I|I'I- Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2018-008 September 1,2007

Unsupervised Learning and Recognition
of Physical Activity Plans

Shuonan Dong

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Unsupervised Learning and Recognition of
Physical Activity Plans
by
Shuonan Dong

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2007
(© Massachusetts Institute of Technology 2007. All rights reserved.

Author ...
Department of Aeronautics and Astronautics
August 23, 2007

Certified Dy
Brian C. Williams

Professor

Thesis Supervisor

Accepted Dy ...
David L. Darmofal

Associate Professor of Aeronautics and Astronautics

Chair, Committee on Graduate Students

Unsupervised Learning and Recognition of Physical Activity
Plans
by

Shuonan Dong

Submitted to the Department of Aeronautics and Astronautics
on August 23, 2007, in partial fulfillment of the
requirements for the degree of
Master of Science

Abstract

This thesis desires to enable a new kind of interaction between humans and compu-
tational agents, such as robots or computers, by allowing the agent to anticipate and
adapt to human intent. In the future, more robots may be deployed in situations that
require collaboration with humans, such as scientific exploration, search and rescue,
hospital assistance, and even domestic care. These situations require robots to work
together with humans, as part of a team, rather than as a stand-alone tool. The intent
recognition capability is necessary for computational agents to play a more collab-
orative role in human-robot interactions, moving beyond the standard master-slave
relationship of humans and computers today.

We provide an innovative capability for recognizing human intent, through statis-
tical plan learning and online recognition. We approach the plan learning problem by
employing unsupervised learning to automatically determine the activities in a plan
based on training data. The plan activities are described by a mixture of multivariate
probability densities. The number of distributions in the mixture used to describe
the data is assumed to be given. The training data trajectories are fed again through
the activities’ density distributions to determine each possible sequence of activities
that make up a plan. These activity sequences are then summarized with temporal
information in a temporal plan network, which consists of a network of all possible
plans. Our approach to plan recognition begins with formulating the temporal plan
network as a hidden Markov model. Next, we determine the most likely path using
the Viterbi algorithm. Finally, we refer back to the temporal plan network to obtain
predicted future activities.

Our research presents several innovations: First, we introduce a modified repre-
sentation of temporal plan networks that incorporates probabilistic information into
the state space and temporal representations. Second, we learn plans from actual
data, such that the notion of an activity is not arbitrarily or manually defined, but
is determined by the characteristics of the data. Third, we develop a recognition al-
gorithm that can perform recognition continuously by making probabilistic updates.
Finally, our recognizer not only identifies previously executed activities, but also pre-

dicts future activities based on the plan network.

We demonstrate the capabilities of our algorithms on motion capture data. Our
results show that the plan learning algorithm is able to generate reasonable temporal
plan networks, depending on the dimensions of the training data and the recognition
resolution used. The plan recognition algorithm is also successful in recognizing the
correct activity sequences in the temporal plan network corresponding to the observed
test data.

Thesis Supervisor: Brian C. Williams
Title: Professor

Acknowledgments

First, I must thank my partner in life, Thomas Coffee, for spending much of his own
thesis writing time to talk through the major stumbling blocks in my research with
me, and for all the times he has cooked for me so I can have more time to work.
His intellectual support, unconditional devotion, and contagious smile have made the

worst of my days enjoyable, and the best of my days truly blissful.

I also tremendously appreciate my research advisor Professor Brian Williams for
his key insights and encouragement. Additionally, Dr. Andreas Hofmann was effec-
tively my second advisor, and Dr. Paul Robertson has been an excellent mentor.
They have offered invaluable advice leading to the completion of this research. This

thesis would not have been possible without their support.

To all my friends in the MERS lab, past and present, I say “thank you” for being
such an important part of my life for the past couple of years. In no particular order,
thank you, Shen Qu, for all our heart-to-heart conversations; Lars Blackmore, for
advice on how to succeed in life and how to be more British; Hui Li, for making our
lab such a fun place; Bobby Effinger, for being such a great co-TA; Julie Shah, for all
the quals help and fun conversations over soldering; Seung Chung, for being a great
mentor and such a fun person; Larry Bush, for providing juggling entertainment and
advice on life; Paul Elliott, for being an amazing code wiz; Steve Block, for making
the rovers dance; Tsoline Mikaelian, for patient help with model-based programming;
Stephanie Gil, for providing smiles that brighten the day; and Thomas Léauté, for

writing a good thesis that I can refer to with formatting issues.

My parents, Fengzhuo Hu and Yu Dong, deserve more applause than I can express
here. They have been my motivators, my role models, and my best friends. They
have made me who I am, and given me the opportunity to explore what I can become.

They are the wind beneath my wings.

This research was in part funded by the National Science Foundation graduate
fellowship. The data used in this thesis was obtained from mocap.cs.cmu.edu. The

database was created with funding from NSF EIA-0196217.

“I am superior, sir, in many ways.
But I would gladly give it up, to be
human.”

— Lt. Commander Data

Contents

1 Introduction
1.1 Motivation
1.2 Problem Description
1.3 Previous Research
1.4 Approach and Innovations L.
1.5 Thesis Layout
2 Background
2.1 Principal Component Analysis
2.2 Expectation Maximization for Unsupervised Learning
2.3 Temporal Plan Networks
2.3.1 Temporal Plan Networks
2.3.2 Qualitative State Plans
3 Problem Formulation
3.1 Motion Capture Setup
3.2 Assumptions
3.3 Astronaut Robotic Assistant Example
3.4 Definition of a Data Sequence
3.5 Temporal Plan Network Redefined

3.5.1 General definition of a TPN used in this thesis
3.5.2 Definition of a schedule

3.5.3 Definition of an activity 0L

17
17
19
21
24
26

27
27
30
34
35
36

3.5.4 Definition of a duration,
3.5.5 Definition of a choiceevent
3.6 Definition of a Plan Learning Problem

3.7 Definition of a Plan Recognition Problem

Statistical Plan Learning

4.1 OVerview

4.2 Formatting the Training Data to Be Used in Learning
4.2.1 Motion Capture Data
4.2.2 Dealing with Data Scarcity
4.2.3 Dealing with High Dimensionality

4.3 Unsupervised Activity Learning

4.4 Extracting Activity Sequences

4.5 Creating a Probabilistic Temporal Plan Network (TPN).

Probabilistic Plan Recognition
5.1 Overview L
5.2 Formatting the Observed Testing Data to Be Used in Recognition . .
5.3 Preliminaries: Notation and Setup for Plan Recognition
5.4 Represent a TPN as a Non-stationary Hidden Markov Model (HMM)
5.4.1 Staying in an Activityo L
5.4.2 Moving to the Next Activity
5.4.3 Observation Model L.
5.4.4 Initial Probabilitieso
5.5 HMM Model Evaluation to Recognize Most Likely Path
5.6 Recognized and Predicted Activity Sequences

5.7 Simple Example of the Plan Recognition Process.

Implementation
6.1 Plan Learning Lo
6.2 Plan Recognition oL

53
53
95
95
o6
o6
57
61
64

69
69
71
71
74
5
76
76
7
7
79
81

7 Results
7.1 Evaluation of Success Lo
7.2 Dance Data
7.3 Golf Data

8 Conclusions
8.1 Future Advancements
8.1.1 Representing parallel activities in plan
8.1.2 Enabling intelligent combination of trajectories
8.1.3 Determining the recognition resolution
8.1.4 Anytime algorithm for real-time incremental recognition

8.2 Conclusions
A Splines

B Encoding a TPN into XML

95
95
96
101

111
111
111
113
114
114
116

119

123

10

List of Figures

1-1

2-1
2-2

3-3

4-1

4-2

4-3

4-4

4-6

Overview of the plan learning and recognition inputs and outputs. . .

Mixture of two Gaussian clusters
Example of EM on a 2-D two class problem.
Example temporal plan network. The double circle indicates a choice

event. ... L

Marker placement in front and back
Example dance motion data (displayed in horizontal order). The mo-
tions are attitude/arabesque (frames 1-9), jete en tourant (frames 9-
12), and bending back(frames 12-20).
Operations for the wide-field planetary camera changeout during Hub-

ble Space Telescope repair and maintenance mission

Overview of the plan learning process
We use splines to generate new data when data is scarce. The process
is as follows: (a) Sample data evenly. (b) Add noise to sampled data.
(c) Create spline and interpolate new data sequence.
Example of running EM learning on some 2-D data sequences with two
clusters.
Activity trajectories corresponding to the data shown in Figure 4-3

A gamma distribution is unimodal and non-negative.
The temporal plan network derived from example activity and duration

SEQUENCES .+ . v v v e e e e e e e

20

41

5-1 Overview of the plan recognition process 70
5-2 Labels for trajectories and activities in a plan. Trajectories are labeled

s, while activities are labeled r. For each trajectory s, there are R;

activities. oL 72
5-3 Duration distributiono 73
5-4 Temporal Plan Network 74
5-5 Markov model of a particular trajectory in the TPN. Each activity time

slice ag}) represents the r* activity in trajectory s at time step 7 since

the beginning of the activity. Transition probabilities are determined

by the duration distribution of each activity. 75
5-6 TPN of a simple example 81
5-7 Activities shown with test sequence of example 2D data 81
5-8 Hidden Markov model derived from the example TPN 82
5-9 Recognized and predicted activity sequences of example problem . . . 83
7-1 Training data for dance motions 97
7-2 Activity clusters for dance data L. 97
7-3 Activity trajectories for dance data with 4 activities 98
7-4 Output TPN of plan learner on dance motions. Inside angle brackets

(a) are activity numbers; u and o are mean and standard deviations

of activity duration. oo 99
7-5 A look at the messages m over all observation time steps. The non-zero

elements of the matrix are indicated by adot. 99
7-6 Test results for dance motion with different number of time steps in

observed data sequence 100
7-7 Training data for golf motions L. 102
7-8 Activity clusters for golf data 102
7-9 Activity trajectories for golf data with 5 activities 103
7-10 TPN learned from golf data assuming 5 activities 103
7-11 Test results for three different golf motions 104

12

7-12 Run times for individual iterations during recognition for swing, putt,

and pick up ball motions L. 105
7-13 Activity trajectories for full golf data using 7 principal components,

with 5 activitieso oo 106
7-14 TPN learned from full golf data using 7 principal components, assum-

ing Sactivities. Lo 107

7-15 Run times for individual iterations during recognition using 7 principal

COMPONENES v v e e e e e 108
8-1 Current representation of a TPN without parallel activities 112
8-2 One way to represent parallel activities 112
8-3 A more compact representation of parallel activities 113

8-4 Two minimal representations of activity sequences (1), (2),(3) and

(1), (2),(4),(2) ,(3) « o o 113
8-5 A most likely path in the HMM that we have cached 115

13

14

List of Algorithms

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Plan Learningo 86
Expectation Maximization 87
Get Activity Sequence 88
Make Temporal Plan Network 89
Plan Recognition 90
Get HMM states from TPN 91
Viterbi 93
Get Path 94

15

16

Chapter 1

Introduction

This thesis desires to enable a new kind of interaction between humans and com-
putational agents, such as robots or computers, by allowing the agent to anticipate
and adapt to human intent. The intent recognition capability is necessary for agents
to play a more collaborative role in human-computer interactions, moving beyond
the standard master-slave relationship of humans and computers today. This thesis
provides an enabling capability for recognizing human intent, through statistical plan
learning and online recognition.

In this chapter, we will discuss the motivations for our research in Section 1.1 and
provide a problem description in Section 1.2. Next, we will review previous literature
related to intent recognition in Section 1.3, and present our approach to the problem

in Section 1.4. Finally, we outline the roadmap for the rest of the thesis in Section 1.5.

1.1 Motivation

In the future, more computational agents such as robots or embedded computers may
be deployed in situations that require interactions with humans, such as scientific
exploration, search and rescue, hospital assistance, and even domestic care. These
situations require robots to work collaboratively with humans, as part of a team,
rather than as a stand-alone tool. For example, researchers at NASA Johnson Space

Center are developing Robonaut, a humanoid robot, to assist astronauts during extra-

17

vehicular activities [4], like the camera changeout task executed during the Hubble
Space Telescope repair missions. Robonaut will be able to handle lower-skilled and
higher-risk tasks, enabling astronauts to work on more important and less dangerous
problems. Currently, Robonaut is teleoperated by humans off-site, which may be
unfavorable or infeasible for missions that are farther away or have long durations.
Ultimately, we desire robots like Robonaut to be intelligent enough to autonomously
interact with humans, so that they can play an independent role in a collaborative

task.

A down to Earth example of robots that interact closely with humans is in the
nursing home situation. Pineau et al. [42] have developed a mobile robot named Pearl
to assist elderly individuals with mild cognitive and physical impairments, as well as
support nurses in their daily activities. This robot specializes in reminding people of
events and guiding them through their environments, both of which are particularly
useful capabilities for a nursing home robot. Currently, Pearl uses synthesized speech
and a speech recognizer to query and identify a person’s status, such as whether he or
she has taken medication yet. However, many elderly have difficulty understanding
the robots synthesized speech and have trouble articulating a response that the robot
can decipher. Therefore, we suspect that the robot’s performance can be greatly
enhanced by the addition of a physical activity plan recognition capability as described
by this thesis. For example, plan recognition can enable the robot to identify a

person’s motion of raising a pill to his or her mouth.

Although humans use a combination of verbal and non-verbal cues when perform-
ing collaborative tasks together, we often do not verbalize our plans. Computational
agents, however, need to infer intent, which exists in the form of courses of actions,
represented as plans. Thus, an agent needs to infer the collaborator’s intent from
observing his or her motions [1, 21]. This thesis focuses on the non-verbal, physical
motion cues. When a medical assistant sees a doctor extending his or her hand toward
a scalpel, he or she may infer that the doctor intends to pick it up. Upon recognizing
this intent, the medical assistant may hold up the scalpel and make it readily avail-

able. Similarly, during physical human-robot collaborative tasks, it is useful for the

18

robot to anticipate what the human is doing based on his or her physical motions,
because the human is better assisted if the robot can anticipate need.

To enable this recognition of intent, the robot must first gain contextual knowledge
by learning a plan of how the task might be performed. In our example, a medical
assistant can infer that when the doctor reaches for a scalpel, he or she intends to
pick it up, because the assistant has seen similar situations before—the assistant has
learned that reaching for something often reflects the intent of picking it up. Of
course, an assistant may also learn that the doctor sometimes reaches for an item
to move it out of the way. Thus there are multiple plan options that an assistant
must keep track of. An agent in a similar situation when assisting a human needs to
learn the different plans that the human may perform. The agent represents all the
different possible plans together in a plan network.

Next, during an online collaborative situation, the agent needs to recognize likely
plans in the plan network from the new observations. When the medical assistant
observes the current situation and infer that the doctor will most likely intends to
pick up the tool, he or she is actually performing plan recognition by comparing the
observations with the previously learned plan network to determine which plan in the
plan network the doctor is most likely executing. In a similar way, a robot should be
able to use the plan network to recognize what a human is currently doing, in order

to anticipate the human’s needs.

1.2 Problem Description

There are two main problems that this thesis focuses on: plan learning and plan
recognition. An overview of the plan learning and recognition problems is illustrated
in Figure 1-1.

Plan learning refers to the problem of deriving a plan network that describes a set
of training motions. We represent the actions of a human by the combined motions
of particular points on his or her body, so the training data are sequences of sampled

pose states at points of interest on the human’s body throughout the duration of

19

Number of activities
(Recognition resolution)

Training data l
gt Sy

9y Plan Learner

0.
=i 200
L l

Temporal plan network

Observed data l

Plan Recognizer

0.l
" 500
o g

Most likely plan trajectory

Figure 1-1: Overview of the plan learning and recognition inputs and outputs.

20

the motion. We want the output of the plan learning process to be a description of
the space of all possible plans, or a plan network, which is comprised of smaller units
called activities. To encode uncertainty of the motions, each activity is described by a
probability density over the state space and is associated with a probabilistic activity
duration.

Plan recognition refers to determining which activities the human collaborator
has executed already, and predict which activities the human might perform next,
given a plan network and observed data. The plan network is simply obtained from
the output of the plan learning process. The observed data is a sequence of states
that describe the motion of interest, similar in format to those of the training data.
The key to the plan recognition problem is that the observed data does not have
to be complete. By observing the human’s motions for some small number of time
steps, we would like the plan recognizer to identify (1) previously executed activities
with corresponding schedules of when each activity began and ended, (2) the current
activity and how long it has been executed, and (3) predicted future activities and

most likely estimates of how long each might be executed.

1.3 Previous Research

In the past, many researchers have worked on the problem of enabling a computational
agent to classify or recognize what a human is doing. Applications span from identi-
fying gestures to recognizing handwritten letters to tracking a person’s goals through
dialogue, and techniques range from machine learning to Bayesian inference to plan
decomposition methods. In this section, we discuss the work of other researchers and
how they relate to our work.

Many researchers have focused on gesture recognition [34, 58, 11] to learn physical
activities from data. Gesture recognition is the problem of extracting geometric data
from visual inputs, deriving a 2-D or 3-D shape model, tracking motion segments, and
then classifying the motions. Gesture recognition works very well for pre-separated

data because most gesture recognition algorithms use supervised learning techniques.

21

For example, Bobick and Wilson’s gesture recognition algorithm [11] can distinguish
between segments of data capturing a hand wave versus other segments of data repre-
senting a pointing gesture. Similarly, Kadous [26] uses supervised learning to perform
classification on multivariate gesture data. However, during real world tasks, pieces
of data do not arrive in predetermined segments but rather a continuous stream.
Therefore a plan learning algorithm not only needs to classify motions into activities,
but should also automatically determine the separation between one activity and an-
other. In contrast to the work in gesture recognition, this thesis utilizes unsupervised

learning to handle automatic segmentation.

This thesis employs similar ideas as those from Barbi¢ et al. [7], who use the un-
supervised Expectation Maximization (EM) learning algorithm to identify activities
from continuous physical data. We take their activity learning techniques a step fur-
ther by also learning plans. Knowing a person’s plan, we can not only figure out what
activity a person is currently doing, but also make predictions as to what the person
will do in the future. The added capability of anticipating future activities makes

plan learning and recognition a more powerful tool than isolated activity learning.

