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Abstract
The current design trend in large scale machine learn-
ing is to use distributed clusters of CPUs and GPUs with
MapReduce-style programming. Some have been led to be-
lieve that this type of horizontal scaling can reduce or even
eliminate the need for traditional algorithm development,
careful parallelization, and performance engineering. This
paper is a case study showing the contrary: that the benefits
of algorithms, parallelization, and performance engineering,
can sometimes be so vast that it is possible to solve “cluster-
scale” problems on a single commodity multicore machine.

Connectomics is an emerging area of neurobiology that
uses cutting edge machine learning and image process-
ing to extract brain connectivity graphs from electron mi-
croscopy images. It has long been assumed that the process-
ing of connectomics data will require mass storage, farms of
CPU/GPUs, and will take months (if not years) of process-
ing time. We present a high-throughput connectomics-on-
demand system that runs on a multicore machine with less
than 100 cores and extracts connectomes at the terabyte per
hour pace of modern electron microscopes.

CCS Concepts •Computing methodologies → Concur-
rent algorithms; •Computer systems organization →
Multicore architectures; •Computing methodologies→
Neural networks; •Applied computing → Computa-
tional biology

Keywords Multicore Programming, Machine Learning,
Big-Data, Connectomics
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1. Introduction
The conventional wisdom in machine learning is that large
scale “big-data” problems should be addressed using dis-
tributed clusters of CPUs, GPUs or specialized tensor pro-
cessing hardware in the cloud [6, 11, 20–22, 36, 63]. This
paper presents a solution to one of the most demanding big-
data machine learning areas: connectomics. It provides a
case study in how novel algorithms combined with proper
parallelization and performance engineering, can reduce the
problem from a large cluster to a single commodity mul-
ticore server (that can be placed in any neurobiology lab),
eliminating the crucial bottleneck of transferring data to the
cloud at terabyte-an-hour rates.

1.1 High-Throughput Connectomics
Perhaps neuroscience’s greatest challenge is to provide a
theory that accommodates the highly complicated structure
and function of neural circuits. These circuits, found in flies,
in mammals, and ultimately, in humans, are conjectured to
be the substrate that enables the complex behavior we call
“thought.” However, to this day, our ability to provide such a
theory has been hampered by our limited ability to view even
small fragments of these circuits in their entirety. Neurobi-
ologists have had sparse circuit maps of mammalian brains
for over a century [57]. However, as surprising as this may
seem, no one has seen the dense connectivity of even a single
neuron in cortex, that is, all of its input and output connec-
tions (called synapses) to other neurons. No one has been
able to map the full connectivity among even a small group
of neighboring neurons, not to mention the tens of thousands
of neurons that constitute a “cortical column.” Without such
maps, it would seem hard to understand how a brain con-
sisting of billions of interconnected neurons actually works.
Would you believe that someone understood how a modern
microprocessor worked if they could tell you in great detail
how individual transistors operated but were unable to de-
scribe how these transistors are interconnected?

Mapping brain networks at the level of synaptic connec-
tions, a field called connectomics, began in the 1970s with
a study of the 302-neuron nervous system of a worm [67].



Figure 1: The Stages of a high-throughput connectomics pipeline.

This study, which required capturing and combining hun-
dreds of electron microscopy images, was done by hand and
took 8 years. Manual mapping of minute volumes of neural
tissue have recently produced breakthrough results in neu-
roscience [28, 34, 49]. However, extending the approach
to the millions and billions of neurons in higher animals
seems an unattainable goal without a fast and fully auto-
mated pipeline.

Recent advances in the design of multi-beam electron mi-
croscopes now allow researchers to collect the nanometer
resolution images, necessary to view neurons and the synap-
tic connections between them, at unprecedented rates. A cu-
bic millimeter of brain tissue, enough to contain a mouse
cortical column, is within reach. This is only a tiny sliver
of brain, about the size of a grain of sand, but it will con-
tain about 100 thousand neurons and a billion synapses. The
cubic millimeter will constitute about two petabytes of im-
agery that will be collected in about 6 months using a 61-
beam electron microscope that generates half a terabyte of
imagery per hour [15, 38].

A modern connectomics pipeline [40], as depicted in Fig-
ure 1, consists of a physical part and a computational part.
The physical part takes a piece of stained brain tissue em-
bedded in a resin, slices it thousands of times using a spe-
cial microtome device, and feeds these minute slices into
an electron microscope that scans them and produces sep-
arate images of the slices [15, 61]. The computational part
of the pipeline, the focus of this paper, then takes the thou-
sands of separate 2-dimensional images, reconstructs the 3-
dimensional neurons within them, and produces skeletoniza-
tions or graphs that capture their morphological and connec-
tivity properties.

However, a viable solution to the computational prob-
lem of extracting the skeletonizations and connectivity maps
from the image data still seems far away. Using existing al-
gorithms and at the present computing rates, the common
assumption is that extracting the connectivity of the circuits
within two petabytes of data may take years and require su-
percomputing clusters [38, 66]. It is even unclear how to
efficiently move the vast amounts of data from the micro-
scope to a large scale storage and compute facility where
it will be processed [40]. The prospect of connectomics-on-

demand, where neurobiology labs around the world each run
their own microscopes and extract connectomes “as needed”
seems far far away.

This paper takes a first step towards proving the fea-
sibility of designing a high-throughput connectomics-on-
demand system that runs on a multicore machine with less
than 100 cores and extracts connectomes at the terabyte-
per-hour pace of modern microscopes. Such a system,
once achieved, will eliminate the need to transfer and store
petabytes of data in special warehouses. It could be read-
ily deployed in labs across the world, allowing scientists to
view connectomes as they come off the scope. Down the
road, such efficient connectomics systems could make it
feasible for neurobiologists to extract the complete connec-
tome of a mouse cortex of about 12 million neurons and 120
billion synapses from about 100 petabytes of data, and even-
tually make it possible to analyze exabyte-scale parts of the
connectome of both healthy and diseased human brains (Hu-
man brain has roughly 100 billion neurons and a quadrillion
synapses).∗

1.2 Towards an Automated Terabyte-Per-Hour
Connectomics Pipeline

The “proof of concept” connectomics system we present
here processes a terabyte of data, from image-stack to de-
tailed skeletons, in less than 4 hours on a single 72 core
Haswell-based multicore machine with 500GB of memory.
The upcoming generation of both GPU and CPU chips,
with some further optimizations (see our performance sec-
tion), easily place it within the target terabyte-an-hour per-
formance envelope of todays fastest electron microscopes.
One should contrast this with the recent connectomics sys-
tem of Roncal et al. [58] that uses a cluster of 100 AMD
Opteron cores, 1 terabyte of memory, and 27 GeForce GTX
Titan cards to process a terabyte in 4.5 weeks, and the state-
of-the-art distributed MapReduce based system of Plaza and
Berg [56] that uses 512 cores and 2.9 terabytes of memory to
process a terabyte of data in 140 hours (not including skele-
tonization). Importantly, the speed of our pipeline does not

