
Assortment and Inventory Optimization:
From Predictive Choice Models

to Near-Optimal Algorithms
by

Ali Aouad
M.S. in Applied Mathematics, Ecole Polytechnique (2013)

Submitted to the Operations Research Center
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Operations Research Center

July 31, 2017
Certified by. .

Vivek Farias
Associate Professor

Thesis Supervisor
Certified by. .

Retsef Levi
Professor

Thesis Supervisor

Accepted by .
Patrick Jaillet

Chairman, Department Committee on Graduate Theses

2

Assortment and Inventory Optimization:

From Predictive Choice Models to Near-Optimal Algorithms

by

Ali Aouad

Submitted to the Operations Research Center
on July 31, 2017, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

Finding optimal product offerings is a fundamental operational issue in modern retail-
ing, exemplified by the development of recommendation systems and decision support
tools. The challenge is that designing an accurate predictive choice model generally
comes at the detriment of efficient algorithms, which can prescribe near-optimal de-
cisions. This thesis attempts to resolve this disconnect in the context of assortment
and inventory optimization, through theoretical and empirical investigation.

First, we tightly characterize the complexity of general nonparametric assortment
optimization problems. We reveal connections to maximum independent set and
combinatorial pricing problems, allowing to derive strong inapproximability bounds.
We devise simple algorithms that achieve essentially best-possible factors with respect
to the price ratio, size of customers’ consideration sets, etc.

Second, we develop a novel tractable approach to choice modeling, in the vein
of nonparametric models, by leveraging documented assumptions on the customers’
consider-then-choose behavior. We show that the assortment optimization problem
can be cast as a dynamic program, that exploits the properties of a bi-partite graph
representation to perform a state space collapse. Surprisingly, this exact algorithm is
provably and practically efficient under common consider-then-choose assumptions.
On the estimation front, we show that a critical step of standard nonparametric
estimation methods (rank aggregation) can be solved in polynomial time in settings of
interest, contrary to general nonparametric models. Predictive experiments on a large
purchase panel dataset show significant improvements against common benchmarks.

Third, we turn our attention to joint assortment optimization and inventory man-
agement problems under dynamic customer choice substitution. Prior to our work,
little was known about these optimization models, which are intractable using mod-
ern discrete optimization solvers. Using probabilistic analysis, we unravel hidden
structural properties, such as weak notions of submodularity. Building on these find-
ings, we develop efficient and yet conceptually-simple approximation algorithms for
common parametric and nonparametric choice models. Among notable results, we
provide best-possible approximations under general nonparametric choice models (up

3

to lower-order terms), and develop the first constant-factor approximation under the
popular Multinomial Logit model. In synthetic experiments vis-a-vis existing heuris-
tics, our approach is an order of magnitude faster in several cases and increases
revenue by 6% to 16%.

Thesis Supervisor: Vivek Farias
Title: Associate Professor

Thesis Supervisor: Retsef Levi
Title: Professor

4

Acknowledgments

My PhD experience is a story of all the people that I met: scholars, mentors and

friends. I would like to thank my advisors for their strong dedication and unflinching

support. Their concern and accessibility helped me through the slings and arrows of

PhD life. Working alongside Prof. Retsef Levi has been a humbling and inspiring

experience. I greatly admire Retsef’s style as a scholar, advancing theory, exhila-

rating students in the classroom, training and mentoring researchers, and imparting

operational insights to large organizations, beyond the academic sphere. He taught

me rational optimism when encountering difficult obstacles in research, and patiently

ingrained the idea of favoring concision and elegance over formalism in a proof. This

thesis work would have been impossible without his guidance, in particular the sim-

plified analysis developed in Chapter 5. This thesis also owes to the groundbreaking

work of Prof. Vivek Farias on nonparametric choice models. My intellectual interac-

tions with Vivek have shaped my aspirations as a scholar, in particular, on finding

balance between theory and practice. I enjoyed our creative and enthusiastic discus-

sions on new research directions. I am particularly thankful he introduced me to the

areas of statistical learning and reinforcement learning; I hope to pursue this interest

in the future and gain more familiarity with these fields. I am immensely grateful

to Prof. Danny Segev for his dedication, technical guidance and friendship. Danny

stands as a remarkable problem-solver; I learnt a great deal from his expertise in

combinatorial optimization and approximation algorithms. He also stirred my inter-

est toward location theory, which resulted in an exciting research paper on ordered

median models. The little structure and clarity I could reach in my technical writing

is indebted to his acute comments and constructive criticisms – always enlivened by

an unmatched sense of humor.

I would like to sincerely thank Profs. Georgia Perakis and Huseyin Topaloglu for

being on my thesis committee and providing very helpful comments throughout the

job search. I am greatly appreciative of the support of Infoscout Inc, a data provider

and market analysis company, in particular the CEO, Jared Schrieber, and the Head

5

of Insights, Prabhath Nanisetty. Applying our models to real-world choice data has

been an important step in our research investigation in Chapter 3.

Finally, this thesis work has been favored by numerous discussions with lab-

mates and friends in the Operations Research Center and MIT more broadly, in-

cluding Arthur Flajolet, Rajan Udwani, Lennart Baardman, Will Ma, Rim Harriss

and Charles Thraves. On many occasions, my discussions with Prof. Patrick Jaillet

helped me gain perspective on my research path. Prof. Kris Ferreira gave me judicious

advice during this critical year, and I enjoyed our refreshing research conversations on

the interface between operations and marketing. Miles Lubin and Sebastien Martin

shared instrumental advice to efficiently implement the algorithms described in this

thesis. Collaborating with Prof. Yaron Shaposhnik to improve the patient flow at

Brigham Women’s Hospital was one of the most instructive research project. We have

also learned together the vicissitudes of real-world data collection. My friend Andrew

Li stimulated my interest for matrix completion problems during our research trip to

French-Polynesia; our friendship will be a lasting memory from my PhD time.

I am grateful that this journey was made possible in such a vibrant and stimulating

environment. Life in Cambridge would not have been the same without my roommates

and friends, Michael Gharbi and Remi Lam. Most of all, I would like to express my

deepest appreciation to my parents, who made sacrifices over the years to provide me

the best opportunities. Their open-mindedness and generosity inspires me in every

step I take.

6

To my love, Carole

8

Contents

1 Introduction 19

1.1 Choice Modeling: Practical Aspects 23

1.2 Our Results . 26

1.2.1 Chapter 2 – Complexity of non-parametric assortment opti-

mization models . 28

1.2.2 Chapter 3 – Consider-then-choose choice models 28

1.2.3 Chapter 4 – Joint assortment and inventory decisions:

Nonparametric models . 29

1.2.4 Chapter 5 – Joint assortment and inventory decisions:

Multinomial Logit model . 30

1.3 Further Readings . 31

2 Complexity of Nonparametric Assortment Optimization Models 35

2.1 Introduction . 35

2.1.1 Our results . 37

2.1.2 Subsequent work . 38

2.1.3 The nonparametric ranking preferences model 39

2.2 Hardness Results . 40

2.2.1 Relation to maximum independent set 40

2.2.2 Relation to the Min-Buying problem 43

2.3 Approximation Algorithms . 46

2.3.1 Approximation in terms of price ratio 46

2.3.2 Approximation in terms of list length 50

9

2.4 Concluding Remarks . 51

3 Consider-then-Choose Choice Models 53

3.1 Introduction . 53

3.1.1 Our results . 56

3.1.2 Related literature . 58

3.2 Modeling Approach and Problem Formulation 61

3.3 Dynamic Program for Unique-Ranking Models 64

3.4 Modeling the Consideration Sets . 70

3.4.1 Induced Intervals Structure 70

3.4.2 Laminar properties . 72

3.4.3 Disjunctive consideration sets 75

3.5 General Dynamic Programming Formulation 76

3.6 Modeling the Ranking Heterogeneity 81

3.6.1 Similar rankings . 81

3.6.2 Quasi-convex preference lists 82

3.6.3 Two-feature compensatory model 84

3.7 Computational performance . 85

3.7.1 Benchmark: Integer Programming formulation 86

3.7.2 Computational set-up . 86

3.7.3 Numerical results . 87

3.8 Predictive Experiments . 89

3.8.1 Estimation Methodology . 91

3.8.2 Synthetic data . 94

3.8.3 Purchase panel data . 97

3.9 Concluding Remarks . 99

4 Joint Assortment and Inventory Decisions: Nonparametric Models101

4.1 Introduction . 101

4.1.1 Our results . 104

4.1.2 Problem formulation . 108

10

4.2 General choice model . 110

4.2.1 Algorithm under horizontal differentiation 111

4.2.2 Analysis under horizontal differentiation 114

4.2.3 Refined performance guarantee 118

4.2.4 Price differentiation . 119

4.3 Approximation Algorithms for the Intervals Choice Model 121

4.3.1 General outline . 121

4.3.2 Logarithmic approximation in the number of products 123

4.3.3 Log-logarithmic approximation in the price ratio 131

4.4 Nested Choice Model and General Demand Distribution 135

4.4.1 Technical overview . 135

4.4.2 Proof of Lemma 4.4.2 . 137

4.4.3 Proof of Lemma 4.4.3 . 139

4.5 Computational Experiments . 143

4.5.1 Heuristics and their implementation 143

4.5.2 Instance generation . 145

4.5.3 Results . 147

4.6 Concluding Remarks . 149

5 Joint Assortment and Inventory Decisions: Multinomial Logit Model153

5.1 Introduction . 153

5.1.1 Results and techniques . 154

5.1.2 Problem formulation . 157

5.1.3 Related literature . 159

5.2 Preliminaries . 161

5.2.1 Extensions of submodular maximization 161

5.2.2 Subadditivity of the expected revenue function 163

5.3 Core Algorithm with Evaluation Oracle 164

5.3.1 Overview of the algorithm . 165

5.3.2 Competing against expensive products 168

11

5.3.3 Competing against cheap products 180

5.4 Computational Experiments . 184

5.4.1 Generative models . 184

5.4.2 Tested heuristics . 185

5.4.3 Additional technical details 186

5.4.4 Results . 187

5.5 Concluding Remarks . 191

6 Future Research 195

A Appendix of Chapter 3 199

A.1 Modeling the Consideration Sets . 199

A.2 Marginalized Recursion . 201

A.3 Proof of Theorem 3.6.1 . 207

A.4 Quasi-convex Preference Lists . 210

A.5 Proof of Theorem 3.6.5 . 211

A.6 Capacitated Optimization . 214

A.7 Synthetic Computational Experiments 216

A.8 State Space Collapse in Experiments 217

B Appendix of Chapter 4 219

B.1 Additional Proofs . 219

B.1.1 Proof of Lemma 4.2.6 . 219

B.1.2 Proof of Lemma 4.2.4 . 221

B.1.3 Counter-Examples . 221

C Appendix of Chapter 5 223

C.1 General Constant-Factor Approximation 223

C.1.1 Efficient oracle for heavy products 225

C.1.2 Approximation scheme for light products 226

C.1.3 Conclusion . 228

C.2 Logarithmic approximation for non-IFR demand distributions 229

12

C.3 Additional Proofs . 232

C.3.1 Proof of Lemma 5.2.1 . 232

C.3.2 Proof of Lemma 5.2.2 . 236

C.3.3 Proof of Claim 5.3.3 . 238

C.3.4 Proof of Claim 5.3.4 . 239

C.3.5 Proof of Claim 5.3.9 (continued) 240

C.3.6 Proof of Claim 5.3.10 . 242

C.3.7 Proof of Claim 5.3.12 . 242

C.3.8 Proof of Lemma C.1.2 . 243

C.3.9 Proof of Claim C.1.5 . 244

C.4 Tested Heuristics . 246

13

14

List of Figures

3-1 Bi-partite Graph Representation: (a) Decomposition of the instance

according to the connected components of the graph, (b) Illustration

of the proof of Proposition 3.3.3. 66

3-2 Example of an Elimination-by-Aspect screening process and the corre-

sponding laminar tree: shoes category, with features type and style. . 73

3-3 Consideration sets and ranking decisions driven by linear utility max-

imization in a two-featureal feature space. 85

3-4 Average runtime of our algorithm (DP) against the commercial solver

(IP) on synthetic instances. 88

4-1 The recursive decomposition of ℒ into 𝒱1, . . . ,𝒱𝐿. 124

4-2 The inventory vectors examined by the algorithm to construct 𝑈𝑆
ℓ . . . 127

4-3 The decomposition of ℒ into 𝒱1, . . . ,𝒱𝐿,𝒱in. 133

4-4 Construction of 𝑈̃ by shifting each unit in 𝑈 towards its corresponding

maximal product. 138

4-5 Equivalence between the residual sets at the stopping times 𝜏 and 𝜏 ′. 141

5-1 Markov chain representation of the coupling between the random variables

𝑋𝑗 ,𝑋𝑖,𝑗 ,𝑋𝑖, and 𝑋. Here, random purchase events (or states) are represented

by nodes, and each arc corresponds to a transition with positive probability.

These transition probabilities are specified either exactly or in proportions

(e.g., if a node has two outgoing arcs, one with ∝ 3 and the other with ∝ 5,

the transition probabilities are 3/8 and 5/8, respectively). 171

15

A-1 Recursion step of the marginalized dynamic program. 202

A-2 Recursive step: the allocation of product 𝑖 to the cone (𝑢𝛼,𝑢𝛽) gives

rise to independent subproblems, either contained in the polyhedra

𝐻(𝑎, 𝑖, 𝑐, 𝛼), or 𝐻(𝑖, 𝑏, 𝛽, 𝑑). 213

16

List of Tables

3.1 Summary of results: polynomial running time guarantees for consider-

then-choose choice models. 57

3.2 Runtime of our algorithm (DP) against the commercial solver (IP)

under the quasi-convex preference model. 87

3.3 Prediction errors of the models estimated from the synthetic data, in

different generative settings. 96

3.4 % Improvements in the predictive accuracy of our quasi-convex model

against the chosen benchmarks. 98

5.1 Average revenue performance of the different algorithms tested. . . . 188

5.2 Average absolute approximation errors and optimality gap of the mixed

integer program. 190

5.3 Average running time of the algorithms tested. 191

A.1 Relative size of the collapsed state space in comparison to naive enu-

meration. 217

17

18

Chapter 1

Introduction

In recent years, consumer goods markets have grown in complexity, with significant

proliferation of products in most categories. Finding an optimal product offering is a

fundamental operational issue in modern retailing and online advertising, exemplified

by the development of recommendation systems and decision support tools (Kök

et al. 2009, Fisher 2011, Sinha et al. 2013). The typical problem is to determine

what subset of items, out of all possible alternatives, should be offered (or displayed)

to incoming customers. In addition, firms generally have rationed supply, and the

inventory resources should be allocated strategically between the products offered.

This thesis work is more specifically centered around two core operational prob-

lems: assortment optimization and inventory management. Assortment optimization

seeks to determine an optimal subset of items to offer the customers in order to

maximize a given metric, such as expected revenue, click-through-rate, social welfare,

etc., in the presence of various constraints. Inventory management is concerned with

allocating inventory capacity across products, by finding optimal stocking levels. In

practice, these two decision levers are inherently connected: the mismatch between

inventory supply and uncertain demand creates stock-outs, which effectively alter the

assortment offered to the incoming customers.

The advent of big data creates the opportunity to design sophisticated demand

forecasting models to inform these operational decisions. Firms now collect large

amounts of choice data, describing purchase decisions made by customers in various

19

environments (e.g., through store-level aggregates, loyalty programs, digitalized re-

ceipts, online purchase history, etc.). In addition, e-commerce platforms can easily

experiment new assortments or recommendation sets in face of incoming customers,

to glean information about their preferences.

Modeling power and computational tractability. In this context, turning

choice data into operational decisions presents several fundamental challenges. The

typical workflow involves modeling customers’ choice preferences, through what is

known as a probabilistic choice model, estimating the corresponding model parame-

ters from historical data, and finally deciding on the optimal operational policy. As

such, an ideal choice model possesses the ability to: (i) explain choice data accu-

rately, both in-sample and out-of-sample; (ii) admit statistically and computationally

efficient estimation methods; (iii) yield tractable decision models.

Unfortunately, as further explained in Sections 1.1 and 1.3, the state of affairs in

revenue management and combinatorial optimization literature suggests that these

objectives are conflicting, across most families of choice models. On the one hand,

the increasing availability of data incites to use general choice models. However, as

choice models become more detailed, both their estimation from data, and the re-

sulting optimization problems become computationally intractable. As illustrated by

experiments conducted in this thesis, these complexity barriers are not merely theoret-

ical. Despite the advances of discrete optimization solvers and integer programming,

choice-based models are computationally prohibitive, even at small scale, notably

in the context of inventory management. This disconnect between predictive choice

models and tractable algorithms can somewhat be explained in that the traditional

approach in revenue management regards modeling, estimation and optimization as

distinct activities, that span across different research communities1.

Overall contributions. The overarching objective of this thesis is to develop novel

models and algorithms to inform assortment and inventory decisions, that strike a
1In simplified terms, modeling is the affair of empirical research, while optimization falls in the

realm of algorithmic research.

20

good balance between modeling power and computational tractability. We primarily

pursue theoretical investigation, through worst-case performance analysis. We also

conduct extensive experiments, on both synthetic and real datasets, to showcase the

merits of the newly proposed methods.

The first part of this thesis (Chapters 2 and 3) studies the standard assortment

optimization problem. While this model takes a simplified view on the interaction

between a firm and the incoming customers (e.g., overlooking inventory limitations),

this formulation serves as a central building-block to various optimization problems

in revenue management (Liu and Van Ryzin 2008, Sauré and Zeevi 2013, Golrezaei

et al. 2014, Aouad and Segev 2015, Gallego et al. 2016), including network revenue

management, display optimization, personalized assortment optimization, learn-and-

earn models, etc. Despite the healthy history of assortment optimization research

and growing literature in this area, this thesis makes contributions on three fronts:

1. We tightly characterize the approximability2 of assortment optimization prob-

lems under the most general model specification, known as nonparametric.

2. We identify specialized settings, in the vein of nonparametric choice models,

that admit exact polynomial-time algorithms, by exploiting novel graph-based

properties.

3. We prove that this additional structure is also beneficial to estimate the model

parameters efficiently, and shows significantly better prediction accuracy against

common benchmarks, on both synthetic and real choice data.

The second part of the thesis (Chapters 4 and 5) investigates a more general class

of optimization models, where a firm allocates its limited inventory across assortment

products, at the beginning the selling-period, before observing a sequence of arriving

customers with random preferences. While such joint assortment optimization and

inventory management models have received significant attention since the seminal
2We reveal connections to maximum-independent set and combinatorial pricing, complemented

by the design of algorithms essentially attaining the best-possible approximation ratios, up to lower-
order terms.

21

paper of Mahajan and van Ryzin (2001), the antecedent literature bears only few

positive results, under restrictive model specifications, and little is known about the

computational aspects of these optimization models under commonly used choice

models, like the Multinomial Logit model. Indeed, the computational challenges stem

from the stochastic nature of customers’ preferences, which vary dynamically upon

inventory stock-outs. This thesis develops the first provably-good algorithms, and

shows, quite surprisingly, that greedy-like procedures achieve worst-case performance

guarantees under a broad class of choice models:

1. We devise the best-possible approximation under general nonparametric models

with respect to the price parameters, up lower-order terms.

2. By unraveling submodular-like and decomposition properties, we show that this

ratio can be beaten in specialized settings, including the popular Multinomial

Logit choice model, to obtain constant-factor approximations.

3. In synthetic experiments, we demonstrate that the newly proposed algorithms

outperform existing heuristics in terms of performance and speed.

All together, the analytical and empirical results we obtain underpin the relevance

of problem-specific methodology vis-a-vis general-purpose heuristics and off-the-shelf

solvers, which turn out to be inoperative in several empirical settings we consider.

Furthermore, we develop a number of new concepts and techniques in combinatorial

optimization, such as a weaker notion of submodularity, decomposition schemes and

probabilistic couplings, possibly applicable in broader settings.

Conceptually speaking, our work illustrates the role of combinatorial structures

in choice-based revenue management problems. In hindsight, this role is twofold. In

the context of assortment optimization problems, we employ a graph-based structure

as an instrument that enables to identify “well-behaved” classes of choice models.

Specifically, we develop a graph-based dynamic program that allows a direct con-

nection between modeling assumptions on the customers’ choice behavior and the

computational complexity of the resulting formulations. Conversely, in our study of

22

joint assortment optimization and inventory management problems, we unravel la-

tent structure (in the form of submodular-like properties) in order to work around

the combinatorial nature of the problem.

Organization. In what follows, we pursue in Section 1.1 a qualitative discussion

around practical aspects and challenges of choice modeling. Next, we provide a de-

tailed description of our contributions in Section 1.2. Finally, we provide a bird’s-eye

view on related literature in Section 1.3.

1.1 Choice Modeling: Practical Aspects

Choice data and predictive task. Practical applications of choice modeling, such

as the assortment optimization problems studied here, begin with transactional choice

data. In our experiments, we had access to consumer-level receipt information from

a panel population of hundreds of thousands of households. Specifically, our choice

data can be viewed a sequence of purchase decisions recorded in different stores. The

side information available in this dataset is very rich; it contains various customer-

level covariates: age, income level, ethnicity, etc. However, the operational problems

discussed in this thesis take the perspective of a central agent (e.g., retailer) whose

decision levers (e.g., assortment or stocking levels) apply indifferently to all incoming

customers. Thus, throughout this thesis, we consider a more common and limited

observational setting, referred to as assortment data, where firms observe the relative

sales volumes of products in given assortments3.

Ideally, this data allows to learn the heterogeneous preferences of the customer

population, through an estimation procedure. To formalize this estimation (and pre-

diction) problem, suppose we are given 𝑛 item alternatives, over which individuals

make idiosyncratic choice decisions. Given the historical assortment data, we would

like to learn the choice probability Pr[𝑖|𝑆] of picking item 𝑖 in any assortment 𝑆 ⊆ [𝑛].
3A concrete example in brick-and-mortar retailing is given by point-of-sale aggregates. Our

methodology can also be leveraged to compute personalized assortments, by clustering beforehand
the population into customer segments, using customer-level covariates.

23

This probability measure is known as the choice model; it can be viewed as a complex

demand function over discrete alternatives4.

Structure of choice models. At face value, choice models lie in a high dimensional

functional space; it is unclear how to encode such functions as reasonable inputs to

computation problems. The crux of choice modeling is precisely to posit a suitable

structure in order to express these choice probabilities.

On the one extreme, an almost generic assumption placed on choice models is

rationality. This property is rooted in utility theory: it states that preferences can

be expressed as a distribution over ranked preference lists, which reflect how agents

compare the utilities provided by the different items. In general, this model requires

prescribing a probability parameter to each of Ω(𝑛!) preference lists, which is clearly

impractical for computational tasks. These caveats notwithstanding, this general

model becomes practically relevant under the assumption of sparsity. That is, the

nonparametric choice models are based on the assumption that the support of the

distribution is “small” relative to the Ω(𝑛!) possible preference lists.

On the other extreme, separable demand functions are the simplest possible choice

models used in operations management. Here, each item has a fixed choice proba-

bility, independent of what other alternatives offered to the customers, i.e., the only

preference lists that occur with positive probability are singletons. When demand

is separable, the assortment optimization and inventory management problems take

the form of a multi-item newsvendor model. Optimal stocking levels can be found

easily, for instance using greedy algorithms that exploit the property of diminishing

marginal returns. However, this traditional demand model overlooks the substitution

effects across products, which are observed in differentiated markets. To wit, the

choice probability for a given item often depends on what other items are simultane-

ously offered to the customers. Our experiments (along with previous literature) show

that the separable demand model has rather limited explanatory power, explaining
4An important caveat to the estimation of a choice model from historical data is that retailers

choose their assortment in response to their prior knowledge of the demand. However, since we focus
on prediction accuracy (as opposed to causal inference), we can overlook these endogeneity effects.

24

less than 20% of the choice probabilities (𝑅2 score) in several product categories.

Hence, recent revenue management studies have operated a paradigm shift in

demand modeling, from separable models to choice-based models. By capturing the

substitution effects, the resulting assortment optimization and inventory management

problems are considerably more challenging from a computational standpoint.

Modeling power and computational tractability. As stated earlier, most fam-

ilies of choice models are subject to a limiting tradeoff between modeling power and

computational tractability.

A concrete example is the Multinomial Logit choice model, widely studied in the

literature (including in Chapter 5 of the present thesis) and very popular among

practitioners. This model assigns a preference weight parameter 𝑤𝑖 ∈ R+ to each

item 𝑖 ∈ [𝑛], and assumes that choice probabilities are proportional to the preference

weights in every assortment, i.e., for any 𝑆 ⊆ [𝑛] and 𝑖 ∈ 𝑆, Pr[𝑖|𝑆] ∝ 𝑤𝑖. Following

important research efforts, this parametric model is now well-understood and admits

simple and efficient algorithms for data-driven estimation and various assortment

optimization problems. Nevertheless, this model has a limited explanatory power

in regard to customer heterogeneity. Indeed, practical applications usually require

assuming that preferences arise from a mixture of Multinomial Logit instances, each

corresponding to a distinct customer class. As shown by the predictive experiments

of Chapter 2, capturing heterogeneous customer classes indeed leads to dramatic

improvements of the model accuracy, even when restricting attention to a specific

segment of the population. However, a well-known negative result in assortment

optimization literature shows that the computational tractability of the MNL model

does not carry over to the finite mixture model, even with two customer classes (Bront

et al. 2009, Rusmevichientong et al. 2014). The state of the art algorithm available

for assortment optimization has exponential dependency with respect to the number

of mixture components (Désir and Goyal 2014), so that its applicability beyond 3-4

customer classes is unclear. Similar limitations exist on the estimation front: the

mixture model is not generally identifiable, as can be shown in simple examples with

25

two products and two customer classes.

A similar tradeoff pertains to nonparametric choice models. Here, the sparsity

of the distribution over preference lists controls the desired level of heterogeneity in

a given instance. For example, nonparametric models enable to vary the sparsity

of the distribution depending on the amount of data available (Farias et al. 2013).

Unfortunately, this view of sparsity, in and of itself, is not sufficient to yield tractable

estimation and optimization problems. Indeed, estimating sparse distributions gen-

erally requires to search over the space of permutations, which is itself a notoriously

hard computational problem (Ailon et al. 2008, van Ryzin and Vulcano 2014). Fur-

thermore, the complexity of state-of-the-art algorithms for assortment optimization

and inventory management problems grows exponentially with the sparsity of the

distribution (Honhon et al. 2010). This thesis work attempts to work around the

limitations of nonparametric models by pursuing two types of approaches. First,

these optimization models are studied, in their utmost generality, through the lens

of approximation algorithms. Outside of theory, these approximations are shown to

be efficient in a practical sense. Second, we investigate more parsimonious models

by leveraging documented assumptions on customers’ preferences, to find a middle

ground between parametric models and general nonparametric models. Specifically,

in Chapter 3, our work identifies a class of distributions over preference lists with

exponentially many degrees of freedom5, and yet at the same time, assortment opti-

mization and estimation problems can be solved efficiently6.

1.2 Our Results

Our main results can be summarized as follows.

We provide the best-possible approximability bounds for nonparametric assort-

ment optimization models in Chapter 2. Since nonparametric models, in their utmost

generality, are subject to strong computational limitations, we develop a novel mod-
5In the space of distributions over permutations.
6The running time complexity scales polynomially in the sparsity of the corresponding distribu-

tion, in contrast to the state of affairs for general nonparametric models.

26

eling approach that leverages documented assumptions on the customers’ consider-

then-choose behavior. This approach builds upon a bi-partite graph representation of

nonparametric assortment optimization models, which also describes the states of a

natural dynamic programming formulation. By studying the properties of this graph,

we identify various common assumptions that lead to polynomial-time formulations

(including for constrained variants of the problem). We also show that a critical step

of the standard nonparametric estimation methodology (rank aggregation) can be

solved in polynomial time in settings of interest, contrary to general nonparametric

models. We conduct a number of predictive experiments on synthetic and real-world

data that show strong merits vis-a-vis common parametric choice models.

Next, we turn our attention to joint assortment optimization and inventory man-

agement problems under dynamic choice substitution. While these models were gen-

erally viewed as intractable, using various probabilistic arguments, we are able to

unravel hidden structural properties, such as weak notions of submodularity and de-

composition schemes. Building on these findings, we develop the first provably-good

algorithms in various nonparametric and parametric settings. Among notable results

in Chapters 4 and 5, we devise the best-possible approximation essentially attain-

able under general nonparametric choice models. We also show that this ratio can

be beaten in more specialized settings, including the widely-used Multinomial Logit

choice model, to obtain a constant-factor approximation. Interestingly, the newly pro-

posed algorithms are conceptually simple and rely primarily on greedy procedures.

In extensive synthetic experiments, we demonstrate the practical relevance of our

algorithms against heuristics proposed in prior literature.

Below, each chapter is discussed in turn, with a more detailed description of our

contributions. Note that we provide an implementation for most algorithms described

in this thesis, and make our code available for other researchers and practitioners as

a suite of packages.

27

1.2.1 Chapter 2 – Complexity of non-parametric assortment

optimization models

We provide the best-possible approximability bounds for assortment optimization

under a general choice model, where customer choices are modeled through a distri-

bution over preference lists of their preferred products. This nonparametric model

subsumes most choice models of interest in revenue management applications. From

a technical perspective, we show how to relate this optimization problem to the com-

putational task of detecting large independent sets in graphs, allowing us to argue

that general nonparametric models are extremely hard to approximate with respect

to various problem parameters, even under sparse distributions. These findings are

complemented by a number of approximation algorithms that attain essentially best-

possible factors, proving that our hardness results are tight up to lower-order terms.

Our results imply that a simple and widely studied policy, known as revenue-ordered

assortments, achieves the best possible performance guarantee with respect to the

price parameters.

1.2.2 Chapter 3 – Consider-then-choose choice models

Empirical literature in marketing and psychology shows that that customers choose

among alternatives in two phases, by first screening products to decide which al-

ternatives to consider, before then ranking them. We develop a dynamic program-

ming framework to study the computational aspects of assortment optimization un-

der consider-then-choose premises, that impose structural restrictions on distributions

over preference lists. Although nonparametric choice models generally lead to com-

putationally intractable assortment optimization problems, we are able to show that

for many practical and empirically vetted assumptions on how customers consider

then choose, our resulting dynamic program is efficient. Our approach unifies and

subsumes several specialized settings analyzed in previous literature. In synthetic

experiments, our algorithms lead to practical computation schemes that outperform

a state-of-the-art integer programming solver in terms of running time, in several

28

parameter regimes of interest.

Furthermore, we argue that the proposed consider-then-choose structure is also

beneficial from an estimation standpoint. Indeed, a critical step of nonparametric

estimation methods is rank aggregation, that consists in optimizing a linear objective

over the space of permutations. While this problem is generally NP-hard, we provide

a polynomial time dynamic programming formulation under the proposed consider-

then-choose model. Empirically, we demonstrate the predictive power of our modeling

approach on a combination of synthetic and real industry datasets, where prediction

errors are significantly reduced against common parametric choice models (namely,

the Mixture of Multinomial Logits with up to 3 customer segments).

Conceptually-speaking, our approach attempts to find a middle ground between

parametric and general nonparametric models. Our approach to “adding structure”

yields tractable models, both on the decision-making front and on the estimation

front. In particular, we identify classes of distributions with exponentially many de-

grees of freedom (in the space of permutations), and yet at the same time, assortment

optimization and rank aggregation are polynomially solvable in these settings.

1.2.3 Chapter 4 – Joint assortment and inventory decisions:

Nonparametric models

Motivated by applications in highly differentiated markets, such as retailing, online

advertising and airlines, we consider the single-period joint assortment optimization

and inventory management problem, where stock-out events elicit dynamic substitu-

tion effects. This class of problems is known to be notoriously hard to deal with from

a computational standpoint, since the seminal paper by (Mahajan and van Ryzin

2001). In fact, prior to our work, only a handful of modeling approaches were shown

to admit provably-good algorithms, at the cost of strong restrictions on customers’

choice outcomes. Our main contribution is to provide the first efficient algorithms

with provable performance guarantees under a broad class of choice models. Under

general nonparametric choice models, our approximation algorithm is best-possible

29

with respect to the price parameters, up to lower-order terms. In particular, we ob-

tain a constant-factor approximation under horizontal differentiation, where product

prices are uniform. In more structured settings, where the customers’ ranking behav-

ior is motivated by price and quality cues, we derive improved guarantees through

tailor-made algorithms. In extensive computational experiments, our approach dom-

inates existing heuristics in terms of revenue performance, as well as in terms of

speed, given the myopic nature of our methods. From a technical perspective, we

introduce a number of novel algorithmic ideas of independent interest, and unravel

hidden relations to submodular maximization.

1.2.4 Chapter 5 – Joint assortment and inventory decisions:

Multinomial Logit model

We study the joint assortment optimization and inventory management problem,

where stock-out events elicit dynamic substitution effects, described by the Multino-

mial Logit (MNL) choice model. The MNL has gained widespread popularity among

revenue management practitioners, since it can be estimated efficiently, even with

limited data (Ford 1957, McFadden 1973), and it leads to to tractable assortment op-

timization formulations (Talluri and van Ryzin 2004, Rusmevichientong et al. 2010,

2014). Nevertheless, the dynamic problem formulation in question is not known to

admit efficient algorithms with analytical performance guarantees prior to this work,

and most of its computational aspects are still wide open.

In this setting, we devise the first provably-good approximation algorithm, attain-

ing a constant-factor guarantee for a broad class of demand distributions, that satisfy

the increasing failure rate property. Our algorithm relies on a combination of greedy

procedures, where inventory decisions are restricted to specific classes of products

and the objective function takes modified forms. We demonstrate that our approach

substantially outperforms state-of-the-art heuristic methods in terms of performance

and speed, leading to an average revenue gain of 6% to 16% on synthetic instances.

In the course of establishing our main result, we develop new algorithmic ideas that

30

may be of independent interest. These include weaker notions of submodularity and

monotonicity, shown sufficient to obtain constant-factor worst-case guarantees, de-

spite using noisy estimates of the objective function.

1.3 Further Readings

Our research effort is positioned in a growing literature about assortment optimiza-

tion and choice modeling techniques. Here, we delineate our contributions in this

literature. A more comprehensive survey is provided through the different chapters

of this thesis.

Parametric choice models. This line of research focuses on the standard assort-

ment optimization problem (with known distribution and unlimited inventory), where

positive results were obtained under variants the Multinomial Logit (MNL). Despite

known limitations from a predictive standpoint, this choice model is the most popular

approach among practitioners in light of its tractability. In particular, the MNL model

yields tractable assortment optimization problems (Talluri and van Ryzin 2004) and

can handle various extensions, including more general attraction-based models (Li

et al. 2015, Davis et al. 2014), robust formulations (Rusmevichientong and Topaloglu

2012), totally-unimodular constraints (Davis et al. 2013), and exploration-exploitation

models that tradeoff learning with revenue generation (Rusmevichientong et al. 2010,

Sauré and Zeevi 2013). A more detailed review of these results is discussed in Chap-

ter 3. On the other hand, there has been relatively little progress around joint as-

sortment optimization and inventory management models, since the seminal work

of Mahajan and van Ryzin (2001). Our contributions in Chapter 5 complete this pos-

itive picture, by deriving the first analytical results for joint assortment optimization

and inventory management models under the Multinomial Logit choice model.

In contrast, assortment optimization in the face of a Mixture of Multinomial Log-

its, describing heterogeneous customer classes, is a notoriously hard problem (Bront

et al. 2009, Rusmevichientong et al. 2014). The best known algorithms under mix-

31

ture distributions have exponential dependency, so that their applicability beyond 3-4

customer classes is unclear (Désir and Goyal 2014).

The recent research efforts around the Markov chain model are closest in spirit

to the approach developed in this thesis. This model, introduced by Blanchet et al.

(2016), parametrizes the customers’ rankings through the transitions of a Markov

chain, thus generalizing the Multinomial Logit choice model. This model can be

viewed as an alternative to capturing complex and heterogeneous substitution pat-

terns, while yielding tractable decision models. The focus of this line of research has

been around tractable methodologies for decision-making problems, specifically con-

strained assortment optimization (Blanchet et al. 2016, Désir et al. 2015), as well as

pricing and network revenue management problems (Feldman and Topaloglu 2014).

Nonparametric choice models. The major part of our results fall under the non-

parametric modeling framework, where preferences arise from a sparse distribution

over ranked preference lists. This model was introduced by Rusmevichientong et al.

(2006) and Farias et al. (2013), who provided robust revenue estimation methodolo-

gies and derived identifiability conditions for very sparse distributions. While other

estimation methods were developed (Bertsimas and Mišic 2015), including under cen-

sored demand observations (van Ryzin and Vulcano 2014), the key computational

challenge is to search over the space of permutations. In the context of assortment

optimization problems, the general approach has been to devise heuristic methods and

integer programming formulations (Jagabathula 2014, Bertsimas and Mišic 2015). In

contrast with previous literature, this thesis investigates the tractability of nonpara-

metric decision problems through the lens of approximation algorithms, and develop

more parsimonious choice structures that allow for exact polynomial-time algorithms.

Joint assortment and inventory decisions. As mentioned earlier, in contrast

to the standard assortment optimization problems, little is known about choice-based

inventory management models. In this problem formulation, since firms have limited

inventory capacity, the demand is explicitly described by a stochastic sequence of ar-

32

riving customers with random preferences (rather than a single representative agent).

As will be further explained in Chapters 4 and 4, under multiple stochastic arrivals,

the problem we study becomes considerably more challenging than its standard coun-

terpart, due to the dynamic substitution, elicited by stock-out events. In this setting

the objective function is not well-behaved. For instance, under a general model of

choice, for a continuous relaxation of the dynamic assortment problem, Mahajan

and van Ryzin (2001) observed that the revenue function is not even quasiconcave,

while various counter-examples provided in Chapter 4 show that this function is not

submodular, even for very simple choice modeling approaches.

As a result, most of the work we are aware of in the context of dynamic substi-

tution model develops heuristics based on continuous and deterministic relaxations,

or study different probabilistic settings (Smith and Agrawal 2000, Mahajan and van

Ryzin 2001, Gaur and Honhon 2006, Nagarajan and Rajagopalan 2008, Honhon et al.

2010, Honhon and Seshadri 2013, Segev 2015, Goyal et al. 2016). For the problem

we consider, these approaches either give rise to exponential-time algorithms (Hon-

hon et al. 2010), or converge to local optima, such as the gradient-descent method

proposed by Mahajan and van Ryzin (2001), or apply to rather stylized choice mod-

els (Segev 2015, Goyal et al. 2016).

33

34

Chapter 2

Complexity of Nonparametric

Assortment Optimization Models

2.1 Introduction

What selection of products should an e-retailer display for each search query? How

does a brick and mortar retailer determine the product assortment in each store?

The challenge of finding a selection of products that maximizes revenue or customer

satisfaction, in the face of heterogeneous customer segments, who have different pref-

erences across products, has been recognized in several industries as a strategic and

operational driver of success. Specifically, assortment optimization is paramount to

revenue management in highly differentiated markets, such as offline and online retail.

The typical computational problem in this context is that of identifying a selection of

products that maximizes revenue (assuming no stock-out events) based on previously-

estimated random and heterogeneous customer preferences over the underlying set of

products. The extensive literature in economics, marketing, and operation manage-

ment proposes numerous approaches to modeling customer choice preferences, which

are then used for predicting the variations in market shares in response to how the

product mix changes.

This chapter is focused on studying the computational complexity of a very

general, nonparametric, problem formulation, where customers choices are modeled

35

through an arbitrary distribution over ranked preference lists. The incorporation of

this choice model into an operational decision-making problem was first proposed

by Rusmevichientong et al. (2006), while tractable estimation methodologies were in-

vestigated by Farias et al. (2013). This modeling approach, whose specifics are given

in Section 2.1.3, subsumes most models of practical interest as special cases, being

equivalent to a general random utility model, in which a representative agent maxi-

mizes his random utility function over a set of alternatives to derive his preferences.

Assortment optimization was shown to be computationally tractable under specific

choice preference structures proposed in the revenue management literature. Probably

the most well-known settings that still admit polynomial-time solution methods are

the widespread multinomial-logit (MNL) model, and variants of the nested-logit (NL)

model. In the specific context of nonparametric choice models, the work of Honhon

et al. (2012) identifies classes of simple combinatorial structures enabling polynomial-

time algorithms. A comprehensive review of these results is provided in Chapter 3.

Additionally, we refer the reader to the work of Blanchet et al. (2016), Davis et al.

(2014) and Li et al. (2015); the references therein provide an exhaustive overview of

tractable approaches in assortment optimization.

Even though there has been an ever-growing stream of positive results for specific

classes of instances, where various structural and probabilistic assumptions are made,

assortment optimization is generally known to initiate computationally-hard prob-

lems. This was formally corroborated by several intractability results, such as that

of Davis et al. (2014) and Gallego and Topaloglu (2014), who demonstrated that nat-

ural extensions of the NL model are NP-hard. Under mixtures of logits, this problem

is known to be strongly NP-hard even for two customer classes, as shown by Bront

et al. (2009) and Rusmevichientong et al. (2014). As a result, beyond attraction-based

models with a single customer class, the family of tractable choice models remains

quite limited.

