therefore, we could not possibly model these stochastic dynam-

ics with a more sophisticated model. The only option is to model it with a representative

distribution.

Overdetermined system view

But seriously, that disturbance term would account for noise in the process but it also ac-

commodates the inadequacy of the linear model to capture the system dynamics. Given the

following overdetermined system of f unknown coefficients β1 . . . βf and n linear equa-

tions where n > f :

∑
j

Xijβj = yi written as Xβ = y where (4.17)

103

X =



X11 X12 . . . X1f

X21 X22 . . . X2f

X31 X32 . . . X3f

...
...

Xn1 Xn2 . . . Xnf


, β =


β1

β2

...

βf

 , y =



y1

y2

y3

...

yn


, ε =



ε1

ε2

ε3
...

εn


The system usually has no solution, so the goal is to find coefficients β which fit the

equations best. In this view we are fitting the output from a non-linear system, onto a

linear model. The system cannot be perfectly described using a linear model, resulting in

some error. The error has nothing to do with system stochastics. If we assume the system

to be deterministic, the same error exists. Therefore, the error is due to an insufficient

representation.

Homoscedasticity Functions

The above representation only allows for a homoscedastic errors. It assumes that the vari-

ance of the error is constant across observations as depicted in Figure 4-6. Put another way,

the function does not have the capability of attributing a different level of uncertainty for

different parts of the prediction space.

Figure 4-6: One dimensional homoscedastic function reflecting a constant variance across
all predictions

104

Heteroscedasticity Functions and Autonomy

But sometimes the prediction variance is correlated to the input variables. In other words,

the prediction uncertainty is different depending on what part of the input space you are

working in as depicted in Figure 4-7. This relates to the problem of autonomy in the

following way. Suppose we are using a function to predict the value of taking a given

action. Our function conveys how certain we are about that value. That value certainty

translates to how certain we are about the what to do. Clearly, your level of certainty

and confidence varies based on the situation. However, if that value is estimated with a

homoscedastic function, we would not be able to represent that difference.

Figure 4-7: One dimensional heteroscedastic function showing tie-down points and vari-
ance for a given prediction

Next we will review some methods that allow heteroscedasticity.

105

Kernel Smoothing Equations

P̂ (x) =
1

nh

n∑
i=1:n

K

(
x−Xi

h

)
(4.18)

K(x) =
1

(2π)
p
2

exp−1

2

p∑
i=1

(x2
i) (4.19)

106

The kernel trick

The kernel trick is a calculation that accomplishes the above kernel smoothing in a very

elegant way. It also allows for various kinds of kernels. It is called the kernel trick be-

cause it allows you to create a function in a higher dimensional space without explicitly

elaboration the higher dimensional basis or features. In other words it allows you to create

a more expressive, more complicated mapping with a relatively simple calculation. That

calculation does not involve transforming your basis into a more complicated basis. When

using a Gaussian kernel, the function is theoretically infinite dimensional. Here we will go

through an example using a polynomial kernel. The reader may refer to MacKay [2003]

regarding the infinite dimensional case.

Non-parametric Least Squares Regression with a polynomial Kernel

Non-parametric least squares regression explicitly estimates future data values using weighted

combinations of the training data-set. The method is fast and effective given certain condi-

tions. Its accuracy is good but limited by the number of samples that can be handled by the

regression method. It works as follows.

Suppose we have a set of state samples X and a set of target values y. X is an n by f

matrix, where n is the number of state samples and f is the number of features (variables

used to characterize the state). y is an n by 1 matrix where n is the number of state samples.

We compute the function as follows:

α = yT
((
XXT + 1

)d
+ λI

)−1

(4.20)

where λI is a ridge penalty, and d is the kernel degree. We can then estimate a new

target value target value ŷ given a new feature vector xnew. xnew is a single feature vector

of size 1× f .

t̂ = α
(
XxT

new + 1
)d

(4.21)

where X is a set of training samples and xnew is an new sample.

107

Complexity Penalty Matrix and Kernel Degree

A ridge penalty, λ multiplied by the identity matrix I , is a common regularizer, which

first and foremost ensures that the Gram matrix is invertible. Secondly, the ridge penalty

can be increased to reduce estimation variance at the expense of increased bias to control

the complexity of the function. For convenience we will call R = λI . In general any

regularizing prior R can be used.

d is the polynomial degree of the kernel. Thus,XXT is the Gram matrix and
(
XXT + 1

)d
is the result of applying a polynomial kernel to the Gram matrix. Essentially, this is a non-

parametric way to create and use a set of polynomial basis vectors for function approxima-

tion.

One interesting aspect of this function approximation method is that if we

let K = inv
((
XXT + 1

)d
+ R

)
,

where R is a regularizing matrix. k(X,X) performs the following on each element of

the Gram matrix, k

k(x, x) = (xxT + 1)d

Suppose R = 0 and d = 1, then we have a linear kernel.

we can break up the equation

α = yT (k(X,X) + R)−1

such that

α = yTK

Thus, if we perform a value iteration backup (where our function approximator repre-

sents our value function) using the exact same state samples X as our original function, we

can easily and quickly recreate the function approximation simply by replacing y with our

updated one. In other words, the expensive part of the function (K) remains the same.

This is called the kernel trick because it allows you to work in the higher dimensional

space without ever explicitly representing that space. This is an easy way to get a more

expressive function.

108

Extracting the covariance

kK−1kT (4.22)

f(x) =
n∑
i=1

αik(x, xi) where n ∈ N, xi ∈ X and αi ∈ R (4.23)

Gaussian kernel

k(x, x′) = σ2
f exp− 1

2l2

p∑
i=1

(xi − x′i)2 (4.24)

We then use cross validation to learn the best band width (l) for the kernel based estima-

tor. This idea can be expanded into the Gaussian process smoother, to capture and express

its own representational uncertainty within the function.

109

4.4 Function approximation is the source of uncertainty

in ADP solutions

Our task is to find the policy (π) for selecting control action a in state s which maximizes

the expected cumulative reward over the entire mission. Naturally, we can formulate the

problem as a dynamic program, which maximizes the expected one-stage reward r plus the

expected cumulative future reward V Bellmann [1957],

V (s) = max
a
Es′ [Ra

ss′ + V (s′)] . (4.25)

The dynamic programming equation is recursive. However, given the value function V ,

we could compute the optimal control action a. Therefore, knowing V is tantamount to

knowing the optimal control policy. Our objective is, therefore, to find the optimal future

reward function V .

4.4.1 Value Iteration

Our objective is to learn value function V . For a discrete state space, V is represented as

a table of values (one record for each discrete state). The table of values can be initialized

arbitrarily and improved iteratively. To iteratively improve the value function estimate, for

each s, we find control action a that maximizes the expected Ra
ss′ plus the expected value

of next state V (s′).

V i+1(s)← maxaEs′
[Rass′ + V i(s′)

]
(4.26)

The action outcomes are stochastic; therefore, the expectation entails summing over the

possible rewards and next states, times their corresponding probability.

V i+1(s)← max
a

∑
s′
Pass′

(Rass′ + V i(s′)
)

(4.27)

We compute this summation for each control action. We then replace the current table

entry V (s) with the new maximum value corresponding to the best control action. The

value iteration process is shown in Figure 5-11. The above process constitutes one iteration.

110

s

a
max

Figure 4-8: Value iteration backup diagram for discrete state-space: white circles represents
states while black circles represent actions..

We repeat the process until V (s) converges.

The main problem with this approach is that we must perform a value iteration backup

for every single state, which would take far too long. Since our real world problems are

often described by more than 100 state variables, then if we discretized each of these con-

tinuous variables by 10 we would end up with 10100 discrete states. This is far too many

states to perform a backup over. Furthermore, we cannot store the huge table representation

of V in memory.

We address these complexities by representing V as a parametric function. Next, we

will discuss how V would be represented as a linear function. Then we will discuss the

consequences. Specifically, a linear representation is too simple to perfectly represent V ,

consequently there will be a lot of uncertainty surrounding that estimate.

Linear Architecture: Formally, a linear architecture approximates V (s) by first map-

ping the state s to feature vector Φ (s) ∈ <k and by computing a linear combination of

those features Φ (s) β, where β is a function parameter vector. We compose Φ (s) by ap-

plying basis function φ () to the probability of occupancy of each grid cell, such that

Φ (s) =
[
φ (s1) ... φ (sn)

]
(4.28)

We also use an intercept that our description ignores for simplicity. We compute an im-

proved value estimate V̂ (s) for a finite set of states Si ∈ X via value iteration backups,

111

such that

V̂ (s) = maxaEs′ [Ra
ss′ + Vapprox(s

′)] , (4.29)

where Vapprox (·) = Φ (·) β.

We then update our estimate of Vapprox using regression, where

Φ (X) =


Φ (S1)

...

Φ (Sν)

 (4.30)

is a set of feature vectors for all state samples and

V̂ (X) =


V̂ (S1)

...

V̂ (Sν)

 (4.31)

is the updated value estimate for all state samples.

We re-estimate the parameters β of our function as

β =
(

Φ (X)T Φ (X) + λI
)−1

Φ (X)T V̂ (X) (4.32)

where ridge penalty λ ensures invertability and can be increased to reduce estimation vari-

ance at the expense of increased bias. Our updated Vapprox (s) = Φ (s) β now estimates our

new target value V̂ (s) in a least squares sense.

To summarize, we simulate a next state and plug that state into Vapprox, our approximate

value function. As the sensor measurements are stochastic, we must sum over the rewards

of each possible future state.

4.4.2 Identifying the source of the uncertainty in MDP Solutions

In this section we will identify the source of uncertainty and outline how we will get rid of

it or at least mitigate and deal with it.

Key point: The uncertainty in the posterior estimate stems from the the inability of

112

Figure 4-9: Value iteration algorithm: 1. Initialize J(), 2. Loop (Backup all states) 3.
Converges to optimal. Cannot Compute backup for all states or store value table. Function
Approximation is needed. The cumulative future reward for an MDP can be reformulated
as a dynamic programming problem where you minimize over the expected one-stage re-
ward plus the expected future reward starting from the next state. The dynamic program-
ming equation is recursive, however, if you know the optimal future reward function J then
you can compute the control action u which maximizes the dynamic programming equa-
tion. Therefore, knowing the optimal future reward function J is tantamount to knowing
the optimal control policy. Thus, our objective boils down to finding the optimal future
reward function J. I assume you are familiar with the value iteration approach to dynamic
programming Sutton and Barto [1998]. I will start the discussion by outlining the basic
component of the algorithm, the Bellman backup. I will then identify the computational
complexities, and how we address them. Our objective is to learn J. We start by initializing
J arbitrarily and we represent J as a table of values. We then improve upon our estimate
of J by performing a Bellman backup. Specifically, for a particular state x, we find control
action u which maximizes the current reward g plus the future reward J (using our current
approximation of J. The sensor returns are stochastic, therefore we need to sum over the
rewards times their probability of occurring. We compute this summation for each control
action. We then replace J(x) with the maximum value. The above process constitute one
iteration. We repeat the process until J(x) converges. The main problem with this approach
is that you must perform a Bellman backup for every single state, which would take way too
long even for discrete beliefs. Furthermore, we cannot store the huge table representation
of J in memory. We address this complexity by representing J as a parametric function.

113

Figure 4-10: Represent J() as a function. Select Features. Perform regression. Perform ap-
proximate value iteration. Avoids J() table representation and avoids backing up all states.
Which is why our approach is to approximate J as a parametric function, and learn an
approximation of J using dynamic programming. This slide depicts how function approx-
imation works. Again, our objective is to learn J, and we start by initializing J arbitrarily.
In the table lookup approach, we represent J as a table of values. However, in the function
approximation approach, we extract features of our state, then approximate J using linear
regression over those features. We then improve upon our estimate of J by performing a
Bellman backup. In the table lookup approach, we performed a Bellman backup for every
single state. However, in the function approximation approach, we sample the states, and
perform a backup just for those sampled states. By doing so, we avoid the table lookup rep-
resentation of J and we avoid backing up all states. To review, in the table lookup approach,
when performing a Bellman backup, we simulate a future state. We then lookup the value
of that state (J) in a table. However, in the function approximation approach, we simulate a
next state. We then plug that state into V̂ , our approximate future reward function.

114

Figure 4-11: Want compact and accurate state-action value function representation. Parti-
tion the state space. Find basis functions specialized for each partition. Learn a function
for each partition.

the function to express the real-world phenomena that it is modeling. The uncertainty is a

measurement of the residuals (estimation errors). However, the increased uncertainty is not

due to the dynamical stochastics. We know this because the residuals are computed from

the expected system outcome. Put another way, the function is specifically estimating the

expected system outcome and it is compared to the actual expected system outcome. Thus,

the uncertainty stems from the estimation architecture’s inability to estimate an accurate

expected outcome. If we control for the number of training samples, what remains is the

representational capability.

The agents use approximate dynamic programming to create a policy for acting in the

world. A policy is a mapping from states to actions, which tells the robot what to do

in any situation. Computing a value function can be computationally expensive, so we

compute this offline approximately through value iteration before the mission starts. We do

so by simulating the mission, saving simulation snapshots as data points. We then generate

an approximation architecture on each iteration by data point regression, accounting for

representational uncertainty.

115

A suboptimal offline policy for a realistically large MDP can be found via approximate

value iteration

The above formulation and algorithms assume a discrete state set S. If the state space is

discrete, V and Q can be represented as a table of values, one record for each discrete

state; the table of values is initialized arbitrarily and improved iteratively. The problem

with this approach is that many real world state spaces are continuous and an acceptable

discrete representation is intractably large, exceeding memory capacity. Additionally, we

must perform a time-consuming value iteration backup for each state.

Algorithm 9 Approximate state-action value iteration algorithm where Q̂ stands for an
approximation architecture representation of the state-action value function, Q̄ stands for
a lookup table of state action values over a subset S̄ of the full statespace S.

ApproxStateActionValueIteration(〈S,A,P ,R, γ〉)⇐ {
for all s ∈ S̄ ⊂ S do

for all a ∈ A do
Initialize (Q̄(s, a))

end for
end for
InitializeApproximationArchitecture(Q̄t, Q̂t)
t⇐ 0
repeat
t⇐ t+ 1
for all s ∈ S̄ ⊂ S do

for all a ∈ A do
Q̄(s, a)⇐∑

s′∈S Pass′ [Ra
ss′ + γmaxa Q̂(s′, a)]

end for
end for
Q̂⇐ UpdateApproximationArchitecture(Q̄, Q̂)
for all s ∈ S̄ do
π(s)⇐ arg maxa Q̂(s, a)
V̄t(s)⇐ Q̄(s, π(s))

end for
until maxs∈S̄ |V̄t(s)− V̄t−1(s)| < ε , ∀s ∈ S̄
return Q̂t

}

We address these complexities by representing Q using an estimation architecture (Q̂).

The estimation architecture stores the state action-value function in a compressed form,

such as a linear function over problem variables rather than an explicit combination of each

116

possible variable assignment. When used in approximate value iteration (Bertsekas and

Tsitsiklis [1996a]), the estimation architecture alleviates the storage problem and shares

information across state variables, decreasing learning time. The estimation architecture,

therefore, solves both problems inherent to exact value iteration.

Algorithm 9 outlines the approximate value iteration algorithm where Q̂ is the approx-

imate value function represented by an estimation architecture. Algorithm 9 takes as input

the MDP tuple 〈S,A,P ,R, γ〉, where |S| is very large, possibly infinite. Algorithm 9

begins by randomly initializing state-action value table Q̄(s, a) over state subset S̄. The

approximation architecture Q̂ is then initialized based on the Q̄ table. We then perform a

Bellman backup over state subset S̄, using Q̂ for future state-action value estimates. The

newly computed state-action values are stored in table Q̄ and the policy, approximation

architecture and state value table are then updated; this process repeats until a convergence

threshold is met. Algorithm 9 returns approximation architecture Q̂t.

Quantifying the uncertainty of a policy

The preceding approximation saves time and space but may not adequately represent the

state-action value function, which results in a suboptimal policy. Uncertainty about the

respective quantities results in uncertainty about the policy decisions. In Chapter 3 we

presented a method for dealing with this decision uncertainty. Given an available model

〈S,A,P ,R, γ〉, the aforementioned policy could be augmented with an online search al-

gorithm. This concept requires finding a good value function representation. Moreover,

we need to represent a distribution over values, capturing our uncertainty about the specific

expected outcome. The remainder of this chapter walks through how we find a good set of

basis functions for our representation and how we train it to output a predictive distribution

over the average or expected system outcome.

117

5 Applications

Chapter 2 introduced a 3-level active sensing (See Lermusiaux [2007], Mihaylova et al.

[2003], Mihaylova et al. [2002], Ahmad and Yu [2013], Murphy [1999] and Krause and

Guestrin [2009]) hierarchy motivated by planetary exploration. In this chapter we cover in

detail three applications (Figure 5-1), which populate the hierarchy discussed in Chapter

2. These include a synoptic, satellite-based, application for ocean sensing and algae bloom

mapping; a mesoscale, multi-vehicle airplane surveying application; and a microscale sens-

ing application in which an unmanned aerial vehicle (UAV) maps out relevant traversable

roads to provide ground vehicle routing support for disaster relief.

Figure 5-1: Outline of how the three applications discussed in this chapter populate the
3-level hierarchy.

In the microscale part of our architecture, we abstract away the sensor, which detects

traversable roads. This thesis focuses on sensing optimization. However, a key component

of the system is the sensor-processing package. Our algorithms are designed with an eye

toward genericity. To be generic, we need a clean interface between the optimization al-

gorithm and the real world. In Appendix F, we develop a sensor processing package for

detecting roads for disaster relief routing support. This example shows how the sensor pro-

118

cessing package can be abstracted away such that the sensor planning algorithm seems to

directly interface with measurements of the phenomena of interest, in this case the pres-

ence of traversable roads. The synoptic and microscale technologies are fleshed out for two

earthly applications. The mesoscale technology is fleshed out on a multi-vehicle airplane

surveying mission directly applicable to planetary exploration. When combined with an

appropriate abstract sensor processing package, all three applications map to the planetary

exploration application.

Our previously described 3-level hierarchy addresses the narrow focus issue. Combined

with adaptive algorithms and a planetary architecture, it provides a framework for planetary

exploration.

119

5.1 Synoptic Application (Ocean Sensing)

Ocean Sensing We can demonstrate the synoptic level of the hierarchy with an ocean

survey application that scans a wide area for algae blooms, identifying areas of heightened

scientific interest. This application also illustrates the mesoscale and microscale levels of

the hierarchy, as the satelliate identifies other places of interest for future study by closer-in

sensor platforms, such as unmanned aerial vehicles (UAVs) and autonomous underwater

vehicles (AUVs).

Autonomous agents are already very good at collecting a lot of information; our re-

search is intended to help them collect the right information. The optimal adaptive explo-

ration problem is to sequentially select observations that minimize the uncertainty of a state

estimate. A common example of this problem is occupancy map exploration, in which a

sensor seeks to minimize the uncertainty over which grid cells are occupied, using a finite

set of sequential observations. The tools we have at our disposal include a sensing platform,

a generic signal processor, and a pattern recognition engine to detect activities of interest.

A concrete example is autonomous ocean sampling (Monterey Bay Aquarium Research

Institute [2006]), where networked sensing platforms detect activity of interest over a geo-

graphic area (Figure 5-2; Monterey Bay Aquarium Research Institute [2006]). For exam-

ple, a satellite could collect ocean surface color data, which provides indications of algae

bloom formation. The data could be automatically analyzed and aggregated into an algae

bloom formation activity map.

At this level, we generate a synoptic activity map. Our probabilistic activity map pro-

vides a holistic approach to characterizing ocean observations. The map can subsequently

be used to direct the attention of other platforms (e.g. autonomous underwater vehicles

(AUVs)) for focused exploration.

Because the method of searching the area affects the quality of the map, the problem is

to generate the most informative search plan. Due to the overall problem complexity, re-

searchers settle for sub-optimal adaptive greedy strategies for choosing sensing locations.

In other words, rather than considering the combined consequences of the current and po-

tential future actions, they evaluate only the first action. While greedy strategies perform

120

reasonably well (Guestrin et al. [2005]) with a worst case optimality of (1 − 1
e
) (Krause

and Guestrin [2005]), for many applications expensive resources are deployed based on the

information collected, amplifying the impact of sub-optimality. Therefore, a better solution

is very desirable. In this section, we show how domain specific problem structure can be

exploited, and a better sensing strategy can be efficiently learned.

Figure 5-2: The autonomous ocean sampling network (AOSN) in Monterey Bay integrates
a variety of modern platforms (e.g. satellites and AUVs) to produce a comprehensive re-
gional view of the ocean.

Method We review the use of open-loop feedback control (Bertsekas [2005b]) and dis-

crete state policy learning. Although both methods would improve optimality, they are

intractable. Specifically, they solve problems that are infinitesimal in size relative to rele-

vant real-world problems.

Thus, our approach is to model the problem as an “information state” partially observ-

able Markov decision process (POMDP). In a POMDP, the underlying state is partially

observable and decisions must be made using an external distribution over possible states.

However, in our version, that distribution (or belief) is the state (or part of the state) and

therefore the reward can be a function of the belief uncertainty.

Our key contribution is the closed form backup of the state estimate uncertainty, en-

abling a non-myopic approximate policy to be computed via least-squares value iteration

(LSVI). Specifically, we compute an entire value iteration backup for all state samples

121

and control actions as a single compact matrix multiplication. We then use linear function

approximation to compute an approximate value iteration in closed form. We can then ex-

ecute the policy using a rollout algorithm to select the control action, which maximizes the

expected outcome with respect to the base policy.

Organization In the following section, we describe our formulation of the problem and

characterize the optimal solution. We next review possible approaches and why they are

intractable, We then describe our learning algorithm and performance results. Specifically,

we show how the expected reward can be computed in closed form, and demonstrate how

this enables efficient value function learning. We conclude with a demonstration of our

approach on a set of example activity detection problems of up to 1,089 grid cells, and

show that we are able to find policies efficiently that are within 2% of the optimal solution.

5.1.1 The 3-level Hierarchical Framework Applied to an Ocean-Sensing

Application

Both off-world exploration problems and terrestrial sensing problems cover large geo-

graphic areas and require multiple sensor types. The complexities of the real world re-

quire a complex architecture for handling real problems. Described here is a blueprint for

designing real world active sensing systems. The hierarchical framework applies to these

problems and many more.

3-level Hierarchy

In the 3-level hierarchy as presented in Figure 5-3, sensor coverage at the synoptic level

is provided by a satellite. Coverage at the mesoscale and microscale is provided by an

autonomous underwater vehicle (AUV). The synoptic sensing (satellite) optimization algo-

rithm concentrates on dwell time and the value of the collected information. The mesoscale

system is optimized with respect to (the AUVs’) travel time. Travel and dwell time are si-

multaneously optimized at the microscale, to optimize the free-form (AUV) exploration.

The satellite coarsely surveys a large swath of the Earth, then relays its information to a

122

Figure 5-3: The 3-level hierarchy shown above includes a synoptic level (covering a wide
area), a mesoscale level (covering a medium sized area) and a microscale level (covering a
small local area).

group of AUVs. The AUVs deploy to the areas that look most interesting and survey them.

SEAWIFS SATELLITE

The SeaWiFS (Sea-viewing Wide Field-of-view Sensor) sensor flown on GeoEye’s

OrbView-2 “SeaStar” satellite, shown in Figure 5-4, operated from September 18th, 1997

until December 11th, 2010 (NASA [2011b]). The sensor resolution is 1.1 km (LAC), 4.5

km (GAC). Designed to monitor ocean characteristics such as chlorophyll-a concentra-

tion. The sensor recorded information in eight optical bands at a resolution of 1̃km.

The optimization at each level is different. A satellite can quickly change where it

is looking, within the sensor’s footprint. Therefore, the sensing optimization algorithm

concentrates on dwell time and the value of the collected information. The dwell time

refers to how long the satellite looks at a particular location. The satellite is optimized to

look longer at areas of high interest and high uncertainty. The SeaWiFS sensor is shown in

Figure 5-4.

At the mesoscale level, the AUVs transit directly to the locations of interest. Therefore,

the mesoscale system is optimized with respect to travel time. Specifically, a set of target

areas are selected using the satellite data. The target areas may have time constraints. The

123

target areas are divided up between AUVs, where a desired assignment minimizes travel.

Each AUV directly transits to its assigned area, according to the optimized vehicle routing

plan.

The microscale optimizer handles the local sensing tasks. At the microscale level, the

AUVs are allowed to explore the local area freely, collecting data as they move. Therefore,

travel and dwell time are simultaneously optimized at the microscale level.

Figure 5-4: Shown above is GeoEye’s OrbView-2 “SeaStar” satellite carrying the SeaWiFS
ocean color sensor.

5.1.2 The Synoptic Problem (coarse global satellite surveying)

Active sensing example

While future scientists will be interested in mapping extra-terrestrial surfaces and oceans,

modern scientists care about detecting and monitoring algae blooms and other ocean phe-

nomena. To accomplish these objectives, Monterey Bay Aquarium Research Institute is

building an autonomous ocean sampling network shown in Figure 5-5 (see Monterey Bay

Aquarium Research Institute [2006]). The network enables collaboration between differ-

ent kinds of sensors. It builds upon the work discussed in Chapter 2 (see Figure 2-3, which

used a non-adaptive bathymetric survey, adding an adaptable mission planning layer that

allows the underwater sensors to receive and respond to information from above-water sen-

sors. For example, an algorithm could use the network to direct autonomous submarines

124

to explore algae blooms detected by satellites. To create such an algorithm, we divide the

problem into three parts and develop a single algorithm that works as the core for all three

parts. In this way, we develop a good framework for controlling and directing mobile sen-

sors for oceanographic missions while also developing an algorithm that is useful for other

autonomy problems.

Ocean Sensing Our ocean sensing application, described in Section 5.1, is introduced be-

low. At the synoptic level, this research focused on surveying the ocean for algae blooms,

in order to identify places of heightened scientific interest. Once these sites have been iden-

tified, they are ready for future study at the mesoscale or microscale level, using a close-up

sensor platform such as a UAV or AUV. This approach is directly applicable to complex

planetary exploration problems requiring coordination between sensors at all three levels

of the hierarchy. In addition, we tested an aspect of decision uncertainty minimization

(DUM), which is fully defined in Chapter 3, on this problem. Specifically, we developed a

fast adaptive sensing algorithm, then augmented the results via online rollout based reeval-

uation. The results show clear improvement of reevaluation over approximate dynamic

programming by itself.

3-Level Problem

Figure 5-6 shows the three levels of an ocean mapping problem. The synoptic sensor data

is provided by a satellite shown in the figure. That data is used to identify and select the

best local areas to survey. The best locations are those with the highest scientific value; for

example, the locations are likely to contain an algae bloom. Figure 5-6 likewise depicts

routing the AUVs to the best locations. As depicted, each location represents a local map-

ping problem. In the local mapping level, each location is its own information gathering

problem, with the goal of estimating key environment variables in the area.

Synoptic problem model

At the synoptic level, our task is to map the area and sequentially decide where to sense

next. We model the environment as an occupancy grid, as shown in Figure 5-7. The

125

Figure 5-5: The autonomous ocean sampling network (AOSN) in Monterey Bay integrates
a variety of modern platforms (e.g. satellites and AUVs) to produce a comprehensive re-
gional view of the ocean. The network enables collaboration between different kinds of
sensors. For example, an algorithm could use the network to direct autonomous submarines
to explore algae blooms detected by satellites.

Figure 5-6: Satellite-AUV collaboration can be broken into two levels. At the mission
level, we route the AUVs to the mapping task locations. In the local level, each location is
its own information gathering task with the goal of estimating key environment variables
in the area. Both problems can be solved with an uncertainty guided planning algorithm.

126

stochastic sensor measurements cause uncertainty regarding activity map state. Therefore,

we infer the probability of activity in a given cell using Bayes filtering, i.e.,

pi = P (i|wi) = αP (wi|i)P (i) (5.1)

where pi represents the posterior probability that a grid cell is occupied, wi is the sensor

measurement for cell i, P (wi|i) is the sensor model and P (i) is the prior probability of

activity at cell i. We refer to the probabilities of the entire grid as a “belief map.” The ex-

ploration process of building an accurate activity map works as follows. We take a sensing

action, which returns a measurement for each of the 3 × 3 observed grid cells. For each

sensed cell, we then update the belief map si using Equation 5.1. We then use the updated

belief map to select the next most informative sensing action.

Figure 5-7: Occupancy grid and Bayesian belief representation of our satellite sensing
problem.

The satellite can slew anywhere in its footprint with low cost. Therefore, there is no

constraint as to where to sense next. At this level, the application is optimized purely with

respect to the value of the information it collects.

Future applications of this framework include wide-scale surveys of planets and moons.

Because the system is more efficient than non-adaptable approaches to autonomous or

semi-autonomous surveys, it will allow future scientists to conduct remote sensing mis-

sions in a way that saves fuel and builds up detailed maps of the most interesting parts of

the target area.

127

5.1.3 Problem Model

Our task is to map the activity in an area and sequentially decide where to sense next. We

model the environment as an occupancy grid, as shown in Figure 5-8. An occupancy grid

divides the area into discrete locations. The activity is assumed to be located at specific

“occupied” grid cells. Without loss of generality, we assume that the activity does not

change location, and the sensor can be steered from one aimpoint to any other aimpoint

(i.e., the sensor is not constrained to follow a contiguous path).

We model the sensor as a 3 × 3 grid. When the sensor is aimed at a particular grid

cell i, it observes that grid cell and the eight surrounding cells. Modeling the sensor in this

way allows two actions to partially overlap. Therefore, the sensor can plan two actions that

deliberately overlap in order to collect more information at the overlapping grid cell. Each

of the nine measurements created by a single sensing action is modeled as an independent

Bernoulli distribution, with some probability of detecting the activity of interest and some

probability of false alarm.

The stochastic sensor measurements cause uncertainty regarding activity map state.

Therefore, we infer the probability of activity in a given cell using Bayes filtering, i.e.,

pi = P (i|wi) = αP (wi|i)P (i) (5.2)

where pi represents the posterior probability that a grid cell is occupied, wi is the sensor

measurement for cell i, P (wi|i) is the sensor model and P (i) is the prior probability of

activity at cell i. We refer to the probabilities of the entire grid as a “belief map.”

The exploration process of building an accurate activity map works as follows. We take

a sensing action, which returns a measurement for each of the 3 × 3 observed grid cells.

For each sensed cell, we update the belief map si using Algorithm 5.2, then use the updated

belief map to select the next most informative sensing action.

128

Figure 5-8: Occupancy grid and Bayesian belief representation of our satellite sensing
problem.

Figure 5-9: Example comparison of greedy and non-myopic sensing action selection strate-
gies.

129

5.1.4 Motivation For Our Approach

Our objective is to find the most informative sensing plan describing the sequence of sens-

ing actions that minimizes the error in our estimate of the belief map. Since the true activity

state is unobservable, a common approach is to minimize the uncertainty of our belief re-

garding the activity in the area (MacKay [1992a]). In this section, we examine different

existing policies before describing our new approach.

Greedy Strategy

A common sub-optimal approach to the problem is a greedy strategy (Denzler and Brown

[2002]; Guestrin et al. [2005]), which looks one step ahead and selects the sensing action

that reduces uncertainty the most. In the example shown in Figure 5-9, the boxes represent

the map and red indicates the amount of uncertainty. The greedy strategy takes a sensing

action right in the middle of the map, where uncertainty is greatest. A non-myopic strategy,

on the other hand, considers the entire mission duration, consisting of four sensing actions

in this example. As the problem proceeds, we can see that the greedy strategy made a poor

initial decision, leaving part of the map completely unobserved in the end. Consequently,

the non-myopic strategy leads to reduced map uncertainty over the entire mission duration.

Greedy strategies have a known worst case optimality of (1 − 1
e
) (Krause and Guestrin

[2005]1), which may often be acceptable for single-query problems. However, for repeated-

query problems where the activity map of an area may need to be remeasured regularly

(Sukhatme et al. [2006]), improving the policy is likely to be extremely valuable over the

lifetime of the agent.

Open-loop Feedback Control

One non-myopic approach to map exploration is open-loop feedback control (OLFC). This

algorithm was covered in Chapter 3. We review it briefly within the context of our current

application. To select a sensing action, OLFC generates an open loop plan (via search) for

the mission duration, which minimizes uncertainty. After the first action is executed and

1e ≈ 2.71828...

130

the belief is updated, a new open loop plan is generated for the remaining mission. The

process continues for the mission duration.

While OLFC is effective, it is also intractable. For example suppose we have a problem

with 1,000 locations and we make 100 sensing actions per mission. In this case, there would

be 10300 possible plans, which is intractable even with the fastest of today’s computational

resources. To make matters worse, the detections are probabilistic, which makes evaluating

plan outcomes more expensive. Furthermore, we need to update our belief about the world

after each sensing action, which requires us to re-plan in real-time. Clearly this is not the

right approach. Next, we formulate the problem as a POMDP and analyze the complexity

of finding an optimal control policy.

Exploration: POMDP and MDP formulations

As discussed in Chapter 2, the most general formulation of planning under uncertainty is

the partially observable Markov decision process (POMDP). Since the agent is unable to

observe the state, it keeps a probability distribution over states called the belief.

We previously noted that if the reward function depends on the belief—which is often

the case for the exploration task—the state must include the belief in itself. On the other

hand, if the observation model is known a priori, the belief can be updated on each time step

given the observation. These facts allow us to operate in a fully observable domain where

the new state is the belief itself and the new transition model incorporates the observation

model. This formulation is also known as an information state MDP, where an MDP is

defined as a tuple (S,A,Pass′ ,Ra
ss′ , s0, γ) following the POMDP notation.

Solution Complexity

Solving for the optimal sensing policy involves computing a value function over the entire

belief space, or space of possible probability distributions p(s). Examining the structure of

the POMDP value function illustrates the intractability of using standard POMDP solution

techniques to address adaptive sampling problems. A POMDP value function is given by

the supremum of a set of vectors over the belief space, where each vector has dimension m

(m is the size of the state space). For an activity map of size n, there are 2n states, which

131

means that each value function component is a vector of length 2n. For problems larger

than a few hundred states, the problem of even representing the value function becomes

challenging. Similarly, there are 2n possible observations; since the complexity of com-

puting a POMDP solution grows at least exponentially with the number of observations,

for exploration problems the complexity of the solution grows doubly exponential with

the number of locations. Note that even state-of-the-art approximation techniques such

as belief compression or point-based value iteration (Pineau et al. [2003]) cannot scale to

these problem sizes. Our approach, described next, provides a non-myopic solution while

maintaining tractability.

Exploration as an information-state MDP

A general model of the active sensing problem as an info-MDP was provided in section

2.2. Here, we tailor the model to the application at hand.

The value of the POMDP approach is that the policy describes how to act given any

probabilistic state estimate, or belief p(s). The drawback is that any decision-theoretic

formulation of the exploration problem runs into the inevitable complexity of computing

an expected cost, which for a single belief requires evaluating the cost and probability of

all possible states (2n states for n locations). We can, however, evaluate the uncertainty of

the belief relatively easily. The calculation is a linear operation with respect to the number

of locations (n). Hence we follow our info-MDP formulation with an information state

reward function:

• State Space: S = [0, 1]n where n is the total number of grids and si indicates the

probability of grid cell i occupancy.

• Action Space: A = {1, 2, . . . , n}, where an action a is to sense at a particular grid

location a and the surrounding cells.