∗These numbers may sound like science fiction, yet as Lichtman and
Sanes note by analogy [39], sequencing the first human genome took mul-
tiple labs around the world a concerted effort over 15 years, while today a
single lab can sequence a human genome within hours.
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Figure 2: 2D visualization of connectomics pipeline stages: (1) Electron microscope (EM) image. (2) Membrane probabilities
generated by CNN. (3) Over-segmentation generated by Watershed. (4) Neuron reconstruction generated by agglomeration.
(5) Pipeline inter-block merging: for each two adjacent blocks, the pipeline slices a boundary sub-block and executes
agglomeration.

come at the expense of accuracy, which is on par or better
than existing systems in the literature [29, 56, 58] (using the
accepted variation of information (VI) measure [44]).

Our high-level pipeline design builds on prior work [29,
42, 51, 52, 55, 56]. It passes the data through several stages
as seen in Figure 2. The image data is split into blocks. The
pipeline first runs a convolutional neural network (CNN) on
the separate image blocks to detect the boundaries of neu-
rons. The neuronal objects defined by the boundaries are
then segmented into objects by a watershed algorithm. At
this point the image is over-segmented, that is, neuronal ob-
jects are fragmented. The next step in the reconstruction is to
run an agglomeration phase that merges all the fragments in
a block into complete objects. Then the blocks are merged,
so that objects now span the entire volume. Finally, as de-
picted in Figure 8, the objects are skeletonized.

1.3 Our Contributions
• A new CPU execution engine for CNNs that scales

well on multicore systems, processing 1024x1024 im-
ages 70x faster than previous state-of-the-art [72] on a
single 18-core Haswell CPU. Our code applies GCC-
Cilk (a state-of-the-art work-stealing scheduler [3]), is
optimized to leverage Intel AVX2 instructions [68] and
maximizes memory reuse in L1, L2 and L3 cache sub-
systems. Analysis shows that this code achieves 80%
utilization of the peak theoretical FLOPS of the sys-
tem on a single-thread and scales almost linearly, com-
pared to previous approaches (Caffe CNN framework
with Intel MKL [10, 65]) that exhibit only 20% utiliza-
tion and no scalability beyond 4 threads. The remaining
performance gap is obtained by implementing minimal
“dense” (fully-convolutional) CNN inference, which in-
volves 284x fewer computations than naive implementa-
tions.

• A new GPU execution engine for CNNs that leverages
custom fast Fourier transforms (FFTs) and the latest
cuDNN primitives [53]. The system performs ∼2x faster

for our CNN benchmarks than previous state-of-the-
art [50] on a Titan X GPU.

• Parallelized and performance engineered version of Neu-
roProof, a system originally developed in Janelia Re-
search Labs by Parag, Chakrobarty and Plaza [54]. This
system implements an agglomeration procedure that re-
constructs 3D neurons from the watershed oversegmen-
tation. Specifically, we redesigned the Regional Adja-
cency Graph (RAG) algorithm as an augmented merge-
sort, efficiently defer expensive operations that occur dur-
ing constructions and traversals of RAGs, and batch com-
putations for lazy execution. Our implementation is 2.3x
faster on a single-thread, and has 85x scalability factor
on our 72-core server (super-linear factor due to Hyper-
Threading).

• Two new algorithms for the connectomics domain: (1)
a new inter-block merging algorithm that, unlike prior
approaches, applies parallelized NeuroProof to optimize
object-pair merges, and (2) a parallel skeletonization al-
gorithm that uses novel techniques and GCC-Cilk based
chromatic scheduling [25, 26] to execute efficiently on
multicores. We describe the algorithmic side in more de-
tail in [46].

We believe that our work departs from existing systems
by showing that a combination of new algorithms, proper
parallelization of existing algorithms, modern scheduling
using languages like Cilk, and performance engineering
of code to fully utilize CPU resources, can move the con-
nectomics problem from the large scale distributed systems
space to run on a commodity shared-memory multicore sys-
tem. This might be true for other big-data machine-learning
based problems in medicine and the life sciences, and even
for problems where big systems are necessary, our approach
may provide insights on how to make individual system ele-
ments much faster and scalable.



1.4 Related Work
The image segmentation approach we use was developed by
[1] and suggested for automatic electron microscopy seg-
mentation by [51]. It is used by most of todays systems
[29, 42, 51, 52, 55, 56]. Increasingly accurate membrane pre-
dictors based on convolutional neural networks have recently
been proposed [8, 59]. Our system implements a solution
that is inspired by these algorithms, is on-par with their cur-
rent accuracy levels, and yet is simpler and faster to execute.
Other studies have focused on new approaches to segmenta-
tion of supervoxels (e.g., [42]). Further research however is
required to benchmark their accuracy on even gigabyte size
datasets, so at this time their scalability cannot be addressed.

We are aware of three previous connectomics pipelines:
the original RhoAna pipeline by Kaynig et al. [29], the
system by Roncal et al. that extends RhoAna [58], and state-
of-the-art Plaza and Berg’s Spark-based system [56] that
uses NeuroProof.

2. System Overview
This is the story of how one can replace the use of a large dis-
tributed system with a single multicore machine. Although
a large distributed system may have tremendous computa-
tional resources at its disposal, its raw computing power
comes with a cost of additional overheads and system com-
plexity, e.g. data must be moved over the network, and the
system must support a degree of fault tolerance [6, 12, 37,
56, 70, 71]. These overheads tend to be small for problems
that are embarrassingly parallel, but can come to dominate
the execution time of more complex computations that need
to operate on shared data. In addition, the opportunities to
obtain performance within a single multicore are abundant,
and can result in performance improvements that rival or
even dwarf those obtained through horizontal scaling. As we
will see, the connectomics problem requirements can be sat-
isfied using a single multicore machine to execute a pipeline
of carefully designed multicore algorithms that efficiently
utilize a machine’s available computing cycles, take advan-
tage of the low shared-memory communication overheads,
and parallelize across cores using efficient task scheduling
tools.

