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A supervised machine learning algorithm, called locally adaptive discriminant analysis (LADA), has been 

developed to locate boundaries between identifiable image features that have varying intensities. LADA 

is an adaptation of image segmentation, which includes techniques that find the positions of image 

features (classes) using statistical intensity distributions for each class in the image. In order to place a 

pixel in the proper class, LADA considers the intensity at that pixel and the distribution of intensities in 

local (nearby) pixels. This paper presents the use of LADA to provide, with statistical uncertainties, the 

positions and shapes of features within ultrafast images of shock waves. We demonstrate the ability to 

locate image features including crystals, density changes associated with shock waves, and material 

jetting caused by shock waves. This algorithm can analyze images that exhibit a wide range of physical 

phenomena because it does not rely on comparison to a model. LADA enables analysis of images from 

shock physics with statistical rigor independent of underlying models or simulations.  

I. INTRODUCTION 

Images that are acquired to characterize spatial variation in materials may show a wealth of information 

that cannot be obtained in other ways. Careful analysis of large datasets is often required for precise 

determination of material variability with meaningful uncertainties. In many settings, image acquisition is 

made difficult by factors including scattering of light, inhomogeneity of the light field that is used, small 

changes in material refractive index (i.e. low contrast), and other challenges. Interpretation of the 

resulting images can be strongly enhanced with advanced image processing approaches.  



~ 2 ~ 
 

Image analysis algorithms have been widely developed for many different fields including satellite 

photography1 and biological imaging.2,3 These algorithms have used combinations of machine learning 

and artificial intelligence to extract precise locations for different types of objects. Image segmentation 

(also called image classification) has been used extensively to this end. Image segmentation is conducted 

using machine learning algorithms that separate (segment or classify) an image into different regions 

(classes). Supervised segmentation methods require the user to define a set of classes that correspond to 

features of interest (typically based on user insight about the image content) in the image.4 Several fields 

of science have already adopted variations on segmentation to appropriately analyze images. Satellite 

tomography uses a partial differential equation (PDE) approach to locate sharp changes in the intensity 

gradients caused by the edges of trees, houses, rivers, etc. in order to identify image features without user-

provided information (unsupervised).1 Disease diagnostics use segmentation on microscopy images of 

samples from patients to separate benign cells from invasive bacteria in order to quickly determine if a 

patient has a bacterial illness.2,3  

Images of shock waves and other high strain rate deformations are often difficult to interpret due to 

irreproducibility of successive measurements, unpredictable content in the images including spatially 

variable material responses and debris, spatial variations of the imaging light, and other causes. Because 

shock waves are high amplitude compression waves that move materials far from equilibrium, they 

usually cause irreversible damage such that each measurement must be made on a different sample or 

sample region, increasing variability from one measurement to the next. Reduction of shot-to-shot noise 

has presented challenges in engineering detectors with sufficiently high frame rates to obtain interpretable 

images with sufficient time resolution to measure shock-induced dynamics.5–8 A single image recorded at 

a specified time may capture a substantial region that has been traversed by a rapidly propagating shock 

wave (on the order of kilometers per second), revealing very wide-ranging features. 9–12 Shock-induced 

transformations can include defect formation, fracture, phase transitions and chemical reactions whose 

spatial locations and extents in an image can reveal material properties and dynamics.5,10,13,14 The 

combination of ultrafast imaging methods that capture spatially varying material responses with advanced 

image processing algorithms that reliably define the different regions under observation can further our 

understanding of complex shock-induced responses.5,10,13,15–21 

In the field of shock physics, many images are manually segmented to extract material features from 

images.  Most image analysis uses Fourier filtering, which suppresses high-frequency noise, but also 

diminishes the high-frequency features inherent to shock waves.22,23 Other image analysis algorithms rely 

on comparison of image features to theoretical models from fluid dynamics that describe the shock.24,25  

These algorithms can only be used on images collected for shocks that have well-characterized spatial 
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dynamics. Images of shock waves or shock-induced responses that are not sufficiently well characterized 

to compare to a computational model require a general image analysis tool. Pribosek recently published a 

segmentation algorithm to perform unbiased image analysis using a PDE approach, which targets low-

contrast images. This method has not been widely used within the field, as it is not optimized for high-

noise images.26 Established image segmentation algorithms cannot give accurate results due to high noise 

content in the images and large overlap in pixel intensities between the different classes, i.e. the different 

shocked states.  