Fox et al. [20] also present a learning algorithm similar to ours, used in an intro-
spective robot behavior modeling application. They assume that the behavior of a
robot when performing a task can be represented as a hidden Markov model (HMM),
and they proceed to learn this model using a variance of EM. The resulting behav-
ioral models allow the controller to reason about the robot behavior in the context
of executing a task. Although the work employs similar techniques as ours, such as
using EM to estimate the parameters of a stochastic model and Viterbi to deter-
mine most likely path in an HMM, its objectives are very different. Fox et al. are
specifically interested in learning how a robot accomplishes a task, whereas we are
interested in learning human motions, which are often more variable in execution.
Furthermore, our work is based in the context of identifying a plan in order to infer
intent, which requires anticipating many future activities to be executed beyond the
point of current observations. This is why our work incorporates the use of a plan

network. In contrast, Fox et al. are more interested in diagnosing a robot’s behavior

22

from observations during the executing of a task.

Liao et al. [33] use learned models to infer human movements in the outdoor
environment. They can detect when a person’s behavior deviates from their normal
pattern by evaluating the likelihood of an observed behavior in the context of a
learned hierarchical Markov model. The model also allows them to predict a person’s
short term future movements, such as whether the person will turn left at the next
street corner, and distance goals, such as if a person is going to the store. Similarly,
Osentoski, Manfredi and Mahadevan [40] use a form of HMMs to model human motion
through indoor environments to give a monitoring robot the capacity to predict and
explain human activities. In both studies the human subject is abstracted to a point in
two-dimensional space because the motion of interest is of a larger scale. Both studies
use hierarchical HMMs, with the lowest level corresponding to a physical network of
locations and higher levels corresponding to the tasks that are typically performed at
these locations. Thus, these studies are concerned with large scale movement from
place to place in a mapped environment and their emphasis is therefore different from

our own.

Much plan recognition work have used qualitative representations of high and low
level activities described by strings such as “clean room” or “sweep floor.” Kautz
and Allen’s formal theory of plan recognition [27, 28] introduced a representation of
plans in hierarchical constructs that can be decomposed into qualitative activities.
Our plan representation differs because we keep track of the temporal ordering of
activities and describe activities probabilistically. Following Kautz and Allen’s plan
representation, various researchers including Charniak and Goldman [14] and Pyna-
dath and Wellman [46] formulate plans into Bayesian networks, and others like Bauer
[9, 8] use Dempster-Shafer theory for recognition. Their representations are designed
for activities which can be sensed through discrete inputs, such as clicking a button
on a computer, whereas our representation is designed for activities with continuous
data, such as physical motions. Also, when manually decomposing plans into activi-
ties, it is unclear which actions should be considered primitive and which should be

considered higher-level. More importantly, during collaborative tasks, intent recogni-

23

tion should be performed continuously rather than only after some discrete activity
has been completed. The value of intent recognition during collaboration is that it
gives a collaborator the ability to estimate which activity a user is trying to execute,
and then offer aid as necessary.

Another important aspect of plan recognition that has been missing in most recent
literature is the consideration of temporal information. After Allen’s presentation of
temporal relations [3, 2], many researchers have worked on temporal planning, such
as [39, 6, 57, 19]. However, few have incorporated temporal information into plan
recognition. Suppose we observe a person reaching toward a lamp. If the reaching
motion is swift, we may infer that she is turning on the switch, but if her hand is
extended for a long period of time, we may instead conclude that she is trying to fix
the light bulb. Avrahami-Zilberbrand, Kaminka and Zarosim [5] include qualitative
temporal ordering in their plan recognition algorithm, but do not represent the metric
temporal relations. In contrast, our research specifically encodes and relies on metric
temporal relations to describe activity durations.

Avrahami-Zilberbrand et al, as well as others like Lesh, Rich and Sidner [32], use
plan recipes to look up the possible relations between activities. These plan recipe
libraries are pre-generated manually, which is undesirable because manually creating
a recipe library is tedious and may be somewhat arbitrary, because the process is
subject to the creator’s opinion about what constitutes an activity. Instead, our work

learns the recipe library, which in our case is the plan network, from actual data.

1.4 Approach and Innovations

This thesis provides an innovative capability for recognizing human intent, through
statistical plan learning and online recognition. Our approach is to learn a proba-
bilistic representation of possible plans, represented by a probabilistic temporal plan
network (TPN), and then to track plans online using the TPN. A probabilistic TPN
is comprised of all possible sequences of activities and corresponding activity dura-

tion distributions that represent the training data. The plan activities are described

24

by a mixture of multivariate probability densities over the state space to reflect the
uncertainty of a human’s motion. The number of distributions in the mixture used
to describe the motion is assumed to be given. Activity durations are described by
a probability distribution over time, since the exact timing of the activities that a
human performs is not precisely known. To learn the activities, we employ unsuper-
vised learning on the training data to automatically determine the mixture of activity
distributions. To learn entire activity sequences, the training data trajectories are fed
again through the activities’ density distributions to determine each possible sequence
of activities that make up a plan. These activity sequences are then summarized with
the activity durations in a temporal plan network, which consists of a network of all

possible plans.

In the medical assistant example, the plan is the motion of picking up something.
The plan network consists of the different ways that the assistant has learned of how
this motion can be executed. In one possible plan, one activity might be a reaching
motion, described by the probabilistic region in the state space where this motion oc-
curs. The duration associated with this activity may have an average of a few seconds,
with some standard deviation. A sequence of several activities—for example, reach,
grasp, pick up—may be necessary to describe one possible plan, and all the possible
plans that the assistant knows form the plan network. For human assistants, the
network of possible plans are learned throughout life; for robotic assistants, the plan
network is learned through training. Once training is complete for some application,

the assistant is ready to perform recognition.

Recognition involves tracking the most likely activity sequence through a TPN
given a state observation sequence. Our approach first formulates the temporal plan
network as a hidden Markov model. Then we determine the most likely path using
the Viterbi algorithm. Finally, we refer back to the temporal plan network to obtain

predicted future activities.

In our example, the recognition process allows the assistant to observe the doctor
perform a reaching activity, determine the possible plans in the plan network that he

or she may be performing, and conclude the most likely one. This recognized plan

25

allows the assistant to anticipate the doctor’s desired future activities and help him
or her perform them as needed.

This thesis presents several innovations: First, we introduce a modified represen-
tation of temporal plan networks that incorporates probabilistic information into the
state space and temporal representations. Second, we learn plans from actual data,
such that the notion of an activity is not manually defined, but is automatically deter-
mined by the characteristics of the data. Third, we develop a recognition algorithm
that performs recognition continuously by making probabilistic updates. Finally, we
not only recognize previously executed activities, but also can predict future activities

based on the plan network.

1.5 Thesis Layout

We present this thesis in the following manner: In Section 2, we review some back-
ground material for the Expectation-Maximization algorithm and temporal plan net-
works, and in Section 3, we present the formal problem formulation. We describe
the components of plan learning in Section 4, and we introduce the plan recognition
algorithm in Section 5. We present the plan generation and recognition algorithms in
detail in Section 6, and show results on motion capture data in Section 7. Finally, we
present possible future advancements in Section 8. This concludes our introduction

as we prepare to go into the details of our work.

26

Chapter 2

Background

This thesis assumes the knowledge of several existing algorithms and representations.
Here, we review background material for data reduction using principal component
analysis and unsupervised learning with the Expectation Maximization (EM) algo-

rithm, and we discuss the existing representations of temporal plan networks.

2.1 Principal Component Analysis

The data that we deal with is highly multidimensional because we track the (z,v, 2)
positions of over thirty locations on the human body, producing on the order of one
hundred dimensions. To prevent computational space limitations, we choose to only
consider the features that most strongly distinguish the data. For example, a person’s
hand motions may be more important than foot motions during a reaching task.
Principal component analysis (PCA) [25, 24] originally developed by Pearson [41],
is a fairly well-known method of compressing data with some small but acceptable
loss of accuracy. It is especially useful for data that has more dimensions than is
easily analyzable graphically. Researchers have used principal component analysis in
a myriad of different applications, including image processing [60, 53], economics [54],
biology [13], and even atmospheric sciences [45].

In our work, the data represents the combined position information at different

points on the body, sampled at some high frequency. We want to project the high

27

dimensional data onto a lower dimensional space defined by a set of principal compo-
nents. PCA performs an orthogonal linear transformation that transforms the data
to a new coordinate system such that the greatest variance by any projection of the
data comes to lie on the first coordinate (called the first principal component), the
second greatest variance on the second coordinate, and so on. PCA can be used to
reduce the dimensionality in a data set by retaining those characteristics of the data
set that contribute most to its variance, by keeping lower-order principal components
and ignoring higher-order ones. Such low-order components often contain the “most
important” aspects of the data.

The ordering of the principal components can be determined by the eigenvalues
of the covariance matrix, and the components themselves are the eigenvectors. We
can re-encode the data exactly as a function of the eigenvectors of the covariance
matrix written in a feature vector V,, and the data given in principal components,
which we call X,,. The encoding is given by X = VpTXp, where the re-encoded X is
assumed to have zero empirical mean. To encode the original data exactly, we would
need all m eigenvectors so that the dimensionality of the data is not reduced. PCA
creates an approximate function that achieves a dimensionality reduction by pruning
a subset of the eigenvectors that least contribute to the error in the approximation.

We can generate principal components from multidimensional data using the following

method:
. T . .

1. Obtain data: Assume X = [x1,Xs,...,X,| is a sequence of n data points,
where each data point x; = [z, 29, ..., 2] contains m dimensions. In other
words,

X1 Tir - Tim

X2 Toyp -+ Tom
X p— pr—

Xn Tn1 ' Tnm

2. Center mean at zero: To standardize the origin of the data, we recenter the

data means at zero. Let ux = %Z?:l x; be the mean of X. Then X, =

28

[X] — px, Xo — [IX, vy Xp — [Lx]T. For clarity, we shall hereafter redefine X
to mean X..,, and x; to mean x; — jtx, so that when we mention X, we actually

refer the zero-centered data.

3. Compute covariance matrix: Intuitively, covariance tells us how the data
values are correlated. The covariance has higher values when high data values
are correlated. Thus the covariance can tell us the ordering of “importance”
of the dimensions of the data, or which components are more “principal.” We
compute the covariance matrix as follows: Let a,b € {1...m} be dimensions of

the data X, such that

T1a L1p
Tag, T2p
a __ b _
X = L XP =
Tna Tnb

Let o4 = == 300 (X — puxe) (XP — puxs) be the covariance of the data for

the dimensions a and b. Then the covariance matrix is

Yix =

Om1 " Omm

4. Calculate the eigenvalues and eigenvectors of covariance matrix: The
set of eigenvectors v for Y x is defined as those vectors that when multiplied by
Yx, result in a simple scaling A of v. Thus, ¥xv = Av. The scaling factors A
are the eigenvalues. To find the eigenvalues, we can solve det (Xx — Al) = 0,
and to find the eigenvectors, we can solve (Xy — A\l)v = 0. After finding the

eigenvectors, we convert them into unit vectors v = HX_H to unify the scaling.

5. Form a feature vector and reduce dimensionality: Figenvalues indicate

the importance of the dimension described by the associated eigenvector. Eigen-

29

vectors with larger eigenvalues describe more principal components of the data.
In order to rank the eigenvectors in terms of importance, we sort the eigenvectors
according to the corresponding eigenvalues in descending fashion to produce the
feature vector V.= [Viaxa, - -+, Vmina)- Now we can reduce the dimensionality
by choosing only the p most important dimensions (where p < m) to be our

feature vector: V, = [Viaxx, - - -, Vp).

6. Deriving principal components of data: We can now transform the data
X with dimensions n X m onto the feature vector V,, with dimensions m X p to

produce the principal components X, = XV/,.

We have now generated the first p principal components of the data, so we have
successfully compressed m dimensional data into the p most important dimensions.
To retrieve the original data, we use X, ciricved = V;DTXp + px. Generally, the retrieved
data will not match the original data exactly unless all the dimensions were included
in the feature vector, i.e. p = m. However, usually just a few principal components

are enough to produce retrieved data to within a small amount of error as the original.

2.2 Expectation Maximization for Unsupervised
Learning

Our plan learning problem is to generate a plan network of temporal activities, given
as input a sequence of states up to time t. Our approach is to encode the activities
as a mixture of Gaussians. This section reviews an algorithm for learning a mixture
of Gaussian model using unsupervised learning. The problem requires unsupervised
learning because the cluster labels are not known a priori. Expectation Maximiza-
tion is a well known and highly effective unsupervised learning algorithm that solves
exactly this problem [48, 23, 10, 18]. The explanation of EM presented here loosely
follows Russell and Norvig [48].

We will use a mixture of Gaussians to model the data because it allows us to

describe multimodal distributions. This is important because we are interested in

30

motions that are centered around multiple locations. Assume the number of clusters,
or classes, that describe the data is known to be k. Let y be a random variable
denoting the class, which can have values of 1,... k. Let x be the state vector at

each data point with dimension p. Then the mixture distribution is given by

P(x)=Y P(y=j)P(x|y=j).

For a mixture of Gaussian model, clusters are described by multivariate Gaussians

with parameters

@:{917927---7014:}7

such that
ej = {wja ,ujv Z]} ;

where w; are normalized weights of each class, p; are the means, and X; are the

covariances of each multivariate Gaussian distribution. Figure 2-1 shows an example

Figure 2-1: Mixture of two Gaussian clusters

of a mixture of two Gaussian clusters in 2-D. The ellipses are centered at the means
of the Gaussian distribution, and the shape of the ellipses are governed by the co-
variances. Cluster 2 has a smaller weight than that of cluster 1, or wy < w; because

fewer data points are part of that cluster.

31

The mixture of Gaussian distribution is given by
P(x|) ij (x| 15, 5) (2.1)
1 T
_Z p/2 s, 172 S Y (x = p)" B3 (x =) |, (2.2)

where p is the dimension of x, and |X;| is the determinant of 3.

If we knew which cluster each data point belongs, i.e. the assignments of y, we
can easily recover the Gaussian parameters of each cluster by selecting all the data
with the same label y = j and fitting the parameters of a Gaussian to them. On
the other hand, if we knew the Gaussian parameters of each cluster ©, we can, at
least in a probabilistic sense, assign each data point y to a cluster. However, neither
the assignments nor the cluster parameters are known. In this situation, the EM
algorithm initially makes a guess of the parameters, then determines how good the
guess is by computing the probability that each piece of data belongs to each class
(Expectation). After that, the Gaussian parameters of each cluster is refitted to the
the data, where each cluster is fitted to the entire data set with each point weighted
by the probability that it belongs to that cluster (Maximization).

The Expectation and Maximization steps are formalized in Equations 2.3 — 2.11.

1. E-step: Label Data. Assume X is an array of state vector data of length n
such that X = [x; .. .Xn]T. Compute the probability that datum x; belongs to

class j using the update equation
pUli)—Plyi=j1x,0;), j=1...k,i=1...n (2.3)

Since P (y; = j | x;,0;) cannot be readily determined, the actual calculation

32

must be performed using Bayes rule:

P« Pyi=J|x0;) (2.4)
=a-P(x |y =7,0;) - P(yi=1J) (2.5)
=a- P(x; | py,%;) - w; (2.6)
- 1 1 e
=iy e (5w s). 2

where o is a normalization factor to enable the probabilities to sum to unity, w;
is the estimated weights derived from the Maximization step in Equation 2.10,

p is the dimension of x, and |X;| is the determinant of X.

2. M-step: Update Parameters. Compute the class distribution parameters

wj, fi;, and f]j using the update equations

= > pG 1) 23

. I &,

fij — ;ZP(J | 4) % (2.10)
J =1

- I))

85— — D0 h 0 1) 6 = i) (s —)" (2.11)
J =1

The Expectation step (E-step) determines the probability that datum x; belongs

to class j, or p(j|i), while the Maximization step (M-step) uses it to find new

parameters © by maximizing the log likelihood of the data. Wu [59] has proven

that Expectation Maximization always increases or maintains the log likelihood of

the data at every iteration. He has also proven that under certain conditions, the

point of convergence can reach a local maximum in likelihood. In some cases, it is

also possible for EM to reach a saddle point or local minimum. Figure 2-2 shows an

example of Expectation Maximization working on a simple 2-D two class problem.

In the two class problem in Figure 2-2, we make an initial guess of the parameters

33

Initial Conditions EM after step 1 EM after step 2

5 5 5
4 4 4
3 3 3
><N ><N ><N
2 2 2
1 1 1
0 0 0
0 5 0 5 0 5
5 5 5
4 4 4 ¥ 5
3 3 3 -%6
>é\l ><N ><N
2 2 2
1 1 1
0 0 0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
X X X

Figure 2-2: Example of EM on a 2-D two class problem.

of the two clusters. In this case, we choose two random points in the data as the
Gaussian means and take the covariance of the entire data set as the covariance of
each cluster. Every iteration of EM increases the log likelihood of the data so that the
estimated cluster parameters (represented by the ellipses) describe the data better at

each iteration.

2.3 Temporal Plan Networks

Our central problem is how to effectively encode the hypothesis space of plans that we
are recognizing. Here, we review a representation of temporally flexible plans called
temporal plan networks (TPNs). In terms of representing the hypothesis space, there
are several features of TPNs that are important for our task. First, it can represent

plans as a set of sequential activities. Second, activities are temporally extended.

34

Third, the start and end times of events are specified partially through qualitative
and metric temporal constraints. Finally, and most importantly, a TPN is a compact
encoding of a hypothesis space of possible plans, not just a representation of a single
plan. The encoding is compact through the use of probabilistic choice operators.
This section reviews the representation of temporal plan networks (TPNs) as
used in previous research. We also outline the concept of qualitative state plans
(QSPs), which represent activities as constraints on the state space. The temporal
plan networks used in this thesis are inspired by existing definitions of temporal plan

networks and qualitative state plans.

2.3.1 Temporal Plan Networks

Central to plan recognition is a representation for the hypothesis space of plans.
This representation should satisfy three requirements. First, the representation of
plans should be expressive enough to capture the key properties of the plans that
we want to represent. Second, it should be a compact encoding of all possible plans.
Third, it should be effectively computable, that is, it should allow the recognizer to
search efficiently through the space of possible plans. The temporal plan networks by
Williams et al. [57, 29] provides these representation capabilities.

We give here an intuitive description of temporal plan networks based on Effinger
[19], keeping in mind that we will be using TPNs for different purposes and dif-
ferent capabilities. For a formal definition of TPNs used in this thesis, please see
Section 3.5.1.