• System Dynamics: Instead of calculating the whole Pass′ function, we introduce

Pasis′i that specifies the belief transition for grid cell i. If the action does not include

observing grid cell i, then s′i = si with probability 1. On the other hand if grid cell

132

i is observed as oi where gi corresponds to the actual grid occupancy, the transition

following Equation 5.2 is calculated as:

s′i = αT+si

s′′i = αF−si

Pasis′i = siT+ + (1− si)F+

Pasis′′i = siT− + (1− si)F−

where

T+ = P (oi = 1|gi = 1) = P (true− positive),
F+ = P (oi = 1|gi = 0) = P (false− positive),
T− = P (oi = 0|gi = 0),

F− = P (oi = 0|gi = 1),

and α is the Bayesian parameter.

• Reward Model: Since we cannot compute the expected cost of state estimation

errors, we use the information-state approach of maximizing the reduction in uncer-

tainty. One of the most common measures of reduction in uncertainty is reduction in

entropy,

Ra
ss′ = H (s)−H (s′) , (5.3)

where

H(s) = −
∑
i

(
si log2 si + (1− si) log2(1− si)

)
. (5.4)

In the design of experiments literature, this is known as a “D-Optimal” objective

function (Fedorov [1972a]). Another possible choice of information-state objective

is the “E-Optimal” reduction in expected root mean squared error (RMSE). For a

133

single variable binomial distribution with probability p, such as each grid cell in the

activity map, the RMSE is

RMSE(p) =
√

(1− p)2p+ (0− p)2(1− p)
=

√
p(1− p)

Ra
ss′ =

n∑
i=0

(
RMSE (si)−RMSE (s′i)

)
,

Figure 5-10 shows that RMSE is very similar to entropy. Furthermore, RMSE is

directly related to expected map error, computed as the true occupancy (1 or 0) mi-

nus our estimate p squared, multiplied by the probability with respect to occupancy.

Thus, RMSE is not just a reasonable proxy for entropy, it is actually a more appro-

priate reward, as it is directly related to our intended decision. However, the main

benefit of using RMSE comes from its computational properties, which are described

in the next section.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE

Entropy

2×RMSE

Figure 5-10: RMSE versus Entropy.

Our task is to find the policy (π) for selecting control action a in state s that maximizes

the expected cumulative reward over the entire mission. Naturally, we can formulate the

problem as a dynamic program, which maximizes the expected one-stage reward r plus the

134

expected cumulative future reward V (Bellmann [1957]),

V (s) = max
a
Es′ [Ra

ss′ + V (s′)] . (5.5)

The dynamic programming equation is recursive. However, given the value function V ,

we could compute the optimal control action a. Therefore, knowing V is tantamount to

knowing the optimal control policy. Our objective is, therefore, to find the optimal future

reward function V .

Unfortunately, there are no known methods for solving a continuous Markov decision

process exactly. Discretizing the belief space grows exponentially with the number of grid

cells and discrete probability intervals. Even with a relatively coarse discretization and

state-of-the-art algorithms for solving discrete MDPs, such as SPUDD and APRICODD

(based on Abstract Decision Diagrams) (Hoey et al. [1999]; St-Aubin et al. [2000]) and

(factored MDPs) (Guestrin et al. [2003]), cannot compute policies for problems with more

than a few dozen states. We therefore approximate the value function V as a parametric

function, and learn an approximation of V using dynamic programming.

5.1.5 Closed Form Least Squares Value Iteration

We outline our closed form LSVI approach in this section. We begin our discussion by

outlining exact discrete value iteration backup. We then discuss the involved computa-

tional complexity and how our approach overcomes this hurdle. Specifically, we detail our

function approximation architecture and alternate reward function. Our main contribution

is that we can compute a value iteration backup in closed form (with respect to the current

and approximate value functions). We prove our claim with a derivation.

Value Iteration

Our objective is to learn value function V . For a discrete state space, V is represented as

a table of values (one record for each discrete state). The table of values can be initialized

arbitrarily and improved iteratively. To iteratively improve the value function estimate, for

each s, we find control action a that maximizes the expected Ra
ss′ plus the expected value

135

of next state V (s′).

V i+1(s)← maxaEs′
[Rass′ + V i(s′)

]
(5.6)

The sensor measurements are stochastic; therefore, the expectation entails summing over

the possible rewards and next states, times their corresponding probability.

V i+1(s)← max
a

∑
s′
Pass′

(Rass′ + V i(s′)
)

(5.7)

s

a
max

Figure 5-11: Value iteration backup diagram for discrete state-space: white circles repre-
sents states while black circles represent actions..

As shown in Figure 5-11, we compute this summation for each control action, then

replace the current table entry V (s) with the new maximum value corresponding to the

best control action. The above process constitutes one iteration. We repeat the process

until V (s) converges.

Recall that the main problem with this approach is that we must perform a value itera-

tion backup for every single state, which would take far too long (e.g. for 0.1 discretization

of each belief and 1, 000 cells, we will end up with 101000 discrete states). Furthermore, we

cannot store the huge table representation of V in memory. We address these complexities

by representing V as a parametric function. Furthermore, we employ a better reward func-

tion, which serendipitously allows us to compute the summation over possible next states

in closed form.

136

Linear Architecture: Formally, a linear architecture approximates V (s) by first map-

ping the state s to feature vector Φ (s) ∈ <k and by computing a linear combination of

those features Φ (s) β, where β is a function parameter vector. We compose Φ (s) by ap-

plying basis function φ () to the probability of occupancy of each grid cell, such that

Φ (s) =
[
φ (s1) ... φ (sn)

]
(5.8)

We also use an intercept that our description ignores for simplicity. We compute an im-

proved value estimate V̂ (s) for a finite set of states Si ∈ X via value iteration backups,

such that

V̂ (s) = maxaEs′ [Ra
ss′ + Vapprox(s

′)] , (5.9)

where Vapprox (·) = Φ (·) β.

We then update our estimate of Vapprox using regression, where

Φ (X) =


Φ (S1)

...

Φ (Sν)

 (5.10)

is a set of feature vectors for all state samples and

V̂ (X) =


V̂ (S1)

...

V̂ (Sν)

 (5.11)

is the updated value estimate for all state samples.

We re-estimate the parameters β of our function as

β =
(

Φ (X)T × Φ (X) + λI
)−1

Φ (X)T V̂ (X) (5.12)

where ridge penalty λ ensures invertibility and can be increased to reduce estimation vari-

ance at the expense of increased bias. Our updated Vapprox (s) = Φ (s) β now estimates our

new target value V̂ (s) in a least squares sense.

137

To summarize, we simulate a next state and plug that state into Vapprox, our approximate

value function. As the sensor measurements are stochastic, we must sum over the rewards

of each possible future state.

Closed Form Value Iteration Backup

During a value iteration backup, for each control action we compute the expected reward

plus expected (approximate) value, as a weighted sum over potential sensor outcomes. It is

exactly here that we can realize the advantage of using the RMSE as a reward function, in

that we can compute the expected Ra
ss′ in closed form. Furthermore, we can also compute

the sum over Vapprox in closed form, allowing us to compute the entire expectation with

respect to s′ as a single dot product.

Closed Form E[RMSE]: Here we derive a closed form expression for the expected

RMSE, given a set of t observation from action a and our prior belief s. We then show

how this general derivation can be applied to a value iteration backup.

We first observe that the expected reward per grid cell is conditionally independent

given t. Therefore, from t observations, we count the n observations of a particular grid

cell due to the overlapping 3×3 footprints. We then compute the E[RMSE] for that cell. We

define n as the number of observations for grid cell i, and k as the corresponding number

of detections where a detection is an occupied grid cell. Hence:

P (occupancy|detection) =
P (detection|occupancy)P (occupancy)

P (detection)
. (5.13)

Thus, a Bayesian update, computing the posterior probability that a cell is occupied

given just one single detection (n = 1, k = 1), is expressed using the above notation as:

ppost|n=1,k=1 =
T+si

T+si + F+(1− si) (5.14)

Next we will compute a Bayesian update for a particular cell, given a possible set of n

sensor returns. We observe that the computed posterior is the same regardless of the sensor

return order. Thus, the posterior probability that a cell is occupied given k detections (ppost)

138

is

ppost =
(1− T+)(n−k) T k+si

(1− T+)(n−k) T k+si + (1− F+)(n−k) F k+ (1− si)
(5.15)

Similarly, the posterior probability a cell is unoccupied is

1− ppost =
(1− F+)(n−k) F k+ (1− si)

(1− T+)(n−k) T k+si + (1− F+)(n−k) F k+ (1− si)
(5.16)

Thus, E[RMSE] is computed as the sum over the posterior RMSE times the likelihood of

getting k detections and n − k non-detections, given prior si. We weight the likelihood

given occupancy by the prior probability of occupancy (and vice versa), then multiply by

the binomial coefficient (the number of k-element subsets of an n-element set) to get

E [RMSE] =

n∑
k=0


(

(1− T+)(n−k) aksi + (1− F+)(n−k) F k+ (1− si)
)

× n!
k!(n−k)!

√
ppost (1− ppost)

 (5.17)

Notice that the normalizing denominator of a Bayesian update is also the likelihood of
the data given the model. Therefore, when we spell out the posterior RMSE

√
ppost (1− ppost) =

√
(1− T+)(n−k) Tk+si (1− F+)(n−k) Fk+ (1− si)(

(1− T+)(n−k) Tk+si + (1− F+)(n−k) Fk+ (1− si)
) (5.18)

we see that its denominator conveniently cancels out the observation likelihood, resulting

in:

E [RMSE] =
n∑
k=0

n!
k!(n−k)!

√
(1− T+)(n−k) T k+si (1− F+)(n−k) F k+ (1− si)

(5.19)

The key reason we are able to reduce equation (5.17) to equation (5.19) is that both posterior

denominators are the same and
√
d2 = d, a reduction particular to RMSE. We then pull out

the prior and reorganize the sensor parameters.

E [RMSE] =√
si (1− si)

n∑
k=0

n!
k!(n−k)!

√
T+F+

k√(1− T+) (1− F+)
n−k (5.20)

139

We then apply the binomial theorem:

(x+ y)n =
n∑
k=0

n!
k! (n− k)!

xkyn−k, (5.21)

If we let x =
√
T+F+ and y =

√
(1− T+) (1− F+) then

E [RMSE] =
√
si (1− si)

(√
T+F+ +

√
(1− T+) (1− F+)

)n
(5.22)

Set c =
√
T+F+ +

√
(1− T+) (1− F+) (a constant of our sensor model). Note that equa-

tion (5.22) allows us to compute the expected RMSE reduction (our reward) for a given

cell after n measurements. The computation is simply our prior RMSE times (1 − cn).

Therefore, when performing a value iteration backup, we can quickly compute the ex-

pected current reward for the entire grid by applying (1− c)×√si (1− si) at the observed

grid cells. Furthermore, we show that, using RMSE as our basis functions, we can compute

the sum over Vapprox in closed form. As it turns out, we also achieve good results by doing

so.

Closed Form E[Vapprox()] Vapprox () is our approximate value function, and β is the pa-

rameter set of our linear function over our features. We intentionally pick the RMSE for-

mulation for our basis function: φ (·) =
√· (1− ·). Specifically, we compute the RMSE

per grid cell of the resulting posterior state. Serendipitously, these features allow us to ap-

proximate the value function reasonably well. Furthermore, they allow us to compute the

expectation in closed form. First, we calculate the expectation over a single cell, then we

extend the derivation for the entire state.

Es′i [Vapprox(s
′
i)] = E

s′i
[V (ppost)] = E

s′i
[βiφ (ppost)]

= βiE
s′i

[√
ppost (1− ppost)

]

where βi is the ith element of the β vector. As shown above, we can computeEs′i
[√

ppost (1− ppost)
]

in closed form as c×√si(1− si). Consequently, we can combine the closed form expec-

140

tation ofRa
sis′i

+ Vapprox(s
′
i) into a single expression, such that

√
si(1− si) + Es′

i

[
−
√
ppost(1− ppost) + βi

√
ppost(1− ppost)

]

=
√
si(1− si) +−c

√
si(1− si) + cβi

√
si(1− si)

= φ(si)
(
1 + c(βi − 1)

)
The above expressions are given for a single grid cell. We can compute a backup for all

grid cells, given action a, as a dot-product by representing Φ (x) as a row vector and by

constructing a column vector, containing a 1 for each unobserved grid cell and
√
T+F++√

(1− T+) (1− F+) for each observed grid cell. Thus we can concatenate the multiplier

vectors for all actions into a single square matrix C and compute an entire backup as a max

over a single dot product:

V̂ (s) = max Φ(s)T
(
(1− C) + (⊗β)

)
where ⊗ is an element-wise multiplication. Finally, if we concatenate our feature vectors

vertically, we can compute an entire backup for all belief-state samples X as a max over a

single matrix multiplication (note addition of γ).

V̂ (X) = max
rows

Φ (X)T ((1− C) + (C ⊗ βγ)) (5.23)

For additional efficiency, we approximate the finite stage problem as an infinite horizon

problem with discount rate γ = 1/T , where T is the mission horizon. The mean of a

geometric distribution with success probability 1/T is T . Thus, the discount rate was

chosen such that the equivalent stochastic shortest path problem would have an average of

T stages or actions. The infinite horizon approximation allows us to compute just one value

function Vapprox. Our results show that the approximation is effective. Algorithm 10 shows

the closed form LSVI pseudo-code.

141

Algorithm 10 Closed Form Least Squares Value Iteration

Input: (S,A,Pass′ ,Ra
ss′ , T)

Output: Policy π
Initialize β = [0...0]T

Construct C
repeat
X = samples(S)
V̂ (X) = maxrowsΦ (X) ((1− C) +

(
C ⊗ β × γ)

)
β =

(
Φ (X)T Φ (X) + λI

)−1

Φ (X)T V̂ (X)

until near-convergence
return greedy policy w.r.t β

5.1.6 LSVI Results

Our results demonstrate the significant benefit of our approach. We tested our method on

problems with uniform prior beliefs (see test problems inset for details). Our method scaled

from 25 grid cells to 1, 089 grid cells. We measured performance in terms of the normalized

RMSE reduction over the mission horizon averaged over 15 runs. Figure 5-13 depicts the

LSVI method on par with optimal solution, greedy, and random algorithms. As one can

see, our method performed much better than the greedy approach on all problems. LSVI

also performed optimally up to problem size 225, where “optimally” is computed using a

Lagrange relaxation method applicable to this special case problem (Note that we did not

compute an optimal POMDP policy. For even problems of size 20, a POMDP policy would

have state, action and observation spaces of size 220). The performance of our algorithm

tapers gracefully and levels off as the linear function approximation error starts to increase.

These initial results are very encouraging; however, we are able to improve upon them

using the rollouts algorithm (Bertsekas and Castanon [1999]).

142

TEST PROBLEMS

It is important to measure the optimality gap reduction of our approach with respect to

other approaches. While it is challenging to calculate the optimal solution value in gen-

eral, we tested all methods on problem instances for which the optimal solution value

could be calculated via Lagrange relaxation with our closed form E[RMSE] expression.

Our test problems have uniform 0.5 prior beliefs for all grid cells and each problem al-

lows n sensing actions that can evenly cover the map. For example, we tested a 33 × 33

problem allowing 121 sequential sensing actions. Thus, the optimal open loop plan is

to evenly tile the sensing area with 11 rows of 11 sensor footprints. We can prove this

property via Lagrangian relaxation. General problems with unequal priors and an arbi-

trary number of sensing actions do not have trivial solutions. Our policies were trained

on arbitrary problems. They performed well on both arbitrary and special case problem,

with respect to the greedy solution. However, in order to provide optimality comparison,

we focused our attention for the specific set of problems.

Lagrange Relaxation We solve the test problems using Lagrange relaxation, by re-

laxing the sensor footprint and integrality constraints. Thus, the relaxed problems allow a

single sensing action to cover non-adjacent cells as well as a non-integer number of sens-

ing actions per cell. The Lagrangian relaxation solutions satisfy the original constraints,

thus are optimal.

5.1.7 Combining LSVI and Rollout

Rollout is a method for extracting a policy at runtime, which uses some additional com-

putation but tends to make better action selections (Bertsekas and Castanon [1999]). For

the full details of rollout, see Bertsekas [2007]. Here we provide an intuitive explanation.

Typically, we determine the policy at runtime by finding the control action a which max-

imizes the dynamic programming equation (5.9), with respect to our approximate value

function Vapprox. On the other hand, the rollout algorithm selects the control action that

maximizes the expected outcome with respect to a multi-stage rollout of the base policy. A

143

multi-stage rollout computes (via simulation) the expected outcome of the base policy over

the remaining mission horizon (Algorithm 11). In other words, rollout maximizes over the

initial action choice based on where the base policy will lead (see Figure 5-12). By doing

so, rollout makes better control action selection with one step look ahead. While rollout

is somewhat expensive for stochastic systems (Bertsekas and Castanon [1999]), our closed

form expected reward expression makes rollout fast. Figure 5-13 illustrates the result of

fusing rollout method with LSVI. As expected, LSVI+Rollout boosted the performance

more compared to the LSVI method. The average performance of LSVI+Rollout was al-

ways within 2% of the optimal solution on all problem cases.

Algorithm 11 Rollout Algorithm

Input: (S,A,Pass′ ,Ra
ss′ , T), st, base-Policy π

Output: Policy π+

Q̃π(st, a) = E
s′

[
Ra
sts′ +

T−1∑
k=t+1

Rπ(sk)
sks′

]
π+ ← π
π+(st)← argmaxaQ̃

π(st, a)
return π+

144

π

max

Figure 5-12: Rollout considers each action and simulates where the approximate policy
will lead.

Size Optimal LSVI Greedy Random LSVI+Rollout Optimal LSVI+Rollout

25

36

81

144

225

324

441

576

729

900

1089

1.00 1.00 0.94 0.76 1.00 7.21 7.21

1.00 1.00 0.93 0.66 1.00 8.63 8.63

1.00 1.00 0.88 0.71 1.00 19.42 19.42

1.00 1.00 0.91 0.73 1.00 34.52 34.52

1.00 1.00 0.93 0.74 1.00 53.94 53.94

1.00 0.98 0.91 0.74 1.00 77.33 77.68

1.00 0.97 0.90 0.75 0.99 105.04 105.73

1.00 0.94 0.91 0.75 0.99 136.49 138.10

1.00 0.96 0.92 0.77 0.99 172.83 174.78

1.00 0.96 0.91 0.77 0.99 213.48 215.78

1.00 0.96 0.90 0.77 0.99 257.54 261.10

65%

70%

75%

80%

85%

90%

95%

100%

25 36 81 144 225 324 441 576 729 900 1089

N
o

rm
a

li
z
e

d
 R

M
S

E
 r

e
d

u
c

ti
o

n

Problem Size

94%

95%

96%

97%

98%

99%

100%

25 36 81 144 225 324 441 576 729 900 1089

N
o

rm
a

li
z
e

d
 R

M
S

E
 r

e
d

u
c

ti
o

n

Problem Size

Random

Greedy

LSVI

Optimal

LSVI LSVI+Rollout

Optimal

Figure 5-13: Normalized RMSE reduction for LSVI, Greedy, and Random methods. LSVI
performed optimally up to problem size 225. Performance tapers and levels off as the
problem size increases.

145

Size Optimal LSVI Greedy Random LSVI+Rollout Optimal LSVI+Rollout

25

36

81

144

225

324

441

576

729

900

1089

1.00 1.00 0.94 0.76 1.00 7.21 7.21

1.00 1.00 0.93 0.66 1.00 8.63 8.63

1.00 1.00 0.88 0.71 1.00 19.42 19.42

1.00 1.00 0.91 0.73 1.00 34.52 34.52

1.00 1.00 0.93 0.74 1.00 53.94 53.94

1.00 0.98 0.91 0.74 1.00 77.33 77.68

1.00 0.97 0.90 0.75 0.99 105.04 105.73

1.00 0.94 0.91 0.75 0.99 136.49 138.10

1.00 0.96 0.92 0.77 0.99 172.83 174.78

1.00 0.96 0.91 0.77 0.99 213.48 215.78

1.00 0.96 0.90 0.77 0.99 257.54 261.10

65%

70%

75%

80%

85%

90%

95%

100%

25 36 81 144 225 324 441 576 729 900 1089

N
o

rm
a

li
z
e

d
 R

M
S

E
 r

e
d

u
c

ti
o

n

Problem Size

94%

95%

96%

97%

98%

99%

100%

25 36 81 144 225 324 441 576 729 900 1089
N

o
rm

a
li
z
e

d
 R

M
S

E
 r

e
d

u
c

ti
o

n

Problem Size

Random

Greedy

LSVI

Optimal

LSVI LSVI+Rollout

Optimal

Figure 5-14: Normalized results: LSVI + Rollout performed within 2% of optimal on all
problems.

5.1.8 Impact

Current methods employ greedy sensing action selection. The non-myopic approach has

been avoided historically, since no exact or approximate MDP solver has been shown to

work on relevant problem sizes in this domain. Our contribution is an information-state

POMDP sensor tasking problem formulation and an efficient function approximation dy-

namic programming scheme for control policy learning. The result is efficient non-myopic

sensing action selection.

Our key innovation, which makes function approximation dynamic programming effi-

cient, is our derivation of a closed form expected reward expression for the information-

state reward function RMSE. Likewise, we enable a closed form value iteration backup

by selecting basis functions for our future reward representation, which coalesce with the

current reward function. We further improve the performance of the resulting policy using

rollout. Our method solved large state space problems within 2% of optimal, garnering

significant improvement over the state-of-the-art of both optimal exploration and dynamic

programming.

146

5.2 Mesoscale Application (Multi-Vehicle Aerial Survey Co-

ordination)

Mesoscale multi-vehicle aerial survey coordination We can illustrate the mesoscale

level of the hierarchy with a multi-vehicle aerial survey, which routes vehicles to multiple

survey locations (See Soloman [1987], Lolla et al. [2012], Desrochers et al. [1988], Kilby

et al. [2000], Kolen et al. [1987], Larsen [1999], Ralphs et al. [2003], and Fisher and

Jörnsten [1997]). We tested an aspect of our DUM algorithm on this problem, by framing

it as a Markov decision process, learning an off-line approximate policy, and refining the

policy online using nested rollout. More specifically, our approach started with an off-the-

shelf heuristic, which we enhanced using approximate dynamic programming, and further

augmented online through decision uncertainty minimization planning. The results showed

a clear improvement over current ways of approaching this problem.

We examine the complementary strengths of value function based policy learning and

guided search. Our work unifies rollout based open-loop feedback control (outlined by

Bertsekas [2005a]) and plan-space approximate dynamic programming (studied by Boyan

[1998]).

Open-loop feedback control builds and executes a sequence of actions (an open-loop

plan) at runtime. When the resulting real-world situation deviates from what was expected,

the system replans. Reinforcement learning solves the same problem by learning an ap-

proximate value function, which is subsequently used to select actions. We typically cannot

learn exact value functions for interesting real-world problems, as we observed in Section

5.1. Therefore, we use rollout (value function based limited search) to construct an open-

loop plan that improves upon value function based action selection, using an approximate

value function.

The above method is performed in the real-world state-space and actions are added

to the plan in time order, the same order as they are executed in the real-world. On the

other hand, plan-space search constructs an open-loop plan out of order. For example, a

future action may be added to a plan even though our immediate action has not yet been

determined. The term plan-space refers to the fact that we are searching though a space of

147

plans. We can likewise guide plan-space search by learning a value function. A plan-space

value function informs us of actions that should be added to our plan.

Rollout-based open-loop feedback control and plan-space approximate dynamic pro-

gramming are generally considered orthogonal (Traverso et al. [2004]). However, we have

constructed an inclusive framework that incorporates both methods. We present experi-

ments to find natural planning action spaces, which prescribe allowable plan changes that

meaningfully reflect their impact on global optimality. We demonstrate our approach on

multi-UAV adaptive mission planning.

5.2.1 Application & Problem Formulation

Autonomous coordinated aerial survey (ACAS) involves multiple unmanned air vehicles

(UAVs), which must coordinate with external mission requirements to accomplish an in-

formation gathering task. For example, suppose a high-level mission planner assigns a set

of reconnaissance tasks to a multi-UAV team. Each task includes a time window constraint,

which facilitates coordination with external assets. The autonomy objective is to minimize

total team travel-time.

Figure 5-15: VRP Drawing

5.2.2 VRP-TW Problem Formulation

We formalize ACAS (in Table 5.1) as a vehicle routing problem with time windows (VRP-

TW), following the notation presented in Fisher and Jörnsten [1997]. They state the prob-

148

Variable Definition
m number of vehicles
n number of customers; index 0 denotes the depot

cij travel time from location i to j
tij time for travel from location i to j (equal to cij in our problem)
si service time at location i (0 in our problem)
ei earliest time allowed for arriving at location i
ui latest time allowed for arriving at location i
N {1. . . n} the set of locations to visit
N0 N∪{0} the location set including the depot
M {1. . . m}

Table 5.1: ACAS problem formulation

lem as a vehicle routing application where goods are transported from the depot and de-

livered to various locations by multiple vehicles, as shown in Figure 5-15. The delivery

times are restricted by time windows and the distance between locations is computed as

the Euclidean distance on a plane. The objective is to minimize the travel time such that

locations are visited within the specified time windows. The time window constraints can

make the optimal solution significantly more expensive.

5.2.3 Approximate Dynamic Programming

Approximate dynamic programming (ADP) combines function approximation and dynamic

programming to learn an approximate value function for a Markov decision process (MDP).

The basic MDP formulation is as follows:

• State: x

• Action: u ∈ U(x)

• Reward: g(x, u)

• Value Function: J(x)

The dynamic programming operator is subsequently applied to the value function at

run-time to select the next action u:

u = arg max
u

E [g (x, u) + J (f (x, u))]

149

Thus, learning a value function is tantamount to learning a feedback control policy.

5.2.4 Value Function Guided Search

A value function can also be used to guide a search. For example, the common A∗ algorithm

prioritizes planning actions using the actual plan cost-so-far plus the approximate cost-to-

go. A search in plan-space constructs a complete open-loop plan. Guided search requires

a plan-space value function to help us search though a space of plans. The associated

plan-space MDP is defined as follows:

• Plan-state: x = the current plan

• Action: u ∈ U(x) = plan augmentation

• Reward: g(x, u) = immediate plan cost reduction

• Value Function: J(x) = potential for plan improvement

5.2.5 Unified State-space and Plan-space MDP

The key observation is that our MDP definition is sufficiently general and can therefore

describe both a state-space and plan-space framework. For example, we can view the state-

space dynamic programming operator as constructing a one-step finite horizon plan. In this

example, the current plan x is either empty or contains one action and action-space U(x)

includes all real-world actions. From this viewpoint, the state-space framework is just a

special case of our plan-space MDP.

We extend this idea to include a planning strategy continuum from pure dynamic pro-

gramming to guided search. We begin by describing Bertsekas’ survey regarding open-loop

feedback control and rollout (Bertsekas [2005a]). We then connect this idea to our general

MDP planning model and the concept of natural planning action spaces.

5.2.6 Rollout

In this section, we review how ADP policies can be improved using rollout. A value based

policy employs the control action that maximizes the dynamic programming operator. In

effect, the dynamic programming operator simulates forward one step.

150

However, an approximate value function may yield a sub-optimal policy. Alternatively,

rollout evaluates each initial control action; then simulates forward to the end of the plan-

ning horizon using the base policy. In other words, given an initial action, we simulate

forward to see where the base policy leads. Essentially, rollout recomputes the Q-values

(state-action values) at runtime guided by the approximate value function. Overall, rollout

selects better control actions than the base policy.

The above paragraph describes a one-step rollout. We can generalize the notion of

rollout to allow maximization at multiple decision points. For example, a two-step rollout

examines each possible sequence of two actions, then simulates to the end of the planning

horizon using the base policy. Ultimately, a t-step rollout, where t is the horizon length,

is a complete forward search. Therefore, rollout defines a continuum between the one-step

look-ahead dynamic programing operator and a complete search.

5.2.7 ADP and Guided Search

The above method is performed in action-space. In other words, actions are added to the

plan in time order, the same order as they are executed in the real-world. On the other hand,

plan-space search constructs an open-loop plan out of order. For example, a future action

may be added to our plan even though our immediate action has not yet been determined.

We can likewise guide plan-space search by learning a value function. A plan-space value

function informs us of actions that should be added to our plan.

5.2.8 Open-loop Feedback Control

Search based planning extracts an action sequence for the entire planning horizon. Given a

probabilistic setting, we would construct an open loop plan with the optimal expected out-

come. During plan execution the system deviates from the expected state sequence, causing

the remaining plan to be suboptimal. We respond to the system feedback by constructing

a new open-loop plan. Specifically, we construct a complete open-loop plan; yet, we only

employ the first action in the plan. This action selection approach (or policy) is known as

open-loop feedback control.

151

5.2.9 Natural Planning Action Spaces

Our above description assumes temporally ordered rollout. In many cases, planning actions

are more naturally performed in a different order. For example, when assigning tasks to

UAVs, it is more natural to construct a complete route for a particular UAV. Specifically,

greedy assignment of tasks to UAVs in temporal order results in a less optimal plan than

holistic greedy route construction. This is an example of a natural planning action space.

Our research employs natural planning action spaces combined with value based rollout.

We experimentally discover natural planning action spaces, then learn a value function in

plan-space using ADP. We then use the value function to perform OLFC using rollout in

plan-space. In this way, we unify rollout-based OLFC (Bertsekas [2005a]) and plan-space

ADP (Boyan [1998]).

5.2.10 Uncertainty

The VRP-TW formulation introduced in Section 5.2.2 implies a deterministic problem.

However, ACAS involves uncertain system dynamics (e.g. sub-task completion time and

high-level plan changes). Consequently, ACAS requires sequential decision making where

actions are selected based on the current state. In the next section, we frame ACAS as

a sequential decision making problem; however, we formulate each decision as a natural

planning action space based dynamic program. Thus, we present our natural planning

action space experiment results used to drive our approach. We then formalize our dynamic

program and introduce rollout based policy execution.

5.2.11 Approximation Dynamic Programming Approach

Here we describe an ADP approach to the VRP-TW. To construct our ADP method, we

first couch the planning problem as a sequential decision making problem, along a natural

planning action space, where routes are constructed in stages. Next we formalize the prob-

lem in terms of states, actions, rewards, system dynamics and an optimization function.

Finally, we reformulate the optimization problem as a dynamic program, and define the

approximation architecture to represent the cost-to-go. Using this formulation, we learn an

152

approximate solution using value iteration.

5.2.12 Sequential Decision Making Problem (Discovering a Natural

Planning Action Space)

To formulate the VRP-TW planning process as a sequential decision making problem in

a natural planning action space, we examined current VRP planning heuristic approaches.

These heuristics are human-generated metrics to direct the planning process toward a rea-

sonable solution. A good heuristic should be reasonably related to the cost gradient of the

solution variable assignments. Alternatively, we view these heuristics as a natural planning

action space. In particular, a heuristic merely restricts the set of planning actions we may

take, given a particular planning state. For example, an unrestricted planning action space

allows us to change any plan to any other plan. An unrestricted action space produces an

optimal solution; however, it also leads to a computationally intractable search. Therefore,

we seek a restrictive planning action space, which enables local improvements that are

consistent with a globally optimal solution.

We compared the performance of the following methods on the VRP-TW: insertion,

savings, sweep, crossover and exchange. A summary of the heuristics is presented in Ap-

pendix A. The results (Figure 5-16) of our comparison showed that the savings and sweep

constructive heuristics perform poorly but the insert heuristic works quite well. In our ex-

periments, we used the insertion route construction technique to provide a starting solution

for the crossover and exchange improvement methods. The crossover and exchange meth-

ods garnered modest improvements over the starting solution. In other words, although

crossover and exchange worked well, their results stem largely from the effectiveness of

the insertion heuristic. Consequently, we designed our ADP algorithm around insertion.

5.2.13 Insertion Method & Problem Formulation:

The insertion method initially constructs n single node routes, where n is the number of

locations to visit. The nodes in these single node routes are referred to as the “unallocated

nodes.” The insertion method starts building the first real route by allocating one node to it.

153

(a) (b) (c)

Figure 5-16: VRP-TW heuristic comparison (solution cost, run time, problem size)

Next we evaluate this basic feasible plan’s cost. The plan cost is the sum of the unallocated

single node route costs plus the allocated route cost. We select the next node and route

insertion location that reduces the current plan cost the most. The plan is then augmented

by removing the respective node from the unallocated set and inserting it into the real route.

The resulting cost reduction of the augmented plan is computed and the process is repeated.

When the current route is full, we begin another one. The process repeats until all nodes

are allocated.

To elaborate, the insertion method is comprised of a sequence of insertion decisions.

At each iteration we acquire a plan cost reduction, represented by a current reward function

g(x, u), where x is the current state of the planning process and u is our insertion action.

Action u consists of inserting an unallocated node at a particular position in the partial

path, which we are currently building. Thus, action space U (where u ∈ U) is the Cartesian

product of the unallocated node set and the partial path position set.

u ∈ U = {{unallocated nodes} × {partial route positions}}

Similarly, the state also consists of the unallocated node set and the current partially con-

structed route. Our plan state does not include the fully constructed routes because they do

not affect the future plan cost reduction.

x = {{unallocated nodes} , {partial route}}

Based on the above reward structure, the objective of our sequential planning problem is to

154

maximize the total plan cost reduction over the entire n-stage planning process.

max
uk

n−1∑
k=0

g (xk, uk)

Thus, a planning trajectory leading to the optimal solution maximizes the above function.

However, the insertion method does not optimize this function because it makes greedy

choices with respect to the insertion metric. Our approach is to reduce the greediness by

learning an approximate cost-to-go function in plan-space.

The cost-to-go (J) is the maximum reduction in plan cost that can be attained starting

from a given plan state. For example, at the beginning of the planning process, the cost-to-

go is equal to maxuk
∑

n−1
k=0g (xk, uk) where x0 =

{{
all nodes

}
, {φ}

}
. Thus, the initial

cost-to-go is the cost of n single node routes minus the optimal plan cost.

At subsequent planning stages, the cost-to-go may be less than the difference between

the current plan cost and the optimal plan cost. Due to a suboptimal prior decision, the

optimal plan may no longer be reachable from the current plan state. However, if we

knew the actual cost-to-go, we could use it to direct planning decisions toward the optimal

solution. Specifically, the current reward g(x, u)plus the cost-to-go J (f (x, u)) is maximal

on the trajectory leading to the optimal solution2. This property is known as the principle

of optimality (Bellman and CORP [1952]). Using this principle and the assumption of a

correct cost-to-go functionJ (•), we can state the following:

max
uk

n−1∑
k=0

g (xk, uk) = max
u0

{g (x0, u0) + J (f (x0, u0))}

In other words, if we select the local planning decision that maximizes the current

reward plus the cost-to-go, we will construct the optimal plan. We formalize these concepts

as a dynamic program.

2Note that system dynamics functionf (x, u)yields the next planning state given the planning action.

155

5.2.14 Dynamic Programming Problem

The dynamic programming problem and algorithm are defined as follows:

State x = {{unallocated nodes} , {partial route}}
T = {{} , {∗}} (terminal state; with empty unallocated node

set)

Actions U(x) = {{unallocated nodes} × {partial route positions}}
Dynamics x′ = f (x, u) wherefperforms planning action u

(node insertion) on state x, yielding state x′.

Rewards g(x, u) = cos t (x)− cos t (x′)

DP Algorithm J (x) = maxu {g (x, u) + J (f (x, u))}
J(T) = 0

5.2.15 Approximation Architecture and Learning

The dynamic programming (DP) formulation above assumes a correct cost-to-go function

J . Using DP we could theoretically compute J . However, due to the extremely large state

space, the computation is intractable. Instead, we represent the cost-to-go as a continu-

ous mathematical function and learn an approximation using value iteration. The general

approach is known as approximate dynamic programming (ADP).