In this paper, we present the application of a recently developed image segmentation algorithm27 to the 

analysis of images of shocked materials. Conventional segmentation methods were attempted 

unsuccessfully for some of the images, as described in the Supplemental Information. The algorithm is 

unique within machine learning in its ability to segment images with high noise and low variation 

between classes. For the first image from a series collected from converging shocks in water28, we explain 

in detail the user-provided information and the algorithm processing routine through which a shock 

position is determined. We further illustrate the process for each of the subsequent images of the series. 

Shock positions with uncertainties are extracted from the set of images, and are used to calculate the 

presumed shock velocities with their corresponding uncertainties for the entire series. To show the wide 

applicability of this algorithm for images that are difficult to analyze, we present two additional images 

with many classes and several types of aberrations.18 The analysis demonstrates the algorithm’s ability to 

analyze different types of images in order to make precise and accurate measurements.  

 

II. ANALYSIS OF CONVERGING SHOCK WAVES IN WATER WITH 

SEGMENTATION 

We describe statistical image segmentation that locates boundaries by sorting pixels from images into 

specific features (classes) based on the pixel intensity distributions. Supervised variants of statistical 

segmentation, like LADA, begin with the user providing a map to define the regions that are most 

characteristic of each class. LADA accounts for variation of intensities within a class by using both the 

intensity of each pixel and the distribution of intensities among surrounding pixels to sort the pixels into 

appropriate classes. The size of the surrounding region defines “local” for the algorithm, and can be set by 

the user with parameters d and n, based on the distance scale over which significant intensity changes are 

observed. In contrast, as described in the Supplementary Information, some global methods create a 

histogram with the intensities of all of the pixels defined by sparse training data for each class.4 The 

intensity distributions created from the well-defined regions of the image are then used to assign each 
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pixel in the image to the class which best defines its intensity. Intensity variation within classes, or 

overlapping distributions for the intensities of different classes can cause the algorithm to misidentify 

large regions of the image. 

To describe the mathematical process performed in LADA, we present its analysis of the first image from 

a sequence showing focusing shock wave propagation in water (Figure 1a). Images displaying real-time 

convergence of shock waves in this work were collected with a recently developed shock technique 

described fully elsewhere.10,29,30 These laser-driven shocks were generated by the interaction of a ring-

shaped beam with a thin soft sample. Placement of the sample between two thick glass wafers was 

predicted to confine the shock wave within the sample layer, allowing for imaging to capture the wave 

propagation.10 Multi-frame imaging results similar to the ones shown in this work (using LADA) have 

indicated that further wave interactions may be present, suggesting possible multi-wave dynamics, as are 

being further investigated at this time.28 

In our analysis of the strongest features evident in images of converging shocks, we demonstrate the use 

of analysis of variance (ANOVA) and maximum likelihood estimator (MLE) p-value maps to precisely 

calculate the boundary location uncertainties from the segmentation. The LADA measurements of shock 

position are then compiled from the entire sequence and are used to calculate the shock velocities and the 

uncertainties are propagated through the calculations. The results demonstrate the utility of this 

segmentation method, as quantitative determination of the shock properties from the images is difficult 

without the precision afforded by LADA. 
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Figure 1. (a) The first of six ultrafast images measuring converging shocks travelling in a multi-layered 

target (water between glass).  (b) The training data form a user-specified map of a priori, known regions 

for the different classes in the image. Each class is represented by a distinct color. The dark regions 

correspond to user-unspecified regions to be segmented by the program. (c) The segmented image (d = 

25, n = 5) showing the locations for each class. The white regions are an added class that corresponds to 

pixels that did not have any local training data when the image was restricted by parameter d. (d) The 

ANOVA p-value map of the segmented pixels. (e) The maximum likelihood estimator (MLE) p-value 

map for the segmented image, thresholded at 5%. For this image, the 1280 × 960 pixels are either black or 

white based on the thresholding, as mentioned in the text. 