2.1 Pipeline Structure
The input to our pipeline is a sequence of aligned 2D im-
ages each of which represents a single slice of a 3D vol-
ume of brain that was captured at high resolution (∼3-
4nm) by an electron microscope. These images are broken
down into smaller sub-images with a standardized size of
1024x1024 pixels, which are then grouped into blocks of
1024x1024x100 pixels. The pipeline executes a segmen-
tation procedure that extracts the neuronal objects within
each block, and then executes an inter-block merging proce-
dure that “combines” the per-block segmentations to obtain
a complete segmentation of the original input volume [46].

These stages of the connectomics pipeline are illustrated in
2D within Figure 2.

First, as seen in Parts 1 and 2 of Figure 2, a convolutional
neural network (CNN) is executed to detect membranes (or
cell borders). This network was trained using “ground truth”
annotation by human experts. The training process is time-
consuming, but since it only needs to be performed once
on an annotated subset of the dataset it does not impact the
pipeline’s throughput. The result of applying the CNN to a
subvolume is a new 1024x1024x100 block where each pixel
indicates a membrane probability between 0 and 1. Since
the CNN may run on blocks independently, this stage of the
pipeline may be executed in a distributed manner. It turns
out, however, that careful performance engineering enabled
this stage of the pipeline to execute sufficiently fast on a sin-
gle multicore machine. In fact, we found that our optimized
code for executing the CNN was able to significantly outper-
form existing state-of-the-art CPU [10, 65, 72] and GPU [50]
implementations. In Section 3 we describe the design of this
CNN, and the steps taken to ensure that the our implemen-
tations made efficient use of the machine’s compute cycles,
L1/L2/L3 caches, and disk.

Next, as seen in Part 3 of Figure 2, a 3D watershed algo-
rithm executes on the membrane probability map. The wa-
tershed algorithm performs a BFS-style flood from “seed”
pixels that have 0 probability of being a membrane, to pixels
with higher probability. The result of the watershed execu-
tion is a new block in which segments (3D objects) have
been formed around seeds, each with a segment identifier.
Methods of parallelizing watershed have been described in
the literature (e.g. [48]), but it turned out that our pipeline
was able to achieve better performance by engineering an ef-
ficient sequential algorithm with low-memory consumption.
This strategy allowed us to obtain a watershed algorithm that
is an order of magnitude faster than the code provided in
the popular OpenCV [23] library, and whose low-memory
requirements permit us to run many independent instances
of the algorithm on a shared memory machine. Section 4
describes the design of this serial watershed algorithm in
greater detail.

The segments produced by the watershed algorithm rep-
resent an over-segmentation of the true neuronal objects; i.e.
each neuron might be fragmented into many smaller parts, as
shown in Part 3 of Figure 2. To obtain segments that repre-
sent whole neurons an agglomeration algorithm is employed
that merges segments that lie within the same 3D object. The
result of the agglomeration procedure is a collection of larger
segments that each represent a whole neuronal object, as is
illustrated (in 2D) in Part 4 of Figure 2. The agglomeration
procedure used by the pipeline is based upon the serial Neu-
roProof agglomeration algorithm of Parag et al. [54]. We re-
formulated the Neuroproof procedure to use parallel algo-
rithms, and performed a variety of performance optimiza-
tions to reduce the total work and memory usage. These op-



timizations obtained a 2.3x improvement in serial runtime,
and a 6.5x improvement when executing on 4-cores. More-
over, we achieve near-linear scalability (when running mul-
tiple 4-core instances simultaneously) which provides an ad-
ditional 82x speedup over the optimized serial code on our
72-core server with HyperThreading. Section 5 describes,
in greater detail, the parallelization techniques and perfor-
mance optimizations that were employed to optimize the ag-
glomeration stage of the pipeline.

After a segmentation has been obtained for each block,
the pipeline executes an efficient inter-block merging proce-
dure on the reconstructed blocks [46]. Here we utilize the
shared memory properties of the machine in which I/O op-
erations are automatically cached by the OS kernel. Thus,
for every two adjacent blocks, our block merging algorithm
carves out a thin sub-block near the shared boundary and
employs a variant of our parallel agglomeration procedure
to identify and merge objects across this boundary. Part 5 of
Figure 2 is a two dimensional rendering of this merging pro-
cess. The result of each merging is a small file containing
pairs of segment identifiers that should be combined, and it
is straightforward (and inexpensive) to combine all of them
into a full segmentation. This contrasts with the approach of
Plaza and Berg [56] where a sophisticated merge algorithm
must be executed across many machines in the network. In
our case, there is no need to perform expensive data-transfers
over the network and to support a complex failure detection
and recovery mechanisms, since the whole system executes
on a single server. The design of the inter-block merging pro-
cedure is discussed further in Section 6.

The final step of the pipeline skeletonizes the volume seg-
mentation (see Figure 8) on a per-block basis. A skeleton
provides a space-efficient one dimensional representation of
a 3D volume that runs a long the volume’s medial axis, al-
lowing for faster and easier analysis of the biological struc-
tures. It is also an intermediate step on the way to creating
a graph representation of the neuronal objects. We experi-
mented with various skeletonization algorithms and found
out that a subfield “thinning” algorithm [2] fits our purposes
best. Thinning starts with points on the object boundary and
repeatedly removes ones that do not affect overall topolog-
ical connectivity. We devised a simple and efficient parallel
algorithm for extracting volume skeletons using chromatic
scheduling [25, 26] to efficiently schedule the parallel order
of which points are considered for deletion doing the thin-
ning process. The details of the skeletonization algorithm are
discussed further in Section 7.

3. CNN-based Membrane Detection
The first stage of the pipeline employs a convolutional neu-
ral network (CNN) [31] to identify cell membranes within
the electron microscopy (EM) images obtained from the mi-
croscope. The output of this stage is a new set of images
whose pixels (ranging from 0 to 1) denote the probability

that a particular pixel is part of a membrane. A CNN system
is typically composed of two components: the network ar-
chitecture which defines layers of perceptrons and their con-
nectivity, and the computational framework that executes an
architecture’s forward propagation over a trained network.
In Section 3.1 we describe the MaxoutNet CNN architecture
that is used in our pipeline to compute membrane probabili-
ties [46]. In Sections 3.2 and 3.3 we describe CPU and GPU-
based implementations of our computational framework for
executing CNNs.

There are a variety of methods for devising efficient com-
putational frameworks for fully-convolutional neural net-
works: e.g. patch-based sliding windows [8], dilated convo-
lution [69], strided kernels [64], max filtering [32, 72] and
filter rarefaction [41]. In our framework, we utilize “max-
pooling fragments,” which apply the traditional maxpool-
ing operation of CNNs to different offsets of the input im-
age [19, 43]. The resultant images are then recombined to
produce the final dense result. The advantage of this ap-
proach is that maxpool fragments generate independent ma-
tricies that are contiguous in memory, which is leveraged for
improved parallelization and memory-locality in both of our
CPU and GPU-based implementations.