It is worth noting that the above-mentioned results merely state that the problems

in question cannot be solved to optimality in polynomial-time (unless P = NP), and

in fact, very little is known about hardness of approximation in this context. To our

36

knowledge, the only result in this spirit was given by Goyal et al. (2016), showing

that under ranking preferences, the capacitated variant of assortment optimization is

NP-hard to approximate within factor better than 1− 1/𝑒.

2.1.1 Our results

The main contribution of this chapter is to provide best-possible inapproximability

bounds for assortment optimization under nonparametric ranking preferences. From

a technical perspective, we show how to relate this model to the computational task

of detecting large independent sets in graphs, allowing us to argue that general non-

parametric models are extremely hard to approximate with respect to various problem

parameters. These findings are complemented by a number of approximation algo-

rithms that attain essentially best-possible performance guarantees with respect to

various parameters, such as the ratio between extremal prices and the maximum

length of any preference list. Our results provide a tight characterization (up to

lower-order terms) of the approximability of assortment optimization under a general

model specification, as we briefly summarize next.

Hardness of approximation. By proposing a reduction from the maximum in-

dependent set problem, we prove that assortment optimization under nonparametric

ranking preferences is NP-hard to approximate within factor 𝑂(𝑛1−𝜖) for any fixed

𝜖 > 0, where 𝑛 stands for the number of products. It is worth noting that this bound

holds even when all preference lists are derived from a common permutation over

the set of products, meaning that all customers rank their alternatives consistently

according to a unique order. Moreover, our reduction also gives an inapproximability

bound of 𝑂(log1−𝜖(𝑃max/𝑃min)), where 𝑃min and 𝑃max designate the minimal and max-

imal prices, respectively. Finally, through a reduction from the Min-Buying pricing

problem, we establish APX-hardness even when there are only two distinct prices,

with uniform probability of customer arrivals. The specifics of these results are given

in Section 2.2.

37

Approximation algorithms. On the positive side, we devise approximation algo-

rithms showing that the above-mentioned inapproximability bounds are best possible.

By examining revenue-ordered assortments, we propose an efficient algorithm that

attains performance guarantees of 𝑂(⌈log(𝑃max/𝑃min)⌉) and 𝑂(⌈log(1/𝜆̃)⌉), where 𝜆̃

denotes the combined arrival probability of all customers who have the highest price

item on their list. In particular, when all customer arrival probabilities are polyno-

mially bounded away from 0, this bound translates to a logarithmic approximation

(for example, under a uniform distribution). Finally, we devise a tight approxima-

tion algorithm in terms of the maximum length of any preference list. We prove

that an 𝑒∆-approximation can be obtained via randomly generated assortments un-

der a well-chosen distribution, where ∆ denotes the maximal size of any preference

list. Consequently, an immediate implication is that, when all preference lists are

comprised of 𝑂(1) products, we can approximate the optimal revenue within a con-

stant factor. By derandomization, the resulting algorithm asymptotically matches the

𝑂(∆1−𝜖) inapproximability bound hiding within our reduction from the independent

set problem. Additional details on these algorithms are provided in Section 2.3.

2.1.2 Subsequent work

The techniques developed in this chapter have spurred new complexity results for

related assortment optimization problems. In particular, after communicating our re-

duction from the maximum independent set problem to Antoine Désir, Vineet Goyal,

and Jiawei Zhang, they observed that ideas in this spirit provide tight inapprox-

imability bounds for the mixture-of-MNL model (Désir and Goyal 2014). In addi-

tion, shortly after our work appeared online (Aouad et al. 2015), a working paper

of Berbeglia and Joret (2015) focused on the performance analysis of revenue-ordered

assortments. In comparison to the 𝑂(⌈log(𝑃max/𝑃min)⌉) approximation we provide

in Section 2.3.1, they were able to improve on the constant hiding within the 𝑂(·)-
notation. However, unlike our tight inapproximability bound (see Section 2.2.1), they

prove only constant-factor hardness, similar to the previously known result by Goyal

et al. (2016). Their algorithmic results hold in a broader setting that generalizes the

38

class of random utility choice models. Indeed, the only technical assumption required

is the regularity axiom, stating that the probability of choosing a specific product

does not increase when the assortment is enlarged. It is worth noting that the latter

observation also holds for the analysis we develop in Section 2.3.1.

2.1.3 The nonparametric ranking preferences model

We are given a collection of 𝑛 items (or products), where the per-unit selling price

of item 𝑖 is denoted by 𝑃𝑖. In addition, we model a population consisting of 𝐾

customer-types, one of which arrives at random according to the probability distribu-

tion (𝜆1, . . . , 𝜆𝐾). Each customer-type is defined by a ranked preference list over the

underlying set of products, according to which purchasing decisions are made. For

any customer-type 𝑗, a preference list is formed by a subset of the products 𝐶𝑗 ⊆ [𝑛],

referred to as the consideration set, along with a linear order (or permutation) 𝜎𝑗 over

the products. Without loss of generality, we can assume that the latter permutation

is defined over all product alternatives, i.e., 𝜎𝑗 belongs to the symmetric group 𝒮𝑛,
although customer-type 𝑗 only considers products in his consideration set 𝐶𝑗.

We define an assortment as a selection of products that is made available to

customers. When faced with the assortment 𝑆 ⊆ [𝑛], a customer-type purchases the

most preferred item in his list that is made available by 𝑆. If none of these products

is available, i.e., 𝑆 ∩ 𝐶𝑗 = ∅, he leaves without purchasing any item. Under this

decision mechanism, we use 𝑅𝑗(𝑆) to denote the revenue obtained should customer-

type 𝑗 arrive, for the assortment 𝑆. Conditional on the arrival of customer-type 𝑗,

the resulting revenue is equal to the price of the product purchased according to the

preference list (𝐶𝑗, 𝜎𝑗), or to 0 when none of these products has been made available.

The objective is to compute an assortment of products whose expected revenue is

maximized, i.e., to identify a subset 𝑆 ⊆ [𝑛] that maximizes

ℛ(𝑆) =
𝐾∑︁

𝑗=1

𝜆𝑗 ·𝑅𝑗(𝑆) .

39

2.2 Hardness Results

2.2.1 Relation to maximum independent set

Our main inapproximability result proceeds from unraveling a well-hidden connection

between assortment optimization and the maximum independent set problem (hence-

forth, Max-IS). To this end, we begin by recalling how the latter problem is defined,

and state known hardness of approximation results due to Håstad (1996).

An instance of Max-IS is defined by an undirected graph 𝐺 = (𝑉,𝐸), where 𝑉

is a set of 𝑛 vertices, and 𝐸 is the set of edges. A subset of vertices 𝑈 ⊆ 𝑉 is

said to be independent if no pair of vertices in 𝑈 is connected by an edge. The

objective is to compute an independent set of maximal cardinality. The most useful

inapproximability result for our purposes is that of Håstad (1996), who proved that

for any fixed 𝜖 > 0, Max-IS cannot be approximated in polynomial time within factor

𝑂(𝑛1−𝜖) unless P = NP.

Theorem 2.2.1. Assortment optimization under ranking preferences is NP-hard to

approximate within 𝑂(𝑛1−𝜖), for any fixed 𝜖 > 0.

Proof. In what follows, we describe an approximation-preserving reduction Φ that

maps any instance ℐ of Max-IS, defined on an 𝑛-vertex graph, to an assortment

optimization instance Φ(ℐ), consisting of 𝑛 products and 𝑛 customers.

We begin by introducing some notation. Given a Max-IS instance ℐ defined on an

undirected graph 𝐺 = (𝑉,𝐸), let 𝑉 = {𝑣1, . . . , 𝑣𝑛}, each vertex being designated by

an arbitrary label 𝑣𝑖. For each vertex 𝑣𝑖 ∈ 𝑉 , we use 𝑁−(𝑖) to designate the indices

of 𝑣𝑖’s neighbors that are smaller than 𝑖, namely,

𝑁−(𝑖) = {𝑗 ∈ [𝑛] : (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 and 𝑗 < 𝑖} .

The assortment optimization instance Φ(ℐ) is defined as follows:

∙ For each vertex 𝑣𝑖 ∈ 𝑉 , we introduce a product indexed by 𝑖, with price 𝑃𝑖 =

𝑛2𝑖/𝛼, where 𝛼 = 1/
∑︀𝑛

𝑖=1 𝑛
−2𝑖.

40

∙ Also, for each vertex 𝑣𝑖 ∈ 𝑉 , there is a corresponding customer-type whose pref-

erence list is defined as follows. The consideration set consists of the products

𝐶𝑖 = 𝑁−(𝑖) ∪ {𝑖}, and the preference order 𝜎𝑖 is set such that 𝑖 is the least

preferable product. Any order between the remaining products 𝑁−(𝑖) works for

our purposes, but to have a concrete definition, we assume that 𝜎𝑖 orders these

products by increasing indices (or equivalently, by increasing price).

∙ The probability (or arrival rate) of customer-type 𝑖 is 𝜆𝑖 = 𝛼/𝑛2𝑖. Note that,

by definition of 𝛼, these probabilities indeed sum to 1.

Based on the above-mentioned hardness results of Håstad (1996), in order to

establish our inapproximability bound, it is sufficient to prove that Φ satisfies two

properties:

1. For any independent set 𝑈 ⊆ 𝑉 in ℐ there exists a corresponding assortment

𝑆𝑈 in Φ(ℐ) with ℛ(𝑆𝑈) ≥ |𝑈 |.

2. Reciprocally, given any assortment 𝑆 in Φ(ℐ), we can efficiently construct a

corresponding independent set 𝑈𝑆 ⊆ 𝑉 in ℐ of size at least ⌊ℛ(𝑆)⌋.

Claim 2.2.2. For any independent set 𝑈 ⊆ 𝑉 , the assortment defined by 𝑆𝑈 = {𝑖 :

𝑣𝑖 ∈ 𝑈} guarantees that ℛ(𝑆𝑈) ≥ |𝑈 | for the assortment optimization instance Φ(ℐ).

Proof. We begin by observing that for any vertex 𝑣𝑖 ∈ 𝑈 , the only item made available

by 𝑆𝑈 within the consideration set 𝐶𝑖 is product 𝑖. To see this, note that 𝐶𝑖 consists

of the products 𝑁−(𝑖)∪{𝑖}, and since 𝑈 is an independent set, none of 𝑣𝑖’s neighbors

belongs in 𝑈 , meaning in particular that 𝑁−(𝑖) ∩ 𝑆𝑈 = ∅. Therefore, conditional

on the arrival of the customer-type 𝑖, the revenue obtained by the assortment 𝑆𝑈 is

exactly 𝑃𝑖. Thus, we can lower bound the expected revenue due to 𝑆𝑈 by

ℛ(𝑆𝑈) =
𝑛∑︁

𝑖=1

𝜆𝑖 ·𝑅𝑖(𝑆𝑈) ≥
∑︁

𝑖∈𝑆𝑈

𝜆𝑖 · 𝑃𝑖 =
∑︁

𝑖∈𝑆𝑈

𝛼

𝑛2𝑖
· 𝑛

2𝑖

𝛼
= |𝑈 | .

41

Claim 2.2.3. For any assortment 𝑆 ⊆ [𝑛], we can compute in polynomial time an

independent set 𝑈𝑆 ⊆ 𝑉 whose cardinality is at least ⌊ℛ(𝑆)⌋.

Proof. When faced with assortment 𝑆, the collection of customers can be partitioned

into two groups: Those who purchase their most expensive product, and those who do

not. We let 𝑈𝑆 ⊆ [𝑛] denote the former subset. By definition, for all 𝑖 ∈ 𝑈𝑆, customer

𝑖 purchases product 𝑖, which is the most expensive one in 𝐶𝑖. The contribution of

this purchase to the expected revenue is therefore 𝜆𝑖𝑃𝑖 = 1. On the other hand, the

contribution of each customer 𝑖 ∈ [𝑛] ∖ 𝑈𝑆 to the expected revenue is at most

𝜆𝑖 · max
𝑗∈𝑁−(𝑖)

𝑃𝑗 ≤ 𝜆𝑖 · 𝑃𝑖−1 =
𝛼

𝑛2𝑖
· 𝑛

2(𝑖−1)

𝛼
=

1

𝑛2
.

Consequently, the total contribution of the latter customers (of which there are at

most 𝑛) to the expected revenue is upper bounded by 1/𝑛. This means that precisely

⌊ℛ(𝑆)⌋ customers generate an expected revenue of 1, and therefore, |𝑈𝑆|= ⌊ℛ(𝑆)⌋.
We now claim that the vertex set {𝑣𝑖 : 𝑖 ∈ 𝑈𝑆} forms an independent set in 𝐺.

Indeed, if 𝑖 < 𝑗 are both in 𝑈𝑆 and (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, then 𝑖 ∈ 𝑁−(𝑗) and 𝑣𝑖 is preferred

over 𝑣𝑗 by customer-type 𝑗, given the preference order 𝜎𝑗. As a consequence, the

contribution of customer 𝑗 to the expected revenue is strictly less than 1, contradicting

the fact that 𝑗 ∈ 𝑈𝑆.

Additional observations. It is worth noting that the maximum and minimum

prices in our reduction, denoted 𝑃max and 𝑃min respectively, satisfy

log

(︂
𝑃max

𝑃min

)︂
= log

(︂
𝑛2𝑛/𝛼

𝑛2/𝛼

)︂
= 𝑂(𝑛 log 𝑛) .

Therefore, as an immediate corollary, we also obtain an inapproximability bound in

terms of 𝑃max and 𝑃min.

Corollary 2.2.4. Assortment optimization under ranking preferences is NP-hard to

approximate within 𝑂(log1−𝜖(𝑃max/𝑃min)) for any fixed 𝜖 > 0.

42

Finally, as pointed out during the construction of 𝜎𝑖, our reduction does not

require a specific order within each preference list, as long as the most expensive

product is the least desirable one. As a result, the inapproximability bounds we

have just established hold even when all preference lists are derived from a common

permutation over the set of products. That is, customer-types rank their alternatives

consistently with respect to a single permutation.

2.2.2 Relation to the Min-Buying problem

In the previous reduction, we used distinct selling prices for products, as well as

distinct arrival probabilities for customer-types. In fact, we constructed assortment

optimization instances wherein both of these parameters have very large variability.

Thus, motivated by practical choice specifications, an interesting question is whether

the problem is rendered tractable under a small number of distinct prices, possibly

with uniform arrival probabilities.

We resolve this question by proving that, for some constant 𝛼 > 0, assortment

optimization is NP-hard to approximate within factor better than 1 + 𝛼 even when

there are only two distinct selling prices, and preference lists occur according to a

uniform distribution. It is worth mentioning that, when all products have identical

prices, the problem becomes trivial. Specifically, by selecting all products in the

assortment, we ensure that each preference list picks its maximal price item.

Our proof relies on a hardness result obtained by Aggarwal et al. (2004) in the

context of multi-product pricing under the Min-Buying choice mode. We begin by

formally introducing the latter problem.

An instance of the (uniform) Min-Buying pricing problem can be described as

follows. Given a collection of 𝑛 items, we assume there are 𝐾 customer-types, each

of which arrives at random with probability 1/𝐾. For all 𝑗 ∈ [𝐾], customer-type 𝑗

is characterized by a subset of products 𝑆𝑗 ⊆ [𝑛] she is willing to purchase and by a

budget 𝐵𝑗. She buys the least expensive item in 𝑆𝑗 that meets her budget constraint.

The objective is to determine a pricing vector 𝑝 ∈ R𝑛
+ to maximize the expected

43

revenue under a random customer arrival, i.e.,

max
𝑝∈R𝑛

+

1

𝐾

𝐾∑︁

𝑗=1

min {𝑝𝑖 : 𝑖 ∈ 𝑆𝑗 and 𝑝𝑖 ≤ 𝐵𝑗} .

Aggarwal et al. (2004) proved that the Min-Buying problem is APX-hard even

for instances with only two distinct budget values. Thus, the two-budget case of

Min-Buying is NP-hard to approximate within 1 + 𝛼, for some constant 𝛼 > 0.

Theorem 2.2.5. Assortment optimization under ranking preferences is NP-hard to

approximate within 1 + 𝛼, for some constant 𝛼 > 0, even with two distinct selling

prices and with uniform customer arrival probabilities.

Proof. In what follows, we construct an efficiently-computable mapping Φ of each

instance ℐ of the Min-Buying problem to an instance Φ(ℐ) of the assortment opti-

mization problem satisfying the next two claims:

1. OPT(Φ(ℐ)) ≥ OPT(ℐ).

2. Given any assortment for Φ(ℐ), we can compute in polynomial time a pricing

vector for ℐ whose expected revenue is at least as good.

These properties jointly imply that our reduction translates the APX-hardness result

of Aggarwal et al. (2004) to the assortment optimization problem, thus proving the

desired claim.

We begin by noting that, without any loss in the expected revenue, any pricing

vector of the Min-Buying problem can be transformed into another vector such that

the price of each product is identical to the budget of at least one customer-type. In

other terms, we can restrict the feasible pricing vectors to reside within ℬ∖, where

ℬ = {ℬ∞, . . . ,ℬ𝒦}.
Given an instance ℐ of the Min-Buying problem, we define a corresponding as-

sortment optimization instance Φ(ℐ) as follows:

∙ The collection of products in Φ(ℐ) is [𝑛] × ℬ, meaning that each combination

of product 𝑖 ∈ [𝑛] and price 𝐵 ∈ ℬ is represented by a distinct ‘copy’ product

44

in Φ(ℐ).

∙ There are 𝐾 customer-types with uniform arrival probabilities.

∙ For every customer 𝑗, the preference list is derived from 𝑆𝑗 by considering all

copies of products in 𝑆𝑗 that meet the budget constraint 𝐵𝑗, namely,

𝐶𝑗 =
{︀

(𝑖, 𝐵) ∈ [𝑛]× ℬ : ⟩ ∈ 𝒮| and ℬ ≤ ℬ|
}︀
.

Here, the preference order in 𝜎𝑗 is based on decreasing prices. That is, a less

expensive product is always preferred over a more expensive one; when there

are ties (equal prices), the relative ranking of products is set arbitrarily.

Proof. Proof of Claim 1: Let 𝑝 ∈ ℬ𝑛 be a pricing vector in ℐ. We build an assortment

that generates as much revenue in Φ(ℐ) as the price vector 𝑝 in ℐ. The idea is to

determine an assortment where each customer buys the same combination of price and

product as in Φ(ℐ). Specifically, for each product 𝑖 ∈ [𝑛], we select in the assortment

product (𝑖, 𝑝𝑖), i.e., the copy of 𝑖 with price 𝑝𝑖, which is possible since 𝑝𝑖 ∈ ℬ.

We now claim that this assortment generates as much revenue as the pricing vector

𝑝 in the Min-Buying instance. Indeed, in this assortment, each customer-type 𝑗 ∈ [𝐾]

chooses the least expensive product that intersects his consideration set 𝐶𝑗, noting

that ties between products do not have any impact since such products generate

identical revenues. By construction of 𝐶𝑗, the purchase price of customer 𝑗 is thus

equal to that of the least expensive product in 𝑆𝑗 under pricing 𝑝, assuming that the

budget constraint is satisfied. We therefore get OPT(Φ(ℐ)) ≥ OPT(ℐ).

Proof. Proof of Claim 2: Reciprocally, let 𝑆 be an assortment of the instance Φ(ℐ).

We prove that 𝑆 can be translated in polynomial time into a pricing vector whose rev-

enue in the Min-Buying instance is at least ℛ(𝑆). First, let us remark that although

several of copies of the same product 𝑖 ∈ [𝑛], with different prices, have been selected

in 𝑆, all customers would only buy the least expensive copy. Indeed, if product 𝑖

belongs to 𝐶𝑗 then any cheaper copy belongs to 𝐶𝑗 as well, and customer-type 𝑗 only

picks the cheapest. Therefore, we can eliminate from 𝑆 all redundant copies that are

45

not picked by any customer, and keep only one copy per product. By considering the

remaining items, the assortment defines a partial assignment of prices to products: If

the copy (𝑖, 𝐵), of item 𝑖 with price 𝐵, has been selected – we assign 𝐵 as the price

in ℐ, i.e., set 𝑝𝑖 = 𝐵.

On the other hand, for any product of which no copy has been selected, we set its

price to max(ℬ). We observe that any customer-type 𝑗 in ℐ, under pricing 𝑝, would

purchase a product whose price is larger than that of the product she purchases in

Φ(ℐ), when faced with the assortment 𝑆. Indeed, if she purchases a product of price

𝐵 in ℐ, then, either there exists (𝑖, 𝐵) ∈ 𝐶𝑗 ∩ 𝑆 and customer 𝑗 purchases a product

of price lower than 𝐵 in Φ(ℐ), or 𝐵 = max(ℬ) and this customer generates a lower

revenue in Φ(ℐ). This yields the desired result.

2.3 Approximation Algorithms

2.3.1 Approximation in terms of price ratio

In this section, we show that a natural algorithm, often used by practitioners and

proposed in related literature for various models, attains the best-possible approx-

imation ratio up to lower order terms under our general choice model. A revenue-

ordered assortment consists in selecting all products whose price is greater or equal

to a given threshold (Talluri and van Ryzin 2004, Rusmevichientong et al. 2014).

In what follows, we use 𝑆𝑝 to designate the revenue-ordered assortment correspond-

ing to a minimum price of 𝑝, i.e., 𝑆𝑝 = {𝑖 ∈ [𝑛] : 𝑃𝑖 ≥ 𝑝}. As the next theorem

shows, by limiting attention to such assortments and selecting the one with largest

expected revenue, we are able to match the inapproximability bound established in

Corollary 2.2.4.

Theorem 2.3.1. The optimal revenue-ordered assortment approximates the optimal

expected revenue within factor 𝑂(⌈ln(𝑃max/𝑃min)⌉).

46

Proof. Without loss of generality, we may assume that empty preference lists have

been discarded, and that the remaining arrival probabilities sum up to 1. Indeed,

this can be achieved by renormalizing the distribution, which results in multiplying

the expected revenue of any assortment by the same constant.

Let OPT designate the expected revenue obtained by the optimal assortment.

For each customer 𝑗 ∈ [𝐾], we define a corresponding budget 𝐵𝑗 as the highest price

on his list, i.e., 𝐵𝑗 = max𝑖∈𝐶𝑗
𝑃𝑖. Without loss of generality, we can assume that

customer indices are arranged so that 𝐵1 ≥ · · · ≥ 𝐵𝐾 . Finally, we define 𝑗* ∈ [𝐾] to

be the customer 𝑗 for which 𝐵𝑗 ·
∑︀𝑗

𝑟=1 𝜆𝑟 is maximized, picking 𝑗* arbitrarily, when

the maximum value is attained by two or more customers.

We proceed by considering the assortment 𝑆𝐵𝑗* , formed by all products whose

price is greater or equal to 𝐵𝑗* . Since 𝐵1 ≥ · · · ≥ 𝐵𝐾 , any preference list in [𝑗*]

contains at least one product with a per-selling price of at least 𝐵𝑗* . As a result, any

such preference list generates a revenue greater or equal to 𝐵𝑗* when faced with the

assortment 𝑆𝐵𝑗* , and therefore,

ℛ(𝑆𝐵𝑗*) =
𝐾∑︁

𝑗=1

𝜆𝑗 ·𝑅𝑗(𝑆𝐵𝑗*) ≥ 𝐵𝑗* ·
𝑗*∑︁

𝑟=1

𝜆𝑟 . (2.1)

In order to relate this quantity to OPT, we define

𝑢* = min

{︃
𝑢 ∈ [𝐾] :

𝑢∑︁

𝑗=1

𝜆𝑗 ≥
1

2
· 𝑃min

𝑃max

}︃
,

noting that 𝑢* is well defined, since
∑︀𝐾

𝑗=1 𝜆𝑗 = 1. By remarking that 𝐵𝑗 corresponds

to the maximal revenue that can be extracted from each customer-type 𝑗, we can

upper bound the optimal expected revenue by

OPT ≤
𝐾∑︁

𝑗=1

𝜆𝑗 ·𝐵𝑗 ≤
𝑢*−1∑︁

𝑗=1

𝜆𝑗 ·𝐵𝑗 + 𝜆𝑢* ·𝐵𝑢* +
𝐾∑︁

𝑗=𝑢*+1

𝜆𝑗 ·𝐵𝑗 . (2.2)

By definition of 𝑢*, the first sum on the right is upper bounded by𝐵1·𝑃min/(2𝑃max) ≤
𝑃min/2. For the middle term, Equation (2.1) implies in particular that 𝜆𝑢* · 𝐵𝑢* ≤

47

ℛ(𝑆𝐵𝑗*). Finally, we can upper-bound the last sum as follows:

𝐾∑︁

𝑗=𝑢*+1

𝜆𝑗 ·𝐵𝑗 =
𝐾∑︁

𝑗=𝑢*+1

𝜆𝑗∑︀𝑗
𝑟=1 𝜆𝑟

·
(︃
𝐵𝑗 ·

𝑗∑︁

𝑟=1

𝜆𝑟

)︃

≤
𝐾∑︁

𝑗=𝑢*+1

𝜆𝑗∑︀𝑗
𝑟=1 𝜆𝑟

·
(︃
𝐵𝑗* ·

𝑗*∑︁

𝑟=1

𝜆𝑟

)︃

≤
𝐾∑︁

𝑗=𝑢*+1

𝜆𝑗∑︀𝑗
𝑟=1 𝜆𝑟

· ℛ(𝑆𝐵𝑗*)

=
𝐾∑︁

𝑗=𝑢*+1

(︃∫︁ ∑︀𝑗
𝑟=1 𝜆𝑟

∑︀𝑗−1
𝑟=1 𝜆𝑟

1∑︀𝑗
𝑟=1 𝜆𝑟

𝑑𝑥

)︃
· ℛ(𝑆𝐵𝑗*) ,

where the first inequality follows from the definition of 𝑗*, and the second inequality

is derived from Equation (2.1). By the monotonicity of 𝑥 ↦→ 1
𝑥
, we obtain:

𝐾∑︁

𝑗=𝑢*+1

𝜆𝑗 ·𝐵𝑗 ≤
𝐾∑︁

𝑗=𝑢*+1

(︃∫︁ ∑︀𝑗
𝑟=1 𝜆𝑟

∑︀𝑗−1
𝑟=1 𝜆𝑟

1

𝑥
𝑑𝑥

)︃
· ℛ(𝑆𝐵𝑗*)

=

(︃∫︁ 1

∑︀𝑢*
𝑟=1 𝜆𝑟

1

𝑥
𝑑𝑥

)︃
· ℛ(𝑆𝐵𝑗*)

≤
(︃∫︁ 1

1
2
· 𝑃min
𝑃max

1

𝑥
𝑑𝑥

)︃
· ℛ(𝑆𝐵𝑗*)

= ln

(︂
2 · 𝑃max

𝑃min

)︂
· ℛ(𝑆𝐵𝑗*) ,

where the second inequality follow from the definition of 𝑢*.

As a result, we can now infer from inequality (2.2) that the assortment 𝑆𝐵𝑗* indeed

approximates the optimal expected revenue within factor 𝑂(⌈ln(𝑃max/𝑃min)⌉), since

OPT ≤ 𝑃min

2
+

(︂
1 + ln

(︂
2 · 𝑃max

𝑃min

)︂)︂
· ℛ(𝑆𝐵𝑗*)

≤
(︂

3

2
+ ln

(︂
2 · 𝑃max

𝑃min

)︂)︂
· ℛ(𝑆𝐵𝑗*)

≤ 5

2
·
⌈︂

ln

(︂
𝑃max

𝑃min

)︂⌉︂
· ℛ(𝑆𝐵𝑗*) .

Here, the second inequality is obtained by observing that 𝑃min ≤ ℛ(𝑆𝐵𝑗*), since by the

48

choice of 𝑗* and by our initial assumption that all empty lists have been eliminated,

we have

ℛ(𝑆𝐵𝑗*) ≥ 𝐵𝑗* ·
𝑗*∑︁

𝑗=1

𝜆𝑗 ≥ 𝐵𝐾 ·
𝐾∑︁

𝑗=1

𝜆𝑗 ≥ 𝑃min .

As a corollary, we prove that revenue-ordered assortment also achieve an approxi-

mation ratio of 𝑂(⌈log(1/𝜆̃)⌉), where 𝜆̃ denotes the combined arrival probability of all

customers who have the highest price item on their list. In particular, when all arrival

probabilities are polynomially bounded away from 0, i.e. Ω(1/poly(𝐾)), this bound

translates to an 𝑂(log𝐾) approximation (for example, under a uniform distribution).

Corollary 2.3.2. The assortment optimization problem under ranking preferences

can be approximated within factor 𝑂(⌈log(1/𝜆̃)⌉).

Proof. We prove that, when all products with price smaller than (𝜆̃/2) · 𝑃max are

eliminated, there is still an assortment that generates an expected revenue of at least

OPT/2. This transformation guarantees that all remaining prices are within factor

2/𝜆̃ of each other, in which case the upper bound given in Theorem 2.3.1 becomes

𝑂(⌈log(1/𝜆̃)⌉).
Let 𝑆 designate the subset of products that have been eliminated, i.e., 𝑆 = {𝑖 ∈

[𝑛] : 𝑃𝑖 ≤ (𝜆̃/2) · 𝑃max}. When we eliminate products from an assortment, the prob-

ability that a customer purchases each of the remaining products (and consequently,

the expected revenue from the remainder selection) can only increase. For this reason,

it is sufficient to consider the contribution of 𝑆 to the expected revenue of the optimal

assortment, which can be upper bounded by

𝐾∑︁

𝑗=1

𝜆𝑗 ·𝑅𝑗(𝑆) ≤
𝐾∑︁

𝑗=1

𝜆𝑗 ·
𝜆̃

2
· 𝑃max =

𝜆̃

2
· 𝑃max ≤

OPT

2
,

where the last inequality holds since OPT ≥ 𝜆̃ · 𝑃max. Indeed, this is the expected

revenue of the assortment formed by stocking only the highest price product.

49

2.3.2 Approximation in terms of list length

A close inspection of our reduction from Max-IS (see Theorem 2.2.1) reveals that

the maximal size of any preference list was equivalent to the maximal degree ∆ in

the original graph. As a consequence, this inapproximability result gives an 𝑂(∆1−𝜖)

hardness for assortment optimization with preference lists of size at most ∆. Since

there are numerous algorithms for approximating Max-IS in terms of ∆ (Karger et al.

1998, Alon and Kahale 1998, Halperin 2002), it is natural to investigate whether im-

proved approximation guarantees can be obtained in terms of the maximum length of

any list. In fact, the underlying assumption that each preference list is comprised of

relatively few products finds behavioral and empirical support, and subsumes practi-

cal choice modeling specifications (Hauser et al. 2009).

In this setting, we analyze the expected revenue of random assortments aris-

ing from an appropriate generative distribution. By derandomization, we obtain

a polynomial-time algorithm that is asymptotically tight, as asserted by the following

theorem.

Theorem 2.3.3. The assortment optimization problem under ranking preferences can

be approximated within factor 𝑒∆, where ∆ is the maximal size of a preference list.

Proof. For any customer-type 𝑗, let 𝑀(𝑗) be the item with maximal price within the

consideration set 𝐶𝑗. The optimal expected revenue is naturally bounded by

OPT ≤
𝐾∑︁

𝑗=1

𝜆𝑗 · 𝑃𝑀(𝑗) .

We construct a random assortment 𝑆𝑋 through the following procedure: First, we

independently draw values for 𝑋1, . . . , 𝑋𝑛, which are 𝑛 i.i.d. Bernoulli variables with

probability of success 1/∆. Then, we pick each product to the assortment if and only

if its corresponding variable is successful, meaning that 𝑆𝑋 = {𝑖 ∈ [𝑛] : 𝑋𝑖 = 1}.
The important observation is that, for any preference list, the probability that

customer-type 𝑗 would purchase product 𝑀(𝑗) when faced with the assortment 𝑆𝑋

50

is at least
1

∆
·
(︂

1− 1

∆

)︂|𝐶𝑗 |−1

≥ 1

∆
·
(︂

1− 1

∆

)︂Δ−1

≥ 1

𝑒∆
,

where the last inequality holds since the function [𝑥 ↦→ (1 − 1/𝑥)𝑥−1] is monotone-

decreasing over (1,∞), and converges to 1/𝑒. Indeed, this is precisely the probability

that 𝑀(𝑗) belongs to 𝑆𝑋 , and that all other products in 𝐶𝑗 are unavailable. We

conclude that the expected revenue of 𝑆𝑋 is

E𝑋

[︃
𝐾∑︁

𝑗=1

𝜆𝑗 ·𝑅𝑗(𝑆𝑋)

]︃
=

𝐾∑︁

𝑗=1

𝜆𝑗 · E𝑋 [𝑅𝑗(𝑆𝑋)] ≥ 1

𝑒∆
·

𝐾∑︁

𝑗=1

𝜆𝑗 · 𝑃𝑀(𝑗) ≥
1

𝑒∆
·OPT .

This algorithm can be derandomized through the method of conditional expec-

tations (see, for example, Chapter 16.1 in Alon and Spencer (2004)). Indeed, con-

ditional on any partial assortment, i.e., a sequence of fixed binary values for the

variables 𝑋1, . . . , 𝑋ℓ, the expected revenue can be computed exactly in polynomial

time. Specifically, the independence between the Bernoulli variables allows to com-

pute the probability that each customer-type picks a given product in his list. By

applying the method of conditional expectations iteratively over ℓ = 1, . . . , 𝑛, we

retrieve a deterministic assortment that approximates OPT within factor 𝑒∆.

2.4 Concluding Remarks

Cardinality constraints. From a technical point of view, the approximation algo-

rithms we propose in Section 2.3 make use of the freedom in picking assortments of

any possible cardinality. An interesting direction for future research is to investigate

whether our algorithms can be extended to the capacitated setting, where at most 𝐶

distinct products can be stocked. Results in this spirit have previously been attained

for several tractable models (see, for instance, Rusmevichientong et al. (2010), Davis

et al. (2013)), although the computational difficulties here appear to be of significantly

different nature.

51

Specification of the choice model. A particularly desirable property of revenue-

ordered assortments is that an explicit description of the preference list distribution is

not required, as long as one has access to an efficient oracle for computing the expected

revenue of any given assortment. Therefore, the approximation guarantees we provide

in Section 2.3.1 extend to a broader class of random utility choice models, where the

distribution over preference lists potentially has a large support, such as Mixture of

Multinomial Logits (Bront et al. 2009, Méndez-Díaz et al. 2014, Rusmevichientong

et al. 2014, Désir and Goyal 2014, Feldman and Topaloglu 2015).

Uniform distribution. An interesting open question is that of determining the

best approximation possible for uniform preference list distributions, i.e., when each

customer-type is picked with equal probability. Such models are of practical im-

portance, since in many applications, the distribution probabilities are conditioned

by the number of samples used to estimate the model parameters. For this special

case, one could try to narrow the gap between our APX-hardness results, given in

Theorem 2.2.5, and the 𝑂(log𝐾) approximation that follows from Corollary 2.3.2.

52

Chapter 3

Consider-then-Choose Choice Models

3.1 Introduction

Choosing an optimal assortment requires to model beforehand the customers pref-

erences to predict accurately how the demand shares of products evolve in response

to variations in the offer set, through what is called a choice model. As explained

in Section 1, building an effective choice model strikes a delicate balance between

several desired attributes. Indeed, as choice models become more detailed, both their

estimation from data, and the resulting optimization problems face computational

barriers, as made explicit by the hardness result obtained in the previous chapter.

The present chapter demonstrates that a class of nonparametric choice models, re-

ferred to as ‘consider-then-choose’ models, renders assortment optimization tractable

under a variety of modeling premises. We present a unique dynamic programming

formulation of the nonparametric assortment optimization problem, and show that a

state space collapse in this problem yields the aforementioned tractability in several

practical cases. Outside of theory, we empirically demonstrate the predictive power of

our modeling approach using both synthetic and real industry datasets. We illustrate

the computational practicality of our approach through extensive comparisons with

state-of-the-art integer programming solvers.

53

Choice modeling and assortment optimization. Generally speaking, choice

models can be divided into parametric and non-parametric models, the latter of which

are effectively general distributions over preference lists of products. Until recently,

most of the work related to assortment optimization has focused on parametric choice

models, primarily attraction-based models in which customer preferences are modeled

through a relatively small number of parameters. The survey by Kök et al. (2009) and

book by Talluri and Van Ryzin (2006) present excellent overviews on such topics, and

our literature review in Section 3.1.2 will summarize the state of the art here. In a

nutshell, the literature presents us with the following dichotomy: on the one hand, for

simple parametric models such as the Multinomial Logit (MNL) and variants of the

Nested logit (NL) model, we now have efficient algorithms available for assortment

optimization. On the other hand, these same models impose structural assumptions

on customer preferences that may prove unrealistic in practice (Debreu 1960, Ben-

Akiva and Lerman 1985). In attempting to address this latter issue, one may consider

further generalized models such as a mixture of MNL models (MMNL), but then

assortment optimization is no longer easy with the best known algorithms having a

complexity that scales exponentially in the cardinality of the mixture (Bront et al.

2009, Rusmevichientong et al. 2014, Désir and Goyal 2014). In addition this latter

class of models is notorious for problems such as over-fitting to data.

In an attempt to construct a parsimonious approach to modeling choice, non-

parametric choice models, where the choice probability arises from a sparse distri-

bution over preference lists (Rusmevichiengtong et al. 2006, Farias et al. 2013, van

Ryzin and Vulcano 2014) have also received some attention. Here, each customer-

type purchases the highest rank item in his preference list made available, or leaves

without making any purchase. In this context, Farias et al. (2013) develop a robust

estimation methodology, where the sparsity of the distribution scales with the amount

of data available, allowing to attain better prediction accuracy than several common

parametric models. On the other hand, there is relatively little known on the compu-

tational tractability of assortment optimization under these non-parametric models

heretofore, beyond a few special cases of interest (Honhon et al. 2012). In fact, spar-

54

sity is generally insufficient to alleviate the computational hardness of assortment

optimization, and the problem was shown to be NP-hard even to approximate in

Chapter 2.

Consider-then-choose models. The aforementioned parametric and non-parametric

models place extremely general conditions on the customer’s decision making process,

effectively requiring a customer to list all her options and then pick her most desirable

from that list. In reality, one may naturally expect this process to be different with

a customer using a set of simple rules to immediately disregard the vast majority of

choices, and then rank (and select from) the small number of options left. We refer

to such models as consider-then-choose models, wherein the consideration set is the

(small) set of products considered. The history of these consider-then-choose idea

originates in the marketing and psychology literature. The idea of whittling down

choices into a consideration set was first posited by Campbell (1969) and formulated

into a theory of the customer’s behavior by Howard and Sheth (1969). In his seminal

study, Hauser (1978) observed that the consideration set structure is in itself a sig-

nificant explanatory factor of choice heterogeneity. We review the evolution of this

approach to modeling choice in our literature review in Section 3.1.2. However, our

objective with considering such models is twofold:

1. We believe that these models have the ability to model real-world data. This

belief is motivated by empirical observations made in the antecedent literature

on whether and how consideration sets are formed. Further, our modeling

approach is borne out by several experiments on real industry datasets.

2. This consider-then-choose structure can be leveraged to mitigate the complex-

ity of assortment optimization problems. In particular, we show that many

empirically-vetted assumptions on how customers consider and choose lead to

tractable assortment optimization problems.

55

3.1.1 Our results

Our main contribution is the development of a unified algorithmic framework to study

the computational tractability of assortment problems under a family of preference-

list based choice models that has been empirically vetted in the marketing literature,

specifically, consider-then-choose models. Moreover, our framework allows a direct

connection between modeling assumptions on the customers’ choice behavior and

the resulting computational complexity. Consequently, we show that several prac-

tical assumptions regarding how customers consider and choose lead to tractable

assortment optimization models. Our dynamic programming algorithm, based on a

divide-and-conquer approach in a specific graph representation, provides computa-

tionally efficient heuristics for more general preference list distributions, and outper-

forms a state-of-the-art integer programming solver (IP) for several class of instances.

We demonstrate the predictive power of the proposed consider-then-choose model-

ing framework against common parametric models, using both synthetic experiments

and real-world datasets. Our industry partner, Infoscout Inc, operates the largest

purchase panel in the US, which provides longitudinal purchase information across

retailers and product categories. In what follows, we provide a more detailed sketch

of our contributions.

Dynamic program and graph representation. Motivated by the empirical ob-

servation that the structure of the consideration sets largely explains choice hetero-

geneity, we start by formulating in Section 3.3 a dynamic program for unique-ranking

distributions, where customers consider arbitrary subsets of products, but their rel-

ative ranking preferences are derived from a common permutation. We introduce a

bipartite graph representation of the problem, which is key to our approach and analy-

sis. Indeed, the connected components of this graph capture a natural decomposition

of the instance. Our dynamic program makes use of this decomposition procedure in a

divide-and-conquer fashion. In contrast to standard dynamic programming, our algo-

rithm relies upon a careful and exhaustive generation of the computational tree prior

to solving the recursive equation. This approach allows for a state space collapse,

56

Table 3.1: Summary of results: polynomial running time guarantees for consider-
then-choose choice models.

