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People are good at rapidly extracting the ‘‘gist’’ of a
scene at a glance, meaning with a single fixation. It is
generally presumed that this performance cannot be
mediated by the same encoding that underlies tasks
such as visual search, for which researchers have
suggested that selective attention may be necessary to
bind features from multiple preattentively computed
feature maps. This has led to the suggestion that scenes
might be special, perhaps utilizing an unlimited capacity
channel, perhaps due to brain regions dedicated to this
processing. Here we test whether a single encoding
might instead underlie all of these tasks. In our study,
participants performed various navigation-relevant
scene perception tasks while fixating photographs of
outdoor scenes. Participants answered questions about
scene category, spatial layout, geographic location, or
the presence of objects. We then asked whether an
encoding model previously shown to predict
performance in crowded object recognition and visual
search might also underlie the performance on those
tasks. We show that this model does a reasonably good
job of predicting performance on these scene tasks,
suggesting that scene tasks may not be so special; they
may rely on the same underlying encoding as search and
crowded object recognition. We also demonstrate that a
number of alternative ‘‘models’’ of the information
available in the periphery also do a reasonable job of
predicting performance at the scene tasks, suggesting
that scene tasks alone may not be ideal for
distinguishing between models.

Introduction

Lab experiments have shown that scene recognition
is extremely fast: In less than 100 ms, human observers

can name the basic-level category of a scene (Oliva &
Schyns, 1997; Rousselet, Joubert, & Fabre-Thorpe,
2005), detect if a scene shows an animal (S. Thorpe,
Fize, & Marlot, 1996), and recognize scene attributes
such as naturalness, openness, and navigability (Greene
& Oliva, 2009; Joubert, Rousselet, Fabre-Thorpe, &
Fize, 2009). Some scene tasks, such as determining
whether or not a scene contains an animal, can be
performed in peripheral vision with minimal attention
(Li, VanRullen, Koch, & Perona, 2002; S. J. Thorpe,
Gegenfurtner, Fabre-Thorpe, & Bülthoff, 2001; Van-
Rullen, Reddy, & Koch, 2004). (Note that the term
‘‘peripheral’’ is used inconsistently in the field.
Throughout this paper, we use it to mean ‘‘outside the
rod-free fovea,’’ i.e., ‘‘extrafoveal.’’)

This rapid scene perception is problematic for many
models of visual encoding that assume complex
representations must be built up by serially attending to
various objects and regions in a scene. Models based on
visual search have suggested that the information
available preattentively consists of only individual
feature bands; in the absence of focused attention, one
cannot bind these features to either spatial locations or
other feature bands (A. M. Treisman & Gelade, 1980).
If such models are correct, then the only way scene
perception can be rapid and seemingly preattentive is if
it relies solely on individual feature bands, such as color
or orientation. Is this a possible explanation? For
example, the orientation of edges in a scene provides
information about its spatial layout: Perspective views
of man-made spaces contain diagonal lines, and
straight-on views contain mostly vertical and horizon-
tal lines. Recognizing the navigability of a scene might
just be a matter of distinguishing scenes with mostly
diagonal edges (hallways, streets, etc.) from scenes with
mostly horizontal/vertical edges (walls, building fa-
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cades, etc.). However, if this were the case, then we
would expect visual search for scenes to be easy: For
example, a navigable scene should pop out from non-
navigable scenes in a search display just like a diagonal
line would pop out in a display of vertical lines.
However, this is not the case (Greene & Wolfe, 2011).
Other easy scene discrimination tasks, such as animal
versus nonanimal, are similarly difficult when presented
as search tasks, which suggests that these discrimina-
tions are not based on a single, low-level feature
contrast (VanRullen et al., 2004). And although there
are some simple features that correlate with ‘‘animal-
ness’’ in the commonly used databases, these features
alone do not explain performance on these rapid
perception tasks (Wichmann, Drewes, Rosas, & Ge-
genfurtner, 2010).

It is generally agreed that individual feature bands
are not sufficient to represent the gist of a scene
(Rensink, 2001; A. Treisman, 2006; Wolfe, 2007). This
has led to suggestions that scene processing is special
and uses a separate pathway from visual search,
perhaps subject to less restrictive capacity limitations
and/or utilizing a different encoding of the visual input
(e.g., Wolfe, Võ, Evans, & Greene, 2011).

But rather than assuming that scene-related tasks
operate on a separate pathway with a different
encoding than other tasks, such as visual search, it is
more parsimonious to assume a common encoding
underlies both types of tasks. We have previously
argued (Rosenholtz, Huang, & Ehinger, 2012; Rosen-
holtz, Huang, Raj, Balas, & Ilie, 2012) that difficult
search may arise not from a need for serial attention to
bind features, but rather from limitations of peripheral
vision. Perhaps scene tasks are often easy and search
tasks often difficult because of the information
available in peripheral vision for those tasks. Scene
tasks may rely primarily on information readily
available in the periphery, and difficult visual search
tasks may require information that becomes unreliable
with distance from the point of fixation. In other
words, scene perception may be special but not in the
sense of using a different nonlimited capacity pathway.

Much of everyday scene perception takes place in
peripheral vision while attention is engaged in another
task. When navigating through the world, you are
generally doing many visual tasks simultaneously:
looking for a particular turn in the road, avoiding other
pedestrians, reading a sign, maybe checking a map on
your phone. Many of these tasks, especially those
involving reading, require fixating and attending an
object of interest. However, many navigational tasks,
such as avoiding obstacles, can be done while focal
attention is engaged elsewhere (Hyman, Sarb, & Wise-
Swanson, 2014; Tractinsky & Shinar, 2008). Because
the fovea occupies only a small portion of the visual

field, many of these everyday scene perception tasks
must take place primarily in the peripheral visual field.

Peripheral vision seems to play a particularly
important role in navigation tasks. People are worse at
navigating through real-world environments when their
peripheral vision is blocked by blinders (Toet, Jansen,
& Delleman, 2007, 2008) and worse at navigating
virtual environments when given a limited field of view
(Van Rheede, Kennard, & Hicks, 2010). Although
there is some evidence that scene information can be
processed more efficiently in central vision (Larson &
Loschky, 2009), peripheral vision may have the
advantage of parallel processing, allowing people to
quickly process information about a large proportion
of the space around themselves although with lower
quality than would be obtained in central vision. This is
vital for detecting obstacles and other hazards and
maintaining a sense of where the observer is in the
environment.