Generally, a temporal plan network encompasses a simple temporal network, so it
is also a directed graph with events V' and edges E labeled with temporal constraints
[l,u], where [is the lower temporal bound and u is the upper temporal bound. In
addition, an edge in a TPN can be associated with an activity, which, in planning
applications, may represent a command, state assertion, state request, or timing
constraint. In the recognition application of this thesis, an activity will describe a
particular region of motion. In addition to parallel and sequential activities, temporal

plan networks can also represent different possible activity combinations from which

35

one can be chosen. The event from which different possible branches of the plan stems
is called a choice event. A TPN can have multiple and nested choice events. Being
able to represent choices is a very important quality of TPNs for plan recognition
because we can formulate the plan recognition problem as determining which choice(s)
a human made when executing a task.

An example temporal plan network is shown in Figure 2-3. This example depicts
the plan of someone picking up a hammer and either striking a nail or extracting a
nail. The first activity of the event is picking up a hammer, which lasts between 1
and 6 time units. Following the completion of that activity at event vy, the person
simultaneously holds the nail in place while either striking it or extracting it. The
choice event vy is illustrated by a double encirclement of the event. Edges without

specific activities indicate no-ops.

[2, 8]
hold nail

Figure 2-3: Example temporal plan network. The double circle indicates a choice
event.

2.3.2 Qualitative State Plans

Our representation of activities is motivated by the activity representation in qual-
itative state plans (QSP). Researchers like Léauté [31] who are interested in robust
control of agile systems have developed qualitative state plans (QSP) to describe the
desired motion of a plant at a high level for the operator. Hofmann [22] has also
utilized qualitative state plans toward controlling a simulated humanoid biped. In a

QSP, state trajectories are specified qualitatively as a series of feasible state regions

36

rather than sequence of specific states.

Activities in a QSP specify qualitative constraints on the state of the plant. For
example, a QSP activity a;; = (v;, v, ¢;;) is located between events v; and v; in the
plan, and is associated with the constraints c;; on the variable x, which is a tuple
consisting of a state variable s and control input u. Recall that a schedule T is an
assignment 7" : V +— R of an event to a specific execution time. The state constraints
¢;; can include a start region Rg, such that x (7" (v;)) € Rg, an end region Rp such
that x (1" (v;)) € Rg, a remain-in region Ry such that V¢ € [T (v;),T (v;)],x (t) € Ry,
and a go-through region R5 such that 3t € [T (v;), T (v;)] for which x (t) € Rs.

The structure of activities in a QSP is the motivator for the activities in the
temporal plan networks for plan learning in this thesis. In our problem, there are no
control inputs u, so x only consists of the state variable s. Then the activities we
eventually learn from the observed states can be described as some region of the state
space, similar in concept to those in QSPs. The difference is the description of that
region. For a formal definition of an activity in a plan that is used in this thesis, see
Section 3.5.3.

We have now completed our review of existing techniques that we use in our work.

The next chapter will present the formal statement of the problem we will address.

37

38

Chapter 3

Problem Formulation

This chapter describes the problem of plan learning and recognition more formally.
We first present a description of the environment from which our data is obtained
in Section 3.1 to ground the kinds of problems we focus on. Then we discuss the
assumptions of the problem and present a motivating example. Next, we formally
define the input data sequences in Section 3.4. The definition of a TPN is given in
Section 3.5, followed by the plan learning and plan recognition problem formulations

in Sections 3.6 and 3.7, respectively.

3.1 Motion Capture Setup

Our work uses the Vicon Motion Systems data obtained from Carnegie Mellon Uni-
versity Graphics Lab Motion Capture Database [44]. This motion capture system has
eight cameras, each recording 1000x 1000 pixel resolution at 120Hz sample rate. The
marker set consists of 35 14mm markers placed around the whole body, the locations
of which are shown in Figure 3-1. All 34 symmetric markers are used in the learning
and recognition process, giving data in 102 dimensions, which is why we use principal
component analysis to reduce the dimensions of the data. Each test subject has a
calibrated skeleton model, and the motions can be visualized, like the dance move in
Figure 3-2.

Our goal is the following: Given training data like that obtained from the motion

39

RFHD
L]

LSHOD
y .

RURA

*RARM LBWT RBWT
- L]
RFWT

RWRA
—

RIS # RTHI

. .- -8
LWRE LwRa
aLTHI

RKNE® #LENE

LLEG
L]

o LANK
RMTS

rMTSe ETOE #LMTS
4 : ;

.le'll‘:
L]
RHEE

Figure 3-1: Marker placement in front and back

40

Figure 3-2: Example dance motion data (displayed in horizontal order). The mo-
tions are attitude/arabesque (frames 1-9), jete en tourant (frames 9-12), and bending
back(frames 12-20).

in Figure 3-2, we would like to generate a temporal plan network that best describes
the range of possible activities. Then with the temporal plan network and new ob-
servations, we want to determine the most likely sequence of activities in the plan, or

recognized activity sequence, to which the observations correspond.

3.2 Assumptions

There are several assumptions we will make when approaching the plan learning
and recognition problems to ensure that our problem has an appropriate scope. In
general, we would like to focus on the problem addressed in the thesis and allow
other researchers to work on interesting, related, but non-core issues relating to our
problem.

We will first assume that the data provided to us is in a format readily usable by
our algorithms. Specifically, we assume that the position vectors of particular points

on the human subject can be obtained at some sampling frequency. This thesis uses

41

motion capture data which is readily available in this format. However, in practice,
a robotic agent may not have the capability to obtain such high resolution motion
capture data, and may need to rely on more conventional sensing techniques such
as cameras or laser range finders. The image processing community has done much
research to extract geometric information from image data [38, 21]. We trust that
researchers like Sigal [50] will ensure that extracting 3D position information from im-
ages is not beyond the capabilities of image processing. Thus we will demonstrate the
capabilities of our research only on motion capture data and assume the applicability
to other input formats.

We also assume that the frequency with which we sample the motion data is faster
than the rate at which a human subject can move, so that no important information
is lost during the data sampling process. Furthermore, we assume that sampling is
done at a constant frequency, so that the number of data points we sample directly
scales as the time lapsed during sampling.

During plan learning, we assume that a recognition resolution is known a priori,
meaning that we know beforehand whether we will be distinguishing motions that are
very similar or relatively different. This plays a key role in the plan learning process
because a higher recognition resolution is necessary for distinguishing more similar
motions, while a smaller recognition resolution is more optimal for distinguishing
very different motions. In plan learning, the recognition resolution is the number of
unique activity clusters that will be learned, which we denote as k. Section 8.1.3
gives some insights on how the recognition resolution might be automatically learned

in the future.

3.3 Astronaut Robotic Assistant Example

Now that we have stated our assumptions, we can provide a better idea of the problem
we will be solving with an example.
When an astronaut performs some task in space, such as in a telescope repair

mission, he or she follows a set of procedures outlined by the operations team. As an

42

example, Figure 3-3 shows a portion of the operations procedures for the wide-field
planetary camera changeout during the Hubble Space Telescope (HST) repair and
maintenance mission in 1993 [36]. Suppose we would like to design a robotic agent to
inform the astronaut of which activity he or she should be completing, and to ensure
that each activity is completed correctly. The agent would first need to know what
the task procedures are, and in what ways they can be performed by an astronaut.

We describe all the ways a person can complete a task procedure as a plan.

Goal: Replace the original WFPC I instrument in the HST
axial bay (axis - V3) with the second generation WFPC I1 in
the Space Shuttle cargo bay WFPC radial site.

In this exercise you will

e Deploy the forward and aft temporary parking fixtures
(TPF) with attached handholds.

e Install the handhold guide studs on each of the WFPCs.

e Adjust the (-V2) scuffplate and open the FGS#3 doors to
access the HST WFPC indicator lights.

e Retrieve, translate, and temporarily stow the WFPC I
with the aft handhold.

e Open and access the radial site.

e Translate the WFPC 11 with the forward handhold from the
radial site to the HST for installation.

e Install the WFPC 11 in the HST, close the FGS#3 doors,
secure the (+V2) scuffplate, and stow the forward
handhold on the forward TPF.

e Translate the WFPC 1 from the aft TPF to the radial
site, stow for return to Earth, and close out the radial
site.

e Return the aft handhold to the aft TPF and return both
TPFs to their original stowed positions.

Beginning position: At the start of the WFPC tasks you will
be facing the aft end of the Shuttle cargo bay at a
position approximately in line with the airlock hatch.

Figure 3-3: Operations for the wide-field planetary camera changeout during Hubble
Space Telescope repair and maintenance mission

Before a space mission, astronauts and ground support crew go through a series
of training sessions to get familiarized with the environment and task, sometimes
through immersive virtual environments like the one developed by Loftin and Kenney
to train over 100 members of the ground-support flight team before the HST mission
[36]. We propose that a robotic agent can learn an astronaut’s plan by collecting

data during this type of ground training before the mission. We would like the plan

43

to contain both spatial and temporal information. As mentioned, we assume the
data consists of position vectors of certain points on the astronaut recorded at some
constant and fast sampling frequency. The first problem we address in this thesis is
how to learn a plan from training data.

Now suppose the agent has already learned the task procedure plan, and is as-
sisting an astronaut during a mission. To effectively monitor the progress of the
astronaut, the robotic agent must be able to identify which method the astronaut is
applying, what activities he or she has completed already, which activity he or she is
in the process of performing, and very importantly, what activities the astronaut will
need to complete in the future. The second problem we address in this thesis is how
to recognize the correct activity sequence that the human has executed, and using

the information in the plan, predict future activities that the human should perform.

3.4 Definition of a Data Sequence

A learning task begins with data. The motion capture data used in this research
consists of (z,y, z) position data of [different markers on the body, giving a total of
m = 3 - [states at each time step. We can now clearly state the input data sequence

to the problem in Definition 1.

Definition 1 A data sequence X is a sequence of n poses X, where n is the number
of data samples taken, and each pose state x = [x1,...,xn| is a vector of the m
position data. We represent X as an n X m matrix of position data over time, or
X =[x1,...,%]".

By combining the three position states of each marker of interest into one state
vector, the training data can represent combined motions. For example, a person
might be holding something with the left hand while reaching for something with the
right. These parallel activities can be derived either by learning over the combined
states of both hands, or by learning each hand and combining the resulting activities.

The choice depends on whether the motion of one marker is considered independent

44

of the motion of another marker or not. In our application, we assume a person uses
all parts of their body together to perform a task, so the data from all markers of
interest are simultaneously considered together in one state vector. This approach
limits our representation of the temporal plan network because parallel activities will
not be considered separately. However, when learning the activities of one person
performing a specific task, such as a dance move, this approach is acceptable and
appropriate because a person generally will not be multitasking. See Section 8.1.1
on future advancements for a discussion of potentially representing parallel activities

separately.

3.5 Temporal Plan Network Redefined

We gave a brief description of the current notion of a temporal plan network (TPN)
in Section 2.3.1. This thesis does not use all the current capabilities of a TPN, an
example of which is the lack of parallel activities mentioned in Section 3.4, but on the
other hand expands on certain aspects of it. One major addition is that the activities
in a TPN are represented as probabilistic regions in the state space, motivated in
concept by previous work on qualitative state plans discussed in Section 2.3.2. An-
other change is that instead of representing the durations of activities as bounded
temporal constraints as they currently are in a TPN, the activity durations are also
represented by probabilistic distributions.

With the additions, the output of plan learning is a particular kind of TPN in
which one choice event expands into all different plan trajectories. In the imple-
mentation presented in this thesis, the only choice event is in the beginning, and
plan trajectories that are different even in the slightest are represented separately.
Although this is a limitation in our implementation, the TPN is still valid and the re-
sults of plan recognition are the same. For a discussion of how we might combine the
representation of similar partial trajectories of a TPN in the future, see Section 8.1.2.

Another capability of the current TPN representation that is not used in this

thesis is the ability to represent temporal information between any two events. In

45

the plan recognition application, temporal information need only be associated with

activities, between adjacent events.

3.5.1 General definition of a TPN used in this thesis

We now provide the definition of a temporal plan network that will be used throughout

this thesis in Definition 2.

Definition 2 A temporal plan network P = (€,E.,, A, D) specifies an evolution
of the observed states over time, and is defined by a set £ of all discrete events,
a set E5, C & of choice events, a set A of activities defining probabilistic regions
over the observed states, and a set D of temporal distributions between two events

corresponding to an activity.

We illustrate a temporal plan network diagrammatically by an acyclic directed
graph in which the discrete events in £ are represented by nodes drawn as circles,
choice events as double circles, and activities as numerals encased in angle brackets
along graph edges. Activity durations are represented by the duration distributions

on graph edges. An example TPN diagram is shown in Figure 4-6.

3.5.2 Definition of a schedule

Since we do not know a priori when exactly a person will reach some event in the
plan, we must encode the events to be temporally flexible. To enable this, we use a
schedule described in Definition 3 to represent the time when an event occurs. This
is the same definition of a schedule as that for simple temporal networks [17] and

qualitative state plans [31].

Definition 3 A schedule T for a temporal plan network P is an assignment T :

E — R of observed execution times to all the events in P.

In this thesis, we assume that schedules are measured relative to the first event in

the plan, which we call event ey. Thus T (ep) = 0.

46

3.5.3 Definition of an activity

Definition 2 describes a temporal plan network as P = (€, &, A, D), where A is a

set of activities that describe the region of motion in the state space probabilistically.

Definition 4 An activity a = (eg, eg,r), where a € A, has an associated start event

es, an end event eg, and a probabilistic region in the state space r.

As Definition 4 states, every activity is between two events and is described by
some probabilistic region in the state space. The set of all activities A describes
the mixture of densities in the state space where the motion is observed. If we use
a mixture of Gaussians to describe the motion in the state space, then the activity

region is described by Definition 5.

Definition 5 An activity region r = N (i, X)) is a multivariate Gaussian in the

state space defined by the mean p and covariance ..

For example, if an astronaut were performing the procedure to “retrieve, translate,
and temporarily stow the WFPC I with the aft handhold” in Figure 3-3, he or she
may reach out and move the camera to the aft handhold position. The activity regions
might be along the line of the reaching motion, around the location of the camera,
and back near the location of the aft handhold.

Our use of an activity is significantly different from that in TPNs of previous
work, where an activity may represent a command, state assertion, state request, or
timing constraint. Previous work on temporal plan networks have been motivated
by planning applications, where the activities are known beforehand. In recognition
applications, however, the robotic agent knows nothing about individual activities
that a human is performing, so activities must be learned from the human’s physical

motions.

3.5.4 Definition of a duration

All temporal information in a temporal plan network is encoded in D, which contains

a set of durations described in Definition 6. Technically, a duration can span between

47

any two events in the TPN, although in our application they will only span adjacent

events corresponding to an activity. Every activity has a duration.

Definition 6 A durationd = (eg,eg,g), where d € D, has an associated start event

es, an end event eg, and a temporal probabilistic distribution g.

The duration is represented as a distribution of times. This is significantly different
from the temporal constraints in the TPNs used in previous work. As mentioned in
Section 2.3.1, temporal constraints are represented by a time interval [I, u], where [
is the lower temporal bound and u is the upper temporal bound. In the recognition
application, however, we cannot use absolute intervals to represent possible activity
durations observed in a human’s motion. Instead, we represent the durations as
distributions over time, as stated in Definition 7. This representation of duration is
not as restricting as the temporal constraints in previous TPNs because it allows an
activity to have any arbitrary duration, although certain durations are more likely

than others.

Definition 7 A duration distribution g = T (k,0) is a gamma distribution of

durations governed by the shape k and scale 6 of the distribution.

We chose a gamma distribution to represent durations instead of a Gaussian dis-

tribution to ensure that all durations have non-negative values.

3.5.5 Definition of a choice event

A temporal plan network is different from a predetermined list of activities because it
encodes all the different ways a task can be completed. This is especially important in
recognition applications because the execution is done by a human subject who may
choose to perform a task in one of a myriad of different ways. To encode the general
methods of executing a plan, we employ a choice event as described in Definition 8

to represent the point at which multiple methods methods branch.

48

Definition 8 A choice event e, € &y, is an event such that of all activities a; =
(esj, €mj, T, dj) for which the start event is the choice event, or es; = €., only one

of these activities will be recognized.

3.6 Definition of a Plan Learning Problem

The problem of plan learning is presented in Definition 9. It is in part motivated
by our desire to avoid manually generating a plan recipe, as in the case of [5, 32].
Instead, we would like to automatically learn the plan network from training data.
The plan learning algorithm will perform unsupervised learning on training data to
eventually generate a temporal plan network. The detailed approach of plan learning

will be discussed in Chapter 4.

Definition 9 Given a set of C' training data sequences X = {Xy,...,X¢c} and the
recognition resolution k, the plan learning problem outputs a temporal plan net-
work P = (&,Ep, A, D), where each activity a € A encompasses one of k unique

activity regions that describe the set of training data sequences to a convergence fac-

tor of 6.

In practice, the only choice event is the first event, or £, = {eg}, in the learned
temporal plan network because all paths, even if only slightly different, are treated
independently, as mentioned in Section 3.5. Furthermore, the set of durations D has
a one-to-one correspondence to the set of activities A because the plan learner does
not record time lapses between any two arbitrary events, only ones corresponding to

an activity.

3.7 Definition of a Plan Recognition Problem

After obtaining a temporal plan network, a robotic agent can now perform recognition
on newly observed data. The plan recognition problem is stated in Definition 10. The

detailed approach of plan recognition will be discussed in Chapter 5.

49

Definition 10 Given a temporal plan network P = (€,Ep, A, D) and a newly ob-
served data sequence Xgps = [X1, ... ,xnobS]T, the plan recognition problem pro-
duces a recognized activity sequence R and a predicted activity sequence B that de-

scribes the most likely past and future activities corresponding to X ps.

The key to the plan recognition problem is that the observed data does not have
to be complete. With data observed to some small number of time steps, ngys, we
would like to be able to identify (1) previously executed activities with corresponding
schedules of when each activity began and ended, (2) the current activity and how
long it has been executed, and (3) predicted future activities and most likely estimates
of how long each might be executed. We represent this information by a recognized
activity sequence R described in Definition 11 and a predicted activity sequence B

described in Definition 12.

Definition 11 A recognized activity sequence is a tuple R = (Er, Ar, Tr), where
Apg are the recognized activities with corresponding events Er, and a schedule Tg that
determines the recognized execution times of each event. The schedule of the last
recognized event, T (€j4s) 1S equal to the time lapse between the first and last data

points in the observed data sequence.