We represent the cost-to-go function using non-parametric least squares regression with

a polynomial kernel. Please see Appendix B for details. Our features consist of indicator

variables of our state. For example, given the DP formulation above, we represent the

current state as two concatenated vectors of binary variables indicating whether each node

is part of the unallocated node set or the current partial route.

We compute our cost-to-go function using value iteration. Specifically, we initialize our

approximate function (Japprox) arbitrarily, and compute improved estimates (Ĵ) for a set of

states samples (Xsamp) by maximizing the DP equation with respect to the currentJapprox

for each x:

Ĵ (x) = max
uk
{g (x, u) + Japprox (f (x, u))}

156

We then re-estimate function Japprox from value samples Ĵ (Xsamp) using non-parametric

least squares regression with a polynomial kernel. The process proceeds for a set number

of iterations or until convergence. The resulting value function is subsequently used for

select planning decisions such that π represents our base policy:

u = π (x) = arg max
u
{g (x, u) + Japprox (f (x, u))}

5.2.16 Rollout Policy

Our value function is approximate. Consequently, π is suboptimal. However, we can aug-

ment the value-based policy by using rollout to improve action-selection by judiciously

searching forward in the plan space and evaluating the consequences of possible decisions.

Specifically, we maximize over the initial action choices while following the base policy

thereafter. For comparison, the optimal solution can be computed by breadth-first search

over the entire plan space. However, the plan space size is exponential in the plan space

depth, where the depth is the number of decisions required to produce a complete plan.

Thus, the breadth-first search approach is intractable. Rollout can be thought of as a com-

promise between base policy π and breadth-first search.

Figure 5-17: Rollout versus breadth first search

5.2.17 Experiments

Our approach uses ADP to find a better cost-to-go with respect to a natural planning ac-

tion space. We then use rollout to extract an action in real-time. To assess our approach,

we compared three approaches to the overall planning problem. Firstly, we used a stan-

dard approach to solving the optimization given by a Mixed Integer Linear Programming

157

(a) 10 example ACAS problems (b) 14 selected Solomon benchmark
problems

Figure 5-18: Performance results (Insert, ADP and MILP).

approach implemented using a commercial MILP solver (CPLEX). Second, we used a stan-

dard heuristic from the literature (specifically, an insertion heuristic). The MILP approach

provided the optimal solution, but scaled extremely poorly. The heuristic approach scales

well, but generally provides worse performance. Third, we examined our ADP algorithm.

The image on the left side of Figure 5-18 shows the comparison of the insertion heuris-

tic, ADP (with rollout) and the MILP solver over a candidate set of 10 problems taken

from the ACAS domain. The representative problems have 20 reconnaissance locations,

time windows, and target-set coverage requiring multiple UAVs. In other words, it is im-

possible to cover the target set in the allotted time without using multiple UAVs (due to

the number of targets, time windows and special dispersion). The targets are randomly

dispersed over a 100 by 100 area. The base is located at the centroid. The time windows

are randomly generated with an average width 10% of the mission duration. We restricted

the analysis to problems small enough (20 targets) that the MILP solver could consistently

find the optimal policy. Notice that the ADP solver generally finds low-cost policies in the

same problems as the MILP solver, and always outperforms the heuristic.

To demonstrate the general applicability of this approach to resource allocation prob-

lems, we next tested the ADP algorithm against Solomon Benchmark Problems. The prob-

lems highlight several parameters affecting routing algorithms, specifically geographical

dispersion, number of nodes serviceable by a single vehicle, percentage of time-constrained

customers and the tightness / positioning of the time windows. In brief, the problems differ

with respect to the width and density of our constraint of interest (time windows). To con-

struct a useable problem set, we started with the Solomon VRP-TW type RC2 problems

158

(Soloman [1987]). The RC2 problems vary in both geographic dispersion (i.e. random and

clustered placement) and time window tightness. We reduced the number of locations in

each problem such that a MILP exact solution could be calculated. We then ran the MILP

solver on each problem and kept each problem that could be solved in 10 minutes.

The right-hand side of Figure 5-18 again shows a comparison of the Insertion heuristic,

ADP and MILP solvers. The difference between the insertion and optimal policies is less

noticeable, but again the learned policy performs at least as well as the heuristic and usually

better. It is worth noting that these were the only 14 problems in the data set for which

CPLEX could compute a solution. Our ADP algorithm can easily scale up to much larger

problems while, presumably, maintaining good quality results.

5.2.18 Problem Class Meta-Learning & Future Work

Above we learned a cost-to-go function which essentially estimates how much a plan

change will improve our solution. The function estimate is based on problem specific

features. The estimate is subsequently used to search and construct a plan. Given the above

method, we must learn a cost-to-go function for each problem. However, we would like to

learn a cost-to-go function for a whole class of problems, such as might be encountered by

a small fleet of UAVs covering a particular area of responsibility from a forward operating

base. We would learn one function over a range of missions, and use that function for plan-

ning. In that case, all of the expensive upfront learning can be performed offline, and only

the final planning is performed in real time.

To accomplish this goal, we must be able to estimate the cost-to-go based on problem

specific features, in addition to search state as demonstrated above. As a first step, we sim-

ply tried to construct a single function that would estimate the optimal solution cost over a

class of problems. To do so, we constructed a set of 100 problems and solved them using

MILP. We then extracted various problem specific features from each problem, based on

time-window tightness, travel distances and target dispersion. We then constructed a func-

tion which mapped these features to the optimal solution cost. Our results show that we can

accurately estimate problem cost features. Our results lend strong support for performing

159

meta-learning over a problem class.

Figure 5-19: 100 problem comparison of estimated solution cost to MILP (open-loop opti-
mal) solution cost.

5.2.19 Conclusion

In this section, we presented an idea that exploits the strengths of both value-based pol-

icy construction and search. We showed how to discover a natural planning action space

experimentally, then described how to learn a value function based on that action space.

Finally, our experimental results demonstrated that rollout policy extraction, with respect

to our value function, selects good actions.

Our next step is to generalize our approach, such that a single value function can apply

to a wider range of problem instances. A major challenge is to find representative basis

functions for our linear architecture. Section 5.2.18 outlines our initial work in this area,

and demonstrates that we can learn a function that approximates the optimal solution cost

of a wide range of problems. While the idea is an unconventional approach to planning, it

represents a viable approximate method to heretofore intractable problems.

160

5.3 Microscale Application (Disaster Relief)

Active detection of drivable surfaces in support of robotics disaster relief missions At

the microscale level of the hierarchy, autonomous agents must make decisions based upon

the information they collect while exploring the local area. In this section, we describe

an application that employs an abstract Bayesian sensor that allows AUVs to optimally

survey an area to find roads for rescue vehicles to follow to a rescue site. The system

algorithmically determines which mission path will minimize risk to the ground vehicle

while optimizing response time. Our test results showed that DUM methods were more

effective than ADP plus rollout for risk-directed adaptive sampling problems (Bush et al.

[2012]).

Figure 5-20: Motivating Scenario: Natural Disaster Relief Scenario

While sensing and avionics technology has made great strides in the past decade, the

autonomous capabilities of UAVs lag behind. Autonomous systems lack humans’ creative

reasoning abilities to maintain safe and robust behavior in uncertain environments. Thus,

most unmanned systems still rely on human tele-operation, which is manpower intensive

and requires reliable communication with a ground base. In this section, we propose a new

approach to adjustable autonomy for reducing operator workload while retaining trust that

the mission will proceed safely. Previous work in adjustable autonomy usually involves

humans manually assessing the utility and setting the level of autonomy. This approach re-

quires them to maintain complete situational awareness throughout the mission. However,

161

applications that demand large-scale distributed efforts, such as disaster relief, environmen-

tal surveys, and convoy protection render this approach impractical. Our goal is to design a

system that assesses its own abilities and requests human assistance in the amount needed.

The challenge is to build the trust of the human operator that this system truly knows what

assistance it needs and can operate safely otherwise.

Our approach to adjustable autonomy gains operator trust by making and explaining

decisions based on risk. Our work is developed in the context of a disaster relief scenario,

where a rescue vehicle must traverse an uncertain landscape to administer aid. The mission

planner must tradeoff between risk reduction and decision deadlines. We consider two

aspects to risk: the probability of mission failure and decision uncertainty in the mission

planning process. Due to the inherent uncertainty in our belief, the probability of mission

failure is not known exactly, so the mission planner evaluates risk as a distribution over

this probability. In particular, the metric used to evaluate risk is the confidence that the

probability lies above a threshold. The metric is calculated over the entire rescue vehicle

mission path and it is calculated through a combination of Dijkstra’s algorithm and value

iteration. These risk distributions give rise to uncertainty when choosing between mission

plans for lowest probability of failure.

To mitigate this, aerial scouts are sent ahead of the rescue vehicle to reduce belief un-

certainty where it is needed most. The scouts are tasked with surveying areas that yield the

highest expected uncertainty reduction within the time before the mission vehicle makes its

next decision. Path planning for the scouts is achieved via approximate dynamic program-

ming using a stochastic value function represented by a Gaussian process. For each scout,

we use a unique representation of the state-space which is centered and rotated around the

vehicle. Based on the updated belief provided by the scouts and the timing constraints

of the scenario, the mission planner determines whether mission plans exist that have low

enough risk associated with them.

Based on a series of risk thresholds, different amounts of human assistance are re-

quested. Thus, we can engage the operator specifically when needed and at the proper

amount, as well as provide reasoning and context for why and where the operator’s help is

needed. Simulation experimental results are presented which verify that the scout planner

162

effectively reduces belief and decision uncertainty given any area to survey. The results

demonstrate the potential of this new approach to achieve consistent safety and robustness

throughout a mission by requesting operator assistance at the appropriate times.

5.3.1 Innovations

Adjustable autonomy has long been appealing for its vision to utilize the best abilities of

humans and autonomous agents. However, the difficulties in creating a truly synergistic,

dynamic relationship between humans and agents make adjustable autonomy a loosely

defined concept. In this section, we introduce the risk-based innovations of our approach

to adjustable autonomy, describe the system architecture, and explain the major algorithms

driving our framework.

An adjustable autonomy system makes two types of decisions: The first type deter-

mines what vehicle actions to take in the future and the second governs when and how to

engage the human operator. Our first innovation is that we ground both these decision types

on the risk to the mission goals. Given a logistical plan for the mission, we probabilistically

quantify the risk to each component of the plan. The component risks imply a risk config-

uration over each mission goal, which informs how we engage the human. Furthermore,

the notion of risk is built into the planning process. Our adjustable autonomy architecture

takes advantage of this to provide situational awareness, keeping the human involved at the

appropriate level of detail for each mission component.

Our second innovation is how we improve our knowledge of the risks to the mission

through the use of scout aerial vehicles. Using only the initial low-resolution knowledge of

map risk severely limits the quality of decisions we can make, so we dynamically deploy

scouts to collect more detailed information. Our algorithms lead the scouts toward the

most valuable data that will help us identify the least risky paths for future components of

the mission. The scouts are tasked to survey areas least well known about relative to the

logistics plan. Flying over an area that our logistics vehicles will never cross on ground is

useless unless it lies on the quickest path from one area of interest to the next. In summary,

our contribution to adjustable autonomy is to encode risk at each decision-making process.

163

5.3.2 Architecture

Figure 5-21: System Architecture

The algorithmic modules within our artificial intelligence architecture enable the incor-

poration of risk information and involvement of the human operator. The modules include

the logistics executive, the scout executive, and the adjustable autonomy module. These

components interact with the logistics vehicle, the scout vehicle, and the human operator,

respectively, depicted in Figure 5-21. The logistics executive contains several sub-modules.

Two of them are the high-level logistics planner and the low-level roadmap planner, each

containing a risk assessment functionality that operates on the risk belief map. Together,

these items determine the course of action for the logistics vehicle. The logistics planner

accepts mission goals from the operator and generates sequences of waypoints, producing

a high-level roadmap which will achieve the mission goals. Then, finding the actual path

taken between waypoints is performed by the roadmap planner.

It is the job of the logistics planner to choose the actual sequence of waypoints in such a

way that it balances and reduces the risk among each component of the mission. However,

to make well-informed decisions, it will need the scouts to gather additional data in areas

164

the logistics vehicle may cross in the future. The scout dispatcher determines where to

send the scouts, given the plans currently considered by the logistics planner. Each plan

has some uncertainty in how truly risky it is to execute. This plan risk uncertainty is mapped

into map uncertainty, or, in other words, the scout dispatcher determines the map locations

that are responsible for most of the plan uncertainty. It tasks the scouts to survey these

areas, for the information they collect will help disambiguate candidate plans. Each scout’s

executive runs a scout planner that accepts these areas as input as well as a time limit for

reporting results on each area. The executive must also receive the current risk belief for

the relevant area. The planner runs an adaptive sampling algorithm that is trained to fly the

path that achieves the highest expected information gain within the time allotted. As sensor

measurements arrive, the belief update module incorporates them into the risk belief, and

at the end of a sensing task, the scout reports the updated risk belief back to the logistics

executive.

In a non-adjustable autonomy architecture, the human operator would directly inter-

face with the logistics executive, but here, the adjustable autonomy module mediates their

interaction. This module continuously monitors the risk associated with each mission com-

ponent according to the entire state of the logistics executive. It tracks the possibility that

each component’s risk might exceed user-specified thresholds. As these risks evolve due to

additional planning and updated risk beliefs, adjustable autonomy gradually requests hu-

man attention or intervention for certain mission components. Thus, while the operator still

specifies mission goals to the logistics planner, she now has an interface to override the dif-

ferent components of the logistics executive at varying levels of control. Together, all these

modules provide a rational, risk-based framework to help direct the operator’s attention to

the most pressing issues.

5.3.3 Disaster Relief Algorithms

Risk Assessment

A key capability of our system is to assess the risk to the mission goals. Risk is defined as

the likelihood that the logistical plans we produce will achieve each goal. In other words,

165

if a plan is to succeed, then every part of the plan must succeed. The risk assessment

problem is then stated as follows: Given a path plan that nominally achieves the mission

goals and a belief map of the environment, we wish to compute a distribution over the path

success probability. While we would like to know the true path success probability, this

is impossible since we do not have the true map of the environment. Rather, we possess

a belief map which models not just where we think certain features and obstacles are, but

also how well we know them. This reflects the intuition that although we may know a

certain type of obstacle exists at a general vicinity, without extremely fine sensing, we have

only a general idea of its precise location and threat level. Thus, we must compute and our

algorithms must operate on a probability distribution over the success probability, i.e. a

risk distribution.

Given this definition of risk, we describe how to represent risk in a belief map. We

can then build paths over the map and operate on the risks it encounters to devise a risk

distribution for the path. Finally, we explain how the scout measures and updates the risk

belief map.

Our belief map is represented by a grid of square cells. Each cell contains a distribution

over the probability of success if we traverse that cell in any direction, independently of all

other cells. We use this interpretation because it allows us to use the Markov assumption

later when composing cells into paths. The distribution in each cell takes the form of a Beta

distribution, which represents a distribution over the probability parameter p of a binomial

distribution. It is parameterized by (α, β), where α and β are the effective number of

observed successes and failures, respectively. The mean and variance of a Beta distribution

are given by

µ =
α

α + β

σ2 =
αβ

(α + β)2(α + β + 1)

166

We may compute the inverse relationships as well:

α =
µ2(1− µ)

σ2
− µ

β2 =
µ(1− µ)2

σ2)
− µ+ 1

In our belief map, we parameterize each cell with a mean and variance to represent a

Beta distribution. Not only does the Beta admit an intuitive interpretation, its parameteri-

zation is also appealing for real-time calculation.

The form of our belief map makes it convenient to compose cells into paths, although

we will need to approximate the distribution for the resulting path. We make the Markov

assumption that the probability of successfully traversing a certain cell is independent of

the probabilities for other cells. Then, given a path of length n cells with random variable

probabilities p1, . . . , pn of successfully traversing each one, the success probability for the

entire path is

p =
n∏
i=1

pi (5.24)

Unfortunately, the true distribution for the entire path is not a Beta distribution and

is hard to compute, so we approximate it as a Gaussian. Gaussian distributions are also

parameterized by a mean and variance. Thus, by applying the independence property, we

obtain the following expressions for mean and variance of the path’s risk distribution.

167

µ = E[p] = E

[
n∏
i=1

pi

]

=
n∏
i=1

E[pi] =
n∏
i=1

µi

σ = E[p2]− E[p]2

= E

[
n∏
i=1

p2
i

]
− µ2

=
n∏
i=1

E
[
p2
i

]− µ2 (5.25)

=
n∏
i=1

(σ2
i + µ2

i)− µ2 (5.26)

Equation 5.25 is straightforwardly interpreted as the estimated risk. Equation 5.26 spec-

ifies that due to the multiplicative nature of Equation 5.24, a cell will amplify the variance

effects of other cells if both its mean probability of success and its variance are large, and

vice versa.

The Gaussian introduces the issue that it extends to ±∞. Thus, we introduce another

approximation by truncating the distribution at 0 and 1 and scaling the resulting curve so

that the area beneath it integrates to 1.

There still remains the question of how we measure and model obstacles from the en-

vironment into our belief map. We assume our sensor has algorithms for detecting and

characterizing features of the environment. For example, suppose the scout’s camera de-

tects a pothole and computes a “measurement” of p for the success probability. If the

camera’s resolution is characterized by a variance σ2
z , then the pothole’s risk distribution is

characterized by µ = p and σ2 = µ2
z. Now, we must encode this information into the grid

cells ci that the pothole occupies. Assuming each grid cell has the same distribution, we

take the characteristic length d of the pothole (such as diameter or side length), and invert

168

Figure 5-22: Scout Architecture

the relationships in Equations 5.25 and 5.26.

µi = µ(i/d)

σ2
i = (σ2 = µ2)(1/d) − µ2

i

Thus, we are effectively spreading the obstacle’s risk distribution over the set of cells it

occupies.

However, the Beta distribution parameterized by (µi, σ
2
i) is a measurement and not what

we insert into the belief map. At each time step t, the belief map will already have a prior

distribution (µt, σ/
2
t). We use a Kalman filter to integrate the measurement into the belief,

which reduces to the Equations 5.27 and 5.28.

µt + 1 =
σ2
tµi + σ2

i µt
σ2
t + σ2

i

(5.27)

σ2
t+1 =

σtσi
σt = σi

(5.28)

To summarize, we formulate risk assessment in terms of finding the risk distribution

169

over a path, given a risk belief map. The map is gridded into cells, each of which contains a

Beta distribution. Paths are sequences of adjacent cells, and we represent their risk distribu-

tions as truncated and scaled Gaussians. To update the belief map with scout measurements

of an obstacle, we spread the obstacle’s distribution over the grid cells it encompasses, and

we apply the Kalman filter to update our belief.

Scout Planner

This section describes the algorithm for the Scout Planner component of the ARCAL archi-

tecture (Autonomous Robot Control via Autonomy Levels). As described in Sections 5.3

and 5.3.1, the scout’s purpose is to obtain more detailed scans of certain areas that could

yield safe routes for the logistics vehicle. The scenario is depicted in Figure 5-20. While

the logistics executive tasks the scout to examine certain areas, it would be inefficient for

the scout to traverse every square mile of its assigned area. For example, a human operator

would pilot the scout immediately to the areas that we are most uncertain about and thus

stand to gain the most from detailed surveillance. Furthermore, the scout only has limited

time to complete its scans and report back to the logistics executive. Our scout planner

algorithm addresses these observations and directs the scouts to collect data that optimally

reduces risk uncertainty for the logistics vehicle.

Figure 5-22 zooms into the scout planner within the ARCAL architecture and illustrates

various components of the scout planner algorithm. The following subsections motivate

and walk through these components. Section 5.3.3 begins by defining the scout planning

problem in the framework of the Markov decision process (MDP). Using this formalism,

we can use well-developed value iteration techniques described in Appendix A to solve for

the optimal policy that dictates what path the scout should take. The policy is typically en-

coded as a value function. However, solving this MDP exactly for a typical scout scenario

would require intractable computation, and the value function could only be represented

in unreasonable amounts of storage space. Thus, the value iteration technique augments

the value iteration process with approximations to yield non-optimal but reasonable solu-

tions. These calculations are performed offline, and the approximate solution is stored in

an approximate value function. When the time comes for the scout to execute actions on-

170

line, it further re-optimizes the value function to its particular situation within the available

computation time. This online process is described in Section 5.3.3.

Scout Planning Problem as a Markov Decision Process

The scout planning problem in the context of ARCAL is formulated as follows. The scout

dispatcher tells the scout which subset of the full map needs to be examined to have the

uncertainty in the risk belief reduced. This subset is represented as a set of grid cells. Each

grid cell has a prior risk distribution associated with it. The scout’s goal is to fly a path over

the area in the allotted time exactly such that it maximizes the total reduction in variance

over these grid cells. (The total variance reduction is the sum of all variance reductions in

each grid cell.) To solve this problem, we cast it in the general framework of the MDP,

which is as follows.

For our scout planning problem, we define the following components of an MDP:

• The state S includes the vehicle location and pose as well as the belief map (i.e. the

risk distributions over the relevant grid cells).

• The action set A defines how the scout vehicle can move. In our problem, the avail-

able actions are left, right, and straight at any grid cell.

• Our problem is deterministic. Thus, the transition probabilities Pass′ are 1 if and

only if the new location, pose, and belief in state s′ match those according to the

dynamics and Kalman filtering resulting from taking action a in state s. In effect, P

is the specification of the problem dynamics.

• The rewardRa
ss′ is defined to be the total reduction in uncertainty in the relevant grid

cells going from state s to state s′. It is calculated by taking the sum over all the

reductions in variance resulting from the Kalman filter updating the state from the

observations.

It is interesting to note that the state space includes the belief map in addition to the

location and pose. This information is a necessary part of the state because the reward in

171

going between states is solely defined by the reduction of variance. It is more valuable to

move between cells and see a great decrease in variance because of high initial uncertainty

in the area swept over by the sensor than to move between the same cells and see a small

decrease because the uncertainty was already low to begin with. Also, including the belief

map makes our state space continuous. This will prompt our approximation architecture

described in Section 5.3.3.

This section reviews methods for value function representation and approximation. A

more thorough treatment was included in Chapter 3 and Appendix C.

We use ADP to find an approximate solution, with the understanding that this exact

value iteration is only practical for a small, discrete state space. Because our scenario deals

with a large, continuous state space, we will use Algorithm 13 as a building block to the

more sophisticated techniques.

Our problem formulation from above assumes a discrete state set S. If the state space

is discrete, V and Q can be represented as a table of values, one record for each discrete

state. The table of values is initialized arbitrarily and improved iteratively. The problem

with this approach is that many real world state spaces are continuous and an acceptable

discrete representation is intractably large. In many cases we cannot even store the huge

table representation in memory. Additionally, to learn the value function, we must perform

a value iteration backup for every single state, which would take far too long.

We address these complexities by representingQ using approximation architecture (Q̂).

This architecture stores the state-action value function in a compressed form, such as a lin-

ear function over problem variables rather than an explicit combination of each possible

variable assignment. When inserted in the value iteration process, we get an approxi-

mate value iteration procedure which alleviates the storage problem and shares informa-

tion across state variables, thus decreasing learning time. The approximation architecture,

therefore, solves both problems inherent to exact value iteration.

Algorithm 12 outlines the approximate value iteration algorithm where (Q̂) is the ap-

proximate value function represented by an estimation architecture. Algorithm 12 takes as

input the MDP tuple 〈S,A,P ,R, γ〉, where |S| is very large and possibly infinite. Algo-

rithm 12 begins by randomly initializing state-action value table Q̄(s, a) over state subset

172

Algorithm 12 Approximate state-action value iteration algorithm where Q̂ stands for an
approximation architecture representation of the state-action value function, Q̄ stands for a
lookup table of state action values of a subset S̄ of the full statespace S. The key changes
from the exact algorithm are highlighted in green.

ApproxStateActionValueIteration(〈S,A,P ,R, γ〉)⇐ {
for all s ∈ S̄ ⊂ S do

for all a ∈ A do
Initialize (Q̄(s, a))

end for
end for
InitializeApproximationArchitecture(Q̄t, Q̂t)
t⇐ 0
repeat
t⇐ t+ 1
for all s ∈ S̄ ⊂ S do

for all a ∈ A do
Q̄(s, a)⇐∑

s′∈SRa
ss′

[
Ra
ss′ + γmaxa Q̂(s′, a)

]
end for

end for
Q̂⇐ UpdateApproximationArchitecture(Q̄, Q̂)
for all s ∈ S̄ do
πs ⇐ arg maxa Q̂(s, a)
Vt(s)⇐ Q̄(s, π(s))

end for
until maxs∈S

∣∣V̄t(s)− V̄t−1(s)
∣∣ < ε,∀s ∈ S̄

return Q̂t

}

S̄. We then perform a Bellman backup over state subset S̄, using Q̂ for future state-action

value estimates. The newly computed state-action values are stored in table Q̄. The policy,

approximation architecture and state value table are then updated. This process repeats

until a convergence threshold is met. Algorithm 12 returns approximation architecture Q̂t.

Although this approximation yields better storage space and learning time, it may suffer

from an inability to adequately represent the state-action value function. We acknowledge

this by augmenting the state-action value function so that for every state-action pair, we

return a distribution over the value rather than just a single number. Assuming normal

173

distributions, we can write this in terms of a mean and variance:

N (µs,a, σ2
s,a

)⇐ Q̄(s, a) (5.29)

Thus, we incorporate representational uncertainty into the approximate state-action

value iteration process so that we learn a distribution estimate over the value. Our offline

value function returns these distributions, not just an expectation function. This enables the

online algorithm, when deciding between possible actions to execute, to specifically inves-

tigate the values of state-action pairs which are not well known and are likely to be viable

alternatives. Stated another way, we can use an online search algorithm that is guided by

the state-action value function. We discuss this next in Section 5.3.3.

Before moving on, we first summarize the offline scout algorithm, which is illustrated

in Figure 5-23. The scouts use approximate dynamic programming to create a policy for

acting in the world. A policy is a mapping from states to actions, which tells the scouts

what to do in any situation. Their state-space includes not only location, pose and risk, but

it also encompasses uncertainty in the risk map belief.

Computing a value function can be computationally expensive, so we compute it offline

approximately through value iteration before the mission starts. We do so by simulating the

scout flying to explore where the greatest reward lies, and we save snapshots of this sim-

ulation as data points for our Q̄ table. We then generate an approximation architecture on

each iteration by regressing over these data points, taking into account the representational

uncertainty.

Online Planning and Re-Optimization Algorithms

In this section we highlight the weaknesses of the previous algorithm and explain how it

can be augmented with a search algorithm. A more thorough treatment of online search-

based policies for MDPs was included in Chapter 2. This review is centered around the

problem at hand: disaster relief.

The previous algorithm computes a policy offline. Another approach is to compute an

action online, just for the current situation. We actually propose both. We suggest using

174

Figure 5-23: Visualization of Q-function in the Approximation Architecture with Uncer-
tainty

the offline policy as a starting point and then improving it online, tailored to the current

situation.

In this section we summarize why we need online planning and re-optimization. In

short, re-evaluating actions over a pre-determined horizon helps to reduce the approxima-

tion error, which helps us select the best action to ultimately execute. This re-evaluation

turns out to be more accurate than the off-line state-action value, because the off-line func-

tion is necessarily compressed and therefore not expressive enough to capture every detail.

The discussion includes how we use the state-action value function uncertainty to select

actions for re-evaluation. In particular, we will describe a family of tree-search algorithms

which use the state-action value function to determine which branches of the tree to search.

Section 5.3.3 outlines a method for computing the state-action value function. Com-

puting the state-action value function is tantamount to computing a policy because it tells

you how good each currently available action is given your current state or situation. In

other words, it tells you how good each action is and you simply have to select and exe-

cute the best one. However, the resulting state-action value estimates are not as accurate as

they could be. The off-line generated function is necessarily compressed and therefore not

expressive enough to capture every detail. Therefore, instead of using it raw, we improve

upon the estimates by performing some additional simulations online.

Recall that the state-action value function covers the entire state-space. In other words,

175

it will provide an estimate of the action values emanating from any state or situation we may

encounter. This is a challenging request. In contrast, our situation is a far less daunting task.

However, since we do it in realtime, we do not have as much time to complete that task.

Our approach attempts to make the best trade-off between online and offline computation

by computing a state-action value function offline and using it as a starting point for our

online algorithm.

The process of online reevaluation involves generating a tree of candidate scout vehi-

cle paths to test (Figure 5-24). We generate the tree of paths with the help of the offline

generated state-action value function. Starting from the current state, the algorithm selects

b actions to simulate, where b is called the branching factor. After simulating the actions,

the algorithm will reach b new states. From each of those new states, the algorithm again

selects b actions to simulate. After two steps, the algorithm will reach b2 new states. This

process proceeds to a predetermined planning horizon h. Collectively, the algorithm sim-

ulates bh paths. The algorithm’s task is to re-estimate how much each scout collection

path will improve our knowledge about the risks to the mission vehicle. We think of this

increase in knowledge as a reward in accordance with the MDP framework. Thus, the al-

gorithm adds up the cumulative reward garnered from each path. If the planning horizon

is long enough to reach the end of the mission, then the simulated accumulated reward is

used as the value of the initial action. If the planning horizon is not long enough to reach

the end of the mission, then the remaining value is estimated using the offline state-action

value function.

The above algorithm uses branching factor b and horizonh. We select b and h such

that we have enough time to re-evaluate bh paths. To do this, we first determine how many

computations can be performed in the allotted time between decisions. We then select

a planning horizon and calculate a branching factor which will result in that number of

calculations.

A central question in this process is how to choose the actions to reevaluate. As stated

above, we generate the tree of paths with the help of the offline generated state-action value

function and we select b and h such that we have enough time to re-evaluate bh paths. One

assumption in this process is that we do not have enough time to reevaluate every action

176

over the planning horizon. Therefore, we elect to evaluate actions that have a promising

outcome, with consideration for how sure we are about our estimates of those outcomes.

At each step in the algorithm described above, we select b actions to simulate. This

selection uses the offline state-action value function. The function provides an estimate

of the value (future cumulative reward) of each action, if taken from the current state. The

estimate actually includes a distribution described by a mean and variance. The distribution

captures how well we know a given value. A high variance distribution means that we do

not know that value very well. Likewise, a low variance distribution means that we know

that value rather precisely.

We select a sample from these distributions, one for each action, and then choose the

action with the highest sample value. If one of the action distributions consistently produces

a high sample value, this tells us that we have little reason to evaluate other options.

Figure 5-24: Process of online reevaluation involves generating a tree of candidate scout
vehicle paths to test.

However, if there is a state-action value distribution with an especially high variance,

it will sometimes produce a sample with the highest value even though its mean is lower.

This phenomenon exactly mirrors the probability that said action is the best, given what

177

we know. In other words, we explore the actions in proportion to how good they are and

how certain we are about that. In summary, we determine which actions to re-evaluate by

representing the uncertainty about their true value. This distribution is used to select actions

(Figure 5-24) for re-evaluation when they appear to be good but the truth is uncertain. We

may also evaluate poorer-looking plans when the true value has such high variance that it

warrants a second look.

To summarize, our method allows us to use offline knowledge and processing to guide

our scouts online. The way we construct the offline policy informs the additional online

processing. In this way, we can exploit both on and offline control processing in a com-

plimentary way. We can compare this to how people deal with a planning task. Suppose

you are navigating home from work. You have a policy based on experience, which tells

you which road to take from a given intersection. However, given the time of day you may

wish to consider alternatives. For example, given the traffic, you may be unsure if your

standard policy is optimal. Therefore, you can simulate in your head the consequences of

some alternative routes. The result of the simulation tells you which way to go (what action

to take) right now. Your mental simulations will surely be biased toward perceived viable

alternatives. In other words, you will consider some alternatives and others you will not.

In this way, your offline knowledge informs your online situational reevaluation.

The above process actually describes a family of algorithms, because changing our

search horizon and branching factor fundamentally changes the algorithm. For example, if

we use a very small branching factor with a long horizon, the algorithm closely resembles

the rollout algorithm. Rollout is a longstanding method of evaluating moves in the game

of backgammon (Tesauro [1995]). On the other hand, using a short horizon with a large

branching factor closely resembles model predictive control. Different configurations will

work better for different applications,as well as at different points in the mission. For

example, toward the end of a mission, it could be helpful to use a wider search (larger

branching factor) to make sure that we rightfully consider the end goal. Further extensions

to our algorithm may include using different branching factors at different levels of the

search tree. For example, it is easier for a function to capture long term objectives then

short term details. Therefore, this small extension would allow the algorithm to rely more

178

on offline knowledge in the middle of the mission and rely more on simulation for starting

and ending the mission. All in all, our method describes a broad family of algorithms via a

set of configuration parameters. Describing the algorithm in this way enables us to tune it,

making it broadly applicable to many applications.

5.3.4 Algorithm Demonstration Results

To show how our scout finds efficient sensing paths, we center our discussion on four

example scenarios. Each scenario tasks the scout to reduce variance within a 10× 10 area,

but the areas of high variance differ across scenarios. Scenario A has high variance in the

southwest quarter patch and zero variance (i.e. perfect knowledge) everywhere else. This

corresponds to a very large feature in one corner of the map which we have no information

about, and everywhere else we have perfect information already. In scenario B, we split

the uncertain feature into two smaller features, one in the southwest corner and the other in

the northeast. Scenario C involves a feature in the middle that we know a great deal about

(i.e. low variance) but we grow more uncertain the farther we go toward the edges. Finally,

scenario D randomly smears high variance across the entire map, simulating a realistic

setting where we may have poor prior information of a certain region.

Each scenario was run with a mission length of 25 time steps. Within each scenario’s

context, we first illustrate the evolution and convergence of the approximate value function

during value iteration. We use 100 samples to represent the state subset. Note that there are

100 unique grid cells the scout can be in, four possible orientations in each, and an infinite

number of map beliefs possible. Thus, our value function representation is extremely sparse

relative to the actual state space. We then display the paths constructed during online

execution to show how the scout chooses to survey areas with higher uncertainty within the

time allotted. The tree search algorithm is limited to 20 node traversals of computation, but

searches down to a depth of seven nodes.

179

Figure 5-25: Value Function Representation for Scenario A

Figure 5-26: Belief Variance and Scout Path for Scenario A

180

Scenario A

Figure 5-25 depicts the state-action value table Q̄ evolving over 10 sets of value iteration.

The x-axis represents different sample states in our lookup table, and the y-axis shows the

value associated with that state. When querying the value of a state, we are not querying

Q̄, but rather Q̂ representing the estimation architecture which interpolates over the sample

states in the Q̄ table. However, to aid conceptual convenience and transparency, we will

refer to the Q̄ plots as the value function plots. The sample states were constructed by

initializing a simulated scenario four times and letting the scout fly a pre-determined lawn-

mower pattern which sweeps across the area for the length of the mission, 25 time steps. To

avoid gathering the exact same data each time, stochasticity was introduced into the path,

more with each subsequent pass.

The resulting representation of Q̄ on the even iterations are shown in sequence on value

plots in Figure 5-25. At first, the values for each sample state are initialized with low

random noise, which is not visible at the scale shown. In subsequent iterations, the values

accrue at each step, since each state “looks ahead” to the next best state and adds that

state’s value to its own reward (i.e. variance reduction) for taking the action leading into

that state. The values gradually converge (i.e. the increase at each step gets smaller) since

the accruement is increasingly discounted over later iterations. This is consistent with

contraction mapping Equation C.3 in the Appendix A. However, the most interesting parts

of these plots are the four peaks, corresponding to when the scout passes over the patch of

high variance and hence gathers the most reward. Afterward, the reward tapers off since

the scout’s sensor coverage is overlapping areas just previously seen. This illustrates how

the value function effectively encodes and exploits the structure of belief variance in the

scenario.