We have previously proposed a model of peripheral
vision, known as the texture tiling model (TTM). This
model is based on suggestions that peripheral vision
encodes its inputs with a rich set of summary statistics
(Rosenholtz, Huang, & Ehinger, 2012), pooled over
local regions of an image. These summary statistics
could probably be computed quite efficiently, allowing
for rapid scene perception. However, this encoding
would not necessarily provide a strong signal for visual
search because pooling features over sizeable spatial
regions might make it difficult for the visual system to
distinguish between a peripheral patch containing the
target and a number of other ‘‘distractor’’ items and a
patch containing only distractors.

Similar models have previously been proposed
explicitly to explain scene perception, utilizing different
types of features and pooling schemes. For example,
the GIST model (Oliva & Torralba, 2001) pools
orientation information over large spatial regions of an
image. This encoding predicts human performance on
scene layout tasks (Ross & Oliva, 2010) and context-
guided eye movements in visual search (Ehinger,
Hidalgo-Sotelo, Torralba, & Oliva, 2009). However,
more complex models that include more complex
features and/or smaller pooling regions are more
predictive of human performance on rapid perception
tasks (Crouzet & Serre, 2011). In particular, the texture
statistics of Portilla and Simoncelli (2000) are fairly
good predictors of human performance on simple rapid
scene perception tasks, and this is true when the
statistics are both pooled over an entire image (Crouzet
& Serre, 2011) and pooled within local regions that
overlap and tile the image (Rosenholtz, Huang, &
Ehinger, 2012).

The TTM explains performance on a number of
nonscene tasks, such as crowded letter recognition
(Balas, Nakano, & Rosenholtz, 2009; Keshvari &
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Rosenholtz, 2016) and symbol recognition (Keshvari &
Rosenholtz, 2016; Rosenholtz et al., 2012; Zhang,
Huang, Yigit-Elliott, & Rosenholtz, 2015). It also
correlates well with visual search performance
(Rosenholtz, Huang, Raj, Balas, & Illie, 2012; Zhang et
al., 2015). There is some evidence that TTM captures
the information lost and maintained in early vision,
possibly in area V2 (Freeman & Simoncelli, 2011;
Freeman, Ziemba, Heeger, Simoncelli, & Movshon,
2013). The model is (of course) by no means perfect.
Wallis, Bethge, and Wichmann (2016) have demon-
strated that matching Portilla and Simoncelli (2000)
statistics over small regions in the periphery does not
generate metamers indistinguishable from the original
image. Alexander, Schmidt, and Zelinsky (2014) have
shown that fixation patterns on search displays with
model-synthesized targets and distractors are different
than fixation patterns on original search displays,
suggesting the model lacks some information available
in peripheral vision. Finally, although model and
peripheral performance are correlated in crowding and
search tasks, there clearly remains variance not
explained by the model.

In spite of TTM’s imperfections, its previous
performance predicting crowding and visual search
tasks makes it a good candidate model for testing
whether a single encoding might underlie all of these
tasks (Rosenholtz, 2016). Several points are important
to note: First, we are not saying that the same process
identifies crowded objects, searches for a target, and
gets the gist of a scene. Obviously, at some level, these
tasks have their own underlying mechanisms. Rather,
we test the possibility that all these tasks are subject to
a single bottleneck and have available the information
from a single encoding as opposed to one bottleneck/
encoding for search and another for scenes. We suggest
that the information that gets through that bottleneck
governs which tasks are easy and which are hard.
Second, clearly the simpler model of vision is one with
one encoding rather than a different encoding for
scenes. As a result, the bar is low for supporting a
unified encoding in vision. We merely need at least one
model to perform reasonably well on the tasks in
question: visual crowding, visual search, and getting the
gist of a scene. Even if the model leaves some of the
variance unexplained and clearly does not capture
exactly the information available in that encoding (for
example, it does not match peripheral appearance),
good performance across a range of tasks calls into
question the significantly more complicated alternative
model that requires different encodings for different
tasks.

Here we asked whether TTM can predict perfor-
mance on scene perception tasks. We started by
gathering ground truth: We asked participants to
perform a variety of scene perception tasks while

fixating in scenes. We used a single fixation in each
image in order to control the visual input across the
periphery and masked the foveal portion of the image
to ensure that participants could only use extrafoveal
(peripheral and parafoveal) information to perform the
task. We then compared the results to performance
when free-viewing the scenes. We aimed to include a
wide variety of scene tasks in order to study scene tasks
with a range of difficulty. After establishing the range
of performance on these tasks, we investigated whether
the same model (TTM) that has previously shown
promise at predicting search and recognition of
crowded peripheral objects could also predict perfor-
mance on these scene perception tasks.

Experiment 1

We asked people to perform a variety of scene
perception tasks while fixating centrally on an image
with the foveal portion of the image blocked by a mask.
We used outdoor urban scenes as stimuli and looked at
four broad types of tasks, shown in Figure 1: detecting
an object in the periphery, identifying the general scene
category, identifying the specific geographic location
(e.g., New York or Paris), and describing the spatial
layout.

We picked tasks that were expected to have a wide
range of difficulty. Previous work has shown that basic-
level scene category and spatial layout information
(e.g., openness and navigability) can be identified in a
brief glance when foveal information is also available
(Greene & Oliva, 2009; Oliva & Torralba, 2001) as well
as with only peripheral information (Boucart, Moroni,
Szaffarczyk, & Tran, 2013; Boucart, Moroni, Thibaut,
Szaffarczyk, & Greene, 2013; Larson, Freeman, Ring-
er, & Loschky, 2014; Larson & Loschky, 2009; Tran,
Rambaud, Despretz, & Boucart, 2010). Object classi-
fication (e.g., ‘‘animal’’ or ‘‘dog’’) can be performed in a
glance and in the periphery (S. Thorpe et al., 1996; S. J.
Thorpe et al., 2001); however, these tasks typically use
images in which the object to be recognized is fairly
prominent. Detecting small objects in a multiobject
display normally requires eye movements (A. M.
Treisman & Gelade, 1980; Wolfe, 2007), so we might
expect this task to be harder than other scene
perception tasks.

It is not known whether people can identify the city
depicted in a scene in a single glance. On the one hand,
it seems like this task might require a detailed
examination of the scene to look for characteristic
styles of architecture, types of plants, signs, statues, and
other objects in the scene. However, computer vision
systems can predict the geographic location of an image
using coarse global GIST features (Hays & Efros, 2008)
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and automatically discover the regions and objects
representative of different cities, such as Paris, from
image patches (Doersch, Singh, Gupta, Sivic, & Efros,
2012). It has recently been argued that simple features
computed over the whole visual field are suitable for
recognizing specific locations (Eberhardt & Zetzsche,
2013; Eberhardt, Zetzsche, & Schill, 2016). If this is
true, then it may be possible to do localization tasks in
a single fixation on an image.