The recognized activity sequence corresponds to a partial trajectory of the TPN
when the observed data is not complete. The schedule of the recognized activity
sequence is obtained from the observed data sequence, given the duration distributions
of the activities in the TPN. Since the observed data may not be complete, it can be
terminated in the middle of some activity. The recognized activity sequence encodes
the schedule of the last activity’s end event as the time of the last observed datum.
Thus the recognized activity sequence provides (1) the previously executed activities
with corresponding event schedules, and (2) the current activity and how long it has

been executed.

Definition 12 A predicted activity sequence is a tuple B = (€, Ap, Tg), where

Ap are the recognized and predicted activities with corresponding events Eg, and a

20

schedule Tg that determines the recognized and predicted execution times of each event.
The schedule of the events in the predicted activity sequence is determined by the

schedule of the recognized activity sequence Tr and the temporal plan network.

The predicted activity sequence encompasses all the information in the recognized
activity sequence, in addition to which it uses the corresponding trajectory in the
TPN to predict future activities. The schedules of previously executed activities are
the same as those in the recognized activity sequence. Schedules of future activities
reflect the most likely durations of those activities in the TPN. The predicted activity

sequence allows a robotic agent to anticipate a human’s future motions.

o1

52

Chapter 4

Statistical Plan Learning

To perform plan recognition, a robot needs to acquire a knowledge base of plans
that can be compared against data. To acquire this data, we must either directly
tell a robot the information we know, or it will need to learn the plans itself. Some
researchers have suggested providing a list of hundreds of thousands of common sense
actions to help computers to become smarter [35]. However, it would be extremely
tedious for a user to manually generate all task plans. Hence, we prefer the robot to

learn the knowledge of these plan from training data.

4.1 Overview

This chapter presents our method for plan learning. An overview of the plan learning
process is illustrated in Figure 4-1. In the beginning, unsupervised learning is used
to cluster the training data into the number of activities defined by the recognition
resolution. Each activity is described by a multivariate Gaussian N (7, ;) in the
state space. The training data sets are then used to determine the correct sequences
of these activities. Finally, the activity sequences are augmented with temporal in-
formation in a temporal plan network. This approach is different from past gesture
recognition work in that we use unsupervised learning, whereas gesture recognition
generally utilizes supervised learning, as in [26]. We also go beyond Barbi¢ et al.’s

work [7] because we not only learn activities, but we also record the sequences and

23

durations of activities.

Training data

_

Plan Learner

Perform
unsupervised
activity learning

Activities

A 4

Extract
activities from
Gaussians

Activity

A 4

Create temporal
plan network

N(:ujizj)

trajectories

~

)

Number of
activities

Temporal plan network

Figure 4-1: Overview of the plan learning process

We will describe the input training data in Section 4.2 and present the principal
component analysis to reduce the dimensionality of the data. Section 4.3 then dis-
cusses how the EM algorithm is used to learn activities from data, and Section 4.4
describes the method by which activity sequences are extracted with associated dura-

tion distributions. Finally, Section 4.5 discusses how a TPN is created from activity

trajectories.

o4

4.2 Formatting the Training Data to Be Used in

Learning

4.2.1 Motion Capture Data

Training data for the plan learner consists of multidimensional continuous state ob-
servations over time sampled at some constant frequency. This data can be obtained
by a variety of sensors. In this thesis, we use Vicon Motion Systems data obtained
from Carnegie Mellon University Graphics Lab Motion Capture Database, the same
database used and described in [44]. Motion capture data measures the (z,y, z) po-
sition states of various markers on the body. The motion capture system used for
the CMU database has eight cameras, each recording 1000x 1000 pixel resolution at
120Hz sampling rate. The marker set consists of 35 14mm markers placed around the

whole body, of which 34 symmetric marker placements are used in this thesis.

We combine the three position states of each marker of interest into one state
vector. For example, the state vector for two markers is x = [x1, y1, 21, T2, Y2, 22]. We
describe a state vector as x; = [x1, T2, ..., Ty], where m is the dimension of the state
vector. A training data sequence contains n state vectors measured at some sampling
frequency, and is represented as X = [x1,Xa, ... ,xn]T. The dimension m of the state
vector must be the same in each training data sequence, but the lengths n of each

training sequence do not have to be the same.

Certain adjustments may need to be applied to the raw data to prepare it for
use. Specifically, we ensure that the training data sequences are all properly scaled
and co-originated. Proper scaling refers to the (z,y, z) position measurements being
of the same units. Proper co-origination refers to aligning the initial positions in
each training sequence to be the same. We make these adjustments without loss of

generality, since they do not change important qualities of the data.

95

4.2.2 Dealing with Data Scarcity

In certain circumstances, we may not have many training data sequences available.
When data is scarce, unsupervised learning still applies, but may be compromised
in terms of accuracy. Although having more real data is always a better solution,
we choose to use splines with noise to introduce a few new data sequences to bolster
the original data set when the data is scarce. Essentially the splines are a crude
dynamics model of the human’s motion that captures smoothness. The process of
creating splines is as follows: First, some number of data points are sampled evenly
from an available training data sequence. Next, we add some noise to the sampled
data points and create a spline with it. Finally, we resample from the splines to
interpolate the new data sequence. For a more detailed discussion of splines, see
Appendix A. This process, illustrated in Figure 4-2, can be repeated to create more

new data sequences.

. TR
K » £y
K &
K 3
...... R . RO - .
@ Q () | o [) [Jo) ®
b .
. . =
. y ;o
. Sy e
5 :
K K
- " .
K K
5 5
4 4
A
A
i

Figure 4-2: We use splines to generate new data when data is scarce. The process is
as follows: (a) Sample data evenly. (b) Add noise to sampled data. (c) Create spline
and interpolate new data sequence.

4.2.3 Dealing with High Dimensionality

The high dimensionality m of the state vectors makes the training data hard to work
with. For example, classifiers do not scale well to high dimensions. Furthermore,
more computational power is required to run algorithms on such multidimensional

data, and they are difficult to represent graphically for user analysis. Therefore,

26

we use principal component analysis (PCA) to project to a lower dimensional space
that captures the most important features. Using the PCA method presented in

Section 2.1 to compute the principle components, we take a training data sequence

X1 11 - Tim
X9 T +++ Tom

X p— pu— y
Xn Lpl " Lnm

center the mean at zero by replacing X with X — py, compute the covariance
matrix Yy, obtain the eigenvalues {Ai,...,\,,} and eigenvectors {vi,...,V,,} of
the covariance matrix, form a feature vector based on the sorted eigenvalues V =
[Vinax s - - - » Vmina], extract the p : p < m most important dimensions of the feature
vector V, = [Vimaxa, - - -, V], and transform the data onto the feature vector to gener-
ate the principal components X, = XV, for training sequence X. Given C training
sequences and ¢ € {1,...,C}, each training data sequence, after going through PCA,

is represented by

11 e xlp

o1 ‘e x2p
X =

xncl oo xncp

The set {Xi,...,X,,...,Xc} describes the principal components (PC) of all the

training data. This set of data will be used throughout the plan learning process.

4.3 Unsupervised Activity Learning

To learn a plan from the PC data, we employ unsupervised machine learning on the
data. Specifically, we use the Expectation Maximization (EM) algorithm discussed
in Section 2.2 to cluster the training data into a mixture of Gaussians, similar to
Barbi¢’s method [7]. The number of Gaussians, or recognition resolution, is supplied

by the user. We label this value k. Recall from 2.2 that the parameters of the ;™

27

Gaussian model include w;, which is a normalized weight on the cluster, p;, which is

the mean of the Gaussian, and ¥;, which is the covariance.

Given the set of training data {Xi,...,X,,..., X¢c}, we perform learning over
all the data sets together. To represent all training data together, we define an all-
encompassing state vector sequence X that vertically concatenates all of the data

sequences into one long sequence given by

X1 X1
X — Xy _ X2 ,
XC XN

where N = 25:1 n. is the total number of state vectors in all the training data

sequences.

Given the concatenated training data described as X and number of clusters k,

we initialize the model parameters for all j € {1,...,k} with
1
U)j = E
N
Hj = Xq, 4 k—+1 J
X=X (X)

In the initialization, the cluster weight parameters w; are set to a uniform likelihood
for all clusters. The means p; are initialized to evenly sampled state vectors x, in
X. Initializing the means to state vectors already in the data ensures that later when
we calculate probabilities of the state vectors from the probability density function
governed by pu; and J;, there is at least one data point that does not have a near
zero probability. This is important because our data has p dimensions, and Gaussian
probability density functions evaluate to small values for large dimensions. Often, if
a data point does not lie near the center, or mean state vector of a cluster, the proba-

bility density function at that data point will evaluate to a near-zero probability that

o8

is beyond machine precision. If we initiate the cluster means p; completely randomly,
it is often the case that all probability density functions for all clusters evaluate to
machine zero for all the data points, in which case unsupervised learning ceases to
work. Thus the means are initialized in such a way to prevent this problem. Finally,
the covariances for each cluster are all conservatively initialized to the covariance of

all training data.

We define Y = [y, ... ,yN]T as a vector containing the class labels corresponding
to each data point in X. Each label y; is a variable with domain {1,...,k}. Now we

can perform the EM learning algorithm as explained in Section 2.2:

1. E-step: Label Data. Given all the training data X = [x1,Xg,...,X;, ... ,XN]T

and the number of clusters k, compute the probability that datum x; belongs

to class j using the update equation
p(li) —Plyi=j|xi,05), j=1...k, i=1...N. (4.1)
where

P(yz‘:j|X¢,9j>:a‘P(Xi|ﬂjaZj)'wj (4.2)

. 1 1 T <-1
o - —(x —) e
RANCT LS e"p(g ()% “J))

(4.3)

by Bayes rule. The « is a normalization factor.

2. M-step: Update Parameters. Compute the class distribution parameters

29

w;, fi;, and ij using the update equations

WE

p(ili) (4.4)

n; «—
1

-.
Il

. 1
L 4.5
iy 2 (45)
LN
fp—=— > b0 i) (4.6)
J =1
LN
- N . A ~N\T
Xj ;ZP(J | 4) (xi — i) (%5 — i) (4.7)
7 =1
We define a small value ¢ such that the EM algorithm iterates until
where p = 1, .. ., /Lk]T is the matrix containing all cluster means, and the parenthe-

sized superscript (t) indicates the iteration step. This allows the EM iteration to stop
when the model parameters have converged. It is optional to also define an absolute
maximum number of iteration steps to stop the iteration even if convergence is not
reached. This is only useful if run time or computation power is limited and we are

willing to compromise some accuracy.

As an example, we ran the EM algorithm on the arbitrary data sequences pre-
sented in 4.2.2. Allowing the recognition resolution k to be 2, EM outputs the two
classes, or activities, shown in Figure 4-3. The ellipses represent the covariances of
the two clusters, and the cluster means are located at the geometric center of the

ellipses. Each activity is labeled with an activity number from 1,..., k.

This simple example is shown here only to give an idea of how the EM algo-
rithm works. More extensive results using real motion capture data is presented in

Chapter 7.

Now we have learned the distinct activities. In the next section, we learn how

these activities combine into simple activity sequences.

60

EM after convergence with =0.0001

1.5
FY
! 3
oY 1
0.5
0
0 0.5 1 1.5

Figure 4-3: Example of running EM learning on some 2-D data sequences with two
clusters

4.4 Extracting Activity Sequences

This section abstracts the data sequences into activity sequences and learns expected
activity durations for each unique sequence to prepare for representation as a TPN.
To do this, we first find the probability that a data point belongs to a particular
activity. Next, we find the most probable activity at each data point for each train-
ing trajectory. Finally, we compress this information as a sequence of activities with
durations. The key is that we now need to consider each training data sequence inde-
pendently, i.e. we consider the trajectories in the set {Xi,..., X,, ..., X¢} separately
instead of all together as X before. Previously, we were learning what the activities
are based on all training data; now we are determining what sequences of activities

exist in the training data.

For each trajectory X., we use the learned classifier to label each principal com-
ponent data point with its most likely activity. To accomplish this, we first find the

probability of activity y; = j given a single data point x;, where ¢« = 1,...,n., by

61

using Bayes rule:

_ P&ily=5)Pyi=J)
Z?:lp(xi | yi =3) P (yi = J)
_ P B w;
S P (x| g S wy

Py, =7 |%)

Next, to find the most probable activity at a particular data point, we take the argmax

over all the activities j:

y; = argmax (P (y; = j | x;))
J

— argmax (P (i | py, 55) w) _
J Z?:l P (xi | 15, %5) w;

Now we find the most probable activity at every data point in a training trajectory

sequence, that is, we map

X1 (A

X2 Y5
XC — — QC =

X, Yn

Q. is a sequence of labeled activities, which we call an activity labeling, where

!

(). = argmax
J

We observe that an activity label will typically be repeated for several successive
data points. Hence, we encode this more compactly by collapsing the repeated se-
quences using a run-length encoding [56]. We introduce H,. as a run-length encoding
of Q., so that H. = [a.,d.|, where a. is a sequence of activities and d. is its cor-

responding durations, such that successive activities are distinct. For example, if a

62

particular trajectory gives Q. =1[333335522 Z]T, then

because there are five 3’s followed by two 5’s followed by three 2’s. Since (). is an ac-
tivity trajectory, a. is the activity sequence in a trajectory, and d. is the corresponding
activity duration sequence.

Let’s apply activity sequence extraction to the data used in our previous example
of Figure 4-3. There are two data trajectories and two labeled activities. Figure 4-4

shows the resulting activity trajectories (@1 and ()3). In this example, the run-length

Activity Trajectories of Example Data

= = = Trgjl
Traj2

Activity Numbers

10 20 30 40 50 60 70 80
Data Frames i

Figure 4-4: Activity trajectories corresponding to the data shown in Figure 4-3

encodings of the activity trajectories are

2 30 2 33
H, = and Hy =

1 38 1 55

We notice that the activity sequences of the two trajectories are the same, just with

different ranges of durations. Eventually, we want to summarize this information into

63

a plan so that all trajectories with the same activity sequences can be represented
together as a plan trajectory with associated durations. The process of creating a

plan is discussed in the next Section.

4.5 Creating a Probabilistic Temporal Plan Net-
work (TPN)

Creating a temporal plan network involves learning a temporal activity sequence by
first learning the probability distribution of durations for each activity, and then
learning the prior probabilities of each plan.

Assume we have the activity sequences {ai,...,ac} and corresponding activ-
ity duration sequences {di,...,d¢} for all the PC data sets {1,...,C}. We first
combine duplicated activity sequences and summarize the duration information for
them. Let A, = |a.| denote the number of activities in activity sequence a.. Let
s € {1,...,S} denote each distinct activity sequence generated from all the train-
ing data C training trajectories, and let . Thus we can find a set of unique ac-
tivity sequences {Aj,...,As} C {ai,...,ac}. For each unique activity sequence
A,, we define De, = {d.} ... as the set of corresponding duration sequences, where
Cs = {c]a.= A} denotes the training sequences in C' correspond to the unique

sequence §.

| d
0

Figure 4-5: A gamma distribution is unimodal and non-negative.

Next, we learn the duration of each activity in each sequence. We model the
duration data D¢, as a two-parameter gamma distribution [15] I' (k,6) as shown in

Figure 4-5. We choose a gamma distribution instead of a Gaussian because the

64

durations sampled from a gamma distribution is guaranteed to be non-negative. The

gamma parameters k and 6 are related to the mean p and variance o2 by

w=ko
0% =k6?.

We find the mean and variance of the set Dg,:

e de
~ |De,|
Y. (de — p(De,))?

Uz(DCs>_ |DC|_1)

u (De,)

where the element-wise product of two vectors ab or a?

is a vector containing the
products of the corresponding elements of the vectors. To find the parameters k (De,)

and 0 (D¢,), we use

k(De) =0l
_o*(De,)

0 (D¢,) =———-.
Pe) =4 De)
The special case of I" (0,0) is equivalent to a [0, 0] time bound, and T" (0, 00) is equiv-

alent to a [0, co] time bound.

Finally, we define a duration summary matrix
D, = [k (Dcs)) 0 (Dcs)]

to represent the abstracted duration information using the gamma distributions, en-
abling us to compactly represent the activity durations. The set of unique activity
sequences {Ay, ..., Ag} and corresponding durations {Dq, ..., Dg} comprise two ma-
jor components of a TPN. The third component is the set of prior probabilities of
each plan, which we will discuss after presenting an example of creating the first two

components.

65

To illustrate the process of creating the activities and durations in a TPN, suppose

we have the following small number of C' = 6 training trajectories:

- . 3 9
3 15 3 18
1 22
Hi= |5 32|, H=|5 32|, 3= :
4 6
2 14 2 21
- - 1 42
3 7
3 19 3 11
1 29
Hy=15 28 |, H5= , Ho= 1|5 24
4 10
2 12 2 17
1 43
We identify that there are S = 2 unique activity sequences
3
3
1
Aj=151, A=)
4
2
1
with corresponding
‘T T 7))
9 7
15 18 19 11
22 29
De, = 32 1,32, 28|,(24] ¢, De, = ; ;
6 10
14 21 12 17
\ 42 43)

66

where the mean and variance vectors are

15.75 12.89
w(De,)=129.00 |, 6*(De)=| 1467 |,

16.00 15.37

8.00 1.99

25.50 , 24.50
I"I’(DCQ) = , O ('DCQ) -

8.00 8.01

492.50 0.50

Hence, the activity duration sequence summaries D, = [k, 8] are

32.19 0.25
19.25 0.82
26.54 0.96
D; = | 5733 051 |, D2=
799 1.00
16.66 0.96
3583.12 0.01

The final component of plan learning is to compute the prior probability at which
each sequence occurs in training. These probabilities are used as prior for the recog-
nizer. We denote the set of trajectory probabilities as {pi,...,ps}. Each trajectory
probability is defined as the ratio of number of training sequences that correspond to

a particular trajectory to the total number of training sequences:

1Cs]
ok

Ds = (4.8)

Given the learned activity sequences with duration distributions for each trajec-
tory in the plan and prior probabilities for each trajectory, we have all the components
of a temporal plan network. Each trajectory in the TPN is a possible plan to rec-
ognize. Thus we can describe the plan network as S possible trajectories spawning
from one choice event. The plan network for the example given above is shown in

Figure 4-6. Durations are labeled as gamma distributions of the form I' (k, 8), where

67

' (0,0) is equivalent to a [0, 0] time bound, and I" (0, 00) is equivalent to a [0, oo] time

bound.

s=1, plz%

A

3 5 2
I (19.25,0.82) I'(57.33,0.51) I (16.66, 0.96)

s=2, p,=1

3

Figure 4-6: The temporal plan network derived from example activity and duration
sequences

Finally, the temporal plan network is recorded in XML format. An example
snippet of XML code used to describe a small part of the TPN in Figure 4-6 is shown
in Appendix B.