3.1 Our Network Architecture
The pipeline uses a CNN architecture called MaxoutNet that
we recently proposed in [46] based on prior work in con-
nectomics [28, 30]. The MaxoutNet architecture consists of
4 ConvPool layers of alternating convolution/maxpool pairs
aggregated with a maxout function, and a final convolution
that implements an inner-product. Convolutional layers use
4×4 kernels with stride 1 and either 8 or 32 channels, which
combined with stride 2 max-pooling yields a 105 × 105
field-of-view for each output pixel. For our benchmarks, de-
scribed in Sections 3.2.4 and 3.3.1, we simplify this network
and execute only the last 3 layers of ConvPool.

In our pipeline execution, MaxoutNet leverages the fact
that our input EM images are 3nm resolution (2048× 2048)
by performing subsampling of the input by executing stan-
dard pooling in the first ConvPool layer, while executing
“dense” poolings in the next layers. This produces a 2-fold
subsampled 1024 × 1024 output image, and accelerates the
network by a factor of 4 without a significant loss of accu-
racy.

3.2 A Fast CPU framework for CNNs
We introduce XNN, a CNN framework implemented in C
and inline assembly for Haswell CPUs. The CPU architec-
ture provides support for AVX2 instructions and includes
two FMA units, allowing the chip to execute 32 floating
point operations per cycle [68]. As a result, a single 2.5
GHz 18-core Haswell chip can theoretically produce 1.44
TFLOPS (compared to state-of-the-art GPU, like NVIDIA’s
Titan X, that theoretically produces 6TFLOPS). It is, of
course, quite challenging to achieve these peak floating point



utilizations on either CPU or GPU architectures, and ap-
proaching this ideal requires careful engineering techniques
that take into account the hardware specifics.

The remainder of this section describes the techniques we
applied to optimize XNN for the Haswell CPU architecture
which enable XNN to achieve 70 − 80% FLOP utilization
for direct convolutions. Note that FFT-style convolutions can
provide additional speedups, as we describe in [4], however,
here we focus on low-level performance-engineering of di-
rect convolutions.

3.2.1 Haswell AVX2 SIMD Parallelization
We initially adopted Intel’s MLK convolution primitives
[10]. However, our results showed that the CPU FLOPS
utilization for MKL was only ∼20%, so we reimplemented
this critical component with hand-crafted AVX2 assembly.

One of the hurdles that must be overcome to use AVX2
instructions is that one must ensure memory operands have
properly aligned addresses. This constraint complicates or
even precludes the use of AVX2 instructions in standard con-
volutional windows that slide over a 2D matrix since the
window will contain unaligned memory locations. This led
us to an alternate strategy that is based on the observation
that a CNN’s internal matrices are typically 3D, where the
first two dimensions are spatial and the third dimension de-
notes the channels of the CNN. Instead of vectorizing along
the spatial dimension, we vectorize along this channel di-
mension. This strategy assumes that the number of channels
is a multiple of the AVX width, but this constraint is not
problematic for CNNs that already use many channels.

Our first implementation was a simple loop over the chan-
nel dimension, which did not provide a high CPU floating
point utilization, since the GCC compiler could not unroll it
optimally. To improve this, we manually unrolled the loops
with AVX2 C-inline assembly so that the most inner loop
computes 6 convolutions. We interleaved the inner loop’s
AVX register load, FMA compute, and store vector opera-
tions of the 6 convolutions, in a way that maximizes the us-
age of the two FMA units of the Haswell CPU. In addition,
we made the inner and outer loop bounds and counter incre-
ments constant at compile-time, to allow maximal usage of
GCC’s automatic code vectorization and loop unrolling for
both inner and outer loops that wrap the manually unrolled
convolutions.

3.2.2 Cilk-based Concurrency and Caching
We used Cilk [18, 35], a work-stealing scheduler that is sup-
ported by GCC 4.8, to dynamically generate multi-core fine-
grained tasks. The key advantage of Cilk is that it provides
a “fork-join” primitive that scales well to many cores and
retains the serial semantics of the program (i.e. the removal
of parallel control constructs does not change the behavior of
the code on 1-core). Cilk uses a sophisticated combination of
per-thread double-ended queues, and a clever work-stealing
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algorithm that is provably efficient, and has low memory-
contention on shared memory systems.

Our implementation applies the Cilk “fork-join” primi-
tive to all “for-loops” that have no loop iteration dependen-
cies, simplifying our parallelization effort. However, we still
require that memory accessed by executing Cilk threads fits
into the L3 cache. The L3 cache is much faster than main
memory, and having threads working on data that resides
in L3 is key to ensuring a high ratio of compute to mem-
ory access, which is important for scalability. For example,
large matrix operations (e.g. convolution) are executed over
sub-matrices that each fit into the L3 cache, with a set of
threads operating over this sub-matrix before proceeding to
the next. We observed that this approach improves scalabil-
ity by a factor of 3-4x.

3.2.3 Memory Usage
Another important aspect of the implementation is the
amount of memory used to compute the forward propaga-
tion pass of the CNN network. Since we are only concerned
with the performance of forward propagation, we optimized
the memory usage significantly by allocating only two large



matrix buffers, one for input and one for output, and then
reuse (swap) these buffers between layers. As a result, the
memory usage is bounded by the largest input/output size
of a single CNN layer, which reduces cache trashing and
OS paging effects. Note that memory is only allocated at the
start, i.e. there are no dynamic memory allocations during
the computation itself that could introduce contention and
bottlenecks.

3.2.4 CPU Benchmarking
Benchmarking was performed on the same shared memory
server we use to run our pipeline: a 4-socket machine with
Intel Haswell 18 core chips and 512 GB of RAM. We also
benchmarked a machine equipped with a single 4-core Intel
Skylake CPU with 64 GB RAM.

We benchmarked our XNN framework against the most
efficient known multicore CNN frameworks: the Caffe
framework of Yangqing et al. [24] and the ZNN frame-
work of Zlateski et al. [72]. Throughput was evaluated using
1024×1024 (6 nm) images. We benchmarked all three using
a lightweight version of MaxoutNet with 3 fully convolu-
tional ConvPool layers (field-of-view = 53) because the sub-
sampling required for the fourth layer (3 nm data) is avail-
able only in our XNN framework. We benchmark for both 8
and 32 channels. To ensure best performance, we compiled
with the Intel C++ Compiler (ICC) version 16.0.0, optimized
for maximum speed (-O3), linked against Intel Thread-
ing Building Blocks (TBB) version 4.4 (libtbbmalloc,
libtbbmalloc proxy), and Intel Math Kernel Library
(MKL) version 11.3 with enabled FFT caching, and single-
precision floating-point arithmetic.