Methods

Participants

Twenty-four participants (16 female) were recruited
from the Massachusetts Institute of Technology
community. Participant age ranged from 19 to 51
(mean 28, SD 10); participants reported normal or
corrected-to-normal vision. All participants gave in-
formed consent and were paid to take part in the
experiment.

Design

The experiment was a between-subjects design with
half of the participants free-viewing the images and half
of the participants required to maintain fixation. In
each viewing condition, participants were asked the
same set of 20 yes/no questions about natural scenes.
Five questions were included from each of the four
question groups: presence/absence of an object, scene
category or gist, road layout, and geographic location.
The order of the question blocks and the order of trials

within each block were randomized for each partici-
pant.

Materials and apparatus

Stimuli consisted of 400 photos of urban environ-
ments. Each image appeared twice as a stimulus for two
different tasks: The scene category stimuli were also
used in the object detection tasks, and the geographic
location stimuli were used for the layout tasks. The 200
images used as stimuli for the road layout and
geographic location questions were collected from
Google Street View, and the 200 images used as stimuli
for the object presence and scene category questions
were taken from the SUN database (Xiao, Hays,
Ehinger, Oliva, & Torralba, 2010) or collected from the
Internet. The images used in the object presence tasks
were selected so that the target object appeared in only
one location in the image. Additionally, object presence
was counterbalanced with scene category, so that there
were an equal number of target-present and target-
absent trials in each scene category. Object size ranged
from 0.58 to 7.38 on the diagonal (mean 2.68, SD 1.38)
and object eccentricity (distance from the center of the
image to the center of the object) ranged from 4.38 to
10.98 (mean 7.98, SD 1.38). The target scene categories
(‘‘downtown,’’ ‘‘parking lot,’’ ‘‘plaza,’’ ‘‘residential
neighborhood,’’ and ‘‘shop front’’) were selected from
the list of scene categories in the SUN database.
Geographic location and road layout were also
counterbalanced so that each road layout class
appeared equally often in each city. For each of the
scene category and layout tasks, foil images were drawn
randomly from the other four categories. The foil

Figure 1. Examples of the types of scene perception tasks included in the experiment. An example of a target (‘‘yes’’ response) image

is shown with each question.
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images for the ‘‘Is this Europe?’’ geographic location
task were taken from Asia and North America, and the
foils for the city location tasks were a random selection
of other U.S./European cities and cities on other
continents. Images were grayscale and 640 pixels wide
by 480 pixels high in size. To ensure that participants
could not use foveal information to perform the tasks,
the center of each image was covered with a black circle
32 pixels (18 visual angle) in radius. Participants were
able to use any information outside this central region
to perform the task, including parafoveal information.
Images were presented at 158 by 208 visual angle on a 34
cm by 60 cm monitor (Acer GD235HZ 23.6-in. LCD)
with a resolution of 1920 by 1080 pixels and a refresh
rate of 120 Hz. In the fixating viewing condition,
participants were seated in a headrest with a viewing
distance of 50 cm from the screen in a dim room, and
eye position was tracked with an Eyelink 2000 eye-
tracking system. In the free-viewing condition, partic-
ipants did not use a headrest but were seated about 50
cm away from the screen.

Procedure

The 20 scene-perception questions were presented
in blocks of 40 images per block. At the start of each
block, participants were shown the question for that
block (for example, ‘‘Is this London?’’) and two
example images to illustrate the difference between the
‘‘yes’’ and ‘‘no’’ categories (e.g., a picture of London
and a typical distractor scene). In the fixating
condition, each trial was preceded by a central fixation
cross, and the image appeared only after the partic-
ipant was fixating the cross. Participants were required
to maintain fixation on the center of the image, and
whenever eye position moved more than 18 from the
central position, the image was replaced with a
uniform gray mask. Gaze position was tracked
monocularly (right eye only) at 1000 Hz. Eye-tracker
calibration was performed at the start of the experi-
ment by having the participant fixate nine targets with
a subsequent validation. Recalibration was done in
between trials as needed. In both viewing conditions,
image presentation time was unlimited, but partici-
pants were asked to respond as soon as they knew the
answer to the question by pressing 1 (‘‘yes’’) or 2
(‘‘no’’) on a keyboard. Participants were not given
feedback about whether or not their response was
correct.

Results and discussion

Trials with a response time greater than 3 SD above
the mean in each viewing condition were dropped from
analysis (1.3% of trials in the fixating condition and

1.9% of trials in the free-viewing condition). In
addition, one participant in the fixating condition
reversed the response keys during one block, so this
block was dropped from analysis. A scatterplot of the
accuracy on each task when fixating or free-viewing is
shown in Figure 2. Accuracy was averaged for each
subject across all the images within each task. Accuracy
in the free-viewing condition varied across the four task
types: people were most accurate on the object
detection tasks (average 92% correct) and scene
category tasks (87%), less accurate on the spatial layout
tasks (81%), and least accurate on the geographic
location tasks (70%). A one-way, within-subject AN-
OVA showed a significant effect of task type, F(3, 33)¼
34.95, p , 0.01, and post hoc Tukey honestly
significant difference (HSD) tests showed a significant
difference (p , 0.01) between each pair of tasks except
for the object detection and spatial tasks, which were
not significantly different from each other. There was
also a significant effect of task type in the central
fixation task (one-way, within-subject ANOVA), F(3,
33)¼ 34.7, p , 0.01. Post hoc Tukey HSD tests showed
significant differences (p , 0.01) between each pair of
task types except for the object detection and scene
layout tasks, which were not significantly different.
Participants in the central fixation condition were most
accurate on the scene category tasks (average 84%
correct), followed by the spatial layout (75%), object
detection (72%), and geographic location tasks (65%).

In both viewing conditions, people were more
accurate at the basic-level scene categorization tasks
and less accurate at the more specific geographic
location tasks: Recognizing a general scene category,
such as ‘‘plaza’’ or ‘‘downtown street,’’ was easier than
distinguishing London streets from those in Rome or
Tokyo. This parallels findings from rapid object
categorization: Recognizing a general category (‘‘ani-
mal’’) is easier and faster than recognizing more specific
categories (‘‘dogs’’ or ‘‘birds’’; Mace, Joubert, Nes-
poulous, & Fabre-Thorpe, 2009; VanRullen & Thorpe,
2001). Similarly, superordinate scene category (man-
made or natural) can be detected more quickly than a
basic-level category, such as ‘‘mountain’’ (L. C.
Loschky & Larson, 2010).