68

Chapter 5

Probabilistic Plan Recognition

The problem of intent recognition is to infer the sequence of activities a human has
been performing and, most importantly, to predict which activities will occur in the
future. Thus the recognizer needs to do more than estimating activities matches
the current data, as was done in [7]; it must determine the most likely sequence of
activities that explain the observed data. This is the task of the plan recognizer. The
plan recognizer does not require the observed data to be a full sequence, i.e. upon
observing the first few data points, the plan recognizer is able identify a corresponding
most likely activity sequence in the plan. This requirement enables the recognizer to
not only determine which activities have been observed, but also predict activities

likely to occur beyond current observations.

5.1 Overview

This chapter presents our method of plan recognition. An overview of the plan
recognition process is illustrated in Figure 5-1. First, the TPN learned in Chapter 4
is represented as a Hidden Markov Model (HMM) by assigning transition probabilities
that capture the distribution of each activity’s duration. Next, the Viterbi algorithm
is applied to the HMM to obtain the most likely sequence of activities. Finally, we
refer back to the TPN to determine the predicted activity sequence.

We first discuss how the test data is processed to be comparable to the training

69

4)

Plan Recognizer

Temporal plan network

Convert TPN to
— Hidden Markov
Model

!

HMM

Most likely plan trajectory
Determine most
— likely activity —> O->0=
) sequence é

Schedule of activities

Record schedule -, O>0—>0> ..

of activities | | |

- j

Figure 5-1: Overview of the plan recognition process

Observed data

data in Section 5.2, then we set up the nomenclature of the problem in Section 5.3.
We discuss the approach of representing the temporal plan network learned in Chap-
ter 4 as an HMM in Section 5.4, and proceed to finding the most likely sequence of
activities using the Viterbi algorithm in Section 5.5. We trace the steps to determin-
ing the predicted activity sequence in Section 5.6. Finally, we demonstrate the plan

recognition process on a simple example in Section 5.7.

70

5.2 Formatting the Observed Testing Data to Be

Used in Recognition

The observed data is presumed to be of the same format as the training data: in the
application used in this thesis, they are motion capture data of m dimensions. The

observed data is of the form

X1 T11 Tt Tim
X2 T21 T Tom
Xobs = . = . . ’
L Xnobs | L xnobsl o xnobsm i

where the length of the observed data sequence n.,s can be much shorter than those
of the training data, since the idea is to recognize the activity sequence based on only
the first few motions.

We reduce the dimensions of the test data using the same feature vectors identified
through PCA during learning. The test data only is re-centered according to the mean
of the training data and then transformed using the existing feature vector. More
specifically, following Steps 2 and 6 in Section 2.1, we center the test data so that
Xops 1s replaced by [x1 — px, Xo — fix, -, Xn,,, — pX]T, where px is the mean of
the training data, as obtained before. Then using the feature vector V), derived in
Section 4.2.3, we obtain the principal components of the test data X, , = XosV},

which has dimensions 7,5 X p.

5.3 Preliminaries: Notation and Setup for Plan

Recognition

Before delving into the details of plan recognition, we first introduce some notation
of the inputs. Specifically, we describe our representation of the activity labels of an

observed sequence, the indexes for referencing activities in a plan network, and the

71

details of an activity duration distribution.

We first introduce the notation used to describe the observation data labels. The
observed data X, , is sampled at a constant rate -, so the time steps t € {1,..., Nps}
reflect the relative temporal measurement of the observed data. Therefore, we can
measure the duration between two different data points t = a and ¢ = b by calculating
(b—a) x . Since v is a constant, we ignore it when discussing the recognition
algorithm. The vector Yous = [y1, ..., ¥n.,.]" denotes the activity labels corresponding
to each data point in X, , . There are k different activities. Each label y; is a single
valued variable with domain {1,...,k} that describes the appropriate activity for
data point x;. Part of the plan recognition task is to determine the values of the
labels in Y, given the observed data X, , .

Next, we present the notation for referencing activities in a TPN. We label the
trajectories and activities in a plan network with indexes s and r, as shown in Figure 5-
2, where s € {1,...,S} are indexes of trajectories, and r € {1,..., Rs} are indexes

of activities within a trajectory. We refer to a particular activity in the plan as a,,,

where r < R, and as, can have values {1,...,k}.

Figure 5-2: Labels for trajectories and activities in a plan. Trajectories are labeled
s, while activities are labeled r. For each trajectory s, there are R, activities.

Finally, we discuss the details of representing a duration distribution to support
estimation and prediction. We define variable d,, as the best current estimate (at
time step ¢) of the duration of the activity as, corresponding to y;. We define t,, as

the time step when the current activity first began, that is, ¢, = 7,;11 dsj. As a

72

shorthand, we use 7 =t —t,, + 1 to denote the time elapsed since the beginning of the
current activity. If at time step ¢, the activity does not transition to a new activity,
that is, time step ¢ is sometime in the middle of the activity, then we know that d;,

should be at least 7, since d,, anticipates the entire duration of the current activity.

The temporal plan network learned in Chapter 4 allows us to predict the distri-
butions over the durations of each activity as,. An example duration distribution

is shown in Figure 5-3. The shaded region is the probability that the current ac-

P(ds,r 2 Z-| Yo = a's,r)

Figure 5-3: Duration distribution

tivity’s duration d,, is longer than the time elapsed since the activity began, or
P(ds, > 7|y = as,). In the example shown in the figure, a large amount of time
has elapsed since the beginning of the activity, so there is a low probability that the
activity duration is longer than the time elapsed so far. If elapsed time is short, we
would expect to take longer to reach the activity’s duration and transition to a new
activity, so the probability that the activity’s duration exceeds the time elapsed is

large.

We have presented the notation for an observed data sequence and a TPN, which
are inputs to the plan recognizer. The next section discusses the first step of the plan

recognition process.

73

5.4 Represent a TPN as a Non-stationary Hidden
Markov Model (HMM)

A temporal plan network is shown in Figure 5-4. We want to represent the TPN as a

Hidden Markov Model (HMM) in order to apply appropriate estimation techniques.

a, ‘m a, ‘m a5 R
r(kl,ll‘gl,l) U F(kl,zﬂgl,z) U F(kl,3!91,3)

a,, ‘m a,, ‘m a, 3
F(kz,bez,l) U F(kz,zvez,z) U F(kz,sﬁz,g)

v

Figure 5-4: Temporal Plan Network

Our activities in the TPN are time-dependent and have specific duration distri-
butions. A standard HMM, however, cannot model arbitrary state duration distri-
butions. Instead, we use a non-stationary representation of HMM based on Sin and
Kim’s work [51] and Rabiner’s discussion on inclusion of explicit state duration den-
sities in HMMs [47]. We expand the representation of a standard HMM such that
the transitions of a state to itself are described explicitly, as shown in Figure 5-5.
By considering activities at different time steps as different states, we can treat the
non-stationary HMM as a standard HMM, and hence can apply standard filtering
techniques.

Recall from 5.3 that we defined the time that an activity starts as t,, = Z;i ds 1,
and the time elapsed from the beginning of the activity to the current time is 7 =
t—t,,+1. We represent an activity at time step ¢ as ag}) . These activities at particular
time steps are the states of the HMM. The observed test data are the observations,
and the prior probabilities are those derived in Chapter 4.

The sequence of events in a non-stationary HMM is described as follows: At time
tm, we enter into state aé}}. For the next 7 time units, we make transitions from that

state to itself with probabilities derived from the activity’s duration distribution, as

74

Activity 1 Activity 2 Activity 3

)

QD
—
=
=

D
=
=)

< »
I t,
¢ »

I t,

I‘

o el o e
LS
5

o~
w
N
o~
l
N\“il

I

@
s,3
A 4
()
\ A
=

Figure 5-5: Markov model of a particular trajectory in the TPN. Each activity time
slice agfr) represents the r' activity in trajectory s at time step 7 since the beginning
of the activity. Transition probabilities are determined by the duration distribution
of each activity.

will be shown in Section 5.4.1. The observations X5 = [X1, - .. ,XnobS]T are assumed
to be independent. After all the self-transitions, we transition to the next state a,sr) 1
with the transition probability derived in Section 5.4.2.

Next, we discuss the method of obtaining the transition and observation proba-

bilities.

5.4.1 Staying in an Activity
At each ¢, an activity a'7) can transition either to itself al"

the downward arrows in Figure 5-5, or to the next activity aS} 41, corresponding to

2 , corresponding to

the rightward moving arrows in Figure 5-5. Associated with each activity as,, is a
duration distribution similar to the one shown in Figure 5-3.

The probability of transitioning from an activity to itself at a particular time step
is dependent on the distribution of that activity’s duration. For example, at time
steps soon after the beginning of an activity, i.e. when 7 is small, the probability of
staying in the same activity should be larger than for time lapses well beyond the

mean duration of the current activity. The time dependency prevents us from using

75

a simple self-cycling automaton with constant probability to represent an activity
transitioning to itself. The probability that an activity at time ¢ transitions to itself
at time t + 1 should be the area of the region under the gamma duration distribution

curve [15] above t + 1, similar to the shaded region in Figure 5-3. It is governed by

P (agr“) | agf?}) =P (ds, >7+ 1|y = as,) (5.1)
:/ I (ks 0s,) du (5.2)
T+1
1 o u
= / uFsr=le % du, (5.3)
st,iTF (k?sﬂw) T+1

where the gamma function [16] in Equation 5.3 is given by T'(z2) = fooo e d¢,
which for positive integers z, reduces to I' (z) = (z — 1)!l. We define a small value €
such that any transition probability smaller than € is regarded as zero. This ensures

that the HMM will be bounded and finite.

5.4.2 Moving to the Next Activity

The transition probability of an activity as, at time ¢ to a new activity a,,;; at time

t + 1 is just the complement of the probability of staying in the same activity, or

P (al)) [al)) =1 = P (a) | o) (5.4)
1 o _u
=1- k—/ uForte o du. (5.5)
&f}lrr (ks,r) T+1

5.4.3 Observation Model

The observation probabilities of the Hidden Markov Model are given by the multi-
dimensional activity distributions in the state space. It is the probability that we
observe data point x,;, given that we are in activity state as,. This is simply the

evaluation of the multivariate Gaussian at the observed data point:

P (Xt ’ yt = as,r) = P (Xt ’ /’Las,r7 Eas,r) . (56)

76

5.4.4 Initial Probabilities

The initial probabilities of all the states in the Hidden Markov Model are such that

for each trajectory s,

)

Py =all) =p. (5.7)

P(ylza(7)|r>1,r>1):0, (5.8)

S,r

where p, is obtained from Equation 4.8. Prior probabilities only exist for the first
activity at the first time step in each trajectory because they are the initial start
states. Hence, the priors on all other activities at all other time steps are zeros as

stated in Equation 5.8.

5.5 HMM Model Evaluation to Recognize Most
Likely Path

Part of the intent recognition problem is to determine the sequence of activities that a
human has performed from an observed sequence. Given a hidden Markov model that
models the transitions of activity states, we are interested in finding the most likely
path of hidden activity states that generated the observed sequence. We accomplish
this by applying the Viterbi algorithm on the HMM.

First, we define some shorthand notation. We denote the transition probability
from activity i to activity j as p;; = P (y41 = j | y« = %), where ¢ and j are distinct
activity states agz} in the HMM. We denote the probability of observing x; during
activity 7 as o; (x;) = P (x; | y» = 7). The initial state probability is notated as m; =
P(y1 =1).

Since we formulated the non-stationary HMM as a standard HMM in Section 5.4,
we can apply standard filtering techniques for HMMs. Given a Hidden Markov Model
A, the probability that the activity state is some j at the current time step ¢, given all
the observed data up to the current time step is called the forward probability f; (7).

7

After using Bayes’ rule and the Markov property that observations at time ¢ depend
only on the state at t, the unnormalized forward probability f; (j) is evaluated as

[49, 51, 12):

fe(we=17) =P (y: = J | X14) (5.9)

=P x|y =) ZP (ye = J [yem1 = 1) frma (g1 = 9). (5.10)
We write the forward probability in shorthand as
fi(9) = o0j (x41) Zpij fe1 (4), (5.11)
where the forward probability is initialized to fi (j) = 7 0 (x1).

To recognize the hidden activity sequence that a human has performed, we find the
most likely sequence of states through the hidden Markov model. We use a technique
similar to filtering to compute the probability of the most likely path that reaches
each state in the HMM, called the Viterbi algorithm [12]. To identify the most likely
state sequence, we keep pointers from each state back to the most likely state that
leads to it, and the sequence is identified by following the pointers back from the most

likely final state. We denote my.; (y; = 7) as the highest probability of any single path

ending in state j, at time ¢, given the observations from 1,...,¢. This probability is
given by
ma (Y = J) :gllaxP (Y141, Y = J | X1:t) (5.12)
t—1

=a P (x; | yt) mlax(P We =7 | yem1 = 1) mug1 (Y1 =34)), (5.13)
which in shorthand is
myy (J) = @ 0j (x¢) m?X (pij maq—1 (4)), (5.14)

where the path probability is initialized to mq. (j) = m; 0; (x1).

78

Now that we know the probability of the most likely path, we need to extract
that path to determine the most likely sequence. We start with the state j that gave
the largest path probability at the last time step t. Having calculated the most likely
path probability, we can determine which preceding state was the one to generate
mi. (7), that is, what state we were in at time ¢ — 1 if we arrive optimally at state
j at time t. We create a back pointer ¢, (j) for each state j that points to the most
likely preceding state ¢ leading to the current state. The back pointer is defined as

¢ () = argmax (Pij M1 (7)) - (5.15)

To determine the most likely path, we trace the back pointer back to t = 1, so that
Q-1 = ¢y (iy). We call the resulting most likely activity sequence A = i1, ... ,MT.
The Viterbi algorithm is a computationally efficient way of determining the most
likely sequence of states in a Hidden Markov Model. It uses recursion to maximize
computational efficiency by avoiding looking at every possible path in the model.
The Viterbi algorithm has a time complexity linear in the number of time steps ¢,
or, and a space complexity also linear in ¢t. The Viterbi algorithm complexity with
respect to the number of states N in the HMM depends on the implementation of the
matrix product operation, since we implement transition probabilities and Viterbi
messages in matrix form. The complexity of matrix products is O (N?3) in the worst
case assuming a na'ive implementation so that the worst case Viterbi complexity is
o (t - N3). Fortunately, the transition probability matrix is extremely sparse, for which
matrix product operations scale linearly with the number of non-zero elements. Our
encoding of the transition probability matrix has on the order of N non-zero elements,

so our Viterbi complexity is O (¢ - N).

5.6 Recognized and Predicted Activity Sequences

The final step in plan recognition is to associate the recognized activity sequence

with corresponding durations, and generate a prediction on future activities. We ac-

79

complish this by performing run-length encoding on the most likely activity sequence

obtained from the HMM, and referring back to the TPN for possible future activities.

Recall that the labels ¢ in the most likely activity sequence A denote activities
at particular time steps ag}). Similar to the method used in Section 4.4, we define
H as a run-length encoding of A, where a = [ay, as, . . .| are the recognized activities
and d = [cil, Cig, . } are the durations. In addition to the relative time durations
a, we also determine the absolute transition times T = [Tl, TQ, .. } (relative to the
beginning of the observations) by cumulatively summing over d: T) = Z;zl ch.

The combination of the recognized activity sequence a in addition to either the

durations d or the schedule T form one of the outputs of the plan recognizer.

Next, we determine the other output of the plan recognizer, the predicted activ-
ity sequence, which we denote as &, and corresponding durations d. We first refer
back to the TPN to determine the plan that corresponds to the recognized activity
sequence. The activities of this plan are encoded as A}, and corresponding mean
durations are encoded as D}. The predicted activity sequence a is the same as the
corresponding TPN plan A¥, which encompasses all the activities in the recognized
activity sequence a. The schedules of previously executed activities are the same as
those in the recognized activity sequence. Specifically, if h = ‘a‘ is the number of
encoded durations in the recognized activity sequence and n* = |D%| is the number
of encoded durations in the corresponding TPN path, then (~11;h_1 = &1;h_1. Dura-
tions of future activities reflect the mean durations of those activities in the TPN, or
Elh+1:n* = (D;})

hi1m- Lhe predicted duration of the current activity takes the max of

either the current recognized activity duration or the corresponding activity duration
in the TPN, or dj, = max <ah, (D:)h> Finally, we can determine the schedule of the

predicted activity sequence by cumulating over the durations: T, = Zj.:l ch.

The combination of the predicted activity sequence a in addition to either the

durations d or the schedule T form the final output of the plan recognizer.

80

5.7 Simple Example of the Plan Recognition Pro-
cess

We now demonstrate the plan recognition process on a simple example.
Suppose we learned the TPN given in Figure 5-6, where the activities 1 and 2 are

shown with the observed test sequence in Figure 5-7. The HMM converted from

T (25,0.4)

1

/\ 2
T 91667 \ ¢ JT(I1.111,009) '@

Figure 5-6: TPN of a simple example

Example observed sequence

1-5 T T T T T T T T
1f J
SN
051 4
or 4
I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6
X

Figure 5-7: Activities shown with test sequence of example 2D data

the TPN is shown in Figure 5-8, where transition probabilities are derived from the

gamma duration distributions in the TPN. After the running Viterbi algorithm on the

81

Figure 5-8: Hidden Markov model derived from the example TPN

82

HMM given the observed sequence, we obtain the recognized and predicted activity

sequences in Figure 5-9.

Activity ‘ Duration Activity ‘ Duration
2 3 2 3
1 7 1 7
2 1 2 10
(a) Recognized activity se- (b) Predicted activity se-
quence quence

Figure 5-9: Recognized and predicted activity sequences of example problem

83

84

Chapter 6

Implementation

This chapter presents the plan learning and plan recognition algorithms in more detail.
The components of plan learning are described in Section 6.1, and include learning
activity distributions with Expectation Maximization, obtaining activity and duration
summaries for all training sequences, and creating a temporal plan network with
this information. The components of plan recognition are discussed in Section 6.2,
and include converting a TPN into an HMM, using Viterbi to recognize most likely
trajectory, and referring back to the TPN to conclude the full predicted path.