We have shown the construction of the path at time-steps 1, 4, 16, and 25 of the al-

gorithm’s run in Figure 5-26. The top plot in each frame shows the belief variance with

a color scale on the side, and the bottom plot the scout’s path so far. As can been seen,

the scout takes the reasonable action to plunge south into the area of highest uncertainty

and then loops through it until the end of the mission. Note how the scout “carves away”

181

Figure 5-27: Value Function Representation for Scenario B

at the belief variance in the top plots. We rescale the colors so that areas with the highest

remaining variance always appear yellow, and hence one can see how they guide and attract

the scout. However, one should note how much the scale has changed by the end of the

mission, thus showing the extent of variance reduction.

Scenario B

Figure 5-27 shows the value function for two uncertain features in this scenario. For each

of the four runs, the value function peaks in two places, corresponding to the two features.

However, the first peak in each of the first three runs is slightly taller than the second peak.

This is due to the width of the sensor footprint. When it is primarily sensing the first feature,

it also captures a little bit of the second, given their proximity. Thus, when it actually flies

over the second, it will not generate as much variance reduction as the first. Since there

are only these two features, the effects of stochasticity in generating the sample states are

not very pronounced. However, as the stochasticity is turned up with each pass, we notice

the peaks for the last pass look substantially different than the first three. This indicates

we have allowed ourselves to learn about the features from a slightly different perspective,

which gives us a richer representation.

Now we turn to the scout’s path, shown in Figure 5-28. The scout begins by heading

182

Figure 5-28: Belief Variance and Scout Path for Scenario B

to the feature in the southwest corner. Not only is it slightly closer to the scout’s initial

position, but the value function also suggests it is of higher value than the other features.

This is an artifact of our approximation architecture, but it is a small price to pay and easily

mitigated on average with stochasticity introduced during the online algorithm. Yet, the

scout does not go all the way to the bottom feature because as it approaches, its sensor

footprint already provides good coverage of the feature. Thus, two steps away, it turns

toward the northeast feature.

Similarly, it does not need to head all the way east. About halfway through the mission,

it turns back again to better understand the first feature, rather than spend all its remaining

time around the second feature and not reducing overall variance as much. This kind of

behavior illustrates the value of the online search algorithm, for knowing when to turn back

cannot be encoded in the value function itself. The look-ahead feature of search allows the

scout to plan based on how far ahead its mission end is. Here we used a search depth of

seven. Had we searched even deeper, we may have arrived at the more efficient solution of

spending half the time at each feature and not have to turn back. However, searching deeper

costs time. If we are to maintain the same online computational time, then searching too

deep would prune the branching factor and thus degrade the quality of search.

183

Figure 5-29: Value Function Representation for Scenario C

Figure 5-30: Belief Variance and Scout Path for Scenario C

184

Scenario C

In this scenario, we have the highest variance on the boundaries, and it decreases as we

approach the center. Since we are flying a lawnmower pattern over the area, we notice

periodic peaks as we approach the edges in the value function plots shown in Figure 5-29.

As we make sweeps over the central area where variance is lower, we notice a decreasing

trend in the values, but it picks back up as we start to swing closer to the opposite edge.

The high initial peak at each run is due to the scout sensing completely new terrain; it

corresponds to states where the scout is in the top-left corner and the belief map variance

is high throughout the region covered by the sensor footprint. Since there is much more

total variance spread across the region in this scenario than in A and B, the effects of

stochasticity are much more clearly seen. While the general trend for the values across

each run is similar, the details are quite different. This captures a much richer and more

informative representation of the value function.

The reasonable thing for the scout in this scenario is to hug the edges where the variance

is highest. This is exactly what Figure 5-30 shows. However, it does not just hug the edges

statically, but it dynamically tries to go inside a bit, too, where valuable information also

exists. Given the time it has, the scout tries to balance how much time it spends closer to

the outside and inside. In 25 time-steps, it is infeasible for the scout to make a full circuit

around the perimeter, which is 36 grid cells. With an online look-head depth of seven, the

scout realizes in the south leg of its path that it is more valuable to maintain a distance of one

cell away from the south edge rather than travel right on the edge. Also, in this path, we can

notice stochasticity in the online process. On the third step of its path, the scout turns north

toward the edge rather than continue on its present path east. This is clearly suboptimal,

and it could only have arisen by “mistake.” The “mistake” arises from the representational

uncertainty in the value function approximation architecture Q̂. We encode uncertainty into

the value function because we know it is not perfect. However, this means each query to the

value function is a probabilistic draw from a distribution characterized by this uncertainty.

Thus, we have to submit to the possibility of a clearly suboptimal decision every once in

a while. As the path shows, though, these mistakes are uncommon and quickly recovered

185

Figure 5-31: Value Function Representation for Scenario D

from.

5.4 Scenario D

When we have random high variance everywhere in the graph, the corresponding value

function shown in Figure 5-31 is messy and difficult to interpret by hand. It bears some

resemblance to Scenario C’s value function, since there is value everywhere in the region.

However, it is substantially less structured. Nevertheless, the value function still encodes

the random variations in this map as well as the larger structure, and this will be apparent

in the path the scout chooses.

Similar to the plots for Scenario C, Figure 5-32 shows that the scout chooses to fly

a circuit around the region to provide greatest coverage. As before, the scout does not

have enough time to fly cover every piece of high uncertainty, and thus the scale at the

end is much larger than the scale for Scenarios A and B. However, the path leaves less

uncertainty uncovered than in Scenario C because the scout can afford to hug the outer

edges less and thus has less distance to travel to make a circuit. Note that the scout does not

even have to complete the circuit or else it would overlap with its initial sensor footprint.

It is worth noting that in running multiple trials for each of these scenarios, Scenario D

showed the greatest variation in the planned path. That is, while the paths for the other

186

Figure 5-32: Belief Variance and Scout Path for Scenario D

scenarios followed predictable and expected patterns, sans the occasional “mistake,” the

paths for Scenario D may choose to wander in toward the center or wander out at any given

point. This suggests there is larger representational uncertainty in the value function, which

is to be expected in a less structured environment. It means multiple good solutions may

exist, and since our representation models this aspect, we do not limit ourselves to a single

deterministic path in any scenario.

Algorithm Summary

These examples show that our scout planning algorithm is capable of finding a path through

an area which purposefully surveys the most uncertain features, thus generating the most

valuable data for the logistics planner. This is accomplished through a combination of

the offline value iteration and online search procedures discussed in Section 5.3.3. The

flexibility of our algorithm arises from the Markov Decision Process framework, which

easily adapts to any given scenario. An important detail of our approach is that since we

cannot exactly represent the value function, we acknowledge it by introducing stochasticity

into our decision-making. Thus, our non-deterministic solutions, while rarely optimal, are

more robust to this uncertainty. When integrated with the entire ARCAL system, the scouts

shall be valuable additions to the logistics vehicle.

187

5.3.5 Impact

Figure 5-33: Heterogeneous Robotics Test Bed

The ARCAL project proposes two complimentary areas of research which, when com-

bined, can increase operator confidence in autonomous system behaviors. The first incor-

porates concepts of risk-based adjustable autonomy with risk verification within system

functions and task-directed adaptive search techniques. The second involves new meth-

ods to effectively test and evaluate collaborative autonomous team behaviors prior to field

deployment.

Task-directed search algorithms for UAV scout path-planning, used to improve knowl-

edge of the risks to the mission, are developed and implemented. To develop and validate

the concepts and technologies used in this project a natural disaster recovery scenario has

been employed as an example. A team of UAVs is dispatched to determine the safest and

fastest path for a disaster recovery convoy to deliver relief supplies. An algorithm test bat-

tery was developed and used to run tests on the scout path-planning algorithms. Test results

from a number of runs with the algorithm applied to terrain examples with various belief

uncertainty concentrations are shown and described. Initial results show that the algorithm

performs quite effectively in these situations. Although a natural disaster recovery sce-

nario is used as an example, the autonomous algorithms, concepts and technologies being

developed can certainly be used for other scenarios with the UAV Simulation Environment.

188

6 Summary

Autonomous Science Motivated by the vision of autonomous interplanetary exploration

robots, we set out to make exploration systems that can go out and gather useful informa-

tion on their own, at a global or planetary scale. This concept require that autonomous

agents are able to respond in real time to situations and opportunities, without the need for

direct human control. These agents should have the capacity to determine which data are

most relevant to their missions, such as mapping life-sustaining resources like fuel, water

and metal. They should also be able to respond to their environment by following leads,

rechecking indeterminate results that are potentially interesting, managing the discerning

power of their sensors, balancing the costs and benefits of detecting or negating the pres-

ence of a phenomena, and balancing the benefit of a potential find with the opportunity cost

of locating it.

In Chapter 2, we developed an architecture that allows us to perform information gath-

ering at a global scale through a 3-level hierarchy of information gathering agents, each

of which is performing adaptive sampling online. This hierarchy allows us to perform

information gathering effectively at each level, framing active sensing as an info-MDP

and solving it using approximate dynamic programming. In Chapter 3, we showed that

we can solve an info-MDP using ADP, producing great science return, by using decision

uncertainty minimization planning. Representation uncertainty minimization, which was

introduced in Chapter 4, supports DUM by building an architecture for instantiating the

approximate state-action value function. In Chapter 5, we demonstrated each level of the

hierarchical architecture on an application.

Effective sensing plans computed in real-time via blending on- and offline computa-

tion

Having a method for blending on- and offline computation means that we can compute

effective sensing plans in real time. As a result, we can also re-compute those plans, thereby

adapting to uncertain outcomes in the real world. Thus, our Monte Carlo information

189

guides-based algorithm enables active sensing. Our experimental evidence showed that

DUM is more efficient than other algorithms used in active sensing, and delivers greater

science returns.

This algorithm is also important to the broader adaptive sampling community. Specifi-

cally, we have demonstrated that information guides can be used to optimize adaptive sam-

pling. Yet, a Monte Carlo information guide planner is an adaptive sampling algorithm.

Monte Carlo planning with information guides allows us to choose selectively where to

simulate, in order to optimize our decisions. As the selective simulation is an evolving

information gathering task—i.e. adaptive sampling—this thesis uses an adaptive sampling

based search technique to optimize adaptive sampling problems.

While these ideas are powerful and useful to a wide community, they also have limita-

tions. As currently implemented, the methods use a Gaussian model to predict or describe

the uncertainty in outcome. However, the true shape of this uncertainty may not be Gaus-

sian. In some cases, it appears to be very non-Gaussian. Therefore, exploring other ways of

modeling the outcome could improve the performance of the algorithm. One option would

be to use a mixture of Gaussians to model the outcome.

An architecture for active sensing

In this thesis, we developed and used an architecture for active sensing that has three levels.

This architecture closely mirrors many real world information gathering problems. These

problems range from scientific sensing of the oceans to logistical support for disaster re-

lief. They all use multi-level, multi-resolution platforms, each of which has a different

concomitant field of view. These earthly applications closely mirror their planetary explo-

ration counterparts. For example, planetary exploration requires directed and optimized

data collection for scientific inquiry, as well as data collection for logistical support.

The architecture is useful to a larger community as well. A variety of science and

logistical support missions could also benefit from such an architecture. It is also useful

for subsystem cueing within a self-contained system. For example, a wide field camera

could look for movement, while a narrow field telescope focused in on movement or other

interest indicators.

190

DUM may have broader benefit to symbolic, hierarchical and factored Markov decision

problems. One possible future algorithm would use this architecture to optimize a hierarchy

of variable duration actions. Consider a UAV being deployed to several mapping locations.

In the current framework, the lower level mapping tasks are all of the same specific duration

and a value function estimates the value of these actions. However, it is quite reasonable to

want to spend more time at some mapping locations than others. A value distribution could

be learned, which estimates the informational value of collecting data at a mapping location

over a range of time intervals. By doing so, the agent would have available the decision

making information needed to trade-off how much time to spend at each location, rather

than only being able to select tasks of the same duration. Likewise, if the remaining value

of a task has petered out prematurely, the task may be aborted in lieu of starting a different

task. This added flexibility may greatly increase what the overall mission can accomplish.

Take aways: The two main take aways from this thesis are a method for blending on-

and offline computation and an architecture for active sensing, both of which improve the

ability of autonomous agents to collect high-quality information in applications ranging

from ocean sensing to disaster relief to planetary exploration.

191

Appendices

192

A Marine bathymetric mapping

We collaborated with the Monterey Bay aquarium research institute to develop a depth

control algorithm for the Dorado class autonomous underwater vehicle, which conducts

scientific underwater missions such as mapping the sea floor (shown in Figure A-1). Our

spliced linear programming depth control algorithm has been successfully deployed at a

topographically difficult region three miles off shore in Monterey Bay (see Figures A-7

and A-8). The algorithm improves the quality of scientific measurements by allowing the

underwater vehicle to approach closer to the sea floor as shown in Figure A-9. Figure shows

that our algorithm is more successful than the previously existing algorithm at maintaining

the proper altitude above the sea floor.

A.1 Opportunities

Autonomous bathymetric mapping (Monterey Bay Aquarium Research Institute [2006]),

demonstrated the feasibility of and opportunities for enhancing planning activities. This

project utilized a Dorado class AUV operated by the Monterey Bay Aquarium Research

Institute (MBARI) that conducts bathymetric mapping of Monterey Bay (Fig. A-1). The

AUV collects bathymetric data using a multibeam sidescan sonar sensor and navigates

using a gyro-based inertial navigation system integrated with a Doppler velocity sonar.

The AUV deploys from a ship, descends in a spiral path and navigates along the ocean

floor using GPS.

As it approaches the ocean floor, the AUV tracks its position via multiple navigation

sonars, one of which monitors the relative location of the ocean floor for accurate posi-

tioning. This sensor, the Doppler velocity sonar, must maintain ground-lock in order to

provide reliable velocity estimates. When ground-lock is lost, the AUV defaults to a less

accurate inertial navigation system. Because data quality is strongly influenced by localiza-

tion, accurate bathymetric maps depend on maintaining ground-lock. The AUV attempts

to remain at a target depth of 50 meters above the ocean floor, where ground-lock can be

reliably maintained.

193

Aquadynamic perturbations often prevent the AUV controller from accurately navigat-

ing to its target depth. The AUV must also pull up prematurely when approaching a steep

incline. The current depth planner projects 100 yards ahead and plots a course straight

toward the highest point on the horizon. This method often loses ground lock in steep

terrain such as the Davidson Seamount. We collaborated with the Monterey Bay aquar-

ium research Institute to develop a better depth control algorithm for the Dorado AUVs

dynamics controller. The algorithm, referred to as a spliced linear programming algorithm,

helped the vehicle maintain ground-lock in variable terrain and thus improved its mapping

capabilities.

Figure A-1: We collaborated with the Monterey Bay aquarium research institute to develop
a depth control algorithm for the Dorado class autonomous underwater vehicle, which con-
ducts scientific underwater missions such as mapping the sea floor.

A.2 Mission planning algorithm

We created a prototype dynamics-based optimized depth waypoint planner for the MBARI

AUV. This planner takes: 1) a linearized model of the AUV dynamics, 2) constraints on the

AUVs performance, such as pitch angle and elevator angle constraints, 3) a profile of the sea

194

floor along a transect, 4) and minimum, maximum and optimal depth specifications relative

to the sea floor. The planner provides a series of depth waypoints along the transect that

minimize the average positional deviation from the AUVs optimal depth, while adhering to

hard constraints such as pitch angle. In addition to penalizing optimal depth deviation, we

also penalize average pitch rate magnitude, which dampens the control inputs. Without the

pitch rate penalty, the optimal planner will use quickly changing (chattering) control inputs

to minimize depth error. The pitch rate penalty is a design parameter, which depends on

the relative importance of a smooth control plan.

Planning is carried out with respect to discrete-time AUV dynamics. A full plan takes

place over several hours, whereas the time constants of the AUV dynamics are on the order

of seconds. Generating a full depth waypoint plan therefore involves optimization over a

very large number of decision variables. The following specifications make this problem

tractable:

1. For waypoint planning, we use a 5-second time interval. We chose this interval

to be as large as possible while still small enough to capture the AUV dynamics

adequately. After a plan has been generated, a more detailed simulation with a finer

time resolution is carried out to validate the plan.

2. We plan depth waypoints for 1,000-second segments and splice the solutions together

to give a full plan. The splicing ensures a smooth transition between segments, and

ensures that one segment is not planned in such a way that planning the next segment

is infeasible.

A.3 Simulated planning results

Figures A-2 through A-6 show simulated test results from the Davidson 2007 Survey. We

developed, simulated and tested our algorithm using the Davidson Survey data. Figure B-2

shows the location of the survey, off the coast of California near Big Sur.

We ran our spliced linear programming algorithm on the Davidson Seamount data.

The data was first resampled at 5 second intervals. We then ran our linear programming

195

Figure A-2: The red marker shows the location of the 2007 Davidson Seamount survey.
Davidson Seamount lies west off the coast of California near Big Sur. We used the survey
data to develop and test our algorithm in simulation.

Figure A-3: We ran our spliced linear programming algorithm on Davidson Seamount
data, resampled at 5-second intervals. The solver produces a set of target waypoints for
the controller to follow. The top graph shows target waypoints, sea floor depth, minimum,
maximum and optimal depth as well as simulated AUV depth. The three lower graphs
show the pitch angle, elevator angle and pitch rate respectively.

196

Figure A-4: Simulation results of the entire transect using the AUVs actual, shorter (.2
second) dynamics controller. The dynamics controller provides input to the articulated
ring-wing and ducted thruster actuators. The simulation accepts the 5 second interval target
waypoints for the controller to follow. The inputs are duplicated to accommodate the higher
frequency. The top graph shows the sea floor, minimum, maximum and optimal depth, the
outputted waypoints as well as the simulated AUV depth. The three other graphs show the
pitch angle, elevator angle and pitch rate. The simulation results demonstrate that our 5
second planning interval is sufficiently short to produce good vehicle guidance.

Figure A-5: Larger-scale simulation results. The graph shows the sea floor, minimum,
maximum and optimal depth, as well as the simulated waypoints and AUV depth.

197

Figure A-6: The graph zooms in on a small portion of the simulation results in order to
show algorithm performance along a difficult topographic inflection. The red lines show
the minimum and maxium depths. The dotted line shows the target depth. The blue line
shows the simulated AUV depth. At the difficult inflection point, our algorithm induces
the AUV to change altitude in anticipation of the topography, so that it does not grossly
overshoot the target depth while still observing the mini-mum depth constraint.

198

solver on the first 1,000-second interval. The solver takes as input the initial AUV state,

the desired depth, depth constraints, linearized vehicle dynamics and the respective vehicle

dynamics controller. The solver produces a set of target waypoints for the controller to

follow.

Splicing Method Once we solve for the first interval, we used the final AUV state as

the initial AUV state for the next segment. Unfortunately, the first interval was optimized

without regard for compatibility with the second interval, potentially leaving the AUV in a

difficult final state. In order to accommodate the subsequent interval we used only 75% of

the planning interval, discarding the latter 25% and beginning the next interval according

to this modified final AUV state. We refer to this procedure as splicing. We reach end the

interval in a safe state because we have planned through the potential risks that state. We

also re-plan part of our transect in this procedure but in an efficient and effective manner.

The output is shown in Figure A-3.

Simulation Results After running our planning algorithm on the 5-second (sampling

interval) data, we simulated the entire transect using the shorter (.2 second) interval used by

the actual dynamics controller. The dynamics controller provides the input to the articulated

ring-wing and ducted thruster actuators. The simulation accepts the 5-second interval target

waypoints for the controller to follow. The inputs are duplicated to accommodate the higher

frequency. The simulated results are shown in Figure A-4. The AUV initially follows a

path between the minimum and maximum altitude, but then navigates along the optimal

depth, except when pitch angle constraints make this impossible. Overall, the simulation

results demonstrate that our 5-second planning planning interval is sufficiently short to

produce good vehicle guidance and the algorithm generates a path that makes full use of

the pitch angle allowance in order to minimize the depth error. Figure B-5 shows the

main simulation results in a separate larger format, with the sea floor, minimum, maximum

and optimal depth, the outputted waypoints, and the simulated AUV depth. Figure A-6

zooms enlarges a segment of the simulation results at a steep topographic inflection. At this

feature, our algorithm guides the AUV to change its depth in anticipation of the topography,

199

so as to avoid grossly overshooting the target depth while maintaining its minimum depth

constraint.

A.4 Field Test Results

After performing the simulation experiments, we then conducted a field test using our al-

gorithm to plan the waypoint based control inputs for the AUV mission and comparing it

to results from the cruder algorithm for the same area. The test was conducted at a to-

pographically difficult region three miles off shore in Monterey Bay (see Figures A-7 and

A-8). The blue region indicates deeper conditions whereas orange indicates shallower con-

ditions. The UAV made three forays into deep water along a relatively challenging path for

the algorithm and AUV to navigate.

Figure A-9 shows the results of our algorithm for the AUV mission. The black line

shows the ocean floor. The red line shows the AUV depth under the control of the for-

mer depth planning algorithm. The green line shows the actual AUV depth while being

controlled by our sliced linear programming algorithm. During steep inclines, the old al-

gorithm anticipated the depth change and turned up too early. Our algorithm induces the

AUV truncate these responses allowing the AUV to track the target depth more closely (see

Fig. B-10).

200

Figure A-7: We conducted a field test using our algorithm. Our spliced linear programming
depth control algorithm has been successfully deployed at a topographically difficult region
three miles off shore in Monterey Bay. This figure shows the geographic location of our
field test.

201

Figure A-8: The path of the mission is shown. The transect was designed to be challenging
for the algorithm and AUV to navigate. The blue region indicates deep water and the orange
region indicates shallow water. The mission starts in shallow water, at the top of the figure,
then goes down, left, right, left and back up. The result is three forays into deep water.

202

Figure A-9: Our algorithm improves the quality of scientific measurements by allowing the
underwater vehicle to approach closer to the sea floor. The graph shows the field test results
comparing our algorithm to the previously used algorithm. The black line shows the ocean
floor. The red line shows the actual path followed when controlled by our new algorithm.
The green line shows the actual altitude under the old algorithm. The results show that the
AUV tracked the target depth better when controlled by our new algorithm.

203

Figure A-10: Our algorithm was more successful than the previously existing algorithm at
maintaining the proper altitude above the sea floor. This graph shows the deviation from
the target altitude for our new algorithm (in red) and for the old algorithm (in green). This
graph makes it easy to see the deviation from the target altitude. The results show that the
AUV tracked the target depth better when controlled by our new algorithm.

204

B Simulation Demonstrating Adaptive Mission
Planning for Mars Exploration

Experimental Design Our system takes a set of nodes, constructs a plan to visit a subset

of those nodes, and simulates the flight path to test the validity of the plan. Plan construction

starts in the adaptable mission planner. The adaptable mission planner takes a set of node

locations and utilities and calculates the optimal path to get the most utility given a limited

amount of fuel.

The plan is then fed into the kino-dynamic path planner, which creates waypoints to

guide the UAV to the next node. These waypoints are built on a one-second time scale, and

thus represent a finely discretized plan. These waypoints are followed using a simulation

of the environment and an autopilot to direct the aircraft. The simulation returns the actual

fuel usage, which may cause changes in the plan. The block diagram of the complete

system is shown in Figure B-1. Each part of the system is explained in greater detail in the

following sections.

Coordinating Agile Systems Through the Model-based Execution of Temporal Plans

Unlike previous solutions, our integration would enable continuous high-level planning.

The integration enables the simulation framework to accept plan updates which considers

recent observations when creating the plan. Continuous high-level planning would allow

the UAV to enact high-level goals according to the observed environment. Specifically,

it assimilates information that it learns about its environment (i.e., a more accurate map

and/or its ramifications on the utility of future tasks). This integration would therefore

provide a system which observes, learns and updates its higher level planning goals.

Adaptable Mission Planner The high-level mission planner has been designed to solve

the finite-horizon path planning as a Selective Traveling Salesman Problem (STSP). This

is also known as the Orienteering Problem. The adaptable mission planner accepts a given

set of utilities respective coordinates representing the sites of potential scientific value.

205

Driver Kino-dynamic
Path Planner

Autopilot

Actual time taken

Sites visited

Temporally Flexible State Plan

Current position

Adaptable
Mission
Planner

25 waypoints

Time takenTarget waypoint

tpn file

Operator
Interface

Environment
Simulator

Target waypoint Position, speed
Sensor data

Actuator data

Figure B-1: Block diagram of the complete system.

These are the targeted positions on the map that represent potential exploration sites in the

mission planner’s model. The mission planner generates a traceable path of nodes that will

maximize its utility within a given distance constraint.

The following steps outline the major parts of the adaptable mission planner:

1. Create Adjacency Matrix from node coordinates

2. Order list of utilities to match ordering of nodes. Starting node indexed at 0.

3. Create traceable path through nodes using STSP Solver

4. Remove the next node to be traveled to from the list of considered nodes

5. Reduce the remaining distance by the distance to the next node

6. Repeat from step 1 with an updated set of utilities from the UAV’s sensors

.

We use a kino-dynamic path planner to determine the best route to the next science

site. The kino-dynamic path planner produces closely spaced waypoints for the autopilot

to follow and avoids features such as mountains.

206

Figure B-2: Piccolo hardware-in-the-loop simulator setup made by Cloud Cap Technology

Kino-Dynamic Path Planner We modified a kino-dynamic path planner by Thomas

Leaute Léauté and Williams [2005a] to take in a new plan at each high-level planning

node. Each of these nodes corresponds to a science site. The system essentially combines

a driver, navigator and adaptable mission planner with a hardware-in-the-loop simulator.

As illustrated in Figure B-2, the simulator includes an operator interface and environment

simulator with a Piccolo UAV Autopilot. The UAV autopilot handles all of the control

dynamics. It takes as inputs the aircraft pose, velocity, parameters from the environment

simulator and target waypoints from the operator interface. The autopilot then solves the

routing problem of how to transit to the next waypoint, and sends actuator instructions to

the environment simulator. The environment simulator calculates motion and sensor data

given the actuator data and sends this data to the operator interface and to the autopilot as

feedback. The operator interface then returns the time taken to the driver so the driver will

know how long it took to reach the waypoint.

The kino-dynamic path planner generates a guided plan by creating a set of 25 way-

points that the plane traverses at a rate of one waypoint per second. The kino-dynamic path

planner re-plans every 18 seconds. It uses a 25-second planning horizon, which ensures

aircraft stability within that horizon. Because the planner does not look further ahead, it

may leave the plane in a difficult position at the edge of this time horizon. With seven

seconds of safe travel before it, the plane should be able to generate a new plan that avoids

collisions or navigational destabilization.

207

When the plane reaches the end of its plan (the 18th waypoint), we generate a new set

of waypoints. The framework is coded so as to accept a new plan at this point. Since the

adaptable mission planner only plans for high-level goals (features of scientific interest),

we first check to see if the plane has reached one of these sites. If not, then the kino-

dynamic path planner re-plans as usual. If it has reached a science site, then we pass

information back to the adaptable mission planner, which enables it to generate a new

plan. The adaptable mission planner needs to calculate fuel usage from transit to the new

science site and exactly which science sites have been visited so that it can generate a new

plan. Once a new high-level plan has been created, the kino-dynamic path planner adopts

it. In order to integrate the new plan into the system, we must remove only the relevant

constraints from the constraint set, and then re-introduce the new constraints based on the

new high-level plan.

When this process has been completed, we then use that plan to create a new set of

waypoints via the kino-dynamic path planner. These waypoints are fed into the autopilot.

This process continues looping until the plan has been completed or a time constraint has

been violated. Normally, the plan will finish as planned. However, though the high-level

planner estimates the travel time to each science site, the plane may encounter obstacles

which cause it to take longer than expected to get to a given science site. If the simulated

travel time takes too much longer than the estimate, then the plane will run out of fuel and

will not be able to complete the plan. In this case a constraint violation (too much total

time taken) will halt the process.

B.1 Empirical Testing of Different Adaptive Planning Ap-

proaches

Planning strategies differ in terms of factors such as risk aversion and function differently

according to the rate of change in the environment. This appendix describes empirical

evaluation of different planning strategies in different environments. We prepared a set

of experiments in order to compare the performances of a) passive or static planning, b)

208

intermediate planning and c) aggressive or greedy planning under different rates of envi-

ronmental change.

The first plan type is the static finite-horizon plan. This strategy creates a plan to travel

a certain distance (finite-horizon) at the beginning of a simulation, and then carries out the

plan without making any changes (static). In the Mars exploration example, the UAV flies

until it runs out of fuel. The finite-horizon is made to match the amount of fuel, so that the

UAV will complete the plan at the same time it runs out of fuel. This means that the finite-

horizon plan actually covers the entire mission. In practice this plan uses our STSP solver

once and feeds the result into the simulator, which then reports how much of the plan was

successfully completed.

The second planning strategy uses an adaptable finite-horizon planner. This is similar

to the static finite-horizon planner, in that it creates a plan that covers the lifetime of the

UAV. It differs however in how it re-plans after reaching each science objective, so that it

can react to re-appraisal of the utility of science sites. In practice this plan has the simulator

call the STSP solver after each waypoint is reached. With our modifications, the simulator

is then able to switch to a new temporally flexible state plan.

The third planning strategy, the greedy approach, operates as a one step receding-

horizon planner. At each step it chooses the best node to travel to and then goes there.

The best node is defined using a combination of travel cost and science utility. Our greedy

planner tried to maximize utility/travel cost at each step. Different weightings would be

possible for a greedy planner. For example, it could only consider distance and always fly

to the closest point. It could also only consider utility and always fly to the highest utility

site. Different situations would favor each of these strategies, but we chose an intermediate

design that favors utility divided by travel cost.

Example 1 In Figure B-3 we show a scenario with three nodes, A, B, and C, where the

UAV starts at A. The distance between A and B is 2, the distance between A and C is 4,

and the distance between B and C is 6. The utility of B is 3 and the utility of C is 6. If

the UAV is allowed to fly a total distance of 4, then the utility-maximizing greedy planner

will perform better. It will fly to C and get a utility of 6, while the cost-minimizing greedy

planner will fly to B and get a utility of 3. If the UAV is allowed to fly a total distance of

209

8, then the cost-minimizing greedy planner will perform better. It will fly to B, then C to

gain a utility of 9, while the utility-maximizing greedy planner will fly to C for a utility of

6. It is not difficult to construct similar situations for different sets of greedy planners, with

different weightings between cost and distance.

CAB

6

2 4

Utility = 3 Utility = 6

Figure B-3: Simple example scenario

Experiment Design Our experiments highlight differences between strategies. In an un-

changing environment, we would expect the adaptable finite-horizon planner to make ex-

actly the same plan as the static finite-horizon planner. This is because they would have

the same knowledge at the beginning and create the same plan, and if the environment re-

mained unchanged then the adaptable planner would have no reason to update its plan. In

an unchanging environment we would also expect the finite-horizon planners to outperform

the greedy planner, since they create an optimal lifetime plan.

When the assigned utilities start changing, this no longer applies. The finite-horizon

planners are expected to suffer, since they no longer have perfect knowledge of the utilities.

In particular, the static finite-horizon planner will be unable to react to changes in the

environment, and the more severe the changes, the more random its performance will be.

If the changes happen infrequently, we would expect the adaptable finite-horizon planner

to perform fairly well, since it will be able to incorporate the changes into its plan. In the

extreme case, however, the utilities will be completely random at each time step, and there

will be no benefit from planning. In this case the greedy planner would perform well, since

it would prioritize high utility points as they appear.

Example 2: Imagine a scenario with three nodes, A, B, and C, where the UAV starts at

A. The distance between A and B is 2, the distance between A and C is 4, and the distance

210

between B and C is 6. The utility of B is 3 and the utility of C is 6. The UAV is allowed to

fly a total distance of 8. The finite-horizon planner will travel to B, then C, to maximize its

expected reward at 9. The greedy planner will travel to C and get a reward of 6, then run

out of fuel. However, if after the first time step the situation changes so that C is only worth

1, then the finite-horizon planner will only gain a utlity of 4, while the greedy planner will

have already received its reward of 6. The static finite-horizon planner performs better than

the adaptable finite-horizon planner in an environment with a high rate of change wherein

the static planner realizes random utility while the adaptable planner does not.

Hypothesis In general, we would expect that the more frequent and significant the changes

in utility, the poorer the finite-horizon planners performance. We would expect the greedy

planner to not be especially affected by the changes, so its performance relative to the

finite-horizon planners would improve. By running each strategy under different levels of

change, we can identify the crossover point where greedy planning starts to outperform

finite- horizon planning, and see where adaptable planning outperforms static planning. If

different strategies perform better at different rates of change, it becomes useful to predict

the amount of change. Identifying expected change allows us to adopt the most appropriate

strategy for that environment.

We therefore tested each strategy under different levels of change. We chose to imple-

ment change as a probability each node at each step. When change occurs, the utility of

that node is swapped with another node at random. We chose to swap utilities instead of

assigning new ones so as to keep the magnitudes of the utilities the same. This also scale

utilities within a given range so as to avoid the need to normalize them.

The probability or percent change is a continuous and quantitative variable that permits

us to create relationships and plots between the change parameter and the performances

of the planning strategies. The change parameter only affects frequency of change and not

magnitude. In order to consider magnitude, we would need to change the initial assignment

of utilities. Set of utilities consisting of several high utilities and several low utilities would

lead to significant changes when a high utility node gets swapped with a low utility node.

We therefore examined several different utility distributions in order to analyze the effects

211

of change on a strategys performance.

Experimental Parameters The simulation was run with a roughly Gaussian distributed

set of utilities, such that there are several medium values and some high and some low

values. There are 11 nodes, and the values 1, 5, 5, 10, 10, 10, 10, 10, 15, 15, and 20

were distributed among them. This fairly even distribution is expected to be similar to

many real scenarios. The different planning strategies were run for different frequencies

of change. We implemented rates of change of 0%, 5%, 10%, 15%, ... 100%, for a total

of 21 different change frequencies. These levels of change represent the chance of each

node to change its utility at each time step. Each of the three planning strategies was run

25 times for each change level, and the accrued utilities were averaged over the 25 runs. In

order to be fair to each of the three planning strategies, they were each run using the same

random numbers. This means that the changes were calculated for each step of a run, and

then all three strategies were run using that sequence of changes. This was done to keep

one algorithm from getting lucky while the other algorithms got bad runs. In other words,

minimize random noise in the analysis.

B.2 Results

This section describes the results of a simulation run and demonstrates the benefits of adapt-

able mission planning. The benefit specifically arises from re-planning at each step in the

high level plan. A static planner constructs a plan at the beginning of the mission and ad-

heres to that plan throughout the mission regardless of changing conditions. An adaptable

mission planner on the other hand can periodically generate new plans that take time con-

straints and informational rewards into account. In this simulation, informational rewards

are formulated as updated utilities for science sites.

We interfaced the adaptable mission planner with a Mars aircraft simulator. The adapt-

able mission planner constructs a plan that is executed in the simulation environment. The

operational interface of the simulation system (Fig. B-4) displays the location of the UAV

on a (representative) map of an area of Mars. The aircraft begins near a starting location

212

where the vehicle entered the Martian troposphere. The map depicts mountainous areas

which the aircraft should avoid, as well as craters, rock outcroppings and cliffs which have

scientific utility. The operator interface shows the progress of the UAV as it navigates

through this environment.