Use of LADA first requires the user to provide training data, which gives a priori knowledge of the image 

features of interest to the algorithm. Training data form a map that can be overlaid on top of the image to 

show the approximate class locations in the image (Figure 1b). As a local algorithm, LADA requires the 

training data to provide regions of the image that are representative of both characteristic pixel intensities 

and positions for each class. LADA best analyzes images consisting mainly of classes that may be 

reliably definable by the user, and whose unknown regions are localized around the boundaries between 

classes. LADA analysis provides the locations of the boundaries. 

 

Figure 2. An illustration of the method by which LADA selects local training data for the image. 

Training data for an entire image (left) has four classes, shown in orange, green, blue and brown. The 

undefined region for the segmentation is shown in grey. For the red pixel p, a circle of radius d defines the 

set of pixels considered for the local training data (right). Within the local training data, the n nearest 

pixels used by the method are highlighted with stripes. 
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As shown with a cartoon in Figure 2, LADA also requires the user to provide two parameters, d and n, 

which define “local” for the algorithm. The value of d sets the distance within which the distribution of 

pixel intensities may be considered in assigning the class for a given pixel. Large values of d allow all of 

the defined classes to be considered for every pixel, while low values of d limit the number of classes 

available for comparison to those within the radius d around the pixel. Intensity histograms are assembled 

using the n nearest pixels in every class within the radius d. If there is a tie between pixels that are the 

same distance from p, the n points are selected using lexicographical ordering. High input values for both 

of these parameters bias the segmented output toward a global result. The optimal value of d will balance 

selecting enough local classes with avoiding the inclusion of training data that do not represent the local 

behavior around that pixel. That helps ensure that pixels that belong to one class are not misassigned to 

another class with a similar distribution. The optimal value of n typically corresponds to the number of 

pixels over which the local intensity variation within the class is homogenous. This helps avoid unwanted 

fluctuations within the histograms that are constructed. Pixels for which the radius d includes only one 

region are auto-assigned to that region. For a class to be considered local, we require at least three training 

pixels within radius d to allow us to gather its intensity information statistically. If a pixel does not have 

at least three training pixels of any local user-defined class, it is assigned to a bonus class, indicating 

uncertainty due to sparse training data. To summarize, the value of d can be set to affect the number of 

classes being considered, while the value of n determines the number of pixels compiled into each 

histogram. 

Once the user inputs have been collected, the algorithm locally segments the pixels into classes. The 

algorithm progresses through all of the pixels within the image, to assign each one to the class that is most 

probable, based on both its intensity and position. Uncertainty in class assignment may still be present 

due to incorrect training data, insufficient training data, or random noise caused by the camera or 

experiment that is manifested in the image. For each pixel, the algorithm crops the image within a radius 

d and for each class specified in the training data creates a histogram using up to n pixels. If the value of n 

exceeds the number of pixels in a given class within the cropped image, the histogram is formed by only 

the pixels that are within the cropped image. Each histogram is fitted to a Gaussian curve. The intensity of 

the pixel is then compared against the Gaussian distributions for each local class, and is assigned to the 

class with the highest probability for that intensity. The final segmentation of Figure 1a is given in Figure 

1c, using d = 20 and n = 10. 

Segmentation uncertainty is measured for each pixel in two different ways, which cover the two most 

common causes of imprecise segmentation. Uncertainty can arise when multiple local classes have 

broadly overlapping intensity histograms, in which case some pixels with similar intensities may fall into 
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more than one class and there is a risk of misidentification. The uncertainty caused by overlapping 

distributions from local classes is characterized by analysis of variance (ANOVA),4 as shown in Figure 

1d. Alternatively, uncertainty can arise when pixel intensities yield a low probability of belonging to any 

of the local classes specified in the training data. This uncertainty is measured by compiling an MLE 

uncertainty map1,4 (α = 0.05) to describe the p-values that in our work are thresholded at 5% (Figure 1e).  

ANOVA measures the extent of overlap among all of the local histograms there were constructed for the 

assignment of a given pixel. The p-values for ANOVA range from 0 to 1, with ascending values 

indicating a higher degree of overlap among the classes defined by d and n to be local within the training 

data. Pixels with high ANOVA values have poor differentiability among the available local classes. 