The difference between fixating and free-viewing
performance on each individual task is also shown in
Figure 2. In general, performance on these tasks was
slightly higher when participants were allowed to make
multiple fixations in the images: accuracy dropped
about 20% on average in the object detection tasks and
about 5% on average in the other scene perception
tasks. A 2 (viewing condition, between-subjects) 3 20
(task, within-subject) ANOVA with accuracy as the
dependent measure showed a significant main effect of
viewing condition, F(1, 440) ¼ 119.7, p , 0.01; a
significant main effect of task, F(19, 440) ¼ 118.3, p ,
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0.01; and a significant interaction, F(19, 440) ¼ 25.7, p
, 0.01. Bonferroni-corrected, one-sample t tests were
used to determine whether the difference in perfor-
mance was significantly different from zero. There was
a significant drop in performance for all of the object
detection tasks—people were less accurate at these
tasks when they were required to fixate centrally than
when free-viewing the images. However, performance
on most of the scene perception tasks was not
significantly different. The only tasks that showed a
significant performance drop when fixating were ‘‘Is

there a right turn only?,’’ ‘‘Are there no turns?,’’ and ‘‘Is
this London?’’.

Response times across tasks in the two viewing
conditions are shown in Figure 3. In both viewing
conditions, responses were fastest in the scene catego-
rization tasks and slowest in the geographic location
tasks. In general, response times were faster in the
fixating condition, which is somewhat surprising
because this condition should have been more difficult,
and the recorded response times include periods when
the stimuli was masked due to attempted saccades. On

Figure 2. Scatterplot of performance on scene perception tasks when free-viewing versus fixating centrally in the image and a graph

of the difference in accuracy for each task.

Figure 3. Comparison of response times for the scene tasks when fixating versus free-viewing.
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the other hand, participants in the fixating condition
may have responded more quickly because they were
only allowed to use the information from a single
fixation, and the free-viewing participants could
explore the images more thoroughly to ensure that their
responses were correct. Bonferroni-corrected paired t
tests were used to compare fixating and free-viewing
response times in the individual tasks; only the ‘‘Is there
a person?’’ and ‘‘Is this Los Angeles?’’ tasks were
significantly different (p , 0.05). Both tasks showed
faster response times in the fixating condition than in
the free-viewing condition.

It is perhaps not surprising that object detection
tasks are more difficult when fixating centrally in an
image. The target objects were all fairly small and
eccentric, and we designed the tasks so that people
could not guess object presence based on scene priors
(for every target-present scene, we included a target-
absent foil from the same scene category). The scene
tasks that were more difficult when fixating may also
have required detecting small, eccentric features in the
images. As shown in Figure 1, the left- and right-turn
images were often less distinctive than the other types of
street layout: Sometimes a turn onto a minor side street
would only be marked by a subtle gap in the buildings,
which might not be easily detected without an eye
movement. This may have led to more errors when
people were asked to detect left turns only or detect
which scenes had no turns. The ‘‘Is this London?’’ task
may also have particularly benefited from eye move-
ments that allowed people to read the text of signs or
look for evidence of left- or right-drive traffic.

However, most of the scene perception tasks were
not significantly more difficult when people were
required to perform the tasks in peripheral vision
without eye movements. This means that, for the most
part, the features needed to recognize general scene
categories, distinguish intersections from straight
roads, or recognize specific geographic locations are
readily available in peripheral vision. This by itself is an
interesting result: Although we expected from previous
studies that basic-level scene categorization and spatial
layout classification would be easy in peripheral vision,
it is interesting to note that even the finer-grained city-
level classification is not much harder in a single
fixation than when free-viewing scenes.

Now we return to the question of whether the same
visual encoding might underlie performance at both
these scene tasks and at visual search and crowded
object recognition. Or does one need to postulate a
separate channel for scene processing with different
capacity limitations and different available informa-
tion? In the next experiment, we tested the hypothesis
that a single encoding scheme might operate for both
sets of tasks by testing whether we could predict
performance on the scene tasks using an encoding

model that has previously shown promise at explaining
a number of visual search results.

Experiment 2

To better understand how these images might be
represented by the peripheral visual system, we used a
paradigm based on Balas et al. (2009). We created
images that captured, for each image, the information
we hypothesized to be available in peripheral vision
(essentially at a glance) then asked a second group of
participants to do the same 20 scene perception tasks
with these new, modified stimuli. An example of a
modified ‘‘mongrel’’ image is shown in Figure 4. This
encoding, which we call the TTM (Rosenholtz, Huang,
& Ehinger, 2012), represents images in terms of texture
statistics computed in pooling regions across the visual
field.

We looked at how accuracy in classifying these
modified images across the different tasks compared
to the accuracy of fixating participants performing
the same tasks in Experiment 1. To the extent that the
hypothesized encoding captures the information lost
and preserved by peripheral vision, performance free-
viewing the synthesized images should predict per-
formance when fixating the original images for a wide
range of tasks and stimuli. A good fit between model
predictions and performance but with variance
unaccounted for would suggest a need for model
improvement yet would still support a single encod-
ing model. On the other hand, if scene perception
requires additional information not available for
other tasks, such as visual search (Rensink, 2001; A.
Treisman, 2006; Wolfe, 2007), then the model should
incorrectly predict poor performance for fixated
scene tasks relative to free-viewing scene tasks. The
plot of model prediction (y) versus scene task
performance (x) would have a slope near zero rather
than near one with little of the variance accounted for
by the model.

We have previously demonstrated that our hypoth-
esized encoding predicts difficulty for a number of

Figure 4. An example image from Experiment 1 and the

corresponding mongrel version used in Experiment 2.
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visual search tasks (Rosenholtz, Huang, Raj, Balas, &
Illie, 2012; Zhang et al., 2015) as well as various
crowded object recognition tasks (Balas et al., 2009;
Keshvari & Rosenholtz, 2016; Zhang et al., 2015). The
current experiment investigates whether the same
model with the same set of features can also predict
performance on these scene tasks.

Methods

Participants

Sixty participants took part in the image classifica-
tion tasks on Amazon’s Mechanical Turk service. No
demographic data was collected from these partici-
pants. All of the individuals who participated in the
Mechanical Turk task were located in the United States
and had a good track record with the Mechanical Turk
service (at least 100 HITs completed with an acceptance
rate of 95% or better). All participants gave informed
consent and were paid to take part in the experiment.

Design

Participants were asked the same 20 yes/no questions
that had been presented in the central fixation task.
Questions were presented in blocks of 40 trials with

block and trial order randomized for each participant.
Participants completed as many blocks as they wished
(up to 20) and were able to quit the experiment at any
point between blocks. Each question block was
completed by 12 different participants.