The results of this benchmarking are presented in Fig-
ure 3. In this execution, we perform a scalability test on a
single 18-core chip: an input is set to a fixed size and we in-
crease the number of threads. By binding multi-threading to
one chip we disable the NUMA-effects for this test (expen-
sive inter-chip communication). It is evident that our XNN
CPU framework exhibits substantial throughput improve-
ment over Caffe and ZNN. First, one can see that there is a
significant difference in single-threaded performance, which
is the effect of the hand-crafted assembly of XNN that uti-
lizes the two FMA AVX2 units of Haswell CPU. Second, the
scalability of XNN is almost linear, 15x over a single thread
on 18 cores. This is achieved by constraining active threads
to operate on memory sets that fit into the L3 cache while
using Cilk to manage short-living jobs.

Figure 4 presents the results of XNN executed as a sin-
gle instance (fixed input) on all 72 cores across 4 sockets,
running up to 144 threads to utilize hyperthreading. As can
be seen, for the 32 channel execution (green) linear scala-
bility is evident up to 18 cores and plateaus all the way to
36 cores, as hyperthreading provides only 10-20% boost in
performance. Increasing threads from 36 to 72 utilizes ad-
ditional cores to again provide pseudo-linear scalability. Be-
yond 72 cores, additional threads leverage hyperthreading

for a minimal further improvement. For 8 channels (red),
the smaller network size generates low latency Cilk tasks
that introduce more pressure on the software implementa-
tion. There is still linear scalability up to 18 threads, but
only small improvement is evident beyond 36 cores. This
is because the overhead of threading (NUMA side effects) is
substantial compared to the performance benefit from adding
additional cores.

In our pipeline execution, we overcome these NUMA
overheads by combining multi-processing with multi-threading.
Specifically, we execute multiple instances of XNN (each
bound to a specific chip) with a empirically optimized num-
ber of threads, resulting in a 2.8x speedup. Generating these
instances increases the RAM requirements (not problematic
for our 512 GB RAM system).

3.3 A Fast GPU Framework for CNNs
In this section we present gpuZNN, a GPU-based CNN
framework that improves upon the previously published
ZNN [72] to optimize forward propagation throughput.

The SIMT programming model and limited amount of
memory available on a GPU require a different implemen-
tation than our XNN CPU framework. To saturate the GPU,
we process multiple input images simultaneously. We also
leverage the fact that all sub-samplings of the “dense” com-
putation have equal size, which is equivalent to processing
multiple inputs of a layer at the same time.

Most of our convolutional primitives use cuDNN’s low
level implementations [53]. To address the large memory
overhead of some primitives, we allow the computation to
be split into multiple stages, computing a subset of results
at the time. This is accomplished by computing a subset of
input batches and/or subset of output images (feature maps).
This can reduce the parallelization potential, but reducing
the memory overhead can allow for using a computationally
cheaper primitive. We also implement optimized FFT-based
convolutional primitives with very low memory overhead.
Batched 1D FFTs and memory reshuffling was used to effi-
ciently utilize the GPU.

Sub-sampling layers (maxpooling and maxout) were im-
plemented using cuDNN’s maxpooling primitive. We min-
imized the number of calls to the primitives such that each
primitive performs more computation and can thus saturate
the GPU. To allow this, we implicitly gathered the inputs
and scattered the results for each call. Implicit gather/scatter
is performed by providing the shapes and strides for all in-
puts/outputs from which the memory location of each ele-
ment can be computed.

3.3.1 GPU CNN Benchmarking
We benchmarked our gpuZNN implementation relative to
the fastest available GPU frameworks [7] on an NVIDIA
GeForce GTX Titan X (3072 cores, 1.0 GHz, 12 GB mem-
ory). Specifically, we benchmarked the MaxoutNet network
with both 8 and 32 channels for three GPU frameworks: (a)
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Figure 5: Throughput of GPU-based CNNs using 8 and 32-
channel MaxoutNet architectures.

Method Type 8-channel MaxoutNet
Throughput (MB/s)

32-channel MaxoutNet
Throughput (MB/s)

XNN CPU (72-core) 111.1 16.67

gpuZNN GPU (Titan X) 67.61 25.28

Neon GPU (Titan X) 37.06 (exceeds memory)

XNN CPU (4-core) 11.49 1.74

Figure 6: A comparison of CNN throughput for the best-
performing CPU and GPU-based implementations using
the MaxoutNet architecture.

gpuZNN, our modified version of ZNN [72]; Caffe [24],
compiled with cuDNN v4; and Neon by Nervana [50],
which outperformed Caffe and other alternatives on sev-
eral recently published benchmarks [7]. Throughput was
evaluated using 6 nm images presented with different sizes
(10242, 5122, 2562) in batches of size 32 (a constraint of
Neon’s GPU backend), while using max-pool layers with a
stride of 1. This eliminates “sub-sampling” effects of max-
pooling and simulates the same number of floating point
computations as a “dense” inference (not supported by Caffe
or Neon).

The results of this benchmarking are presented in Fig-
ure 5. It is evident that gpuZNN provides the best through-
put on both 8 and 32-channels for all image sizes: 1.8x
and 2.9x faster than Neon and Caffe for 8 channels respec-
tively, and 1.8x faster than Caffe for 32 channels. The 32-
channel MaxoutNet could not be benchmarked on Neon as
the memory usage exceeded the 12 GB available on the Ti-
tan X. The main reason for gpuZNN’s improvement is its
low-memory overhead FFTs that allows it to aggregate large
sub-computation units and minimize the amount of calls to
primitives of the GPU (each such call involves host-device
memory transfers on the PCI-E bus). We note that the actual
speed difference between 32 and 8 channels for gpuZNN is
2.6x (and not 32/8=4), which is an effect of the overheads
of PCI-E host-device memory transfers that become more
significant as the network becomes smaller.

3.3.2 A Comparison of CPUs and GPUs
Figure 6 shows the maximum throughput that we could
achieve for XNN, gpuZNN and Neon for 8 and 32 channel
CNNs. For 72-cores, we found that the best combination of
multi-threading and multi-processing is 8 instances (2 per
chip), where each is using 18 threads. One can see that for a
network with 32 channels, the GPU is faster than the CPU.
However, this is not the case for 8 channels, where the CPU
is twice as fast as the GPU. This is because an 8 channel
CNN implies less compute for the GPU and makes the PCI-
E bus memory transfers more expensive.