Consideration sets Ranking functions Running
time

Sections

Induced intervals
Neighborhood of a
ranking function

𝑂(𝑛4𝐾) 3.4.1, 3.6.1
Laminar properties 𝑂(𝑛2𝐾2) 3.4.2, 3.6.1

Disjunction on 𝑑 features 𝑂(𝑛4𝑑−2𝐾) 3.4.3, 3.6.1
Intervals Quasi-convex permutations 𝑂(𝑛4𝐾4) 3.6.2

Two-feature compensatory Two-feature compensatory 𝑂(𝑛4𝐾4) 3.6.3

The parameter 𝑛 describes the number of product alternatives, 𝐾 denotes the number of preference
lists (sparsity of the distribution), and 𝑑 is a complexity parameter corresponding to the number of
features considered by customers upon forming their consideration set in the disjunctive model. The
notion of induced intervals means that there exists some arbitrary numbering according to which the
consideration sets are intervals.

which substantially reduces the complexity under structural assumptions regarding

how customers consider and choose. Specifically, we show that the complexity anal-

ysis generally boils down to ‘counting’ the number of connected subgraphs induced

by the graph traversal. We prove that our algorithm runs in polynomial time for

very sparse distributions, when the number of preference-lists grows logarithmically

in the number of products. Also, we show that even in the worst case, our algorithm

dominates the brute force enumerative approach.

The extension to general preference list-distributions requires additional techni-

calities, which are described in Section 3.5. Also, our results naturally extend to

capacitated assortment optimization, with a constraint on the size of the assortment.

This result is described separately in Appendix A.6.

Tractable consider-then-choose models. In Section 3.4, we investigate sev-

eral models of consideration sets that stem from documented assumptions on the

customers’ purchasing behavior. We derive polynomial running time guarantees for

the corresponding dynamic program in the unique-ranking setting. In Section 3.6, we

investigate more general classes of distributions that combine heterogeneous consider-

ation sets along with ranking heterogeneity. Our results subsume and extend several

models studied in previous literature. Our complexity results, and the corresponding

57

structural assumptions, are summarized in Table 3.1.

Empirical performance. Our numerical experiments on synthetic instances, de-

scribed in Section 3.7, demonstrate that the algorithm is efficient in practice. We

compare its performance against an integer programming formulation implemented

using a state-of-the-art commercial solver (GUROBI v6.5). We demonstrate that the

IP approach becomes intractable to solve large-scale instances of the quasi-convex

model. Even under generic consideration set structures, our approach dominates the

IP solver in several regime of parameters.

Finally, we demonstrate in Section 3.8 the versatility of our modeling approach

against a benchmark formed by ‘small’ mixtures of Multinomial Logits (MMNL)1.

The objective is to predict the relative purchase probabilities of products in various

assortments. The predictive power of our approach is demonstrated by the experi-

ments conducted on real-world datasets provided by our industry partner, in three

distinct product categories. The errors in out-of-sample predictions of the purchase

probabilities are reduced on average by 14% to 25% under various metrics. In syn-

thetic experiments, our consider-then-choose model outperforms the benchmarks in

the plurality of cases. Specifically, we use the following ground truth models: a

large-mixture MMNL model and a simple consider-then-choose model.

3.1.2 Related literature

Our work relates to two streams of literature, namely the operational literature

on choice modeling and assortment optimization, and the marketing literature on

consider-then-choose models.

Choice models and assortment optimization. In the last two decades, growing

product proliferation and differentiation has motivated a paradigm shift in demand

modeling from independent demand models to choice-based models, to capture the

substitution effects in a given product category (Mahajan and van Ryzin 2001, Kök
1In light of previous literature, assortment optimization is practical only for a mixture over a

relatively small number of customer segments (a notion we will make precise in Section 3.8).

58

and Fisher 2007, Ratliff et al. 2008, Vulcano et al. 2010). In this context, assortment

optimization has received a great deal of attention in operations management litera-

ture. Most of the focus has been on variants of this problem under the widespread

attraction-based models such as the Multinomial Logit (MNL) model, the discrete

Mixture of MNLs (MMNL), etc. Under MNL preferences, the problem is known to

be polynomially solvable (Talluri and van Ryzin 2004, Rusmevichientong et al. 2010),

and the solution methods were further advanced to handle more general settings (Rus-

mevichientong and Topaloglu 2012, Davis et al. 2013). However, the tractability of

assortment optimization under the attraction-based models does not carry over to het-

erogeneous customer segments. That is, even with two segments the MMNL-based

problem was shown to be NP-complete by Bront et al. (2009) and Rusmevichien-

tong et al. (2014). For a fixed number of customer segments, Désir and Goyal (2014)

developed a fully polynomial-time approximation scheme, but its computationally

efficiency hinges on modeling few customer segments. Given these computational

barriers, recent work in assortment optimization attempts to identify new probabil-

isitic models leading to tractable assortment optimization problems (Li et al. 2015,

Blanchet et al. 2016, Davis et al. 2014).

On the other hand, there has been an emerging literature on preference list-

based choice models (Rusmevichiengtong et al. 2006, Farias et al. 2013, Jagabathula

and Rusmevichientong 2016). Here, the heterogeneity in choice is explicitly encoded

through a distribution over preference lists. This approach to modeling choice is very

general, e.g., the attraction-based models can be viewed as parametrized distribu-

tions over all potential preference lists. In this context, Farias et al. (2013) proposed

an efficient methodology to make robust revenue predictions and derived recovery

guarantees under certain technical conditions. To overcome the dimensionality of the

estimation problem, van Ryzin and Vulcano (2014) proposed the ‘market discovery’

algorithm: starting from an initial collection of preference lists, the support of the

distribution is enlarged iteratively by generating a preference list that increases the

log-likelihood value, using dual information. While estimation methods have been

investigated in this setting, assortment optimization remains mostly untapped. We

59

characterized the complexity class of the problem under generic distributions in Chap-

ter 2, while Honhon et al. (2012) developed tailor-made dynamic programming ideas

for several special cases, which are subsumed by our analytical results.

Consider-then-choose literature. A steady line of research in marketing and

psychology has studied various aspects of the decision-making strategies employed by

customers. This literature gives rise to the following key observations.

∙ Cognitive simplicity. To alleviate the cognitive burden in multi-alternative de-

cision tasks, individuals apply simple decision heuristics (Tversky and Kahne-

man 1975, Payne et al. 1996). Hence, the consideration sets are justified by

the need to balance search efforts with potential gains (Hauser and Wernerfelt

1990, Roberts and Lattin 1991). Screening heuristics were shown to be rational

under limited time and knowledge (Gigerenzer and Goldstein 1996, Gigerenzer

and Selten 2002).

∙ Consideration set heuristics. Consequently, numerous studies in marketing have

validated a consider-then-choose decision process, where customers screen prod-

ucts to a smaller relevant set of products before making choice decisions. For

example, Pras and Summers (1975), Brisoux and Laroche (1981) and more re-

cently Gilbride and Allenby (2004) showed empirically that customers often

form their consideration sets through a ‘conjunction’ of elimination rules; see

also Parkinson and Reilly (1979), Belonax and Mittelstaedt (1978), Laroche

et al. (2003). For a detailed view on the consideration set literature, we refer

the reader to the surveys by Hauser et al. (2009), Payne et al. (1996), Bettman

et al. (1998).

∙ Predictive power. It has generally been observed that the incorporation of a

two-stage decision process enables more accurate predictions, for example in

market share forecasting (Urban 1975, Silk and Urban 1978), in choice model-

ing (Roberts and Lattin 1991) or in risky decision-making (Brandstatter et al.

60

2006). In fact, in his seminal work, Hauser (1978) observed that the heterogene-

ity in choice decisions is largely explained by the consideration sets. Even with

a crude assumption on the ranking decisions (formed uniformly at random),

the consideration set structure still explains nearly 80% of the heterogeneity in

choice captured by a richer model, which combines the consideration sets with

logit-based rankings. This observation can be explained in that the first stage

decisions eliminate a large fraction of the alternatives and the resulting con-

sideration sets are comprised of a few products in most categories (Reilly and

Parkinson 1985, Belonax and Mittelstaedt 1978, Hauser and Wernerfelt 1990).

Motivated by these findings, the modeling approach we develop subsequently is

centered around the notion of consideration sets. We will show that this approach to

adding ‘structure’ to a general distribution over preference lists buys us a great deal

from a computational complexity standpoint, and still allows strong predictive power.

Prior to our work, the paper by Jagabathula and Rusmevichientong (2016) also in-

corporates a choice model based on consideration sets. The optimization problem

considered therein relates more closely to combinatorial pricing.

3.2 Modeling Approach and Problem Formulation

Assortment optimization problem. Throughout this chapter we use the index

𝑖 ∈ {1, . . . , 𝑛} = [𝑛] to denote one of 𝑛 products, each is associated with a price 𝑃𝑖. In

addition, we use the index 𝑗 ∈ {1, . . . , 𝐾} = [𝐾] to denote one of 𝐾 customer-types,

each is associated with a consideration set 𝐶𝑗 ⊆ [𝑛] that specifies the products she

is willing to buy and a ranking function 𝜎𝑗 (that is, a permutation over products)

that reflects her relative preferences. We let (𝜆1, . . . , 𝜆𝐾) be the probability vector,

where 𝜆𝑗 denotes the respective fraction of customer-type 𝑗 in the population. The

decision maker has to choose an assortment 𝒜 ⊆ [𝑛] that maximizes the total rev-

enue. Specifically, let Rev (𝑗,𝒜) denote the revenue obtained from customer-type 𝑗

given that assortment 𝒜 is stocked. Note that if 𝒜 ∩ 𝐶𝑗 = ∅ then Rev (𝑗,𝒜) = 0

and otherwise Rev (𝑗,𝒜) = 𝑃𝑖(𝒜,𝑗), where 𝑖(𝒜, 𝑗) = argmin𝑖∈𝒜∩𝐶𝑗
{𝜎𝑗 (𝑖)} is the most

61

preferred product of customer-types within 𝒜. Therefore, the objective is to find an

assortment 𝒜 that maximizes the expected revenue:
∑︀

𝑗∈[𝐾] 𝜆𝑗 · Rev (𝑗,𝒜).

We let 𝒞 = {𝐶𝑗 : 𝑗 ∈ [𝐾]} be the collection of consideration sets and Σ = {𝜎𝑗 :

𝑗 ∈ [𝐾]} be the set of the ranking functions. In contrast to generic preference list

distributions, our approach captures consider-then-choose purchasing behaviors by

imposing constraints on the sets 𝒞 and Σ, respectively. Below, we provide a high-level

description of the ingredients used to model 𝒞 and Σ, while the precise mathematical

definitions are stated in the corresponding parts of this chapter.

Consideration set structure. We relate the collection of consideration sets 𝒞 to

the customers’ cognitive process, where they screen products to form their considera-

tion set. To this end, we build upon the survey by Hauser et al. (2009), which provides

a unified framework to express the different consideration set models proposed in the

marketing literature (see also Gilbride and Allenby (2004) for a similar mathematical

formalism). Suppose that each product 𝑖 ∈ [𝑛] is represented in by a vector 𝑥(𝑖) ∈ R𝑑

in latent 𝑑-dimensional feature space. A screening rule corresponds to a cut-off level

𝑡𝑒 ∈ R on a given feature 𝑒 ∈ [𝑑] that implies the elimination of all products 𝑖 ∈ [𝑛] not

satisfying 𝑥(𝑖)𝑒 ≥ 𝑡𝑒. Generally speaking, Hauser et al. (2009) explains that there are

several families of cognitive processes whereby customers combine different screening

rules to draw their consideration sets:

∙ Conjunction of rules. Here, a product is considered if each one of the specified

screening rules are all satisfied. Namely, each consideration set 𝐶 ∈ 𝒞 is of the

form:

𝐶 =
⋂︁

𝑒∈[𝑑]

{𝑖 ∈ [𝑛] : 𝑥(𝑖)𝑒 ≥ 𝑡𝑒} .

∙ Disjunction of rules. A product is considered if at least one of specified screening

rules is satisfied, leading to:

𝐶 =
⋃︁

𝑒∈[𝑑]

{𝑖 ∈ [𝑛] : 𝑥(𝑖)𝑒 ≥ 𝑡𝑒} .

62

∙ Compensatory models. A product is considered based on a linear combination

between different specified screening rules. In this case, there exists a utility

vector 𝑢 ∈ R𝑑 and a cut-off level 𝑡 ∈ R such that the consideration set is of the

form:

𝐶 = {𝑖 ∈ [𝑛] : 𝑢 · 𝑥(𝑖) ≥ 𝑡} .

In Sections 3.4 and 3.6, we investigate several classes of distributions over preference

lists, where 𝒞 is congruent with such combinations of screening rules. It is worth

mentioning that, for a large enough 𝑑, each of the above models can replicate any

arbitrary collection of consideration sets. Hence, for purposes of identifying tractable

consideration set structures, we focus on a small number of screening rules – which

is also consistent with the cognitive simplicity of customers’ decisions.

Ranking decisions. Having explained how we model 𝒞, it remains to describe Σ.

To ease the exposition, our algorithmic framework is introduced in an incremental

way. First, we focus on the heterogeneity of the consideration sets and start our

discussion assuming that the collection of rankings Σ is a singleton. Here, we assume

that there exists single ranking order common to all customer-types, i.e., 𝜎𝑗 = 𝜎,

and the heterogeneity in preferences stems only from the heterogeneity of the con-

sideration sets. We refer to this setting as the unique-ranking model. As shall be

seen subsequently, the unique-ranking model already subsumes several choice mod-

els studied in previous literature, and even in this setting, assortment optimization is

computationally intractable. Specifically, it was shown in Chapter 2 that the problem

under the unique-ranking model is NP-hard to approximate within factor 𝑂 (𝑛1−𝜖)

for any 𝜖 > 0.

Our algorithmic approach and analysis carry over in the presence of heterogeneity

in ranking decisions. Specifically, in Section 3.6, the unique-ranking assumption is

relaxed in two ways: (i) by assuming that Σ is formed by similar rankings arising

from the local perturbations of a central permutation, or (ii) by studying ranking

structures motivated by behavioral assumptions (e.g., quasi-convex permutations).

63

3.3 Dynamic Program for Unique-Ranking Models

In this section, we present a dynamic programming (DP) formulation under unique-

ranking distributions. As some obstacles must be surmounted to consummate our

approach in the general case, the algorithm for arbitrary preference list distribution

is described separately in Section 3.5, to ease the exposition. We formulate the

dynamic program in two parallel ways, the first corresponds to a traditional recursive

formulation and the second is an appropriate graph representation.

Preliminaries. Recall that an instance of the assortment problem is described by

the set of parameters 𝑛,𝐾,Σ, 𝒞, 𝜎𝑗, 𝐶𝑗, 𝜆𝑗. Assuming that Σ = {𝜎}, without loss of

generality the product indices can be rearranged according to the 𝜎-ordering. That

is item 1 is the most preferred product and 𝑛 is the least preferred one – to lighten

the notation, the reference to 𝜎 is omitted hereafter. In what follows, we use [𝑋] to

denote the set {1, . . . , 𝑋}.

State space and objective function. The state space is formed by all pairs of

subsets (𝑆, 𝑇), where 𝑆 is a subset of products in [𝑛] and 𝑇 is a subset of types in [𝐾].

Specifically, we let 𝐽(𝑆, 𝑇) be the maximum expected revenue that can be obtained

from choosing an assortment of products within 𝑆 to satisfy the customer-types in

𝑇 . In the subproblem, we assume that only customers in 𝑇 can occur and the arrival

probabilities are directly induced from the original instance without a renormalization

of the corresponding sub-vector. Formally, the subproblem (𝑆, 𝑇) is formulated as

follows:

𝐽(𝑆, 𝑇) = max
𝒜⊆𝑆

∑︁

𝑗∈𝑇

𝜆𝑗 · Rev (𝑗,𝒜) .

Graph Representation. We next introduce a bipartite graph representation 𝐺

associated with each instance of the problem. The partite sets are formed by (i) the

set of products, each of which is represented by a node, and (ii) the set of customer-

types [𝐾]. There is an edge between a customer-type node and a product node if

the latter is included in the consideration set of the former. That is, we define the

64

graph 𝐺 = ([𝑛], [𝐾], 𝐸), where 𝐸 = {(𝑖, 𝑗) ∈ [𝑛]× [𝐾] : 𝑖 ∈ 𝐶𝑗}. This graph induces

the family of subgraphs 𝐺[𝑆, 𝑇] associated with each subproblem (𝑆, 𝑇), that is,

𝐺[𝑆, 𝑇] = (𝑆, 𝑇,𝐸𝑆,𝑇), where 𝐸𝑆,𝑇 = {(𝑖, 𝑗) ∈ 𝐸 : 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑇}. The lemma

below asserts that the partition of 𝐺[𝑆, 𝑇] into its connected components captures

a decomposition of the instance (𝑆, 𝑇) into several subproblems that can be solved

independently. This decomposition scheme, represented in Figure 3-1a, is key to our

recursion.

Lemma 3.3.1. Assuming that the connected components of 𝐺[𝑆, 𝑇] are described by

the collection of subgraphs (𝐺[𝑆𝑢, 𝑇𝑢])𝑢∈[𝑟], where 𝑆𝑢 denotes a subset of product nodes

in 𝑆 and 𝑇𝑢 is a subset of type nodes in 𝑇 , then 𝐽(𝑆, 𝑇) =
∑︀𝑟

𝑢=1 𝐽(𝑆𝑢, 𝑇𝑢).

Proof. It is sufficient to prove that the expected revenue generated in (𝑆, 𝑇) by any

assortment 𝒜 ⊆ 𝒮 decomposes into the sum over 𝑢 ∈ [𝑟] of the revenues generated

in each subproblem (𝑆𝑢, 𝑇𝑢) by the respective assortment 𝒜𝑢 = 𝒜 ∩ 𝑆𝑢. Let 𝑗 be a

customer-type in 𝑇𝑢. The main observation is that customer-type 𝑗’s most preferred

product within the assortment 𝒜 is the same as the one he prefers when faced with

the assortment 𝒜𝑢. Indeed, by connectivity, any product in 𝐶𝑗 ∩𝑆 that is considered

by customer 𝑗, necessarily belongs to 𝑆𝑢. Since (𝑆𝑢)𝑢∈[𝑟] forms a partition of 𝑆,

an optimal assortment 𝒜 for subproblem (𝑆, 𝑇) is the union of optimal assortments

𝒜𝑢 ⊆ 𝑆𝑢 for each subproblem (𝑆𝑢, 𝑇𝑢).

Base case. If 𝑆 = [𝑛] and 𝑇 = [𝐾], then 𝐽(𝑆, 𝑇) corresponds to the original

problem we wish to solve. Using Lemma 3.3.1, this problem can be broken-down into

separate optimization problems according to the connected components partition.

From this point on, we may assume without loss of generality that connectivity is an

invariant of the subgraphs examined by the recursion.

Recursive step. We consider the subproblem (𝑆, 𝑇) such that 𝐺[𝑆, 𝑇] is a con-

nected subgraph. We define 𝑖 as the most preferred product among product nodes

𝑆, i.e., 𝑖 = min(𝑆). The decision (or action) made by the dynamic program for state

65

Figure 3-1: Bi-partite Graph Representation: (a) Decomposition of the instance ac-
cording to the connected components of the graph, (b) Illustration of the proof of
Proposition 3.3.3.

1	
 A	

2	

4	

3	

B	

C	

5	
 D	

Customer-types	

Products	

J ([5], C) = J ({1, 3, 4}, {A, B}) + J ({2, 5}, {C, D})

C

(a)

S2 \ S1

S1 \ S2

T2 \ T1

T1 \ T2

G [S1 \ S2, T1 \ T2]

G [S2 \ S1, T2 \ T1]

(b)

(𝑆, 𝑇) is whether to stock product 𝑖 in the assortment or not. Next, we describe graph

operations on 𝐺[𝑆, 𝑇] that correspond to each alternative. As these graph operations

decompose 𝐺[𝑆, 𝑇] into more refined connected components, a natural recursion con-

sists in examining the immediate reward and reward-to-go induced by each stocking

decision.

Case 1: Product 𝑖 is stocked. Let 𝑇 (𝑖) be the customer-types whose consid-

eration sets contain product 𝑖. The unique-ranking order implies that any product

added to the assortment at some later point of the recursion is less preferred than

𝑖 by any customer-type in 𝑇 (𝑖). As a result, we can compute the expected revenue

generated by their purchase of product 𝑖. In addition, since 𝑖 is more preferred than

any product that is stocked at some later point of the recursion, the customer-types

𝑇 (𝑖) can be discarded from this point on. Thus we represent the reward-to-go as the

optimal expected revenue associated with the residual subproblem (𝑆 ∖ {𝑖}, 𝑇 ∖𝑇 (𝑖)).

In the graph representation, the decision to include 𝑖 in the assortment corresponds

to removing node 𝑖 and its adjacent edges from the graph as well as deleting all

nodes in 𝑇 (𝑖) and their adjacent edges. Due to these graph operations, the resid-

ual subgraph 𝐺[𝑆 ∖ {𝑖}, 𝑇 ∖ 𝑇 (𝑖)] is potentially not connected anymore. By Lemma

3.3.1, the subproblem can be broken-down according to the connected components

partition. If (𝑆+
𝑢 , 𝑇

+
𝑢)𝑢∈[𝑟(+)] are the resulting subproblems, the expected revenue is

66

𝑃𝑖 ·
∑︀

𝑗∈𝑇 (𝑖) 𝜆𝑗 +
∑︀𝑟(+)

𝑢=1 𝐽(𝑆+
𝑢 , 𝑇

+
𝑢) .

Case 2: product 𝑖 is not stocked. All the customers in 𝑇 remain unsatisfied and

the reward-to-go is that associated with subproblem (𝑆 ∖ {𝑖}, 𝑇). The corresponding

graph operation is the deletion of node 𝑖 and its outgoing edges, and consider the

residual subgraph 𝐺[𝑆 ∖ {𝑖}, 𝑇]. Let (𝐺[𝑆−
𝑢 , 𝑇

−
𝑢])𝑢∈[𝑟(−)] describe the connected com-

ponents of the residual subgraph. Then, by Lemma 3.3.1 it follows that the expected

revenue is
∑︀𝑟(−)

𝑢=1 𝐽(𝑆−
𝑢 , 𝑇

−
𝑢) .

Combining the two decisions, the dynamic programming recursion is:

𝐽(𝑆, 𝑇) = max

⎡
⎣𝑃𝑖 ·

∑︁

𝑗∈𝑇 (𝑖)

𝜆𝑗 +

𝑟(+)∑︁

𝑢=1

𝐽(𝑆+

𝑢 , 𝑇
+

𝑢) ,

𝑟(−)∑︁

𝑢=1

𝐽(𝑆−
𝑢 , 𝑇

−
𝑢)

⎤
⎦ . (3.1)

State space collapse. In a naive implementation of the algorithm, one could solve

the problem for all possible pair (𝑆, 𝑇). However, this approach is inherently in-

tractable and could be in the worst case as bad as 2𝑛+𝐾 . However, the dynamic

program does not need to examine all corresponding subproblems to solve the initial

instance. In fact, the recursion formula provides an algorithmic procedure to deter-

mine the precise ‘minimal’ number of subproblems needed to be solved. In contrast

to a standard dynamic program, we will not assume that the state space is known a

priori, and carefully generate a computational tree by processing the products from

1 to 𝑛 (i.e., according to the unique order 𝜎) adding nodes to the tree based on

the recursion described above. The algorithm requires a two-pass implementation:

first the computational tree is built by generating all subproblems of interest, using

the recursive formula (3.1), then an optimal assortment is obtained by a backward

induction.

Complexity analysis. We let 𝒮 denote henceforth the exact state space that pro-

ceeds from the previous observation. Namely, 𝒮 represents a collection of distinct

subproblems, each of which belongs to the computational tree generated by the re-

cursion. We now argue that the running time complexity is 𝑂(𝑛𝐾 · |𝒮|). Indeed,

67

building each node of the computational tree requires at most 𝑂(𝑛𝐾) operations.

This is the number of operations required to update the graph, compute the new

connected components in 𝑂(𝑛𝐾) operations and check whether each new subproblem

already belongs to the computational tree in 𝑂(𝑛 + 𝐾) operations using an appro-

priate search data structure, where each subproblem is encoded by an 𝑛+𝐾-binary

string. Then, the subproblems are solved backwards using the recursive formula with

a total running time complexity of 𝑂(𝐾 · |𝒮|), taking 𝑂(𝐾) operations at each step

to solve Equation (3.1). As a result, the complexity analysis boils down to estimating

the size of the state space 𝒮.

In the worst case, the number of connected subgraphs is still exponential. However,

we establish in the next theorem that the state space is at most min(2𝑛, 𝑛 · 2𝐾),

instead of the naive 2𝑛+𝐾 . Hence, the algorithm is efficient for applications in which

the distribution over preference lists has a sparse support. It is worth noting that the

running time is polynomial for 𝐾 = 𝑂(log(𝑛)). Also, for 𝐾 = 𝑂(1), the running time

is quadratic in the number of products, instead of the brute force approach in time

𝑂(𝑛𝐾).

Theorem 3.3.2. The size of the state space is at most min(2𝑛, 𝑛 · 2𝐾). The running

time complexity is quadratic in 𝑛 for a constant number of types 𝐾, and polynomial

for 𝐾 = 𝑂(log(𝑛)).

To the end of proving Theorem 3.3.2, we introduce a characterization of the state

space, which considerably simplifies the analysis of the algorithm. We define a projec-

tion Φ from the collection of subproblems 𝒮 (i.e., subproblems in the computational

tree) onto the collection of subsets of {1 . . . 𝑛} as follows:

Φ : 𝒮 →P([𝑛])

(𝑆, 𝑇) ↦→ [min (𝑆)]
⋂︁ (︃⋃︁

𝑢∈𝑇

𝐶𝑢

)︃
.

We establish below that Φ is injective, meaning that the size of the state space is

equal to |Φ⟨𝒮⟩|.

68

Proposition 3.3.3. Φ is injective, and as a result: |𝒮| = |Φ⟨𝒮⟩|.

Proof. We assume (𝑆1, 𝑇1), (𝑆2, 𝑇2) are two subproblems that are generated by the

recursion, such that Φ(𝑆1, 𝑇1) = Φ(𝑆2, 𝑇2). By construction, 𝐺1 = 𝐺[𝑆1, 𝑇1] and

𝐺2 = 𝐺[𝑆2, 𝑇2] are two connected subgraphs.

Because 𝐺1 is connected, there exists 𝑢 ∈ 𝑇1 such that (min(𝑆1), 𝑢) is an edge of

𝐺1, meaning that min(𝑆1) ∈ 𝐶𝑢. As a result, min(𝑆1) = max(Φ(𝐺1)). By symmetry,

we obtain:

min(𝑆2) = max(Φ(𝐺2)) = max(Φ(𝐺1)) = min(𝑆1) .

We infer from the connectivity of the subgraph 𝐺[𝑆1, 𝑇1] that 𝑆1 ⊆ ∪𝑢∈𝑇1𝐶𝑢. Since

the set of products examined at previous steps of the recursion is exactly [min(𝑆1)−1],

we infer the equality 𝑆1 = ∪𝑢∈𝑇1 (𝐶𝑢 ∩ [min(𝑆1), 𝑛]). By a symmetric argument,

𝑆2 = ∪𝑢∈𝑇2 (𝐶𝑢 ∩ [min(𝑆2), 𝑛]).

As a result, what remains to be proven is simply that 𝑇1 = 𝑇2. Assume ad

absurdum that 𝑇2 ∖ 𝑇1 ̸= ∅ and let 𝑢′ ∈ 𝑇2 ∖ 𝑇1. Under this assumption, we establish

the following property.

Claim 3.3.4. 𝐶𝑢′ ∩ 𝑆1 = ∅.

Proof of Claim 3.3.4. We assume otherwise and prove a contradiction. Because the

two subgraphs 𝐺1, 𝐺2 both contain product node min(𝑆1), they initially lied in the

same connected component of 𝐺. As a result, by looking at the sequence of algorithm

iterations that generates 𝐺1, we can define 𝑖 as the minimal product examined by the

algorithm after which 𝑢′ gets disconnected from 𝐺1. Then, product 𝑖 has necessarily

been added to the assortment, while node 𝑢′ has been removed from the graph.

Indeed, otherwise 𝑢′ would still be connected to 𝑆1 by hypothesis. Therefore, we

obtain that 𝑖 ∈ 𝐶𝑢′ . It follows that 𝑖 ∈ Φ(𝑆2, 𝑇2) and thus 𝑖 ∈ Φ(𝑆1, 𝑇1). On the other

hand, it is clear that 𝑖 does not belong to ∪𝑢∈𝑇1𝐶𝑢 otherwise some customer-types in

𝑇1 would be discarded when 𝑖 is selected in the assortment. This yields the desired

contradiction.

The latter claim implies that there exists no edge between customer-types in 𝑇2∖𝑇1

69

and product nodes 𝑆1 ∩ 𝑆2. In addition, there exist no edges between customer-

type nodes 𝑇2 ∩ 𝑇1 and product nodes 𝑆2 ∖ 𝑆1. Indeed, there would exist otherwise

𝑢 ∈ 𝑇1 and 𝑖 ∈ 𝐶𝑢 ∩ 𝑆2, such that 𝑖 /∈ 𝑆1. Because min(𝑆2) = min(𝑆1) we infer

that 𝑖 ∈ 𝐶𝑢 ∩ [min(𝑆1), 𝑛]. By construction of our recursion, we obtain 𝑖 ∈ 𝑆1,

which gives a contradiction. To conclude, as shown in Figure (3-1b) we observe that

𝐺[𝑆2∖𝑆1, 𝑇2∖𝑇1] and 𝐺[𝑆2∩𝑆1, 𝑇2∩𝑇1] are distinct connected components of 𝐺[𝑆2, 𝑇2],

contradicting the connectivity of the latter subgraph.

Finally, we derive a parametric bound on the state space, as a function of the

consideration sets diameter. To this end, we define Diam(𝒞) as the maximal diameter

of a consideration set in 𝒞: Diam(𝒞) = max{max𝐶 − min𝐶 : 𝐶 ∈ 𝒞}. The next

claim comes as an immediate consequence of Proposition 3.3.3.

Corollary 3.3.5. The size of the state space is at most 2Diam(𝒞). Hence, the running

time complexity is polynomial when Diam(𝒞) = 𝑂(log(𝑛)).

3.4 Modeling the Consideration Sets

In this section, we identify several consideration set models that stem from behavioral

assumptions, for which |𝒮| is polynomial in the input size.

3.4.1 Induced Intervals Structure

Definition 3.4.1. A collection of consideration sets 𝒞 is a family of induced inter-

vals if it forms a collection of intervals when numbered according to some arbitrary

permutation 𝜋 : [𝑛]→ [𝑛], i.e., 𝜋⟨𝐶𝑗⟩ is an interval for any customer-type 𝑗 ∈ [𝐾].

Using the screening rule formalism of Section 3.2, it can be verified that this prop-

erty arises when the consideration sets are formed as a conjunction of two screening

rules, meaning that each consideration set in 𝒞 is of the form {𝑖 ∈ [𝑛] : 𝑥
(𝑖)
1 ≥ 𝑡1 ∧ 𝑥(𝑖)2 ≥ 𝑡2}

for some cut-off levels 𝑡1, 𝑡2, and the corresponding features are inversely related, i.e.,

for any products 𝑖1, 𝑖2 ∈ [𝑛], 𝑥(𝑖1)1 ≥ 𝑥
(𝑖2)
1 implies that 𝑥(𝑖1)2 ≤ 𝑥

(𝑖2)
2 . As a practical

70

example, price and quality are significant drivers of the customers’ choices, who might

use the following screening rules:

∙ Budget constraint: Customers would eliminate at an early stage of the pur-

chasing process the products that they cannot afford (Fisher and Vaidyanathan

2009, Jagabathula and Rusmevichientong 2016).

∙ Perceived quality cut-off: There is empirical evidence that price is used as a

cue for quality (Zeithalm 1988, Posavac et al. 2005), hence customers would

eliminate all products cheaper than the given cut-off level.

The consideration sets emanating from a conjunction between budget constraints

and perceived quality cut-offs are intervals with respect to the price order. Also, it is

worth noting that induced interval consideration sets with unique-ranking subsumes

the downward substitution model proposed by Pentico (1974) and Honhon et al. (2012)

as the special case where the preference order Σ = {𝜎} coincides with {𝜋}. In contrast,

for the induced intervals in question, the preference order 𝜎 is generally distinct from

the inducing permutation 𝜋.

We now prove that the dynamic programming algorithm runs in polynomial time

under this class of distributions, by bounding the number of connected subgraphs

generated along the dynamic program. Intuitively, our counting argument utilizes

the observation that a union of overlapping intervals is itself an interval.

Theorem 3.4.2. Under induced intervals consideration sets, the dynamic program

has a running time of 𝑂(𝑛4𝐾). Using a specific data-structure, the running time

complexity is 𝑂(𝑛2𝐾 · log(𝐾)) in the special case of the downward substitution model.

Proof. Given that the function Φ is injective according to Proposition 3.3.3, it is

sufficient to upper bound |Φ⟨𝒮⟩|. To this end, we let (𝑆, 𝑇) designate a subproblem

of 𝒮. The key observation is that, due to the connectivity of 𝐺[𝑆, 𝑇], the union of

the consideration sets in 𝑇 is itself an interval according to the ordering 𝜋. Indeed,

assume ad absurdum that there exists products 𝑖, 𝑗 ∈ 𝑆∩ [𝑛] and a product 𝛼 ∈ [𝑛]∖𝑆
such that 𝜋(𝑖) < 𝜋(𝛼) < 𝜋(𝑗). Then, for any customer-type 𝑗 in 𝑇 , since 𝜋⟨𝐶𝑗⟩ is an

71

interval, we infer that either 𝜋⟨𝐶𝑗⟩ ⊆ [𝜋(𝛼) − 1] or 𝜋⟨𝐶𝑗⟩ ⊆ [𝜋(𝛼) + 1, 𝑛]. Denoting

by 𝑇1 the customer-types that satisfy the former inclusion, and 𝑇2 the latter one, we

conclude that the subgraph 𝐺[𝑆, 𝑇] decomposes into distinct connected components

𝐺[𝑆1, 𝑇1] and 𝐺[𝑆2, 𝑇2], where 𝑆1 is the subset of products whose 𝜋-indices belong to

[𝜋(𝛼)− 1] and 𝑆2 corresponds to the 𝜋-indices in [𝜋(𝛼) + 1, 𝑛]. This contradicts the

connectivity of 𝐺[𝑆, 𝑇].

Since Φ(𝑆, 𝑇) = [min(𝑆)] ∩ ∪𝑗∈𝑇𝐶𝑗, and we have proven that 𝜋⟨∪𝑗∈𝑇𝐶𝑗⟩ is an

interval, we conclude that the image of Φ is a collection at most 𝑛3 distinct subsets

of [𝑛]. For the special case of downward substitution, i.e., Σ = {𝜋}, Φ(𝑆, 𝑇) is

an interval of the form [𝛼,min(𝑆)], meaning that the state space has a cardinality

of 𝑂(𝑛2). In this case, using an interval tree data-structure, it is known that the

connected components can be computed in a running time of 𝑂(𝐾 log(𝐾)) (Samet

1990), leading to a total running time of 𝑂(𝑛2𝐾 log(𝐾)).

3.4.2 Laminar properties

Definition 3.4.3. A collection of consideration sets 𝒞 is said to be laminar if, for

any two customer-types 𝑗, 𝑗′ ∈ [𝐾] such that 𝐶𝑗 ∩ 𝐶𝑗′ ̸= ∅, the consideration sets are

nested, i.e., 𝐶𝑗 ⊆ 𝐶𝑗′ or 𝐶𝑗′ ⊆ 𝐶𝑗.

Elimination-by-Aspect. Such laminar structures arise in Elimination-by-Aspect

(EBA) choice-making processes, which were first introduced by Tversky (1972a,b). To

this end, we assume that the feature space is discrete, i.e., without loss of generality

𝑥(𝑖) ∈ {0, 1}𝑑, and each screening rule on feature 𝑒 ∈ [𝑑] is expressed as a constraint of

the form 𝑥
(𝑖)
𝑒 = 𝑡 with a cut-off level 𝑡 ∈ {0, 1}. EBA models assume that a customer

picks features iteratively, entailing a random sequence 𝑒1, . . . , 𝑒𝑀 ∈ [𝑑]𝑀 , where 𝑀 is

random. At each step 𝑘 ∈ [𝑀], the customer selects a level 𝑡𝑒𝑘 , and eliminates all

products 𝑖 not satisfying 𝑥(𝑖)𝑒𝑘 = 𝑡𝑒𝑘 . The sequence of features could be deterministic

(this is known as the lexicographic order) or random. One probabilistic structure used

to describe these processes in related models rests on a tree structure (Tversky and

Sattath 1979): the next feature chosen by an individual in the sequence of eliminations

72

is deterministic conditional to the prefix of levels that he chose prior. That is, 𝑒𝑘 is a

deterministic function of (𝑒1, 𝑡𝑒1), . . . , (𝑒𝑘−1, 𝑡𝑒𝑘−1
). Assuming this property, it can be

verified that the corresponding distributions over consideration sets necessarily have

a laminar support (see Figure 3-2 for a pictorial representation).

Figure 3-2: Example of an Elimination-by-Aspect screening process and the corre-
sponding laminar tree: shoes category, with features type and style.

Style

Shoes

Boots Sandals Heels

French Italian

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

5 6 7 8

5 6 7 83 41 2

5 6 7 83 41 2
Type

The following theorem suggests that the induced intervals structure defined in

Section 3.4.1 is rather general as it subsumes laminar consideration sets as a special

case.

Theorem 3.4.4. The class of laminar consideration sets is a special case of induced

intervals. The corresponding running time complexity is 𝑂(𝑛2𝐾2).

Proof. Let 𝒞 denote a laminar consideration set system. Without loss of generality,

we may assume that each consideration set corresponds to a unique customer-type

(otherwise if two customer-types share the same consideration set, we represent them

by a single type and aggregate their arrival probabilities) and there exists a consid-

eration set comprised of all products [𝑛] in 𝒞 (its arrival probability can be set to

0). We seek to prove that 𝒞 is a family of intervals if the products are numbered

according to some appropriate permutation 𝜋 : [𝑛]→ [𝑛].

Laminar tree. It is known that any laminar collection of subsets admits a rooted

tree representation (Edmonds and Giles 1977). That is, we can build an directed tree

(𝑉,𝐸), wherein each customer-type is represented by a single node, i.e., 𝑉 = [𝐾],

and there exists a directed edge (𝑗, 𝑘) ∈ 𝐸 if 𝑘 is the customer-type with a maximal

consideration set contained in 𝐶𝑗. In other terms, we have 𝐶𝑘 ⊂ 𝐶𝑗 and there exists

73

no other 𝑙 ∈ [𝑘] such that 𝐶𝑘 ⊂ 𝐶𝑙 ⊂ 𝐶𝑗. The root corresponds to the customer-type

with consideration set [𝑛].

Depth first order. Now, for any 𝑗 ∈ 𝐾, we define 𝑜(𝑗) as the offspring of node 𝑗 in

(𝑉,𝐸). Also, we introduce the list of products 𝑠(𝑗) formed by the difference between

𝐶𝑗 and the products associated with the children of 𝑗, i.e. 𝑠(𝑗) = 𝐶𝑗 ∖ ∪𝑗′∈𝑜(𝑗)𝐶𝑗′ .

Next, the permutation 𝜋 is defined through the ranked list of products obtained

as a concatenation of the lists 𝑠(𝑗) in a depth-first traversal of the laminar tree.

It can be proven inductively that 𝜋⟨𝐶𝑗⟩ is an interval for any 𝑗 ∈ [𝐾]. Indeed,

if a node 𝑗 is a leaf of the laminar tree, then 𝑠(𝑗) = 𝐶𝑗, and the concatenation

procedure preserves the connectivity of 𝑠(𝑗). The inductive argument proceeds from

the following observations.

1. By definition of 𝑠, for any given customer-type 𝑗 ∈ [𝐾], 𝐶𝑗 = (∪𝑗′∈𝑜(𝑗)𝐶𝑗′)∪𝑠(𝑗).

2. The collections of products associated with the children nodes are examined

consecutively in a depth-first traversal. Hence, the inductive hypothesis implies

that 𝜋⟨∪𝑗′∈𝑜(𝑗)𝐶𝑗′⟩ is an interval.

3. Since this interval gets concatenated to 𝑠(𝑗), observation 1 above implies that

𝜋⟨𝐶𝑗⟩ is an interval.