Materials

For each of the stimuli images used in Experiment 1,
we created a corresponding full-field mongrel by
matching the texture statistics of a Gaussian noise
image using the method described by Rosenholtz,
Huang, and Ehinger (2012). The synthesis algorithm is
as follows: Starting at a central fixation point, the
algorithm tiles the image with square, overlapping
pooling regions whose size increases with distance from
fixation according to Bouma’s law (Bouma, 1970).
Within each pooling region, the model measures
feature statistics from the original image and coerces
the noise to have the same statistics using Portilla and
Simoncelli’s (2000) texture synthesis. Synthesis is
initiated by assuming that the foveal region, a 18 radius
around the fixation point, is reconstructed perfectly.
Then, moving outward, each subsequent pooling region
is synthesized using the previous partial synthesis result
as the seed for the texture synthesis process. The lowest
spatial frequency statistics are synthesized first, and

Figure 5. Model predictions (y-axis) versus performance. The left graph compares accuracy in the mongrel classification task to

accuracy of the fixating participants from Experiment 1. The dotted line indicates y ¼ x; if a model perfectly predicted fixating

performance, all tasks would lie on this line. The solid line is the best fit from linear regression (slope, intercept, and R
2 are indicated

on the graph). The right graph compares the drop in accuracy when performing these tasks with mongrels (vs. free-viewing the

unmodified images, Experiment 1) to the drop in performance from fixating versus free-viewing. If the drop in accuracy when using

mongrels was the same as the drop when fixating, points would fall on the dashed line, y ¼ x. Points below the line indicate the

conditions for which mongrel viewing impairs performance relative to the free-viewing condition more than the fixating does. The

solid line is the best fit from linear regression (slope, intercept, and R
2 are indicated on the graph).
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then higher spatial frequency information is added in a
coarse-to-fine manner. The process iterates a number of
times over the whole image. After each iteration, the
foveal region and the border between the image and its
background are reimposed on the output.

Procedure

Participants completed the classification tasks on
their own computer, using a web interface on the
Amazon Mechanical Turk website. Participants were
told that the purpose of the study was to determine how
well people could recognize images ‘‘distorted by digital
noise’’ and were shown examples of images with their
corresponding full-field mongrels. Participants were
told they would answer yes/no questions about scenes.
To discourage self-selection, participants were not
shown the specific question they would answer in that
block until after they pressed a button to start the
block. In each block, participants were given a single
question (for example, ‘‘Is this London?’’) and were
shown mongrel versions of the 40 images that had been
used as stimuli for that question in Experiment 1.
Participants were allowed to study each image for as
long as they wished and then clicked one of two buttons
beneath the image to indicate ‘‘yes’’ or ‘‘no.’’ Partici-
pants received feedback after each response.

Results and discussion

If a participant quit a block partway through, those
trials were recorded but dropped from analysis, and the
block was rerun with another participant. There were
also a few cases in which a trial was recorded multiple
times due to a browser issue; these duplicates were also
dropped. A total of 324 trials were dropped, leaving
9,600 trials.

Because participants were not required to complete all
20 questions in the online classification tasks, we were
worried that they might opt out of blocks they found
particularly difficult, leaving those tasks to be completed
by participants with more expertise. This could poten-
tially be an issue for the geographic location tasks: For
example, the ‘‘Is this New York?’’ task might have
attracted a disproportionate number of New Yorkers if
other participants dropped out of this task. However,
this behavior was not very common. We marked blocks
as ‘‘dropout’’ blocks if a participant completed 25% or
more of the block but opted not to submit their results.
There were only five dropout blocks in the mongrel
classification task. Four of these were object detection
blocks (e.g., ‘‘Is there a car?’’), and one was a geographic
location task (‘‘Is this Los Angeles?’’). It should be noted
that we cannot say why participants abandoned these
tasks; they may have quit because they found the tasks

particularly difficult, or they may have simply gotten
bored or distracted or run into technical problems.
Regardless, we do not think this low rate of dropout
would have significantly affected the results.

For each classification task, we compared accuracy
in the mongrel classification task to the accuracy of
participants fixating in the same images (Figure 5, left
graph). A linear regression across tasks shows that
accuracy with the modified images is generally similar
to the accuracy when free-viewing for most of these
tasks. The object detection tasks are the exception:
These tasks were more difficult for participants in the
mongrel classification task than they were for partic-
ipants fixating in the original images.

With this analysis, it is not clear whether the model is
actually predicting fixating performance or just the
baseline (free-viewing) difficulty of these tasks. Most of
these tasks are not much harder in the periphery, which
means any model that can predict free-viewing perfor-
mance will be a good predictor of the fixating
performance. To address this issue, we also compared
the average performance with the modified images to the
average drop in performance on each task: the difference
in accuracy between fixating and free-viewing partici-
pants. This is the difference in performance predicted by
the type of information loss represented by our model
visual crowding. This predicted difference was compared
to the actual difference between fixating and free-
viewing performance that we observed in Experiment 1.
Scatterplots of the actual versus predicted difference by
task is shown in Figure 5 (right graph). Linear regression
was performed to determine how well the model
predicted the difference between fixating and free-
viewing across the range of scene perception tasks; this
fit explained 75% of the variance across tasks. This

Figure 6. (a) An example stimulus image from Experiment 1. (b–

d) Blurred versions of this image used in Experiment 3.
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suggests the TTM can explain a good portion of the
difficulty of these scene perception tasks although the
slope of the linear fit is not quite one. This seems to be
due primarily to the object detection tasks: the TTM
overestimates how difficult these tasks should be when
fixating.

The difference between the mongrel classification
and free-viewing performance was generally similar in
magnitude to the difference between the fixating and
free-viewing conditions in Experiment 1. Tasks that
were easy when fixating were about equally easy when
free-viewing mongrel images, and tasks that were more
difficult to perform when fixating were similarly
difficult with the mongrels. The mongrel images
simulate the effects of crowding in the peripheral visual
field, so the similar drop in accuracy suggests that scene
perception when fixating may be partially explained by
crowding.

It is impossible to prove that an encoding model is
correct simply by showing that it can predict behavioral
results. One can only gather evidence in support of the
model. If one tests a model on only a handful of tasks,
one runs the risk that those tasks may not discriminate
well between models, a point we return to in the next
experiment. The local statistics encoded in our model
have been previously shown to predict performance in
other peripheral vision tasks, including visual search and
crowding (Balas et al., 2009; Rosenholtz, Huang, Raj,
Balas, & Illie, 2012). Combined with these previous
findings, the current results from these scene perception
tasks provide further evidence that the peripheral visual
field uses a statistical summary encoding, pooling visual
features over local regions of the peripheral visual field.
This pooled, summary information is sufficient for many
scene perception tasks, such as determining whether a
scene is a residential or city street, whether a road turns
left or right, or whether an image depicts an American or
European city.