Our research was implemented in a MATLAB 7.0 environment, with an additional
pointer package for creating tree type data structures, an xmltree package for stor-
ing data structures as XML files, a Graph Theory Toolbox for displaying graphs,
and a C3DServer package for reading data in c3d format. We will, however, present
the implemented algorithms in an environment independent manner. The two parts,

learning and recognition, are standalone modules that can be executed independently.

6.1 Plan Learning

Plan learning is designed to be executed offline. The plan learning pseudocode is laid
out in Algorithm 6.1, and closely follows the operations in Chapter 4. We first obtain
the training data using the GETDATA function, which outputs the training data in

two ways: X, which is the set of all C training data sequences {Xj, ..., X¢}; and X,

85

which is the concatenated vector of all the data, or X = [X7,..., X¢]".

Algorithm 6.1 Plan Learning
: [X, X] <+ GETDATA ()
[, o] — EM (X, k)
: forc=1to C do
H. — GETACTIVITYSEQUENCE (X, pu, o)
end for
: tpn — MAKETPN ({Hy,...,H¢}, p, o)

Next, the vector of all training data X and the user-determined recognition reso-
lution k denoting the number of activities are passed through the Expectation Maxi-
mization learning algorithm, which outputs a matrix g containing k vectors describing
the multivariate mean of each activity, [u, . .. ,,uk]T, and a matrix X containing the
multivariate covariances of each activity, [¥1, ..., Ek]T.

The EM implementation is laid out in Algorithm 6.2, and closely follows the
description in Section 4.3. Although in theory the parameters of the Gaussian mixture
can be initialized arbitrarily, in practice we set them to strategic values that do not
cause machine precision errors. Specifically, the mixture weights w; of each activity
cluster are initialized uniformly; the multivariate activity means p; are initialized to k&
points chosen evenly out of the training data vector X to ensure that the Expectation
step (line 17 in Algorithm 6.2) does not evaluate to values smaller than machine
precision; and the covariances X; of each activity are initialized to the covariance
of the entire training vector. The Expectation and Maximization steps are repeated
until convergence, which we define here to be the iteration at which the norm of the
difference in the p vector between iterations is less than or equal to some small value
J.

After the multivariate activity parameters are learned, each training sequence
is independently put through a GETACTIVITYSEQUENCE function that produces
activity and duration summaries for each sequence, the details of which are presented
in Algorithm 6.3. This function records the most likely activity at each data point

in the training sequence (lines 8 - 13) as a vector a. It then performs run-length

encoding on a to generate the activity and duration summary.

86

Algorithm 6.2 Expectation Maximization

I: EM (X, k)
Input:
2: X, all training data [xq, ... ,XN]T
3: k, number of activity clusters
Output:
4: w, vector of multivariate activity means, [puq, ... ,uk]T
5: 3, vector of multivariate activity covariances, [X1, ..., Xg]

Notable local variables:
6: p, k x N probability matrix, such that p;; = p(j |), where j is an activity and ¢
is a data point

7. {Initialize parameters for start of algorithm}

8: for j =1 to k do
9: wy—%
00 g% 0= |2]
11: ¥; « Cov (X)

12: end for

w

13: while ||p — poa]] > 0 do
14: {E-step: label data}
15: fori=1to N do

16: for j =1to k do
17: pji < MULTINORMPDF (x;, 1 , 0;) - w;
18: end for

19: end for
20: Normalize p so that the probabilities at each time step sum to unity

21: {M-step: update parameters}
22: for j=1to k do

23: ny fo\il Dji
24: w; —
1 N
25: M 2im PiiXi
N
26:) e 2im Pii (X0 — p1y) (%5 —)"

27 end for

280 oid < [
29: end while

87

Algorithm 6.3 Get Activity Sequence
1: GETACTIVITYSEQUENCE (X., p, X)

Input:

2: X, one sequence of training data [xq, ... ,xn]T

3: w, vector of multivariate activity means, [y, .. ., f]

4: ¥, vector of multivariate activity covariances, [21, ..., 2]
Output:

5. H., matrix of activity and duration summary vectors, [A., D]
Notable local variables:

6: probs, n X k probability matrix of data given an activity

7: a, n x 1 vector of most likely activity at each data point

8: for : =1ton do

9: for j=1to kdo

10: probs;; < MULTINORMPDF (x;, p;, ¥;)
11: end for

12: a; + argmax; (probs;)

13: end for

14: H. <+ RUNLENGTHENCODING (a)

After finding the activity and duration summaries for each training sequence, we
are ready to create a temporal plan network. We encode TPNs as a tree type data
structure, where each node in the tree is an activity. The variable tpn is a pointer to
the root node of the tree that represents the TPN. Each activity node in tpn contains
at least the following fields:

e start, the start event of activity, represented by a number

e end, the end event of activity, represented by a number

e name, the activity number

e 1, the multivariate Gaussian mean of the activity

e 3 the multivariate Gaussian covariance of the activity

e times, vector of all durations for this activity from training data
e limesy, the kK gamma parameter of the times vector (optional)

e timesy, the § gamma parameter of the times vector (optional)

88

e prob, the prior probability of the trajectory

Algorithm 6.4 Make Temporal Plan Network
1: MAKETPN (H, pu, o)

Input:
2: H, the set of all training data summaries {Hy, ..., H¢o}
3: w, vector of multivariate activity means, [y, ..., uk]T
4: X, vector of multivariate activity covariances, [¥1, ..., 2]
Output:

5: tpn, pointer to root node of tree that represents the TPN, initialized null

6: for all H. € H do
7 if A_ is a new activity sequence then

8: Add A, as a new trajectory in tpn by doing the following:
9: Add A. to the name fields at each activity node in the new trajectory
10: Ensure that each activity’s start is the previous activity’s end
11: Add D, to the times vectors at each activity in the new trajectory
12: b < [hname fOr each activity in the trajectory
13: Y« Yhame for each activity in the trajectory
14: else
15: {A. has been encountered before}
16: Find the existing trajectory A, in tpn
17: Add D. to the times vectors at each activity in that trajectory
18: [timesg, timesg) < GAMMAFIT (times) for each activity in the trajectory
19: end if
20: end for

21: For each existing trajectory in tpn, prob < |times| /C

An activity that follows another will have a start event that is the same as the
preceding activity’s end event. The times vector contains all the duration values of
the current activity that are part of the current trajectory in the training data. In
other words, the training data that describe the same trajectory will have the same
activity sequence, but perhaps not the exact same durations, so the times vector
at each activity contains all the potentially different durations at that activity. The
timesy and timesy variables are the parameters obtained from performing a gamma
distribution fit to the durations in the times vector. The prior probability prob of
each activity is the ratio of the number of times this trajectory appears, to the total
number of training trajectories.

The MAKETPN function goes through each activity and duration summary of

89

the training data as shown in Algorithm 6.4. It maintains a list of existing activity
trajectories. If an activity summary sequence has not been seen before, this sequence
is added as a new trajectory to the TPN by performing the actions in lines 9 -
13. If the activity summary sequence is in the list of existing trajectories, then the
times vector gets updated with the new duration value, and the gamma distribution
parameters times; and timesy are recalculated. Finally, the prior probabilities prob
are calculated by the ratio of the number of elements in the t¢mes vector to the
total number of data sequences, to indicate how often the current trajectory occurs

in training data.

6.2 Plan Recognition

The plan recognition procedure is outlined in Algorithm 6.5, and closely follows the
operations in Chapter 5. First, it obtains the observed test data X,,s, which are
expressed in the same principal components as the training data. Next, information
from the temporal plan network is extracted to be represented in a Hidden Markov

Model so that we can run the Viterbi algorithm on it to extract the most likely path.

Algorithm 6.5 Plan Recognition
1: Xops < GETTESTDATA ()
2: a «— GETHMMSTATESFROMTPN (tpn)
3: [m, @] < VITERBI (X, Q)
4: [recognizedPathSoFar, predictedTraj) < GETPATH (m,,, , ¢)

The function GETHMMSTATESFROMTPN as presented in Algorithm 6.6 returns
a look up table a containing activity numbers, max durations, self-transitioning prob-
abilities, prior probabilities, activity means, and activity covariances for each trajec-
tory. The max duration is determined by the time at which the probability of sampling
a duration longer than the current time is less than some small € in the gamma distri-
bution. At each time step, the probability of making a self-transition, or continuing
with the same activity, is just the probability that the duration of said activity is

longer than the current elapsed time in the activity. Since we deal with discrete time

90

Algorithm 6.6 Get HMM states from TPN

1: GETHMMSTATESFROMTPN (tpn)

Input:
2: tpn
Output:
3: a, look up table, initialized null
4: € « some small value (eg. 0.001)
5. curArcs < NEXTARCSINTPN (tpn, 0) {the arcs in TPN with start = 0}
6: a <« GETSTATES (curArcs, null, tpn, €)
Subfunction:

7. GETSTATES (curArcs, a, tpn, €)
8: if ISNULL (curAres) then

9: a<« null

10: else

11: {Get the activity information}

12: cur Name «— curArcs;.name

13: <« curArcsy.u

14: X« curArecs,.2

15: {Get the activity durations up to 1 — € from gamma CDF distribution}

16: maxDur « [INVGAMMACDF (1 — €, curArcsy.timesy, curArcs,.timesy)]

17: {Get self transition probabilities p;;, given by duration gamma}

18: i« [1,...,mazDur]

19: pSelf «— 1 — GAMMACDF (i, curArcs;.timesy, curArcs,.timesy)

20: {Get prior probabilities for the start of each trajectory}

21: if curName = 0 then

22: prior < curArcs,.prob

23: end if

24: {Run recursive function to get this information for whole TPN}
{cur Name, maxDur, pSelf, prior, u, 3}

25: a <« | GETSTATES (NEXTARCSINTPN (tpn, curArcs;.end), a, tpn, €)
GETSTATES (curArcsQ:LEN@FH(CUTATCS), a, tpn, 6)

26: end if

91

steps, we record the self-transition probabilities at all the discrete time steps in an
activity up to the max duration in a vector pSelf. The other items in the look up
table are taken directly from the TPN. We add activity information from the TPN
to the look up table recursively in a depth first manner so that all activities in one

trajectory are conveniently listed in order.

The structure of the HMM is implicitly encoded in the look up table. The states
of the model consist of all possible activities at all possible time steps until the max
duration at each activity. In other words, there are as many states in the HMM as
the sum of all the maxDur values in the look up table, which we will call Ngpsas.
All transition probabilities in the HMM are implicitly given by the self-transition
probabilities in the look up table because at each time step, an activity can only

transition to itself or the following activity.

In preparation for running Viterbi in Algorithm 6.7 to find the most likely path,
we first extract the transition probability matrix 7" and prior probabilities prior from
the look up table. The observation probabilities are obtained from the multivariate
Gaussian activity parameters. The Viterbi algorithm closely follows the description
given in Section 5.5. The first part of Algorithm 6.7 up to line 16 initializes the
parameters in preparation for updating the Viterbi messages through all the time
steps in the observed sequence in lines 17 - 26. The implementation takes advantage
of the sparsity of the matrices to reduce computation by only calculating observation
probabilities at non-zero values of the message. The Viterbi messages throughout all
time steps are recorded in a matrix m, and the back pointer indexes at every time

step are recorded in a matrix ¢.

Using the back pointer matrix, we can retrace the most likely path determined
by Viterbi with Algorithm 6.8. Taking a run-length encoding of this recognized path
gives the recognizedPathSoFar, which is the currently recognized most likely par-
tial trajectory. Knowing the temporal plan network, however gives the advantage
that we can predict the entire trajectory. The function EXTRACTCORRESPONDING-
PATHINTPN in line 17 returns the activity and duration summary for the trajectory

corresponding to the recognized partial trajectory in the TPN. Finally, the true pre-

92

Algorithm 6.7 Viterbi

1:

VITERBI (X s, Q)

Input:

2:
3:

Xops, Observed data sequence
a look up table

Output:

4:
5:

m, Ngyar X neps matrix of Viterbi messages at all HMM states for each time step
&, Nunmar X neps — 1 matrix of back pointer indexes

Notable local variables:

6:
7.
8:

9:
10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

T, Numav X Ngaa transition matrix: 755 is probability of transitioning i — j
prior, 1 X Ny prior probabilities
0, 1 X Ny observation probabilities at current time step

T «+— GETHMMTRANSITIONS (a)

prior «— GETHMMPRIOR (a)

priorIndexes «— non-zero indexes of prior

for ¢ € priorIndexes do
j < GETACTIVITYNUMBERFROMHMMINDEX (7, a)
0; + GETHMMOBSERVED ((X,ps); , @, J)

end for

My < Q- Prior - o

for t =2 to ngs do
mm «— max; (T;; - my_1 ;)
¢r—1 « argmax; (Tj; - my_1 ;)
mmlindezres < non-zero indexes of mm
for i € mmliIndexes do
j < GETACTIVITYNUMBERFROMHMMINDEX (i, a)
0; < GETHMMOBSERVED ((Xps),, @, J)
end for
mg < Q- 0-mm
end for

93

dicted full trajectory ensures that the durations of the past activities agree with those

in recognizedPathSoF ar.

Algorithm 6.8 Get Path
1: GETPATH (my.s, ¢, a)
Input:
2: Myqst, Message at the last time step
3: ¢, matrix containing history of max message indexes
4: a, HMM look up table
Output:
5. recognizedPathSoFar, recognized path for observed sequence
6: predictedT'rayj, predicted trajectory based on observed sequence and TPN
Notable local variables:
7: path, ngs X 1 vector containing back pointer indexes
8: apath, nys X 1 vector containing activity number corresponding to path

9: pathy,,, < argmax; (Mqst)

10: apath,, ,, «— GETACTIVITYNUMBERFROMHMMINDEX (path,,, ., a)
11: for ¢ = 1 to number of time steps in ¢ do

12: Let J «— ngps — @

13: pathj — ¢j,pathj+1

14: apath; «— GETACTIVITYNUMBERFROMHMMINDEX (path;, a)
15: end for

16: recognizedPathSoFar «+— RUNLENGTHENCODING (apath)

17: predictedTraj < EXTRACTCORRESPONDINGPATHINTPN (path, a)

18: rLen <+ length of recognized PathSoFar

19: predictedI'raji.pren—1,2 < recognized PathSoF ary ., ren—12

20: predictedTraj,ren s < max (predictedraj,ren 2, recognizedPathSoFar, e, 2)

94

Chapter 7

Results

We will now run our plan learning and recognition algorithms on the Vicon Motion
Systems data discussed in Section 3.1 to test the capabilities and analyze the perfor-
mance of our algorithms. We will look at the results on two different sets of data.
One set contains several different ballet dance moves, and the other contains common
motions during golf. We imagine that a robot may take on the role of a coach or
caddie, who can remind a dancer of the next move in his or her prepared program,
or prepare the correct club or ball to the golfer at the right time. Although these
are mostly recreational motions, we can imagine more serious scenarios during which
plan recognition can play an important role, such as a space ship monitor that can
remind an astronaut of the next task in an extravehicular procedure, or a nurse who
must hand a surgeon the right medical tool. One reason for choosing these particular
motion capture data for testing is that there were multiple executions of different but

related motions available in the database.

7.1 Evaluation of Success

We must first discuss what it means for a plan to be successfully learned. The input
of the plan learning process is a set of training data that can represent a variety of
different motions. For example, we might have five training trajectories for reaching

and picking up an object, and three trajectories for reaching and pushing away an

95

object. We, the human operators, know the “true” motion of each training data
beforehand. Plan learning performs learning on all the training data to try to group
the similar motions together. The output of the plan learning process is a network
of s possible motion plans. To evaluate the success of the plan learner, we compare
what we know about the training data to the plan network given by the plan learner.
The outcome may contain two undesirable conditions: multiple “true” motions are
learned as the same plan in the network, which we call a “lumping error;” or the same
real motion is learned as two different plans in the network, which we call a “splitting
error.” Since we are interested in distinguishing different motions, a lumping error is
worse than a splitting error, i.e. it is particularly bad if the plan learner was unable
to distinguish the different motions and lumped them all as the same plan.

We assign a value of —2 for every instance of a lumping error, and a value of
—1 for every instance of a splitting error. The user can define the level of tolerable
error. For example, for a given run of the plan learning algorithm, we can choose
the maximum allowable number of error units to be at most twice the number of
different “true” motions in the training data. Thus an execution of plan learning
is considered successful if the number of error units it made is less than twice the
number of different motions in the training data.

During recognition, an observed sequence is identified as one of the plans in the
plan network. We, the human operators, know the “true” motion of the observed
sequence. We also know the true motion(s) in the training set that generated the plan
that the recognizer identified. If the true motion of the observed sequence matches
at least one of the motions that generated the identified plan, then we consider the

recognition process successful.

7.2 Dance Data

The first three principal components of the training data for three different dance
motions is shown in Figure 7-1. The training data has been normalized so that all

motions start from the same place. We used splines to fabricate additional data

96

Attitude/arabesque, jete en tourant, bending back
° Retire derriere, attitude/arabesque
3000 ° Glissade devant, glissade derriere, attitude/arabesque

20004

Principal Component (PC) 3

PC1

Figure 7-1: Training data for dance motions

All data

3000 e e | I Activity
-Activitj.fz

2000 .- i Activity 3
Activity 4
1000 - O

Principal Cormponent (PC) 3

BC 2 -=2000

FPC

Figure 7-2: Activity clusters for dance data

97

to bolster the original due to data scarcity.

Figure 7-2 shows the results of running unsupervised learning with four activity
clusters on the three principal components of the training data. Running the EM
algorithm on a total of 9645 data points and recognition resolution of 4 took about
14 minutes on a standard PC. The plan learning is executed offline, so this is a
reasonable execution time. The execution time consisted of 31 EM iterations to reach

a convergence factor of § = 1.

Attitude/arabesque, jete en tourant, bending back
Retire derriere, attitude/arabesque
Glissade devant, glissade derriere, attitude/arabesqu

Activity Numbers

1 1 1 1
100 200 300 400 500 600 700 800
Data Frames

Figure 7-3: Activity trajectories for dance data with 4 activities

Sending each training sequence through Algorithm 6.3 to obtain the trajectories
produces results shown in Figure 7-3. We can now see the distinctly different activity
sequences and corresponding durations. Finally, we can create the temporal plan
network shown in Figure 7-4. In this case, the plan learner successfully learned the
plan network because it made no lumping or splitting errors, producing exactly three

plans for our three different dance motions.