4. Watershed
The next stage in the connectomics pipeline involves pro-
ducing an over-segmentation of neuron candidates from the
CNN membrane probability output. Over-segmentation en-
sures that no supervoxel straddles more than one true seg-
ment and is later resolved by agglomeration. Specifically,
we apply a custom 3D implementation of the popular linear-
time watershed algorithm that yields an 11x speed-up on
previous implementations [23]. In general, the key idea is
to take into account that probability maps are allowed to
take only 8-bit values, which allows us to implement the pri-
ority queue as a set of 28 FIFO queues. The FIFO queues
are implemented using simple arrays with an amortized cost
of O(1) for both push and pop operations. As a result,
queue access are cache and pre–fetcher friendly. In addition,
we reduce the memory overhead by an order of magnitude
compared to OpenCV, which is an important factor for the
watershed algorithm that exhibits low ratio of compute-to-
memory.

5. Agglomeration
The agglomeration stage refines the over-segmentation gen-
erated by the watershed algorithm by merging regions it
identifies as belonging to the same neuronal volume. Our
pipeline’s agglomeration stage is based on Neuroproof [54],
a state of the art tool for graph-based image segmenta-
tion. Serial optimizations and shared memory paralleliza-
tion techniques were employed to enhance the performance
of Neuroproof on our shared memory multicore system, with
the results summarized in Figure 7.

5.1 Regional Adjacency Graphs
Agglomeration is performed on a higher-level represen-
tation of the labeled volume called a regional adjacency
graph (RAG). A RAG is a graph with a vertex for each dis-
tinctly labeled region, and an edge connecting each pair of
adjacent regions. Each vertex within the RAG maintains
several regional features such as histograms of membrane-
probabilities and multiple image moments. These features
are typically associative with respect to the agglomeration’s



merge operation, and thus enable the agglomeration proce-
dure to operate directly on the RAG instead of the much
larger input volume.

The initial construction of the RAG requires analyzing
the entire input volume, and is thus the most expensive com-
ponent of this stage. Prior to our performance engineer-
ing efforts, RAG construction required 124 seconds on a
1024x1024x100 input stack and was responsible for 70% of
the total time spent in the stage.

5.1.1 Serial Optimizations
Several optimizations were performed to reduce the total
work performed during RAG construction. These optimiza-
tions fell into three categories: optimizations to feature com-
putation, eliminating layers of indirection, and improving
memory locality.

Feature computation was optimized by providing a batched
version the feature computation function, so that it could
process multiple pixels at once. In addition, a significant
opportunity for optimization was uncovered in the portion
of the program that computed image moment features. The
ith image moment feature computes the sum of pi for all
pixels p in a region. The standard library pow function was
used to compute these features for 4 moments, and was to
blame for over 50% of the runtime in RAG construction. We
modified the function computing moment features to per-
form iterative multiplication, and reduce the per-pixel-cost
to 3 floating point multiplications. These modifications to
feature computation resulted in a 2.5x improvement in serial
runtime for RAG construction, resulting in a total runtime of
50 seconds.

Another class of changes involved eliminating unneces-
sary layers of indirection in matrix and hashtable access. The
labeled input volume was loaded into an OpenCV Mat ob-
ject and was accessed through a provided interface. We mod-
ified all accesses to operate directly on matrices underlying
arrays to eliminate unnecessary indirection to the OpenCV
library. This resulted in a further 1.6x improvement in RAG
construction time, reducing the total runtime of RAG con-
struction to 30 seconds.

The last major optimization was the design of a divide-
and-conquer RAG construction algorithm that takes advan-
tage of the associativity of region features. Given a 3D vol-
ume, the largest dimension of the volume was divided in
half and the RAG was computed for each half recursively.
These RAGs were then merged with their regional features
combined according to each of their associative update rules.
The base-case of the recursion was coarsened so that the to-
tal volume would fit into an L2 cache of approximately 256
KB.

5.1.2 Parallelization
The divide-and-conquer implementation of RAG construc-
tion was especially amenable to efficient parallelization. In
particular, the method of merging RAGs can be performed

Baseline (s) Fast 1-core (s) Fast 4-core (s)
Input/Output 11.2 10.5 6.7

RAG Construction 123.2 24.2 6.8
RAG Agglomeration 42.5 40.2 13.4

Total 176.9 75.0 27.0

Figure 7: Performance improvements to agglomeration
stage.

efficiently by thinking of the algorithm as a parallel merge
sort with an augmented merge operation [9, Ch 27.3]. In
other words, the RAG construction algorithm can be paral-
lelized in the same fashion as merge sort by considering a
RAG to be a sorted edge-list. We represent regions with a
self-edge and store the region’s computed features as meta
data. After performing a merge of two RAGs’ edge lists, the
edge list is scanned in parallel to identify and merge dupli-
cated edges. These steps can all be performed in parallel us-
ing logarithmic-depth algorithms. On 4 cores, the parallel
RAG construction algorithm achieves speedup of 3.5x, re-
ducing the time of RAG construction to 6.8s.

After RAG construction, RAG agglomeration analyzes
edges to determine which node pairs to merge. We observed
that most of the work was performed by a random-forest
classification library within OpenCV that computes edge
weights. To parallelize RAG agglomeration, we defer the
computation of edge weights, and mark effected nodes and
edges as dirty [54]. A dequeued edge is ignored if it is dirty
or incident to a dirty node. When the priority queue is empty,
the edge weights are all computed in parallel as a batch,
and reinserted into the queue. This strategy resulted in 3x
speedup for agglomeration, reducing its runtime from 40.2
to 13.4 seconds.

6. Merging
In this section we describe how our pipeline merges all of
the per-block segmentations produced by the earlier stages
to obtain a segmentation for the entire volume. Prior work by
Plaza and Berg [56] describe a method of performing such
a merge operation by generating overlaps between adjacent
blocks and identifying pairs of segments to merge based on
a set of complex hand-crafted heuristics. As reported in [56],
this approach is made difficult by the substantial number of
edge cases that must be handled correctly to obtain a high
quality segmentation. Our approach is of similar spirit, but
simplifies the problem of identifying merge-pairs by treating
it as a special case of agglomeration.

Our inter-block merge procedure operates in two phases
that each perform an agglomeration over the block bound-
aries. These phases reuse the optimized agglomeration algo-
rithms described in Section 5, but use a random forest classi-
fier that is trained specifically on inter-block segmentations.
Segments identified as merge-pairs are then recorded on-
disk, and processed into equivalence classes using a disjoint-
set data structure. The performance of the merge stage was



further optimized by tuning the ordering and parallelism de-
gree to ensure that the machine’s caches and disks were used
efficiently.