Experiment 3

As a control, we also wanted to know how well these
scene tasks alone could discriminate between models of
peripheral vision. To test this, we degraded the scene
images in ways that differed significantly from the
information loss modeled in Experiment 2 and asked to
what extent those image degradations predicted per-
formance on the scene tasks. There are many different
types of noise that could be used to degrade images, but
for simplicity, we chose blur. If performance with these
other image degradations could also predict perfor-
mance on the scene tasks, we should be wary of
choosing a model of peripheral vision based on these
tasks alone.

We tested three image degradations. First, visual
acuity falls off with eccentricity in the periphery
(Anstis, 1974). We could mimic this acuity loss by
applying an eccentricity-based blur to our original
images (Figure 6b). We also generated two sets of
uniformly blurred stimuli with mild (r¼4 pixels¼2 c/8,
Figure 6c) or moderate (r¼ 8 pixels¼ 1 c/8, Figure 6d)
Gaussian blur.

To be clear, this was not a test of which model of
peripheral vision is the best. We compared performance
with the blurry image degradations to our model to get
a sense of how well the scene tasks discriminated
between these models. However, even if one of these
image degradations better predicted performance on
the scene tasks than our summary statistic model, we
could not conclude that the ‘‘model’’ represented by
that image degradation is a better general-purpose
peripheral encoding model than the TTM. None of the
tested blurs represented a viable model of peripheral
encoding. None of the blurs could explain crowding
(Lettvin, 1976). The two uniform blurs could not
explain peripheral acuity experiments (Anstis, 1974; L.
Loschky, McConkie, Yang, & Miller, 2005) because the
blur is too high and not eccentricity-dependent.

Methods

Except as noted below, all methods were the same as
in Experiment 2.

Participants

A total of 197 participants took part in the image
classifications tasks on Amazon’s Mechanical Turk
service. None of these participants had taken part in
the mongrel classification task.

Design

The three image conditions were run separately in a
between-subjects design, so each participant only saw
images from one of the three conditions.

Materials

We created uniformly blurred versions of our stimuli
by filtering the images with a Gaussian filter with r¼ 4
pixels (2 c/8 blur) or 8 pixels (1 c/8 blur). The blur-with-
eccentricity images were created by convolving each
pixel in the image with an averaging disk filter of radius
1þ 0.43�ecc pixels (or 0.03 þ 0.0134�ecc8), where ecc is
eccentricity of the pixel in degrees. This radius is
approximately one third of the threshold letter height
reported by Anstis (1974). The same falloff with
eccentricity would be obtained using the frequency
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cutoff formula of L. Loschky et al. (2005):

fcut ¼ 43:1
E2

E2þ ecc
ð1Þ

E2 is the eccentricity at which the resolution is
halved, so higher values denote less blur; we assume E2
¼ 1.73. This is a lower value of E2 than suggested in
Miller et al. (E2¼ 3.11), but various papers have found
a range of best-matched values for E2: Geisler and
Perry (1998) use E2¼ 2.3; Abdelnour and Kalloniatis
(2001) use E2¼ 2.5. Because we thought that
eccentricity blur alone would probably underpredict
the information loss in the periphery, we made a point
of erring on the side of too much blur rather than too
little. Using E2¼ 1.73 gives a level of blur that should
be just barely detectable when fixating centrally in the
images. Examples of the stimuli from the three blur
conditions are shown in Figure 6.

Results and discussion

As in Experiment 2, we dropped trials from
incomplete blocks and trials that were duplicated due
to recording issues. There were 250 dropped trials in
the 8-pixel blur condition and 173 dropped trials in

each of the other blur conditions, leaving 9,600 trials in
each condition. As in Experiment 2, we looked at how
often participants abandoned blocks that were partially
(at least 25%) complete to determine whether partici-
pants might be opting out of tasks they found
particularly difficult. This was most common in the 8-
pixel blur condition (10 blocks abandoned) and less
common in the 4-pixel blur and blur-with-eccentricity
conditions (four and five blocks abandoned, respec-
tively). A plurality of the abandoned blocks (five) in the
8-pixel blur condition involved the object detection
tasks.

For each classification task, we compared the
average performance of participants viewing the
modified images to the average free-viewing perfor-
mance on that task from Experiment 1. This is the
difference in performance predicted by the type of
information loss represented in each of the models
(eccentricity blur or one of the two types of uniform
blur). This predicted difference was compared to the
actual difference between the fixating and free-viewing
performance that we observed in Experiment 1.
Scatterplots of the actual versus predicted difference by
task for the three models is shown in Figure 7. Linear
regression was performed for each model to determine
how well it predicted the difference between fixating

Figure 7. Model predictions (y-axis) versus performance. Graphs compare the drop in accuracy when performing these tasks with

blurred images versus the drop in performance from fixating versus free-viewing. The dotted line indicates y¼ x; if a model perfectly

predicted fixating performance, all tasks would lie on this line. The solid line is the best fit from linear regression (slope, intercept, and

R
2 are indicated on the graph).
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and free-viewing across the range of scene perception
tasks.

The images that were blurred to simulate the falloff
in visual acuity with eccentricity are the best linear fit to
the accuracy difference observed between the fixating
and free-viewing conditions in Experiment 1 (R2¼
0.62). However, this is lower than the fit to our model
of crowding (TTM) from Experiment 2 (R2¼ 0.75). In
addition, most of the points lie above the diagonal,
which means that people were generally better at
performing these scene tasks when free-viewing eccen-
tricity-blurred images than when fixating the original
images. This suggests that the falloff in acuity over the
peripheral visual field does not completely explain the
difference between fixating and free-viewing perfor-
mance; there is some additional information loss in the
periphery, and we can see the effects of that loss in
performance of the scene tasks.

The two uniform blur conditions were poorer fits to
the accuracy difference observed in Experiment 1.

Performance with the moderately blurred (8-pixel blur)
images was generally worse than fixating performance,
and the linear fit was similar to the eccentricity-blurred
images (R2 ¼ 0.61). Performance with the less blurred
(4-pixel blur) images was more similar to fixating
performance on average, but the linear fit was worse
(R2 ¼ 0.50). This suggests that some of the fixating
performance on these scene perception tasks may be
explained by low-resolution information in the pe-
riphery. However, models that included some higher
spatial frequency features (the eccentricity blur and
full-field mongrels) fit the data better than these low-
resolution models.