Weakly laminar consideration sets. To demonstrate the generality of our al-

gorithmic approach, we now introduce an extension of this model, dubbed weakly

laminar consideration sets, which does not reduce to induced intervals, but still ad-

mits a polynomial running time guarantee.

Definition 3.4.5. A collection of consideration sets 𝒞 is said to be weakly laminar

if any two consideration sets that intersect are nested up to the maximal product of

their intersection. That is, for any customer-types 𝑎, 𝑏 ∈ [𝐾] such that 𝐶𝑎 ∩ 𝐶𝑏 ̸= ∅,
if 𝑖 = max (𝐶𝑎 ∩ 𝐶𝑏), then, either 𝐶𝑎 ∩ [𝑖] ⊆ 𝐶𝑏 ∩ [𝑖] or 𝐶𝑏 ∩ [𝑖] ⊆ 𝐶𝑎 ∩ [𝑖].

74

This model captures the conjunction of any laminar consideration sets with any

arbitrary screening rule, such as the budget and quality constraints mentioned in

Section 3.4.1. In addition, it subsumes (strictly) other choice models in related lit-

erature, notably the above-mentioned downward substitution model, as well as the

out-tree model proposed by Honhon et al. (2012).

Theorem 3.4.6. Under weakly laminar consideration sets, the dynamic program runs

in time 𝑂(𝑛2𝐾2).

Proof. To analyze the size of the state space |𝒮| under this model, we first exhibit

a structural property satisfied by the recursion, namely the existence of a ‘maximal’

consideration set with respect to some well-chosen inclusion order, in each connected

subgraph examined by the recursion.

Lemma 3.4.7. Assume that (𝑆, 𝑇) ∈ 𝒮 is a subproblem generated by the recursion.

Then, there exists a customer-type 𝑗* ∈ 𝑇 such that 𝐶𝑗 ∩ [min(𝑆)] ⊂ 𝐶𝑗* ∩ [min(𝑆)]

for any customer-type 𝑗 ∈ 𝑇 .

This property is proven in Appendix A.1. Consequently, we can upper bound

|Φ⟨𝒮⟩|. Let (𝑆, 𝑇) be a subproblem in the state space 𝒮. By Lemma 3.4.7, we obtain

Φ(𝑆, 𝑇) =
⋃︁

𝑗∈𝑇

(︁
𝐶𝑗

⋂︁
[min (𝑆)]

)︁
= 𝐶𝑗*

⋂︁
[min (𝑆)]

For a fixed value of min(𝑆), there are at most 𝐾 subsets Φ(𝑆, 𝑇), meaning that

|Φ⟨𝒮⟩| ≤ 𝑛𝐾.

3.4.3 Disjunctive consideration sets

The consideration set models discussed in the previous sections proceed from a con-

junction of screening rules. As mentioned in Section 3.2, another decision-making

model proposed in the marketing literature posits that the consideration sets are

formed in a disjunctive fashion.

75

Definition 3.4.8. For any 𝑑 ∈ N, a collection of consideration sets 𝒞 is said to be

𝑑-disjunctive if the feature space is 𝑑-dimensional and all consideration sets in 𝒞 are

generated as a disjunction of screening rules. That is, each customer-type 𝑗 ∈ [𝐾] is

characterized by a cut-off vector denoted by 𝑡(𝑗) ∈ R𝑑, such that

𝐶𝑗 =
{︀
𝑖 ∈ [𝑛] :

(︀
𝑥(𝑖)

1 ≥ 𝑡(𝑗)1

)︀
∨ · · · ∨

(︀
𝑥(𝑖)

𝑑 ≥ 𝑡(𝑗)𝑑

)︀}︀
.

We now prove that the size of the state space |𝒮| is polynomially bounded for

a fixed parameter 𝑑. Since the 𝑑-disjunctive model can replicate arbitrary consid-

eration set structure 𝒞 for a large enough 𝑑, the next theorem expresses an explicit

tradeoff between modeling power and tractability. In practice, one would expect that

customers make use of few screening rules (Hauser et al. 2009).

Theorem 3.4.9. Under 𝑑-disjunctive consideration sets, the dynamic program has a

running time of 𝑂(𝑛2𝐾𝑑+1).

3.5 General Dynamic Programming Formulation

In this section, we relax the assumption that Σ is a singleton and describe a dynamic

program that applies to arbitrary preference list distributions. The key ingredients

of the algorithm remain unchanged. Specifically, products are processed sequentially,

which entails a decomposition of the graph representation into increasingly refined

connected components, in a divide-and-conquer fashion. However, unlike the unique-

ranking case, the processing order does not necessarily coincide with the customer’s

preference order. Thus, it is not immediate which subset of customer-types gets

allocated to a given product at the time a DP decision is made. As a result, the DP

action space needs to be enlarged to account for any feasible allocation of a product

to a subset of customer-types. At face value, there are exponentially many potential

allocations, and the approach appears to be subject to the curse of dimensionality.

We work around this difficulty by proposing an auxiliary algorithm, used at each step

of the recursion, that can yield tractable solutions.

76

Processing order. We begin by defining a processing order 𝜎 on the products,

according to which the dynamic program makes sequential decisions (or actions).

The correctness of the dynamic program does not depend on 𝜎 although, as shown

in next subsections, an appropriate choice of 𝜎 may significantly reduce the running

time complexity. Here, 𝜎 is chosen as an arbitrary permutation and the products

are numbered accordingly (i.e., product 1 is processed first, and so on) such that the

reference to the processing order is made implicit throughout the present section.

State space and value function. The state space is described by the parameters

(𝑆, 𝑇,𝐿), where 𝑆 is a subset of products in [𝑛], 𝑇 is a subset of customer-types

in [𝐾] and 𝐿 ∈ Z𝐾
+ is a nonnegative integer valued vector, named the truncation

vector. We let 𝐽(𝑆, 𝑇,𝐿) be the maximum expected revenue that can be attained

from customer-types in 𝑇 using an assortment within products in 𝑆, and assuming

that, each customer-type 𝑗 ∈ 𝑇 is willing to purchase only products of rank at most

𝐿𝑗 within his consideration set. That is, customer-type 𝑗 will only purchase products

in the set 𝐶𝑗(𝐿𝑗) = {𝑖 ∈ 𝐶𝑗 : 𝜎𝑗(𝑖) < 𝐿𝑗}. (Recall that each customer-type 𝑗 is

associated with a ranking function 𝜎𝑗 ∈ Σ.) We note that only the 𝑇 -coordinates of

𝐿, i.e., the sub-vector 𝐿[𝑇], matter in the definition of 𝐽(𝑆, 𝑇,𝐿). However, to lighten

the notation we use the entire vector and assume that the unnecessary coordinates

are set to 0.

DP bipartite graph. Similar to the unique-ranking case, we define the bipartite

graph 𝐺 that has a node, for each product 𝑖 ∈ [𝑛], on one side, and a node, for

each customer-type 𝑗 ∈ [𝐾], on the other side. There is an edge between a product

node and customer-type node if the preference list of the latter contains the former.

Each subproblem of the state space (𝑆, 𝑇,𝐿) is associated with the subgraph 𝐺𝐿[𝑆, 𝑇]

with (i) product nodes in 𝑆; (ii) customer-type nodes in 𝑇 ; (iii) there exists an edge

between any 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑇 if 𝑖 ∈ 𝐶𝑗(𝐿𝑗). Similar to the unique-ranking case, the

connected components of the subgraph capture a decomposition into independent

instances. The proof, in the same spirit as that of Lemma 3.3.1, is omitted.

77

Lemma 3.5.1. For each subproblem (𝑆, 𝑇,𝐿), assuming that the connected compo-

nents of 𝐺𝐿[𝑆, 𝑇] are described by the collection of subgraphs (𝐺𝐿[𝑆𝑢, 𝑇𝑢])𝑢∈[𝑟] where

𝑆𝑢 denotes a subset of product nodes in 𝑆 and 𝑇𝑢 is a subset of type nodes in 𝑇 , then

𝐽(𝑆, 𝑇,𝐿) =
∑︀𝑟

𝑢=1 𝐽(𝑆𝑢, 𝑇𝑢,𝐿).

Dynamic programming decisions and graph operations. We consider a sub-

problem (𝑆, 𝑇,𝐿) and 𝑖 is the next product to be processed 𝑖 = min(𝑆). We define

𝑇 (𝑖) ⊆ 𝑇 as all customer-types whose preference list contains 𝑖, i.e., 𝑇 (𝑖) = {𝑗 ∈ 𝑇 :

𝑖 ∈ 𝐶𝑗(𝐿𝑗)}.
Assume we decide to allocate product 𝑖 to a subset of customers 𝑉 ⊆ 𝑇 (𝑖), meaning

that 𝑖 is the most preferred product made available to the customer-types in 𝑉 . We

describe below some natural operations on the graph 𝐺𝐿[𝑆, 𝑇] to enforce the decision

of allocating product 𝑖 to customer-types 𝑉 . In particular, we make sure that the

decision to satisfy 𝑉 with product 𝑖 is consistent with future decisions, and that it is

feasible irrespective of the subsequent decisions. Specifically, we perform the following

operations on the bipartite graph:

1. 𝑇 -nodes deletion. Because they are already satisfied with a product, the nodes

corresponding to consumer-types 𝑉 should be discarded, we define 𝑇 (𝑉) = 𝑇 ∖𝑉
as the remaining customer-types.

2. 𝑆-nodes deletion. For each satisfied customer-type 𝑗 ∈ 𝑉 , we should remove

from 𝑆 the nodes of all items he prefers more; indeed, these products cannot be

stocked in the assortment otherwise they would have been chosen by customer-

type 𝑗 over product 𝑖. Thus we define 𝑆(𝑉) as the residual set of products:

𝑆(𝑉) = 𝑆 ∖
⋃︁

𝑗∈𝑉

{𝑥 ∈ 𝐶𝑗(𝐿𝑗) : 𝜎𝑗(𝑥) < 𝜎𝑗(𝑖)} , (3.2)

3. Edges deletion. Finally, if a customer-type whose preference list contains prod-

uct 𝑖, is not allocated to this product, he can only purchase a product product

he prefers more at some later point of the recursion. As a result, we need to

78

truncate his preference list by updating the vector 𝐿:

∀𝑗 ∈ 𝑇 (𝑉), 𝐿′
𝑗 =

⎧
⎪⎨
⎪⎩
𝐿𝑗 if 𝑗 ̸∈ 𝑇 (𝑖)

min(𝐿𝑗, 𝜎𝑗(𝑖)) otherwise .

(3.3)

We can easily verify the correctness of the above graph operations. That is,

the expected revenue obtained by summing the immediate-reward, formed by the

allocation of product 𝑖 to customer-types 𝑉 , with the reward-to-go, generated by the

subproblem associated with the residual subgraph 𝐺𝐿′ [𝑆(𝑉), 𝑇 (𝑉)], is feasible. We now

formally describe the recursion.

Base case. If we set 𝑆 = [𝑛], 𝑇 = [𝐾] and 𝐿𝑗 = 𝑛 + 1, then 𝐽(𝑆, 𝑇,𝐿) reflects

the original problem we are interested to solve. Using the Lemma 3.5.1, an optimal

assortment is obtained by solving independently the subproblems associated with

each connected component of 𝐺. From this point on, connectivity is an invariant of

the subproblems examined by the recursion.

Recursive formula. We consider the subproblem (𝑆, 𝑇,𝐿) such that 𝐺𝐿[𝑆, 𝑇] is a

connected subgraph. Recall that 𝑖 denotes the next product to be processed (the min-

imal element of 𝑆) and 𝑇 (𝑖) are all customer-types who consider product 𝑖. The deci-

sion made by the dynamic program consists in the subset of customer-types 𝑉 ⊆ 𝑇 (𝑖)

allocated to product 𝑖. Without loss of generality, we can assume that an empty allo-

cation 𝑉 = ∅ means that he product 𝑖 is not stocked in the assortment. In this case,

the residual subgraph is 𝐺𝐿[𝑆 ∖ {𝑖}, 𝑇], which decomposes into the connected com-

ponents (𝐺𝐿[𝑆𝑢, 𝑇𝑢])𝑢∈[𝑟]. Each corresponding subproblems is solved independently

according to Lemma 3.5.1, generating a total revenue of
∑︀𝑟

𝑢=1 𝐽(𝑆𝑢, 𝑇𝑢,𝐿).

For each choice of 𝑉 ⊆ 𝑇 (𝑖), where 𝑉 ̸= ∅, the allocation generates an immediate-

reward 𝑃𝑖 ·
∑︀

𝑗∈𝑇 𝜆𝑖. Next, we consider the residual subgraph 𝐺𝐿′ [𝑆(𝑉), 𝑇 (𝑉)] after

performing the operations previously described. Namely, we remove the most pre-

ferred products according to Equation (3.2) while we delete edges according to 𝐿′

defined in Equation (3.3), where the vector 𝐿′ does not depend on the choice of

79

the allocation 𝑉 ⊆ 𝑇 (𝑖). Using Lemma 3.5.1, the subgraph 𝐺𝐿′ [𝑆(𝑉), 𝑇 (𝑉)] can be

decomposed into its connected components (𝐺𝐿′ [𝑆(𝑉)
𝑢 , 𝑇 (𝑉)

𝑢])𝑢∈[𝑟(𝑉)]. Therefore, the

optimality conditions yield the following the recursive formula:

𝐽(𝑆, 𝑇,𝐿) = max

⎛
⎝

𝑟∑︁

𝑢=1

𝐽(𝑆𝑢, 𝑇𝑢,𝐿) , max
𝑉⊆𝑇 (𝑖)

𝑃𝑖 ·
∑︁

𝑗∈𝑉

𝜆𝑗 +

𝑟(𝑉)∑︁

𝑢=1

𝐽 (𝑆(𝑉)

𝑢 , 𝑇 (𝑉)

𝑢 ,𝐿′)

⎞
⎠

(3.4)

Preliminary complexity analysis. In a naive implementation of the algorithm,

one would solve the problem for all possible tuple (𝑆, 𝑇,𝐿). Similar to the dynamic

program presented in Section 3.3, the effective computational tree is in fact com-

prised of a much smaller fraction of the state space. However, in contrast to the

unique-ranking case, the recursive formula (3.4) describes a maximization problem

over exponentially many allocations 𝑉 ⊆ 𝑇 (𝑖), each associated by a family of descen-

dant subproblems of the form (𝑆(𝑉)
𝑢 , 𝑇 (𝑉)

𝑢 ,𝐿′). As a result, we cannot readily leverage

this formula to build the computational tree. In addition, even if one tightly charac-

terizes the state space, it is still not obvious how to solve efficiently the optimization

problem described by (3.4).

The marginalized algorithm. We address the difficulty raised at the end of the

previous section by proposing an efficient algorithm to generate the computational

tree and solve the recursive formula (3.4), while avoiding an enumeration over all

allocations 𝑉 ⊆ 𝑇 (𝑖). Because the detailed exposition is rather technical, we only

provide the high-level idea, and state the resulting complexity analysis. The specifics

of this auxiliary algorithm are detailed in Appendix A.2. The crux of our approach

is to observe that the descendant subproblems in equation (3.4) are not necessarily

distinct and may very well be equivalent: there is potentially overlap in the offspring

generated across all choices of 𝑉 ⊆ 𝑇 (𝑖). Most of the redundancy that happen

in a brute force enumeration can in fact be eliminated (up to a polynomial factor)

by marginalizing the allocation decision. That is, the choice of the allocation 𝑉 ⊆
𝑇 (𝑖) is broken-down into a sequence of binary decisions, each of which applies to a

80

single customer-type in 𝑇 (𝑖). These binary allocation decisions are made sequentially,

entailing refined connected subgraphs and potentially new descendant subproblems in

the computational tree. By constructing and updating an appropriate data-structure,

we avoid the unnecessary exploration of equivalent subproblems. As a result, the

marginalized algorithm runs in time polynomial in 𝑛,𝐾 and |𝒮|, yielding the following

complexity result.

Proposition 3.5.2. The running time complexity of the marginalized dynamic pro-

gram is polynomial in the size of the state space 𝒮 and the input size. In addition, in

the worst case, we have |𝒮|≤ 𝑛 · 2𝑛.

3.6 Modeling the Ranking Heterogeneity

. We now study the tractability of distributions over preference lists which com-

bine consideration set heterogeneity along with ranking heterogeneity. Our analytical

results extend the computational settings studied in Section 3.4.

3.6.1 Similar rankings

In this section, we relax the unique-ranking assumption, and derive parametric com-

putational bounds for the consideration set models studied in Section 3.4 when the

rankings are similar, i.e., Σ is formed by small perturbations of a central permutation

𝜎. Namely, assuming that 𝑆𝑛 designates the set of all permutations of [𝑛], we let

𝐵(𝜎, 𝑑) designate the 𝐿∞-ball of radius 𝑑 centered on 𝜎. That is,

𝐵(𝜎, 𝑑) = {𝜎′ ∈ 𝑆𝑛 : ∀𝑖 ∈ [𝑛]|𝜎′(𝑖)− 𝜎(𝑖)|≤ 𝑑} .

This definition implies that for any permutations 𝜎1, 𝜎2 ∈ 𝐵(𝜎, 𝑑), two products

𝑖, 𝑗 ∈ [𝑛] such that |𝜎(𝑖) − 𝜎(𝑗)|≥ 2𝑑 necessarily have the same relative order in 𝜎1

and 𝜎2. In other terms, only local ‘swaps’ may occur between products at distance

less than 2𝑑. This structure is somewhat similar to the 𝑑-sorted pricing structure

proposed by Jagabathula and Rusmevichientong (2016).

81

The next theorem, proven in Appendix A.3, asserts that, for a fixed parameter

𝑑, the state space complexity associated with unique-ranking Σ = {𝜎} is preserved

up to a polynomial factor under the generalization Σ = 𝐵(𝜎, 𝑑). In particular, the

polynomial running time guarantees established in Section 3.4 carry over to Σ =

𝐵(𝜎, 𝑑). Again, this result permits a parametric tradeoff between modeling power

and tractability.

Theorem 3.6.1. Let 𝒮(𝒞, 𝜎) denote the state space under a collection of consideration

sets 𝒞 and a unique-ranking function Σ = {𝜎}. Then, the size of the state space of

the general dynamic program with processing order 𝜎 under the consideration sets 𝒞
with rankings Σ = 𝐵(𝜎, 𝑑) is at most 24𝑑−2 · |𝒮(𝒞, 𝜎)|.

3.6.2 Quasi-convex preference lists

We now study a class of preference list distributions that allows for high levels of

heterogeneity in the ranking decisions, but the ranking functions exhibit a quasi-

convex structure.

Definition 3.6.2. Suppose that the product indices are numbered according to a cen-

tral permutation 𝜎 over products. A distribution over preference lists belongs to the

quasi-convex model if the consideration sets 𝒞 are intervals and the ranking functions

Σ are quasi-convex. That is, for all 𝑗 ∈ [𝐾], there exists 𝑖 ∈ 𝐶𝑗 such that 𝜎𝑗 is

decreasing over [1, 𝑖] ∩ 𝐶𝑗 and increasing over [𝑖, 𝑛] ∩ 𝐶𝑗.

The quasi-convex property captures several common preference patterns. To flesh

out this model with practical examples, suppose that the consideration sets are formed

as a conjunction of the screening rules relative to price and perceived quality described

in Section 3.4.1. The quasi-convex family simultaneously captures a variety of rank-

ing behaviors: customers can be price-driven, or quality-driven, or maximize any

price/quality ratio function which is quasi-convex in price.

It is worth noting that the quasi-convex model subsumes the one-dimensional lo-

cational choice model (Lancaster 1966, 1975). In the latter model, customer-types

and products are each represented by a scalar value, and a customer-type picks the

82

closest product to him made available in the assortment (i.e., with minimal absolute

distance between their respective scalars). It is not difficult to show that the rank-

ing functions arising from this model are quasi-convex with respect to the central

permutation formed by increasing scalars.

Observe that the quasi-convex model substantially ‘enriches’ the degree of freedom

of the distributions up to 𝑂(2𝑛) - in comparison to the 𝑂(𝑛2) parameters of the

intervals model or the 𝑂(𝑛3) parameters associated with the locational model (see

Claim A.4.1 proven in Appendix A.4).

Theorem 3.6.3. Under the quasi-convex model with central permutation 𝜎, the dy-

namic program with processing order 𝜎 has a state space of size 𝑂(𝑛3).

Proof. We construct an injective mapping from any connected subgraph generated

along the recursion, i.e., belonging to the computational tree, onto 3-tuples of prod-

ucts. Specifically, Ψ maps any subproblem (𝑆, 𝑇,𝐿) to the tuple (𝑎, 𝑏, 𝑐) where (𝑎, 𝑏)

is the ordered pair of the last products stocked along the recursion before generat-

ing (𝑆, 𝑇,𝐿) while 𝑐 is the next product to be processed in 𝑆, i.e., 𝑐 = min(𝑆). To

prove that this mapping is injective, we consider (𝑆1, 𝑇1,𝐿) and (𝑆2, 𝑇2,𝐿
′) ∈ 𝒮 two

subproblems of the computational tree such that

(𝑎, 𝑏, 𝑐) = Ψ(𝑆1, 𝑇1,𝐿) = Ψ(𝑆2, 𝑇2,𝐿
′) . (3.5)

Now, assume ad absurdum that 𝑇1∖𝑇2 ̸= ∅. Without loss of generality, we can pick

a customer-type 𝑗 in 𝑇1 ∖𝑇2 whose consideration set 𝐶𝑗 has been truncated, meaning

that 𝐿𝑗 < 𝑛 + 1. Indeed, 𝑇1 ∖ 𝑇2 would otherwise be comprised of customer-types

not affected by the decisions made at the parent nodes of the computational tree,

relative to products in [𝑏]. But this contradicts that at least one node in 𝑇1 ∖ 𝑇2 gets

disconnected from the subgraph 𝐺𝐿′ [𝑆2, 𝑇2] along the recursion.

Since 𝐿𝑗 < 𝑛+ 1, there exists a product in 𝐶𝑗 ∩ [𝑐− 1], which is processed before

attaining subproblem (𝑆1, 𝑇1,𝐿). By connectivity, 𝐶𝑗(𝐿𝑗)∩𝑆1 is not empty, meaning

that 𝐶𝑗 contains a product in [𝑐, 𝑛] as well. Given that 𝐶𝑗 is an interval, this implies

that 𝑐 ∈ 𝐶𝑗. Also, the preference order between the products {𝑎, 𝑏, 𝑐} is given by

83

𝜎𝑗(𝑐) < 𝜎𝑗(𝑏) < 𝜎𝑗(𝑎). Indeed, the ranking function being quasi-convex, any product

with index larger than 𝑏 would otherwise be less preferred than 𝑎 and 𝑏, and as a result

the truncated consideration set 𝐶𝑗(𝐿𝑗) would not intersect with 𝑆1. This shows that

customer-type 𝑗 prefers product 𝑐 over all products in [𝑏]. Since 𝑗 /∈ 𝑇2 and 𝑐 ∈ 𝐶𝑗,

the customer-type node 𝑗 necessarily gets disconnected from the subgraph 𝐺𝐿′ [𝑆2, 𝑇2]

along the recursion through an allocation to some product 𝑖 ∈ [𝑏]. However, had this

allocation been decided at a parent node of the computational tree, all products that

customer-type 𝑗 prefers over 𝑖 would have been discarded by now. In particular,

product 𝑐 would not belong to 𝑆2, which contradicts equation (3.5).

Finally, we remark that the truncation of preference lists only depends on the last

product being stocked. Indeed, as previously shown, for any remaining preference

lists 𝑗 ∈ 𝑇1 such that 𝐿𝑗 < 𝑛+ 1, then product 𝑏 lies in 𝐶𝑗 and 𝜎𝑗(𝑏) < 𝜎𝑗(𝑎). Quasi-

convexity induces that 𝑏 is preferred over any other product stocked before 𝑎. Thus,

𝐿𝑗 = 𝜎𝑗(𝑏) = 𝐿′
𝑗. We conclude by observing that

𝑆1 =
⋃︁

𝑗∈𝑇1

𝐶𝑗(𝐿𝑗) =
⋃︁

𝑗∈𝑇2

𝐶𝑗(𝐿
′
𝑗) = 𝑆2 .

3.6.3 Two-feature compensatory model

We consider a preference list-based model where the screening rules are combined

in a compensatory fashion (Einhorn and Hogarth 1975, Dawes 1979). Here, low

levels on a given feature can be offset by high levels on other features as discussed in

Section 3.2. Specifically, preference lists are formed according to utility maximization,

as illustrated by Figure 3-3.

Definition 3.6.4. Suppose that the feature space has dimension 𝑑 = 2. An instance

belongs to the two-feature compensatory model if each customer-type 𝑗 ∈ [𝐾] can be

described by a utility vector 𝑢(𝑗) ∈ R2 and a cut-off level 𝑡𝑗 such that (i) 𝐶𝑗 contains all

products which utility is above the cut-off 𝑡𝑗, i.e., 𝐶𝑗 = {𝑖 ∈ [𝑛] : 𝑢(𝑗) · 𝑥(𝑖) ≥ 𝑡𝑗}, and

84

Figure 3-3: Consideration sets and ranking decisions driven by linear utility maxi-
mization in a two-featureal feature space.

feature x1

feature x2

O

uj

Consideration set Ranking decisions

Products

Assortment
Consideration set

Assortment
polytope

 x1

x2

O

uj

(ii) for any pair of products 𝑖, 𝑘 ∈ [𝑛], 𝜎𝑗(𝑖) < 𝜎𝑗(𝑘) if and only if 𝑢(𝑗) · 𝑥𝑘 < 𝑢(𝑗) · 𝑥𝑖

(we assume there are no ties between products).

By exploiting the geometric structure of this model, we prove that the state space

is of polynomial size under the class of preference list distributions described by the

two-feature linear model. The proof, detailed in Appendix A.5, is of same spirit as

that of Theorem 3.6.3: we construct an injective mapping of subproblems in 𝒮 onto

the last dynamic programming decisions in the computational tree.

Theorem 3.6.5. Under the two-feature compensatory model, for any arbitrary pro-

cessing order, the size of the state space is of 𝑂(𝑛3𝐾2).

3.7 Computational performance

In this section, we showcase the computational efficiency of the proposed dynamic

program, through empirical comparisons with a state-of-the-art Integer Programming

(IP) solver. We generate synthetic instances pertaining to the quasi-convex model,

as well as instances of the unique-ranking model with arbitrary consideration sets.

85

3.7.1 Benchmark: Integer Programming formulation

The assortment optimization problem can be formulated as 0 − 1 binary program.

We define the binary decision variables 𝑦𝑖 to decide whether a product is added to the

assortment, 𝑥𝑖,𝑗 encodes the assignment of product 𝑖 ∈ 𝐶𝑗 to customer-type 𝑗 ∈ [𝐾]

. The problem is formulated as follows:

max
𝑛∑︁

𝑖=1

𝐾∑︁

𝑗=1

𝑃𝑖 · 𝜆𝑗 · 𝑥𝑖,𝑗

s.t. 𝑥𝑖,𝑗 ≤ 𝑦𝑖 ∀(𝑖, 𝑗) ∈ [𝑛]× [𝐾] (3.6)

𝑥𝑖,𝑗 + 𝑦𝑙 ≤ 1 ∀𝑗 ∈ [𝐾], 𝑙 ∈ 𝐶𝑗 and 𝑖 ∈ {𝑥 ∈ 𝐶𝑗 : 𝜎𝑗 (𝑙) < 𝜎𝑗 (𝑖)}
(3.7)

∑︁

𝑖∈𝐶𝑗

𝑥𝑖,𝑗 ≤ 1 ∀𝑗 ∈ [𝐾] (3.8)

𝑥𝑖,𝑗, 𝑦𝑖 ∈ {0, 1} ,

where the coupling constraints (3.6) enforce that a customer may only pick a prod-

uct made available in the assortment while the inequalities (3.7) ensure that a given

customer-type could only choose the highest rank product made available to him.

Finally, the constraints (3.8) mean that at most one product is assigned to each cus-

tomer. The additional constraints (3.8) tighten the relaxation of the binary program.

It is worth noting that that similar formulations were introduced prior to this work

by McBride and Zufryden (1988) and Anupindi et al. (2009). This integer program

(IP) is implemented on a commercial solver GUROBI (Gurobi Optimization 2015),

which arguably combines state-of-the-art methodologies and implementation.

3.7.2 Computational set-up

The experiments are conducted using a MacBook Pro with processor 2.5 GHz Intel

Core 𝑖5 (two cores). Our dynamic program is implemented using the programming

language Julia. The commercial solver GUROBI (v.6.5) is run in parallel mode. We

impose termination when the incumbent solution has an optimality gap of 1%, or after

86

the running time reaches 1000 seconds for computational convenience. In contrast,

our algorithm provides exact solutions for all instances. We run two series of exper-

iments with different generative models. In the former, we generate instances of the

quasi-convex model described in Section 3.6, arguably one of the ‘richest’ consider-

then-choose model discussed in previous sections that admits a provable polynomial

running time guarantee. In the latter, we compare the algorithms on generic instances

with unique-ranking preferences, not pertaining to any specific structure of consider-

ation sets. The consideration sets arise from i.i.d Bernoulli trials with a parameter

𝛼 ∈ (0, 1). In Appendix A.7, we describe more precisely our generative models and

provide additional details on the implementation.

Table 3.2: Runtime of our algorithm (DP) against the commercial solver (IP) under
the quasi-convex preference model.

Parameters Average runtime (s) Coeff. of var (%)

n K DP IP DP IP

50 500 0.9 45.9 17.0 47.4
50 1000 1.2 398.5 6.2 52.4
50 2000 1.8 777.1 < 10−3 46.2
50 2500 2.4 > 103 < 10−3 -
100 2500 16.8 > 103 < 10−3 -
200 2500 138.9 > 103 < 10−3 -

The IP is terminated after 1000 seconds. Each entry is obtained by sampling 50 instances unless
the average running time exceeds 800 seconds, in which case we sample 20 instances.

3.7.3 Numerical results

Our numerical results indicate that our algorithmic approach substantially outper-

forms the IP solver in several regimes of parameters (see Table 3.2 and Figure 3.1).

The dynamic programming approach shows more running time stability across in-

stances due to its combinatorial nature, while one potential shortcoming of the IP

approach for practitioners resides in the large variability of running time across in-

stances.

87

Under the quasi-convex model. As shown in Table 3.2, the dynamic program

dominates the commercial solver by an order of magnitude. The IP approach scales

unfavorably with the number of customer-types 𝐾 and it becomes intractable for

large scale instances (e.g., with 200 products) where the dynamic program is still

very efficient.

Figure 3-4: Average runtime of our algorithm (DP) against the commercial solver
(IP) on synthetic instances.

0	

200	

400	

600	

800	

500	
 1000	
 1500	
 2000	
 2500	

(s)	

K	

(N	
 =	
 20,	
 α	
 =	
 0.3)	

0	

200	

400	

600	

800	

1000	

500	
 1000	
 1500	
 2000	
 2500	

(s)	

K	

(N	
 =	
 20,	
 α	
 =	
 0.7)	

0	

200	

400	

600	

800	

1000	

500	
 1000	
 1500	
 2000	
 2500	

(s)	

K	

(N	
 =	
 20,	
 α	
 =	
 0.5)	
 DP	
 MIP	

0	

100	

200	

300	

400	

500	

600	

100	
 150	
 200	
 250	
 300	
 350	
 400	

(s)	

N	

(K	
 =	
 20,	
 α	
 =	
 0.7)	
 DP	
 MIP	

Note that the asymptotic complexity of the IP is not captured here since we impose termination
after 1000 seconds. The running time is averaged over 50 instances. Recall that 𝛼 is the Bernoulli
parameter that controls the size of the consideration sets.

Under arbitrary consideration sets. Recall that in this general setting the prob-

lem is NP-hard even to approximate within 𝑂(𝑛1−𝜖). In several cases, our approach

dominates the IP as shown in Figure 3-4.

Similar to the quasi-convex model, the IP solver scales poorly with the number of

customer-types. That is, for a fixed number of products (𝑛 = 20), the running time of

the IP is highly affected by the number of customer-types 𝐾. The difference between

the algorithms is more pronounced for larger consideration sets (larger Bernoulli pa-

88

rameter 𝛼). On the other hand, as one would expect, the dynamic program is less

efficient when 𝑛 >> 𝐾, since our algorithm enumerates over product stocking deci-

sions. The results obtained for large consideration sets (𝛼 = 0.7) suggest that the

dynamic program could asymptotically dominate the IP solver in this regime.

The observed computational efficiency proceeds from the state space collapse per-

formed by our algorithm. When comparing our approach to a “naive” recursion, the

state space is reduced by a factor ranging between 75% to over 99% (see Table A.1

in Appendix A.8).

3.8 Predictive Experiments

Practical applications of choice modeling, such as the assortment optimization prob-

lem studied here, begin with transactional data. The generic approach is to fit a

specific type of choice model to this data and then employ an assortment optimiza-

tion algorithm designed for that choice model. As such, the choice model employed

must strike a balance between its ability to fit the data on the one hand, and ad-

mit efficient algorithms for assortment optimization on the other. In this regard it

is well known that the MMNL model has the ability to represent any choice model

satisfying the strong axiom of revealed preferences, that is, arbitrary distributions

over preference lists (McFadden and Train 2000). Of course, this expressive power

comes at a price: assortment optimization under the MMNL model is difficult in all

but a restricted set of cases. Specifically, Désir and Goyal (2014) provide an algo-

rithm for assortment optimization under the MMNL model whose complexity scales

exponentially with the number of customer segments2. Consequently, optimization is

practical only for a mixture over a relatively ‘small’ number of customer segments (a

notion we will make precise shortly). In summary, one may regard MMNL models

with a small number of customer segments as a valid alternative to the models (and

corresponding algorithms) we consider in this chapter. The goal of this section is
2Their algorithm constitutes a fully polynomial-time approximation scheme for a fixed number of

customer segments

89

to flesh out this comparison. Specifically, we consider the following experiments on

synthetic and industry data:

1. Synthetic data from an MMNL model: Using a synthetic dataset generated

from an MMNL model with a relatively large number of customer segments,

we fit two types of models to this data: (i) an MMNL model with a small

number of customer segments and (ii) the quasi-convex consider-then-choose

model studied in Section 3.6.2. We show that in several cases the latter model

provides a better fit to the data (out-of-sample) under a variety of metrics.

In particular, we show that the quasi-convex model does an excellent job of

capturing choice patterns that may have arise from an MMNL model.

2. Synthetic data from a consider-then-choose model: As a counterpart to syn-

thetic data from an MMNL model, we consider fitting both types of model

in the experiment above to synthetic data generated this time from a simple,

intervals-based consider-then-choose model. As one would expect, the quasi-

convex model provide a better fit by a large margin. In particular, we show

that MMNL models with a small number of customer segment do not do an

adequate job of fitting choice data arising from consider-then-choose behavior.

3. Real industry data: Using transactional data across a panel of hundreds of thou-

sands of customers in three distinct product categories (containing hundreds of

products) collected by an industry partner, we again run the same experiment,

and evaluate predictive power on a holdout sample. Again we show that the

quasi-convex consider-then-choose model provides a very significant improve-

ment in predictive accuracy on the hold out set. This improvement can be

as high as 60% in certain categories, and never lower than 4% – a striking

improvement.

In the sequel, we designate by MMNL(𝑐) the class of mixtures with 𝑐 customer

segments. The MMNL instances (and the MNL as a special case) are parametrized

by the preference weights 𝑤𝑖,𝑗 ∈ R+ where 𝑖, 𝑗 ∈ [𝑛]× [𝑐], along with the probability

90

vector (𝜇1, . . . , 𝜇𝑐) of the mixture. Here 𝑛 is the number of products and 𝑐 is the

number of customer segments. With this definition at hand, the purchase probability

for product 𝑖 in an assortment 𝒜 ⊆ [𝑛] is, under the MMNL(𝑐) model, expressed as:

Pr [𝑖|𝒜] =
𝑐∑︁

𝛼=1

𝜇𝛼 ·
𝑤𝑖,𝛼

1 +
∑︀

𝑗∈𝒜𝑤𝑗,𝛼

.

3.8.1 Estimation Methodology

To calibrate these models with the data, we leverage standard estimation methods

proposed in the literature (McFadden 1973, Talluri and Van Ryzin 2006, van Ryzin

and Vulcano 2014, Bertsimas and Mišic 2015). Specifically, we employ a column

generation algorithm to generate the quasi-convex preference lists, and use maximum

likelihood estimation for the MMNL family. Interestingly, in contrast with general

nonparametric choice models, we show that the column generation step can be solved

in polynomial time under the quasi-convex model.

Recall that the data takes the form of a collection of assortments {𝒜1, . . . ,𝒜𝑠},
with corresponding purchase probability 𝑝𝑖𝑗 of product 𝑖 in the assortment 𝒜𝑗, for

each 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑠]. Also, we let 𝒫 designate the probability vector obtained by

flattening the matrix (𝑝𝑖𝑗)𝑖𝑗 in column-major order.

Quasi-convex model. In order to calibrate the quasi-convex model with data,

we make use of the column generation ideas developed in related literature by van

Ryzin and Vulcano (2014) and Bertsimas and Mišic (2015). To this end, let ℒ be

the collection of all quasi-convex preference lists for a given instance and let 𝑚 be

the number of distinct such lists (the dependency of 𝑚 on 𝑛 has been made explicit

by Claim A.4.1). To ease the notation, we assume that the no-purchase option is

captured by an alternative in [𝑛]. Hence, we introduce the observation tensor 𝒪 =

(𝒪𝑖,𝑗,𝑘) ∈ {0, 1}[𝑠]×[𝑛]×[𝑚], where 𝒪𝑖,𝑗,𝑘 = 1 if the preference list ℒ𝑘 purchases product 𝑗

in the assortment 𝒜𝑖, and 𝒪𝑖,𝑗,𝑘 = 0 otherwise. In what follows, by abuse of notation,

𝒪 will also designate the corresponding 𝑠 · 𝑛-by-𝑚 matrix (known as the mode-3

unfolding).

91

In order to estimate a probability distribution Λ = (𝜆1, . . . , 𝜆𝑚) over the quasi-

convex preference lists, ideally we would like to solve the following convex program:

min ‖𝒪 · Λ− 𝒫‖1
s.t. ‖Λ‖1≤ 1

Λ ≥ 0 .

Through standard techniques, the latter problem can be recast a linear program with

𝑂(𝑠 ·𝑛) equality constraints. However, the number of variables of the resulting linear

program remains exponential. Indeed, although quasi-convex preference lists are fewer

than the (𝑛+1)! potential lists, 𝑚 still grows exponentially in the number of products

according to Claim A.4.1. On the other hand, the number of equality constraints is

small, thus, one could resort to a column generation procedure. This procedure has

notably been developed and discussed in the paper by Bertsimas and Mišic (2015)– we

refer the reader to this paper for a more detailed technical description. The algorithm

alternates between solving a master problem and a column generation subproblem.

Specifically, at step 𝑡 ∈ N, given an incumbent (fixed) collection ℒ𝑡 ⊆ ℒ of quasi-

convex preference lists, the master problem solves the ℓ1-minimization program to

find a distribution over ℒ𝑡 that best fits the data (note we could use other norms,

such as ℓ2). Next, the column generation subproblem attempts to identify a new

quasi-convex list 𝐿 ∈ ℒ ∖ ℒ𝑡 with lowest reduced cost. While the master problem

can be cast as a linear program, the column generation step is general NP-hard (this

problem subsumes the widely-studied rank aggregation problem, where data is formed

by pairwise comparisons). Thus, prior literature has investigated heuristic procedures

based on integer programming, local search methods or sampling. In contrast, the

next claim shows that the column generation step can be solved in polynomial time.

Specifically, we are given the reduced cost matrix (ℎ𝑖,𝑗)𝑖∈[𝑠],𝑗∈[𝑛] (to wit, the reduced

cost associated with the equality regarding the probability of “buying product 𝑗 in

the assortment 𝒜𝑖”). For any list 𝐿 ∈ ℒ, we define 𝐼(𝑖, 𝑗, 𝐿) as the binary function

that indicates whether the preference list 𝐿 buys product 𝑗 in the assortment 𝒜𝑖.

92

Lemma 3.8.1. The rank aggregation problem, that consists in finding the optimal

quasi-convex list 𝐿 ∈ ℒ to minimize the reduced cost 𝜑(𝐿) =
∑︀𝑠

𝑖=1

∑︀𝑛
𝑗=1 ℎ𝑖,𝑗 ·𝐼(𝑖, 𝑗, 𝐿),

can be solved in time 𝑂(𝑛3).

Proof. Without loss of generality, we can pick a ranking permutation whose rank

values range in [1, 𝑛]. The optimization problem is cast as a dynamic program,

whose state space 𝒮 is formed by the collection of 3-tuples (𝑎, 𝑏, 𝑐) where 𝑎, 𝑏, 𝑐 ∈ [𝑛].