ANOVA maps that show high overlap among classes can be indicative of either non-optimized 

parameters for the user-inputs or regions of the image that cannot be precisely segmented. In determining 

the optimal parameters for LADA segmentation, ANOVA values can often be reduced by modifying the 

training data and the values of d and n. High ANOVA values often indicate that the image requires 

smaller values of d and n to correctly define the local classes according to the length scale over which 

intensity varies within a class. Inaccurate training data that include pixels from adjacent image features 

result in a local histogram for the class that is not representative of the a priori knowledge from the user. 

In those cases, two overlapping Gaussian fits of the histograms can show unfitted distributions that are 

both bimodal, representing one mode from each class. Low local contrast between image features 

covering a part of the image that are not well measured by LADA can be seen as regions for which the 

ANOVA values cannot be reduced by changing the user-inputs. The white regions in Figure 1d are areas 

that were assigned by the user and for which no ANOVA value was computed. 

Regions of the image that are not well-defined by any of the local classes are shown in Figure 1e with an 

MLE p-value map thresholded at α = 0.05.31 To compute this error map, p-values are calculated for each 

pixel based on the probability of that pixel being within the selected class. Calculated p-values are 

between 0 and 1, with higher values corresponding to high confidence for the segmentation. The 

uncertainty map in Figure 1e is thresholded to only have a black pixel corresponding to a p-value that is 

≤0.05, or for any pixel that was placed into a bonus class. Figure 1e shows a random distribution of dark 

pixels throughout the image that corresponds to noise in the original image. A high density of dark pixels 

– located at a boundary between classes – indicates the uncertainty from the segmentation between the 

local classes for that region. The map of regions with low-confidence segmented pixels best describes the 

uncertainty in measurements of the boundaries between the adjacent classes and is used for propagation 

of error in subsequent calculations.  
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Appropriate results for the images in this paper were acquired by iteratively running the algorithm to 

optimize the user-input parameters consistent with a priori knowledge of the experimental system and the 

underlying science. All images shown in this paper were initially segmented using sparser training data 

than are shown here and high values for d and n to allow the algorithm to discern boundaries that are 

difficult to see by eye. After each iteration, we refined the training data and the local parameters based on 

the boundaries and sharp features identified by the method. The procedure ended when there were no 

significant changes between iterations and our a priori knowledge does not suggest any further 

refinements to the training data or the local parameters. 

Our primary interest with the LADA results was in locating the position of the leading edge of the dark 

feature we interpreted as the shock which, in Figure 1, is the innermost boundary. We defined the two 

regions on either side of this boundary, “shock” and “unshocked,” as uniform arrays of 1 and 0 values, 

respectively. The positions of each pixel of the shock front was measured by taking the gradient of the 

segmented image to locate the edges between the classes.32 The resulting points were input into a circle 

fitting algorithm33 to define the center of the shock front. To measure the shock radius, we transformed 

the segmentation result into polar coordinates, and divided the shock ring into 60 azimuthal sections to 

make the measurement statistically. The position corresponding to a maximum value for the second 

derivative of the segmentation result in each azimuthal section was used to measure a distribution of 

shock radii for each image. The mean values are shown in Figure 4, with two times the standard deviation 

(95% certainty) shown by the error bars. The uncertainty that the algorithm had in locating the boundary 

was obtained from the MLE plot. That uncertainty was collected using 60 azimuthal slices to measure the 

position with the highest weighted uncertainty around that boundary. The resulting distributions then gave 

the mean and standard deviations for the position of highest uncertainty for each azimuthal slice. The two 

standard deviations about the mean position of highest uncertainty was extracted from the distribution for 

each image, corresponding to the positions of highest LADA uncertainty about the shock front.  
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Figure 3. LADA segmentation of the entire image sequence for a converging shock wave in water, using 

parameters d = 20 and n = 10. For each of the images in the sequence, a bonus class was generated due to 

uncertainty in assigning sufficient training data for that region of the image. Initially, a shock wave 

converges into a central region, then it diverges outwards. At the point of convergence, geometric 

instabilities create a Mach reflection,34 observed at 35 ns. After the shock diverges, additional features 

become evident beginning at 50 ns, which continue after the end of this image sequence.10  