Finally, it is worth asking how well each model can
predict responses to the individual images used in the
scene perception tasks. To investigate this, we used the
method from Crouzet and Serre (2011) to look at the
correlations between model responses and the re-
sponses of participants in the fixating condition of
Experiment 1. The results are shown in Figure 8. The

Figure 8. Correlations between fixating participants’ responses and models to the individual images used in these tasks. The left-hand

set of bars shows overall correlations; the circles and diamonds indicate baseline correlations obtained from permuting responses to

the images within each task or within each task and ground-truth response condition (‘‘yes’’ or ‘‘no’’). Ninety-five percent confidence
intervals were computed but are too small to show in this figure. The right-hand bars show the difference between the overall

correlation and the latter control and indicate how well each model captures the variation in responses, which is not simply due to

the model getting the correct ground-truth response.
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percentage of fixating participants who said ‘‘yes’’ to a
given image was compared to the percentage of
workers who said ‘‘yes’’ to the modified version of that
image in the classification tasks. We also show the
correlation between fixating and free-viewing partici-
pants (Experiment 1) in each task. Following Crouzet
and Serre (2011), we compared overall correlations to
two baselines: a standard permutation test in which the
responses were randomly shuffled within each task and
a restricted permutation test in which the responses
were randomly shuffled within each task and ground-
truth response category (e.g., just within the ground-
truth ‘‘no’’ images for the ‘‘Is there a car?’’ task). The
latter baseline indicates how much of the overall
correlation is due to a model getting the ground-truth
response correct. The differences between the overall
correlation and the within-response baseline (shown
separately in Figure 8) show how well each model
captures the variation in image difficulty, separate from
how well the model could classify the images.

The left sets of bars in each part of Figure 8 show the
overall correlations between fixating participants and
models. Fixating responses correlated most highly with
free-viewing responses and with the two models that
had the least image distortion (blur with eccentricity
and 8-pixel Gaussian blur). This reflects the fact that
most of these tasks can be performed nearly as well in
the periphery as when free-viewing: Responses when

fixating should be well correlated to responses when
free-viewing the original (or very slightly distorted)
images. However, most of this correlation is due to the
models getting the ground-truth response correct:
Fixating participants were generally accurate at most of
these tasks as were free-viewing participants and the
less-blurred models. More important is the comparison
between the overall correlation and the permutation
test (right sets of bars), which shows how well each
model captures the range of difficulty of the individual
images. Most of the models do about equally well when
compared in this fashion; the best correlating model
varies across tasks. For most tasks, free-viewing
performance is well correlated with fixating perfor-
mance even after controlling for ground-truth correct
responses. The object detection tasks are the exception,
but this is because the free-viewing responses were
nearly at ceiling. This suggests that this type of
correlation analysis may not be ideal for distinguishing
between models that preserve too much image infor-
mation because fixating responses are generally highly
correlated to free-viewing responses.

Finally, it should be reiterated that blur alone is not
a viable model of peripheral vision because it would not
explain performance on a range of tasks. For example,
difficulty identifying a crowded peripheral target
compared to an unflanked target cannot be explained
by blur or loss of acuity (Lettvin, 1976). However, the

Figure 9. Accuracy of Mechanical Turk participants compared to in-lab participants (Experiment 1). Both groups are performing the

tasks while free-viewing.
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fact that in the present work several different levels of
blur as well as TTM did reasonably well at predicting
scene task performance and the fact that many scene
tasks cluster at the easy end of the spectrum—they can
be performed very rapidly in a single fixation—means
they may not be the best tasks for discriminating
between models of peripheral vision. Although our
scene tasks covered a range of difficulty, most of them
were not much more difficult when fixating than when
free-viewing. This makes it difficult to determine
exactly what features are preserved in peripheral vision
because many of these tasks may only require a very
coarse representation of the image. However, this issue
is not unique to scene perception tasks. Most visual
tasks probably do not require all of the information
available to the visual system, which is why it is
imperative to test any model of vision on a wide range
of tasks.

Experiment 4

One concern with the design of Experiments 2 and 3
is that the image classification tasks were run online
using a different participant pool from the one used in
the lab-based fixation and free-viewing tasks. Previous
work has demonstrated that participants in online
experiments on Amazon Mechanical Turk generally
give the same performance as participants run in the
lab despite the differences in experiment setting and
differences in the average demographics of these groups
(Crump, McDonnell, & Gureckis, 2013). However,

because we are using image classification data from an
online task to predict in-lab performance, it is
particularly important for our study to know that the
online and in-lab participants have similar performance
on these scene tasks. If the online participants have a
very different baseline performance on these tasks—for
example, because they are more likely to guess
randomly or more likely to be experts at recognizing
specific cities—then their performance on the image
classification tasks is less useful for predicting the
information loss in peripheral vision. To compare
baseline performance, we asked Mechanical Turk
participants to perform the free-viewing classification
tasks from Experiment 1, using the same online
interface as had been used in Experiments 2 and 3.

Methods

The methods were the same as in Experiments 2 and
3, but instead of degraded images, participants
performed the yes/no classification tasks on the
original, unmodified images used in Experiment 1. As
in Experiment 1, the center of each image was covered
by a black circle 32 pixels in radius, and participants
were not given feedback after each response. A total of
103 participants took part in the tasks on Amazon’s
Mechanical Turk service. None of these participants
had taken part in the other classification tasks, and this
experiment was run after we had finished data
collection for those tasks in order to ensure that there
was no opportunity for participants in the degraded

Figure 10. Model comparisons using the free-viewing accuracy of Mechanical Turk participants as the baseline for the models.
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image conditions to see any of the original, unaltered
images.

Results and discussion

As in Experiments 2 and 3, we dropped trials from
incomplete blocks and trials that were duplicated due
to recording issues. In total, 361 trials were dropped,
leaving 9,600 trials. To determine whether participants
were opting out of certain tasks, we looked at how
often blocks were partially (at least 25%) completed
and then abandoned. There were 12 such blocks in
Experiment 4: one was an object-detection task (‘‘Is
there a fire hydrant?’’), three were scene categorization
tasks, four were spatial layout tasks, and four were
geographic location tasks. The ‘‘Is this Paris?’’ task was
the only individual task abandoned by more than one
participant; three of the 12 dropped blocks that
involved this question.

Overall, the performance of the Mechanical Turk
participants was very similar to the performance
obtained in the lab. An accuracy comparison with the
best-fit linear regression is shown in Figure 9. The
correlation between the groups on these scene tasks is
0.91, R2 ¼ 0.83. The intercept of the regression is near
zero, which suggests that there is no great difference in
the mean performance of the two participant pools;
Mechanical Turk participants aren’t systematically
underperforming compared to the lab-based partici-
pant pool. The slope of the regression is near one,
which suggests that there is no difference between the
groups across harder or easier tasks as might be the
case if Mechanical Turk participants were opting out of
these tasks or guessing more frequently in the harder
tasks.