In constructing a plan, the adaptable mission planner takes in a set of science sites

(labeled B through J), the starting location (labeled A), a set of utilities for each science

site and a maximum travel distance (5 nautical miles). The utilities reflect the science value

of a given site. In this example, we start out with a set of utilities shown in Figure B-4b.

The initial utilities reflect 6 low value sites (C, E, G, H, I, J) and 3 sites of high interest

(B, D and F). The adaptable mission planner constructs the first plan which is reflected in

Figure B-4c. This plan shows that the plane is able to hit all of the high value science sites.

The red arrows indicate the path that the UAV will take.

The execution of the plan starts when the adaptable mission planner sends a plan to the

kino-dynamic path planner. The kino-dynamic path planner takes that plan and constructs

a set of waypoints (a low-level plan), which guide the UAV along the route designated by

the plan. The set of waypoints are approximately one-second apart and respect the kino-

dynamics of the plane. These waypoints are sent to the auto-pilot which essentially flies the

airplane. The plane flies to each waypoint in succession. To do this, the auto-pilot sends

actuator instructions to the simulator which simulates both the UAV and the environment.

The plane initially proceeds from the Mars environment entry point (Site A) to the

first science site (Site B). When the plane reaches a waypoint, it notifies the kino-dynamic

path planner. The kino-dynamic path planner waits for the plane to reach the 18th node.

When the 18th node is reached, it sends a new set of waypoints. Prior to this transmission

however, the kino-dynamic path planner must first check to see if a science site has been

reached. If one has, it sends the status information to the adaptable mission planner which

generates a new plan. When the plane arrives at Site B, status information is then sent back

to the adaptable mission planner, which uses this new information to generate a new plan.

The planner receives the actual travel time to the current site as well as the updated utilities.

The travel time to a given node is estimated in the planner during plan construction but the

environment simulator determines the actual time, which result from other factors such as

213

the kino-dynamics, the initial pose or direction and environment conditions. The plane

arrives at Site B faster than expected giving the adaptable mission planner more mission-

time left than expected. The planner creates a new plan (Figure B-4d), which is now able

to travel to one extra science site.

The plane then proceeds to Site C, a crater where it accrues a very high science value.

Consequently, the utility of all of the craters is increased. The adaptable mission planner

then uses these updated utilities to generate a new plan (Figure B-4e), which is able to visit

all of the remaining craters. The plane then proceeds to Site G, which results in no change

in the plan (Figure B-4f). When it reaches Site H however, it returns a lower than expected

travel time that allows the planner to create a plan that includes one additional site (Fig.

B-4g). The mission concludes when the plane travels to Sites I and J (Fig. B-4h).

This walk-through demonstrates the benefit of the adaptable mission planner. In this

example the plan is adapted to compensate for the actual travel time and the additional

information learned with each site visit. When necessary, the adaptable mission planner

generated a new plan which included actual travel time, as well as the knowledge gained

from the visit thus resulting in a more effective planner.

Performance Metrics When running each simulation, we end up with a total utility

gained, which is simply the sum of the utilities gained at each point visited. We counted

the accrued utilities based on the current utility estimate for a given site (estimated values

at the arrival time to the previous site). If a node was visited when the estimated utility was

5, then it would accrue as a value of 5 regardless of how the utility changes afterwards.

The objective of this method is to measure how well a planning strategy works based upon

what it knows rather than measuring the accuracy of the utility estimator.

The primarily metric for comparing the performances of the different planning strate-

gies is the total utility accrued. This is intended to be representative of the total science

value, which correspond to higher level goals of the mission. Different strategies applied to

this framework will make different decisions. The finite horizon planner for example often

forgoes a near-term reward in exchange for a higher reward later. A static planner chooses

to ignore new information in favor of following its initial plan to fruition. Our experiments

214

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure B-4: (a) The operator interface displays the UAV’s position on the map with the
science sites. (b)-(h) Solution walk through.

215

show that the adaptive finite horizon strategy is most effective over a variety of conditions.

Analysis Figure B-5 shows the results for the Gaussian distribution of utilities. The x-

axis shows the rate of change and the y-axis shows the average total utility gained. The blue

line is the static finite-horizon plan, the green line is the adaptable finite-horizon plan and

the red line is the greedy plan (adaptable one-step receding-horizon plan). In an unchanging

environment (zero rate of change), the static planner performs as well as the adaptable

planner because they operate the same. The adaptable planner considers evolving utility

values but when they do not change, its performance remains the same. Both finite-horizon

plans outperform the greedy plan at zero rate of change because they are optimizing over

the entire mission, trading off near-term rewards in exchange for a higher overall gain.

Greater perceived environmental change diminishes the performance of both finite-

horizon planners. The static planner’s performance drops most quickly demonstrating the

deficiencies of the static planning strategy. The adaptive finite-horizon planner performs

the best during a moderate rate of change, highlighting the strength of this strategy. After

about 50% change, the greedy planner outperforms the static planner and performs equi-

tably with the adaptable finite-horizon planner. The greedy planner performs at its best

under these conditions, but it does not outperform the adaptable finite horizon planner.

In summary, the static planner outperforms the greedy planner under stable conditions

and the greedy planner outperforms the static planner under unstable conditions. The adapt-

able planning strategy performs well in all situations. It matches the static planner under

stable conditions, outperforms both planners under moderately changing conditions, and

matches the greedy planner under very unstable conditions. Noise in the accrued utility

values (in spite of being averaged over 25 runs) a chaotic system in which utility is essen-

tially a random variable, especially for the static planner. The two finite-horizon planners

also highly similar inflection points. This behavior occurred because they were run using

the same set of random conditions as described above.

216

Figure B-5: Total Utilities for a Gaussian Distributed Scenario: The graph shows the results
for the Gaussian distribution of utilities. The rate of change is along the x-axis and the
average total utility gained is on the y-axis. The blue line is the static finite-horizon plan, the
green line is the adaptable finite-horizon plan and the red line is the greedy plan (adaptable
one-step receding-horizon plan). These results are very interesting. As expected, the static
planner outperforms the greedy planner under stable conditions and the greedy planner
outperforms the static planner under unstable conditions. However, the most interesting
thing that these results show is that the adaptable planning strategy is good in all situations.
It is as good as the static planner under stable conditions, it is better than either planner
under moderately changing conditions, and it is approximately equal in performance to the
greedy planner under very unstable conditions.

217

C Learning MDP policies offline (DUM Back-
ground)

In this section we define the Markov decision process, our problem framework. We

outline an optimal but computationally intractable policy-learning algorithm followed by a

tractable but suboptimal policy-learning algorithm. We then explain that the suboptimality

of the second algorithm can be modeled in terms of policy-representational uncertainty and

the probability of error, and how this uncertainty can then be used in an online reoptimiza-

tion algorithm.

C.1 Markov decision process defined

An MDP is defined by its state set S, action setA, state transition probability distribution P ,

and reward function R. When executing action a, in state s, the probability of transitioning

to state s′ is denoted as Pass′ and the expected reward associated with that transition is

denoted Ra
ss′ . A policy assigns an action to each state of the MDP. The value of a state

under a policy (Vπ(s)) is the expected value of the discounted sum of rewards obtained

when policy π is followed, starting in state s. The objective is to find an optimal policy π∗,

which maximizes the value of every state (Vπ∗(s) = V ∗(s) ∀s).
The optimal value function (V ∗) is the solution to the Bellman optimality equations

(e.g. Bertsekas and Tsitsiklis [1996a]): ∀s ∈ S

V (s) = max
a∈A

∑
s′∈S
Pass′ [Ra

ss′ + γV (s′)] (C.1)

where the discount factor 0 ≤ γ < 1 makes future payoffs less valuable than more

immediate payoffs. The Bellman equation (Eq. C.1) is also referred to as the dynamic

programming equation, and describes a one-step look-ahead with respect to the value

function. It is known that the optimal policy π∗ can be determined from V ∗ as follows:

π∗(s) = arg maxa∈A
∑

s′∈S Pass′ [Ra
ss′ + γV ∗(s′)]. Therefore, the optimal value function is

virtually the MDP solution.

218

Figure C-1: MDP mechanics: In the MDP framework, we find ourselves in state s where
policy π chooses an action to execute. Although the action is chosen, we do not know for
sure which state we will transition into. When executing action a, in state s, the probability
of transitioning to state s′ is denoted as Pass′ . The objective of the MDP optimization
problem is to find the best policy, that is the policy that maximizes the value of every state.

C.2 An optimal offline policy for a small discrete MDP can

be found via value iteration

Given our MDP model (M = 〈S,A,P ,R, γ〉), value iteration can be used to determine

the optimal value function. Starting with an initial guess, V0, we perform the following

iteration ∀s:

Vk+1(s) = max
a∈A

∑
s′∈S
Pass′ [Ra

ss′ + γVk(s
′)]. (C.2)

The contraction mapping

max
s∈S
|Vk+1(s)− V ∗(s)| ≤ γmax

s∈S
|Vk(s)− V ∗(s)| (C.3)

implies that Vk converges to V ∗ as k → ∞. Algorithm 13 (see inset that follows) shows

the value iteration algorithm in its entirety. The algorithm takes as input the MDP tuple

〈S,A,P ,R, γ〉. Each state value is initialized to zero and updated via the Bellman equa-

tion. After the convergence threshold is met, the entire table of state values is returned.

That table of values (V) can be used to choose the optimal action in real time using the

following equation:

219

a∗ = arg max
a∈A

∑
s′∈S
Pass′ [Ra

ss′ + γV ∗(s′)] (C.4)

Algorithm 13 Exact value iteration algorithm for solving MDPs.

ValueIteration(〈S,A,P ,R, γ〉)⇐ {
for all s ∈ S do
V0(s)⇐ 0

end for
t⇐ 0
repeat
t⇐ t+ 1
for all s ∈ S do
Vt(s)⇐ maxa γ

∑
s′∈S Pass′ [Ra

ss′ + Vt−1(s′)]
end for

until maxs |Vt(s)− Vt−1(s)| < ε
return Vt
}

Relationship between value function V (s) and state-action value function Q(s, a)

While the state-action value function Q(s, a) provides the value in state s of any action

a, the value function V (s) provides the value in state s of the best action selection as

determined by policy π(s) as follows:

π(s) = arg max
a∈A

Q(s, a) = arg max
a∈A

∑
s′∈S
Pass′ [Ra

ss′ + γV (s′)] (C.5)

Thus, the value in state s is equal to the maximum Q-value ∀a ∈ A

V (s) = max
a∈A

Q(s, a) (C.6)

or simply the Q-value of the action selected by policy π(s).

V (s) = Q(s, π(s)) (C.7)

220

Likewise, the state-action value function can be defined as the value obtained by acting

greedily with respect to the value function.

Q(s, a) =
∑
s′∈S
Pass′ [Ra

ss′ + γV (s′)]. (C.8)

While the previous Algorithm 13 assumes the end result of value iteration to be the value

function, we actually care most about finding policy πt where

πt(s) = arg max
a

∑
s′∈S
Pass′ [Ra

ss′ + γVt−1(s′)] (C.9)

These new concepts are used in Algorithm 14 shown below. Algorithm 14 differs from

Algorithm 13 because it returns policy πt and uses the state-action value function as an

intermediary between the value function and the policy, which explicitly shows how the

three relate. Algorithm 14 takes as input the MDP tuple 〈S,A,P ,R, γ〉. Each state value

is initialized to zero. Using the state values, a state-action value is then calculated for each

state-action pair. The policy and state values are then recalculated from the state-action

values. This process repeats until a convergence threshold is met. Algorithm 14 returns

policy πε.

C.3 Policy Iteration

Now that we have defined an MDP, value iteration, and the relationship between the value

function and the state-action value function, we can bring these together into the more

general framework of policy iteration. As we know, a policy is the mechanism that maps

each state to an action, thereby deciding for us how to act in each situation. Policy iteration

(PI) is an algorithm that calculates a sequentially improving series of policies. Thus the PI

algorithm is premised upon having an existing policy and improving it. PI has three steps:

• Policy Iteration Steps:

– Initialization

– Evaluation

221

Algorithm 14 Exact value iteration algorithm using Q-values.

ValueIterationQ(〈S,A,Pass′ ,Ra
ss′ , γ〉)⇐ {

for all s ∈ S do
V0(s)⇐ 0

end for
t⇐ 0
repeat
t⇐ t+ 1
for all s ∈ S do

for all a ∈ A do
Qt(s, a)⇐∑

s′∈S Pass′ [Ra
ss′ + γVt−1(s′)]

end for
πt(s)⇐ arg maxaQt(s, a)
Vt(s)⇐ Qt(s, πt(s))

end for
until maxs |Vt(s)− Vt−1(s)| < ε
return πt
}

Figure C-2: A policy is initialized in some way, often arbitrarily. That policy is evaluated,
to find V (x). That is, we find the value of that policy in each state, where the value is
the discounted future reward of executing that policy. Policy evaluation can be done using
Monte-Carlo simulation as discussed in Section D.3. Equation C.9 is used to extract an
improved policy from the existing value function.

222

Figure C-3: MDP mechanics: In the MDP framework, we find ourseleves in state s where
policy π chooses an action to execute. Although the action is chosen, we do not know for
sure which state we will transition into. When executing action a, in state s, the probability
of transitioning to state s′ is denoted as Pass′ . The objective of the MDP optimization
problem is to find the best policy, that is the policy that maximizes the value of every state.

– Improvement

The above steps are depicted in Figure C-2. A policy is initialized in some way, often

arbitrarily. That policy is evaluated, to find V (x). That is, we find the value of that policy

in each state, where the value is the discounted future reward of executing that policy.

Policy evaluation can be done using Monte-Carlo simulation as discussed in Section D.3.

Equation C.9 is used to extract an improved policy from the existing value function.

Policy Improvement Shorthand

Policy evaluation is the process of figuring out the value of executing a given policy, for

each and every state, given a policy, which is performed after we improve the policy. The

value function and the policy are closely related. The policy improvement algorithm ob-

tains a new policy πk+1 from policy πk. The policy improvement step can simply be mini-

mizing the DP equation or it can be something more complicated. Likewise, the DP equa-

tion corresponds to a one-step look-ahead policy over V . TV is shorthand for the DP

equation applied to the entire state-space such that:

V k+1 = TV k (C.10)

The DP equation shorthand for an individual state is:

(TV)(x) = minu∈U(x)[g(x, u) + α
n∑
j=1

pij(u)V (j)], for i = 1, 2, 3, ..., n (C.11)

223

The DP equation may be applied multiple times, the result of which is:

V k+b = T bV k (C.12)

In regular value iteration, the improvement step is the DP algorithm, which is a one-step

look-ahead. Likewise, the policy extraction algorithm is the DP algorithm. But the point of

this section, is that the policy extraction and improvement algorithms can be anything. For

example, they can be a two-step look-ahead algorithm, a five-step look-ahead algorithm,

or they can even be a twenty-step search algorithm. The only restriction is that they are

based on the current value function and improve upon the current value function. This idea

is discussed and expanded in Section 3.7 when we devise an online search algorithm that

exploits the value function. In Section 3.7, the value function is used like a heuristic to

guide online search. Arguably, T uses V as a heuristic regarding how good a future state

is and consequently, how good a given action is. Given that the cumulative reward is what

we value and given the short sightedness of an OSLA policy improvement step, it stands

to reason that a multi-step look-ahead is better (albeit more computationally involved).

That online search algorithm presented in Section 3.7 is designed for policy extraction,

and improves upon the policy learned offline. A similar method could be used with policy

iteration.

Alternate Policy Improvement Methods

There are any number of ways that you can improve upon an existing policy. They all

involve simulating or looking ahead.

It is clearest to consider this idea under a deterministic problem as we consider any

old deterministic policy. In other words, the policy always chooses the same action from a

given state and that action always leads to a particular next state. We have evaluated that

policy to get V (x). We are in state x and we wish to consider alternatives to π(x). Suppose

action a = π(x) and action a takes us into state xa. Likewise actions b and c take us into

states xb and xc. We therefore do a one step look ahead simulation to see if V (xb) > V (xa)

or V (xc) > V (xa). If either V (xb) or V (xc) is greater than V (xa), then integrating that

224

new action into π would result in a better policy. Likewise, we can do this for each and

every state in the problem’s state-space.

In exact value iteration there is no reason to do anything but one-step look-ahead policy

improvement. It is guaranteed to converge to the optimal answer and it is quicker than doing

a more complicated policy improvement method. However, when the value function is

merely approximated and interpolations are made for unexplored states, then the guarantee

that the Bellman Equation’s one-step look-ahead always improves your policy no longer

holds.

C.4 A suboptimal offline policy for a realistically large

MDP can be found via approximate value iteration

(review)

The above formulation and algorithms assume a discrete state set S. If the state space is

discrete, V and Q can be represented as a table of values, one record for each discrete

state; the table of values is initialized arbitrarily and improved iteratively. The problem

with this approach is that many real world state spaces are continuous and an acceptable

discrete representation is intractably large, exceeding memory capacity. Additionally, we

must perform a time-consuming value iteration backup for each state.

We address these complexities by representing Q using an estimation architecture (Q̂).

The estimation architecture stores the state action-value function in a compressed form,

such as a linear function over problem variables rather than an explicit combination of each

possible variable assignment. When used in approximate value iteration (Bertsekas and

Tsitsiklis [1996a]), the estimation architecture alleviates the storage problem and shares

information across state variables, decreasing learning time. The estimation architecture,

therefore, solves both problems inherent to exact value iteration.

Algorithm 15 outlines the approximate value iteration algorithm where Q̂ is the ap-

proximate value function represented by an estimation architecture. Algorithm 15 takes as

input the MDP tuple 〈S,A,P ,R, γ〉, where |S| is very large, possibly infinite. Algorithm

225

Algorithm 15 Approximate state-action value iteration algorithm where Q̂ stands for an
approximation architecture representation of the state-action value function, Q̄ stands for
a lookup table of state action values over a subset S̄ of the full statespace S.

ApproxStateActionValueIteration(〈S,A,P ,R, γ〉)⇐ {
for all s ∈ S̄ ⊂ S do

for all a ∈ A do
Initialize (Q̄(s, a))

end for
end for
InitializeApproximationArchitecture(Q̄t, Q̂t)
t⇐ 0
repeat
t⇐ t+ 1
for all s ∈ S̄ ⊂ S do

for all a ∈ A do
Q̄(s, a)⇐∑

s′∈S Pass′ [Ra
ss′ + γmaxa Q̂(s′, a)]

end for
end for
Q̂⇐ UpdateApproximationArchitecture(Q̄, Q̂)
for all s ∈ S̄ do
π(s)⇐ arg maxa Q̂(s, a)
V̄t(s)⇐ Q̄(s, π(s))

end for
until maxs∈S̄ |V̄t(s)− V̄t−1(s)| < ε , ∀s ∈ S̄
return Q̂t

}

226

15 begins by randomly initializing state-action value table Q̄(s, a) over state subset S̄. The

approximation architecture Q̂ is then initialized based on the Q̄ table. We then perform a

Bellman backup over state subset S̄, using Q̂ for future state-action value estimates. The

newly computed state-action values are stored in table Q̄ and the policy, approximation

architecture and state value table are then updated; this process repeats until a convergence

threshold is met. Algorithm 15 returns approximation architecture Q̂t.

227

D Online simulation based control algorithms
(DUM Background)

D.1 Online simulation based control

In this section we introduce simulation as a useful tool for building control policies. We

introduce the concept of a policy tree and describe how every other algorithm, such as

the well-known Monte Carlo sampling algorithm, is a method for sampling from and more

efficiently approximating that policy tree. We contrast existing full feedback and open-loop

algorithms. We discuss existing guided and unguided algorithms. This naturally motivates

and leads into our uncertainty guided algorithm. Online search algorithms that are guided

by a policy that was learned offline inevitably improve upon that policy. DUM takes that

idea a step further. The motivation of DUM is to guide online search in an optimal way

with respect to what is known at the time.

Why is simulation useful? We use a computer to imitate a real-world process in order

to make predictions and decisions regarding how to act within that system. Simulation as

a method can be employed to enlighten us on how even complex systems work. Thus, we

do simulation when analytical solutions and in-depth analysis is impossible; we do this for

complex systems that we do not fully understand.

Traffic flow example: For example, we can simulate traffic patterns and bottle-necks

around a city. Even a city of thousands of traffic lights can be simulated, because we

understand the individual constituents of the system. So, even though we do not understand

the whole system, we can still build it intersection by intersection and thereby simulate an

entire city. We can then use this computer simulation model to test design changes that will

get rid of bottlenecks. Specifically, traffic lights control traffic flow through the city. Thus,

we can simulate the city under different traffic control policies. The simulation provides a

way to evaluate and compare proposed bottleneck reducing policies.

228

Hyper-parameters: We know that simulation is used to analyze complex systems. But

specifically, simulation is used to estimate certain statistics of distributions within that sys-

tem such as the mean of the distribution of interest. For example, we could estimate the

mean travel time between two points within a city under a specific traffic control policy.

Most importantly, we can estimate how precise that estimate is. We may estimate that the

mean travel time between point A and B under policy π is 10 minutes. Yet, we may main-

tain a very large variance over that measure because we are not sure about its true value.

Quantifying that measure’s uncertainty helps us to better compare it to the same measure

under a different policy.

It is important to make the distinction between the uncertainty over a measure such as

expected travel time, and the intrinsic variation of travel time in the real world. We know

that the travel time from point A to B may actually vary. That is to say, it is not the same

for every trip. So, we can also estimate that real-world dynamical variation, measured as

a variance over time-traveled. Likewise, we will never truly know what the value of that

variation measure is. But we can determine how well we know that value, represented as

uncertainty over the true real-world variation in travel time. Confusingly, this may very well

be a variance about or with respect to a variance. These parameters about parameters are

called hyper-parameters and they are very important to decision uncertainty minimization

(see DeGroot and Schervish [2001]).

Monte Carlo analysis: To summarize, we may simulate a system even without a theory

regarding how it works. We can determine certain features of the system such as the mean

and variance of some important measure. Knowing how well we know something is very

important when making decisions, and is a key property of DUM. This type of analysis

involves chance and randomness. Consequently, we refer to it as Monte Carlo analysis,

named after the European gambling mecca.

229

Figure D-1: Starting from the current state, the policy tree is a complete elicitation of every
possible action emanating from the current state and every possible future state resulting
from each action as depicted in Figure D-1. A policy graph considers all possible actions
that can be taken and all possible subsequent future states stemming from that action. This
procedure continues recursively, such that the policy graph captures and characterizes all
possible action-state sequences. At each level, starting from the bottom, we average over
outcomes and maximize over actions, resulting in the optimal full-feedback policy.

D.2 Policy Tree

In this section we define a complete policy tree (Figure D-1), which provides the optimal

solution to the control problem. We will also walk through the algorithm for computing

the policy tree. This algorithm is very general and optimal but computationally expensive.

Computing the policy tree online or otherwise is completely unrealistic for any of the real

problems we face. Although this algorithm is prohibitively expensive computationally, it is

instructive in order to elucidate what that optimal full-feedback policy looks like.

Starting from the current state, the policy tree is a complete elicitation of every possible

action emanating from the current state and every possible future state resulting from each

action as depicted in Figure D-1. A policy graph considers all possible actions that can be

taken and all possible subsequent future states stemming from that action. This procedure

continues recursively, such that the policy graph captures and characterizes all possible

action-state sequences. At each level, starting from the bottom, we average over outcomes

and maximize over actions, resulting in the optimal full-feedback policy.

Full feedback: A full feedback policy considers the consequences of future actions,

which are contingent upon the results of the current action and any intermediate actions.

230

This is in contrast to an open loop policy, which is sometimes called a plan. Many au-

tonomous controllers also allow some feedback through replanning, but are not full feed-

back. Full feedback is important in some situations. For example, suppose you have the

choice of opening one of two doors. Behind one door is a dragon and behind the other

door is your friend Bob bringing you birthday presents. In the first step you choose which

door to open. In the second step you choose to attack with your sword or not. In the open

loop plan you have to choose your actions ahead of time. In the full feedback plan you

can select options along the way depending on your observations of the situation. If you

were to evaluate the plan of 〈door one, attack〉, you would average over the cases where

you encountered the dragon and did the right thing and encountered Bob and did the wrong

thing. Likewise, if you evaluate the plan 〈door one, invite inside〉 you would average over

the cases where you encountered the dragon and did the wrong thing and encountered Bob

and did the right thing. A better policy considers what the agent observes when opening

the door. Preferably, you could option to attack when you see the dragon and invite inside

when you see Bob. That way, you would be averaging over the outcomes of the best action

taken in each situation. See Figure D-2. The resulting policy of a policy tree is equivalent

to using exact dynamic programming for time-dependent MDPs.

Policy tree walk-through: A policy tree steps forward in time, simulating each possible

action. For each action, each possible eventuality (future state) is simulated. Part of evalu-

ating a given action entails averaging the rewards garnered. the rewardsRa
ss′ are averaged,

weighted by their probability of occurring Pass′ However, we also want to average in the

future rewards that stem from this initial action. Therefore, we simulate forward again. We

do this for each action, and take the value from the best action. This can be done many steps

forward, recursively, all the way to the end of the control problem. We then maximize over

control actions on the way back. PolicyTree returns the following value along with the

associated action:

max
a∈A

∑
s′∈S
Pass′ [Ra

ss′ + γPolicyTree(s′)] (D.1)

231

Algorithm 16 Policy Tree: A policy tree is the most general and optimal planning algo-
rithm. Given enough samples (N), this algorithm chooses the best action a ∈ Ā where
Ā ⊆ A given all subsequent actions are also limited to Ā. This brute-force approach to
full-feedback control, makes no assumptions regarding certainty-equivalence, does not
require a base policy, and does not sacrifice optimality by ignoring the effects of future
contingencies. Q̄ denotes the state-action value lookup-table, which we are building.
However, Q(s′, a′) refers to the future value of taking action a′ from state s′, as es-
timated by the recursive Monte Carlo planning algorithm. d = search depth. The
computational complexity is O((|A|N)d).

1: PolicyTree(s ∈ S,M≡ 〈S,A,P ,R, γ〉)⇐ {
2: if s ∈ T then
3: return 0
4: end if
5: for all a ∈ A do
6: Q̄(s, a)⇐ 0
7: for all s′ ∈ S do
8: Q̄(s, a)⇐ Q̄(s, a) + Pass′ [Ra

ss′ + γ PolicyTree(s′, . . .)]
9: end for

10: end for
11: return maxa∈A Q̄(s, a), arg maxa∈A Q̄(s, a)
12: }

We will walk through the pseudocode of Algorithm 16. In Line 1 we pass in the current

state and the problem model into PolicyTree. Line 2 checks to see if the problem has

reached the ending state T . If so, we pass back the value of 0 to the previous recursive

call. If there is no terminal state, then PolicyTree never ends. In that case, a maximum

forward search depth can be used in practice. Line 5 loops through all actions. In the

case of continuous actions, such as how hard to push the accelerator or selecting the best

roll-rate for an aircraft maneuver, action discretization may be employed. Line 6 initializes

the state-action value so that we can average over all possibilities. Line 7 loops through

all possible future states s′. Line 8 computes the weighted current reward plus discounted

future reward for the future state instance s′ and adds it to the weighted average. After all

is said and done, we return the action with the maximum value.

PolicyTree is very complex. The complexity of a policy tree stems from its re-

cursive nature. The complexity of PolicyTree is (|A||S|)h where |A| is the number of

possible actions, |S| is the number of system states and h is the number of steps required

to get to the end. We can reduce the complexity by sampling the states instead of eliciting

232

them all, testing fewer actions or limiting the lookahead. The next Subsection is a standard

way to reduce the complexity by sampling fewer states.

D.3 Monte Carlo sampling based planning

First we present the very general optimal full-feedback-sampling-based algorithm (num-

ber 17). This algorithm makes no assumptions regarding certainty-equivalence, does not

require a base policy, and takes into account the effect of future contingencies. The algo-

rithm begins with the current state s ∈ S and model M. It then tries all actions within

set Ā. For each action, the algorithm collects and averages N samples, by simulating the

state-action, then recursively calling itself with the new state. The algorithm eventually

returns the action with the highest value.

Algorithm 17 Generic Monte Carlo Planning: This is the most general optimal Monte
Carlo sampling-based planning algorithm. Given enough samples (N), this algorithm
chooses the best action a ∈ Ā where Ā ⊆ A given all subsequent actions are also
limited to Ā. This brute-force approach to full-feedback control, makes no assumptions
regarding certainty-equivalence, does not require a base policy, and does not sacrifice
optimality by ignoring the effects of future contingencies. Q̄ denotes the state-action
value lookup-table, which we are building. However, Q(s′, a′) refers to the future value
of taking action a′ from state s′, as estimated by the recursive Monte Carlo planning
algorithm. d = search depth. The computational complexity is O((|A|N)d).

MonteCarloPlanning(s ∈ S,M≡ 〈S,A,P ,R, γ〉 , d ∈ N)⇐ {
if d ≡ 0 then

return 0
end if
for all a ∈ Ā ⊆ A do
Q̄(s, a)⇐ 0
for n = 1 : N do
s′ ⇐ MonteCarloSimulation(s, a,M)
{Q(s′, a′), a′} ⇐ MonteCarloPlanning(s′,M, d− 1)
Q̄(s, a)⇐ Q̄(s, a) + (Ra

ss′ +Q(s′, a′))/N
end for

end for
return maxa∈A Q̄(s, a), arg maxa∈A Q̄(s, a)
}

Although this algorithm is optimal, it is also computationally intractable for most real-

233

Figure D-2: A full feedback policy considers the consequences of future actions, which
are contingent upon the results of the current action. Full feedback is important in some
situations. For example, suppose you have the choice of opening one of two doors. Be-
hind one door is a dragon and behind the other door is your friend Bob bringing you
birthday presents. In the first step you choose which door to open. In the second step
you choose to attack with your sword or not. In the open loop plan you have to choose
your actions ahead of time. In the full feedback plan you can select options along the
way depending on your observations of the situation. If you were to evaluate the plan of
〈door one, attack〉, you would average over the cases where you encountered the dragon
and did the right thing and encountered Bob and did the wrong thing. Likewise, if you
evaluate the plan 〈door one, invite inside〉 you would average over the cases where you en-
countered the dragon and did the wrong thing and encountered Bob and did the right thing.
A better policy considers what the agent observes when opening the door. Preferably, you
could option to attack when you see the dragon and invite inside when you see Bob. That
way, you would be averaging over the outcomes of the best action taken in each situation.

234

world problems. There are several ways to address this intractability. The first option is

to ignore the stochastic aspect of the problem, and simply model a nominal or expected

trajectory. This method is called certainty-equivalence and will be explained next. A sec-

ond option, called open-loop feedback control, ignores new information when making fu-

ture control decisions but does stochastically evaluate each plan. The third option is to

re-evaluate 〈state, action, policy〉 tuples online via simulation. This method, rollout, con-

siders both problem stochasticity and future contingencies, but it must be boot-strapped

with a base policy.

Algorithm 18 Monte Carlo simulation s function entails simulating one step of the sys-
tem, starting at state s and executing action a

MonteCarloSimulation (s ∈ s, a ∈ A,M ≡ 〈S,A, P,R, V 〉)⇐ {
Pass′
Select action s′|s, a proportional to Pass′
s′ ∈ S
where P (s′|s, a) = Pass′
return s′

}

D.4 Certainty-equivalence

Our next algorithm makes a certainty-equivalence assumption to reduce the complexity

of its analysis. The assumption is that the utility of the expected outcome is equal to the

expected utility, which is the average utility over all possible outcomes.

The expected outcome, E[s′|s, a], is calculated as

E[s′|s, a] =
∑
s′∈S

s′Pass′ (D.2)

and denoted by

s̄′ = E[s′|s, a] (D.3)

given that such an average is even meaningful. For a numerical state space,
∑

s′∈S s
′Pass′

would represent the average next state. The s̄′ for a discrete non-numeric unordered state

235

space can be interpreted as being the most likely state. For a Gaussian distributed state

transition outcome, s̄′ is both the average and most likely next state. The point is that

certainty equivalence means there is always some deterministic representative next state s̄′

such that Ra
ss̄′ + γV (s̄′) =

∑
s′∈SPass′ [Ra

ss′ + γV (s′)]. To break that down, the value of s

given the expected outcome s̄′ certainty equivalence assumption is simply calculated as:

V (s) = Ra
ss̄′ + γV (s̄′) (D.4)

rather than

V (s) =
∑
s′∈S
Pass′ [Ra

ss′ + γV (s′)] (D.5)

where a = π(s). Therefore, if true, we could correctly and more easily calculate our

policies using this substitute deterministic problem as shown in Algorithms 21 and 22.

An example of where this assumption is actually applied is the Riccati equation, when

calculating the settings for a linear-quadratic regulator. Indeed the certainty equivalence

property does hold for that very specialized linear-quadratic-Gaussian problem definition

(see Athans [1971] and Bertsekas [2005b]). However, the real world fails to comply to

such a neat and tidy model.

To review, certainty-equivalence means that a policy found to be optimal with respect to

the nominal system is also optimal in the fully stochastic system. By nominal system we are

referring to the expected state-evolution sequence. For example, in a system with additive

state-transition noise, we simply ignore the noise. Therefore, when planning in such a

system we can assume a nominal system disturbance and only simulate that nominal path,

for a given policy or plan. Turning the analysis into a deterministic problem makes it much

simpler. In fact, when certainty equivalence is assumed, and we assume that the system

evolves deterministically along the nominal trajectory, a policy and a plan are the same

in that imagined environment. Therefore, the certainty equivalent approximate solution is

even more efficient to compute than the open loop feedback control solution.

Although certainty-equivalence only holds for a minority of systems, the planning strat-

egy can be applied to any system with varying quality results. You may have seen this idea

used in other algorithms, without even recognizing it. Any algorithm that uses nominal or

236

expected system disturbances is implicitly making the certainty-equivalence assumption.

However, the certainty equivalent approximate solution can work poorly, especially if the

system disturbances are chaotic, and the appropriate reaction to these disturbances drasti-

cally deviates from the nominal reaction. This is common in information centric processes

such as tracking, where the underlying process evolves chaotically and the uncertainty

about that process follows a similar path.

An algorithm using this simplifying assumption is shown in Algorithm 19. The algo-

rithm begins with the current state s ∈ S and modelM (Line 1). It then tries all actions

within subset Ā (Line 5). For each action, the algorithm simulates one nominal sample rep-

resenting the expected outcome (Line 7). After simulating the state-action, the algorithm

then recursively calls itself with the new state (Line 8). The recursion terminates when the

simulation reaches the end of the mission or a prescribed forward search-depth. The algo-

rithm eventually returns the action with the highest value. This deterministic algorithm is

much more efficient because it does not need to optimize over numerous samples and their

subsequent outcomes.

In summary, the biggest drawback of the certainty-equivalence method is that, by sim-

ply modeling the nominal or expected trajectory, it ignores the stochastic aspect of the prob-

lem. Therefore, systems with complex-transition probability distributions will be poorly

optimized when using certainty-equivalence.

D.5 Open loop feedback control

237

Algorithm 19 Certainty-equivalence Planning: This algorithm assumes certainty-
equivalence to make the computations tractable. As opposed to Monte Carlo sam-
pling, this algorithm bases its decision upon only simulating the single, expected state-
transition. Therefore, it is faster than algorithm 17. certainty-equivalence planning is
only optimal in special circumstances. Therefore, the faster speed comes at the price
of optimality. Q̄ denotes the state-action value-lookup table, which we are building.
However, Q(s′, a′) refers to the future value of taking action a′ from state s′, as esti-
mated by the recursive certainty-equivalence planning algorithm. d = search depth.
The computational complexity is O(|A|d).