Specifically, we define 𝐿(𝑎, 𝑏, 𝑐) ∈ ℒ as the optimal quasi-convex list 𝐿 ∈ ℒ (i.e.,

with lowest reduced cost 𝜑(𝐿)), whose consideration set is formed by the interval

[𝑐, 𝑐+ max{𝑎, 𝑏}− 1] with 𝜎𝐿(𝑐) = 𝑎 and 𝜎𝐿(𝑐+ max{𝑎, 𝑏}− 1) = 𝑏 (𝜎𝐿 is the ranking

permutation associated with 𝐿). Finally, we let 𝐹 (𝑎, 𝑏, 𝑐) be the corresponding total

reduced cost.

Now, let (𝑎, 𝑏, 𝑐) be a given state of the recursion, with 𝑎 < 𝑏 and 𝑏− 𝑎 ≥ 2. Since

𝐿(𝑎, 𝑏, 𝑐) is quasi-convex, we necessarily have that, for every 𝑑 ∈ [𝑐, 𝑐 + 𝑏 − 𝑎 − 1],

𝜎𝐿(𝑎,𝑏,𝑐)(𝑑) = 𝑎+ (𝑑− 𝑐). In other words, the rank values associated with the interval

of products [𝑐, 𝑐+ 𝑏− 𝑎− 1] are already determined: they form the interval [𝑎, 𝑏− 1].

Therefore, our next dynamic programming decision is to choose a product whose

rank value is exactly 𝑏 + 1. Due to the quasi-convex structure, there can be at most

two options: either the leftmost unassigned product or the rightmost unassigned

product, in the consideration set. That is, we can assign 𝜎−1
𝐿(𝑎,𝑏,𝑐)(𝑏+ 1) = 𝑐+ 𝑏− 𝑎 or

𝜎−1
𝐿(𝑎,𝑏,𝑐)(𝑏 + 1) = 𝑐 + 𝑏 − 2. Letting 𝑐1 = 𝑐 + 𝑏 − 𝑎, 𝑐2 = 𝑐 + 𝑏 − 1, Ass1 ⊆ [𝑠] be the

collection of indices 𝑗 so that 𝒜𝑗 ∩ [𝑐1, 𝑐2] = ∅ while 𝒜𝑗 ∩ [𝑐, 𝑐1−1] ̸= ∅, and Ass2 ⊆ [𝑠]

be the collection of indices 𝑗 so that 𝒜𝑗 ∩ [𝑐, 𝑐2 − 1] = ∅ while 𝑐2 ∈ 𝒜𝑗, we obtain the

recursion:

𝐹 (𝑎, 𝑏, 𝑐) = min{𝐹 (𝑏+ 1, 𝑏, 𝑐1) +
∑︁

𝑗∈Ass1

ℎ𝑗,max𝒜𝑗∩[𝑐,𝑐1−1], 𝐹 (𝑎, 𝑏+ 1, 𝑐) +
∑︁

𝑗∈Ass2

ℎ𝑗,𝑐2} .

In the latter expression, the left-side terms of the min-expression compute the reduced

cost associated with products [𝑐, 𝑐1 − 1] when the rank value 𝑏+ 1 is assigned to the

leftmost product 𝑐1. The right-side terms of the min-expression compute the reduced

cost associated with product 𝑐2 when the rank value 𝑏+1 is assigned to the rightmost

93

product 𝑐2 − 1.

For the remaining cases, it can be shown that: (i) when 𝑏 > 𝑎 and 𝑏− 𝑎 ≥ 2, we

formulate a symmetrical recursion, (ii) for the boundary cases 𝑏 = 𝑎+ 1 or 𝑎 = 𝑏+ 1,

there exists a single quasi-convex preference list that satisfies the constraints, thus

the dynamic programming value can be computed immediately.

Implementation details. For simplicity, we do not attempt to optimize the central

permutation of the quasi-convex structure: as a heuristic, we choose the increasing

price order (to avoid endogeneity issues, this average price is computed on an anterior

dataset). To control for the risk of over-fitting, our stopping criterion picks the best

final step out of {100, 200, 300, 400, 500, 600} through cross-validation. We will also

decide on the norm ℓ1 or ℓ2, used in the final calibration step, through cross-validation.

MNL and MMNL models. In order to estimate the MNL and MMNL param-

eters from data, we use standard maximum likelihood estimation (McFadden 1973,

Talluri and Van Ryzin 2006). The corresponding maximum log-likelihood problem

is implemented using the optimization software Ipopt (Wächter and Biegler 2006).

This estimation method is a standard approach used to calibrate discrete mixtures

of MNL (Bierlaire 2003, Hess et al. 2007). Contrary to the MNL model, the log-

likelihood function associated with the MMNL model is non-concave and global op-

timization in this setting is not guaranteed.

3.8.2 Synthetic data

In this section, we evaluate the predictive power of the quasi-convex model on syn-

thetic datasets, against MMNL models with up to 3 customer segments. Assortment

optimization with a larger number of segments is effectively impractical as noted ear-

lier (the computational complexity scales exponentially with the number of segments).

Against such benchmarks, we demonstrate the predictive power of the quasi-convex

model. We first explain how the synthetic datasets are generated, and then describe

our numerical results. The experiments are conducted on random instances, with a

94

fixed number of products 𝑛 = 50. The dataset is constructed by randomly generating

100 assortments 𝒜1, . . . ,𝒜100, each formed by drawing 𝑛 independent Bernoulli trials

with probability of success 0.5. To generate the purchase probability data, we make

use of the following ground truth models:

∙ MMNL models: For our first set of synthetic data, we generate random MMNL(5)

instances. It is worth noting that assortment optimization against a 5 segment

model is effectively impractical, and as such we will eventually fit an MMNL

model with a smaller number of segments to this data. The preference weights

𝑤𝑖,𝑗 are drawn independently from a log-normal distribution of scale 𝜎, where 𝜎

is varied in the set {1, 10, 20, 40}. Each customer segment occurs with probabil-

ity 𝜇1 = · · · = 𝜇5 = 1/5. Here, 𝜎 intuitively controls the amount of heterogene-

ity in choice behavior across segments; we will momentarily see that predictive

performance is sensitive to this parameter.

∙ Consider-then-choose model: For our second set of synthetic data, the purchase

probabilities arise from the intervals model introduced in Section 3.4.1. Indexing

the set of all possible intervals by 𝑘 ∈ {1, 2, . . . , 𝐾}, the probability vector

(𝜆1, . . . , 𝜆𝐾) is drawn uniformly at random from the unit simplex.

Given the above generative settings, our synthetic datasets take the form of a

random matrix (𝑝𝑖𝑗)𝑖∈[𝑛],𝑗∈[100], where the entry 𝑝𝑖𝑗 is the empirical probability of

purchases of product 𝑖 within the assortment 𝒜𝑗 according to the ground truth choice

model.

Prediction task and error metrics. For each dataset thus formed, we carried out

a 5-fold cross-validation to estimate the prediction accuracy of the different models

out-of-sample. We report two prediction error metrics: the mean square error (MSE),

expressed in normalized form as a percentage of the total variance of the data and the

mean absolute percentage error (MAP). Specifically, letting 𝒪𝒮 ⊆ [100] designate the

collection of out-of-sample assortments and (𝑝𝑖𝑗)𝑖∈[𝑛]𝑗∈𝒪𝒮 be the prediction matrix, we

95

Table 3.3: Prediction errors of the models estimated from the synthetic data, in
different generative settings.

Ground truth
Quasi-convex MNL MMNL(2) MMNL(3)

MSE MAP MSE MAP MSE MAP MSE MAP

MMNL(5)

𝜎 = 1 0.059 0.204 0.005 0.050 0.002 0.048 0.004 0.048
𝜎 = 10 0.169 0.463 0.207 0.529 0.204 0.510 0.197 0.511
𝜎 = 20 0.197 0.489 0.224 0.520 0.217 0.518 0.216 0.514
𝜎 = 40 0.199 0.472 0.245 0.533 0.240 0.524 0.226 0.519

Intervals 0.003 0.010 0.286 0.509 0.229 0.442 0.225 0.437

Recall that 𝜎 is the scale of the log-normal generator used to draw the preference weights in the
MMNL instance. Each entry is obtained by sampling 10 random instances. After learning the quasi-
convex lists through column generation, the final model is calibrated using the ℓ1 or the ℓ2-norm,
based on cross-validation.

have:

MSE =

∑︀
𝑗∈𝒪𝒮

∑︀
𝑖∈𝒜𝑗

(𝑝𝑖𝑗 − 𝑝𝑖𝑗)2∑︀
𝑗∈𝒪𝒮

∑︀
𝑖∈𝒜𝑗

𝑝2𝑖𝑗
,

and

MAP =
∑︁

𝑗∈𝒪𝒮

1

|𝒪𝒮|·|𝒜𝑗|
·
∑︁

𝑖∈𝒜𝑗

|𝑝𝑖𝑗 − 𝑝𝑖𝑗|
0.01 + 𝑝𝑖𝑗

.

Results. The numerical results, show that the quasi-convex family has relatively

accurate predictions in all generative settings, and outperforms the parametric models

in the plurality of cases. As one might expect, when the intervals model is posited

as ground truth, the estimated quasi-convex instances provide low prediction errors

out-of-sample. On the other hand, the out-of-sample errors incurred under any of the

MMNL models is substantially larger.

More interestingly, when data is generated according to an MMNL model, we see

that as the scale parameter that controls customer heterogeneity across segments, 𝜎,

grows (i.e., 𝜎 ≥ 10), the quasi-convex model provides more accurate out of sample

predictions than the estimated MNL, MMNL(2) and MMNL(3) instances. For exam-

ple, for 𝜎 = 10, the MSE is smaller by a factor of between 14 and 22%, while the MAP

is smaller by a factor of 10% to 12%. The cases where the MMNL models provide an

improvement in prediction error are when 𝜎 ≤ 5. In such cases the heterogeneity in

96

choice across distinct segments is so small that an MNL model would be expected to

provide a good fit to the data – a fact that is borne out in the experiment. In this

setting the absolute prediction errors are relatively small across all models, including

the quasi-convex model.

3.8.3 Purchase panel data

Our industry partner tracks the daily transactions made by hundreds of thousands

of consumers across several product categories and retailers. In order to form our

input datasets, we had access to three product categories with frequent purchases,

namely Bath tissue, Shampoo and Conditioners, and Dog Food and Treats. In each

category, the time horizon considered varies from 2 to 5 months to obtain around 1

million transactions. Transactions are aggregated at the brand level. Each assortment

corresponds to the combination of a retail chain and a US state: it is defined as

the collection of products with at least one transaction. We make the assumption

that, over the time periods considered, retailers in the dataset carry near identical

assortments at the brand level – this assumption is effectively verified over other time

windows. For any given state and product category, we only consider those retailers

with greater than 500 transactions in that state for that category. Having specified

the assortments 𝒜1, . . . ,𝒜𝑠, the purchase probabilities 𝑝𝑖𝑗 are obtained by computing

the market shares of products according to the observed transactions. Note that, since

we do not observe the no-purchases (when customers leave the store without making

any purchase), our choice probability distribution is defined over the assortment of

products.

Hence, the Bath tissue, Dog Food and Treats, and Shampoo and Conditioners

datasets are respectively formed by 58, 211 and 257 assortments, with ∼ 400K to

600K transactions after we perform the data filtering steps. To verify the robustness

of our conclusions, multiple experiments were conducted by randomly sub-sampling

50 products in each category.

It is worth mentioning that our simplifying assumptions do not alter the estimation

of the MNL choice model – the probability distribution obtained from the data after

97

Table 3.4: % Improvements in the predictive accuracy of our quasi-convex model
against the chosen benchmarks.

(% Improvement) MNL MMNL(2) MMNL(3)

Datasets MSE MAP MSE MAP MSE MAP

Dog Food &
Dog Treats

𝑘 = 2 12% 28% 7.5% 14% 6.8% 14%
𝑘 = 5 21% 23% 13% 15% 15% 12%

Bath tissue
𝑘 = 2 79% 59% 71% 50% 65% 42%
𝑘 = 5 67% 35% 58% 31% 51% 26%

Shampoo &
Conditioners

𝑘 = 2 15% 22% 9.3% 13% 11% 13%
𝑘 = 5 12% 18% 8.2% 14% 4.0% 10%

Note: 𝑘 is the cross-validation parameter. Each entry is computed by averaging over 10 cross-
validation estimates.

truncating an assortment is still compatible with MNL model – while it might very

well impair the predictive power of the quasi-convex distribution.

Results. Table 3.4 reports the percentage improvement in predictive accuracy for

each metric and product category. For example, denoting by MSE𝑄 the chi-square

errors on the predictions of the quasi-convex model and MSE𝑀𝑁𝐿 those associated

with the MNL model, the percentage improvement relative to the MNL model is given

by
MSE𝑀𝑁𝐿 −MSE𝑄

MSE𝑀𝑁𝐿

.

The table reports these quantities averaged across multiple experiments (each ex-

periment obtained via a random sampling of products), and each cross-validation

fold. Our quasi-convex modeling approach outperforms the parametric benchmark

models by providing smaller out-of-sample prediction errors in all cases. The gain is

smallest (as expected) for the MMNL(3) model, but remains substantial in absolute

terms – as large as 60% for certain product categories. Our results are robust to

using other metrics (not reported here) such as chi-square. In summary, we conclude

that the quasi-convex consider-then-choose model provides strong predictive power

on real-world choice data.

98

3.9 Concluding Remarks

General objective function. A close examination of the algorithm reveals that

our results apply in fact to a more general class of objective functions that we de-

scribe below. We introduce the pay-off function 𝑓 : [𝑛] × [𝐾] → R, where 𝑓(𝑖, 𝑗) is

the contribution to the objective due to the purchase of product 𝑖 by the preference

list 𝑗. Letting 𝑖(𝒜, 𝑗) denote the product purchased by preference list 𝑗 when faced

with assortment 𝒜, the objective value for the assortment 𝒜 is given by the expected

pay-off:
∑︀

𝑗∈[𝐾] 𝜆𝑗 · 𝑓(𝑖(𝒜, 𝑗). We may mention two application of practical interest

captured by this more general family of objective functions. It accounts for poten-

tially heterogeneous per-selling price over customer-types, e.g., targeted promotions

or loyalty programs. Another interesting problem formulation consists in maximizing

the customers’ utility. In this case 𝑓(𝑖, 𝑗) is interpreted as the utility garnered by

customer 𝑗 ∈ [𝑘] when purchasing product 𝑖 ∈ [𝑛].

Future work. This work opens exciting perspectives for future research. A natural

lead is to further investigate the interplay between the behavioral heuristics identified

by the marketing literature and the running time complexity of our dynamic program.

In addition, the implementation allows for several refinements, such as using heuristics

to prune the computational tree or exploring the subproblems in parallel. Another

important question is to investigate the identifiability of the models discussed in this

work from data, in particular the quasi-convex model, and study the computational

and sample complexity associated with the estimation problem.

99

100

Chapter 4

Joint Assortment and Inventory

Decisions: Nonparametric Models

4.1 Introduction

Matching supply with uncertain demand is a key driver of strategic and operational

success in many industries (Fisher 2011). The supply side hinges on choosing an as-

sortment, that specifies the subset of products offered to customers, as well as decid-

ing on their inventory levels, i.e., the initial number of units stocked of each product.

Typically, inventory and assortment decisions are very likely to inform each other.

Indeed, as demand evolves during the selling season, some products may be fully con-

sumed (or stock-out) due to inventory limitations. Consequently, customers arriving

at different times could very well be facing different assortments, thereby affecting

their purchasing behavior. Despite this fundamental interplay between inventory and

assortment, the corresponding decision-making problems have been studied for the

most part in separate frameworks, arguably due to computational intractability.

In this chapter, we consider the joint assortment optimization and inventory man-

agement problem, whereby a retailer wishes to maximize expected revenue in the

face of stochastic demand, consisting of a random number of customers with dynamic

substitution across products. A complete mathematical description of this model,

referred to as dynamic assortment planning, is given in Section 4.1.2. Somewhat

101

informally, the retailer selects an assortment of products, and determines their ini-

tial inventory levels, given a capacity constraint on the total number of units to be

stocked. These decisions are made at the beginning of the selling period (similar to

the newsvendor problem). Next, the consumption process consists in a random se-

quence of arriving customers, each of which purchases at most one unit. The problem

formulation depends on the distribution of the number of arriving customers, named

the demand hereafter, and on the probabilistic structure of their purchasing prefer-

ences. This choice model describes the probability that a unit of any given product is

purchased, amongst the assortment products available upon the customer’s arrival.

In recent years, the availability of highly detailed purchase data has motivated a

nonparametric approach to modeling the customer choice preferences through a dis-

tribution over ranked preference lists Rusmevichiengtong et al. (2006), Farias et al.

(2013). Generally speaking, each list describes a ranking over the product alternatives

considered by a customer, among which she chooses her most preferred product out

of those available upon arrival, or leaves without making any purchase if none is cur-

rently stocked. Unfortunately, as choice models become more detailed, and subsume

more general families of preference list distributions, the corresponding optimization

problems rapidly become intractable. In this chapter, we develop general-purpose al-

gorithms under distributions over preference lists. Our approach enjoys best-possible

theoretical guarantees and demonstrates superior practical performance against ex-

isting heuristics. Moreover, we show that additional structure on customer choices,

in the vein of the behavioral assumptions discussed in Chapter 3, can be leveraged to

obtain improved guarantees.

Directly-related work. With a single customer arrival, the problem is referred as

the static formulation, which corresponds to the standard assortment optimization

models studied in the previous chapters. Even in this seemingly simple context, the

problem is inapproximable within any factor sub-linear in the number of products

as shown in Chapter2. On the positive side, there has been an ever-growing line of

work in recent revenue management literature on this static formulation, investigating

102

tractable approaches for special cases of the aforementioned choice model Ryzin and

Mahajan (1999), Talluri and van Ryzin (2004), Honhon et al. (2012), Blanchet et al.

(2016), Davis et al. (2014), Li et al. (2015). In contrast, under multiple customer

arrivals, the problem becomes considerably harder due to the additional dynamic

aspect. Indeed, the initial assortment is altered along the sequence of arrivals due

to stock-out events, and the dynamic substitution behavior of customers depends on

each sample path realization. In fact, even the evaluation of the expected revenue for

a given offer set is by itself a challenging computational question.

For the dynamic models in question, most of the work we are aware of makes use of

heuristics based on continuous relaxations and probabilistic assumptions Smith and

Agrawal (2000), Mahajan and van Ryzin (2001), Kök and Fisher (2007), Nagarajan

and Rajagopalan (2008), Honhon et al. (2010), Topaloglu (2013). In particular, these

approaches either give rise to exponential-time algorithms, do not admit provable

non-trivial approximation guarantees, or apply to inventory models of very different

nature. Interestingly, even in rather restricted settings, such as that of horizontally

differentiated products (where prices are uniform), not much is known at present time.

In this context, Gaur and Honhon Gaur and Honhon (2006) studied a newsvendor-like

inventory model with dynamic substitution, and devised a heuristic for the locational

choice model, assuming a parametric demand distribution. While they propose lower

and upper bounds on the optimal revenue, the analysis thereof does not translate into

an efficient algorithm with theoretical guarantees. Chen and Bassok Chen and Bassok

(2008) considered a similar setting where prices are uniform, assuming a less-realistic

allocation rule, where products are assigned to customers at the retail’s discretion

after seeing the entire sequence of arriving customers, instead of sequentially.

To our knowledge, prior to our work, the paper of Goyal et al. Goyal et al. (2016)

and Segev Segev (2015) are the only papers that study dynamic optimization models

with discrete demand realizations and a fully stochastic sequence of arrivals through

the lens of approximation algorithms. Specifically, Goyal et al. devised a polynomial-

time approximation scheme (PTAS) assuming that the demand follows an increasing

failure rate (IFR) distribution, when the choice model consists in a distribution over

103

nested preference lists, referred to in the sequel as the nested choice model. This

model assumes that customers always prefer cheaper products, and have a budget

constraint that dictates the most expensive product they are willing to purchase.

Their algorithm is based on efficient enumeration methods, by observing that there

are near-optimal assortments comprised of a constant number of products.

While this algorithm approximates the optimal revenue within factor 1 − 𝜖, the

overall approach suffers from two major drawbacks. First, since it resorts to enumer-

ating all inventory levels over a predetermined assortment with poly(1/𝜖) products,

the resulting running time is exponential in 1/𝜖, and becomes impractical even for

medium-scale instances. Second, in some practical settings the demand is ‘heavy

tailed’, while retailers wish to hedge against extreme demand realizations, especially

for newly launched products with limited data and forecast accuracy. However, the

algorithm and its analysis do not carry over when the IFR property is relaxed. The lat-

ter drawback has been bypassed by Segev Segev (2015), who proposed a quasi-PTAS

for general demand distributions (again, under the nested choice model), based on

an dynamic programming approach with an approximate state space representation.

However, this result is more theoretical in nature, and still leaves open the question of

efficiently approximating nested preference lists under general demand distributions.

4.1.1 Our results

Our main contribution is to provide the first polynomial-time algorithms with prov-

able approximation guarantees for a broad class of demand and choice model specifi-

cations in dynamic assortment planning. From a technical perspective, we introduce

a number of novel algorithmic ideas of independent interest, that could very well be

applicable in a wide range of settings, and unravel hidden relations to submodular

maximization. In addition, our algorithms employ a mixture of greedy procedures and

low-dimensional dynamic programs, that are suitable for solving instances of practical

nature and scale. In computational experiments, these algorithms are shown to be

faster than existing heuristics by an order of magnitude and to result in substantially

better expected revenues. Our main results can be briefly summarized as follows.

104

General choice model. We first devise an approximation algorithm in the context

of horizontal differentiation, where product prices are identical, assuming an IFR de-

mand distribution. As previously mentioned, a similar modeling approach has been

taken by Gaur and Honhon Gaur and Honhon (2006) and Chen and Bassok Chen

and Bassok (2008). In this setting, we obtain a constant-factor approximation, with-

out any structural assumptions on the distribution over ranked lists. Our algorithm,

formally described in Section 4.2, is based on a two-step “selective-greedy” approach.

In the selection step, we restrict attention to a subset of products, identified by ap-

proximately solving the underlying static problem, i.e., assuming a single customer

arrival, or equivalently, without inventory limitations. Next, the inventory levels are

determined by greedily optimizing a multi-item newsvendor problem, whose optimal

solution provides a lower bound on the optimal expected revenue. To analyze this ap-

proach, we explicitly construct a feasible solution to the latter problem that generates

an (𝑒− 1)/(4𝑒− 2) fraction of the optimal expected revenue.

This result extends to the general class of random utility choice models (prefer-

ence list distributions with potentially exponential support), as long as there exists

an efficient oracle to evaluate the purchase probabilities of products in any given as-

sortment. As explained later on, this setting subsumes most choice models studied in

the revenue management literature. Moreover, when the static version of the problem

admits an approximation ratio of 𝛼 ≥ 1 − 1/𝑒, we argue that the above-mentioned

guarantee can be improved to 𝛼/4.

In the presence of price differentiation, the selection step is complemented by

price thresholding. That is, we eliminate all products cheaper than an appropriate

price threshold, and apply our horizontal differentiation algorithm on the remaining

products, assuming identical prices. This approach yields an approximation guarantee

of 𝑂(log(𝑃max/𝑃min)), where 𝑃max and 𝑃min stand for the maximum and minimum

price of any product, respectively. The latter ratio is best possible in this setting,

as shown in Chapter 2 (to wit, the static problem is a special case of the dynamic

problem with IFR demand distributions).

105

Intervals choice model. We proceed by proving that the above-mentioned loga-

rithmic ratio, obtained under price differentiation, can be beaten in more structured

settings. We first investigate a generalization of nested preference lists, known as

the intervals choice model. This model subsumes any distribution over lists that are

comprised of an interval of products, ranked by increasing price order. Such prefer-

ence lists find behavioral justification in capturing common screening rules, used by

customers to generate their choice set (see the survey by Hauser Hauser et al. (2009)

in the marketing literature). Indeed, the intervals structure naturally arises when

the customers’ choice set is formed by the conjunction of a budget constraint and a

quality requirement, assuming that price and perceived quality are inversely related,

which is commonly observed in practical settings Zeithalm (1988).

Assuming an IFR distribution of customer arrivals, we develop in Section 4.3 an

algorithmic approach with an approximation guarantee of 𝑂(log log(𝑃max/𝑃min)) un-

der the intervals choice model. First, we show that the problem can be approximated

within a factor logarithmic in the number of products. This is achieved through a

recursive decomposition of the preference lists into a logarithmic number of classes,

thereby creating independent and highly-structured instances, that can be approx-

imated within constant factors. The log-logarithmic ratio is attained via a refined

decomposition, where products are initially grouped into nearly-uniform price buck-

ets, which allow us to employ our algorithm for horizontally differentiated products

as a subroutine.

Nested choice model with general demand distributions. For arbitrary (non-

IFR) demand distributions, we provide the first polynomial-time approximation al-

gorithm under the nested choice model, attaining a performance guarantee of 1−1/𝑒.

Our algorithm, whose specifics are given in Section 4.4, reveals a hidden submodular

structure within this setting, and relies on a distinct selective-greedy approach (very

dissimilar to the one described in Section 4.2). We initially eliminate sub-optimal

products by leveraging solutions to multiple instances of the static version. Next, the

resulting problem formed by the residual products is cast as a capacity-constrained

106

maximization of a certain submodular function. In contrast to existing enumeration-

based approaches Goyal et al. (2016), Segev (2015), our algorithm is very efficient in

practice.

Computational experiments. In Section 4.5, we conduct extensive computa-

tional experiments on randomly-generated instances, showing that our general-purpose

algorithm largely outperforms existing heuristics, in terms of both revenue and effi-

ciency. Specifically, our approach is compared to the following heuristics:

1. A local-search heuristic based on greedily exchanging units between pairs of

products.

2. A gradient-descent approach based on a continuous extension of the revenue

function.

3. A discrete-greedy algorithm, where in each step a single unit is added to the

product with the largest marginal expected revenue.

4. The approximation scheme of Goyal et al. (2016) for the nested choice model.

On average, the expected revenue is (on average) increased by a factor ranging be-

tween 8% and 30% relative to the best heuristic, while reducing the running time

in most configurations. In structured settings, with interval and nested preference

lists, our comparative experiments again validate the practicality of the algorithms

we propose against existing heuristics.

Counter-examples. For each of the settings considered in Sections 4.2-4.4, we con-

struct carefully-made instances, showing that the objective function of the respective

formulations is neither concave, nor submodular. These counter-examples, described

in Appendix B.1.3, suggest that generic optimization methods do not directly apply

to the problems considered in this chapter.

107

4.1.2 Problem formulation

Products and inventories. We are given a collection of 𝑛 products, with per-

unit selling prices 𝑃1 ≤ · · · ≤ 𝑃𝑛. In addition, there is a capacity bound of 𝐶 on

the total number of units to be stocked. In the (single-period) dynamic assortment

problem, the retailer has to jointly decide on an assortment, i.e., a subset products to

be stocked, as well as on the initial inventory levels of these products, which are not

replenished later on. In other words, a feasible solution specifies the initial inventory

levels of all products, represented by an integer-valued vector 𝑈 = (𝑢1, . . . , 𝑢𝑛) that

meets the capacity constraint,
∑︀𝑛

𝑖=1 𝑢𝑖 ≤ 𝐶.

The consumption process. Independently of stocking decisions, a random num-

ber of customers 𝑀 arrive sequentially, where the distribution of 𝑀 is assumed to

be known to the decision-maker. Each customer 𝑗 picks a random preference list 𝐿𝑗

that describes a sub-collection of products in decreasing order of preference. This

list is drawn from a common known distribution over a collection of preference lists,

independently of the other lists and the number of customers 𝑀 . Unless mentioned

otherwise, this distribution is encoded explicitly as a collection of preference lists ℒ,

that are specified as an input along with their respective probabilities. Upon arrival,

each customer purchases a single unit of the most preferred product on her list avail-

able at that time. In other words, the customer first attempts to purchase her most

preferred product, and if that product has stocked out or was not initially selected

in the assortment, the customer substitutes to the second most preferred product,

so forth and so on. If none of the products in her preference list is available, this

customer leaves without purchasing any product. Therefore, at each step, the in-

ventory vector is decremented by at most one unit, corresponding to the customer’s

purchasing decision.

Objective. When the sequence of customer arrivals ends, we use ℛ(𝑈) to denote

the revenue resulting from an initial inventory vector 𝑈 . Based on the preceding

discussion, this revenue is clearly random, due to the stochasticity in the number

108

of customers and in their choice of preference lists. The objective is to compute a

feasible inventory vector, so that the expected revenue is maximized, i.e.,

max
(𝑢1,...,𝑢𝑛)∈Z𝑛

+

{︃
E [ℛ(𝑢1, . . . , 𝑢𝑛)] :

𝑛∑︁

𝑖=1

𝑢𝑖 ≤ 𝐶

}︃
.

Structural properties. We have previously discussed several structural properties

that give rise to different settings studied in this chapter. Below, detailed definitions

of these modeling assumptions are provided.

∙ Nested choice model: This model describes distributions over a collection of

preference lists ℒ that consists of intervals of the form (1, . . . , ℓ), where ℓ ∈ [𝑛].

Namely, there are 𝑛+ 1 possible preferences lists, (), (1), (1, 2), . . . , (1, 2, . . . , 𝑛),

where the respective probabilities of these lists are arbitrary. Here, () denotes

the empty preference list, for customers who are not interested in purchasing

any product.

∙ Intervals choice model: This model describes a more general class of preference

list distributions, where ℒ consists of intervals of the form (ℓ, . . . , 𝑘), with 1 ≤
ℓ ≤ 𝑘 ≤ 𝑛. Again, the respective probabilities of these lists can be arbitrary.

∙ Increasing Failure Rate: Here, the distribution of the number of customers 𝑀 is

assumed to have an increasing failure rate (IFR), meaning that Pr [𝑀 = 𝑘] /Pr [𝑀 ≥ 𝑘]

is non-decreasing over the integer domain. This definition is equivalent to re-

quiring that the sequence of random variables [𝑀 − 𝑘|𝑀 ≥ 𝑘]𝑘∈Z is stochas-

tically non-increasing in 𝑘. For definitions of stochastic orders and stochastic

monotonicity, we refer the reader to Shaked and Shanthikumar Shaked and

Shanthikumar (1994). It is worth mentioning that the IFR property is satis-

fied by many distributions considered in operations management applications,

including Normal, Exponential, Geometric, Poisson, and Beta (for certain pa-

rameters).

109

Remark 1: Static formulation. The static case corresponds to the situation

where there is a single customer arrival. This setting is equivalent to relaxing the

capacity constraint (i.e., 𝐶 =∞), and the problem reduces to the standard assortment

optimization formulation. Indeed, since there are no stock-out events, we can always

offer the optimal assortment to each arriving customer. The assortment computed in

this setting is referred to as the optimal static assortment.

Remark 2: Notation. In contrast with the previous chapter, because we consider

simpler choice structures, our notation does not disambiguate the consideration sets

from the ranking permutation. That is, in certain settings, we will treat the ranked

preference lists in ℒ as subsets of products. In addition, for each list 𝐿ℓ ∈ ℒ, we use

𝜆ℓ to denote the probability that it is picked by an arriving customer. We allow ℒ
to interchangeably designate the set of preference lists, as well as the corresponding

collection of customer-type indices.

4.2 General choice model

In what follows, we consider the most general setting, where the underlying choice

model is expressed as a distribution over ranked preference lists, potentially with

exponentially-large support. As discussed subsequently, this setting coincides with

the class of random-utility choice models, and therefore subsumes most models of

practical interest proposed in the literature.

Our approximation algorithm is introduced in an incremental way. In Sections 4.2.1-

4.2.3, we begin by investigating the setting of horizontally differentiated products.

Here, products are assumed to be associated with uniform prices, meaning that with-

out loss of generality 𝑃1 = · · · = 𝑃𝑛 = 1, and the retailer wishes to maximize his

expected sales quantity. When the number of customers 𝑀 follows an IFR distri-

bution, we show how to efficiently compute an inventory vector that approximates

the optimal expected revenue within a constant factor. For ease of presentation, we

do not attempt to optimize the latter constant. It is worth noting that the uniform-

110

price problem is NP-hard to approximate within factor larger than 1 − 1/𝑒, since it

subsumes the maximum coverage problem Feige (1998) as a special case, even with a

single customer.

Theorem 4.2.1. When 𝑀 is IFR-distributed and the product prices are uniform, the

dynamic assortment planning problem under general preference list distributions can

be approximated within factor (𝑒− 1)/(4𝑒− 2) in polynomial time.

In Section 4.2.4, this constant-factor approximation is leveraged as a subroutine to

solve the general problem with price differentiation. Here, without loss of generality,

we assume that products are indexed such that 𝑃1 ≤ · · · ≤ 𝑃𝑛. As stated in the next

theorem, our performance guarantee scales logarithmically with the ratio of extremal

prices. The latter ratio is best possible in this setting (up to constant terms), and

matches the inapproximability bound established in Chapter 2.

Theorem 4.2.2. When 𝑀 is IFR-distributed, the dynamic assortment planning

problem under general preference list distributions can be approximated within fac-

tor 𝑂(log(𝑃𝑛/𝑃1)) in polynomial time.

4.2.1 Algorithm under horizontal differentiation

At a high level, our algorithm is based on two-step approach, termed selective-greedy:

∙ Selection step. First, we ignore the inventory limitations and select an as-

sortment of products that approximates the static (single-customer) problem.

To this end, we observe that the static problem is equivalent to computing a

weighted maximum coverage of a set system defined by the collection of prefer-

ence lists. Thus, a constant-factor approximation for the static case is obtained

by a greedy allocation rule.

∙ Greedy step. Next, to allocate the inventory capacity over the assortment prod-

ucts in the dynamic setting, we consider a lower bound on the expected revenue,

that can be viewed a multi-item newsvendor formulation. The latter (simplified)

objective is then optimized greedily.

111

In what follows, we provide a more detailed description of the algorithm.

Step 1 (selection): approximating the static solution. Recall that ℒ des-

ignates the original collection of preference lists, where each list 𝐿ℓ is picked by a

single customer with probability 𝜆ℓ. We begin by considering the static variant of

the problem, that seeks to maximize the expected revenue extracted from a single

arriving customer. Since all prices are identical, out of all subsets of products with

cardinality at most 𝐶, we wish to pick one that maximizes the total probability of all

preference lists in ℒ that are being hit. In other words, we would like to identify a

subset of products that satisfies the cardinality constraint and achieves a maximum

coverage of the preference lists, where each product covers (or hits) the subset of lists

that contain it. This is precisely an instance of the maximum coverage problem, that

can be approximated within factor 1− 1/𝑒 by a classic greedy procedure Nemhauser

et al. (1978). Specifically, a single product is greedily added at each step to maximize

the coverage quantity, defined as the combined probability of all lists intersecting the

assortment. As a result, we use 𝒬 ⊆ [𝑛] to denote the corresponding assortment

picked for the static problem. In addition, we assume without loss of generality that

the assortment 𝒬 is minimal with respect to inclusion, that is, removing any product

would decrease the combined probability of preference lists that contain any of the

products in 𝒬.

Newsvendor-like lower bound. We begin by defining ℒ𝒬 ⊆ ℒ as the subset of

lists that intersect with the assortment 𝒬. We construct an assignment 𝒜 : ℒ𝒬 → 𝒬
that maps each list in ℒ𝒬 to its most preferred product in𝒬, which exists by definition

of ℒ𝒬. Hence, 𝒜−1(𝑖) is the subset of lists in which product 𝑖 ∈ 𝒬 is the most preferred

when faced with the assortment 𝒬. Note that, since 𝒬 is minimal with respect to

inclusion (see step 1), each product in this assortment is necessarily assigned with at

least one preference list in ℒ𝒬, meaning that 𝒜−1(𝑖) ̸= ∅ for every 𝑖 ∈ 𝒬. We highlight

a basic property attained by the assignment 𝒜. Consider some product 𝑖 ∈ 𝒬, and

suppose that we are looking on a customer who has just arrived. The key observation

112

is that, if product 𝑖 has at least one unit in stock at the moment, the current customer

will purchase 𝑖 with probability at least 𝜓𝑖 =
∑︀

ℓ∈𝒜−1(𝑖) 𝜆ℓ, regardless of the inventory

levels of all other products. The reason is that, for any list ℓ ∈ 𝒜−1(𝑖), which occurs

with probability 𝜆ℓ, product 𝑖 is preferred over any other product in the assortment

𝒬, and we are not stocking any of the products in [𝑛] ∖ 𝒬. Therefore, the number of

units purchased from 𝑖 if this product had an infinite (unlimited) inventory level is

stochastically larger than 𝑌𝑖 ∼ 𝐵(𝑀,𝜓𝑖). However, assuming that 𝑢𝑖 units of product

𝑖 are initially stocked, we would actually be considering the truncated random variable

𝑌𝑖(𝑢𝑖) = min{𝑌𝑖, 𝑢𝑖}. Therefore, letting (𝑢1, . . . , 𝑢𝑛) be an inventory vector stocking

only products in 𝒬, an immediate lower bound on its expected revenue is given by:

E [ℛ(𝑢1, . . . , 𝑢𝑛)] ≥
∑︁

𝑖∈𝒬

E
[︀
𝑌𝑖(𝑢𝑖)

]︀
. (4.1)

Since the above lower bound is separable by products, it can be viewed as the revenue

function of a multi-item newsvendor problem (without stock-out substitution), over

the products in 𝒬.

Step 2 (greedy): solving a multi-item newsvendor problem. The inventory

levels of products in 𝒬 are now set in order to optimize the lower bound described by

inequality (4.1). As noted above, this formulation is a special case of the multi-item

newsvendor problem subject to a single cardinality constraint, with salvage value and

cost 0. It is well-known that an exact solution can be derived in polynomial time

(see, e.g., (Muckstadt and Sapra 2010), Chapter 5). For instance, one may employ

a greedy procedure that, at each step, augments the current inventory vector by a

single unit that incurs the largest marginal increase of the expected revenue. It is

worth noting that our lower bound on the revenue contribution of any given unit can

easily be computed in polynomial time. In contrast, evaluating the exact expected

revenue it generates is an open question by itself, as explained in Section 4.1, and our

algorithm is surprisingly able to bypass this difficulty.

113

Running time. The selection step requires 𝑛 greedy increments, each with at most

𝑛 evaluations of the static expected revenue, whereas the greedy step involves 𝐶 in-

crements of the inventory vector, each leading to 𝑛 evaluations of the multi-item

newsvendor objective function. The static expected revenue of a given assortment

can be computed in time 𝑂(𝑛 · |ℒ|) while the newsvendor objective can be evaluated

through dynamic programming in time 𝑂(𝑛𝐶𝑀̄), where 𝑀̄ is the maximal number

of arrivals (see Goyal et al. Goyal et al. (2016)). Hence, the overall running time is

𝑂(𝑛3 · |ℒ|+𝑛2𝐶2𝑀̄). In fact, by observing that each incremental action only affects

a constant number of the revenue terms (and their corresponding purchase probabil-

ities), a refined implementation of the evaluation oracles leads to a running time of

𝑂(𝑛2 · |ℒ|+𝑛𝐶𝑀̄). Practically speaking, for common parametric random variables

(e.g., gaussian) where 𝑀̄ is infinite, the newsvendor objective can be evaluated using

numerical integration techniques, with high accuracy.

4.2.2 Analysis under horizontal differentiation

To analyze our algorithm, we explicitly construct a ‘good’ candidate solution, making

use of products in 𝒬. The subsequent analysis reveals that, under the choice of such

inventory levels, the newsvendor-like lower bound approximates the optimal revenue

within a constant factor. This candidate solution is constructed in two steps.

Step 1: Rounding up the capacity. We begin by modifying the original capacity

𝐶. Specifically, we round the capacity value up to the nearest multiple of 2 · |𝒬|,
denoted by 𝐶. Note that since |𝒬|≤ 𝐶, we must have 𝐶 ≤ 2𝐶. Our approach to

design a feasible solution first creates a solution under the relaxed capacity 𝐶. We

overload notation by reusing 𝐶 as the current capacity, instead of 𝐶, in the next

algorithmic steps. However, once the final inventory vector is computed, it remains

to restore the original capacity by selecting the ‘best’ 𝐶 units. Namely, we select the

𝐶 units with largest contribution to the lower bound described in Section 4.2.1. This

leaves us with at least half of the lower bound attained by the relaxed solution.

114

Step 2: Setting inventory levels. Based on the assignment 𝒜 defined earlier,

we proceed by explaining how to spread the capacity of 𝐶 over the underlying set of

products 𝒬. Intuitively, we would like the number of units stocked from each product

𝑖 ∈ 𝒬 to be proportional to 𝜓𝑖/Λ𝒬, where Λ𝒬 =
∑︀

𝑖∈𝒬 𝜓𝑖. Namely,

𝑢̃𝑖 =
𝜓𝑖

Λ𝒬
· 𝐶 .