Because the performance on free-viewing tasks is
similar, it seems unlikely that the results in Experiments
2 and 3 are driven by differences between the
Mechanical Turk and lab-based participant pools. We
can also use the Mechanical Turk free-viewing perfor-
mance as an alternate ‘‘ground-truth’’ baseline for the
image classification tasks in Experiments 2 and 3;
rather than subtracting the lab participants’ free-
viewing accuracy from the mongrel or blurred image
classification, we can subtract the Mechanical Turk
participants’ average free-viewing accuracy. This may
give a better estimate of the cost of each image
manipulation if the small performance differences
between the online and lab-based participants are
actually due to systematic differences between these
groups and not just random noise. Comparisons using
this alternate baseline are shown in Figure 10. In
general, the results are similar, but the linear fits are
better, particularly for the 4-pixel blur and blur-with-
eccentricity images.

This does not mean that uniform Gaussian blur is a
correct model for the peripheral visual field; that would
be inconsistent with many previous results. However, it
does suggest that many scene tasks can be performed
with only the low spatial frequency portions of the
image (as previously shown by Schyns & Oliva, 1994).

General discussion

We compared fixating and free-viewing performance
on a range of scene perception tasks: detecting objects,
recognizing scene categories and spatial layout, and
identifying specific geographic locations. For many of
these tasks, accuracy was not significantly different
when fixating centrally or free-viewing the images,
consistent with previous work showing that people are
able to accurately perform a variety of scene perception
tasks in a single fixation on a briefly presented image.
Only the object detection tasks were consistently more
difficult when fixating relative to free-viewing. Because
the fovea occupies only a small percentage of the visual
field, much of the visual processing that occurs during a
single fixation on a scene must occur in the parafovea
and periphery.

It is quite likely that only a limited set of visual
features are necessary to perform some of the scene
tasks tested. For example, the GIST model uses only a
subset of the statistics in the TTM (Balas et al., 2009;
Freeman & Simoncelli, 2011; Rosenholtz, Huang, &
Ehinger, 2012; Rosenholtz, Huang, Raj, Balas, & Illie,
2012), computed over very large pooling regions, but
this is sufficient to recognize basic-level scene categories
and spatial layout (Oliva & Torralba, 2001; Ross &
Oliva, 2010). Because scene perception may be accom-
plished with only a subset of the features available in
the periphery, these tasks alone are not ideal for
determining exactly what features are available to
extrafoveal vision. However, the goal of these experi-
ments is not to find the bare minimum set of features
required for each individual scene perception task, but
to test whether a single model of peripheral vision can
explain performance on a wide range of tasks,
including scene perception, crowding, and visual
search. Because each visual task may be accomplished
with a different subset of features, no single type of task
is ideal for testing models of peripheral vision; a general
model must be validated with a range of tasks.

Additionally, we cannot use these results to dismiss
the role of attention in scene perception tasks. Previous
work seems to rule out a model of scene perception
based on serially attending to each object in the scene in
favor of a more holistic, global process for tasks such as
rapid scene categorization. However, responses in our
tasks were relatively slow, and even in the fixating
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condition, people may have been able to deploy covert
attention to multiple regions of the image. In particu-
lar, people may have tried to use covert attention to
search for the targets in the object detection task
although covert search would still be constrained by the
information loss in peripheral vision.

These scene perception results, when combined with
previous work on crowding and visual search, provide
support for a summary statistic encoding in peripheral
vision. According to this account, scene perception and
classic search tasks use the same underlying visual
encoding, and whether a task is difficult or easy to do in
a glance depends on whether the necessary features are
readily available in the periphery. The peripheral visual
system computes a rich set of summary statistics over
some feature space within pooling regions distributed
across the visual field. Coarsely pooled features are
sufficient for extracting the broad structures and
texture surfaces in the scene, so this encoding can
support scene perception tasks such as identifying the
basic-level scene category and recognizing the spatial
layout of the scene. It also conveys some information
about objects in the scene and their likely locations, but
it is not sufficient to perform tasks that require very
fine-grained feature localization or discrimination, such
as visual search or crowded letter recognition or
peripheral recognition of objects in scene contexts in
the current study.

However, the information available may be perfectly
sufficient for everyday navigational tasks. People can
determine in a glance if a street is mostly commercial or
residential buildings and even recognize the kind of
building and road details that distinguish different
cities, such as Paris or Los Angeles. This kind of scene
gist information may be useful for way-finding tasks.
People are also able to extract spatial layout informa-
tion peripherally, and this perception of surface
orientation and position may help people avoid and
detect obstacles without requiring focal attention.
Furthermore, although object detection is notably
worse in the periphery, scene category and layout may
be used to guide attention and eye movements to the
likely location of objects. Although the representation
in the periphery is impoverished relative to the fovea, it
may be well designed for navigation, allowing people to
quickly process a wide field of view in order to build
and maintain a representation of the space around
themselves.

Assuming that there is a single, general encoding
mechanism underlying a range of visual tasks is more
parsimonious than assuming different encoding mech-
anisms for different tasks, e.g., a separate pathway for
scene perception (Wolfe, 2007) that is separate from the
visual processing of other types of displays or different
kinds of attention for scenes (Rensink, 2001; A.
Treisman, 2006). We propose that all visual tasks are

affected by a single bottleneck: a compressed, summa-
ry-statistic representation in peripheral vision that
limits the features available across the visual field.
Which tasks are difficult or easy depends on how well
they can be accomplished with this representation.
Some tasks, such as recognizing the gist of a scene, are
easily accomplished in the periphery with these limited
features or a subset thereof, and other tasks, such as
searching for small objects in clutter, are extremely
difficult. Determining exactly what features are avail-
able across the peripheral visual field is difficult because
different tasks may use different subsets of features and
rely on their own underlying mechanisms to process
those features. However, we do not need a perfect
model of the periphery in order to test the basic
question of whether a single encoding can explain a
range of results. Although the TTM is not a perfect
model of the feature representation in the periphery, it
is close enough to be able to predict performance on a
variety of visual tasks. The fact that this model can also
support scene perception suggests that there is no need
to assume separate pathways for scene perception
versus other visual tasks: A single model of peripheral
encoding can explain performance across tasks. This
suggests the possibility of a unified account of visual
encoding underlying much of visual processing.

Keywords: scene perception, peripheral vision, crowd-
ing, parafoveal vision, navigation
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