1: CertaintyEquivalencePlanning(s ∈ S,M≡ 〈S,A,P ,R, γ〉 , d ∈ N)⇐ {
2: if d ≡ 0 then
3: return 0
4: end if
5: for all a ∈ Ā ⊆ A do
6: Q̄(s, a)⇐ 0
7: s′ ⇐ NominalSimulation(s, a,M)
8: {Q(s′, a′), a′} ⇐ CertaintyEquivalencePlanning(s′,M, d− 1)
9: Q̄(s, a)⇐ Q̄(s, a) + (Ra

ss′ + γQ(s′, a′))/N
10: end for
11: return maxa∈A Q̄(s, a), arg maxa∈A Q̄(s, a)
12: }

OPEN-LOOP FEED-BACK CONTROL (OLFC)

OLFC simplifies search by limiting it to specific plans. An open loop plan consists of a

sequence of actions which do not adapt to feedback from the environment. OLFC makes

decisions by comparing open loop plans. However, OLFC only runs these plans for a

period of time. It then replans using the same open loop plan comparison methodology.

Thus, OLFC reacts to the environment stimuli, but it is not making plans that are opti-

mized to the maximization of future contingencies. Rather, OLFC is optimized to specific

hard future commitments.

One non-myopic approach to map exploration is open-loop feedback control (OLFC).

To select a sensing action, OLFC generates an open-loop plan (via search) for the mission

duration, which minimizes uncertainty. Many plans are evaluated this way and compared

by estimated value; the best plan is chosen, and the first action in the plan is executed. After

the first action is executed a new open-loop plan is generated for the remaining mission,

238

Algorithm 20 Open loop feedback control algorithm: To select an action, OLFC gen-
erates an open-loop plan via search, and evaluates it via N simulations. Many plans
are evaluated this way and compared based upon their estimated value. The best plan is
chosen, and the first action in the plan is executed. After the first action is executed a
new open-loop plan is generated for the remaining mission. The process continues for
the mission duration. The computational complexity of OLFC is O(|A|d × N), where
|A| is the number of actions to choose from and d is the search depth; the number of
time-steps into the future over which we search. Q̄ denotes the state-action value lookup
table, which we are building. However, Q(s′, a′) refers to the future value of taking ac-
tion a′ from state s′, as estimated by the recursive Monte Carlo planning algorithm. d =
search depth. The computational complexity is O(|A|d ×N).

OLFC(s ∈ S,M≡ 〈S,A,P ,R, γ〉 , d ∈ N)⇐ {
if d ≡ 0 then

return 0
end if
for all a ∈ Ā ⊆ A do
Q̄(s, a)⇐ 0
for n = 1 : N ∈ N do
s′ ⇐ OLFC(s, a,M)
{Q(s′, a′), a′} ⇐ MonteCarloPlanning(s′,M, d− 1)
Q̄(s, a)⇐ Q̄(s, a) + (Ra

ss′ +Q(s′, a′))/N
end for

end for
return {maxa∈A Q̄(s, a), arg maxa∈A Q̄(s, a)}
}

239

with the process continuing for the mission duration. Pseudocode outlining this process is

shown in algorithm 20.

While OLFC is effective, it is still intractable for large real-world problems. The com-

putational complexity of OLFC is O(|A|d × N), where |A| is the number of actions to

choose from and d is the search-depth; the number of time-steps into the future over which

we search. For example, suppose we have 10 actions to choose from and a mission length

of 100. In this case, there would be 10100 possible plans to evaluate, which is intractable

even with the fastest of today’s computational resources. The plan outcomes are proba-

bilistic, which makes evaluating them more expensive. As OLFC entails re-planning in

real-time, these costs present an obstacle.

The final important problem with open-loop feedback control is that it compares plans,

which do not react to new information, rather than policies, which do. In the next section

we will discuss rollout; a method that deals with this shortcoming. In particular, when the

value of the best contingent response varies widely then ignoring the new state information

during the planning process is unacceptable. The policy must consider not only the system

stochasticity, but also the response contingencies. One way around this problem is rollout,

which we will discuss next.

Algorithm 21 Nominal Simulation - expected next state

NominalSimulation (s ∈ S, a ∈ A,M≡ 〈S,A,P ,R, γ〉)⇐ {
return E[s′|s, a]
}

Algorithm 22 Nominal Simulation - most likely next state

NominalSimulation (s ∈ S, a ∈ A,M≡ 〈S,A,P ,R, γ〉)⇐ {
return arg maxs′∈S Pass′|s, a
}

D.6 Rollout

Section C.4 explains how suboptimal policies for real-world MDPs can be found via ap-

proximate value-iteration and represented using an approximation architecture. The sub-

240

optimality of approximate policies is typically due to the representational limitations of the

value function architecture. Fortunately, the value function estimate and the related action

choice can be improved at runtime using rollout. Rollout is a way to evaluate small changes

in a policy.

Rollout was originally introduced by Tesauro [1995] as a Monte Carlo technique for

off-line state-action valuation. However, rollout can also be used at runtime for policy-

extraction, which is the process of extracting the policy from the value-function. Given

a value-function, rollout determines the best action for the situation. While the value-

function is learned offline, rollout policy-extraction is performed at runtime. Rollout should

be used instead of OLFC or certainty-equivalence when it is important to properly evaluate

future plan contingencies. However, rollout requires a base policy to work.

For the full details of rollout, see Bertsekas [2007]. Here we will briefly discuss the

origin and applications of rollout, typical policy extraction versus rollout policy-extraction,

and improved methods of blending offline and online computation.

D.6.1 History and Intuition of Rollout

The term “rollout” comes from the backgammon community, where a playing strategy can

be analyzed by averaging the results of multiple games starting from a given board position

(Woolsey [1991]). The expected win-rate of a strategy from a particular board position

is the state-action value or Q value. Rollout is the preferred method of comparing two

strategies, such that backgammon experts use it as a justification for strategy change.

Rollout is sometimes used to compare two playing strategies that only differ by the

current state-action. In other words, the current actions will be different but all future

actions will use a common strategy. For example, suppose you have a strategy that you use,

but you would like to test the wisdom of that strategy for the current situation. To do this,

we would rollout each available action from the current board position, but strictly follow

the original policy thereafter. Thus, for one particular rollout you would use the alternate

action followed by the base strategy. In a backgammon rollout, you would literally roll the

dice and execute this alternate strategy many, many times. The rollout results are computed

241

by averaging the outcome of each game.

If we compare via rollout all possible actions from a given state and select the best one

(Bertsekas and Castanon [1999]), the expected outcome is always better than (or at least

as good as) using the base policy. Therefore, it stands to reason that choosing the action at

runtime via rollout would be better than the traditional policy-extraction method.

D.6.2 Typical policy-extraction versus rollout algorithm

Typically, we determine the policy at runtime by finding the control action a that maximizes

the dynamic programming equation C.1, with respect to our approximate value function Vs.

In other words, we simulate a one-step lookahead, and use the value function in the next

state to estimate future rewards. Performing this one-step lookahead for each possible

action determines the state-action values. Thus, we select and execute the action with the

highest state-action value in accordance with the following equation.

π(s) = arg max
a

∑
s′∈S
Pass′ [Ra

ss′ + γV (s′)] (D.6)

Algorithm 23 shows the steps needed to perform this operation. In line 1 we pass in

the current state, value function and model. Line 2 loops through all actions in order to

evaluate each of them. Line 3 resets the state-action lookup value to zero, that we are

about to reevaluate. Line 4 loops through all possible next states. Line 5 adds in the

weighted value of state s′ into the new state-action value estimate lookup table. When done

reevaluating all actions, we return the highest valued action in line 9.

Although Algorithm 23 represents, passes in value function V , if the offline policy is

represented as a state-action value function Q, then the procedure is simpler still as shown

in Algorithm 24. Algorithm 24 shows the steps needed to perform this operation. In line 1

we pass in the current state, approximate state-action value function and model. Line 2 and

3 initializes variables to store the best action and its value. Line 4 loops through all actions

in order to compare each of them. Line 5 compares the approximated state-action value of

action a to the best found so far. If it is better, then the best action is replaced with action

a. When all is said and done, the best action found is returned at line 9.

242

Algorithm 23 Bellman Policy Extraction: Typical value function policy-extraction
using V . Q̄ is a state-action value lookup table where we store our intermediate and
final state-action values based on the one-step lookahead.

1: BellmanPolicyExtraction(s ∈ S, V,M≡ 〈S,A,P ,R, γ〉)⇐ {
2: for all a ∈ A do
3: Q̄(s, a)← 0
4: for all s′ ∈ S do
5: Q̄(s, a)← Q̄(s, a) + Pass′ [Ra

ss′ + γV (s′)]
6: end for
7: end for
8: return arg maxa∈A Q̄(s, a)
9: }

Algorithm 24 Typical Q-function policy-extraction: Q̂ stands for an approximation
architecture representation of the state-action value function.

1: QPolicyExtraction(s ∈ S, Q̂,M≡ 〈S,A,P ,R, γ〉)⇐ {
2: bestQvalue⇐ −∞
3: bestAction⇐ null
4: for all a ∈ A do
5: if Q̂(s, a) > bestQvalue then
6: bestAction⇐ a
7: end if
8: end for
9: return bestAction

10: }

243

Figure D-3: Rollout re-evaluates every action at the first level, by rolling out future actions
in a Monte Carlo fashion, using the base policy to choose actions. Notice that all three
actions are evaluated at the starting state. But thereafter, only one action is evaluated. That
is the base policy default action. Multiple instances of an entire trajectory are simulated
and averaged. Rollout considers each action and simulates where the approximate policy
will lead.

While, Algorithm 24 relies entirely on a state-action value approximation provided

by Q̂(s, a), Algorithm 23 performs a single step improvement upon the value estimate

provided by V . We can take this a step further by employing rollout. The rollout algorithm

selects the current control action that maximizes the expected outcome with respect to

a multi-stage simulation of the base policy. A multi-stage rollout is performed for each

of the current action choices as shown in Figure D-3. The rollout method augments the

base policy on the first step by branching and maximizing over the expected outcome of

the base policy for the remaining mission horizon. The base policy for the remaining

mission horizon is evaluated by simulating that trajectory multiple times under the base

policy, again as shown in Figure D-3 . In other words, rollout maximizes over the initial

action-choice based on a Monte-Carlo evaluation of the base policy for the remainder of

the mission. By doing so, rollout makes better control-action selection than the one-step

look-ahead method. According to Bertsekas and Castanon [1999] rollout tends to make

better action-selections than the underlying value function. Therefore, it stands to reason

that rollout is a better policy extraction method.

244

Algorithm 25 shows the steps needed to perform this operation. In line 1 we pass in the

current state, approximate state-action value function and model. Line 2 and 3 initializes

variables to store the best action and its value. Line 4 loops through all actions in order to

compare each of them. Line 5 compares the approximated state-action value of action a to

the best found so far. If it is better, then the best action is replaced with action a. When all

is said and done, the best action found is returned at line 9.

Algorithm 25 Rollout: Q̄ denotes the state-action value lookup-table, which we are
building.

1: CompareRollouts(s ∈ S,M≡ 〈S,A,P ,R, γ〉 , π, T ≡ terminalstate)⇐ {
2: for all a ∈ Ā ⊆ A do
3: Q̄(s, a)⇐ 0
4: for n = 1 : N do
5: Q̄(s, a)⇐ Q̄(s, a)+Rollout(s,M, π, a)/N
6: end for
7: end for
8: return {maxa∈A Q̄(s, a), arg maxa∈A Q̄(s, a)}
9: }

10: Rollout(s ∈ S,M≡ 〈S,A,P ,R, γ〉 , π, a ∈ A, T)⇐ {
11: s′ ⇐ MonteCarloSimulation(s, a,M)
12: if s′ ∈ T then
13: return Ra

ss′

14: end if
15: return Ra

ss′+Rollout(s′,M, π, π(s′), T)
16: }

D.6.3 Time-complexity of rollout

Rollout can viably improve upon an offline policy in the frenetic time-constrained runtime

environment because it tries to find the best action for the current situation only, which is

easier than finding the best action for every situation.

The runtime of rollout depends on A, the number of actions you will consider; N, the

number of rollouts (trajectory samples) per action; and d, the average length or depth of a

trajectory. The O notation time-complexity of rollout is: O(ANd)

The runtime of typical value based policy-extraction depends on A, the number of ac-

tions you will consider and N, the number of one-step look-ahead samples. The worst-case

245

time-complexity of typical value-based policy-extraction is: O(AN)

D.7 Nested Rollout

Figure D-4: Two-level nested rollout re-evaluates every action at the first and second level,
by rolling out future actions in a Monte Carlo fashion. Thus all potential action choices
are evaluated for the current state and the subsequent state. Meanwhile, the rollout process
uses the base policy to choose actions for all but the first and second encountered states in a
trajectory. In rollout, multiple instances of an entire trajectory are stochastically simulated
and averaged. Thus, at the first and second level we consider every action, but thereafter
follow the base policy.

D.7.1 Standard Rollout

The point of rollout is to compare polices that differ only in their initial action choice. The

comparison requires a Monte Carlo analysis of each policy. The term “rollout” comes from

the backgammon community where it is sometimes used to compare two playing strategies.

The two backgammon game playing strategies being computed are in fact the same with

246

the exception that one of the strategies is employing a different move at a particular game

configuration. The comparison starts at that configuration of interest. To do this, you

would perform Monte Carlo analysis on two actions from the current board position, but

strictly follow the original policy thereafter. The two different moves are employed and the

remaining game is “rolled-out” under the predominant incumbent strategy. By doing so,

we can figure out if the new move is an improvement or not.

In a backgammon rollout, you would literally roll the dice and execute this alternate

strategy many, many times. The rollout results are computed by averaging the outcome

of each game. Rollout is the preferred method of comparing two strategies, such that

backgammon experts use it as a justification for strategy change.

D.7.2 Rollout based policy extraction

In the MDP framework, we will often learn a value function offline and determine the policy

at runtime by maximizing the dynamic programming equation. If we compare via rollout

all possible actions from a given state and select the best one (Bertsekas and Castanon

[1999]), the expected outcome is always better than (or at least as good as) using the base

policy. Therefore, it stands to reason that choosing the action at runtime via rollout would

be an improvement over the traditional policy-extraction method.

D.7.3 The nested rollout extension

Rollout is a bit like a search algorithm except that it only branches on actions at the very first

level. In that sense it samples from the policy tree by severely limiting its policy choices, in

addition to settling for Monte Carlo sampling of each policy instead of a complete evalua-

tion. These restrictions make rollout efficient but limited. Nested rollout extends the rollout

concept by allowing branching at multiple levels (see Rosin [2011]). For example, nested

rollout may branch at two or three levels. This makes nested rollout more costly but also

more capable. The secret is to make the right trade-off between cost and capability. Details

of this algorithm are presented here.

Searching Solitaire in Real Time Bjarnason et al. [2007] provides a nested rollout

247

algorithm to amplify the effectiveness of a heuristic based decision. Maximizing over the

rollout of each state-action is a form of policy iteration. Policy iteration generates a se-

quence of improved policies (Proposition 2.4 page 30 of Bertsekas and Tsitsiklis [1996a]).

Consequently, a rollout policy is guaranteed to be equally good or better than the base pol-

icy (page 267 of Bertsekas and Tsitsiklis [1996a]). However, unlike a single stage rollout,

the multi-stage algorithm is not guaranteed to deliver a better or even equivalent policy.

Nevertheless, multistage rollout performs well in practice.

The recursive formulation allows a variable branching factor at each stage. The mod-

ified search method also incorporates move sequences (macros) and caches visited states,

similar to Kocsis and Szepesvari [2006].

D.7.4 Picture Description

Rollout re-evaluates every action at the first level, by rolling out future actions in a Monte

Carlo fashion in that multiple instances of an entire trajectory are stochastically simulated

and averaged. The rollout process uses the base policy to choose actions, thus all three

potential action choices are evaluated from the current state.

Yet, aside from the initial actions, thereafter only one action is evaluated, which is the

base policy default action. Consequently, these subsequent base policy decisions are not

necessarily optimal, just as the initial decision may not be optimal. After all, that is the

justification for the reevaluation.

One way to improve upon this conundrum is to do a second level of rollouts. In other

words, at not just the current state, but also at the subsequent resulting state, each available

action is considered and reevaluated via rollout. Thus, at the first and second level we

consider every action, but thereafter follow the base policy. This process is depicted in

Figure D-4.

It is logical that this process is better than standard rollout. Since it is better, why not

do this at even more levels. The opposing reason is that although deeper action branch-

ing is better, it can get expensive. Therefore, choosing an appropriate depth to do this is

important.

248

D.7.5 Algorithm Walkthrough

Algorithm 26 Nested Rollout: N-level nested rollout branches on all actions in the top
N levels then re-evaluates these combinations by rolling out future actions π(s) in a
Monte Carlo fashion. The rollout process uses the base policy to choose actions for
all but the top N encountered states in a trajectory. In rollout, multiple instances of an
entire trajectory are stochastically simulated and averaged. Q̄ denotes the state-action
value lookup-table, which we are building.

1: CompareNestedRollouts(s ∈ S,M, π, T,N, nestDepth)⇐ {
2: for all a ∈ A do
3: Q̄(s, a)⇐ 0
4: for n = 1 : N do
5: if nestDepth > 0 then
6: s′ ⇐ MonteCarloSimulation(s, a,M)
7: Q̄(s, a)⇐ Q̄(s, a)+Ra

ss′+CompareNestedRollouts(s′,M, π, T,N, nestDepth)/N
8: else
9: Q̄(s, a)⇐ Q̄(s, a)+Rollout(s,M, π, a, T)/N

10: end if
11: end for
12: end for
13: return {maxa∈A Q̄(s, a), arg maxa∈A Q̄(s, a)}
14: }
15: Rollout(s ∈ S,M≡ 〈S,A,P ,R, γ〉 , π, a ∈ A, T)⇐ {
16: s′ ⇐ MonteCarloSimulation(s, a,M)
17: if s′ ∈ T then
18: return Ra

ss′

19: end if
20: return Ra

ss′+Rollout(s′,M, π, π(s′), T)
21: }

Algorithm 26 shows pseudocode for the nested rollout algorithm. In line 1 we pass

in the current state, system model, policy, terminal state criteria, sample size and nest

depth. The variable nestDepth reflects the number of times that the standard rollout

algorithm will be ‘nested’ inside itself. The nestDepth is also the depth to which the

CompareNestedRollouts function will branch on and compare all available actions.

Line 2 loops through all actions in order to compare each of them. Line 3 loops through the

initiation of N Monte Carlo trajectory samples. These samples may lead to another nested

rollout or a simple rollout evaluation of the trajectory given policy π. Line 5 chooses be-

tween calling nested rollout, if the depth has not yet been reached, and standard rollout.

249

Line 6 simulates the next state. Line 7 adds the instant reward to the lookup table and calls

CompareNestedRollouts. If the required nesting depth has been exceeded, then line

9 calls standard rollout. Line 13 compares and returns the best action and its value.

Line 15 through 21 include the subroutine Rollout. In line 15 we pass in the current

state, model, policy, current action and terminal state criteria. Line 16 simulates the next

state. Line 17 determines if we have reached a terminal state. If we have reached a terminal

state, line 18 returns the instant reward. If we have not reached a terminal state, line 20

recursively calls Rollout. Upon return of the Rollout function, line 20 adds the result

to the instant rewards and returns the sum.

Figure D-5: Example problem : You want to create this value function that somehow guides
you to the goal. The state space is continuous, thus infinite in size. We could discretize
the space, but that would be too hard. We need to approximate a value function with a low
order function. However, the resulting policy is imperfect.

250

Figure D-6: Value function based policy (approximate) : You want to create this value
function that somehow guides you to the goal. The state space is continuous, thus infinite
in size. We could discretize the space, but that would be too hard. We need to approximate
a value function with a low order function. However, the resulting policy is imperfect.

251

Figure D-7: Rollout example: Standard rollout is depicted above our simple vehicle guid-
ance task. Three actions are tried and compared. The left action is tried and the base policy
is followed thereafter. The same is done for the down and right actions. For a deterministic
problem, each action is simulated once. For a stochastic problem each action must be sim-
ulated enough times to acquire a low variance average value estimate.
The rollout algorithm presupposes that we have a value function that guides us to the goal.
Our approximate value function is helpful but imperfect. To compensate for the imperfect
policy, we can re-simulate our policy for each current action. This simulating based rollout
provides a more accurate value estimate, and consequently a better decision. Kit Woolsey
introduced rollout as a statistical method for quantitatively determining the best move, in
which candidate position is played to completion thousands of times, with different random
dice sequences.

Figure D-8: Limited Horizon Rollout : We need to approximate a value function with a low
order function. We compute Q-values by trying each move (Left, Right and Down). This
involves simulating n-steps using the base policy. But the remaining cost-to-go is estimated
using the value Function, or q-value function.

252

Figure D-9: Rollout cannot find goal: In the above example, 1-step rollout does not im-
prove policy and cannot find goal. In some cases, one step rollout does not work. The base
policy is based upon the approximate value function. It points the agent directly toward
the goal, regardless of obstacles. The rollout algorithm attempts to go left, right and down,
followed by rolling out the base policy. When the obstacle was small, rollout found its
way around, with the help of the base policy. In any arbitrary problem, a value function
approximates some simpler version of the problem. This is necessary to reduce represen-
tational complexity. But the trade-off cost is a worse policy. Rollout solves this dilemma
by improving the policy at runtime. However, in some cases, as shown here, the rollout of
a base policy is still unsatisfactory.

253

E An alternative 5-level Hierarchy system

The 3-level hierarchy discussed in section 5.1.1 is the basis from which we work in this

thesis. However, an alternative 5-level hierarchy warrants mentioning because it makes

sense for some applications. For example, suppose we wish to monitor an evolving ocean

phenomenon. We can monitor it globally using a satellite and locally using an AUV. How-

ever, we could benefit from a faster moving in-situ sensor platform, such as a small un-

manned air vehicle (UAV). The concept is that a team of UAVs could be deployed to fol-

lowup on the information received from the satellite. The team is deployed to a large

(mesoscale-alpha) area and each UAV is tasked with a set of locations to survey. The UAV

data will be more accurate than the satellite data due to the closer proximity and focus.

Information gained from this process is used to task a team of AUVs to a still smaller

(mesoscale-gamma) area. Figure E-2 depicts this architecture. The main advantage of the

5-level hierarchy is that we can use the faster speeds of the UAVs to collect an intermediate

quality of data which has a broader geographic range.

Figure E-1: 5-level Adaptive sensing hierarchy.

254

SCALE TERMS

The synoptic-meso-micro meteorlogical scale system is a horizontal length scale designed

for the study of weather systems. Each level deals with phenomena of a certain size, listed

below. This definition is a consistent amalgamation of various references.

• Synoptic : ∼ 1000 Miles (weather fronts and pressure systems)

• Meso : ∼ 1 miles↔ 1000 miles

(storm-scale cumulus systems such as sea breezes and squall lines)

– Alpha : ∼ 100↔ 1000 miles (squall lines and tropical cyclones)

– Beta ∼ 10 miles↔ 100 miles (sea breezes and lake effect snow storms)

– Gamma ∼ 1 miles↔ 10 miles

(thunderstorm convection and complex terrain flows)

• Micro ≤ 1 mile (cloud ”puffs” and other small cloud features)

See Berg et al., Glickman [1972], Fujita [1986] and Orlanski [1975].

Figure E-2: Space Exploration 5-level Adaptive sensing hierarchy.

255

F Abstract Bayesian Sensor Model : Road De-
tection Example

This application, which we described in detail in “Active Detection of Drivable Surfaces

in Support of Robotic Disaster Relief Missions” (Wang et al. [2013]), builds an abstract

Bayesian sensor model (ABSM) for detecting roads. In this example, the model is used for

a disaster relief or search and rescue mission, where the active sensing algorithm seeks to

find a safe ground-vehicle path to the victims, via a roadway or other traversable surface.

We will describe the inside workings of the road detection ABSM below. However, it is

important to remember that an abstract Bayesian sensor model maps real world sensor data

to a posterior prediction about a phenomena of interest. A key aspect of the ABSM is

that it produces a prediction distribution, thereby allowing us to integrate it into our prior

belief via a Bayesian update. The ABSM only presents an abstract interface to the active

sensing algorithm. The details of how it generates the posterior prediction distribution

from the data are completely compartmentalized away from the planning agent. Therefore,

a planning agent can be used on any active sensing application if a proper ABSM has been

built for it. The ABSM can be applied to a range of active sensing tasks, such as finding

water on Mars.

In our road detection tests, our multi-step method removed many spurious objects that

were initially considered to be roads. With one pass of our sensor, the algorithm will defini-

tively detect a road 20% of the time with a 40% false alarm rate. Although the sensor did

sometimes lose portions of actual road, this cost is minimal compared to the potential dan-

ger of identifying obstacles such as rooftops and houses as open terrain. Our algorithm

conveys the certainty level of the prediction, so that it can be integrated into the current be-

lief via a Bayesian update. Therefore, multiple collections may be planning and integrated

together.

256

F.1 Active Detection of Drivable Surfaces in Support of

Robotic Disaster Relief Missions

Background

The use of unmanned vehicles has been growing over the past few decades, with various

applications ranging from scientific exploration (Bush et al. [2008b]) to industrial automa-

tion (Wurman et al. [2008]). In order to relieve the burden on human operators, the most

obvious solution is to use a fully autonomous vehicle that requires no operators; however,

current models lack the algorithms to execute complicated maneuvers that human-operated

unmanned vehicles can, limiting their usage in a search and rescue situation (Quigley

[2004]).

Semi-autonomous vehicles provide a compromise between these two approaches to

unmanned vehicles. Under this paradigm, vehicles mainly operate without the help of

a human operator when it is not necessary. However, during risky maneuvers, a human

takes direct control of the vehicle. This method allows a single pilot to manage several

unmanned vehicles simultaneously while still maintaining a higher success rate than fully-

autonomous counterparts. In this section, we present a semi-autonomous network com-

bining the resources of humans, unmanned air vehicles (UAVs), and unmanned ground

vehicles (UGVs) in order to conduct various missions such as search-and-rescue, natural

disaster relief, and possibly extraterrestrial exploration. The use of both UAVs and UGVs

combines the breadth of terrain UAVs can survey while maintaining the ability of UGVs

to provide direct aid and capture higher quality images at a closer range than UAVs can

Quigley [2006].

Outline of Semi-Autonomous Operation

We propose the following approach. Cameras attached to UAVs capture images of the

terrain below and transmit the images to a nearby computing cluster, which will calculate

what areas of the terrain can be traversed by the UGV being deployed. To do so, it will

use an algorithm, fully developed and proposed in Wang et al. [2013], that estimates the

257

position of roads using color family normalization and edge detection. Our algorithm takes

advantage of the continuous nature of roads by using super-pixelation, a Markov random

field, and Gaussian process machine learning (GPML). This data is then transmitted to

UGVs that use the information for path-finding, as illustrated in Figure F-1.

Figure F-1: Semi-autonomous network: A quadrotor, shown in the upper-left corner, takes
aerial images of the terrain below and transmits these images to a computing cluster which
identifies easily traversable terrain and computes the optimal paths for the UGVs to take. If
the risk of traversing the path reaches a threshold point, the control of the UGV is handed
over to a human operator. Otherwise, the UGV is autonomously controlled.

In addition to calculating the traversability of each pixel, our algorithm calculates the

risk of traversing the pixel. When the calculated risk reaches a certain threshold, a human

operator is instructed to directly control the UGV, therefore increasing the probability of the

vehicle reaching its destination safely, proceeding off the assumption that humans typically

are more skilled with the specific mission. Once the high-risk area is passed, the unmanned

vehicle then continues on to its destination without human guidance.

Specific Aims

Our specific goal was to develop an algorithm that can identify roads or any flat surface

from an aerial image and characterize the confidence level of our analysis. This is initially

done using color analysis, edge effects, and object recognition. We shall refer to this as the

color analysis. Unfortunately, this method is unreliable for several reasons. Color analysis

258

often fails because many objects, like rooftops, share the same color as roads. Edge effect

algorithms, which detect the surrounding borders of roads, often find the edges of rooftops,

trees, trash dumpsters, etc. Object recognition looks for features that distinguish roads from

other objects, such as rooftops. However, since the shape of roads vary widely, they have

very few universal features.

The guiding principle behind this algorithm is that one single pixel may contain a high

amount of noise. However, by taking multiple pixels that we believe to be part of a road,

the collective noise is reduced. We hypothesized that our color analysis fails to account

for the central design pattern that the vast majority of roads go to a destination and are

therefore continuous segments. There are very few, if any, roads that travel only a few

feet, for example. In order to take advantage of this pattern, we modeled the system as

a Markov random field (MRF) where the probability that an individual pixel is part of a

road is not only dependent on its own characteristics, but also on its surrounding pixels (Li

[1995]). Then the color analysis techniques discussed above were utilized as prior informa-

tion, which is refined further with a process known as loopy belief propagation (Felzenbath

and Huttenlocher [2006]). We then use machine learning to finalize our results. In the

following sections, we will outline our pipeline of analysis and demonstrate its reliable

performance. Our discussion of the pipeline will be brief, but provided additional focus on

the Gaussian Process step, as it is particularly important to the idea of the abstract Bayesian

sensor model. Please refer to Wang et al. [2013] for a comprehensive review of the image

processing pipeline.

F.2 Theory

Overview

Our strategy was to define a matrix of Bernoulli random variables that take on values of

either true or false. Each random variable represents whether its corresponding pixel is part

of a road. This probabilistic approach allows us to evaluate the relative uncertainties that

our algorithm produces. To generate rough estimates for the marginal probabilities, we first

run a color analysis, edge effect, machine learning, and object recognition algorithm on an

259

aerial image.

We extract edge features using the HOG algorithm (Dalal [2005]) and average pixel

counts. Color and edge analysis includes supervised statistical analysis of key color and

edge features using an SVM (support vector machine). The color features include normal-

ized and Gaussian smoothed color vectors, where a color vector has three parts. These

features help us to detect road edges and deal with varying hues of gray. The image is then

downsized by super-pixelation. The results are improved by using belief propagation that

takes advantage of the underlying MRF structure to update the posterior probabilities of

all the pixels. The image is then up-sized to the original resolution, at which point belief

propagation is used to refine the borders of the roads. We found that this approach is not

only faster than simply running belief propagation on the original color analysis, but also

significantly more accurate. Finally, we run a Gaussian process machine learning (GPML)

algorithm, training the algorithm by pre-labeling the roads in some of the images. The

GPML algorithm returns a Gaussian distribution for each pixel stating the probability that

the pixel is part of a road and the certainty of that probability. This overall process is

illustrated in Figure F-2.

Gaussian Process Machine Learning

Gaussian process machine learning (GPML) is a form of regression analysis that we em-

ployed to further refine our results from the variable zoom (Rasmussen [2004]). GPML

takes in training data and target data and generates a Gaussian process to model their re-

lationship. In our scenario, our training data consisted of the output from variable zoom

and the target data was derived by hand-labeling all of the roads in an image. A Gaussian

process is defined as
F ∼ GP(µ, σ)

where m and n are functions that determine the mean and variance of a Gaussian distribu-

tion respectively (Rasmussen [2004]). In the case of this project, the input variable of µ

and σ is the vector x, consisting of a pixel and all of its neighbors’ probabilities of being

260

Figure F-2: To perform our road analysis, we first run a color analysis algorithm. We down-
scale the result. Subsequently, we improve our analysis by applying belief propagation to
our downscaled image. We refine the borders of our roads by upscaling the result and run-
ning the belief propagation on the borders of identified roads. We complete our analysis
using Gaussian process machine learning.

part of a road, as determined by the variable zoom. Symbolically,

F(x) = f ∼ N (µ, σ)

Details of the GPML are omitted for brevity. The GPML algorithm finds optimal parame-

ters that maximize the log-likelihood function, which characterizes the probability that the

relationship found by the Gaussian process is able to model reality given the data from the

variable zoom and the location of the actual roads (found by hand-labeling the images).

We can use this best-fit function to predict the target data (location of roads) of other im-

ages (assuming that the relationship between the training data and the target data remains

relatively constant). Because a Gaussian process returns a Gaussian distribution for each

pixel and its neighbors, important information about the certainty of the prediction is also

returned. This is diagrammed schematically in Figure F-3.

This makes the GPML useful for our algorithm, because the MRF is often uncertain

about whether or not a pixel is a road, possibly due to obstructions and low image quality

261

Training data-from

variable zoom

Target data

GPML

regression

Best-fit

function

Experimental data-from

variable zoom

Predict P(x)=True

Predict Certainty

x8 x1 x2

x7 x x3

x6 x5 x4

y

x8 x1 x2

x7 x x3

x6 x5 x4

y

σ

Figure F-3: The GPML regression takes in the output of the variable zoom on an image as
a training set and the same image with all of the roads hand-labeled as a target set. Note
that the training set for one pixel consists of that pixel and its neighboring elements. The
algorithm then creates a best-fit function that models the relationship between the two. With
this function, we can input variable zoom data from another image and the best-fit function
will output refined probabilities for each pixel being part of the road and the certainty of
each prediction point.

in certain areas. Oftentimes, information can be supplemented by sending additional UAVs

to take more photographs of the area in question, provided limited availability of UAVs.

Thus, we have to make sure that we make optimal use of UAVs by only sending additional

surveillance to areas where we are uncertain of the presence of a road. Since the GPML

can predict the uncertainty of the MRF, we can use that data for this optimization.

In addition, GPML takes advantage of our central paradigm that roads are continuous

segments that go to a destination. Since the GPML can accept multiple input variables, not

only can we input a pixel’s marginal probability to predict its state, but we can also use

those of its surroundings to improve that prediction.

F.3 Why GP?

Applying a Gaussian process machine learning algorithm not only improved our results,

but also learned and represented the uncertainty in the algorithm’s output. Reflecting the

uncertainty in the traversability measurement allows the belief update algorithm to treat the

output abstractly, like a generic sensor model that directly measures traversability and can

be used to directly update our belief about it using a Kalman filter. This idea is called an

abstract Bayesian sensor model. We envision that these algorithms will soon be incorpo-

262

rated into autonomous search and rescue teams, laying the foundation for their eventual use

in extraterrestrial exploration applications.

F.4 Results and Discussion

Color Analysis and Variable Zoom

The performance of several variants of our algorithm before the application of GPML are

shown in Figure F-4. In the academic literature, the most similar study to ours used a

genetic algorithm machine linear approach to finding roads in satellite images (Boggess

[1996]). However, the paper compared the accuracy of their model to that of a human’s

performance and lacked performance details. As a resul, we are unable to compare its

accuracy to the model we developed.

To quantify the performance of our algorithm, we randomly selected an image and de-

termined the accuracy of our algorithm. Accuracy was determined in two methods, denoted

as precision and recall.

Precision =
Num. of Pixels Correctly Identified as Roads

Num. of Pixels Identified as Roads

Recall =
Num. of Pixels Correctly Identified as Roads

Num. of Actual Road Pixels

The results of our analysis are shown in Figure F-5A. Applying variable zoom brings

considerable improvement over both the color analysis and the naı̈ve application of belief

propagation to the entire image for precision. Color analysis, however, is superior in regard

to recall. This is most likely because all roads are gray, so pixels that are actually part of

a road would be identified correctly by the color analysis. Since a MRF tends to lower

the marginal probabilities of the edges of roads, this tends to worsen the performance on

recall. It should be noted, however, that a lack of precision is often more detrimental to an

unmanned vehicle’s performance than recall, since the consequences of traversing non-road

terrain are more severe than the consequences of not traversing the entire road.