However, this quantity may not be integral, and is therefore rounded down to the

nearest multiple of 𝐶/(2 · |𝒬|), which is necessarily integral by step 1. For this

purpose, we can uniquely write

𝑢̃𝑖 = 𝜇𝑖 ·
𝐶

2 · |𝒬| + 𝛼𝑖 ,

for some integer 𝜇𝑖 ∈ [0, 2 · |𝒬|] and some real 𝛼𝑖 ∈ [0, 𝐶/(2 · |𝒬|)). With these

definitions in place, for each product 𝑖 ∈ 𝒬, the number of units to be stocked is

𝑢𝑖 = 𝜇𝑖 ·
𝐶

2 · |𝒬| ,

while other products are not stocked at all. This way, each product indeed has

an integer number of units stocked, and furthermore, we do not exceed the overall

capacity, since
∑︁

𝑖∈𝒬

𝑢𝑖 ≤
∑︁

𝑖∈𝒬

𝑢̃𝑖 =
𝐶

Λ𝒬
·
∑︁

𝑖∈𝒬

𝜓𝑖 = 𝐶 .

Deriving the approximation ratio. For the remainder of this section, let (𝑢1, . . . , 𝑢𝑛)

be the inventory vector that has just been constructed. Since this vector stocks only

products in 𝒬, it is a feasible solution to the multi-item newsvendor instance solved

(exactly) by our algorithm. Therefore, to prove Theorem 4.2.1, it remains to show

that the expected revenue generated by (𝑢1, . . . , 𝑢𝑛) can be lower bounded in terms

of the optimal expected revenue.

We begin by stating two technical lemmas, that prove useful for analyzing the

consumption process of the inventory vector (𝑢1, . . . , 𝑢𝑛). Although written in slightly

115

different terms, the first lemma has been proven by Goyal et al. (Goyal et al. 2016,

Lem. 4). The second lemma is easy to establish, as shown in Appendix B.1.2.

Lemma 4.2.3. Let 𝑀 be a non-negative integer-valued IFR random variable. For

any 𝛼 ∈ [0, 1], the random variable 𝑋 ∼ 𝐵(𝑀,𝛼) also follows an IFR distribution.

Lemma 4.2.4. Let 𝑋 be a non-negative IFR random variable, and let 𝑋̄ = min{𝑋,𝐶},
for some constant 𝐶. Suppose that E[𝑋̄] ≤ 𝛿𝐶 for some 𝛿 ∈ [0, 1]. Then, E[𝑋̄] ≥
(1− 𝛿) · E[𝑋].

Upper bounds on the optimal revenue. The important observation is that, for

any inventory vector with a total capacity of at most 𝐶, an arriving customer will

purchase a unit with probability at most (𝑒/(𝑒− 1)) · Λ𝒬. This follows by noting

that, as explained in step 1, the assortment 𝒬 approximates the optimal maximal

coverage solution within factor 1−1/𝑒. Therefore, the expected revenue of the optimal

inventory vector (𝑢*1, . . . , 𝑢
*
𝑛) can be bounded by

E [ℛ(𝑢*1, . . . , 𝑢
*
𝑛)] ≤ min

{︂
𝐶,

𝑒

𝑒− 1
· E [𝑀] · Λ𝒬

}︂
. (4.2)

Frequent and rare products. The key idea of our analysis is to distinguish be-

tween two types of products. For a parameter 𝛿 ∈ [0, 1] whose value will be optimized

later, we say that product 𝑖 ∈ 𝒬 is frequent when, in expectation, at least a 𝛿-fraction

of the units stocked are purchased in the consumption process, i.e., E[𝑌𝑖(𝑢𝑖)] ≥ 𝛿𝑢𝑖.

Otherwise, this product is said to be rare. We denote the sets of frequent and rare

products by ℱ and ℛ, respectively. Note that, by the relation between 𝑢𝑖 and 𝑢̃𝑖,

∑︁

𝑖∈ℱ

𝑢𝑖 +
∑︁

𝑖∈ℛ

𝑢𝑖 =
∑︁

𝑖∈𝒬

𝑢𝑖 =
∑︁

𝑖∈𝒬

𝑢̃𝑖 −
∑︁

𝑖∈𝒬

𝛼𝑖 ≥ 𝐶 − |𝒬|· 𝐶

2 · |𝒬| =
𝐶

2
. (4.3)

We separately examine the contribution of each product type to the lower bound

stated in inequality (4.1). For the contribution of frequent products, by definition we

clearly have
∑︁

𝑖∈ℱ

E
[︀
𝑌𝑖(𝑢𝑖)

]︀
≥ 𝛿 ·

∑︁

𝑖∈ℱ

𝑢𝑖 . (4.4)

116

We now lower bound the contribution of rare products. Based on Lemma 4.2.3,

since the number of customers 𝑀 is assumed to be IFR distributed, we know that

𝑌𝑖 ∼ 𝐵(𝑀,𝜓𝑖) follows an IFR distribution as well. As a result, by Lemma 4.2.4, we

infer that the expectations of 𝑌𝑖 and 𝑌𝑖(𝑢𝑖) are closely-related for every rare product

𝑖, meaning that E[𝑌𝑖(𝑢𝑖)] ≥ (1− 𝛿) · E[𝑌𝑖], and therefore,

∑︁

𝑖∈ℛ

E
[︀
𝑌𝑖(𝑢𝑖)

]︀
≥ (1− 𝛿) ·

∑︁

𝑖∈ℛ

E [𝑌𝑖] . (4.5)

Also, by definition of 𝑢𝑖 and 𝑢̃𝑖, we observe that

E [𝑌𝑖] = 𝜓𝑖 · E [𝑀] =
Λ𝒬

𝐶
· 𝑢̃𝑖 · E [𝑀] ≥ Λ𝒬

𝐶
· 𝑢𝑖 · E [𝑀] .

Therefore, combining this with inequality (4.5), we obtain

∑︁

𝑖∈ℛ

E
[︀
𝑌𝑖(𝑢𝑖)

]︀
≥ (1− 𝛿) · E [𝑀] · Λ𝒬

𝐶
·
∑︁

𝑖∈ℛ

𝑢𝑖 . (4.6)

Conclusion. By substituting (4.4) and (4.6) into the lower bound stated in inequal-

ity (4.1) and setting 𝛿 = (𝑒− 1)/(2𝑒− 1), we infer that

E [ℛ(𝑢1, . . . , 𝑢𝑛)] ≥ 𝛿 ·
∑︁

𝑖∈ℱ

𝑢𝑖 + (1− 𝛿) · E [𝑀] · Λ𝒬

𝐶
·
∑︁

𝑖∈ℛ

𝑢𝑖

≥ E [ℛ(𝑢*1, . . . , 𝑢
*
𝑛)] ·

(︃
𝛿

𝐶
·
∑︁

𝑖∈ℱ

𝑢𝑖 +
1− 𝛿
𝐶
·
(︂

1− 1

𝑒

)︂
·
∑︁

𝑖∈ℛ

𝑢𝑖

)︃

=
𝑒− 1

2𝑒− 1
· E [ℛ(𝑢*1, . . . , 𝑢

*
𝑛)] · 1

𝐶
·
(︃∑︁

𝑖∈ℛ

𝑢𝑖 +
∑︁

𝑖∈ℱ

𝑢𝑖

)︃

≥ 𝑒− 1

4𝑒− 2
· E [ℛ(𝑢*1, . . . , 𝑢

*
𝑛)] ,

where the second inequality is derived from the upper bound in (4.2), and the last

inequality follows from (4.3). Finally, as explained in step 1, we restore the origi-

nal capacity by selecting at least half of the units stocked, based on their individual

contributions to the lower bounds in (4.4) and (4.6). This alteration yields an ap-

proximation guarantee of (𝑒− 1)/(8𝑒− 4).

117

For a more careful analysis, we need to distinguish in the lower bound above

between the rounded capacity 𝐶 and the initial capacity 𝐶, yielding

E [ℛ(𝑢1, . . . , 𝑢𝑛)] ≥ 𝑒− 1

2𝑒− 1
· E [ℛ(𝑢*1, . . . , 𝑢

*
𝑛)] · 1

𝐶
·
(︃∑︁

𝑖∈ℛ

𝑢𝑖 +
∑︁

𝑖∈ℱ

𝑢𝑖

)︃
.

We now observe that, when restoring the original capacity 𝐶, our lower bound scales-

down by a factor of 𝐶/𝛽, where 𝛽 is the total number of units in the relaxed solution,

i.e., 𝛽 =
∑︀

𝑖∈ℛ 𝑢𝑖 +
∑︀

𝑖∈ℱ 𝑢𝑖. For this reason, we obtain an expected revenue of at

least
𝑒− 1

2𝑒− 1
· E [ℛ(𝑢*1, . . . , 𝑢

*
𝑛)] · 𝛽

𝐶
· 𝐶
𝛽
≥ 𝑒− 1

4𝑒− 2
· E [ℛ(𝑢*1, . . . , 𝑢

*
𝑛)] ,

concluding the proof of Theorem 4.2.1.

4.2.3 Refined performance guarantee

A close investigation of our algorithm shows that the factor of 1 − 1/𝑒 is incurred

due to employing a general-purpose maximum coverage algorithm to solve the static

problem in step 1. However, for numerous special cases of preference lists (such

as nested, intervals, laminar, just to name a few), this variant can be solved either

exactly or within a greater degree of accuracy. The following claim explicitly relates

between our approximation guarantee for the dynamic model and the best achievable

one for the static variant.

Corollary 4.2.5. Suppose that, for a certain class of preference lists, the static vari-

ant can be efficiently approximated within factor 𝛼. Then, the corresponding dynamic

formulation, with identical prices and IFR demand distribution, admits an 𝛼/(2𝛼+2)-

approximation in polynomial time.

It is important to point out that our results extend to the case where the distri-

bution over preference lists is not explicitly specified as part of the input, potentially

having an exponentially-large support. In fact, to efficiently implement our algo-

rithm, we only require a polynomial-time procedure for computing the probability

that each product in a given assortment is purchased under a single customer arrival.

118

Indeed, this property is sufficient to greedily approximate the static problem (step 1

in Section 4.2.1) and to compute each of the 𝜓𝑖-probabilities defining the newsven-

dor objective function. In particular, such procedures can easily be devised for most

choice models proposed in the revenue management literature, including mixtures of

logits Talluri and van Ryzin (2004), Rusmevichientong and Topaloglu (2012), nested

logit Li et al. (2015), Davis et al. (2014), as well as the Markov chain model Blanchet

et al. (2016), Feldman and Topaloglu (2014), Désir et al. (2015).

4.2.4 Price differentiation

Algorithm. In what follows, we explain how the algorithm of Section 4.2.1 can

be adapted in the presence of price differentiation to obtain an 𝑂(log(𝑃max/𝑃min))-

approximation. The basic idea is based on the classify-and-select paradigm, where

products are initially partitioned into classes with nearly-uniform prices, and then,

we employ for each class our constant-factor approximation as a subroutine, treating

these products as if they are associated with uniform prices. Specifically, assuming

that products are indexed such that 𝑃1 ≤ · · · ≤ 𝑃𝑛, our algorithm picks the most

profitable inventory vector out of 𝑈1, . . . , 𝑈𝐾 , where 𝐾 = ⌈log(𝑃𝑛/𝑃1)⌉. Each vector

𝑈𝑘 is generated as follows:

1. Let 𝑎𝑘 be the minimum index of a product whose price is at least 𝑃1 · 2𝑘−1, that

is, 𝑎𝑘 = min{𝑖 ∈ [𝑛] : 𝑃𝑖 ≥ 𝑃1 · 2𝑘−1}. Given this parameter, we define the

collection of products 𝒜𝑘 = [𝑎𝑘, 𝑎𝑘+1 − 1].

2. The inventory vector 𝑈𝑘 = (𝑢𝑘1, . . . , 𝑢
𝑘
𝑛) is constructed by applying the horizon-

tal differentiation procedure (see Section 4.2.1) to the subproblem formed by

products in 𝒜𝑘, with identical prices of 𝑝𝑎𝑘 = · · · = 𝑝𝑎𝑘+1−1 = 1.

It is worth noting that, in order to pick the “most profitable” inventory vector, we

make the final comparisons in terms of the multi-item newsvendor lower bound, that

can be computed in polynomial time.

119

Analysis. In order to establish the performance guarantee attained by our algo-

rithm, we begin by highlighting a fundamental property of the consumption process

under an arbitrary collection of preference lists. To avoid deviating from the overall

discussion, we prove the next claim in Appendix B.1.1.

Lemma 4.2.6. The expected revenue function E[ℛ(·)] is subadditive.

Now, for every 𝑘 ∈ [𝐾], let 𝑈*(𝑘) be the projection of the optimal inventory

vector 𝑈* on the products 𝒜𝑘. That is, 𝑈*(𝑘) is obtained from 𝑈* by setting to 0

the inventory levels of all products in [𝑛] ∖ 𝒜𝑘. We proceed by showing that 𝑈𝑘, the

inventory vector constructed earlier by our algorithm, generates a constant fraction

of the expected revenue of 𝑈*(𝑘).

Lemma 4.2.7. E[ℛ(𝑈𝑘)] ≥ 𝑒−1
8𝑒−4
· E[ℛ(𝑈*(𝑘))].

Proof. Recall that the inventory vector 𝑈𝑘 constitutes an (𝑒−1)/(4𝑒−2)-approximation

for the optimal sales quantity (i.e., expected number of units purchased) when the

underlying set of products is 𝒜𝑘. Therefore, since 𝑈*(𝑘) stocks only products in 𝒜𝑘,

the expected sales quantity with respect to 𝑈𝑘 is at least (𝑒− 1)/(4𝑒− 2) times the

analogous quantity with respect to 𝑈*(𝑘). The claim follows by observing that, by

definition of 𝒜𝑘, the ratio between the extremal prices within this class is at most

2.

Based on the preceding discussion, we are now ready to show that the most prof-

itable inventory vector out of 𝑈1, . . . , 𝑈𝐾 guarantees an expected revenue within

factor 𝑂(log(𝑃𝑛/𝑃1)) of optimal. Indeed,

max
𝑘

{︀
E
[︀
ℛ
(︀
𝑈𝑘
)︀]︀}︀

≥ 𝑒− 1

8𝑒− 4
·max

𝑘

{︀
E
[︀
ℛ
(︀
𝑈*(𝑘))︀]︀}︀

≥ 𝑒− 1

8𝑒− 4
· 1

𝐾
·

𝐾∑︁

𝑘=1

E
[︀
ℛ
(︀
𝑈*(𝑘))︀]︀

≥ 𝑒− 1

8𝑒− 4
· 1

𝐾
· E [ℛ (𝑈*)]

= Ω

(︂
1

log(𝑃𝑛/𝑃1)

)︂
· E [ℛ (𝑈*)] ,

120

where the first inequality follows from Lemma 4.2.7 and the third inequality is implied

by the subadditivity of the expected revenue function (see Lemma 4.2.6).

4.3 Approximation Algorithms for the Intervals Choice

Model

In what follows, we consider the dynamic assortment planning problem under interval

preference lists. When the number of customers 𝑀 satisfies the IFR property, we

show how to efficiently compute an inventory vector that approximates the optimal

expected revenue within factor 𝑂(log log(𝑃𝑛/𝑃1)), where 𝑃1 and 𝑃𝑛 are the minimal

and maximal prices, respectively.

Since our approach employs recursive decompositions of the preference lists, it

is instructive to start off by presenting some of the high-level ideas, followed by a

simpler 𝑂(log 𝑛) approximation. We then explain how to make use of our algorithm

for uniform prices, given in Section 4.2, to establish the main result of this section.

4.3.1 General outline

The main algorithmic idea, exploited in different forms in Sections 4.3.2 and 4.3.3,

consists in partitioning the collection of preference lists ℒ into a small number of

classes, 𝐿. By separating customer purchases according to their different classes,

the expected revenue function decomposes into 𝐿 terms. Hence, to obtain an 𝑂(𝐿)-

approximation, we propose the following approach:

1. Consider separately each of the 𝐿 subproblems, where the consumption process

is limited to customers picking preference lists from a single class of the partition.

2. Approximately solve each of these 𝐿 subproblems. The crux would be to design

a partition such that the corresponding subproblems have a simplified structure,

admitting constant-factor approximations.

3. Pick the best solution among these 𝐿 inventory vectors.

121

However, this approach is generally insufficient to claim the desired approximation

ratio. Indeed, the decomposition into separate subproblems does not take into account

the dependency of the revenue functions across the different preference list classes,

in the joint sequence of arrivals. In other words, the expected revenue restricted to a

single class in the full consumption process (i.e., when all preference lists in ℒ could

be picked) is different from the one generated by the distribution induced on that

class. Consequently, our decomposition approach may very well under-estimate the

potential expected revenue.

Motivated by this observation, for any class of preference lists 𝒱 ⊆ ℒ and inventory

vector 𝑈 , we distinguish between two types of revenues, captured by the following

random variables:

∙ Original model: ℛ+
𝒱 (𝑈) designates the revenue generated by the arrival of 𝑀

customers who draw a preference list in 𝒱 , assuming that the consumption

process is formed by the original model, where all preference lists in ℒ occur

according to the initial distribution.

∙ 𝒱-restricted model: ℛ−
𝒱 (𝑈) denotes the revenue generated by the arrival of 𝑀

customers who draw a preference list in 𝒱 , assuming that the consumption

process is formed by the 𝒱-restricted model. Here, only preference lists in 𝒱
can occur and their probabilities remain unchanged, whereas all lists in ℒ ∖ 𝒱
are replaced by an empty list.

Now assume that the classes of our partition are denoted by 𝒱1, . . . ,𝒱𝐿. Generally

speaking, the expected revenues in the restricted and original models are unrelated;

elementary examples demonstrate that neither one dominates the other. What we

need to argue to utilize this approach is that these revenues are within constant factors

of each other, due to the specific properties of our decomposition. Formally, for every

ℓ ∈ [𝐿], we construct a feasible inventory vector 𝑈ℓ satisfying

E
[︀
ℛ−

𝒱ℓ
(𝑈ℓ)

]︀
= Ω(1) · E

[︀
ℛ+

𝒱ℓ
(𝑈*)

]︀
, (4.7)

122

where 𝑈* is the optimal inventory vector for the original model.

As a result, the best inventory vector out of 𝑈1, . . . , 𝑈𝐿 guarantees an 𝑂(𝐿)-

approximation for the original model. Indeed, by considering any realization of the

consumption process, it is easy to verify that the revenue generated in the original

model is stochastically larger than that of the 𝒱ℓ-restricted model. By combining this

observation and equation (4.7),

max
ℓ∈[𝐿]

E [ℛ(𝑈ℓ)] ≥ max
ℓ∈[𝐿]

E
[︀
ℛ−

𝒱ℓ
(𝑈ℓ)

]︀

≥ 1

𝐿
·

𝐿∑︁

ℓ=1

E
[︀
ℛ−

𝒱ℓ
(𝑈ℓ)

]︀

= Ω

(︂
1

𝐿

)︂
·

𝐿∑︁

ℓ=1

E
[︀
ℛ+

𝒱ℓ
(𝑈*)

]︀

= Ω

(︂
1

𝐿

)︂
· E [ℛ (𝑈*)] .

4.3.2 Logarithmic approximation in the number of products

We begin by describing our partition of the preference lists into 𝐿 = 𝑂(log 𝑛) classes

𝒱1, . . . ,𝒱𝐿. For the resulting partition, we devise a polynomial-time algorithm for

computing an inventory vector 𝑈ℓ satisfying

E
[︀
ℛ−

𝒱ℓ
(𝑈ℓ)

]︀
≥ 1

8
· E
[︀
ℛ+

𝒱ℓ
(𝑈*)

]︀
.

4.3.2.1 The recursive decomposition

In order to formalize our decomposition approach, we first introduce a sequence of

increasingly refined partitions of the products in [𝑛], denoted by 𝒮1, . . . ,𝒮𝐿. In turn,

this sequence induced the desired partition of preference lists into 𝒱1, . . . ,𝒱𝐿.

Partitions of products. We define the middle product of a segment [𝑎, 𝑏] ⊆ [𝑛]

as the product ⌈(𝑎 + 𝑏)/2⌉. The sequence 𝒮1, . . . ,𝒮𝐿 is obtained by the following

recursive procedure:

123

∙ First, we define 𝒮1 as the trivial partition of [𝑛], comprised of a single segment

consisting of all products, i.e., 𝒮1 = {[𝑛]}.

∙ The next partition, 𝒮2, is obtained by breaking the segment [𝑛] at its middle

product, that is, 𝒮2 = {[1, ⌈(𝑛+ 1)/2⌉], [⌈(𝑛+ 1)/2⌉+ 1, 𝑛]}.

∙ This process continues recursively, that is, we define 𝒮ℓ as the partition of

products obtained by breaking each segment of 𝒮ℓ−1 at its middle product into

two parts.

Partition of preference lists. Given any subset of lists 𝒱 ⊆ ℒ and a partition 𝒮
of the products [𝑛] into pairwise-disjoint segments, we define mid(𝒱 ,𝒮) as the subset

of lists in 𝒱 that contain the middle product of at least one segment in 𝒮. With this

definition at hand, we construct the partition of the preference lists into 𝒱1, . . . ,𝒱𝐿
as follows:

∙ First, we have 𝒱1 = mid(ℒ,𝒮1).

∙ Then, 𝒱2 = mid(ℒ ∖ 𝒱1,𝒮2).

∙ This process continues recursively, as illustrated in Figure 4-1. That is, we define

𝒱ℓ as the subset of residual preference lists that contain the middle product of

a segment in 𝒮ℓ, i.e., 𝒱ℓ = mid(ℒ ∖ (∪ℓ−1
𝑗=1𝒱𝑗),𝒮ℓ).

Figure 4-1: The recursive decomposition of ℒ into 𝒱1, . . . ,𝒱𝐿.

1	

 2	

 n-1	

 n	

Products	

Interval Lists	

V1

V2

S1

S2

S3

⇠
n + 1

2

⇡

124

Structural properties. Since the maximum length of any segment shrinks by a

constant factor at each level of the decomposition, it immediately follows that the

resulting number of classes is 𝐿 = 𝑂(log 𝑛). In addition, each partition of products

𝒮ℓ can be viewed as a collection of pairwise-disjoint segments, satisfying the next two

properties:

∙ Property 1: each interval list in 𝒱ℓ is fully contained in precisely one of the

segments in 𝒮ℓ.

∙ Property 2: for each segment 𝑆 ∈ 𝒮ℓ, there exists a product in 𝑆 that intersects

all intervals in 𝒱ℓ contained in this segment.

These are precisely the sufficient properties that will enable us to compute a feasible

inventory vector 𝑈ℓ satisfying

E
[︀
ℛ−

𝒱ℓ
(𝑈ℓ)

]︀
≥ 1

8
· E
[︀
ℛ+

𝒱ℓ
(𝑈*)

]︀
.

4.3.2.2 Proving the existence of 𝑈ℓ

Single segment analysis. In order to construct 𝑈ℓ, it is sufficient to show that,

for every segment of products 𝑆 in the partition 𝒮ℓ, there exists an inventory vector

𝑈𝑆
ℓ such that:

∙ The vector 𝑈𝑆
ℓ only makes use of products in 𝑆.

∙ Letting 𝒱𝑆
ℓ be the set of interval preference lists in 𝒱ℓ that are fully contained

in 𝑆, we have

E
[︁
ℛ−

𝒱𝑆
ℓ

(︀
𝑈𝑆
ℓ

)︀]︁
≥ 1

8
· E
[︁
ℛ+

𝒱𝑆
ℓ

(𝑈*)
]︁
. (4.8)

∙ The combined number of units stocked in {𝑈𝑆
ℓ : 𝑆 ∈ 𝒮ℓ} is at most 𝐶.

Indeed, given property 1, since the segments in 𝒮ℓ are pairwise disjoint, the expected

revenue of the combined vector
∑︀

𝑆∈𝒮ℓ
𝑈𝑆
ℓ decomposes into the sum of expected rev-

enues generated by each vector 𝑈𝑆
ℓ . This decomposition applies in both the original

125

model and the 𝒱ℓ-restricted model. In other words, assuming that each 𝑈𝑆
ℓ satisfies

inequality (4.8), we obtain the desired inequality:

E

[︃
ℛ−

𝒱ℓ

(︃∑︁

𝑆∈𝒮ℓ

𝑈𝑆
ℓ

)︃]︃
=

∑︁

𝑆∈𝒮ℓ

E
[︁
ℛ−

𝒱𝑆
ℓ

(︀
𝑈𝑆
ℓ

)︀]︁

≥ 1

8
·
∑︁

𝑆∈𝒮ℓ

E
[︁
ℛ+

𝒱𝑆
ℓ

(𝑈*)
]︁

=
1

8
· E
[︀
ℛ+

𝒱ℓ
(𝑈*)

]︀
.

Simplified problem. The preceding discussion implies that we can focus on a

single segment 𝑆 from this point on. We prove the existence of an inventory vector

𝑈𝑆
ℓ that satisfies the above properties by analyzing the revenue generated under the

optimal vector 𝑈* by the lists in 𝒱𝑆
ℓ . In fact, in the course of proving the existence

of 𝑈𝑆
ℓ , we implicitly describe an efficient algorithmic procedure to construct such a

vector. To simplify the presentation, the corresponding algorithm is made explicit in

Section 4.3.2.3. Also, we use simplified notation throughout this section, where 𝒱𝑆
ℓ

and 𝑈𝑆
ℓ are replaced by 𝒱 and 𝑈̃ , respectively, i.e., we do not explicitly mention the

dependency of these variables on 𝑆 and ℓ.

Revenue decomposition. Based on property 2, we define 𝐽 to be the highest

index product that intersects all intervals in 𝒱 . We now break the segment 𝑆 into

a left part 𝑆left = 𝑆 ∩ [1, 𝐽] and a right part 𝑆right = 𝑆 ∩ [𝐽 + 1, 𝑛], noting that the

latter part could be empty. These definitions, in turn, are used to further divide the

expected revenue E[ℛ+

𝒱 (𝑈*)] based on whether units are purchased from the left or

right part of 𝑆, that is,

E
[︁
ℛ+

𝒱 (𝑈*)
]︁

= E
[︁
ℛ+

𝒱,𝑆left
(𝑈*)

]︁
+ E

[︁
ℛ+

𝒱,𝑆right
(𝑈*)

]︁
.

The proof proceeds by considering two cases, depending on whether most of the

expected revenue is coming from the left or right parts. To better understand this

case analysis, we advise the reader to consult Figure 4-2.

126

Figure 4-2: The inventory vectors examined by the algorithm to construct 𝑈𝑆
ℓ .

i⇤

Optimal solution U⇤

Preference lists

Products of S

Case 1 Case 2A Case 2BSegment solution

Sright

FJ

Sleft

VS
` ⇠ Ṽ

US
` ⇠ Ũ

Case 1: 𝐸[𝑅+
𝑉 ,𝑆𝑙𝑒𝑓𝑡

(𝑈*)]≥𝐸[𝑅+
𝑉 (𝑈

*)]/2. This case can be handled rather

easily. To construct the inventory vector 𝑈̃ , we consider the restriction of the optimal

vector 𝑈* to the left segment 𝑆left = 𝑆 ∩ [1, 𝐽], and relocate all stocked units to

product 𝐽 . It is not difficult to verify that, in every realization of the consumption

process, the number of units of the left segment 𝑆left consumed in the 𝒱-restricted

model is greater or equal to the number of units consumed in the original model by

preference lists in 𝒱 . In addition, 𝐽 is the most expensive product in 𝑆left, meaning

that ℛ−
𝒱,𝑆left

(𝑈̃) ≥st ℛ+
𝒱,𝑆left

(𝑈*), and therefore

E
[︁
ℛ−

𝒱

(︁
𝑈̃
)︁]︁

= E
[︁
ℛ−

𝒱,𝑆left

(︁
𝑈̃
)︁]︁
≥ E

[︀
ℛ+

𝒱,𝑆left
(𝑈*)

]︀
≥ 1

2
· E
[︀
ℛ+

𝒱 (𝑈*)
]︀
,

where the first equality holds since 𝑈̃ only contains the product 𝐽 , and the last

inequality is due to the case hypothesis.

Case 2: 𝐸[𝑅+
𝑉 ,𝑆𝑟𝑖𝑔ℎ𝑡

(𝑈*)]≥𝐸[𝑅+
𝑉 (𝑈

*)]/2. This case is more involved. Let

us focus on some product 𝑖 in the segment 𝑆right = 𝑆 ∩ [𝐽 + 1, 𝑛], and let 𝜓𝑖 be the

probability that an arriving customer picks one of the intervals in 𝒱 that contains

𝑖 (necessarily on its right part). Note that since all non-empty right parts have

𝐽 + 1 as a left endpoint, it follows that 𝜓𝐽+1 ≥ 𝜓𝐽+2 ≥ · · ·. We begin by defining

127

a pair of random variables, whose exact meaning will be revealed later on. These

are 𝑌𝑖 ∼ 𝐵(𝑀,𝜓𝑖) and 𝑌𝑖 = min{𝑌𝑖, 𝐶*
𝑆}, where 𝐶*

𝑆 is the total capacity used by the

optimal inventory vector 𝑈* over the segment 𝑆right.

With these random variables at hand, we say that product 𝑖 is frequent when

E[𝑌𝑖] ≥ 𝐶*
𝑆/2. Otherwise, this product is rare. Since 𝜓𝐽+1 ≥ 𝜓𝐽+2 ≥ · · ·, it follows

that there is a product 𝐹 such that the set of frequent products ℱ is precisely those

in [𝐽 + 1, 𝐹], whereas the rare ones ℛ are those in 𝑆right ∖ [𝐽 + 1, 𝐹]. As a result,

we can break the revenue ℛ+

𝒱,𝑆right
(𝑈*) into purchases of frequent and rare products,

obtaining that

E
[︁
ℛ+

𝒱,ℱ (𝑈*)
]︁

+ E
[︁
ℛ+

𝒱,ℛ (𝑈*)
]︁

= E
[︁
ℛ+

𝒱,𝑆right
(𝑈*)

]︁
≥ 1

2
· E
[︁
ℛ+

𝒱 (𝑈*)
]︁
,

where the last inequality follows from the case hypothesis. It remains to consider two

cases, depending on which set of products (frequent or rare) is contributing more in

the above inequality.

Case 2A: 𝐸[𝑅+
𝑉 ,𝐹 (𝑈

*)]≥𝐸[𝑅+
𝑉 (𝑈

)]/4. Note that 𝐶
𝑆 · 𝑃𝐹 is a trivial upper

bound on the random variable ℛ+

𝒱,ℱ(𝑈*), and consequently on its expectation. This

follows by observing that, in each realization, at most 𝐶*
𝑆 units are purchased among

frequent products, and each purchase generates a revenue of at most 𝑃𝐹 , given that 𝐹

is the right endpoint of ℱ . To construct the inventory vector 𝑈̃ , we simply stock 𝐶*
𝑆

units of 𝐹 , the most expensive frequent product. We observe that in the 𝒱-restricted

model, the distribution of the number of units consumed is identical to that of 𝑌𝐹 .

Indeed, similar to the consumption process considered in Section 4.2, under the 𝒱-

restricted model, a unit of product 𝐹 is consumed with probability 𝜓𝐹 as long as this

product has not stocked-out, corresponding to a sequence of 𝑀 independent Bernoulli

trials whose sum is capped by the capacity 𝐶*
𝑆. This means that the expected revenue

128

under the restricted model would be

E
[︁
ℛ−

𝒱

(︁
𝑈̃
)︁]︁

= 𝑃𝐹 · E
[︀
𝑌𝐹
]︀

≥ 𝑃𝐹 ·
𝐶*

𝑆

2

≥ 1

2
· E
[︀
ℛ+

𝒱,ℱ (𝑈*)
]︀

≥ 1

8
· E
[︀
ℛ+

𝒱 (𝑈*)
]︀
,

where the first inequality follows from the definition of frequent products while the

last inequality is due to the case hypothesis.

Case 2B: 𝐸[𝑅+
𝑉 ,𝑅(𝑈

*)]≥𝐸[𝑅+
𝑉 (𝑈

*)]/4. Here, we derive an upper bound on

the expected revenue ofℛ+
𝒱,ℛ(𝑈*) by considering an unrealistic model, where prior to

the arrival of any customer, the current inventory vector can be re-optimized. Specif-

ically, suppose that we may substitute to any vector (still, using only rare products),

without any capacity restrictions. In this model, since we are only interested in maxi-

mizing the expected revenue due to purchases made by (the right part of) intervals in

𝒱 , the optimal strategy is to stock a single unit of 𝑖*, which is the product that max-

imizes 𝜓𝑖𝑃𝑖 over all rare products. Indeed, assuming 𝑖 is the minimal-index product

stocked, the expected revenue generated by a single arrival of the lists in 𝒱 is exactly

𝜓𝑖𝑃𝑖. Therefore,

E
[︁
ℛ+

𝒱,ℛ (𝑈*)
]︁
≤ E [𝑀] · 𝜓𝑖*𝑃𝑖* .

Now, to construct the inventory vector 𝑈̃ , we simply stock 𝐶*
𝑆 units of product 𝑖*.

Once again, in the 𝒱-restricted model, the distribution of the number of units con-

sumed will be identical to that of 𝑌𝑖* ∼ 𝐵(𝑀,𝜓𝑖*). Indeed, similar to the consumption

process considered in Section 4.2, under the 𝒱-restricted model, a unit of product 𝑖* is

consumed with probability 𝜓𝑖* as long as this product has not stocked-out. Therefore,

129

the resulting expected revenue is

E
[︁
ℛ−

𝒱

(︁
𝑈̃
)︁]︁

= 𝑃𝑖* · E
[︀
𝑌𝑖*
]︀

≥ 𝑃𝑖* ·
E [𝑌𝑖*]

2

=
1

2
· E [𝑀] · 𝜓𝑖*𝑃𝑖*

≥ 1

2
· E
[︁
ℛ+

𝒱,ℛ (𝑈*)
]︁

≥ 1

8
· E
[︁
ℛ+

𝒱 (𝑈*)
]︁
,

where the first inequality follows from Lemmas 4.2.3 and 4.2.4, recalling that 𝑖* is a

rare product, and the last inequality is due to the case hypothesis.

4.3.2.3 Dynamic program

A careful review of the arguments used to prove the existence of 𝑈ℓ reveals that we

actually describe an efficient way to construct this vector, assuming that the number

of units 𝐶𝑆 of the optimal solution within each interval 𝑆 ∈ 𝒮ℓ is known a-priori. We

prove that this assumption is not needed, explaining why a similar approximation

ratio can be attained by means of dynamic programming. In the following, 𝐽 , 𝐹 , and

𝑖* play precisely the same roles as in the previous section. It is not difficult to verify

that each of these products can easily be identified in polynomial time.

The general idea is to formulate a dynamic program that tries out all feasible

capacities for each single segment 𝑆 ∈ 𝒮ℓ, and chooses the best vector among those

constructed in cases 1, 2A, and 2B. Specifically, for any positive capacity 𝑐, we define

𝑈
(1)
𝑆,𝑐 as the inventory vector described in case 1 that stocks 𝑐 units of product 𝐽 .

Similarly, 𝑈 (2𝐴)
𝑆,𝑐 is the inventory vector described in case 2A that stocks 𝑐 units of

product 𝐹 , and 𝑈
(2𝐵)
𝑆,𝑐 is the vector of case 2B that stocks 𝑐 units of product 𝑖*.

One important observation is that we can efficiently compute the expected revenue

associated with each of these vectors under the 𝒱𝑆
ℓ -restricted model, as it is equivalent

to computing the expected value of a truncated binomial random variable. Finally,

we let {𝑆1, . . . , 𝑆𝑟} designate the segments of products in the partition 𝒮ℓ, numbered

130

in increasing order of product indices.

For any 𝑗 ∈ [𝑟] and 𝑐 ∈ [𝐶], we define the objective function 𝐺(𝑗, 𝑐) as the maximal

expected revenue in the restricted model, generated by a vector with at most 𝑐 units,

obtained by concatenating the candidate solutions 𝑈 (1)
𝑆,𝑐 or 𝑈 (2𝐴)

𝑆,𝑐 or 𝑈 (2𝐵)
𝑆,𝑐 , over the first

𝑗 segments of the partition, 𝑆1, . . . , 𝑆𝑗. It is not difficult to verify that the function

𝐺 satisfies the following recursion formula:

𝐺(𝑗, 𝑐) = max
𝑐≤𝑐

{︁
𝐺 (𝑗 − 1, 𝑐− 𝑐) + max

{︁
E
[︁
ℛ−

𝒱𝑆
ℓ

(︁
𝑈

(1)
𝑆𝑗 ,𝑐

)︁]︁
,E
[︁
ℛ−

𝒱𝑆
ℓ

(︁
𝑈

(2𝐴)
𝑆𝑗 ,𝑐

)︁]︁
,E
[︁
ℛ−

𝒱𝑆
ℓ

(︁
𝑈

(2𝐵)
𝑆𝑗 ,𝑐

)︁]︁}︁ }︁
.

By solving this recursion forward, we infer the quantity 𝐺(𝑟, 𝐶). Given the opti-

mality conditions satisfied by the above dynamic program, it follows that 𝐺(𝑟, 𝐶) ≥
E[ℛ−

𝒱𝑆
ℓ
(𝑈ℓ)], where 𝑈ℓ is the vector constructed in Section 4.3.2.2. Indeed, the alloca-

tion of capacity across the different segments, as described in the previous section, can

be replicated by the dynamic program, and for each segment, the dynamic program

selects a vector that maximizes the expected revenue.

4.3.2.4 Running time analysis

The recursive decomposition is computed in time 𝑂(|ℒ|· log 𝑛). Indeed, we identify

the location of each interval list with respect to at most ⌈log 𝑛⌉ middle products

along the recursion. Next, the dynamic program in Section 4.3.2.3 is solved in time

𝑂(|𝒮ℓ|·𝐶2𝑀̄) for the collection of preference lists 𝒱ℓ. Indeed, the state space has

size 𝑂(|𝒮ℓ|·𝐶). Each recursive step is computed in 𝑂(𝑀̄𝐶) time by comparing the

expected revenues of three inventory vectors, each stocking 𝐶 units. The latter require

to evaluate the expectations of truncated binomial variables, with at most 𝑀̄ trials.

Summing over all ℓ ∈ [𝐿], the overall running time is 𝑂(|ℒ|· log 𝑛+ 𝑛𝐶2𝑀̄).

4.3.3 Log-logarithmic approximation in the price ratio

In this section, we explain how the main technical ideas of Section 4.3.2 can be utilized

in order to attain an approximation guarantee of 𝑂(log log(𝑃𝑛/𝑃1)), where 𝑃𝑛 and

𝑃1 stand for the maximum and minimum price of any product. Here, we employ

131

a different decomposition of ℒ, that allows us to make use of the constant-factor

approximation for uniform prices (see Section 4.2) as a subroutine.

4.3.3.1 The recursive decomposition

We initially break the interval [1, 𝑛] into 𝐾 = 𝑂(log(𝑃𝑛/𝑃1)) buckets 𝐵1, . . . , 𝐵𝐾

according to prices, geometrically by powers of 2. That is, the first bucket 𝐵1 consists

of products with prices in [𝑃1, 2𝑃1), the second bucket 𝐵2 corresponds to prices in

[2𝑃1, 2
2𝑃1), so forth and so on.

The recursive partition here resembles the one in Section 4.3.2.1, at the exception

that segments are now defined with respect to the indexing 1, . . . , 𝐾, and the middle

product depends on the collection of buckets 𝐵1, . . . , 𝐵𝐾 . Specifically, the middle

product associated with a segment [𝑎, 𝑏] ⊆ [𝐾] is defined as the right-most product

of the middle bucket 𝐵⌈(𝑎+𝑏)/2⌉. Given any subset of lists 𝒱 ⊆ ℒ and a partition 𝒦 of

[𝐾] into pairwise-disjoint segments, we define mid(𝒱 ,𝒦) as the set of interval lists in

𝒱 that contain the middle product of at least one segment in 𝒦. With this definition

at hand, we define the classes of lists 𝒱1, . . . ,𝒱𝐿,𝒱in as follows:

∙ The special class 𝒱in is comprised of all intervals in ℒ that are fully contained

in one of the buckets 𝐵1, . . . , 𝐵𝐾 .

∙ The remaining classes are determined as follows:

– First, we have 𝒱1 = mid(ℒ ∖ 𝒱in,𝒦1), where 𝒦1 = {[𝐾]}.

– Then, 𝒱2 = mid(ℒ ∖ (𝒱1 ∪ 𝒱in),𝒦2), where 𝒦2 is obtained by breaking the

segment [𝐾] at its middle product.

– This process continues recursively, as illustrated in Figure 4-3. That is,

we define 𝒦ℓ as the partition of [𝐾] obtained by breaking each segment of

𝒦ℓ−1 at its middle product into two parts. Then, 𝒱ℓ is the residual subset

of lists that contain the middle product of at least one segment in 𝒦ℓ, i.e.,

𝒱ℓ = mid(ℒ ∖ ((∪ℓ−1
𝑗=1𝒱𝑗) ∪ 𝒱in),𝒦ℓ).

132

The decomposition above terminates as soon as we reach a level 𝐿, where 𝒦𝐿 consists

of only singletons of [1, 𝐾]. Once again, since the maximum length of any segment

shrinks by a constant factor at each level, it follows that the depth of this decompo-

sition is 𝐿 = 𝑂(log𝐾) = 𝑂(log log(𝑃𝑛/𝑃1)).