98

<2> <4> <3> <4> <3>
p=85.7 9 p=16.3 10pu=143.0 | 11p=207.3 |12p=277.2 |13
0=14.3 0=3.0 0=7.3 0=26.3 0=58.6

<2>

p=486.0 |7

0=58.1

<2> % <1> % <4> % <1> %

p=142.7 12 p=242.7 L3 p=58.3 4 p=335.3 15

0=0.6 0=0.6 0=0.6 0=0.6

Figure 7-4: Output TPN of plan learner on dance motions. Inside angle brackets (a)
are activity numbers; p and ¢ are mean and standard deviations of activity duration.

We are now ready to do some testing with observed data. We run the recognizer

after 150, 400 and all time steps of the observed sequence, producing the results shown

in Figure 7-6. Note that initially after 150 time steps, the recognizer predicted an

incorrect most likely trajectory, which is not surprising since the person does not do

much during the first 150 time steps, or 1.25 seconds, that strongly differentiates the

motion. After 400 time steps, or about 3.3 seconds, the recognizer is clearly predicting

the correct trajectory. Finally, with the entire observed sequence, the algorithm is

(2]
o
()
17
(O]
E
©
(]
b
(]
%)
o)
@)
0 500 1000 1500
HMM states

Figure 7-5: A look at the messages m over all observation time steps.

elements of the matrix are indicated by a dot.

99

2000

2500

The non-zero

Training data
° Testing data

2000

Activity ‘ Duration
2 | 486

—2000;

4000
2000

Principal Component (PC) 3

3

2

1

4
0 x 10
pPCc2 -2000 -1 PC1

(a) Partial dance test data with 150 time steps (b) Predicted activity se-
quence for 150 steps data

™
%) Training data
a e Testing data
% 2000 . B .. .
£ Activity | Duration
g 0 2 145
3] 1 245
8 —2000 4 58.3
o =
§ 4000 1 335.3

2000 3

x 10*

0
pc2 -2000 -1 PC 1

(c) Partial dance test data with 400 time steps (d) Predicted activity se-
quence for 400 steps data

[s2}
%) Training data
a * Testing data
£ 2000 ’ o ,
S Activity | Duration
g 0 2 145
3 1 245
§ 2000 4 60
U A
£ 4000 1 409
2000 3
4
0 x 10
pPCc2 -2000 -1 PC1
(e) Full dance test data (f) Recognized activity se-

quence for full dance data

Figure 7-6: Test results for dance motion with different number of time steps in
observed data sequence

100

able to recognize the durations that correspond to the identified activity sequence.
We can take a look at the resulting Viterbi messages over all the observed time
steps in Figure 7-5. The dots in the figure indicate the messages with non-zero
values. Of the 2542 HMM states, three states had initially non-zero prior probabilities,
which correspond to the beginning of the three trajectories in the TPN. The message
evolution over the time steps eventually eliminated the two incorrect trajectories after
around 230 time steps. The vertical dot patterns in the figure reflect the non-zero
transition probabilities from one activity at different time points to the beginning of

the following activity.

7.3 Golf Data

We now run the learning and recognition algorithms through some golf motion data.
Of the 30 data sequences available in the database, we used 27 for training data
and the remaining 3 for testing. No splines were used because we had at least 4
training data for each motion. The 3 principal components of the training data for
the different golf motions are shown in Figure 7-7.

Figure 7-8 shows the results of running unsupervised learning with five activity
clusters on the three principal components of the golf training data. Running the EM
algorithm on a total of 13,564 data points and recognition resolution of k = 5 took
about 34 minutes on a standard PC. This execution time included 35 iterations to
reach the convergence factor of 6 = 1. The complexity of each iteration in the EM
algorithm is O (N - k), where N is the number of data points and & is the number of
activity clusters.

Sending each training sequence through Algorithm 6.3 to obtain the trajectories
produces results shown in Figure 7-9, and are summarized by the temporal plan
network shown in Figure 7-10.

We can see that the swing and putt motions are sufficiently different from the
other motions that they can be easily distinguished. Specifically, the bottom three
trajectories in the TPN in Figure 7-10 summarize slightly different types of swing

101

Principal Component (PC) 3

Principal Cornponent (PC) 3

2000

1000.- IUUREE

000 e

1000 4

Swing
Putt
Place tee
Place ball

Pick up ball |

—-2000
PC1

PC 2 -2000 -4000

Figure 7-7: Training data for golf motion

S

4000

Al data
o

: K
e ity 1

Ui | O Activity 2
' Activity 3
Activity 4

=Tl 2000 4000

PC1

Figure 7-8: Activity clusters for golf data

102

I - ctivity 5

4000

Activity Numbers

1#0.0

=0.0
050

o=<0x
u=0,0
0=00

Swing

Putt

Place tee
Place ball
Pick up ball

f
l‘
I
|

100 200 300 400 500 600
Data Frames

Figure 7-9: Activity trajectories for golf data with 5 activities

<o> <2> <3>
3=48.8 —341=101.2"-35=315.0-36
0=17.1 0=17.0 0=635

<5> <2> <3> <2>
28),=65.7 129=99.7 [30;=008.4131;=113.6132
0=32.6 0=274 0=54.6 0=45.2

<H> <Z2>
~251=220.0" 26=266.3" 27
0=50.4 0=126.5

<H> <Z> <3> <4> <3> <Z> <l1>

16 =080 17p=1.0 18p=18.0 19%=123.0 20p=0.0 2Yu=7.0 22=268.0 23u=4.0
0=0.0 0=0.0 0=0.0 0=0.0 0=0.0 0=0.0 0=0.0
<5> <2> <3> <4> <3> <2> <1>

8 11=140.719 =3.9 110y=18.6 11=122.3M112=90 113y=7.0 T14,=140.9115
0=43.3 0=4.7 0=2.6 0=10.1 0=1.2 0=0.6 0=31.1
<H> <3> <4> <3> <Z2> <1>

1 =162.0 2 p=22.0 3 p=131.0 4 p=100 S p=8.0 6 p=114.0
0=0.0 0=0.0 0=0.0 0=0.0 0=0.0 0=0.0

Figure 7-10: TPN learned from golf data assuming 5 activities

103

<Z2>

0=0.0

Principal Component (PC) 3 Principal Component (PC) 3

Principal Component (PC) 3

2000, - .

Training data
Testing data

PC2 -5000 -5000 pC 1

(a) Swing

2000, - .

Training data
Testing data

PC2 -5000 -5000 pC 1

(c) Putt

2000, .

Training data
Testing data

PC2 -5000 -5000 pC 1

(e) Pick up ball

Activity

Duration

5

=N W ok WD

5000

88
7
20
118

140.9

(b) Recognized activity se-
quence for golf swing

Activity ‘ Duration

5
2

5000

169
389

(d) Recognized activity se-
quence for golf putt

Activity | Duration
5 89
2 80
3 283
2 116

5000

(f) Recognized activity se-
quence for picking up ball

Figure 7-11: Test results for three different golf motions

104

motions, thus incurring an error of —2 for splitting twice. The trajectory of (5),(2)
summarizes the distinct putt motion. On the other hand, the motions of placing tee,
placing ball and picking up ball all consist of the person bending over and reaching.
Since the position of objects are not tracked in these motion capture data, it is
unsurprising that the recognizer has a difficult time distinguishing between these
motions, as it was hard for us, also, to tell apart the different bending motions when
viewing the skeletal animations. In this case, the plan learner splits all three bending
motions across two plans, incurring errors of —3 for splitting, —2 x 2 for lumping for
each of the 2 plans. Thus in total, the plan learner makes a total error of —13, which

fails our success criteria.

Although the plan learner is unable to distinguish the three bending motions, we
still run the recognition algorithm on our three test cases to see how it performs
on the portion of the plan network that was distinguished, i.e. the swing and putt
motions. The results of recognizing the three test motions is shown in Figure 7-11. We

see that each of the motions are recognized correctly. The run time for recognizing

0.8 T .

Swing
Putt]
Pick up ball

0.7

0.6

0.5

0.4

0.3

Run time per Viterbi iteration

0.2

0.1

0 100 200 300 400 500 600
Iteration step in observed data

Figure 7-12: Run times for individual iterations during recognition for swing, putt,
and pick up ball motions

105

a whole observation sequence is on the order of 10 to 200 seconds on a standard
PC. However, if the recognition algorithm were run incrementally, each recognition
iteration occurs within less than 0.8 seconds. Figure 7-12 shows the run times at each
iteration for the different motions. We notice that the run times increase when there
are more possibilities for recognizing the observed data, and decrease rapidly after
some distinguishing action is detected and many possibilities are eliminated.

To seek better performance from the plan learner with the golf data, we re-ran
the plan learning algorithm using 7 principal components of the 102 dimensional
data with 5 activities, which took roughly 140 minutes of offline computation time.
Figure 7-13 shows the activity sequences of the training data, and we can see that
there is slightly more differentiation in the bending motions than learning with only
the three principal components before. Figure 7-14 is the temporal plan network

given by the learner. We see that all the swing motions have been grouped as the

Activity Numbers
w

Swing Putt Place tee Place ball Pick up ball

100 200 300 400 500 600
Data Frames

Figure 7-13: Activity trajectories for full golf data using 7 principal components, with
D activities

bottom trajectory in the TPN, and all the putt motions as the next two. The bending

106

motions, however, have been differentiated a bit more. For example, the movement
to pick up a ball are described by the top three trajectories in the TPN beginning
with (5),(2),(3),(2),(4). The total error in this TPN is —9, which is significantly

better than the performance using only three principal components.

<H> <Z2> <3> <Z2> <4> <Z2>
41=167.0 42p=100.0 43p=112.0 4u=43.0 4Ou=48.0 46p=1450 47
0=0.0 0=0.0 0=0.0 0=0.0 0=0.0 0=0.0
<5> _ <2> <3> <2> <4> <2> <4>
33)=131.0 34p=112.0 3°u=97.0 30p=36.0 S3/u=101.0 SOp=18.0 9u=83.0 40
0=0.0 0=0.0 0=0.0 0=0.0 0=0.0 0=0.0 0=0.0
0 <5> <2> <3> <2> <4>
L0/0 u=1355 284=1155 29=89.5 3Vp=27.0 °lp=171.0 32
4 o' 0=38.9 0=6.4 0=3.5 0=4.2 0=7.1
0
5 b <H> <Z2> <H> <2> <4> <Z2>
007 Ou=200 “11=630 =160 Pp=97.0 “H=2820 °u=330 26
/.io 0=0.0 0=0.0 0=0.0 0=0.0 0=0.0 0=0.0
¢ 5<H7 = <5> <> <3> <>
V=00 Op=03.0° 10p=1250 17p=117.0 18y=1010 19
ofo 0=0.0 0=0.0 0=0.0 0=0.0
=U.0
. b . <5> <2> <4>
00 ~1ly=95.0 ~12=130.4" 13p=251.8" 14
580 0=238 0=95.0 0=144.2
px0.0
-3,. <5> <2>
N 8 | _ 9 |- 10
p=0.0 p=95.7 p=510.7
0=0,0 0=27.3 0=22.0
<H>
6 1=486.3 '
0=80.0
3 <5> <3> <> <1>
1 1=143.312 1=149.013 p=6.0 14 p=154.01°
0=43.5 0=11.4 0=0.7 0=53.2

Figure 7-14: TPN learned from full golf data using 7 principal components, assuming
o activities

We now perform recognition for the picking up ball test motion in Figure 7-11(e)
using 7 principal components. The recognizer was able to correctly identify that the
motion was picking up a ball instead of generically bending over. The recognized
activity sequence with corresponding durations is given in Table 7.1. The recognition
process takes on the order of 30 to 60 seconds for the entire observed data, and the
incremental computation times are shown in Figure 7-15. It seems that the run times
of the recognizer are not much affected by the number of principal components used

in describing the data, but they are reduced from those in Figure 7-12 because of the

107

added differentiability with more principal components.

Activity | Duration
) 126
2 123
3 7
2 28
4 214

Table 7.1: Pick up ball motion recognized

We note that the plan learning and recognition algorithms do not require very
many training data to work. In this case, we only used 27 training sequences, with 5
or fewer training sequences for some types of motions. Certainly, for more accurate
results, more training sets are necessary, but even with very few training sequences,

the plan learner and recognizer is guaranteed to produce a result.

0.8
Swing

— Putt T

— Pick up ball

0.7

0.6

0.5

0.4

Run time per Viterbi iteration

0.3r
0.2r

My

0 | | | | | | | | | | ‘I
50 100 150 200 250 300 350 400 450 500 550

Iteration step in observed data

Figure 7-15: Run times for individual iterations during recognition using 7 principal
components

To better see how the performance of plan learning varies with the number of
activities k, we ran the learning algorithm on the golf data with different numbers
of activities, ranging from 1 to 10, using 7 principal components. The results are

summarized in Table 7.2.

108

k | # Lumping | # Splitting | Total Error
1 4 0 -8
2 6 5 -17
3 4 3 -11
4 3 11 -17
5 2 6 -10
6 3 9 -15
7 1 7 -9
8 3 8 -14
9 1 7 -9
10 1 8 -10

Table 7.2: Performance of learner as k changes

There are several things we notice from the results: First, there tends to be
more error for small numbers of activities, because the learner has a harder time
distinguishing different activity sequences. Secondly, the error levels off and even
worsens around 7 activities because more activities do not encode much more new
information, and tends to split the same motions into multiple plans. Finally, we
observe an interesting pattern that performance with even number of activities tends
to be worse than with odd number of activities. This could be due to the geometric
asymmetries in the state space of the training data. Following our success criteria,
the smallest number of activities that enables a successful plan learning is 5 for the
set of golf training data.

We also ran our plan recognizer on the TPNs generated for each k using the
pick up ball test data. In each case, the recognizer was able to identify a recognized
activity sequence that corresponded to at least one of the pick up ball training data,

thus satisfying our success criteria for recognition.

109

110

Chapter 8

Conclusions

This chapter presents several ideas for future expansion of this research. Section 8.1.1
discusses the possibility of representing parallel activities in a temporal plan network,
while Section 8.1.2 presents an idea for automatically combining similar partial tra-
jectories in a plan. Furthermore, we consider the prospect of learning the recognition
resolution rather than provide it a priori in Section 8.1.3, and outline a possible incre-
mental algorithm for recognition in Section 8.1.4. Finally, we conclude our discussions

and summarize our contributions in Section 8.2.

8.1 Future Advancements

We provide some ideas for expanding the capabilities of the research in this thesis.

Most of these ideas have not been proven to work, but are conceptually compelling.

8.1.1 Representing parallel activities in plan

Instead of learning and recognizing the activities of only one human subject, we
might want to recognize the activities of two or more persons working together. In
this case, the actions of each person are independent, and we would need a way to
represent parallel activities in the learned temporal plan network. Figure 8-1 shows

a generic TPN in the current representation used in this thesis. One possible way

111

Figure 8-1: Current representation of a TPN without parallel activities

to represent two independent persons acting in parallel is to represent each possible

combination of activities separately, as shown in Figure 8-2. This is a valid temporal

person A

Figure 8-2: One way to represent parallel activities

plan network, but the representation can be inefficient in some cases. For example,
if when person A performs one activity sequence, person B can perform a variety of
possible sequences, then each of these combinations will be represented separately by
the method in Figure 8-2.

A slightly better representation in this case would be to first branch on the pos-
sible activity sequences of person A, and then for each, branch on possible activity
sequences of person B, as shown in Figure 8-3.

These methods can be extended to represent parallel activities for multiple per-
sons. If there are n persons, and each person has s different activity sequences to
choose from, then the worst case representation of the parallel TPN grows as O (s").

Thankfully, however, worst case branching does not usually occur in practice, as one

112

parallel person A
branching

Figure 8-3: A more compact representation of parallel activities

person’s activity choices will be limited by other people’s choices.

8.1.2 Enabling intelligent combination of trajectories

Combining portions of trajectories that are similar is a tricky problem. Suppose
we have two simlar activity sequences: one that is (1), (2),(3) and another that is
(1), (2), (4). We can easily combine the first two activities and have the last activity
branch from a choice event. However, what if one activity sequence is (1), (2}, (3)
and the other is (1),(2),(4),(2),(3)? There is not one unique solution, as can be

seen in Figure 8-4.

2 ¥4 442
1 e Y 3 1 2 3
=0 OO0 O=0>0 O~
Figure 8-4: Two minimal representations of activity sequences (1),(2),(3) and

(1), (2),($,(2),(3)

We propose that the issue of minimally representing a temporal plan network
can be considered an application of learning a minimal deterministic finite automata
(DFA). This kind of problem has been proven to be NP-hard [43] in the worst case, but
tractable in the average case. Several researchers have been able to create algorithms
that successfully learned DFAs from data of binary sequences [30]. We suspect that

a similar method may be derived to minimally represent a temporal plan network.

113

8.1.3 Determining the recognition resolution

The plan learning algorithm used in this thesis requires two inputs: the set of all
training data, and the recognition resolution. The recognition resolution is the num-
ber of activity clusters that will be identified during EM learning. Throughout this
thesis, we assumed that we know something about the training data a priori that
enables us to pick the correct recognition resolution. However, in many applications,
we may not intuitively know how many activity clusters to choose. One possible way
to determine the recognition resolution is by obtaining it from the training data using
a v-fold cross-validation technique [52].

We can first divide the all-encompassing training data vector X into v random
and roughly even sections. Next, we can perform unsupervised EM learning on v — 1
sections, and classification testing on the remaining section of data. Cross-validation
occurs by switching the section of data on which we perform learning versus testing.
The classification errors are reflected by the average negative log-likelihood computed
for the data points in the test section. The classification errors are aggregated, or
averaged, over all v cross-validation cases. For some given recognition resolution k,
we perform v-fold cross-validation to determine the corresponding classification error.
Thus we can perform v-fold cross-validation over a variety of recognition resolutions
to find the one that produces the lowest classification error.

We know that there is generally an optimal recognition resolution because small
numbers of clusters may not explain the data well enough, producing large classi-
fication errors, and large numbers of clusters may overfit the data, also producing
large classification errors. Thus v-fold cross-validation can identify the recognition

resolution that gives best results.

8.1.4 Anytime algorithm for real-time incremental recogni-
tion
In practical recognition applications, new data arrives at a high frequency, and recog-

nition must occur fast enough to be useful. First, we propose performing incremental

114

recognition by storing previous Viterbi messages in memory and updating only the
most recent message. We also keep track of the previous most likely path, so that if
the new back pointer points to the same previous back pointer, then there is no need
to retrace all other back pointers—we just use the previously stored most likely path.
This is a simpler version of the incremental Viterbi method used by Minka et al. in

the image decoding application [37].