The LADA analysis of all of the images shown in Figure 3 was used to determine the shock position for 

all six images in the sequence. The shock positions, calculated as described above, were located for all 

time delays, and the average shock velocities were calculated with 

𝑈𝑠(𝑡𝑛) =
𝑟𝑛 − 𝑟𝑛−1
𝑡𝑛 − 𝑡𝑛−1

 (1) 
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for each pair of successive images, based on the measured time delay 𝑡𝑛 and shock position 𝑟𝑛 measured 

from segmentation and subsequent analysis. The average shock velocity US between each pair of images 

was calculated for all 60 azimuthal sections around the shock ring, to create a distribution of shock 

velocities. The plots in Figure 4 show the shock positions and shock velocities from the image sequence 

shown in Figure 3. For all of the data, the points and their error bars show the statistical values for 

position and velocity for each image, collected from the segmentation result. The positions and velocities 

that had the highest uncertainty in the segmentation are shown in the shaded gray and blue regions, 

respectively, behind the curves. For all of these values, two times the standard deviations (2σ) are shown, 

corresponding to the intervals of 95% confidence, consistent with the MLE confidence interval.  

The difference between the error bars and the shaded uncertainty bands highlight the unique separation of 

uncertainty that LADA provides. The azimuthal statistics for the shock positions and velocities from the 

segmentation result allow us to see variation in the shock front position. Variation in the position is 

caused by ellipticity in the shock ring (systematic error), and mis-assigned pixels (random and systematic 

error). Statistical variation in the velocity values include systematic error from variation in the shock 

velocity around the ring, which is often seen in converging shock waves with geometric distortions.35 The 

standard deviations show the extent of variation, but cannot determine the asymmetry of uncertainty, 

which can cause the mean value to be skewed. Deviation between the bands of MLE uncertainty and the 

error bars demonstrate results for which the mean value calculated from the segmentation result is skewed 

by uncertainty from the method’s ability to segment that region of the image.  
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Figure 4. Measurements of shock positions and calculated velocities for the entire series of images shown 

in Figure 3. The measurements were done using the LADA analysis with d = 20 and n = 10 for each 

image in the sequence (analysis shown in Figure 3). The points and error bars show the mean and 2σ 

values for the shock position and velocities, calculated statistically from azimuthal slices around the 

shock ring. Shaded gray and blue regions behind the curves show the positions and corresponding 

velocities for which the algorithm had ≤5% confidence, as derived from the MLE plots. 

The temporal separation between the images was measured using an oscilloscope with 250 ps resolution, 

giving a separation of 5 ± 0.25 ns between frames. Temporal uncertainty was not included for this 

calculation, as the uncertainty in velocity is dominated by the much larger uncertainty in position. For 

experiments that do not have well-defined temporal resolution, an RMS average may be taken to account 

for the temporal and spatial uncertainty. New understanding of this experiment suggests that multi-wave 

interactions preclude the use of the principal Hugoniot to infer shock pressures from the velocity of the 

shock-induced image features. For other systems, the velocity measurements from LADA can be input to 

the equation of state in order to infer the shock pressure and uncertainty at each time.  
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III. EXTENDING LADA TO FURTHER COMPLICATED SHOCK 

IMAGES 

In the water image sequence above, we have explained the LADA methodology for the segmentation of 

converging waves in targets containing water for our experimental geometry. This analysis demonstrates 

the utility of LADA in finding the boundaries between the shock wave and unshocked material in order to 

measure shock position and velocity. We now demonstrate LADA’s ability to separate locally varying 

images for which the boundaries between classes are difficult to identify by eye. Figure 5a shows an 

image captured with a 400-nm laser pulse using shadowgraphy (second derivative of density) of a 

converging shock wave transducing into an RDX crystal embedded in a polymer. Figure 6a shows an X-

ray phase-contrast image of shock-induced void collapse causing jetting in acetaminophen. Subsequent 

figures in the respective sequences present the segmentation for the two different experiments. These 

images show the utility of the algorithm in extracting scientifically meaningful boundary measurements 

from the image segmentation afforded by LADA even with high intensity variation within individual 

classes. 
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Figure 5. The inputs and outputs showing the segmentation of (a) an image with a shock feature that 

appears mostly in the polymer, but partly in a crystal of RDX. The training data (b) show that there are 

many classes, describing a complicated experimental geometry. The segmented result using d = 20, n = 
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15 (c) shows that the segmentation algorithm locates boundaries than the simple inspection. Error maps of 

(d) ANOVA and (e) MLE plots demonstrate that the image yields considerable uncertainty but can still be 

segmented reliably. 