Figure 4-3: The decomposition of ℒ into 𝒱1, . . . ,𝒱𝐿,𝒱in.

V1

V2

Products and
Buckets	

Interval Lists	

V3

Vin

B1 BK
BdK+1

2 e

4.3.3.2 Proving the existence of 𝑈ℓ and 𝑈𝑖𝑛

We now argue that there is an efficient way of meeting the fundamental inequal-

ity (4.7) that relates between the restricted and original models for each class of the

partition. Formally, for every ℓ ∈ [𝐿], we devise a polynomial-time procedure to

compute a feasible inventory vector 𝑈ℓ satisfying

E
[︀
ℛ−

𝒱ℓ
(𝑈ℓ)

]︀
≥ 1

8
· E
[︀
ℛ+

𝒱ℓ
(𝑈*)

]︀
,

where 𝑈* is the optimal inventory vector for the original model. We also construct

𝑈in such that

E
[︀
ℛ−

𝒱in
(𝑈in)

]︀
= Ω(1) · E

[︀
ℛ+

𝒱in
(𝑈*)

]︀
.

Following the discussion in Section 4.3.1, we obtain an 𝑂(log log(𝑃𝑛/𝑃1)) approxima-

tion for the original model by picking the best vector out of 𝑈1, . . . , 𝑈𝐿, 𝑈in.

133

Handling 𝑉1, ... ,𝑉𝐿. The important observation is that the intervals in each class

𝒱ℓ satisfy the sufficient properties mentioned at the end of Section 4.3.2.1. For this

reason, the exact same algorithm, now applied to a different collection of segments,

enables us to compute a feasible inventory vector 𝑈ℓ such that

E
[︀
ℛ−

𝒱ℓ
(𝑈ℓ)

]︀
≥ 1

8
· E
[︀
ℛ+

𝒱ℓ
(𝑈*)

]︀
.

Handling 𝑉𝑖𝑛. Let us focus attention on a single bucket 𝐵, corresponding to a

power-of-2 price range, say [∆, 2∆), where the set of intervals contained in this bucket

are denoted by 𝒱𝐵
in . The important observation is that, in every realization, the

number of units consumed in the 𝒱𝐵
in -restricted model is greater or equal to the number

of units consumed in the original model by these intervals. Indeed, this claim can

be proven inductively over the arrival rank of customers and by arguing that, at any

point in time during the arrival sequence, the number of units left within each interval

in 𝒱𝐵
in in the former model is greater or equal to the corresponding number of units

in the latter model. Therefore, since all products in bucket 𝐵 have prices in [∆, 2∆),

it follows that ℛ−
𝒱𝐵
in

(𝑈*) ≥st ℛ+
𝒱𝐵
in

(𝑈*) /2, and consequently,

E
[︁
ℛ−

𝒱𝐵
in

(𝑈*)
]︁
≥ 1

2
· E
[︁
ℛ+

𝒱𝐵
in

(𝑈*)
]︁
. (4.9)

Now, based on our constant-factor approximation for uniform prices (see Sec-

tion 4.2), assuming that the capacity used by the optimal vector 𝑈* over the bucket

𝐵 is known in advance, we can efficiently compute an inventory vector 𝑈𝐵
in satisfying

E
[︁
ℛ−

𝒱𝐵
in

(︀
𝑈𝐵
in

)︀]︁
= Ω(1) · E

[︁
ℛ−

𝒱𝐵
in

(𝑈*)
]︁

= Ω(1) · E
[︁
ℛ+

𝒱𝐵
in

(𝑈*)
]︁
,

where the last equation follows from (4.9). By gluing the inventory vectors 𝑈𝐵
in over

all buckets 𝐵1, . . . , 𝐵𝐾 , we obtain an expected revenue of Ω(1) ·E[ℛ+
𝒱in

(𝑈*)]. Finally,

since the capacities used by 𝑈* are not known a-priori, the assumption above can be

bypassed by means of dynamic programming, similar to that of Section 4.3.2.3.

134

4.4 Nested Choice Model and General Demand Dis-

tribution

In this section, we provide a constant-factor approximation for the nested choice model

under a general (non-IFR) demand distribution. This result is obtained through a se-

quence of structural transformations, allowing us to formulate the resulting instance

as a (monotone) submodular maximization problem subject to a cardinality con-

straint. By leveraging the existing machinery in this context, we derive the following

result.

Theorem 4.4.1. Under the nested choice model, the dynamic assortment planning

problem can be approximated within factor 1− 1/𝑒 in polynomial time.

4.4.1 Technical overview

For ease of exposition, we focus here on presenting the overall idea, and defer most

of the technicalities to Sections 4.4.2 and 4.4.3.

Selection step: elimination of suboptimal products. The first step consists

in simplifying the problem by identifying a well-structured collection of products,

while preserving the optimal expected revenue. We begin by defining the quantity

𝑟𝑖, for each product 𝑖 ∈ [𝑛], that denotes the expected revenue generated by a single

customer arrival assuming that 𝑖 is the most preferred product available. Namely,

𝑟𝑖 = 𝑃𝑖 ·
∑︀

ℓ∈ℒ𝑖
𝜆ℓ, where ℒ𝑖 ⊆ ℒ is the subset of lists containing product 𝑖. Next,

we define the 𝑖-maximal product as the highest-index product that maximizes the

quantity 𝑟𝑗 over 𝑗 ∈ [𝑖, 𝑛]. We show that, without any loss in optimality, we can

restrict our attention to assortments included in the collection of 𝑖-maximal products,

over all 𝑖 ∈ [𝑛]. This subset of products is designated by 𝒱 , while 𝒱(𝑖) denotes the

𝑖-maximal product.

Lemma 4.4.2. There exists an optimal inventory vector that stocks only products of

𝒱.

135

The proof of this claim is given in Section 4.4.2. The main observation is that

there is no point in stocking any of the products strictly between two successive

products in 𝒱 . Specifically, we prove that the expected revenue can only increase by

shifting any unit of product 𝑖 ∈ [𝑛] ∖ 𝒱 to the 𝑖-maximal product 𝒱(𝑖). As a result,

while preserving the optimal revenue, all products in [𝑛]∖𝒱 are eliminated. Thus, we

assume from this point on that 𝑟𝑖 is non-increasing over 𝑖 ∈ [𝑛].

Greedy step: set decision formulation. We now argue that the problem can

equivalently be recast as the maximization of a set function subject to a capacity

constraint. This modified problem is referred to as the ‘set decision’ formulation

hereafter. Specifically, each product is represented by 𝐶 distinct copies of identical

price, that are consecutive in the preference order. (Recall that 𝐶 represents the

maximal number of units due to the capacity constraint.) Thus, there are exactly

𝑁 = 𝑛 · 𝐶 distinct products. Each preference list is now represented by the interval

of [𝑁] containing all copies of its initial products. Finally, a decision is made relative

to each product, whether to stock it or not in the assortment. In other words, the

inventory level decisions are replaced by a set decision over products. In this new

formulation, our objective is to maximize the expected revenue over all subsets of

products that satisfy the cardinality constraint.

Establishing submodularity. The expected revenue generated by a subset 𝑆 ⊆
[𝑁] is denoted by 𝑓(𝑆). We now state our main technical result, which is established

in Section 4.4.3.

Lemma 4.4.3. The set function 𝑓 : 2𝑁 → R+ is submodular and monotone.

Interestingly, submodularity does not hold for arbitrary instances of the nested

choice model, i.e., ones that were not processed by our elimination procedure, as

demonstrated in Lemma B.1.2. In fact, the revenue function is also not concave, as

we argue in Lemma B.1.3. To avoid deviating from the overall discussion, the proofs

of these claims are given in Appendix B.1.3.

136

Submodular maximization problems have extensively been studied in combina-

torial optimization, and in particular, when the input function is also monotone,

this problem can be approximated within factor 1 − 1/𝑒 under a cardinality con-

straint Nemhauser et al. (1978). Moreover, the algorithm thereof is based on a greedy

procedure that admits very efficient implementations when the function has an eval-

uation oracle. In our particular case, Goyal et al. Goyal et al. (2016) showed that the

revenue function can be evaluated by dynamic programming in time 𝑂(𝑀̄ · 𝑁 · 𝑘),

where 𝑀̄ is the maximal number of arrivals. By leveraging this algorithm, Theo-

rem 4.4.1 immediately follows.

4.4.2 Proof of Lemma 4.4.2

For any inventory vector 𝑈 and integer 𝑚, we define the random variable 𝛼𝑚(𝑈) to

denote the most preferred product available (i.e., with positive inventory level) for

the 𝑚-th arriving customer, when initially stocking the vector 𝑈 . If there are fewer

than 𝑚 arrivals, or if no units are left, 𝛼𝑚(𝑈) =∞, denoting a dummy product with

price 𝑃∞ = 0. With this definition, the expected revenue function can be rewritten

by conditioning on the most preferred product available upon each arrival, yielding

E [ℛ(𝑈)] = E

[︃
∞∑︁

𝑚=1

𝑟𝛼𝑚(𝑈)

]︃
. (4.10)

The desired result is proven by mapping any inventory vector 𝑈 = (𝑢1, . . . , 𝑢𝑛)

to a vector 𝑈̃ = (𝑢̃1, . . . , 𝑢̃𝑛) that only stocks products in 𝒱 , has the same number

of units, and generates at least as much expected revenue as 𝑈 . The vector 𝑈̃ is

constructed as follows: each unit of product 𝑖 in 𝑈 is represented in 𝑈̃ by a distinct

unit of the maximal product 𝒱(𝑖). That is,

𝑢̃𝑖 =

⎧
⎪⎨
⎪⎩

∑︀
𝑘:𝒱(𝑘)=𝑖 𝑢𝑘 if 𝑖 = 𝒱(𝑖),

0 otherwise.

Clearly, the number of units in 𝑈̃ is identical to that of 𝑈 . This construction is

137

illustrated in Figure 4-5.

Figure 4-4: Construction of 𝑈̃ by shifting each unit in 𝑈 towards its corresponding
maximal product.

1	

 2	

 3	

 6	

4	

 5	

 7	

 8	

 9	

V(1) V(6)V(3)

Products	

Inventory vectors	

Shifting units	

 X	

 Products	

 Inventory unit	

Ũ

U v1

ṽ1 ṽ3 ṽ4

ṽ5

ṽ6

v6
v5

v4

v3

Claim 4.4.4. For 𝑚 ≥ 1, every realization of the consumption process satisfies

𝛼𝑚(𝑈̃) ≤ 𝒱(𝛼𝑚(𝑈)).

Proof. To prove this inequality, we interpret each inventory vector as a non-decreasing

sequence of products, that enumerates (with repetition) the units in the preference

order. In other words, if 𝑋 units are stocked of a given product, then this product is

repeated 𝑋 times consecutively in the sequence. Let (𝑣𝑗)𝑗≤𝐶 and (𝑣𝑗)𝑗≤𝐶 denote the

sequences associated with the inventory vectors 𝑈 and 𝑈̃ , respectively. Without loss

of generality, we assume that these vectors stock precisely 𝐶 units.

Our construction of 𝑈̃ implies that 𝑣𝑘 ≤ 𝑣𝑘 = 𝒱(𝑣𝑘). Now assume that, just before

the 𝑚-th arrival, the most preferred product remaining when stocking initially the

vector 𝑈̃ corresponds to the 𝑗-th unit of the sequence, meaning that 𝛼𝑚(𝑈̃) = 𝑣𝑗, and

that all units in {𝑣1, . . . , 𝑣𝑗−1} have been consumed by previously arriving customers.

Each of these units can be mapped to the arrival rank of the customer who purchases

it, entailing the subsequence of arrivals (𝑚1, . . . ,𝑚𝑗−1). Clearly, each product 𝑣𝑘

138

belongs to the preference list 𝐿𝑚𝑘
. The key observation is that, since 𝑣𝑘 ≤ 𝑣𝑘, the

preference list 𝐿𝑚𝑘
also contains product 𝑣𝑘 for each 𝑘 ∈ [𝑗 − 1]. Consequently,

when initially stocking the vector 𝑈 , after the first 𝑚 − 1 arrivals of customers,

whereby the preference lists (𝐿𝑚1 , . . . , 𝐿𝑚𝑗−1
) occurred precisely in this order, the

units {𝑣1, . . . 𝑣𝑗−1} are consumed as well. Indeed, each unit 𝑣𝑘 would necessarily be

consumed by the list 𝐿𝑚𝑘
, if it were not purchased by a previously arriving customer.

We thus obtain that 𝑣𝑗 ≤ 𝛼𝑚(𝑈), meaning that 𝛼𝑚(𝑈̃) = 𝒱(𝑣𝑗) ≤ 𝒱(𝛼𝑚(𝑈)).

To conclude Lemma 4.4.2, recall that 𝑟𝑖 is the expected revenue generated by

a single arrival, conditional on product 𝑖 being the most preferred one available.

Therefore, the expected revenue generated by the 𝑚-th arrival satisfies

𝑟𝛼𝑚(𝑈) ≤ 𝑟𝒱(𝛼𝑚(𝑈)) ≤ 𝑟𝒱(𝛼𝑚(𝑈̃)) = 𝑟𝛼𝑚(𝑈̃) ,

where the first inequality follows from the definition of maximal products, and the

second inequality is due to Claim 4.4.4 and the monotonicity of (𝑟𝑖)𝑖∈𝒱 . Therefore,

based on the revenue decomposition given by equation (4.10), we conclude that

E [ℛ(𝑈)] =
∞∑︁

𝑚=1

E
[︀
𝑟𝛼𝑚(𝑈)

]︀
≤

∞∑︁

𝑚=1

E
[︁
𝑟𝛼𝑚(𝑈̃)

]︁
= E

[︁
ℛ(𝑈̃)

]︁
.

4.4.3 Proof of Lemma 4.4.3

Notation. Following the previous section, for every subset 𝑆 ⊆ [𝑁] we define 𝛼𝑚(𝑆)

as the most preferred product available at the 𝑚-th arrival, when initially stocking

the set 𝑆. If all products have stocked out, or if the number of arrivals is smaller than

𝑚, the value of 𝛼𝑚(𝑆) is set to∞, which corresponds to a dummy product with price

0. Using these random variables, the expected revenue can be decomposed similar to

equation (4.10), namely 𝑓(𝑆) = E[
∑︀∞

𝑚=1 𝑟𝛼𝑚(𝑆)].

Monotonicity. Consider a subset 𝑆 ⊆ [𝑁] and some product 𝑖 ∈ [𝑁] ∖ 𝑆. For

each realization of the consumption process, it is easy to verify that, just before each

arrival, the most preferred product available under the initial set decision 𝑆, is larger

139

or equal to the one under the initial set 𝑆 ∪ {𝑖}. That is, 𝛼𝑚(𝑆) ≥ 𝛼𝑚(𝑆 ∪ {𝑖}) for

any realization. Thus, the revenue function 𝑓 is indeed monotone since

𝑓(𝑆) =
∞∑︁

𝑚=1

E
[︀
𝑟𝛼𝑚(𝑆)

]︀
≤

∞∑︁

𝑚=1

E
[︀
𝑟𝛼𝑚(𝑆∪{𝑖})

]︀
= 𝑓(𝑆 ∪ {𝑖}) ,

where the above inequality follows from the monotonicity of (𝑟𝑖)𝑖∈[𝑁].

Submodularity. To prove that 𝑓 is also submodular, it is sufficient to show that

for any subset 𝑆 and distinct products 𝑖, 𝑗 ∈ [𝑛] ∖ 𝑆, the expected revenue function

satisfies

𝑓(𝑆 ∪ {𝑖, 𝑗})− 𝑓(𝑆 ∪ {𝑗}) ≤ 𝑓(𝑆 ∪ {𝑖})− 𝑓(𝑆) .

One important observation is that we can assume without loss of generality that

𝑗 < 𝑖; otherwise, by permuting 𝑖 and 𝑗 we obtain an equivalent inequality. For ease

of exposition, we introduce the subset 𝑆1 = 𝑆, 𝑆2 = 𝑆 ∪ {𝑖}, 𝑆 ′
1 = 𝑆 ∪ {𝑗}, and

𝑆 ′
2 = 𝑆 ∪ {𝑖, 𝑗}. With this notation, the desired inequality is

𝑓(𝑆 ′
2)− 𝑓(𝑆 ′

1) ≤ 𝑓(𝑆2)− 𝑓(𝑆1) . (4.11)

Note that, if inequality (4.11) is satisfied for any deterministic number of arrivals, it

generalizes to the case where 𝑀 is stochastic. Thus, we restrict our attention to a

deterministic number of arrivals 𝑀 . In this case, the expected revenue increment can

be written as

𝑓(𝑆 ′
2)− 𝑓(𝑆 ′

1) =
𝑀∑︁

𝑚=1

E
[︀
𝑟𝛼𝑚(𝑆′

2)

]︀
−

𝑀∑︁

𝑚=1

E
[︀
𝑟𝛼𝑚(𝑆′

1)

]︀
. (4.12)

We define 𝜏 as the stopping time corresponding to the first arrival where the

minimal product available is 𝑖, when initially stocking 𝑆2. Namely, we have 𝛼𝜏 (𝑆2) =

𝑖, and 𝛼𝜏−1(𝑆2) < 𝑖 or 𝜏 = 1. (In case 𝜏 is not defined, the stopping time is set to

∞.) Note that the stopping time 𝜏 corresponds to the first arriving customer faced

by distinct minimal products, when initially stocking 𝑆1 and 𝑆2. Hence, the revenue

140

difference between these two sets is a function of the arrivals after 𝜏 . Formally, since

𝛼𝑚(𝑆2) = 𝛼𝑚(𝑆1) with probability 1 for all arrivals 𝑚 < 𝜏 , we infer from an analog

of equality (4.12) for 𝑆1 and 𝑆2 that

𝑓(𝑆2)− 𝑓(𝑆1) =
𝜏−1∑︁

𝑚=1

E
[︀
𝑟𝛼𝑚(𝑆2) − 𝑟𝛼𝑚(𝑆1)

]︀
+

𝑀∑︁

𝑚=𝜏

E
[︀
𝑟𝛼𝑚(𝑆2) − 𝑟𝛼𝑚(𝑆1)

]︀

=
𝑀∑︁

𝑚=𝜏

E
[︀
𝑟𝛼𝑚(𝑆2) − 𝑟𝛼𝑚(𝑆1)

]︀

=
𝑀−𝜏∑︁

𝑘=0

E
[︀
𝑟𝛼𝜏+𝑘(𝑆2) − 𝑟𝛼𝜏+𝑘(𝑆1)

]︀
. (4.13)

This simplification is made intuitive by Figure 4-5. Similarly, by defining 𝜏 ′ as the

minimal arrival 𝑚 such that 𝛼𝑚(𝑆 ′
2) = 𝑖, we obtain:

𝑓(𝑆 ′
2)− 𝑓(𝑆 ′

1) =
𝑀−𝜏 ′∑︁

𝑘=0

E
[︁
𝑟𝛼𝜏 ′+𝑘(𝑆

′
2)
− 𝑟𝛼𝜏 ′+𝑘(𝑆

′
1)

]︁
. (4.14)

Figure 4-5: Equivalence between the residual sets at the stopping times 𝜏 and 𝜏 ′.

ij

S0
2

S0
1

S2

S1

⇠

⇠

Residual set at the
mm-th arrival	

⌧ 0

Residual set at the
mm-th arrival	

⌧

Product	

 Residual sets	

Now observe that, by an inductive argument, it is not difficult to prove that, for

any realization of the consumption process, 𝜏 ≤ 𝜏 ′, meaning that 𝑀 − 𝜏 ≥ 𝑀 − 𝜏 ′.

141

As a result, combining inequalities (4.13) and (4.14), we have

(𝑓(𝑆2)− 𝑓(𝑆1))− (𝑓(𝑆 ′
2)− 𝑓(𝑆 ′

1)) =
𝑀−𝜏 ′∑︁

𝑘=0

E
[︁
𝑟𝛼𝜏+𝑘(𝑆2) − 𝑟𝛼𝜏 ′+𝑘(𝑆

′
2)

]︁
−

𝑀−𝜏 ′∑︁

𝑘=0

E
[︁
𝑟𝛼𝜏+𝑘(𝑆1) − 𝑟𝛼𝜏 ′+𝑘(𝑆

′
1)

]︁

+
𝑀−𝜏∑︁

𝑘=𝑀−𝜏 ′+1

E
[︀
𝑟𝛼𝜏+𝑘(𝑆2) − 𝑟𝛼𝜏+𝑘(𝑆1)

]︀
. (4.15)

Now, the important observation is that the consumption process starting from

the 𝜏 -th arrival only depends on the residual set of products available at that time.

Hence, we can exploit the equivalence between the residual sets of products, reflected

in Figure 4-5, to infer an equivalence between revenues:

∙ Equivalence 𝛼𝜏 ′+𝑘(𝑆 ′
2) ∼ 𝛼𝜏+𝑘(𝑆2). When initially stocking 𝑆 ′

2, the residual set

of products at the 𝜏 ′-th arrival is the set ({𝑖}∪𝑆)∩ [𝑖, 𝑁], which is equal to the

residual set at the 𝜏 -th arrival when initially stocking 𝑆2. Thus, we infer that

the random variables 𝛼𝜏 ′+𝑘(𝑆 ′
2) and 𝛼𝜏+𝑘(𝑆2) are identically distributed for all

𝑘 ≤𝑀 − 𝜏 ′.

∙ Equivalence 𝛼𝜏 ′+𝑘(𝑆 ′
1) ∼ 𝛼𝜏+𝑘(𝑆1). When initially stocking 𝑆 ′

2, the residual set

of products at the 𝜏 ′-th arrival is the set 𝑆∩ [𝑖, 𝑁], which is exactly the residual

set at the 𝜏 -th arrival when initially stocking 𝑆2. Thus, we infer that the random

variables 𝛼𝜏 ′+𝑘(𝑆 ′
1) and 𝛼𝜏+𝑘(𝑆1) are identically distributed for all 𝑘 ≤𝑀 − 𝜏 ′.

As a result, equation (4.15) simplifies as follows:

(𝑓(𝑆2)− 𝑓(𝑆1))− (𝑓(𝑆 ′
2)− 𝑓(𝑆 ′

1)) =
𝑀−𝜏∑︁

𝑘=𝑀−𝜏 ′+1

E
[︀
𝑟𝛼𝜏+𝑘(𝑆2) − 𝑟𝛼𝜏+𝑘(𝑆1)

]︀
. (4.16)

Since 𝑆1 ⊆ 𝑆2, it is easy to verify that 𝛼𝑚(𝑆2) ≤ 𝛼𝑚(𝑆1) with probability 1, for

any arrival 𝑚. Therefore, 𝑟𝛼𝑚(𝑆2) ≥ 𝑟𝛼𝑚(𝑆1), as our selection step guarantees that

𝑟1 ≥ · · · ≥ 𝑟𝑛. Combining this observation with inequality (4.16), we infer the

desired inequality (4.11), proving that 𝑓 is indeed submodular.

142

4.5 Computational Experiments

In this section, we demonstrate the practical merits of our algorithms against existing

heuristics. In order to run such comparisons on instances of realistic scale, we take as a

benchmark several efficient heuristics proposed in previous related work. Specifically,

our algorithms are compared against the following: (i) a discrete-greedy algorithm;

(ii) a local search heuristic; and (iii) a gradient-descent algorithm on a continuous

extension of the expected revenue function. The latter two heuristics are directly

inspired by the work of Mahajan and van Ryzin (2001) and Goyal et al. (2016). For

the nested choice model, we have also implemented the enumeration-based algorithm

of Goyal et al. (2016).

4.5.1 Heuristics and their implementation

In what follows, we summarize the different algorithms implemented for our compu-

tational experiments.

Discrete-greedy. The greedy algorithm starts with zero inventory levels for all

products, and iteratively augments the current vector by a single unit of the product

that incurs the largest marginal increase in the expected revenue, until reaching 𝐶

units. As explained toward the end of this section, the expected revenue is evalu-

ated by averaging random realizations of the revenue function, which are sampled by

simulating the consumption process and choice behavior of arriving customers.

Local search. Starting from an initial inventory vector, the local search algorithm

iteratively improves the expected revenue, by greedily transferring a single inventory

unit from a one product to another. Formally, letting 𝑈 (𝑘) denote the inventory

vector obtained at the beginning of step 𝑘, a swap is represented by an ordered pair of

products (𝑖, 𝑗) for which the current inventory level 𝑢(𝑘)𝑖 of product 𝑖 is strictly positive.

The inventory vector 𝑈 (𝑘)
𝑖→𝑗 resulting from this swap is derived from 𝑈 (𝑘) through

decreasing 𝑢(𝑘)𝑖 by one unit and augmenting 𝑢(𝑘)𝑗 by one unit. With this definition, we

either proceed to step 𝑘+1 with the inventory vector 𝑈 (𝑘)
𝑖→𝑗 that maximizes E[ℛ(𝑈

(𝑘)
𝑖→𝑗)]

143

over all swaps (𝑖, 𝑗), or terminate the algorithm when none of these swaps improves

the expected revenue by at least 0.5%. Once again, the expected revenue function

is estimated through sampling, while the initial inventory vector 𝑈 (1) is defined by

stocking 𝐶 units of the best single-product assortment.

Gradient-descent approach. We consider an adaptation of the stochastic gradient-

descent algorithm of Mahajan and van Ryzin (2001). In contrast to their setting, here

the revenue function is defined only for integer-valued inventory vectors. Hence, sim-

ilar to the approach of Goyal et al. (2016), we develop a continuous relaxation of the

revenue function, defined through the Lovász extension of a discrete function. Letting

𝑓 : Z𝑛 → R denote the expected revenue function, its Lovász extension 𝑓 : R𝑛 → R

is defined as

𝑓(𝑈) = 𝑓(⌊𝑈⌋)+
𝑛∑︁

𝑖=1

(︀
𝑢𝜋(𝑖) − 𝑢𝜋(𝑖−1)

)︀
·
[︃
𝑓

(︃
⌊𝑈⌋+

𝑖∑︁

𝑘=1

𝑒𝜋(𝑘)

)︃
− 𝑓

(︃
⌊𝑈⌋+

𝑖−1∑︁

𝑘=1

𝑒𝜋(𝑘)

)︃]︃
,

where the permutation 𝜋 sorts products by the increasing fractional part of their

inventory, namely, 𝑢𝜋(1) − ⌊𝑢𝜋(1)⌋ ≤ · · · ≤ 𝑢𝜋(𝑛) − ⌊𝑢𝜋(𝑛)⌋. The Lovász extension is

piecewise linear, and its gradient can be approximately computed through sampling.

Starting with the initial solution 𝑈 (0) = 0, and letting 𝑈 (𝑘) denote the solu-

tion obtained at the end of step 𝑘, each iteration consists of computing 𝑈 (𝑘+1) =

max{0, 𝑈 (𝑘) + 𝜖𝑘+1∇𝑓(𝑈 (𝑘))}, where 𝜖𝑘+1 is the step size. When the latter vector does

not lie in the feasible region {𝑈 ∈ R𝑛 : ‖𝑈‖1 ≤ 𝐶}, it is projected onto the boundary

by linear rescaling. Through extensive trial and error, we chose an adaptive step size

of

𝜖𝑘+1 = max

{︂
𝐶 − ‖𝑈 (𝑘)‖1

2
, 0.05 · 𝐶

}︂
.

Intuitively, the step size is larger when the vector 𝑈 (𝑘) is farther from the boundary,

while still enforcing a minimal step size. The algorithm terminates when the objective

value does not improve by a factor greater than 0.5%, or after 2000 iterations. Finally,

it remains to round the resulting inventory vector to an integral one. Suppose that

144

𝑈 (𝑘+1) is the inventory vector obtained following the gradient-descent algorithm; then

⌊𝑈 (𝑘+1)⌋ is augmented greedily, by stocking at each step a unit of the product with

maximal marginal expected revenue, until reaching 𝐶 units.

Approximation scheme for the nested choice model. We also implemented

the approximation scheme developed by Goyal et al. Goyal et al. (2016) for the nested

choice model. This algorithm begins by partitioning products into two classes, fre-

quent and rare, the latter defined as the collection of products for which fewer than

𝜖2𝐶 units are purchased in expectation when 𝐶 units of that product are initially

stocked. Next, all inventory vectors consisting of 𝑂((1/𝜖) · log(1/𝜖)) frequent prod-

ucts and a single rare product are approximately enumerated. However, even when we

choose 𝜖 = 0.3, corresponding to a guaranteed approximation ratio of only 0.15, this

enumeration procedure is impractical and incurs exorbitant running times. In fact,

time limits that still enable running the required experiments in practice (within less

than an hour) resulted in only partial enumeration, even for the smallest instances

considered. Therefore, to improve the observed performance, the enumeration order

over inventory vectors is determined such that more expensive products are stocked

with higher priority. After considering several different options, this heuristic was

superior in balancing between performance and speed.

Revenue evaluation. To approximately evaluate the expected revenue function

in each of the above-mentioned heuristics, we use a sample mean estimator over 100

realizations of the consumption process. The number of samples is uniform over all

heuristics to provide “fair” comparisons. In contrast, our approximation algorithms,

both for the general model and for intervals, make use of the newsvendor-based lower

bound, that can be computed exactly and very efficiently.

4.5.2 Instance generation

We fix the number of products at 𝑛 = 20, while the capacity parameter 𝐶 is varied

in {20, 40, 80, 150}. The prices of these products are generated randomly from a

145

log-normal distribution with location 𝜇 = 0 and scale 𝜎 = 0.3. The parameters

underlying the consumption process are sampled randomly according to the following

generative models.

Choice models. We run three series of experiments:

∙ General choice model: The number of preference lists (in the support of the dis-

tribution) is given by |ℒ|∈ {50, 160}. The preference lists 𝐿𝑗 ∈ ℒ are generated

independently and identically through the following random procedure. We first

determine the set of products in 𝐿𝑗 through a sequence of Bernoulli trials with

𝑝 = 0.35, i.e., each of the 20 products is independently picked to appear in this

list with probability 0.35. Next, for each list 𝐿𝑗, the ranking order over product

alternatives in 𝐿𝑗 is sampled uniformly over all |𝐿𝑗|! permutations.

∙ Intervals choice model: Similarly, we vary the number of interval preference lists

|ℒ| in {50, 200}. To create ℒ, we sample uniformly at random over all subsets

formed by |ℒ| distinct intervals (out of 𝑛(𝑛+ 1)/2 intervals overall).

∙ Nested choice model: Here, we pick |ℒ|= 𝑛, meaning that every nested list is

included in ℒ.

In each of the above models, the probability distribution over ℒ is sampled uniformly

over the unit simplex.

Number of customers 𝑀 . We test several parametric distributions for the de-

mand 𝑀 . Specifically, letting 𝐺 ∼ 𝑁(30, 40) and 𝑃 ∼ exp(0.02), we alternatively

examine 𝑀 = min{[⌈𝐺⌉|𝐺 ≥ 0], 100} and 𝑀 = min{⌈𝑃 ⌉, 100}. For the nested choice

model, we also test a nonparametric non-IFR demand distribution, where the support

of 𝑀 is constructed by randomly sampling 5 integers in the interval [1, 100] (without

replacement), and the corresponding probability measure is generated uniformly at

random from the unit simplex.

146

4.5.3 Results

We implemented our algorithms, as well as the heuristics described in Section 4.5.1,

using the Julia programming language. The experiments described in this section

were conducted on a standard laptop with 2.7GHz Intel Core i5 processor and 8GB

of RAM. In order to execute the required experiments within several days, we imposed

a time limit of 10 minutes (per-instance) for all heuristics tested, noting that each of

our algorithms terminates within a few seconds.

Relative performance. For each instance tested, in practice one cannot simply

compute the optimal expected revenue through brute-force enumeration, as the lat-

ter involves considering all combinations of feasible inventory vectors, number of

customers, and their choice preferences. Similarly, we found integer programming ap-

proaches to be impractical; for example, using a sample average approximation with

100 realizations of the consumption process, the running time exceeds 30 minutes for

the smallest instance tested. Therefore, rather than estimating the exact optimality

gaps, we compare the different algorithms on a relative basis. Specifically, for each

instance, the benchmark is set as the expected revenue of the most profitable inven-

tory vector obtained through all algorithms tested. Then, the relative performance of

each algorithm (reported subsequently) is defined as the ratio between its expected

revenue and the benchmark. For example, if our algorithm attains an expected rev-

enue of 1, while all tested heuristics generate an expected revenue of 0.9, the relative

performance is 100% for our algorithm, and 90% for the other heuristics.

Performance analysis. The results of our experiments are summarized in Ta-

bles 1, 2, and 3, where each entry is obtained by averaging over 30 random instances.

Our algorithms dominate the other heuristics revenue-wise in all configurations. Un-

der a general generative model, the discrete-greedy algorithm emerges as the most

effective heuristic on average, but it still falls behind our general approximation by 7%

to 36%. There is a single configuration where the gradient-descent algorithm outper-

forms the other heuristics, specifically when 𝐶 = 80. Interesting, in the latter regime,

147

the inventory capacity approximately matches the demand in expectation. Since this

observation is consistent across all choice models and demand distributions, our ex-

periments seem to indicate that the gradient-descent is particularly effective in such

a regime (while still falling short of the algorithms we propose).

Table 1: Results under the general choice model (|𝐿|=160)

parameters avg. performance (%) avg. running time (sec.)

𝑀 𝐶 GA DG GD LS GA DG GD LS

Gaussian

20 100 87.6 66.5 77.4 6.6 3.1 55.9 7.9
40 100 70.6 77.2 62.1 7.1 6.4 216.2 16.9
80 100 64.1 78.9 54.4 7.3 13 374.8 21.4
150 100 66.8 62.2 50.6 8.1 24.3 384.2 19.7

Poisson

20 99.9 93.1 66.4 91.4 6.9 3.7 36.6 10.7
40 100 77.3 80.7 65.6 6.9 7.4 238.8 17.1
80 100 72.6 86.5 57.6 7.6 15.2 435.3 27.5
150 100 71 67.8 53.4 8.3 28.4 442 20.4

Here, GA designates our general approximation algorithm, DG is the discrete-greedy algorithm, GD
is the gradient-descent approach, and LS corresponds to the local search heuristic.

Surprisingly, even in the more specialized settings, our general-purpose approxi-

mation still enjoys strong practical performance. Specifically, its performance is com-

parable to the decomposition algorithm of Section 4.3 in the intervals case. Under

the nested model, the selective-greedy algorithm developed in Section 4.4 improves

revenue by 1% on average against our general approximation. It is worth mentioning

that, as one would expect, the discrete-greedy and selective-greedy algorithms have

identical performance under the nested model. However, our selection step restricts

the incremental actions examined upon each iteration, as opposed to considering all

possible stocking decisions at each iteration, and therefore reduces the running time

significantly.

On the computational front, our algorithms tend to outperform the other heuris-

tics while the gradient-descent algorithm is the slowest one. In contrast to other

algorithms, the running time of the general approximation grows sub-linearly in the

capacity value; hence, when 𝐶 = 150, its running time is better by a factor of 3 to

40 against other heuristics. Under the nested choice model, the selective-greedy al-

148

Table 2: Results under the intervals choice model (|𝐿|=160)

parameters avg. performance (%) avg. running time (sec.)

𝑀 𝐶 GA IN DG GD LS GA IN DG GD LS

Gaussian

20 99.2 99.4 89.6 52.7 67.4 5.6 6.8 2.0 33.7 5.3
40 99.2 99.0 62.1 60.6 25.6 6.0 10.7 4.0 136.2 8.8
80 97.5 98.4 49.1 76.3 16.6 6.2 11.7 8.1 229.5 19.6
150 99.5 97.7 48.3 27.6 15.7 6.7 7.1 15.1 244.8 13.5

Poisson

20 99.7 99.6 97.3 52.7 93.3 8.1 10.8 3.6 23.3 9.3
40 99.4 99.2 76.8 63.4 37.2 8.5 9.0 7.3 232.7 16.6
80 99.0 99.1 57.2 79.7 17.7 9.0 10.8 14.5 399.4 15
150 98.4 99.3 57.3 37.1 18 9.9 10.4 27.2 430.1 51.9

Here, GA designates our general approximation algorithm, IN is our approximation for the intervals
choice model, DG is the discrete-greedy algorithm, GD is the gradient-descent approach, and LS
corresponds to the local search heuristic.

gorithm is an order of magnitude faster than any other algorithm for small instances

(𝐶 ≤ 80). In this setting, the approximation scheme of Goyal et al. (2016) is partic-

ularly inefficient, and reaches the time limit of 10 minutes prior to completing its full

enumeration procedure. As a result, the revenue performance is not near-optimal,

particularly for large instances (𝐶 = 150), where the average optimality gap can be

as large as 18%.

4.6 Concluding Remarks

Robustness under a mixture of nested models. Given the very structured

nature of nested preference lists, it is interesting to investigate whether our algorithms

can be utilized in the case of a model misspecification, specifically, under a mixture

of nested instances. Here, each segment of the mixture is uniquely described by its

left endpoint product; this setting is a special case of the intervals choice model. It

is not difficult to verify that, when the mixture is formed by 𝐾 customer segments,

we can derive an 𝑂(log𝐾)-approximation by adapting the recursive decomposition of

Section 4.3.2. Specifically, at every step of the recursion, each segment of the partition

is broken at the median left endpoint product of all remaining lists contained in that

149

Table 3: Results under the nested choice model (|𝐿|=20)

parameters avg. performance (%) avg. running time (sec.)

𝑀 𝐶 GA SG GLS DG GD LS GA SG GLS DG GD LS

Gaussian

20 96.4 99.8 93 99.8 78 99.7 0.8 0.0* 600 0.1 1.4 0.3
40 99.5 99.8 89.2 99.8 92.9 83.9 0.9 0.0* 600 0.3 2 0.9
80 99.9 99.7 91.6 99.7 99.3 69.9 0.9 0.3 600 1.3 3.8 0.9
150 100 100 85.2 100 96.5 69.7 1 0.9 600 3.9 5.7 12.2

Poisson

20 95.6 99.4 92.3 99.4 83.2 99.9 0.8 0.0* 600 0.0* 1.5 0.3
40 98.5 99.5 91.1 99.5 91.7 97.1 0.9 0.0* 600 0.3 2.9 1
80 99.5 99.7 89.8 99.7 99.4 83.9 0.9 0.3 600 1.3 4 2.6
150 100 100 82 100 99.3 71.2 0.9 1 571 3.8 5 12.8

Non-IFR

20 97.1 99.2 92.1 99.2 79.8 99.5 0.8 0.0* 600 0.0* 1.5 0.3
40 95.9 99 91.3 99 89.3 95.6 0.8 0.0* 600 0.3 2.5 1.1
80 99.9 98.9 89.8 98.9 97.7 84.4 0.9 0.2 600 1.2 4.8 1.7
150 100 100 86.4 100 96.7 72.3 0.9 1.2 561 3.7 5 18.6

Here, GA designates our general approximation algorithm, SG is our selective-greedy approximation
for the nested choice model, DG is the discrete-greedy algorithm, GD is the gradient-descent approach,
LS corresponds to the local search heuristic, and GLS is the enumeration-based algorithm of Goyal
et al. (2016). 0.0*: running time is smaller than 0.01 sec.

segment. As a result, the recursion depth is 𝑂(log𝐾), thus leading to the above-

mentioned approximation ratio.

Newsvendor-like models. The problem formulation considered in this chapter

incorporates a hard capacity constraint on the number of units stocked. A natural

direction for future research is to study newsvendor-like models, where there is no ca-

pacity limitation, and instead, the salvage value of inventory has decreasing marginal

gains. It would be interesting to investigate whether the technical ideas we developed

can be leveraged to this setting.

Refined approximability results. Following the present work, one open question

is that of determining whether the intervals model can be efficiently approximated

within a constant factor. Although we were able to obtain a performance guarantee of

𝑂(log log(𝑃max/𝑃min)), even the simpler problem of evaluating the expected revenue

of a given inventory vector in this model is still wide open. An interesting direction to

150

consider would be to propose structural transformations, in the spirit of Section 4.4,

in order to reveal certain submodularity properties. It is worth mentioning that,

even with identical prices, the original revenue function is not submodular, as we

demonstrate in Lemma B.1.4 (see Appendix B.1.3).

151

152

Chapter 5

Joint Assortment and Inventory

Decisions: Multinomial Logit Model

5.1 Introduction

The Multinomial Logit model (MNL) has gained widespread popularity among prac-

titioners, since it can be estimated efficiently, even from limited data (Ford 1957,

McFadden 1973), and it yields tractable assortment optimization formulations (Tal-

luri and van Ryzin 2004, Rusmevichientong et al. 2010, 2014). However, in practice,

the assortment and inventory decision levers are inherently connected. Due to the

proliferation of products, stock-out events are pervasive in modern-day retailing 1, and

consequently, firms need to manage their inventory supply to ensure the availability

of assortment products to their end customers.