Additionally, variable zoom was approximately eight times faster than naı̈ve belief

263

Figure F-4: The first column is the original satellite images, the second column is the result
of applying the color analysis, the third column is the result of applying only the MRF to
the color analysis, and the last column is the result of applying variable zoom.

264

propagation. This allows the roadmap to be updated on a quasi-realtime basis as infor-

mation is received on a minute to minute basis.

A) B)

*

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
e
rc

e
n

ta
g

e
 o

f
Id

e
n

ti
fi

e
d

 P
ix

e
ls

 t
h

a
t

W
e
re

 A
c
tu

a
ll

y
 R

o
a
d

s

Algorithm

Performance of Various
Algorithms in Eliminating

Non-Road Objects

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5
A

c
c
u

ra
c

y

Number of Iterations

Iteration Convergence

Figure F-5: A) For the output of each algorithm, we determined the percentage of pixels
that were correctly identified as a road by the algorithm compared to the total number of
identified pixels (shown in blue) and the percentage of actual road pixels that were correctly
identified (shown in red). B) We calculated the accuracy in the same fashion for several
iterations to evaluate convergence of our algorithm. In this case, variable zoom was only
run for three iterations because running it for additional iterations only marginally increases
the accuracy while increasing the runtime substantially.

We found that our loopy belief propagation converged to steady-state within a few iter-

ations, indicating that our algorithm is relatively efficient. Figure F-5B demonstrates how

the accuracy of the variable zoom does not improve substantially after six iterations.

Gaussian Process Machine Learning

To determine the effectiveness of the GPML, we performed cross-validation on eight im-

ages. Out of the eight images, seven were selected as the training set with their correspond-

ing hand-labeled images as the target set to derive the best-fit function. Due to memory and

run-time constraints, 1,000 pixels were randomly selected from all seven images for the

fitting process. The Gaussian process was then applied to the variable zoom output from

the final image, as illustrated in Figure F-6.

The results of our cross-validation are shown in Figure F-7. Figure F-5A compares all

265

Test Train

…

Trial 1

Test Train
Trial 2

Test Train

Trial 3

Test Train

Trial 8

Figure F-6: Cross-validation of GPML. Seven images were used to train the Gaussian
process Best-Fit Function. The resultant Gaussian process was then used to improve the
variable zoom’s output from the eighth image.

of the algorithms, including GPML. GPML further refines the results of the variable zoom.

Furthermore, regions that were misidentified by the algorithm generally also had a high

uncertainty value, which indicate that they should be avoided over identified roads with a

low uncertainty.

266

Figure F-7: GPML is shown to improve the quality of our analysis. The first column is
the original satellite images, the second column is the result of applying variable zoom,
the third column is the thresholded means of the Gaussian distribution for each pixel, and
the last column is the standard deviations of each pixel’s Gaussian distribution with darker
pixels representing higher standard deviations.

267

G Heuristic Methods
Due to the computational complexity of exact methods, many heuristic approaches have

been developed. They can be categorized into constructive and improvement methods.

Constructive methods start with the node set and construct routes, forming a solution. Im-

provement methods start with a suboptimal solution and work toward a better solution.

Constructive heuristics include the insertion, savings and sweep. Improvement heuristics

include crossover and exchange.

G.1 Constructive Heuristics

Insertion The insertion method is initialized by constructing n single node routes, where

n is the number of locations to visit. We refer to them as “unvisited” because these routes

will not be part of the final plan; however, the cost of the plan is evaluated as part of

the heuristic. A partial route for the real plan is started using one of the unvisited nodes.

Then, at each algorithm stage, we insert an unvisited node into the partially formed route

by checking which node - position pair yields the greatest improvement to the current plan

cost. A new route is formed when the current route is full. The algorithm terminates when

all nodes have been inserted.

The sequential node insertion method is able to find good VRP-TW solutions. Although

the resulting solution is not globally optimal, the insertion method does take into account

time window constraints. Intuitively, the insertion method makes decisions based on the

current stage cost g(x) (in the standard dynamic programming terminology) yet it ignores

the cost-to-go. The Approximation Dynamic Programming developed later is an improved

version of insertion method which approximates the cost-to-go.

Savings The Clark-Wright savings algorithm is very similar to the insertion method. It

is initialized in the same manner; however, the savings method combines any routes (not

just the single node routes) based on greedy cost improvement. Although the insertion

algorithm performed well on the VRP-TW, the savings algorithm falls into local minima

much more quickly due to the large planning steps it takes.

268

(a) The exchange method forms new solutions by
exchanging portions of existing solution.

(b) The crossover method forms new solutions
by crossing existing solution.

Figure G-1

Sweep The sweep heuristic clusters nodes using radial lines emanating outward from the

start-end node. Each cluster forms a route. The number of clusters is increased until a

feasible solution is found. The sweep method performs well on other multi-vehicle rout-

ing applications including the capacitated version. However, the heuristic deals with time

windows very poorly and yeilds grossly suboptimal solutions.

G.2 Improvement Heuristics

Crossover The crossover heuristic attempts to improve the cost of the current feasible

solution by bifurcating two routes and splicing the first half of the first route to the second

half of the second route (and visa-versa) as shown in Figure A2. The algorithm keeps only

those transformations which improve the solution cost.

Exchange The exchange heuristic attempts to improve the cost of the current feasible

solution by simultaneously exchanging two nodes from different routes.

269

H Non-parametric Least Squares Regression with
a Polynomial Kernel
The machine learning algorithm used to approximate the value function of our VRP-TW

problem is non-parametric least squares regression with a polynomial kernel (NPLS-PK).

The kernel regression method explicitly estimates future data values using weighted com-

binations of a current data-set. The method is fast and effective given certain conditions. Its

accuracy is good but limited by the number of samples that can be handled by the regression

method. It works as follows:

Suppose we have a set of state samples X and a set of target valuesT . X is an nby b

matrix, where n is the number of state samples and b is the number of features (variables

used to characterize the state). T is an n by 1 matrix where n is the number of state samples.

We compute the function as follows:

α = T ′ ×
(

(X ×X ′ + 1)
d

+ λ× I
)−1

where λ× I is a ridge penalty, and d is the kernel degree.

We can then estimate a new target value target value t̂ given a new feature vector Xnew.

Xnew is a single feature vector of size 1× b.
t̂ = α× (X ×X ′new + 1)d

Xnew = new sample

X = set of training samples

Ridge Penalty and Kernel Degree

As stated above, λ is a ridge penalty. A ridge penalty first ensures that the Gram matrix is

invertible. Secondly, the ridge penalty can be increased to reduce estimation variance at the

expense of increased bias. d is the polynomial degree of the kernel. Thus, X × X ′ is the

Gram matrix and (X ×X ′+1)
dis the result of applying a polynomial kernel to the Gram

matrix. Essentially, this is a non-parametric way to create and use a set of polynomial basis

vectors for function approximation.

One interesting aspect of this function approximation method is that if we

270

let K = inv
(

(X ×X ′+1)
d

+ λ× I
)

,

we can break up the equation

α = T ′ ×
(

(X ×X ′ + 1)
d

+ λ× I
)−1

such that

α = T ′ ×K

Thus, if we perform a value iteration backup (where our function approximator repre-

sents our value function) using the exact same state samples X as our original function, we

can easily and quickly recreate the function approximation simply by replacing Twith our

updated one. In other words, the expensive part of the function (K) remains the same.

271

Bibliography

National Aeronautics and Space Administration (NASA) Ames Research Center. Mapgen
: Exploring the universe. Available at http://www.nasa.gov/centers/ames/
research/exploringtheuniverse/exploringtheuniverse-mapgen.

html(2004).

Sheeraz Ahmad and Angela J Yu. Active sensing as bayes-optimal sequential decision
making. arXiv preprint arXiv:1305.6650, 2013.

M. Athans. The role and use of the stochastic linear-quadratic-gaussian problem in control
system design. Automatic Control, IEEE Transactions on, 16(6):529–552, 1971.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. The Journal

of Machine Learning Research, 3:397–422, 2003.

R. Bellman and RAND CORP. On the theory of dynamic programming. Proceedings of

the National Academy of Sciences, 38(8):716–719, 1952.

Richard Bellmann. Dynamic Programming. Princeton University Press, NJ, 1957.

R. Berg, J. Clark, D. Roth, and T. Birchard. 6a. 4 the national weather service unified
surface analysis.

L Mark Berliner. Bayesian analysis for oceanographers. National Center for Atmospheric

Research and Ohio State University, 1997.

Dimitri P. Bertsekas and David A. Castanon. Rollout algorithms for stochastic scheduling
problems. Journal of Heuristics, 5(1):89–108, 1999.

Dimitri P. Bertsekas and S. E. Shreve. Stochastic Optimal Control: The Discrete Time

Case. Athena Scientific, Belmont, MA, 1978.

D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Belmont,
Massachusetts, 1996.

272

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scien-
tific, 1996.

D. Bertsekas. Dynamic programming and suboptimal control: A survey from ADP to
MPC. European Journal of Control, 11(4-5):310–334, 2005.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control Vol. I, 3rd Ed. MIT
Press, Cambridge, MA, 2005.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control Vol. II, 3rd Ed. MIT
Press, Cambridge, MA, 2007.

R. Bjarnason, P. Tadepalli, and A. Fern. Searching solitaire in real time. ICGA Journal,
30(3):131–142, 2007.

Julian Eugene Boggess. A genetic algorithm approach to identifying roads in satellite
images. In Proceedings of the Ninth Florida Artificial Intelligence Research Symposium,

FLAIRS, volume 96, pages 142–146. Citeseer, 1996.

Justin Boyan and Andrew W Moore. Learning evaluation functions to improve optimiza-
tion by local search. The Journal of Machine Learning Research, 1:77–112, 2001.

Justin Boyan. Learning Evaluation Functions for Global Optimization. PhD thesis,
Carnegie-Mellon University, 1998.

Steven J. Bradtke and Andrew G. Barto. Linear least-squares algorithms for temporal
difference learning. Mach. Learn., 22(1-3):33–57, 1996.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm
for near-optimal reinforcement learning. The Journal of Machine Learning Research,
3:213–231, 2003.

Robert D Braun, Henry S Wright, Mark A Croom, Joel S Levine, and David A Spencer.
Design of the ares mars airplane and mission architecture. Journal of spacecraft and

rockets, 43(5):1026–1034, 2006.

John L Bresina, Ari K Jónsson, Paul H Morris, and Kanna Rajan. Mixed-initiative planning
in mapgen: Capabilities and shortcomings. In Proceedings of the ICAPS-05 Workshop on

Mixed-initiative Planning and Scheduling, Monterey, CA, pages 54–61. Citeseer, 2005.

Wolfram Burgard, Dieter Fox, and Sebastian Thrun. Active mobile robot localization.
Technical Report IAI-TR-97-3, 25, 1997.

273

L.A. Bush, B. Williams, and N. Roy. Computing exploration policies via closed-form least-
squares value iteration. International Conference on Planning and Scheduling, 2008.

Lawrence Bush, Brian Williams, and Nicholas Roy. Computing exploration policies via
closed-form least-squares value iteration. International Conference on Planning and

Scheduling, 2008.

Lawrence Bush, Brian Williams, and Nicholas Roy. Unifying plan-space value-based ap-
proximate dynamic programming policies and open loop feedback control. AIAA In-

fotech@Aerospace Conference, 2009.

Lawrence AM Bush, Andrew J Wang, and Brian C Williams. Risk-based sensing in support
of adjustable autonomy. In Aerospace Conference, 2012 IEEE, pages 1–18. IEEE, 2012.

Lawrence AM Bush, Tony Jimenez, and Brian Williams. Adaptable mission planning for
mars airplane exploration. AIAA Infotech@Aerospace Conference, 2013.

John Canny. A computational approach to edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, PAMI-8, Issue:6:679–698, 1986.

DW Caress and DN Chayes. Mb-system: Open source software for the processing and
display of swath mapping sonar data. Internet: http://www. mbari. org/data/mbsystem,
2008.

David W Caress, Hans Thomas, William J Kirkwood, Rob McEwen, Richard Henthorn,
David A Clague, Charles K Paull, Jenny Paduan, and Katherine L Maier. High-resolution
multibeam, sidescan, and subbottom surveys using the mbari auv d. allan b. Marine

Habitat Mapping Technology for Alaska, pages 47–69, 2008.

Susan Carey. Conceptual change in childhood. In MIT Press, 1985.

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting optimally
in partially observable stochastic domains. In Proceedings of the Twelfth National Con-

ference on Artificial Intelligence (AAAI-94), volume 2, pages 1023–1028, Seattle, Wash-
ington, USA, 1994. AAAI Press/MIT Press.

A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under uncertainty: discrete
bayesian models for mobile-robot navigation. In In Proceedings of the International

Conference on Intelligent Robots and Systems, 1996.

274

Anthony R Cassandra, Leslie Pack Kaelbling, and James A Kurien. Acting under uncer-
tainty: Discrete bayesian models for mobile-robot navigation. In Intelligent Robots and

Systems’ 96, IROS 96, Proceedings of the 1996 IEEE/RSJ International Conference on,
volume 2, pages 963–972. IEEE, 1996.

Tristan Cazenave and Fabien Teytaud. Application of the nested rollout policy adaptation
algorithm to the traveling salesman problem with time windows. In Youssef Hamadi
and Marc Schoenauer, editors, Learning and Intelligent Optimization, Lecture Notes in
Computer Science, pages 42–54. Springer Berlin Heidelberg, 2012.

G Clarke and JW Wright. Scheduling of vehicles from a central depot to a number of
delivery points. Operations research, 12(4):568–581, 1964.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, pages
273–297, 1995.

N. Dalal. Histograms of orientated gradients for human detection. 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pages 886–893, 2005.

Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-learning. In AAAI/IAAI,
pages 761–768, 1998.

MH DeGroot and MJ Schervish. Probability and Statistics-International Edition. Addison-
Wesley. Publishing. Company., Reading, Massachusetts, 2001.

J. Denzler and C. M. Brown. Information theoretic sensor data selection for active object
recognition and state estimation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24(2):145 – 157, February 2002.

Martin Desrochers, Jan K Lenstra, Martin WP Savelsbergh, and François Soumis. Vehicle
routing with time windows: optimization and approximation. Vehicle routing: Methods

and studies, 16:65–84, 1988.

J. Farrell and M. Polycarpou. Adaptive approximation based control: unifying neural, fuzzy

and traditional adaptive approximation approaches. Wiley-Blackwell, 2006.

V. Fedorov. Theory of optimal experiments. Academic press, New York, 1972.

V.V. Fedorov. Theory of optimal experiments. 1972.

Pedro Felzenbath and Daniel Huttenlocher. Efficient belief propagation for early vision.
International Journal of Computer Vision, 70:41–54, 2006.

275

Scott Ferson, Cliff A Joslyn, Jon C Helton, William L Oberkampf, and Kari Sentz. Sum-
mary from the epistemic uncertainty workshop: consensus amid diversity. Reliability

Engineering & System Safety, 85(1):355–369, 2004.

M.L. Fisher and K.O. Jörnsten. Vehicle routing with time windows: Two optimization
algorithms. Operations Research, pages 488–492, 1997.

Research Institute for Advanced Computer Science. Mapgen : Automated activity
plan generation. Available at http://www.riacs.edu/research/projects/
mapgen/(2013).

TT Fujita. Mesoscale classifications: Their history and their application to forecasting.
Mesoscale meteorology and forecasting, pages 18–35, 1986.

S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In Proceedings

of the 24th international conference on Machine learning, page 280. ACM, 2007.

Z. Ghahramani. Learning dynamic Bayesian networks. Lecture Notes in Computer Science,
1387:168–197, 1998.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning: theory & practice.
Access Online via Elsevier, 2004.

T.S. Glickman. Glossary of meteorology. 1972.

Google. Google maps. Available at https://maps.google.com/(2012/07/31).

C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solution algorithms for
factored MDPs. Journal of Artificial Intelligence Research, 19:399–468, 2003.

Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-optimal sensor placements in
gaussian processes. In ICML ’05: Proceedings of the 22nd international conference on

Machine learning, pages 265–272, New York, NY, USA, 2005. ACM.

Bradley R Hasegawa. Continuous observation planning for autonomous exploration. PhD
thesis, Massachusetts Institute of Technology, 2004.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The elements
of statistical learning: data mining, inference and prediction. The Mathematical Intelli-

gencer, 27(2):83–85, 2005.

276

Jesse Hoey, Robert St-aubin, Alan Hu, and Craig Boutilier. Spudd: Stochastic planning
using decision diagrams. In In Proceedings of the Fifteenth Conference on Uncertainty

in Artificial Intelligence, pages 279–288. Morgan Kaufmann, 1999.

Laurie Ihrig and Subbarao Kambhampati. Plan-space vs. state-space planning in reuse and
replay. Department of Computer Science, Arizona State University, Tech. Rep, pages
94–006, 1996.

A. Moore J. Boyan. Generalization in reinforcement learning: Safely approximating the
value function. In Tesauro, Touretzky and Leen edition of Advances in Neural Informa-

tion Processing Systems, 1995.

Tony Jimenez, Larry Bush, and Brian Bairstow. Adaptable mission planning for kinody-
namic systems. MIT 16.412 Report, 2005.

J. Johns and S. Mahadevan. Constructing basis functions from directed graphs for value
function approximation. In Proceedings of the 24th international conference on Machine

learning, page 392. ACM, 2007.

P. Jones and S. Mitter. An iterative algorithm for autonomous tasking in sensor networks.
In Proceedings of the IEEE Conference on Decision and Control, San Diego, CA, 2006.

f Philip Kilby, Patrick Prosser, and Paul Shaw. A comparison of traditional and constraint-
based heuristic methods on vehicle routing problems with side constraints. Constraints,
5(4):389–414, 2000.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? Struc-

tural Safety, 31(2):105–112, 2009.

L. Kocsis and C. Szepesvari. Bandit based monte-carlo planning. Machine Learning:

ECML 2006, pages 282–293, 2006.

Niklas Kohl. Exact methods for time constrained routing and related scheduling problems.
PhD thesis, Institute of Mathematical Modelling, 1995.

Antoon WJ Kolen, AHG Rinnooy Kan, and HWJM Trienekens. Vehicle routing with time
windows. Operations Research, 35(2):266–273, 1987.

Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information in
graphical models. In Proceedings of the 21th Annual Conference on Uncertainty in

Artificial Intelligence (UAI-05), pages 324–33, Arlington, Virginia, 2005. AUAI Press.

277

A. Krause and C. Guestrin. Near-optimal observation selection using submodular func-
tions. In Proceedings of the National Conference on Artificial Intelligence, volume 22,
page 1650. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,
2007.

Andreas Krause and Carlos Guestrin. Optimizing sensing: From water to the web. Com-

puter, 42(8):38–45, 2009.

Jesper Larsen. Vehicle routing with time windowsfinding optimal solutions efficiently,
1999.

Thomas Léauté and Brian C Williams. Coordinating agile systems through the model-based
execution of temporal plans. In Proceedings of the National Conference on Artificial

Intelligence, volume 20, page 114. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 2005.

Thomas Léauté and Brian C Williams. Coordinating agile systems through the model-based
execution of temporal plans. In Proceedings of the National Conference on Artificial

Intelligence, volume 20, page 114. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 2005.

Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by nonnegative matrix
factorization. In Nature, 1999.

Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization.
In Conference on Neural Information Processing Systems (NIPS), pages 556–562, 2000.

Pierre FJ Lermusiaux. Adaptive modeling, adaptive data assimilation and adaptive sam-
pling. Physica D: Nonlinear Phenomena, 230(1):172–196, 2007.

Joel Levine, D. Blaney, J.E.P. Connemey, Ronald Greeley, James Head III, John Hoffman,
Bruce Jakosky, Christopher McKay, Chrsitophe Sotin, and Michael Summers. Science
from a mars airplane: The aerial regional-scale environmental survey (ares) of mars. 2nd

AIAA Unmanned Unlimited Conference, Workshop and Exhibit, 2003.

S. Li. Markov Random Field Modeling in Computer Vision. Springer-Verlag, New Jersey,
1995.

M.L. Littman. Algorithms for sequential decision making. Brown University, Providence,

RI, 1996.

278

Miao Liu. Online expectation and maximization for model-free reinforcement learning in
pomdps. 2013.

T Lolla, MP Ueckermann, K Yigit, Patrick J Haley, and Pierre FJ Lermusiaux. Path plan-
ning in time dependent flow fields using level set methods. In Robotics and Automation

(ICRA), 2012 IEEE International Conference on, pages 166–173. IEEE, 2012.

D. MacKay. Information-based objective functions for active data selection. Neural Com-

putation, 4(4):590–604, 1992.

D.J.C. MacKay. Bayesian methods for adaptive models. PhD thesis, California Institute of
Technology, 1992.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge
university press, 2003.

S. Mahadevan. Proto-value functions: Developmental reinforcement learning. In Proceed-

ings of the 22nd international conference on Machine learning, page 560. ACM, 2005.

Rob McEwen and Knut Streitlien. Modeling and control of a variable-length auv. Proc

12th UUST, 2001.

Nicolas Meuleau and Paul Bourgine. Exploration of multi-state environments: Local mea-
sures and back-propagation of uncertainty. Machine Learning, 35(2):117–154, 1999.

L. Mihaylova, T. Lefebvre, H. Bruyninckx, K. Gadeyne, and J. De Schutter. Active sensing
for robotics - a survey. In in Proc. 5 th Intl Conf. On Numerical Methods and Applica-

tions, pages 316–324, 2002.

Lyudmila Mihaylova, Tine Lefebvre, Herman Bruyninckx, Klaas Gadeyne, and Joris
De Schutter. A comparison of decision making criteria and optimization methods for ac-
tive robotic sensing. In Numerical Methods and Applications, pages 316–324. Springer,
2003.

Monterey Bay Aquarium Research Institute. Autonomous Ocean Sampling Network.
http://www.mbari.org/aosn/default.htm, 2006.

Kevin P Murphy. Bayesian map learning in dynamic environments. In Conference on

Neural Information Processing Systems (NIPS), pages 1015–1021, 1999.

NASA and JPL. Mars reconnaissance orbiter official web site. Available at http://
mars.jpl.nasa.gov/mro/, 2013.

279

NASA. Aerial regional-scale environmental survey official web site. Available at http:
//marsairplane.larc.nasa.gov/, 2011.

Goddard Space Flight Center NASA. Seawifs ocean color browse. Avaiable at
http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=sw&typ=GAC, 2011.

I. Orlanski. A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor.

Soc, 56(5):527–530, 1975.

J. Pearl. Heuristics: intelligent search strategies for computer problem solving. 1984.

T. Perron, BA Black, S. Drummond, and DM Burr. Estimating erosional exhumation on
titan from drainage network morphology. In AGU Fall Meeting Abstracts, volume 1,
page 1796, 2011.

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for
pomdps. In IJCAI, 2003.

P. Poupart and C. Boutilier. Value-directed compression of POMDPs. Advances in Neural

Information Processing Systems, pages 1579–1586, 2003.

W.B. Powell and I.O. Ryzhov. Optimal Learning. Wiley, 2012.

W.B. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality.
Wiley-Interscience, 2007.

M. Quigley. Semi-autonomous human-uav interfaces for fixed-wing mini-uavs. Intelli-

gent Robots and Systems. Proceedings. 2004 IEEE/RSJ International Conference, 2004,
3:2457–2462, 2004.

M. Quigley. Cooperative air and ground surveillance. Robotics & Automation Magazine,

IEEE, 13:16–25, 2006.

TK Ralphs, Leonid Kopman, William R Pulleyblank, and Leslie E Trotter. On the capaci-
tated vehicle routing problem. Mathematical Programming, 94(2-3):343–359, 2003.

Carl Rasmussen. Gaussian processes in machine learning. Advanced Lectures of Machine

Learning, 3176:63–71, 2004.

I. Robertson, D. Lucy, L. Baxter, AM Pollard, RG Aykroyd, AC Barker, AHC Carter,
VR Switsur, and JS Waterhouse. A kernel based bayesian approach to climatic recon-
struction. The Holocene, 1999.

280

Christopher D. Rosin. Nested rollout policy adaptation for monte carlo tree search. In Pro-

ceedings of the Twenty-Second international joint conference on Artificial Intelligence -

Volume Volume One, IJCAI’11, pages 649–654. AAAI Press, 2011.

S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. Neural

computation, 11(2):305–345, 1999.

Nicholas Roy, Han-Lim Choi, Daniel Gombos, James Hansen, Jonathan How, and Sooho
Park. Adaptive observation strategies for forecast error minimization. Lecture Notes in

Computer Science, 2007.

Donald Rumsfeld. Feb. 12, 2002, department of defense news briefing.

Donald Rumsfeld. Known and unknown: a memoir. Sentinel, 2011.

P. Schweitzer and A. Seidmann. Generalized polynomial approximations in Markovian
decision processes. Journal of mathematical analysis and applications, 110(6):568–582,
1985.

Hart Seely. Pieces of Intelligence: The Existential Poetry of Donald H. Rumsfeld. Simon
and Schuster, 2003.

L. G. Shapiro and G. C Stockman. Computer Vision. Prentice Hall, New Jersey, 2001.

R. Sim and N. Roy. Global a-optimal robot exploration in slam. In Proceedings of the

International Conference on Robotics and Automation, Barcelona, Spain, 2005.

S. E. Smrekar. Mars reconnaissance orbiter mission and science investigations special
collection. Journal of Geophysical Research, 112(E5), 2007.

Soloman. Type rc2 benchmark problems. Avaiable at http://www.idsia.ch/ luca/macs-
vrptw/problems/r201.txt, 1987.

Edward Sondik. The Optimal Control of Partially Observable Markov Decision Processes.
PhD thesis, Stanford University, Stanford, California, 1971.

Robert St-Aubin, Jesse Hoey, and Craig Boutilier. APRICODD: Approximate policy con-
struction using decision diagrams. In Conference on Neural Information Processing

Systems (NIPS), pages 1089–1095, 2000.

Christopher Stauffer. Perceptual data mining: Bootstrapping visual intelligence from track-
ing behavior. In Thesis, 2002.

281

Gaurav S. Sukhatme, Amit Dhariwal, Bin Zhang, Carl Oberg, Beth Stauffer, and David A.
Caron. The design and development of a wireless robotic networked aquatic microbial
observing system. Environmental Engineering Science, 24(2):205–215, 2006.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Athena
Scientific, Belmont, MA, 1998.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine

learning, 3(1):9–44, 1988.

Gerald Tesauro and Gregory R Galperin. On-line policy improvement using monte-carlo
search. Advances in Neural Information Processing Systems, pages 1068–1074, 1997.

Gerald Tesauro. Temporal difference learning of backgammon strategy. In Proceedings of

the Ninth International Workshop on Machine Learning, pages 451–457. Morgan Kauf-
mann Publishers Inc., 1992.

Gerald Tesauro. Temporal difference learning and td-gammon. Communications of the

ACM, 38(3):58–68, 1995.

S.K. Thompson and L.M. Collins. Adaptive sampling in research on risk-related behaviors.
Drug and Alcohol Dependence, 68:57–67, 2002.

S.K. Thompson, G.A.F. Seber, et al. Adaptive sampling. Wiley New York, 1996.

Sebastian Thrun. Learning occupancy grid maps with forward sensor models. Autonomous

robots, 15(2):111–127, 2003.

Paolo Traverso, Malik Ghallab, and Dana Nau. Automated planning: theory and practice.
Morgan Kauffman, 2004.

J.N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic program-
ming. Machine Learning, 22(1):59–94, 1996.

D. Wang, P.F.J. Lermusiaux, P.J. Haley, D. Eickstedt, W.G. Leslie, and H. Schmidt. Acous-
tically focused adaptive sampling and on-board routing for marine rapid environmental
assessment. Journal of Marine Systems, 78:S393–S407, 2009.

Maxwell B Wang, Lawrence A Bush, Albert Chu, and Brian C Williams. Active detection
of drivable surfaces in support of robotic disaster relief missions. In Aerospace Confer-

ence, 2013 IEEE. IEEE, 2013.

282

D. Wang. Autonomous Underwater Vehicle (AUV) path planning and adaptive on-board

routing for adaptive rapid environmental assessment. PhD thesis, Massachusetts Insti-
tute of Technology, 2007.

Brian C Williams and Robert J Ragno. Conflict-directed a* and its role in model-based
embedded systems. Discrete Applied Mathematics, 155(12):1562–1595, 2007.

K. Woolsey. Rollouts. Inside Backgammon, 1991.

Peter Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds of cooper-
ative, autonomous vehicles in warehouses. AI Magazine, 29:9–19, 2008.

Fei Xu and Vashti Garcia. Intuitive statistics by 8-month-old infants. In PNAS, 2008.

N. K. Yilmaz, C. Evangelinos, PFJ Lermusiaux, and NM Patrikalakis. Path planning of
autonomous underwater vehicles for adaptive sampling using mixed integer linear pro-
gramming. IEEE Journal of Oceanic Engineering, 33(4):522–537, 2008.

283

Contents

1 Forward 6
1.1 Motivation: Greater Automation in Sensing and Exploration 6
1.2 Current Technological Challenges . 10

1.2.1 Technical Problem . 10
1.3 Unifying Theme: Incorporating uncertainty reduction into decision making 12
1.4 Tasks: Enhancing exploration strategies and addressing uncertainty 14

1.4.1 3-level hierarchical architecture for active sensing problems 15
1.4.2 Mapping each level of the architecture as a Markov Decision Process 16
1.4.3 Approximate inference driven by decision uncertainty minimization 17
1.4.4 Demonstrating the framework in marine exploration and disaster

relief applications . 19
1.4.5 A Compact representation and a discovery method that incorpo-

rates uncertainty . 20
1.5 Prior Research and Thesis Overview . 21

1.5.1 Prior Research . 21
1.5.2 Thesis Overview . 22

2 Active Sensing 31
2.1 Background . 33

2.1.1 Technical Problem . 34
2.2 Modeling active sensing as an information state Markov decision process . 35

2.2.1 Active sensing as an information-state MDP 39
2.3 Case Studies . 42

2.3.1 Case Study 1: Planning and Control for Autonomous Bathymetric
Mapping . 42

2.3.2 Case Study 2: Adaptive Mission Planning for Mars Exploration . . 44
2.3.3 Adaptive Mission Planning for Aerial Exploration of Mars: As-

sumptions . 44

284

2.3.4 Adaptive Planning for Aerial Exploration of Mars: Demonstration
of Principle . 45

2.4 3-level Hierarchy . 47
2.4.1 Synoptic Level Optimization (coarse global satellite surveying) . . 52
2.4.2 The Mesoscale Problem (routing UAVs to survey locations) 53
2.4.3 Microscale Level Problem : local free-form exploration 56

3 An Introduction to Decision Uncertainty Minimization Based Planning 58
3.1 Sources of Uncertainty in Sequential Decisions 58
3.2 DUM Planning Algorithm Outline . 60
3.3 Offline Approximate MDP policies . 60

3.3.1 Markov decision process defined 61
3.3.2 Relationship between value function V (s) and state-action value

function Q(s, a) . 62
3.3.3 Offline approximate dynamic programming solution 63

3.4 Decision uncertainty minimization defined 65
3.5 Estimating Q̂(s, a) . 71

3.5.1 The accuracy of a policy depends on how it is represented 72
3.5.2 Using the representational uncertainty of a state-action value func-

tion to enhance the blending of offline and online computation . . . 73
3.5.3 A value function distribution captures the representational uncer-

tainty over the expected outcome of a course of action 73
3.6 Guided versus unguided search algorithms 75

3.6.1 Unguided Algorithms . 75
3.6.2 Guided Algorithms . 77

3.7 Using policy uncertainty to guide online planning 78
3.7.1 Selecting an action to reevaluate 80

3.8 Decision Uncertainty Minimization Based Planning 82
3.9 Experiment . 86
3.10 Summary . 87

4 Representational Uncertainty Minimization 89
4.1 Constructing an approximate architecture 94
4.2 New transition matrix factoring basis discovery method 98
4.3 Representational Uncertainty Defined . 102
4.4 Function approximation is the source of uncertainty in ADP solutions . . . 110

4.4.1 Value Iteration . 110

285

4.4.2 Identifying the source of the uncertainty in MDP Solutions 112

5 Applications 118
5.1 Synoptic Application (Ocean Sensing) . 120

5.1.1 The 3-level Hierarchical Framework Applied to an Ocean-Sensing
Application . 122

5.1.2 The Synoptic Problem (coarse global satellite surveying) 124
5.1.3 Problem Model . 128
5.1.4 Motivation For Our Approach . 130
5.1.5 Closed Form Least Squares Value Iteration 135
5.1.6 LSVI Results . 142
5.1.7 Combining LSVI and Rollout . 143
5.1.8 Impact . 146

5.2 Mesoscale Application (Multi-Vehicle Aerial Survey Coordination) 147
5.2.1 Application & Problem Formulation 148
5.2.2 VRP-TW Problem Formulation 148
5.2.3 Approximate Dynamic Programming 149
5.2.4 Value Function Guided Search . 150
5.2.5 Unified State-space and Plan-space MDP 150
5.2.6 Rollout . 150
5.2.7 ADP and Guided Search . 151
5.2.8 Open-loop Feedback Control . 151
5.2.9 Natural Planning Action Spaces 152
5.2.10 Uncertainty . 152
5.2.11 Approximation Dynamic Programming Approach 152
5.2.12 Sequential Decision Making Problem (Discovering a Natural Plan-

ning Action Space) . 153
5.2.13 Insertion Method & Problem Formulation: 153
5.2.14 Dynamic Programming Problem 156
5.2.15 Approximation Architecture and Learning 156
5.2.16 Rollout Policy . 157
5.2.17 Experiments . 157
5.2.18 Problem Class Meta-Learning & Future Work 159
5.2.19 Conclusion . 160

5.3 Microscale Application (Disaster Relief) 161
5.3.1 Innovations . 163

286

5.3.2 Architecture . 164
5.3.3 Disaster Relief Algorithms . 165
5.3.4 Algorithm Demonstration Results 179
5.3.5 Impact . 188

6 Summary 189

Appendices 192

A Marine bathymetric mapping 193
A.1 Opportunities . 193
A.2 Mission planning algorithm . 194
A.3 Simulated planning results . 195
A.4 Field Test Results . 200

B Simulation Demonstrating Adaptive Mission Planning for Mars Exploration 205
B.1 Empirical Testing of Different Adaptive Planning Approaches 208
B.2 Results . 212

C Learning MDP policies offline (DUM Background) 218
C.1 Markov decision process defined . 218
C.2 An optimal offline policy for a small discrete MDP can be found via value

iteration . 219
C.3 Policy Iteration . 221
C.4 A suboptimal offline policy for a realistically large MDP can be found via

approximate value iteration (review) . 225

D Online simulation based control algorithms (DUM Background) 228
D.1 Online simulation based control . 228
D.2 Policy Tree . 230
D.3 Monte Carlo sampling based planning . 233
D.4 Certainty-equivalence . 235
D.5 Open loop feedback control . 237
D.6 Rollout . 240

D.6.1 History and Intuition of Rollout 241
D.6.2 Typical policy-extraction versus rollout algorithm 242
D.6.3 Time-complexity of rollout . 245

D.7 Nested Rollout . 246

287

D.7.1 Standard Rollout . 246
D.7.2 Rollout based policy extraction . 247
D.7.3 The nested rollout extension . 247
D.7.4 Picture Description . 248
D.7.5 Algorithm Walkthrough . 249