Figure 5 shows the segmentation of an image which we understood to show a shock travelling through 

our converging shock geometry that transduces from polymer into an RDX crystal upon convergence. 

This image has many more classes than were seen in Figure 1. The a priori classes based on the 

experimental conditions are: the laser ring from the drive beam, the shocked polystyrene, the shock wave 

in the polystyrene, the unshocked polystyrene, the shocked crystal, the shock wave in the crystal, the 

unshocked crystal, and the region outside of the drive laser ring. The high number of classes for this 

image and the density of the classes make the image difficult to separate manually. As seen from the 

segmentation in Figure 5, LADA was able to locate boundaries between classes that were difficult to 

identify visually. While the classes are difficult to distinguish visually, the ANOVA error is quite low, 

indicating that the classes are locally quite well defined. The MLE plot demonstrates that the noise within 

the images generates substantial uncertainties for many but not all of the boundaries. Despite high 

uncertainty in some regions, the statistical analysis of LADA measures boundaries in Figure 4 that are 

difficult to discern by eye. This analysis allows for measurement of the features and structural variation of 

the shape change of the feature we interpret as the shock wave after it transduces into the polymer.  

 

Figure 6. Analysis of an image (a) of void collapse and the resultant jetting, as caused by a planar shock 

in acetaminophen collected with X-ray phase contrast imaging. The training data (b) includes arrows to 

indicate the original positions of the voids. The training data and parameters d = 24, n = 10 were used to 
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segment the image (c) with high precision, despite the aberrations from ghosting and saturation of the 

detector (photo bleaching of the scintillator) in the experiment. The error maps of (d) ANOVA and (e) 

MLE demonstrate the high accuracy of the measurement, despite features that are hard to discern in the 

original image. Reproduced with permission from J. Phys. Conf. Ser. 500, (2014) p. 142028. Copyright 

IOP Publishing. 

Figure 6 illustrates the use of LADA to analyze a phase contrast image from an 80-ps duration 

synchrotron X-ray pulse that shows a planar shock wave causing acetaminophen to jet as shocked voids 

collapse.6 This image shows an aperture within which appears an image of the jetting material extending 

into free space. The three different intensity classes in Figure 6b-c arise from ghosting of images from a 

series (153 ns inter-frame) caused by the scintillator detector.7 This ghosting causes Figure 5a to show 

three overlapping images with different intensities, each of which corresponds to an image produced by 

X-rays from adjacent  synchrotron pulses during the jetting event. In this case, segmentation of the image 

can provide the temporal evolution of the jetting in the material. 

Analysis of this image (and similar ones) has been difficult, as the unsegmented image (Figure 6a) has 

boundaries that are challenging to discern with statistically accurate uncertainty. The segmentation with 

LADA allows for precise location of boundaries from Figure 6a between the different times within the 

jetting with relative ease. The uncertainty shown in the ANOVA plot demonstrates that the classes are 

locally distinguishable for most of the image.  

Figure 6e shows an MLE plot for the segmentation, which shows a case that is not seen in the previous 

examples. With the exception of the white class, boundaries between each class in the image show high 

confidence from the thresholded plot. There is a region of low p-values and high uncertainty which is 

located at the center of the image, in the white class. In this case, high uncertainty corresponds to a region 

which is defined by the user in the training data. The high uncertainty found from the white class is not an 

artifact, but is due to lack of local intensity variation in that class. The intensity distribution in the region 

of high uncertainty is extremely narrow, as the camera was saturated for those pixels. Saturated signal 

causes the distribution to narrow toward a delta function, which makes any small amount of variation in 

pixel intensity have extremely low overlap with the local distribution. Knowing which regions of an 