6.1 Merge Pair Decisions.
Merge pairs are determined for all adjacent blocks in the vol-
ume in two phases. First, the segments in the block bound-
ary are agglomerated using our parallel agglomeration algo-
rithm. This phase is conservative, to avoid incorrect mergers,
but since neuronal objects are large (spanning many blocks)
most merge-pairs are found in this phase. In the second
phase, the algorithm generates a synthetic ground-truth by
re-executing the watershed and agglomeration stages on the
block boundaries. This synthetic ground-truth allows for the
remaining merge-pairs to be identified via a straightforward
optimization procedure. This procedure merges a pair and
computes the associated VI score relative to the synthetic
ground-truth. If accuracy decreases, it aborts the merge and
tries a different pair.

6.2 Combining and Relabelling.
After merge-pairs are identified for pairs of adjacent blocks,
the next step is to actually relabel the volume so that each
distinct object has a distinct label.

To identify equivalent labels, we operate on the lists of
merge-pairs generated for pairs of adjacent blocks and use
a disjoint-set data structure to form equivalence classes of
segment identifiers (i.e. where two segments are equivalent if
they appear as a merge-pair). This process is straightforward
since all merge-pairs are present on the machine’s local
disk, and the total size of all merge-pairs is miniscule in-
comparison to other data sets in the pipeline. Finally, the
algorithm executes a parallel pass over all segmented blocks
and relabels them based on their equivalence class. This
relabeling step is I/O bound, but this is mitigated by ordering
blocks to be relabeled such that all of the machine’s disks are
well utilized.

7. Skeletonization
A skeleton is a one dimensional space-efficient represen-
tation of a 3D volume that runs along the segments’s me-
dial axis. There are a vast number of algorithms to com-
pute skeletons for a variety of purposes in computer graph-
ics [60]. We found that for connectomics a thinning algo-
rithm would be most fitting because it is the fastest algorithm
that still preserves the connectivity of the objects. Their al-
gorithms remove all so-called simple points, voxels whose
removal does not change the topology. Checking if a point is
simple or not is non-trivial, especially when multiple voxels
are deleted in parallel.

Our parallel thinning algorithm is implemented as a chro-
matically scheduled dynamic data-graph computation [25,
26]. A grid graph represents the labeled 3D volume and a
statically-computed distance-2 coloring is used to identify
sets of voxels that may be processed in parallel.

Figure 8: Skeletonization of 20 objects from the Kasthuri
et al. dataset (as one large block) [28] (473 GB ≈ 100,000
cubic microns of cortex).

Initially updates are scheduled on all surface points,
which check if a given point satisfies the simple point
criterion based on their 26-neighborhood. An update that
deletes a point schedules an update dynamically for all
non-deleted neighbors. Since there are only 226 possible
26-neighborhoods, the simple point criterion can be pre-
computed. Our simple point criterion is based upon the 38
templates of [62] and ensures local connectedness. Since
our algorithm uses chromatic scheduling, it is equivalent to
a standard 8-subfield thinning algorithm and thus provably
preserves the topology of the objects [2].

After skeletonization, we transform the 3D segments into
tree graphs based on 26-connectivity. If cycles exist in the
graph they are broken up arbitrarily, however, large cycles
are detected and are reported for further analysis and error
detection. After performing a one-pass pruning step the trees
are outputted as .swc files and visualized using the neuTube
software [17]. Our pipeline currently generates skeletons
per-block, but the same algorithm can be applied (with addi-
tional engineering effort) to the entire volume (Figure 8).

8. Pipeline Performance
The earlier portions of the paper focused on improving the
performance and scalability of individual machine learning
algorithms that consume a large fraction of the computation
in existing connectomics systems [56, 58]. In this section,
we focus on the combined performance of our pipeline ele-
ments. The main workhorse for our experiments is the previ-
ously described 4-socket shared memory machine equipped
with 4 18-core Intel Xeon CPUs with 512 GB of RAM run-
ning Ubuntu 14.04.

We tested our pipeline on a 473 GB (3x3x30 nm resolu-
tion) electron microscopy dataset of mouse somatosensory
cortex [27], containing 1850 pre-aligned 16,384x16,384
(256 MB) 2D EM brain scans.

The total time to process the entire 473 GB EM dataset
was 1.7 hours, implying a throughput of 3.6 hours / TB.
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Figure 9: Proportion of the execution time spent on each
stage.

Figure 9 provides a breakdown illustrating each stage’s con-
tribution to the total execution time. Notably, we have man-
aged to improve the machine-learning-based segmentation
component to be on par with the other stages, which allevi-
ates a previously constraining bottleneck in the throughput
of connectomics pipelines [56].

To analyze the efficiency of using a 72-core system, we
compared the throughput of our pipeline on a single core
against our throughput on all 72 cores. On a single core, our
pipeline processes data at a speed of 1.11s / MB, compared
to 0.013s / MB on 72 cores. This implies that our pipeline
achieves an 85x factor speedup, which is greater than 72
since hyper-threading provides our machine with 144 hard-
ware threads.

The number of concurrent instances and the degree-of-
parallelism used within each instance varies depending on
the pipeline stage. To achieve maximum throughput in the
CNN phase, we execute 8 instances of XNN (2 per chip),
where each instance uses 18 threads. This eliminates any
NUMA side-effects that could introduce contention and bot-
tlenecks. In the watershed phase, we simply spawn 144 in-
stances since the implementation we have is a fast sequential
code with low memory consumption (each instance <1 GB,
and total memory is 512 GB). In the agglomeration phase,
we execute 36 instances (9 per chip) of parallel NeuroProof,
where each instance uses 4 threads. A similar scheme is ap-
plied to merging and skeletonization.

8.1 Reconstruction Accuracy
To evaluate the reconstruction accuracy of our pipeline we
followed the benchmark described by Kaynig et al. [29]. We
partitioned a total of 150 images (a region of the data called
AC3 in [29]) at 2048x2048 and 3 nm resolution into three
sets; 10 for training, 65 for validation and 75 for testing.
Ground truth neuron segmentation was provided by expert
neurobiologist annotators.

Our measure of segmentation accuracy is variation of in-
formation (VI) [45], that captures the statistical difference
between two segmentations. In a typical segmentation there
are split errors (neurons split erroneously) and merge errors
(neurons merged erroneously), and the VI is an indicator to
the extent of such errors in the data set. We benchmarked our

8-channel MaxoutNet CNN architecture (described in Sec-
tion 3.1) and the state-of-the-art reconstruction of RhoAna
described by Kaynig et al. [29] using the same evaluation
benchmark on our test dataset described above. We note that
our comparisons with the RhoAna-based pipeline described
in [29] are only with respect to accuracy, since it was not
extensively engineered for performance (it requires several
weeks and thousands of machines to process a terabyte).