Figure 8-5: A most likely path in the HMM that we have cached

For example, in Figure 8-5, the highlighted path is the most likely path at the
previous time step. Suppose at the next time step, the Viterbi message concludes
that the most likely HMM state is agi, which has a back pointer to aglg Then we
immediately know that the most likely path is now the highlighted path, plus the

Sj If the current HMM state has a different back pointer, such as af%,

new state a
then we will have to follow the back pointers to find the new most likely path. As
iteration proceeds, however, the best path often becomes invariant as the recognizer
becomes more certain that it is identifying the correct path, so this method of caching
the previous most likely path at each iteration can greatly improve the recognizer’s
efficiency.

Even with the added efficiency, however, the recognizer still may not execute

faster than the rate at which new data arrives. This calls for the need of an anytime

algorithm. One method for an anytime recognizer is to perform iterative recognition

115

on the segment of data obtained during the last recognition session. While the current
recognition session is executing, a new segment of data has arrived and is cached for

use during the following recognition session.

8.2 Conclusions

In this thesis, we presented a plan learning and recognition capability to enable a
computer or robotic agent to learn the temporal plan network of a human executing
some set of tasks, and then perform recognition on newly observed motions. Our plan
learner employed unsupervised learning on training data to determine the activity
clusters describing the motions, and then created a temporal plan network based on
the activity trajectories of the training data, such that all activities and durations
were represented probabilistically. Following this process, our plan recognizer encodes
the temporal plan network as a hidden Markov model to determine the most likely
activity sequence based on the observed data. It then refers back to the temporal
plan network to obtain the predicted activity sequence containing most likely future
activities.

Past research in recognition have often focused on identifying gestures, where data
were pre-segmented, so different forms of supervised learning techniques could be per-
formed [26]. In contrast, this thesis employed unsupervised learning to automatically
detect the activity segmentation in continuous state data. Futhermore, previous re-
search in plan recognition have often been limited to discrete activities [14, 46, 9], and
thus were unsuitable for recognizing physical motions as in our applications. Addi-
tionally, some past plan recognition algorithms assumed the existance of plan recipes
[5, 32|, forcing the user to manually create a plan recipe before using the algorithms.
Our research was designed for recognition of continuous physical motions, and in-
stead of manually creating a plan recipe, our algorithm automatically learned a plan
network from training data.

This thesis presented several innovations: First, we introduced a modified repre-

sentation of temporal plan networks that incorporates probabilistic information into

116

the state space and temporal representations. Second, we learned plans from actual
data, such that the notion of an activity is not arbitrarily or manually defined, but is
determined by the characteristics of the data. Third, we developed a recognition al-
gorithm that can perform recognition continuously by making probabilistic updates.
Finally, our recognizer could not only identify previously executed activities, but
could also predict future activities based on the plan network.

We demonstrated the capabilities of our algorithms on motion capture data using
a simple dancing example, followed by a more complex golfing scenario. Our results
showed that the plan learning algorithm was able to generate reasonable temporal
plan networks, depending on the dimensions of the training data and the recognition
resolution used. The plan recognition algorithm was also successful in recognizing the
correct activity sequences in the temporal plan network corresponding to the observed
test data.

We have discussed some possible future areas of expansion, and we feel that plan
learning and recognition is a valuable field of research, as it provides a necessary step

toward making more intelligent, interactive, and useful robots.

117

118

Appendix A

Splines

As discussed in Section 4.2.2, when we have a scarcity of data, we employ a method
of essentially duplicating the existing data, and adding some amount of noise to the
newly created data. In order to ensure that the resulting data is smooth, we first
evently sample some relatively small number of data points from the original data,
add a certain amount of Gaussian noise to the data points, and interpolate a new
data sequence by applying a cubic spline function. We label the number of data
points sampled as ¢, and the sampled data as control points. This section will discuss
the details of the cubic spline function, closely following the explanation provided by

Weisstein [55].

Given ¢ control points, a cubic spline is constructed from ¢ — 2 piece-wise cubic
polynomials passing though all control points. The second derivative of the polyno-
mials at the end points are set to zero to complete the necessary system of equations.
We now present the process of creating one-dimensional splines, which can be extrap-

olated to multiple dimensions.

Suppose our set of control points are (y1,¥s, . - .,¥,), and that the i*" piece of the
spline is represented by

wheret=1,2,...,¢g—1and 0 <t < 1 so that each piece of spline’s end points occur

119

at t =0 and t = 1, or in other words,

Yi(0) =y =a

Yi(1) = yi1 = a; + b + ¢ + d;.

Taking the first derivative at each spline’s end points produces

dy;
Y/ O = - = bl
)=~

dy;
Y/ (1) :%:meQci—i—Bdi.

We can now solve Equations A.3 — A.5 for the coefficients, which gives

a; =Y;

dy;
b, =

dt

dyi dym
P = vl — Yi) — 2 -
& 3 (y +1 Yy) dt dt
dy; Ayt

So now we need to solve for the derivatives.

The internal boundary conditions require that the boundary points, first deriva-

tive, and second derivative are all compatible between two pieces of splines Y; and

Y;11. Specifically, the internal boundary conditions are

The external boundary conditions ensure that the end points of the spline satisfy

Y) (O) =Y

Yoo1 (1) =y,

(A.14)
(A.15)

Equations A.11 — A.15 provide 4 (¢ — 1) + 2 = 4¢q — 2 relations for the 4¢ unknowns.

Thus we include the two extra boundary conditions requiring the second derivative

at the end points to be zero, or

Y (0)=0

Yqﬂ—l (1)=0.

We can now express all these equations in a tridiagonal system

2 1 Y1 3(y2 — 1)
1 4 1 Y 3(ys — 1)
14 1 J Y3 3 (y4 - y2)
1 4 1) E Y4 = 3 (y5 - ys)
1 4 1 Yg—1 3(Yq — Yg—2)
| 1 2 i i Yq i i 3 (yq - yq—l) i

(A.16)
(A.17)

(A.18)

Solving the tridiagonal system gives the derivatives at each piece of spline’s end

points, which can be used to find the spline coefficients using Equations A.7 — A.9.

This same method can be used to generate splines in multiple dimensions.

121

122

Appendix B

Encoding a TPN into XML

Our plan learning algorithm encodes temporal plan networks in XML format. The
following is an example excerpt of the XML code that discribes Figure 4-6 in Sec-
tion 4.5.

<root>
<choices>
<choice>
<start>
0
</start>
</choice>
</choices>
<tpn>
<arcs>
</arcs>
<arcs>
<start>
1
</start>
<end>
2
</end>
<times_k>
19.25
</times_k>
<times_theta>

123

0.82
</times_theta>
<activity>

<name>

3
</name>
<mu>
[1.0039,0.9070]
</mu>
<sigma>
[0.0820,0.0562;0.0562,0.0720]
</sigma>
</activity>
<prob>

0.2
</prob>

</arcs>
</tpn>
</root>

124

Bibliography

1]

2]

[10]

J. K. Aggarwal and Q. Cai. Human motion analysis: A review. Computer Vision
and Image Understanding: CVIU, 73(3):428-440, 1999.

James F. Allen. Planning as temporal reasoning. In James F. Allen, Richard
Fikes, and Erik Sandewall, editors, KR’91: Principles of Knowledge Represen-
tation and Reasoning, pages 3—14. Morgan Kaufmann, San Mateo, CA, 1991.

James F. Allen. Time and time again: the many ways to represent time. Inter-
national Journal of Intelligent Systems, 6:341-355, 1991.

R.O. Ambrose, H. Aldridge, R.S. Askew, R.R. Burridge, W. Bluethmann,
M. Diftler, C. Lovchik, D. Magruder, and F. Rehnmark. Robonaut: NASA’s
space humanoid. I[EEFE Intelligent Systems and Their Applications, 15(4):57-63,
August 2000.

Dorit Avrahami-Zilberbrand and Gal A. Kaminka. Fast and complete symbolic
plan recognition. In International Joint Conference on Artificial Intelligence,
Scotland, Edinburgh, 2005.

Fahiem Bacchus and Froduald Kabanza. Planning for temporally extended goals.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI-96), pages 12151222, Portland, Oregon, USA, 1996. AAAT Press / The
MIT Press.

Jernej Barbi¢, Alla Safonova, Jia-Yu Pan, Christos Faloutos, Jessica Hodgins,
and Nancy Pollard. Segmenting motion capture data into distinct behaviors.
ACM International Conference Proceeding Series, 62:185-194, 2004.

Mathias Bauer. Integrating probabilistic reasoning into plan recognition. In
Proceedings of the 11th European Conference on Artificial Intelligence (ECAI
'94), pages 620-624, 1994.

Mathias Bauer. A Dempster-Shafer approach to modeling agent preferences for
plan recognition. User Modeling and User-Adapted Interaction, 5(3-4):317-348,
1996.

Jeff Bilmes. A gentle tutorial on the EM algorithm and its application to pa-
rameter estimation for Gaussian mixture and Hidden Markov Models. Technical
Report ICSI-TR-97-021, University of Berkeley, 1997.

125

[11]

[12]

[13]

[20]

[21]

22]

23]

Aaron F. Bobick and Andrew D. Wilson. A state-based technique for the sum-
marization and recognition of gesture. In Fifth International Conference on
Computer Vision (ICCV’95), pages 382-388, Cambridge, MA, June 1995.

Roger Boyle. Viterbi algorithm. From http://www.comp.leeds.ac.uk/roger/
HiddenMarkovModels/html_dev/viterbi_algorithm/s1_pgl.html, 2007.

Richard Cangelosi and Alain Goriely. Component retention in principal compo-
nent analysis with application to cDNA microarray data. Biology Direct, 2(1):2,
January 2007.

Eugene Charniak and Robert P. Goldman. A Bayesian model of plan recognition.
Artificial Intelligence, 64(1):53-79, 1993.

Carroll Croarkin and Paul Tobias, editors. NIST/SEMATECH e-Handbook of
Statistical Methods, chapter 1.3.6.6.11. Gamma Distribution. National Institute
of Standards and Technology, July 2006.

Philip J. Davis. Gamma function and related functions. In Milton Abramowitz
and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables, chapter 6. Superintendent of Documents,
U.S. Government Printing Office, Washington, DC, 1972.

Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Ar-
tificial Intelligence, 49(1-3):61-95, 1991.

Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
39(1):1-38, 1977.

Robert Effinger. Optimal temporal planning at reactive time scales via dynamic
backtracking branch and bound. S.M. Thesis, Massachusetts Institute of Tech-
nology, Department of Aeronautics and Astronautics, September 2006.

Maria Fox, Malik Ghallab, Guillaume Infantes, and Derek Long. Robot in-
trospection through learned Hidden Markov Models. Artificial Intelligence,
70(2):59-113, February 2006.

D. M. Gavrila. The visual analysis of human movement: A survey. Computer
Vision and Image Understanding: CVIU, 73(1):82-98, 1999.

Andreas Hofmann. Robust Fxecution of Bipedal Walking Tasks from Biomechani-
cal Principles. Ph.D. Thesis, Massachusetts Institute of Technology, Department
of Electrical Engineering and Computer Science, January 2006.

Robert Hogg, Joseph McKean, and Allen Craig. Introduction to Mathemati-
cal Statistics, pages 359-364. Pearson Prentice Hall, Upper Saddle River, New
Jersey, 2005.

126

[24]

[25]

[26]

28]

[29]

[30]

[33]

[34]

[35]

J. Edward Jackson. A User’s Guide to Principal Components. John Wiley &
Sons, New York, 1991.

Ian T. Jolliffe. Principal Component Analysis. Springer-Verlag, second edition,
2002.

Mohammed Waleed Kadous. A general architecture for supervised classification
of multivariate time series. Technical Report UNSW-CSE-TR-9806, University
of New South Wales, Department of Artificial Intelligence, School of Computer
Science & Engineering, September 1997.

Henry Kautz. A formal theory of plan recognition and its implementation. In
J. Allen, H. Kautz, R. Pelavin, and J. Tenenberg, editors, Reasoning about Plans,
pages 69-125. Morgan Kaufman, San Mateo, CA, 1991.

Henry A. Kautz and James F. Allen. Generalized plan recognition. In Fifth
National Conference on Artificial Intelligence (AAAI-86), pages 32-37, Menlo
Park, CA, August 1986. ATAA Press.

P. Kim, B. C. Williams, , and M. Abramson. Executing reactive, model-based
programs through graph based temporal planning. In International Joint Con-
ference on Artificial Intelligence, volume 17, pages 487-493. Lawrence Erlbaum
Associates LTD, 2001.

Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Results of the Ab-
badingo one DFA learning competition and a new evidence-driven state merging
algorithm. Lecture Notes in Computer Science, 1433:1-12, 1998.

Thomas Léauté. Coordinating agile systems through the model-based execution
of temporal plans. S.M. Thesis, Massachusetts Institute of Technology, Depart-
ment of Aeronautics and Astronautics, August 2005.

Neal Lesh, Charles Rich, and Candace Sidner. Using plan recognition in human-
computer collaboration. In Seventh International Conference on User Modeling,
pages 23-32, 1999.

Lin Liao, Donald J. Patterson, Dieter Fox, and Henry Kautz. Learning and
inferring transportation routines. Artificial Intelligence, 171(5-6):311-331, April
2007.

Jeroen Lichtenauer, E. A. Hendriks, and M. J. T. Reinders. 3D versus 2D pose
information for recognition of NGT signs. In 27th Symposium on Information

Theory, Benelux, 2006.

Hugo Liu and Push Singh. Commonsense reasoning in and over natural language.
Lecture Notes in Computer Science, 3215:293-306, October 2004.

127

[36]

[37]

[38]

[47]

R. Bowen Loftin and Patrick J. Kenney. Training the Hubble Space Telescope
flight team. Computer Graphics and Applications, IEEFE, 15(5):31-37, September
1995.

Thomas P. Minka, Dan S. Bloomberg, and Kris Popat. Document image decoding
using iterated complete path search. Document Recognition VIII, January 2001.

T. Moeslund, A. Hilton, and V. Krueger. A survey of advances in vision-based
human motion capture and analysis. Computer Vision and Image Understanding,

104(2-3):90-127, 2006.

Paul Morris and Nicola Muscettola. Execution of temporal plans with uncer-
tainty. In Seventeenth National Conference on Artificial Intelligence (AAAI-00),
pages 491-496. AAAT Press/The MIT Press, 2000.

Sarah Osentoski, Victoria Manfredi, and Sridhar Mahadevan. Learning hierar-
chical models of activity. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sendai, Japan, 2004.

Karl Pearson. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2:559-572, 1901.

Joelle Pineau, Michael Montemerlo, Martha Pollack, Nicholas Roy, and Sebastian
Thrun. Towards robotic assistants in nursing homes: challenges and results.
Robotics and Autonomous Systems, 42(3-4):271-281, 2003.

Leonard Pitt and Manfred K. Warmuth. The minimum DFA consistency problem
cannot be approximated within any polynomial. In Twenty-First Annual ACM
Symposium on Theory of Computing, pages 421-432, Seattle, WA, May 1989.

Nancy Pollard, Jessica Hodgins, Marcia Riley, and Christopher Atkeson. Adapt-
ing human motion for the control of a humanoid robot. In Proceedings of the
IEEFE International Conference on Robotics and Automation, volume 2, pages
1390-1397, Washington, D.C., May 2002.

Rudolph W. Preisendorfer. Principal Component Analysis in Meteorology and
Oceanography. Elsevier Science Publishing Company, Amsterdam, December
1988.

David V. Pynadath and Michael P. Wellman. Accounting for context in plan
recognition, with application to traffic monitoring. In Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence, pages 472-481, San Fran-
cisco, 1995. Morgan Kaufmann.

Lawrence R. Rabiner. A tutorial on Hidden Markov Models and selected appli-
cations in speech recognition. IEEE, 77(2), February 1989.

128

[48]

[49]

[50]

Stuart J. Russell and Peter Norvig. Artificial Intelligence A Modern Approach,
section 20.3, pages 724-727. Pearson Education, Inc, Upper Saddle River, New
Jersey, second edition, 2003.

Stuart J. Russell and Peter Norvig. Artificial Intelligence A Modern Approach,
section 15, pages 537-551. Pearson Education, Inc, Upper Saddle River, New
Jersey, second edition, 2003.

Leonid Sigal and Michael J. Black. Predicting 3D people from 2D pictures. In In-
ternational Conference on Articulated Motion and Deformable Objects, Andratx,
Mallorca, Spain, July 2006. Springer LNCS 4069.

Bongkee Sin and Jin H. Kim. Nonstationary Hidden Markov Model. Signal
Processing, 46(1):31-46, September 1995.

Inc StatSoft. Electronic Statistics Textbook, chapter Cluster Analysis. StatSoft,
Tulsa, OK, 2007.

Michael E. Tipping and Christopher M. Bishop. Mixtures of probabilistic prin-
cipal component analysers. Neural Computation, 11(2):443-482, 1999.

Seema Vyas and Lilani Kumaranayake. Constructing socio-economic status in-
dices: how to use principal components analysis. Health Policy and Planning,

21(6):459-468, October 2006.

Eric W. Weisstein. Cubic spline. From MathWorld—A Wolfram Web Resource:
http://mathworld.wolfram.com/CubicSpline.html.

Eric W. Weisstein. Run-length encoding. From MathWorld—A Wolfram Web
Resource: http://mathworld.wolfram.com/Run-LengthEncoding.html.

Brian Williams, Phil Kim, Michael Hofbaur, Jon How, Jon Kennell, Jason Loy,
Robert Ragno, John Stedl, and Aisha Walcott. Model-based reactive program-
ming of cooperative vehicles for Mars exploration. Int. Symp. on Artificial In-
telligence, Robotics and Automation in Space (ISAIRAS-01), 2001.

Andrew D. Wilson and Aaron F. Bobick. Using Hidden Markov Models to
model and recognize gesture under variation. International Journal on Pattern
Recognition and Artificial Intelligence, Special Issue on Hidden Markov Models
in Computer Vision, 2000.

C. F. Jeff Wu. On the convergence properties of the EM algorithm. The Annals
of Statistics, 11(1):95-103, 1983.

Wenyi Zhao, Arvindh Krishnaswamy, Rama Chellappa, Daniel Swets, and John
Weng. Discriminant analysis of principal components for face recognition. Face
Recognition: From Theory to Applications, pages 73-85, 1998.

129