E An alternative 5-level Hierarchy system 254

F Abstract Bayesian Sensor Model : Road Detection Example 256
F.1 Active Detection of Drivable Surfaces in Support of Robotic Disaster Re-

lief Missions . 257
F.2 Theory . 259
F.3 Why GP? . 262
F.4 Results and Discussion . 263

G Heuristic Methods 268
G.1 Constructive Heuristics . 268
G.2 Improvement Heuristics . 269

H Non-parametric Least Squares Regression with a Polynomial Kernel 270

Bibliography 272

288

List of Figures

1-1 Europa, one of the four Galilean moons of Jupiter, has been the subject of
extensive satellite-based research. The first photos of Europa were taken by
Pioneer 10 and 11 in the early 1970s; the most recent data were collected
by the Galileo probe, which crashed into Jupiter in 2003. NASA made
the decision to direct it into the Jovian atmosphere to avoid the risk of it
carrying terrestrial bacteria into the seas of Europa. 8

1-2 As seen in the image on the right, Titan’s Ligeia Mare is larger than Lake
Superior, and filled with liquid hydrocarbons (methane and ethane). Inter-
estingly, there is some dispute over the age of Titan due to its low crater
count. A low crater count could indicate that the planet’s surface was re-
freshed by a natural process, or that it is simply young. 9

1-3 Nineteenth-century astronomical observations, made with low-powered tele-
scopes, led to widespread speculation that the Red Planet was not only
habitable, but inhabited. More recent data, including samples taken by the
Mars Curiosity Rover, have found evidence that liquid water once flowed
across the planet’s surface, and its polar caps are composed largely of water
ice. 9

1-4 The 3-level hierarchy shown above includes a synoptic level (covering a
wide area), a mesoscale level (covering an intermediate scale area) and a
microscale level (covering a small local area). The synoptic sensing (satel-
lite) optimization algorithm concentrates on dwell time and the value of
the collected information. The mesoscale system is optimized with respect
to travel time (e.g., for autonomous unmanned aircraft or other sensors).
Travel and dwell time are simultaneously adjusted at the microscale to op-
timize free-form exploration by sensing devices. 16

289

1-5 Online reoptimization algorithm : The online optimizer starts with policy
π, which was produced offline. Combined with the world simulation, we
can reoptimize for the current situation. For the given situation, policy
π can convey its confidence in choosing one action over another, as well
as which action value is most in question. Using this information as a
guide, the online optimizer will simulate that action followed by a series of
subsequent actions (chosen in the same manner) in order to re-estimate the
value of that trajectory. 18

2-1 Outline of the six applications discussed in this chapter. 32
2-2 RMSE versus Entropy. 42
2-3 Bathymetric mapping optimization project, motivated by the desire to ex-

plore the oceans of Europa: The inset graph shows that the MBARI Dorado
class AUV tracked the target depth better when controlled by our new al-
gorithm. The black line shows the ocean floor. The red line shows the
actual path followed when controlled by our new algorithm. The grey line
shows the actual altitude under the old algorithm. Our AUV altitude plan-
ner uses a linearized dynamics model and controller, linear programming
and a novel problem decomposition method in order to optimize mission
data collection quality. 43

2-4 The graph shows the results results of plan execution for three strategies.
The rate of change is along the x-axis and the average total utility gained
is on the y-axis. The blue line is the static finite-horizon plan, the green
line is the adaptable finite-horizon plan and the red line is the greedy plan
(adaptable one-step receding-horizon plan). The static planner outperforms
the greedy planner under stable conditions and the greedy planner outper-
forms the static planner under unstable conditions. The adaptive planning
strategy performs well in all situations. It performs at the same level as
the static planner under stable conditions, outperforms either planner un-
der moderately changing conditions, and matches the performance of the
greedy planner under very unstable conditions. (See Appendix B for more
details) . 46

290

2-5 Mars Airplane Adaptive Mission Planner: The ARES aircraft could ex-
plore a diverse terrain in the equatorial Valles Marineris region shown in
(a) at a vantage point 1.5 km above the surface. Our high-level adaptive
mission planner performs site selection based on an evolving science value
estimate. A lower level kino-dynamic path planner executes the resulting
plan. The map shows the aircraft entry point and 3 categories of sites to
explore. (b) The numbers indicate the science value estimate (utility) of
the 3 site categories. (c) The Adaptive Mission Planner uses these utilities
and fuel constraints to construct a plan. The kino-dynamic path planner
executes the plan. When the aircraft visits and observes a site, it updates
the utility estimate for that particular site category. Panel (d) reflects the
effect of observing a blue site. The adaptive Mission Planner uses the new
utility values to formulate a new plan. (e) The Adaptive Mission Planner
also updates its time horizon based on the actual distance traveled. A sig-
nificant deviation from the estimated distance results in a new plan. In this
example, the Mars airplane took longer than expected to reach a planned
site and a new, shorter plan was constructed. (f) Our system includes a low
level path planner that can simultaneously avoid obstacles (weather, moun-
tains etc.) and navigate according to flight dynamics (Léauté and Williams
[2005a]). 48

2-6 The Autonomous Mars Exploration Network: We extend the notion of au-
tonomously exploring Mars to a multi-level framework incorporating as
satellite surveyor, which provides synoptic information to a team of UAVs.
These UAVs explore the surface of Mars for features of scientific interest.
Once located, the UAV can map out a set of traverses that can be executed
by a ground rover to the site. 49

2-7 The 3-level hierarchy shown above includes a synoptic level (covering a
wide area), a mesoscale level (covering a medium sized area) and a mi-
croscale (covering a small local area). The synoptic sensing (satellite) al-
gorithm concentrates on dwell time and the value of the collected infor-
mation. The mesoscale system is optimized with respect to vehicle travel
time. Travel and dwell time are simultaneously optimized at the microscale
during free-form AUV exploration. 50

291

2-8 Satellite-UAV collaboration can be broken into different levels. At the mis-
sion level, we route the UAVs to the mapping task locations. In the local
level, each location is its own information gathering task with the goal of
estimating key environment variables in the area. Both problems can be
solved with an uncertainty guided planning algorithm. 51

2-9 Occupancy grid representation of our satellite active sensing problem de-
picting Bayesian belief updating. 53

2-10 Mission level data collection planning: A set of vehicles must perform
sensing at various locations. An autonomous agent chooses a set of tasks
and plans a route for each UAV. The plan maximizes science gain while
adhering to high-level scientific guidance. The plan may need to adapt to
mission changes. 54

2-11 We formalize the mission-level mesoscale survey as a vehicle routing prob-
lem. A set of vehicles located at a common base must deploy to and sur-
vey various locations. The location arrival and departure times may be
restricted, the mapping time allowed at each location is predetermined and
the distance between locations is computed as the Euclidean distance on a
plane. The objective is to minimize the travel time such that the UAVs visit
the assigned locations within the specified time constraints. 55

2-12 Adaptive Sampling: Autonomous agents need to make decisions as the sys-
tem is running, in order to take advantage of newly collected information.
We model the environment as a 3×3 occupancy grid and represent the map
internally, as a belief map, which records the probability of informational
rewards at each grid cell. When we take a sensing action, we update our
belief about the world, then use that updated information to select the next
most informative sensing action. 57

3-1 MDP mechanics: In the MDP framework, we find ourselves in state s
where policy π chooses an action to execute. Although the action is chosen,
we do not know for sure which state we will transition into. When execut-
ing action a in state s, the probability of transitioning to state s′ is denoted
as Pass′ . The MDP optimization finds the best policy, i.e., the policy that
maximizes the value of every state. 62

292

3-2 This figure shows how we map our value function into a more manageable
function that gives us an actionable value. Our state-action value func-
tion, indicated by the letter Q̂, takes as input a state ’s’ (the situation an
agent is in), and action ’a’ (what we are going to do). Q̂ then provides the
agent with a probability distribution function f (or pdfQ̂(s,a)), which sub-
sequently provides the probability distributed between two possible state-
action values, q1 and q2. The state-action value is the discounted future
reward of a course of action that follows from taking the action under con-
sideration from the initial state (assuming an optimal policy). The pdf in
other words, describes the benefit of the projected future state. The function
Q(s, a) provides us with an additional function that describes the probabil-
ity that the value of that state-action is between q1 and q2. The heuristic
thus provides us with a PDF probability density function over the best ac-
tion value. An agent can use this method to assess the relative merits of
every projected state and then determine the optimal course of action from
its current state. 67

3-3 The offline policy learning algorithm develops a policy offline by simu-
lating numerous trajectories through the world. That simulated data is col-
lected and passed to a learning algorithm, which uses approximate dynamic
programming or value iteration to learn a policy. The policy captures the
value of taking an action in any situation, as well as the estimation accu-
racy of that value. By doing so, the policy can determine the uncertainty
of selecting a given action over another. The policy is used and possibly
reoptimized online for a given situation. 69

3-4 Online reoptimization algorithm: The online optimizer starts with policy π,
which is modeled offline. Combined with the world simulation, the agent
can reoptimize for the current situation. For the given situation, policy
π can convey its confidence in choosing one action over another, as well
as which action value is most in question. Using this information as a
guide, the online optimizer will simulate that action followed by a series of
subsequent actions (chosen in the same manner) in order to re-estimate the
value of that trajectory. 70

3-5 Branching Factor Graph: Shows the difference between the computation
allowance and the number of computations that a range of branching factors
would require. The example uses a search horizon of 7 and a planning tree
of 1,000 computations. 81

293

3-6 Rollout and DUM experiment results from 10 problems with a mission
length of 100. 87

3-7 Rollout and DUM experiment results from 10 problems with a mission
length of 200. 88

4-1 The accuracy of approximate methods depends on how they are repre-
sented. The linear value function shown here is represented over the ba-
sis φ. A linear architecture approximates V (s) by first mapping state s to
the new basis φ(s) ∈ <k, then computing the linear combination: φ(s)β,
where β is a parameter vector. 89

4-2 The figure shows that our state-action value function, indicated by the let-
ter Q̂, takes as input a state ‘s’ (the situation an agent is in), and action ‘a’
(what we are going to do). Q̂ then provides us with a probability distri-
bution function f (or pdfQ̂(s,a)), which subsequently provides us with the
probability mass between two state-action values. The state-action value
is the expected discounted future reward of acting out a mission starting
from that state and taking that action (presumably under an optimal pol-
icy). While the actual outcome is stochastic, the expected outcome is not.
Nevertheless, pdfQ̂(s,a) is a probability distribution function, over what we
know the expected future rewards to be. Stated differently, the value is de-
terministic yet we know that value imprecisely. Based upon that which we
know, f can tell us the probability that the value is between two numbers
indicated in the picture as q1 and q2. 91

4-3 Three component matrix factorization: NMF decomposes a non-negative
multivariate data matrix V such that V ≈ WH as shown. 99

4-4 Suppose we are estimating how good it is to take path A. Our dynamics
model provides a mean and variance about that number (shown in blue).
We only care about the mean. We are risk neutral, so we use the mean to
make decisions. (Sometimes you are not risk neutral, such as when you
are going to the airport, and you may take a taxi to make sure you are not
late.) But we don’t exactly know what the mean is. But we have learned
distributions over those model parameters, shown in green. We have a
distribution over model parameter µa and σa. We only care about σa, but
we do want to consider the uncertainty over that parameter when making
decisions. If we are positive about it, than our decision is easy. If we are
unsure about it, then we don’t know if we are making the right choice. . . . 101

294

4-5 This picture now shows that we have the choice of path ‘a’ or path ‘b’,
based upon the mean cost of each path, where that mean cost is not pre-
cisely known. We would pose the question: “What is the probability that
path ‘a’ is a better option than path ‘b’, based on how well we know the
expected outcome of a?” As a point of clarification, even if travel time
(cost) was deterministic, there would still be some uncertainty about what
that deterministic cost is. 102

4-6 One dimensional homoscedastic function reflecting a constant variance across
all predictions . 104

4-7 One dimensional heteroscedastic function showing tie-down points and
variance for a given prediction . 105

4-8 Value iteration backup diagram for discrete state-space: white circles rep-
resents states while black circles represent actions.. 111

295

4-9 Value iteration algorithm: 1. Initialize J(), 2. Loop (Backup all states) 3.
Converges to optimal. Cannot Compute backup for all states or store value
table. Function Approximation is needed. The cumulative future reward for
an MDP can be reformulated as a dynamic programming problem where
you minimize over the expected one-stage reward plus the expected future
reward starting from the next state. The dynamic programming equation is
recursive, however, if you know the optimal future reward function J then
you can compute the control action u which maximizes the dynamic pro-
gramming equation. Therefore, knowing the optimal future reward func-
tion J is tantamount to knowing the optimal control policy. Thus, our ob-
jective boils down to finding the optimal future reward function J. I assume
you are familiar with the value iteration approach to dynamic programming
Sutton and Barto [1998]. I will start the discussion by outlining the basic
component of the algorithm, the Bellman backup. I will then identify the
computational complexities, and how we address them. Our objective is to
learn J. We start by initializing J arbitrarily and we represent J as a table
of values. We then improve upon our estimate of J by performing a Bell-
man backup. Specifically, for a particular state x, we find control action u
which maximizes the current reward g plus the future reward J (using our
current approximation of J. The sensor returns are stochastic, therefore we
need to sum over the rewards times their probability of occurring. We com-
pute this summation for each control action. We then replace J(x) with the
maximum value. The above process constitute one iteration. We repeat the
process until J(x) converges. The main problem with this approach is that
you must perform a Bellman backup for every single state, which would
take way too long even for discrete beliefs. Furthermore, we cannot store
the huge table representation of J in memory. We address this complexity
by representing J as a parametric function. 113

296

4-10 Represent J() as a function. Select Features. Perform regression. Perform
approximate value iteration. Avoids J() table representation and avoids
backing up all states. Which is why our approach is to approximate J as a
parametric function, and learn an approximation of J using dynamic pro-
gramming. This slide depicts how function approximation works. Again,
our objective is to learn J, and we start by initializing J arbitrarily. In the
table lookup approach, we represent J as a table of values. However, in
the function approximation approach, we extract features of our state, then
approximate J using linear regression over those features. We then im-
prove upon our estimate of J by performing a Bellman backup. In the table
lookup approach, we performed a Bellman backup for every single state.
However, in the function approximation approach, we sample the states,
and perform a backup just for those sampled states. By doing so, we avoid
the table lookup representation of J and we avoid backing up all states. To
review, in the table lookup approach, when performing a Bellman backup,
we simulate a future state. We then lookup the value of that state (J) in
a table. However, in the function approximation approach, we simulate a
next state. We then plug that state into V̂ , our approximate future reward
function. 114

4-11 Want compact and accurate state-action value function representation. Par-
tition the state space. Find basis functions specialized for each partition.
Learn a function for each partition. 115

5-1 Outline of how the three applications discussed in this chapter populate the
3-level hierarchy. 118

5-2 The autonomous ocean sampling network (AOSN) in Monterey Bay inte-
grates a variety of modern platforms (e.g. satellites and AUVs) to produce
a comprehensive regional view of the ocean. 121

5-3 The 3-level hierarchy shown above includes a synoptic level (covering a
wide area), a mesoscale level (covering a medium sized area) and a mi-
croscale level (covering a small local area). 123

5-4 Shown above is GeoEye’s OrbView-2 “SeaStar” satellite carrying the Sea-
WiFS ocean color sensor. 124

297

5-5 The autonomous ocean sampling network (AOSN) in Monterey Bay inte-
grates a variety of modern platforms (e.g. satellites and AUVs) to produce
a comprehensive regional view of the ocean. The network enables collabo-
ration between different kinds of sensors. For example, an algorithm could
use the network to direct autonomous submarines to explore algae blooms
detected by satellites. 126

5-6 Satellite-AUV collaboration can be broken into two levels. At the mis-
sion level, we route the AUVs to the mapping task locations. In the local
level, each location is its own information gathering task with the goal of
estimating key environment variables in the area. Both problems can be
solved with an uncertainty guided planning algorithm. 126

5-7 Occupancy grid and Bayesian belief representation of our satellite sensing
problem. 127

5-8 Occupancy grid and Bayesian belief representation of our satellite sensing
problem. 129

5-9 Example comparison of greedy and non-myopic sensing action selection
strategies. 129

5-10 RMSE versus Entropy. 134
5-11 Value iteration backup diagram for discrete state-space: white circles rep-

resents states while black circles represent actions.. 136
5-12 Rollout considers each action and simulates where the approximate policy

will lead. 145
5-13 Normalized RMSE reduction for LSVI, Greedy, and Random methods.

LSVI performed optimally up to problem size 225. Performance tapers
and levels off as the problem size increases. 145

5-14 Normalized results: LSVI + Rollout performed within 2% of optimal on
all problems. 146

5-15 VRP Drawing . 148
5-16 VRP-TW heuristic comparison (solution cost, run time, problem size) . . . 154
5-17 Rollout versus breadth first search . 157
5-18 Performance results (Insert, ADP and MILP). 158
5-19 100 problem comparison of estimated solution cost to MILP (open-loop

optimal) solution cost. 160
5-20 Motivating Scenario: Natural Disaster Relief Scenario 161
5-21 System Architecture . 164
5-22 Scout Architecture . 169

298

5-23 Visualization of Q-function in the Approximation Architecture with Un-
certainty . 175

5-24 Process of online reevaluation involves generating a tree of candidate scout
vehicle paths to test. 177

5-25 Value Function Representation for Scenario A 180
5-26 Belief Variance and Scout Path for Scenario A 180
5-27 Value Function Representation for Scenario B 182
5-28 Belief Variance and Scout Path for Scenario B 183
5-29 Value Function Representation for Scenario C 184
5-30 Belief Variance and Scout Path for Scenario C 184
5-31 Value Function Representation for Scenario D 186
5-32 Belief Variance and Scout Path for Scenario D 187
5-33 Heterogeneous Robotics Test Bed . 188
A-1 We collaborated with the Monterey Bay aquarium research institute to de-

velop a depth control algorithm for the Dorado class autonomous underwa-
ter vehicle, which conducts scientific underwater missions such as mapping
the sea floor. 194

A-2 The red marker shows the location of the 2007 Davidson Seamount survey.
Davidson Seamount lies west off the coast of California near Big Sur. We
used the survey data to develop and test our algorithm in simulation. 196

A-3 We ran our spliced linear programming algorithm on Davidson Seamount
data, resampled at 5-second intervals. The solver produces a set of target
waypoints for the controller to follow. The top graph shows target way-
points, sea floor depth, minimum, maximum and optimal depth as well as
simulated AUV depth. The three lower graphs show the pitch angle, eleva-
tor angle and pitch rate respectively. 196

A-4 Simulation results of the entire transect using the AUVs actual, shorter
(.2 second) dynamics controller. The dynamics controller provides input
to the articulated ring-wing and ducted thruster actuators. The simulation
accepts the 5 second interval target waypoints for the controller to follow.
The inputs are duplicated to accommodate the higher frequency. The top
graph shows the sea floor, minimum, maximum and optimal depth, the
outputted waypoints as well as the simulated AUV depth. The three other
graphs show the pitch angle, elevator angle and pitch rate. The simulation
results demonstrate that our 5 second planning interval is sufficiently short
to produce good vehicle guidance. 197

299

A-5 Larger-scale simulation results. The graph shows the sea floor, minimum,
maximum and optimal depth, as well as the simulated waypoints and AUV
depth. 197

A-6 The graph zooms in on a small portion of the simulation results in order to
show algorithm performance along a difficult topographic inflection. The
red lines show the minimum and maxium depths. The dotted line shows
the target depth. The blue line shows the simulated AUV depth. At the
difficult inflection point, our algorithm induces the AUV to change altitude
in anticipation of the topography, so that it does not grossly overshoot the
target depth while still observing the mini-mum depth constraint. 198

A-7 We conducted a field test using our algorithm. Our spliced linear program-
ming depth control algorithm has been successfully deployed at a topo-
graphically difficult region three miles off shore in Monterey Bay. This
figure shows the geographic location of our field test. 201

A-8 The path of the mission is shown. The transect was designed to be chal-
lenging for the algorithm and AUV to navigate. The blue region indicates
deep water and the orange region indicates shallow water. The mission
starts in shallow water, at the top of the figure, then goes down, left, right,
left and back up. The result is three forays into deep water. 202

A-9 Our algorithm improves the quality of scientific measurements by allow-
ing the underwater vehicle to approach closer to the sea floor. The graph
shows the field test results comparing our algorithm to the previously used
algorithm. The black line shows the ocean floor. The red line shows the
actual path followed when controlled by our new algorithm. The green line
shows the actual altitude under the old algorithm. The results show that the
AUV tracked the target depth better when controlled by our new algorithm. 203

A-10 Our algorithm was more successful than the previously existing algorithm
at maintaining the proper altitude above the sea floor. This graph shows
the deviation from the target altitude for our new algorithm (in red) and for
the old algorithm (in green). This graph makes it easy to see the deviation
from the target altitude. The results show that the AUV tracked the target
depth better when controlled by our new algorithm. 204

B-1 Block diagram of the complete system. 206
B-2 Piccolo hardware-in-the-loop simulator setup made by Cloud Cap Technol-

ogy . 207
B-3 Simple example scenario . 210

300

B-4 (a) The operator interface displays the UAV’s position on the map with the
science sites. (b)-(h) Solution walk through. 215

B-5 Total Utilities for a Gaussian Distributed Scenario: The graph shows the
results for the Gaussian distribution of utilities. The rate of change is
along the x-axis and the average total utility gained is on the y-axis. The
blue line is the static finite-horizon plan, the green line is the adaptable
finite-horizon plan and the red line is the greedy plan (adaptable one-step
receding-horizon plan). These results are very interesting. As expected,
the static planner outperforms the greedy planner under stable conditions
and the greedy planner outperforms the static planner under unstable con-
ditions. However, the most interesting thing that these results show is that
the adaptable planning strategy is good in all situations. It is as good as the
static planner under stable conditions, it is better than either planner under
moderately changing conditions, and it is approximately equal in perfor-
mance to the greedy planner under very unstable conditions. 217

C-1 MDP mechanics: In the MDP framework, we find ourselves in state s
where policy π chooses an action to execute. Although the action is cho-
sen, we do not know for sure which state we will transition into. When
executing action a, in state s, the probability of transitioning to state s′ is
denoted as Pass′ . The objective of the MDP optimization problem is to find
the best policy, that is the policy that maximizes the value of every state. . 219

C-2 A policy is initialized in some way, often arbitrarily. That policy is evalu-
ated, to find V (x). That is, we find the value of that policy in each state,
where the value is the discounted future reward of executing that policy.
Policy evaluation can be done using Monte-Carlo simulation as discussed
in Section D.3. Equation C.9 is used to extract an improved policy from
the existing value function. 222

C-3 MDP mechanics: In the MDP framework, we find ourseleves in state s
where policy π chooses an action to execute. Although the action is cho-
sen, we do not know for sure which state we will transition into. When
executing action a, in state s, the probability of transitioning to state s′ is
denoted as Pass′ . The objective of the MDP optimization problem is to find
the best policy, that is the policy that maximizes the value of every state. . 223

301

D-1 Starting from the current state, the policy tree is a complete elicitation of
every possible action emanating from the current state and every possible
future state resulting from each action as depicted in Figure D-1. A policy
graph considers all possible actions that can be taken and all possible sub-
sequent future states stemming from that action. This procedure continues
recursively, such that the policy graph captures and characterizes all pos-
sible action-state sequences. At each level, starting from the bottom, we
average over outcomes and maximize over actions, resulting in the optimal
full-feedback policy. 230

D-2 A full feedback policy considers the consequences of future actions, which
are contingent upon the results of the current action. Full feedback is im-
portant in some situations. For example, suppose you have the choice of
opening one of two doors. Behind one door is a dragon and behind the
other door is your friend Bob bringing you birthday presents. In the first
step you choose which door to open. In the second step you choose to
attack with your sword or not. In the open loop plan you have to choose
your actions ahead of time. In the full feedback plan you can select op-
tions along the way depending on your observations of the situation. If you
were to evaluate the plan of 〈door one, attack〉, you would average over
the cases where you encountered the dragon and did the right thing and
encountered Bob and did the wrong thing. Likewise, if you evaluate the
plan 〈door one, invite inside〉 you would average over the cases where you
encountered the dragon and did the wrong thing and encountered Bob and
did the right thing. A better policy considers what the agent observes when
opening the door. Preferably, you could option to attack when you see
the dragon and invite inside when you see Bob. That way, you would be
averaging over the outcomes of the best action taken in each situation. . . . 234

D-3 Rollout re-evaluates every action at the first level, by rolling out future ac-
tions in a Monte Carlo fashion, using the base policy to choose actions.
Notice that all three actions are evaluated at the starting state. But there-
after, only one action is evaluated. That is the base policy default action.
Multiple instances of an entire trajectory are simulated and averaged. Roll-
out considers each action and simulates where the approximate policy will
lead. 244

302

D-4 Two-level nested rollout re-evaluates every action at the first and second
level, by rolling out future actions in a Monte Carlo fashion. Thus all po-
tential action choices are evaluated for the current state and the subsequent
state. Meanwhile, the rollout process uses the base policy to choose actions
for all but the first and second encountered states in a trajectory. In rollout,
multiple instances of an entire trajectory are stochastically simulated and
averaged. Thus, at the first and second level we consider every action, but
thereafter follow the base policy. 246

D-5 Example problem : You want to create this value function that somehow
guides you to the goal. The state space is continuous, thus infinite in size.
We could discretize the space, but that would be too hard. We need to
approximate a value function with a low order function. However, the re-
sulting policy is imperfect. 250

D-6 Value function based policy (approximate) : You want to create this value
function that somehow guides you to the goal. The state space is contin-
uous, thus infinite in size. We could discretize the space, but that would
be too hard. We need to approximate a value function with a low order
function. However, the resulting policy is imperfect. 251

D-7 Rollout example: Standard rollout is depicted above our simple vehicle
guidance task. Three actions are tried and compared. The left action is
tried and the base policy is followed thereafter. The same is done for the
down and right actions. For a deterministic problem, each action is simu-
lated once. For a stochastic problem each action must be simulated enough
times to acquire a low variance average value estimate. The rollout algo-
rithm presupposes that we have a value function that guides us to the goal.
Our approximate value function is helpful but imperfect. To compensate
for the imperfect policy, we can re-simulate our policy for each current
action. This simulating based rollout provides a more accurate value es-
timate, and consequently a better decision. Kit Woolsey introduced roll-
out as a statistical method for quantitatively determining the best move, in
which candidate position is played to completion thousands of times, with
different random dice sequences. 252

303

D-8 Limited Horizon Rollout : We need to approximate a value function with
a low order function. We compute Q-values by trying each move (Left,
Right and Down). This involves simulating n-steps using the base policy.
But the remaining cost-to-go is estimated using the value Function, or q-
value function. 252

D-9 Rollout cannot find goal: In the above example, 1-step rollout does not
improve policy and cannot find goal. In some cases, one step rollout does
not work. The base policy is based upon the approximate value function.
It points the agent directly toward the goal, regardless of obstacles. The
rollout algorithm attempts to go left, right and down, followed by rolling
out the base policy. When the obstacle was small, rollout found its way
around, with the help of the base policy. In any arbitrary problem, a value
function approximates some simpler version of the problem. This is nec-
essary to reduce representational complexity. But the trade-off cost is a
worse policy. Rollout solves this dilemma by improving the policy at run-
time. However, in some cases, as shown here, the rollout of a base policy
is still unsatisfactory. 253

E-1 5-level Adaptive sensing hierarchy. 254
E-2 Space Exploration 5-level Adaptive sensing hierarchy. 255
F-1 Semi-autonomous network: A quadrotor, shown in the upper-left corner,

takes aerial images of the terrain below and transmits these images to a
computing cluster which identifies easily traversable terrain and computes
the optimal paths for the UGVs to take. If the risk of traversing the path
reaches a threshold point, the control of the UGV is handed over to a human
operator. Otherwise, the UGV is autonomously controlled. 258

F-2 To perform our road analysis, we first run a color analysis algorithm. We
downscale the result. Subsequently, we improve our analysis by applying
belief propagation to our downscaled image. We refine the borders of our
roads by upscaling the result and running the belief propagation on the bor-
ders of identified roads. We complete our analysis using Gaussian process
machine learning. 261

304

F-3 The GPML regression takes in the output of the variable zoom on an image
as a training set and the same image with all of the roads hand-labeled as a
target set. Note that the training set for one pixel consists of that pixel and
its neighboring elements. The algorithm then creates a best-fit function that
models the relationship between the two. With this function, we can input
variable zoom data from another image and the best-fit function will output
refined probabilities for each pixel being part of the road and the certainty
of each prediction point. 262

F-4 The first column is the original satellite images, the second column is the
result of applying the color analysis, the third column is the result of ap-
plying only the MRF to the color analysis, and the last column is the result
of applying variable zoom. 264

F-5 A) For the output of each algorithm, we determined the percentage of pixels
that were correctly identified as a road by the algorithm compared to the
total number of identified pixels (shown in blue) and the percentage of
actual road pixels that were correctly identified (shown in red). B) We
calculated the accuracy in the same fashion for several iterations to evaluate
convergence of our algorithm. In this case, variable zoom was only run for
three iterations because running it for additional iterations only marginally
increases the accuracy while increasing the runtime substantially. 265

F-6 Cross-validation of GPML. Seven images were used to train the Gaussian
process Best-Fit Function. The resultant Gaussian process was then used
to improve the variable zoom’s output from the eighth image. 266

F-7 GPML is shown to improve the quality of our analysis. The first column
is the original satellite images, the second column is the result of applying
variable zoom, the third column is the thresholded means of the Gaussian
distribution for each pixel, and the last column is the standard deviations
of each pixel’s Gaussian distribution with darker pixels representing higher
standard deviations. 267

G-1 . 269

305

List of Tables

5.1 ACAS problem formulation . 149

306

List of Algorithms

1 Approximate state-action value iteration algorithm where Q̂ stands for an
approximation architecture representation of the state-action value func-
tion, Q̄ stands for a lookup table of state action values over a subset S̄ of
the full statespace S. 64

2 Compute Branching Factor: This algorithm computes the branching factor
b that produces a tree with c nodes given a tree depth of d. 80

3 Action Subset Selection . 82
4 Decision Uncertainty Minimization via time limited branching : Determin-

istic System Dynamics . 83
5 The simulation function entails simulating one step of the system, starting

at state s and executing action a. The function assumes that the system
is deterministic, and that the most likely next state s′ has probability mass
of 1. In the case that the system dynamics probability matrix Pass′ is not
fully deterministic, the simulation function will choose the most likely fu-
ture state. This behavior is consistent with a certainty equivalence perspec-
tive. If there is a tie for the most likely state, the function deterministically
chooses the first encountered. 83

6 Decision Uncertainty Minimization via time limited branching : Stochastic
System Dynamics . 84

7 The Monte Carlo simulation function entails simulating one step of the
system, starting at state s and executing action a 85

8 Compute Monte Carlo Search Branching Factor: This algorithm computes
the branching factor b that produces a tree with c nodes given a tree depth of
d and a sampling rate of n. Tree depth refers to the lookahead of the search
algorithm and therefore includes a layer of action branching and simulation
sampling branching. 85

307

9 Approximate state-action value iteration algorithm where Q̂ stands for an
approximation architecture representation of the state-action value func-
tion, Q̄ stands for a lookup table of state action values over a subset S̄ of
the full statespace S. 116

10 Closed Form Least Squares Value Iteration 142
11 Rollout Algorithm . 144
12 Approximate state-action value iteration algorithm where Q̂ stands for an

approximation architecture representation of the state-action value func-
tion, Q̄ stands for a lookup table of state action values of a subset S̄ of the
full statespace S. The key changes from the exact algorithm are highlighted
in green. 173

13 Exact value iteration algorithm for solving MDPs. 220
14 Exact value iteration algorithm using Q-values. 222
15 Approximate state-action value iteration algorithm where Q̂ stands for an

approximation architecture representation of the state-action value func-
tion, Q̄ stands for a lookup table of state action values over a subset S̄ of
the full statespace S. 226

16 Policy Tree: A policy tree is the most general and optimal planning algo-
rithm. Given enough samples (N), this algorithm chooses the best action
a ∈ Ā where Ā ⊆ A given all subsequent actions are also limited to Ā.
This brute-force approach to full-feedback control, makes no assumptions
regarding certainty-equivalence, does not require a base policy, and does
not sacrifice optimality by ignoring the effects of future contingencies. Q̄
denotes the state-action value lookup-table, which we are building. How-
ever, Q(s′, a′) refers to the future value of taking action a′ from state s′,
as estimated by the recursive Monte Carlo planning algorithm. d = search
depth. The computational complexity is O((|A|N)d). 232

308

17 Generic Monte Carlo Planning: This is the most general optimal Monte
Carlo sampling-based planning algorithm. Given enough samples (N),
this algorithm chooses the best action a ∈ Ā where Ā ⊆ A given all
subsequent actions are also limited to Ā. This brute-force approach to full-
feedback control, makes no assumptions regarding certainty-equivalence,
does not require a base policy, and does not sacrifice optimality by ignor-
ing the effects of future contingencies. Q̄ denotes the state-action value
lookup-table, which we are building. However, Q(s′, a′) refers to the fu-
ture value of taking action a′ from state s′, as estimated by the recursive
Monte Carlo planning algorithm. d = search depth. The computational
complexity is O((|A|N)d). 233

18 Monte Carlo simulation s function entails simulating one step of the sys-
tem, starting at state s and executing action a 235

19 Certainty-equivalence Planning: This algorithm assumes certainty-equivalence
to make the computations tractable. As opposed to Monte Carlo sam-
pling, this algorithm bases its decision upon only simulating the single, ex-
pected state-transition. Therefore, it is faster than algorithm 17. certainty-
equivalence planning is only optimal in special circumstances. Therefore,
the faster speed comes at the price of optimality. Q̄ denotes the state-action
value-lookup table, which we are building. However, Q(s′, a′) refers to
the future value of taking action a′ from state s′, as estimated by the re-
cursive certainty-equivalence planning algorithm. d = search depth. The
computational complexity is O(|A|d). 238

20 Open loop feedback control algorithm: To select an action, OLFC gen-
erates an open-loop plan via search, and evaluates it via N simulations.
Many plans are evaluated this way and compared based upon their esti-
mated value. The best plan is chosen, and the first action in the plan is
executed. After the first action is executed a new open-loop plan is gen-
erated for the remaining mission. The process continues for the mission
duration. The computational complexity of OLFC is O(|A|d × N), where
|A| is the number of actions to choose from and d is the search depth; the
number of time-steps into the future over which we search. Q̄ denotes the
state-action value lookup table, which we are building. However, Q(s′, a′)

refers to the future value of taking action a′ from state s′, as estimated by
the recursive Monte Carlo planning algorithm. d = search depth. The
computational complexity is O(|A|d ×N). 239

309

21 Nominal Simulation - expected next state 240
22 Nominal Simulation - most likely next state 240
23 Bellman Policy Extraction: Typical value function policy-extraction using

V . Q̄ is a state-action value lookup table where we store our intermediate
and final state-action values based on the one-step lookahead. 243

24 Typical Q-function policy-extraction: Q̂ stands for an approximation ar-
chitecture representation of the state-action value function. 243

25 Rollout: Q̄ denotes the state-action value lookup-table, which we are build-
ing. 245

26 Nested Rollout: N-level nested rollout branches on all actions in the top
N levels then re-evaluates these combinations by rolling out future actions
π(s) in a Monte Carlo fashion. The rollout process uses the base policy to
choose actions for all but the top N encountered states in a trajectory. In
rollout, multiple instances of an entire trajectory are stochastically simu-
lated and averaged. Q̄ denotes the state-action value lookup-table, which
we are building. 249

310