On the AC3 dataset, our pipeline achieved an accuracy
score of VI = 1.6483 which is, surprisingly, an improvement
over the VI = 1.99 score reported for RhoAna (lower VI
means improved reconstruction). This comparison indicates
that our pipeline’s efficiency does not inherently come at the
expense of reconstruction quality, albeit we caution that re-
construction accuracy is a complex metric and that accuracy
comparisons performed on a single data set should be taken
with a grain of salt.

9. Lessons Learned
In this section we discuss some of the general lessons learnt
from our effort to reduce a high-throughput, big-data prob-
lem to the domain of a single shared-memory multicore sys-
tem. Some of these may be known to the reader, but others
were counter-intuitive, at least to us, and therefore worth ex-
plicit mention.

9.1 Scalable software saves memory
Writing multicore code is generally hard – it is far simpler
to write a single-threaded program that avoids concurrency
“nightmares,” and scale horizontally by launching one in-
stance per core. While this may work for simple tasks, we
observed that this approach can be seriously flawed for com-
plex software. In the case of both the agglomeration and
membrane-detection stages of our pipeline, the large mem-
ory footprint of each instance caused the OS to frequently
swap between memory and disk, thus increasing I/O band-
width requirements. Moreover, performance degraded due
to L3 cache pollution caused by multiple instances popu-
lating the shared L3 cache with disjoint memory accesses.
By engineering our software to scale to multiple cores, we
obtained a degree of freedom in our pipeline design that al-
lowed us to run a smaller number of instances, where each
uses multiple cores to operate on data fitting into L3 cache.
For example, our pipeline runs 8 instances (two per socket)
of the CNN code for membrane detection, where each in-
stance uses 9 cores. This enabled efficient use of the caches
on each socket and eliminated the need to handle complex
NUMA overheads [5, 13, 14, 16, 47].

9.2 Disk I/O is scalable on a single machine
Once computation is sufficiently optimized, disk-to-memory
I/O for a single machine can become a bottleneck. This is
often part of the motivation to migrate computation to a
cluster of machines, and is a problem we encountered in



the watershed and agglomeration pipeline phases (where the
disk I/O 100 MB/s read and 200 MB/s write were reached).
Instead, we resolved this bottleneck by horizontally scaling
our disk drives – data was sharded across a set of 5 drives
that were installed on the same machine, yielding 500 MB/s
read and 1000 MB/s write for the system. Adding more disks
to improve I/O bandwidth in this manner is far cheaper and
simpler than migrating to a distributed cluster.

9.3 Dynamic multithreading simplifies cache-aware
parallelization

A potential criticism of a multicore-centric approach is that
it simply shifts from one set of programming complexi-
ties (networking, failure detection and recovery schemes
on a distributed system) to the unique challenges posed by
shared-memory concurrency. Our experience is that writing
cache-efficient multicore code can be simple, if using the
right tools. Our multicore programs are written using GCC-
Cilk which employs an efficient work-stealing scheduler,
and allows parallelism to be expressed while retaining the
semantics and many performance properties of serial code.
As a result, our techniques to make our programs cache and
pre-fetcher friendly largely mirror those used in serial code.
This allowed us to achieve good cache efficiency without
needing to write complex cache-aware scheduling logic.

9.4 A GPU is not 100X faster than a CPU
It is widely believed in the machine learning community that
a single GPU can perform orders of magnitude faster than a
single CPU. This is supported empirically by popular ma-
chine learning packages – if one compares Caffe (bound to
Intel MKL and Nvidia cuDNN libraries) execution times on
GPU versus CPU, the speed-up is approximately 50 to 100-
fold. Following our multicore performance engineering ef-
forts, we observe substantially different results. On a single
18-core 2.4 GHz Haswell chip, our XNN execution is only
2-3x slower than both gpuZNN and the previous fastest CNN
framework (Neon [50]) executed on a Titan X GPU. More-
over, XNN execution on a commodity 4-core Skylake chip
(a standard desktop/laptop processor) was only 4-6x slower
than this top-end GPU. These observations are consistent
with the findings reported in [33], but here we support the
claim on a modern CPU.

9.5 Multicores enable new efficient algorithms that are
expensive on clusters

A common belief of Hadoop/Spark programmers is that cod-
ing for a distributed cluster is simpler than for a multi-core,
and therefore, shifting software to multicores is not worth
the effort. However, our experience shows that this not true.
A key point that needs to be emphasized is that coding for
clusters is simple as long as the parallelization of the prob-
lem is ”trivial”. In other words, as long as one can break the
problem into small parts that can be processed without com-
municating, then it is easy to do map-reduce style program-

ming. However, if this is simple for the cluster, then it will
also be simple for the multicore. Moreover, cluster-based al-
gorithms exhibit high network latencies, which forces them
to avoid communication between machines. As a result, pro-
grammers are constrained to coding patterns that are ”triv-
ially parallelizable” in the context of clusters, since it is the
only way to avoid high network costs and get scalability.
However, this is not the case for multicores: inter-core com-
munication is orders of magnitude less expensive than net-
work cluster communication, which allows programmers to
design more sophisticated approaches that involve complex
communication patterns.

10. Conclusion
We presented a “proof of concept” connectomics pipeline
that can extract a full skeletonization from an EM image
stack in less than 4 hours on a commodity multicore machine
and with a VI accuracy on par or better than any existing
system. This has the potential to move the connectomics
problem, a big-data research problem in the natural sciences,
from the realm of distributed data and warehouse storage, to
that of on-demand processing in labs across the world. Given
current trends in multicore CPU and GPU architectures, we
venture to predict that a single socket machine, perhaps with
a single attached GPU card, will be able to provide a solution
for many connectomics pipelines around the world.

The domain-specific results we report on Kashturi data-
set [28], constitute a case-study on the role of multicore
performance engineering in large-scale image processing
pipelines. The lessons learnt from our experiences design-
ing this system are of great import to those in the multi-
core and cluster computing communities. Through careful
performance engineering, we show that a single commodity
multicore machine can not only compete, but significantly
outperform, existing CPU- and GPU- based clusters solving
the same problem. This, of course, is not intended to advo-
cate that all “big data” problems are best solved on a single
multicore, but rather to serve as a reminder of the importance
and dramatic benefits that can be obtained through multicore
performance engineering.
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