image gave a false signal due to saturated detectors was important to avoid misinterpretation of the 

science corresponding to the feature intensities. The same trend was observed in the aperture region, due 

to lack of variation within the class. Segmentation was completed successfully by artificially introducing 

noise to the lowest intensities to generate a statistical distribution in order to correctly identify the 

aperture class.  
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The application of LADA for quantitative analysis of ghosted images similar to Figure 6 has significant 

potential for use of recently developed pulse sequences in real-time imaging. These pulse sequences 

include the use of mode 324 at the Advanced Photon Source, which has 11.37 ns between pulses of 80ps 

duration.36 Use of X-rays for single-shot multi-frame imaging has been limited because there current 

scintillators do not have sufficient conversion efficiency from X-ray to optical light or decay times from 

that conversion process. Attempts at multi-frame imaging with these slow detectors causes ghosting and 

saturation (photo bleaching) by subsequent images.37 Improved methods for extracting data from sub-

optically recorded images like the ones shown in this paper provide a possible route for data analysis 

using detectors near their temporal limits.  

 

IV. CONCLUSIONS 

The results presented here explain the use of LADA to extract quantitative information from images with 

rich information content about materials as they are shocked. With LADA, the computer uses a priori 

knowledge from the user to learn the approximate positions and local intensity distributions for each of 

the features of interest in the image. The algorithm then assigns all of the pixels in the image to the 

classes that best describes them. LADA outputs the segmented image with boundaries and their 

uncertainties determined. ANOVA uncertainty is used to optimize the user-input parameters and to 

identify regions that segmentation is not able to identify. An MLE p-value map is used to determine 

uncertainty in the local segmentation for each pixel, and is used to extract error bars from measurements 

made with LADA. We used LADA to determine the shock positions and velocities, including their 

uncertainties, for an image series showing a shock wave converging and then diverging in water. The 

generality of the algorithm is shown through the segmentations of complicated images with significant 

aberrations and variation of intensity across features.  

Software for LADA is available through individual license. Please contact Marylesa Howard at the 

Nevada National Security Site: howardmm@nv.doe.gov 

 

Supplementary Material 

See supplementary material for the results of global segmentation using quadratic discriminant analysis, 

using the image and training data from Figure 1.  

 

mailto:howardmm@nv.doe.gov
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Supplemental Information 

 

GLOBAL SEGMENTATION OF IMAGE FROM FIGURE 1 

The main text from the paper describes segmentation by a local algorithm that accounts for variation in 

image intensity across classes. Segmentation of the images shown in Figure 1-2 were attempted using 

established global segmentations, but the pixels were incorrectly sorted due to overlapping intensity 

distributions between classes. Figure S–1 demonstrates the unsuccessful segmentation of the image 

shown in Figure 1 using Quadratic Discriminant Analysis (QDA).1 

 



Figure S–1. The QDA segmentation of the same image analyzed in Figure 1 from the main paper using 

LADA. The original figure (a) is shown again, with the exact same training data (b) as was shown in 

Figure 1, and used for the calculations that followed. The global histograms corresponding to the fits from 

each class are shown (c) and the resulting global segmentation is presented in (d). 

The QDA analysis presented in Figure S–1 used the same image and training data from the LADA 

analysis in Figure 1. As a global method, QDA compiled a histogram from all of the pixel intensities in 

the training data to create the Gaussian fit for the subsequent segmentation. The wide intensity variation 

within each class in Figure S–1 caused all of the histograms to overlap substantially, as shown in Figure 

S–1c. Overlapping histograms caused QDA to misidentify many pixels, as they often had high probability 

of belonging to more than one class. The main paper measures uncertainty from overlapping distributions 

using ANOVA p-values. Despite the global ANOVA uncertainty, Figure S–1a has visually discernable 

features that are not fully captured by QDA. In Figure S–1a, globally overlapping distributions arise from 

classes with similar intensities being spread out across the image. The image shown in Figure S–1a failed 

to be appropriately segmented by QDA because the presence of non-adjacent classes with similar 

intensities required the position of each pixel to be considered by the method. A thorough comparison of 

local and global histograms can be found in the seminal paper on LADA.2 
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