Similar to Chapter 4, we study the joint assortment optimization and inventory

management problem, referred to as dynamic assortment planning. In this chapter,

we assume that the customers’ dynamic substitution behavior is described by the

Multinomial Logit choice model. Despite the centrality of the MNL model in revenue

management literature, obtaining efficient algorithms with analytical guarantees for

MNL-based dynamic assortment planning models is a long-standing open question,

since the seminal work of Mahajan and van Ryzin (2001). In fact, even the efficient
1See IHL (2015).

153

evaluation of the expected revenue generated by given assortment and inventory de-

cisions is a challenging computational problem under this choice model.

Model description. A formal description of the MNL-based dynamic assortment

planning model is given in Section 5.1.2. The ingredients of this optimization model

are identical to Chapter 4. To wit, the firm makes assortment and inventory decisions

at the beginning of the selling-season, under a cardinality constraint on the total

number of units stocked. The consumption process is modeled through a random

sequence of arriving customers, each having random preferences over the products on

stock upon arrival. From a computational standpoint, in addition to the underlying

choice model, the problem formulation hinges on describing the distribution of the

number of customer arrivals, named the demand hereafter.

5.1.1 Results and techniques

The main contribution of this chapter is to devise the first provably-good approxima-

tion algorithm for dynamic assortment planning under the Multinomial Logit choice

model. Specifically, our approach guarantees a constant-factor worst-case approxi-

mation for a broad class of demand distributions (standing for the total number of

arriving customers) commonly used in operations management, that satisfy the in-

creasing failure rate (IFR) property. Moreover, we show that this algorithm has a

superior empirical performance in comparison to existing heuristics on synthetic in-

stances. Against existing state-of-the-art methods, our algorithm leads to substantial

gains in the expected revenue, ranging from 6% to 16%, with better computational

efficiency and robustness. Our algorithmic approach relies on a combination of greedy

procedures, where stocking decisions are restricted to specific assortments, and the

objective function takes a modified form. Our theoretical analysis along with the

experimental results provide evidence that such restrictive policies could in fact be

more effective than general-purpose methods, that consider stocking decisions across

all products. Along the way, we develop a number of novel technical ideas that could

very well contribute to studying additional combinatorial optimization problems and

154

to assortment planning methodologies in particular.

Restricted-submodular maximization. At the core of our analysis, we develop

new concepts of submodularity and monotonicity, called the restricted-submodular

and restricted-non-decreasing properties, that are weaker than their standard coun-

terparts. Specifically, when optimizing certain set functions under a cardinality con-

straint, the objective function could generally violate the submodularity property,

while still having a submodular-like behavior within the feasible collection of sets,

i.e., those satisfying the cardinality constraint. Thus, in the restricted-submodular

setting, the structural inequalities defining submodularity and monotonicity are not

required uniformly over all sets, and instead, we restrict attention to the feasible

region only. We show that the classic analysis of greedy algorithms extends to this

broader setting, and obtain a (0.318 − 𝜖)-approximation. Moreover, this worst-case

guarantee holds with high probability even when the greedy procedure is given access

to noisy estimates of the objective function at each step.

Algorithmic approach and performance guarantees. For ease of presentation,

we describe our approach in an incremental way, where a simplified setting is first

examined, prior to addressing the most general case, thereby establishing the following

worst-case guarantees.

∙ Core algorithm with evaluation oracle. As previously mentioned, in dynamic

substitution models, it is generally unknown how to efficiently compute the

expected revenue generated by given initial inventory levels. To bypass this

difficulty, we first operate under the efficient oracle assumption, where we tem-

porarily assume that the expected revenue function can be efficiently evaluated

with high probability by some (unspecified) oracle procedure. Under this as-

sumption, we devise in Section 5.3 a polynomial-time algorithm with a constant-

factor worst-case guarantee, for any demand distribution with increasing failure

rates. Specifically, for any error parameters 𝜖 ∈ (0, 1/4) and 𝛿 > 0, our ran-

domized algorithm attains a (0.139− 𝜖)-approximation with probability at least

155

1− 𝛿. Moreover, our methods are amenable to tighter analysis under more re-

strictive settings, allowing us to obtain an approximation guarantee of 0.179− 𝜖
under the plausible assumption that the number of inventory units (or capacity)

exceeds the number of products, and 0.632 − 𝜖 when only products within an

optimal assortment (in the standard sense) can be stocked. The latter result

holds for general demand distributions.

Technically speaking, for large enough capacity values, the algorithm concur-

rently runs two greedy procedures: each restricts attention to a specific class

of products, and the inventory levels are chosen greedily over the residual

set of products, using a modified objective function. Our analysis relies in

large part on the restricted-submodular and restricted-non-decreasing proper-

ties mentioned earlier. Indeed, after we interpret one residual problem in terms

of optimizing a set function, we show that, while the latter generally violates

the standard properties of submodularity and monotonicity, it still satisfies their

weaker (restricted) version. The proof is based on novel probabilistic coupling

ideas, allowing us to compare the dynamic substitution patterns driven by the

MNL model. A particularly interesting byproduct of our analysis is showing

that a commonplace heuristic, which stocks the optimal assortment (in the

standard sense) and scales inventory proportional to the expected sales, has a

provable performance guarantee with respect to a restricted class of products.

∙ General approximation algorithm. In Appendix C.1, we bypass the efficient ora-

cle assumption, and derive a general constant-factor approximation for dynamic

assortment planning under the MNL choice model, with increasing failure rate

demand distributions. For any 𝜖 ∈ (0, 1/4) and 𝛿 > 0, we devise a randomized

polynomial-time algorithm attaining a worst-case guarantee of 0.122 − 𝜖 with

probability at least 1− 𝛿, which is improved to 0.151− 𝜖 when the capacity ex-

ceeds the number of products. Here, the key observation is that only a specific

class of products, named heavy products, presents an optimization challenge,

while the other light products are in fact easier to approximate, within any de-

156

gree of accuracy, using a standard greedy procedure. On the other hand, the

expected revenue due to heavy products can be efficiently evaluated using a

sampling-based estimator, allowing us to apply the oracle-based algorithm de-

scribed earlier. As explained in Appendix C.1, the notions of light and heavy

relate to the preference weight of the respective products.

Empirical evaluation. While our theoretical worst-case guarantees might look

unsatisfactory for practical purposes, we present in Section 5.4 extensive computa-

tional experiments, showing that the resulting algorithm largely outperforms existing

heuristics in terms of performance and speed. These experiments employ our algo-

rithm on randomly-generated instances, concurrently to the following heuristics: (i) a

local-search heuristic based on greedily exchanging units between pairs of products,

similar to Goyal et al. (2016); (ii) a gradient-descent approach based on a continu-

ous extension of the revenue function, similar in spirit to the work of Mahajan and

van Ryzin (2001); (iii) exact dynamic programming for two variants of the problem

formulated by Topaloglu (2013), based on a Poisson and a normal approximation of

the demand process; (iv) the deterministic relaxation heuristic proposed by Honhon

et al. (2010), implemented using a commercial integer programming solver; (v) a

discrete-greedy algorithm, where in each step a single unit is added to the product

with the largest marginal expected revenue. Against these benchmarks, our algorithm

attains expected revenues that are better by a factor ranging between 6% and 16%,

and simultaneously dominates all methods in 66% of the instances tested. We also

report that the proportional scaling heuristic, used as a subroutine in Section 5.3.3, is

outperformed by the overall algorithm on average by 2.4%. In addition, the running

time of our algorithm is significantly shorter than the above-mentioned heuristics, at

the exception of the normal-based dynamic program.

5.1.2 Problem formulation

We are given 𝑛 products, where each product 𝑖 ∈ [𝑛] is associated with a preference

weight 𝑤𝑖 and a per-unit selling price 𝑟𝑖. In addition, there is a capacity bound of

157

𝐶 on the total number of units to be stocked. In the dynamic assortment planning

problem, the retailer has to jointly decide on an assortment, i.e., a subset of products

to be offered, as well as on the initial inventory levels of these products, which are not

replenished later on. That is, a feasible solution specifies the initial inventory levels

of all products, represented by an integer-valued vector 𝑈 = (𝑢1, . . . , 𝑢𝑛) that meets

the capacity constraint,
∑︀𝑛

𝑖=1 𝑢𝑖 ≤ 𝐶.

Stochastic MNL-based consumption process. We proceed by providing the

additional model ingredients that describe the process according to which customers

arrive and purchase products over time. A random number of customers 𝑀 arrive

sequentially, where the distribution of 𝑀 is known to the decision-maker. Upon

the arrival of a customer, suppose that 𝑆 ⊆ [𝑛] is the subset of products that are

currently available, due to being initially stocked, and not depleted until now. Then,

this customer either:

∙ Picks a random product out of 𝑆 and purchases a single unit, where the prob-

ability for choosing product 𝑖 ∈ 𝑆 is 𝑤𝑖/(1 + 𝑤(𝑆)). Here, 𝑤(𝑆) stands for the

total weight of the products in 𝑆, i.e., 𝑤(𝑆) =
∑︀

𝑗∈𝑆 𝑤𝑗.

∙ Leaves without purchasing any product, which happens with probability 1/(1+

𝑤(𝑆)).

Objective function. When the sequence of customer arrivals ends, we use ℛ(𝑈)

to denote the revenue resulting from an initial inventory vector 𝑈 . This revenue is

clearly random, due to the stochasticity in the number of customers and in their choice

of products to purchase. The objective is to compute a feasible inventory vector, so

that the expected revenue is maximized,

max
(𝑢1,...,𝑢𝑛)∈Z𝑛

+

{︃
E [ℛ(𝑢1, . . . , 𝑢𝑛)] :

𝑛∑︁

𝑖=1

𝑢𝑖 ≤ 𝐶

}︃
.

The IFR assumption. As mentioned in Section 5.1.1, the distribution of the num-

ber of customers 𝑀 is assumed to have an increasing failure rate (IFR), meaning

158

that the sequence Pr [𝑀 = 𝑘] /Pr [𝑀 ≥ 𝑘] is non-decreasing over the integer domain.

For definitions of stochastic orders and stochastic monotonicity, we refer the reader

to Shaked and Shanthikumar (1994). It is worth mentioning that the IFR property

is satisfied by many distributions considered in operations management applications,

including Normal, Exponential, Geometric, Poisson, and Beta (for certain parame-

ters).

Remark: Static formulation. Recall that the static case corresponds to the sit-

uation where there is a single customer arrival. This setting is equivalent to relaxing

the capacity constraint (i.e., 𝐶 = ∞), and the problem reduces to the standard as-

sortment optimization formulation. Indeed, since there are no stock-out events, we

can always offer the optimal assortment to each arriving customer. The assortment

computed in this setting is referred to as the optimal static assortment.

5.1.3 Related literature

The MNL choice model. The Multinomial Logit (MNL) model is arguably the

most widespread approach for modeling choice among practitioners, as reflected by

seminal studies in transportation (McFadden 1980, Ben-Akiva and Lerman 1985) and

marketing (Guadagni and Little 1983, Grover and Vriens 2006, Chandukala et al.

2008). This model, proposed independently by Luce (1959) and Plackett (1975), is

grounded in economic theory of utility maximization, and describes the probabilistic

choice outcomes of a representative agent who maximizes his utility over different

alternatives, through a noisy evaluation of the utility they procure. The popularity

of this model was notably driven by its simple estimation procedures (McFadden

1973, Talluri and van Ryzin 2004, Maystre and Grossglauser 2015), even with limited

data (Ford 1957, Negahban et al. 2012), as well as by its computational tractability

in decision-making problems. Indeed, the standard assortment optimization problem

is well-understood in the context of MNL choice preferences. For the uncapacitated

variant, where any number of products can be offered, Talluri and van Ryzin (2004)

showed that the optimal assortment consists of the 𝑘-highest price products, for

159

some 𝑘, and can therefore be computed efficiently. Rusmevichientong et al. (2010)

devised a polynomial-time algorithm for the capacitated variant, where an upper

bound is imposed on the number of products offered. These results were further

advanced to handle more general settings (Rusmevichientong and Topaloglu 2012,

Rusmevichientong et al. 2014), including a linear programming approach proposed

by Davis et al. (2013) and a local-ratio framework developed by Désir et al. (2015).

Challenges in dynamic assortment planning. Under multiple stochastic ar-

rivals, the problem we study becomes considerably more challenging than its ‘static’

counterpart (single-arrival model), due to the additional ‘dynamic’ aspect. Indeed,

the assortment is altered along the sequence of arrivals due to stock-out events, as

customers purchase the most preferred product available according to a probabilistic

choice model. Therefore, the substitution behavior of customers depends on each

sample-path realization, and a large number of samples is generally needed to obtain

accurate estimates of the expected revenue function. In addition, this function violates

several well-behaved properties. For instance, under a general model of choice, for a

continuous relaxation of the dynamic assortment problem, Mahajan and van Ryzin

(2001) showed that the revenue function is not even quasiconcave. We demonstrated

in Chapter 4, through various counter-examples, that this function (in modified form)

is not submodular, even for very simple choice modeling approaches.

Existing methods. As a result, most of the work we are aware of in the context

of dynamic assortment planning develops heuristics based on continuous relaxations

and probabilistic assumptions (Smith and Agrawal 2000, Mahajan and van Ryzin

2001, Gaur and Honhon 2006, Nagarajan and Rajagopalan 2008, Honhon et al. 2010,

Honhon and Seshadri 2013). These approaches either give rise to exponential-time

algorithms, apply to more stylized models, or converge to local optima, such as the

gradient-descent method proposed by Mahajan and van Ryzin (2001).

Similar to the present setting, Topaloglu (2013) studied a joint assortment and

inventory management model with sequential customer arrivals, MNL preferences,

160

and exogenous per-unit costs rather than capacities. This model was shown to admit

an efficient approximate dynamic programming formulation, based on strong separa-

bility properties. However, this setting has several restrictions: the dynamic substi-

tution effects are overlooked and the demand follows a Poisson process, while on the

other hand, the retailer is allowed to utilize a mixed assortment strategy. Goyal et al.

(2016) and Segev (2015) considered dynamic assortment planning models, with a fully

stochastic consumption process, for which they devised polynomial-time algorithms

with provable approximation guarantees. However, the choice models considered in

these papers have simple combinatorial structures, that impose a very specific or-

der by which products are consumed and depleted. This property is crucial to the

design of low-dimensional dynamic programs for revenue evaluation and optimiza-

tion. In contrast, the choice outcomes described by the MNL model do not impose

any particular (deterministic) pattern on stock-out events. Consequently, dynamic

optimization in this context appears to be significantly more challenging.

5.2 Preliminaries

In what follows, we establish a number of technical results that were briefly discussed

in Section 5.1.1. These are instrumental for our algorithmic approach and its analysis.

5.2.1 Extensions of submodular maximization

The crux of our algorithm resides in exploiting new notions of submodularity and

monotonicity, respectively termed as restricted submodularity and restricted mono-

tonicity. Intuitively, these properties require that the structural inequalities defining

submodularity and monotonicity are satisfied as long as the sets involved are within

the feasible region, formed by a cardinality constraint. Although weaker than the

standard notions, we show that these properties are sufficient for the design of con-

stant worst-case approximations, even with noisy estimates of the objective function.

161

Restricted submodularity and monotonicity. We begin by defining the notion

of restricted submodularity. A set function 𝑓 : 2[𝑛] → R is said to be restricted-𝑠-

submodular for some integer 𝑠 ∈ N if, for any subset 𝑆 ⊆ [𝑛] of cardinality at most

𝑠− 2 and elements 𝑖 ̸= 𝑗 ∈ [𝑛] ∖ 𝑆, we have

𝑓 (𝑆 ∪ {𝑖, 𝑗})− 𝑓 (𝑆 ∪ {𝑗}) ≤ 𝑓 (𝑆 ∪ {𝑖})− 𝑓 (𝑆) .

By a similar extension of conventional definitions, we say that a set function 𝑓 is

restricted-𝑠-non-decreasing if 𝑓(𝑆) ≤ 𝑓(𝑇) for any pair of subsets 𝑆 ⊆ 𝑇 of cardinality

at most 𝑠. In what follows, the parameter 𝑠 is always equal to the capacity 𝐶, and

therefore, we simply say that a set function is restricted-submodular or restricted-non-

decreasing.

The efficient oracle assumption. A particularly useful extension of the standard

submodular maximization setting is to assume that the objective function 𝑓 cannot

be evaluated exactly in an efficient way, and instead, we are given access to a noisy

estimation oracle. Formally, the efficient oracle assumption states that, for any error

parameter 𝜖 > 0 and for any confidence level 𝛿 > 0, there exists an efficient procedure

that, given any subset 𝑆 ⊆ [𝑛], computes a random estimate 𝑓(𝑆) of 𝑓(𝑆) such that

Pr
[︁
(1− 𝜖) · 𝑓(𝑆) ≤ 𝑓(𝑆) ≤ (1 + 𝜖) · 𝑓(𝑆)

]︁
≥ 1− 𝛿 .

The running time of this procedure is assumed to be polynomial in the input size,

1/𝜖, and 1/𝛿.

By leveraging classic techniques for approximately maximizing monotone sub-

modular functions (see, e.g., Nemhauser et al. (1978)), we derive a constant-factor

approximation for non-negative restricted-non-decreasing and restricted-submodular

functions, as stated in the following claim.

Lemma 5.2.1. Under the efficient oracle assumption, for any 𝜖 ∈ (0, 1/4) and 𝛿 > 0,

the problem of maximizing a non-negative restricted-non-decreasing and restricted-

submodular set function under a cardinality constraint can be approximated within

162

factor 0.318− 𝜖, with probability at least 1− 𝛿. The running time of our algorithm is

polynomial in the input size, 𝑛1/𝜖, and 1/𝛿.

To avoid deviating from our general theme, we present the proof in Appendix C.3.1,

and only provide a high-level description here. For a small cardinality parameter

(𝐶 < 1/𝜖), we simply enumerate over all possible subsets. Otherwise, the algorithmic

idea behind Lemma 5.2.1 is a standard greedy procedure: starting with an empty set,

we add at each step the element that guarantees the largest marginal increase in the

objective function. To account for the boundary effects in the restricted-submodular

setting, the traditional analysis of this algorithm needs to be refined with suitable

lower bounds on the marginal increase at each iterative step. In addition, we control

for the accumulated estimation error during these iterations, due to the noisy oracle.

For this purpose, the oracle is executed with an appropriate choice for the error pa-

rameters, 𝜖 = 𝜖(𝑛,𝐶) and 𝛿 = 𝛿(𝑛,𝐶), while ensuring that its running time remains

polynomial.

5.2.2 Subadditivity of the expected revenue function

The next lemma, whose proof appears in Appendix C.3.2, asserts that the expected

revenue function in the MNL-based dynamic assortment model is subadditive.

Lemma 5.2.2 (Subbaditivity). For any inventory vectors 𝑈1 and 𝑈2, we have E[ℛ(𝑈1+

𝑈2)] ≤ E[ℛ(𝑈1)] + E[ℛ(𝑈2)].

To better understand the implications of this claim, let 𝑈* be an optimal inventory

vector. For any subset of products 𝑆 ⊆ [𝑛], we use 𝑈*
𝑆 to designate the projection

of 𝑈* on 𝑆, i.e., 𝑈*
𝑆 is the vector obtained from 𝑈* by setting the inventory levels

of all products in [𝑛] ∖ 𝑆 to zero. Now suppose that the collection of products [𝑛] is

partitioned into the subsets 𝒮1, . . . ,𝒮𝐾 . Consequently, since 𝑈* =
∑︀

𝑘∈[𝐾] 𝑈
*
𝒮𝑘

, and

the expected revenue function is subadditive, it follows that

∑︁

𝑘∈[𝐾]

E
[︀
ℛ(𝑈*

𝒮𝑘
)
]︀
≥ E[ℛ(𝑈*)] . (5.1)

163

From an algorithmic perspective, this bound can be utilized by treating each subset 𝒮𝑘
as a separate subproblem for which a tailor-made algorithm is developed. Now, sup-

pose we obtain a 𝛾𝑘-approximation for each subproblem, i.e., an inventory vector 𝑈̃𝒮𝑘

satisfying E[ℛ(𝑈̃𝒮𝑘
)] ≥ 𝛾𝑘 · E

[︀
ℛ(𝑈*

𝒮𝑘
)
]︀
. By picking the best solution (revenue-wise)

out of the 𝐾 resulting inventory vectors, for any 𝛼1, . . . , 𝛼𝐾 ≥ 1 with
∑︀

𝑘∈[𝐾] 𝛼𝑘 = 1,

we obtain an expected revenue of

max
𝑘∈[𝐾]

E
[︁
ℛ(𝑈̃𝒮𝑘

)
]︁
≥
∑︁

𝑘∈[𝐾]

𝛼𝑘·E
[︁
ℛ(𝑈̃𝒮𝑘

)
]︁
≥
(︂

min
𝑘∈[𝐾]

𝛼𝑘𝛾𝑘

)︂
·
∑︁

𝑘∈[𝐾]

E
[︀
ℛ(𝑈*

𝒮𝑘
)
]︀
≥
(︂

min
𝑘∈[𝐾]

𝛼𝑘𝛾𝑘

)︂
·E [ℛ(𝑈*)] ,

where the last inequality holds by (5.1). As a result, we have just obtained an approx-

imation ratio of min𝑘∈[𝐾] 𝛼𝑘𝛾𝑘 for the original problem, which can be optimized by

picking the best convex combination 𝛼1, . . . , 𝛼𝐾 . This decomposition idea is exploited

in Section 5.3 and in Appendix C.1.

5.3 Core Algorithm with Evaluation Oracle

In this section, we devise an efficient algorithm with a constant-factor worst-case

guarantee, under IFR demand distributions. Since revenue evaluation is challenging

by itself in the dynamic setting, we temporarily operate under the efficient oracle

assumption described in Section 5.2.1. Specifically, we assume in the remainder of

this section that, for any error parameter 𝜖 > 0 and confidence level 𝛿 > 0, there is an

efficient procedure to estimate the expected revenue E[ℛ(𝑈)] of any inventory vector

𝑈 up to a multiplicative factor of 1± 𝜖, with probability at least 1− 𝛿.
In Appendix C.1, we explain how this assumption can be bypassed, losing a small

constant factor in optimality, while utilizing the conditional approach developed here

as a subroutine. The latter bears practical significance by itself, since simulation-

based methods or surrogate models are commonly used to go around the computa-

tional difficulties of evaluating certain objective functions.

Theorem 5.3.1. Under the efficient oracle assumption, for any 𝜖 ∈ (0, 1/4) and

𝛿 > 0, the dynamic assortment planning problem under the Multinomial Logit choice

164

model and IFR demand distribution can be approximated within a factor of 0.139− 𝜖
with probability at least 1 − 𝛿, in time polynomial in the input size, 𝑛1/𝜖, and 1/𝛿.

When 𝐶 ≥ 𝑛, this factor can be improved to 0.179− 𝜖.

5.3.1 Overview of the algorithm

Preliminary step: price threshold. We begin by computing OPTstatic, the opti-

mal capacitated static revenue. There are several well-known polynomial-time algo-

rithms (Megiddo 1979, Rusmevichientong et al. 2010, Davis et al. 2013) to solve the

capacitated assortment optimization problem (with a single representative customer),

still with an upper bound of 𝐶 on the number of products to be stocked (rather than

units). Hereafter, the corresponding optimal static assortment (which generates an

expected revenue of OPTstatic) is denoted by 𝒜*. Subsequently, we use OPTstatic as a

price threshold to distinguish between expensive products, with price greater or equal

to OPTstatic, and cheap products, whose price is smaller than OPTstatic. We let ℰ and

𝒞 designate the subsets of expensive and cheap products, respectively, thus forming a

partition of the products [𝑛]. In the sequel, our algorithm constructs inventory vectors

that are exclusively composed of expensive products, whereas the optimal inventory

vector could stock both cheap and expensive products.

Decomposition approach. Next, we utilize the decomposition idea described in

Section 5.2.2. Specifically, we pick the most profitable among two candidate inven-

tory vectors, denoted by 𝑈ℰ and 𝑈𝒞. While both stocking only expensive products,

these vectors are constructed to fulfill different purposes: 𝑈ℰ competes against the

contributions of expensive products in the optimal expected revenue, while 𝑈𝒞 com-

petes against the revenue contributions of cheap products. By ‘compete’, we mean

that 𝑈ℰ is guaranteed to generate a constant fraction of the expected revenue due to

selling expensive products in the optimal solution, and an analogous property holds

for 𝑈𝒞 with respect to the cheap products. From this point on, we let 𝑈* be a fixed

optimal inventory vector, and recall that 𝑈*
ℰ designates the projection of 𝑈* on the

set of expensive products ℰ , i.e., the vector obtained from 𝑈* by setting the inventory

165

levels of all cheap products to zero. The vector 𝑈*
𝒞 is defined in an analogous way.

Our analysis relies on comparing the expected revenue of 𝑈ℰ and 𝑈𝒞 with that of 𝑈*
ℰ

and 𝑈*
𝒞 , respectively.

Competing against expensive products (Section 5.3.2). Since our analysis

of the greedy algorithm for restricted-non-decreasing and restricted-submodular func-

tions (see Section 5.2.1) results in an extra additive error that depends on 1/𝐶, we

distinguish between two cases in order to construct 𝑈ℰ . Specifically, when 𝐶 ≥ 1/𝜖,

the inventory levels of expensive products are determined by a greedy approach,

where at each step a single unit of the product that generates the largest marginal

increase in the expected revenue is picked until stocking 𝐶 units. In this case, the

above-mentioned additive error affects the multiplicative factor we obtain by a factor

of only 𝑂(𝜖). In the opposite case, when 𝐶 < 1/𝜖, we resort to enumeration over

all 𝑂(𝑛1/𝜖) feasible inventory vectors. To analyze this approach, we prove that the

restricted-non-decreasing and restricted-submodular properties are satisfied by the

revenue function (in modified form), for the problem restricted to the collection of

expensive products ℰ . By executing the evaluation oracle with the appropriate error

and confidence parameters described in Lemma 5.2.1, it follows that the inventory

vector 𝑈ℰ competes against the optimal expected revenue obtained from expensive

products. Specifically, with probability at least 1− 𝛿,

E [ℛ (𝑈ℰ)] ≥ (0.318− 𝜖) · E [ℛ (𝑈*
ℰ)] . (5.2)

When 𝐶 ≥ 𝑛, we obtain an improved approximation ratio of (1− 𝜖) · (1− 1/𝑒).

Competing against cheap products (Section 5.3.3). We compete against 𝑈*
𝒞

by stocking expensive products, rather than cheap products. Specifically, 𝑈𝒞 is com-

puted through a greedy procedure, where stocking decisions are restricted to the

optimal static assortment 𝒜*, and the expected revenue function is replaced by a

simplified objective function. This alternative objective is formed by neglecting the

revenue generated by stock-out substitution, namely, assuming that customers do not

166

substitute to less preferred options once their most preferred product is depleted. The

lower bound thus obtained can be interpreted as the objective function of a multi-

item newsvendor problem, that can be optimized greedily. By exploiting the IFR

property, we show that 𝑈𝒞 guarantees at least 1/4 of the optimal expected revenue

due to cheap products, i.e.,

E [ℛ (𝑈𝒞)] ≥ 1

4
· E[ℛ (𝑈*

𝒞)] . (5.3)

Concluding the proof of Theorem 5.3.1. Before providing additional details

on the above-mentioned algorithms and their respective performance, we argue that

inequalities (5.2) and (5.3) are sufficient to prove the worst-case guarantee stated in

Theorem 5.3.1, using the decomposition ideas of Section 5.2.2. Recall that, since the

expected revenue function is subadditive, we have

E [ℛ (𝑈*
ℰ)] + E [ℛ (𝑈*

𝒞)] ≥ E [ℛ (𝑈*)] . (5.4)

Now, for any 𝛼 ∈ [0, 1], picking the better vector out of 𝑈ℰ and 𝑈𝒞 guarantees, with

probability at least 1− 𝛿, an expected revenue of

max {E [ℛ (𝑈ℰ)] ,E [ℛ (𝑈𝒞)]} ≥ 𝛼 · E [ℛ (𝑈ℰ)] + (1− 𝛼) · E [ℛ (𝑈𝒞)]

≥ 𝛼 · (0.318− 𝜖) · E [ℛ (𝑈*
ℰ)] +

1− 𝛼
4
· E [ℛ (𝑈*

𝒞)]

≥ (1− 4𝜖) ·
(︂

0.318 · 𝛼 · E [ℛ (𝑈*
ℰ)] +

1− 𝛼
4
· E [ℛ (𝑈*

𝒞)]

)︂
,

where the second inequality is an immediate consequence of (5.2) and (5.3). Thus,

by choosing 𝛼 = 0.25/0.568,

max {E [ℛ (𝑈ℰ)] ,E [ℛ (𝑈𝒞)]} ≥ (1− 4𝜖) · 0.318 · 𝛼 · (E [ℛ (𝑈*
ℰ)] + E [ℛ (𝑈*

𝒞)])

≥ (1− 4𝜖) · 0.139 · E [ℛ (𝑈*)] ,

where the last inequality follows from the upper bound (5.4). As previously men-

tioned, when 𝐶 ≥ 𝑛, the inventory vector 𝑈ℰ actually satisfies E[ℛ(𝑈ℰ)] ≥ (1 −

167

𝜖)(1− 1/𝑒) ·E[ℛ(𝑈*
ℰ)]. By plugging-in this inequality instead of (5.2), and by picking

𝛼 = 𝑒/(5𝑒− 4), we derive an improved constant-factor guarantee of 0.179− 𝜖.

5.3.2 Competing against expensive products

In this section, we consider the expensive-products problem, that is, a modified in-

stance only comprised of products in ℰ . We show that the restricted-submodular and

restricted-non-decreasing properties are satisfied by the expected revenue function

(when reformulated appropriately), although their standard counterparts do not hold

in this context. The proof mainly relies on probabilistic coupling ideas, that allow us

to compare the consumption process under different initial inventory level decisions.

As a result, Lemma 5.2.1 entails the following theorem.

Theorem 5.3.2. Under the efficient oracle assumption, for any 𝜖 ∈ (0, 1/4) and

𝛿 > 0, the expensive-products problem can be approximated within factor 0.318 − 𝜖

with probability at least 1 − 𝛿. The running time of our algorithm is polynomial in

the input size, 𝑛1/𝜖, and 1/𝛿.

Set decision formulation. In order to establish the desired submodularity-like

properties, the problem needs to be interpreted as the maximization of a set function

under a cardinality constraint. To this end, each product is duplicated into 𝐶 copies,

each representing a distinct unit of that product. In the expensive-products problem,

this transformation results in an extended set of 𝑁 = 𝐶 · |ℰ| distinct units. With this

notation, the objective is to decide on a subset of the extended collection of units

𝑆 ⊆ [𝑁], as a substitute to the inventory vector 𝑈 .

Once an initial offer set 𝑆 ⊆ [𝑁] is chosen, each arriving customer purchases one

unit of her most preferred product available, according to the MNL choice model.

Since units of the same product are identical, the realizations of the revenue random

variable are invariant to the precise unit being purchased, which can thus be chosen

arbitrarily (in the sequel, we often impose that a specific unit is purchased, for pur-

poses of analysis). Finally, we define the objective function 𝑓𝑌 (𝑆) to be the expected

revenue when initially stocking the subset of units 𝑆, where 𝑌 stands for the random

168

number of arriving customers. Consequently, the original expensive-products prob-

lem translates to maximizing 𝑓𝑀(𝑆) over all subsets 𝑆 ⊆ [𝑁] of cardinality at most

𝐶.

Simplified notation. In what follows, we allow mixed notation between products

and their respective units. Specifically, 𝑤𝑖 and 𝑟𝑖 designate the preference weight and

the selling price of the product corresponding to unit 𝑖. Unless specified otherwise,

when the subset of units 𝑆 ⊆ [𝑁] is fixed, the corresponding assortment of products

is designated by 𝒜 ⊆ ℰ . We use the shorthand notation 𝒜+𝑖 to denote the resulting

assortment when a unit 𝑖 ∈ [𝑁] is added to 𝑆, and 𝒜+𝑖𝑗 when two units 𝑖, 𝑗 ∈ [𝑁] are

added.

5.3.2.1 Probabilistic coupling

To establish the restricted-submodular and restricted-non-decreasing properties, we

would have to compare the expected revenue of different subsets. For example, we

wish to prove that, for any subset 𝑆 ⊆ [𝑁] of cardinality at most 𝐶 − 2, and any

units 𝑖 ̸= 𝑗 ∈ [𝑁] ∖ 𝑆, we have

𝑓𝑀 (𝑆 ∪ {𝑖, 𝑗})− 𝑓𝑀 (𝑆 ∪ {𝑗}) ≤ 𝑓𝑀 (𝑆 ∪ {𝑖})− 𝑓𝑀 (𝑆) .

To derive such inequalities, we implicitly need to compare the consumption process

for the initial subsets 𝑆, 𝑆 ∪ {𝑖}, 𝑆 ∪ {𝑗}, and 𝑆 ∪ {𝑖, 𝑗}. To this end, our coupling

construction will introduce useful relationships between the probabilistic outcomes

generated by these subsets. By design, in the construction below, units 𝑖 and 𝑗

correspond to two distinct products, both not stocked in 𝑆. The construction remains

identical even in other settings, where units 𝑖 and 𝑗 are arbitrary.

Purchase random variables. We focus on the first arriving customer, and intro-

duce several random variables to describe her purchase decision, when facing each

of the above-mentioned subsets. Specifically, denoting the no-purchase option by

product 0, with preference weight 𝑤0 = 1 and selling price 𝑟0 = 0, we define:

169

∙ 𝑃 as the product purchased when the offered set is 𝑆, i.e., within the initial

assortment 𝒜 ∪ {0}.

∙ 𝑃𝑖 as the product purchased when the offered set is 𝑆 ∪ {𝑖}, i.e., within the

initial assortment 𝒜+𝑖 ∪ {0}.

∙ 𝑃𝑗 as the product purchased when the offered set is 𝑆 ∪ {𝑗}, i.e., within the

initial assortment 𝒜+𝑗 ∪ {0}.

∙ 𝑃𝑖,𝑗 as the product purchased when the offered set is 𝑆 ∪ {𝑖, 𝑗}, i.e., within the

initial assortment 𝒜+𝑖𝑗 ∪ {0}.

Coupling construction. Rather than defining these random variables separately,

in independent probabilistic spaces, we artificially correlate their random outcomes

for purposes of analysis, while still preserving their MNL-based marginal probabilities.

In other words, denoting by 𝑌 ∼ 𝑍 the equivalence in distribution between two ran-

dom variables 𝑌 and 𝑍, we construct a multivariate distribution for (𝑋𝑗, 𝑋𝑖,𝑗, 𝑋𝑖, 𝑋),

where 𝑋𝑗 ∼ 𝑃𝑗, 𝑋𝑖,𝑗 ∼ 𝑃𝑖,𝑗, 𝑋𝑖 ∼ 𝑃𝑖, and 𝑋 ∼ 𝑃 . Our coupling approach

relies on stipulating that the sequence 𝑋𝑗, 𝑋𝑖,𝑗, 𝑋𝑖, 𝑋 forms a Markov chain, i.e.,

𝑋𝑖|(𝑋𝑖,𝑗, 𝑋𝑗) = 𝑋𝑖|𝑋𝑖,𝑗 and 𝑋|(𝑋𝑖, 𝑋𝑖,𝑗, 𝑋𝑗) = 𝑋|𝑋𝑖, whose transition probabilities

are specified below, through the conditional random variables 𝑋𝑗, 𝑋𝑖,𝑗|𝑋𝑗, 𝑋𝑖|𝑋𝑖,𝑗,

and 𝑋|𝑋𝑖.

To illustrate the upcoming definitions, we provide in Figure 5-1 a schematic rep-

resentation of the underlying transition graph, that can be used to derive useful

probabilistic claims regarding the purchase random variables. For example, there is

a single incoming edge to each white node of 𝑋𝑖,𝑗, representing the purchase of a

product 𝛼 ∈ 𝒜. Given that this edge is horizontal, it describes the same product

option for the variable 𝑋𝑗, and it follows that Pr [𝑋𝑗 = 𝛼|𝑋𝑖,𝑗 = 𝛼] = 1.

∙ Defining 𝑋𝑗. Here, we simply use the marginal probabilities prescribed by the

MNL choice model for the purchases made by the first arriving customer under

170

Figure 5-1: Markov chain representation of the coupling between the random variables
𝑋𝑗 ,𝑋𝑖,𝑗 ,𝑋𝑖, and 𝑋. Here, random purchase events (or states) are represented by nodes, and
each arc corresponds to a transition with positive probability. These transition probabilities
are specified either exactly or in proportions (e.g., if a node has two outgoing arcs, one with
∝ 3 and the other with ∝ 5, the transition probabilities are 3/8 and 5/8, respectively).

Product j :

Product ↵ 2 S :

w↵

1 + w(S) + wj

wj

1 + w(S) + wj

1

1 + w(S) + wj

No purchase:

Product i :

/ 1 + w(S) + wj

/ wi

/ 1 + w(S) + wj

/ wi

/ w↵

= 1

/ wi

/ 1

/ w↵

/ 1

= 1

= 1= 1

/ 1 + w(S) + wj

S [{j} S [{i, j} S [{i} S

XiXj Xi,j X

171

the initial assortment 𝒜+𝑗. That is, for any product 𝛼 ∈ 𝒜+𝑗 ∪ {0},

Pr [𝑋𝑗 = 𝛼] =
𝑤𝛼

1 + 𝑤(𝒜) + 𝑤𝑗

.

∙ Defining 𝑋𝑖,𝑗|𝑋𝑗. The initial set 𝑆 ∪ {𝑖, 𝑗} contains one more purchase option

than 𝑆 ∪ {𝑗}, namely product 𝑖. Intuitively, the event {𝑋𝑖,𝑗 = 𝑖} is defined by

‘rescaling’ uniformly the purchase probabilities of all other products in𝒜+𝑗∪{0},
which are captured by the variable𝑋𝑗. Formally, for any product 𝛼 ∈ 𝒜+𝑖𝑗∪{0},
we define:

Pr [𝑋𝑖,𝑗 = 𝑖|𝑋𝑗 = 𝛽] =
𝑤𝑖

1 + 𝑤(𝒜) + 𝑤𝑗 + 𝑤𝑖

for 𝛽 ∈ 𝒜+𝑗 ∪ {0} , (5.5)

Pr [𝑋𝑖,𝑗 = 𝛼|𝑋𝑗 = 𝛼] =
1 + 𝑤(𝒜) + 𝑤𝑗

1 + 𝑤(𝒜) + 𝑤𝑗 + 𝑤𝑖

if 𝛼 ̸= 𝑖 , (5.6)

Pr [𝑋𝑖,𝑗 = 𝛼|𝑋𝑗 = 𝛽] = 0 if 𝛼 ̸= 𝑖 and 𝛽 ̸= 𝛼 . (5.7)

∙ Defining 𝑋𝑖|𝑋𝑖,𝑗. We relate the purchases made in the assortment 𝒜+𝑖 ∪ {0}
with the purchases made in 𝒜+𝑖𝑗 ∪ {0}. In contrast to the previous case, we

now need to ‘eliminate’ the purchase option relative to product 𝑗. This is done

by ‘reallocating’ the probability of the event {𝑋𝑖,𝑗 = 𝑗} to the purchases of

other products, proportionally to their MNL weights. That is, for any product

𝛼 ∈ 𝒜+𝑖 ∪ {0}, we define:

Pr [𝑋𝑖 = 𝛼|𝑋𝑖,𝑗 = 𝛼] = 1 , (5.8)

Pr [𝑋𝑖 = 𝛼|𝑋𝑖,𝑗 = 𝑗] =
𝑤𝛼

1 + 𝑤(𝒜) + 𝑤𝑖

(5.9)

Pr [𝑋𝑖 = 𝛼|𝑋𝑖,𝑗 = 𝛽] = 0 for 𝛽 ̸= 𝛼, 𝑗 . (5.10)

∙ Defining 𝑋|𝑋𝑖. Our construction is similar to the previous case, and for any

172

product 𝛼 ∈ 𝒜 ∪ {0}, we define:

Pr [𝑋 = 𝛼|𝑋𝑖 = 𝛼] = 1 , (5.11)

Pr [𝑋 = 𝛼|𝑋𝑖 = 𝑖] =
𝑤𝛼

1 + 𝑤(𝒜)
. (5.12)

Pr [𝑋 = 𝛼|𝑋𝑖 = 𝛽] = 0 for 𝛽 ̸= 𝛼, 𝑖 . (5.13)

The next lemma, whose proof is given in Appendix C.3.3, states that this coupling

method indeed preserves the (marginal) MNL purchase probabilities for each initial

offer set.

Claim 5.3.3. 𝑋𝑗 ∼ 𝑃𝑗, 𝑋𝑖,𝑗 ∼ 𝑃𝑖,𝑗, 𝑋𝑖 ∼ 𝑃𝑖, and 𝑋 ∼ 𝑃 .

In addition, we establish several equivalence properties that will prove useful for

the analysis, stating that the purchase random variables 𝑋, 𝑋𝑖, and 𝑋𝑗 are invariant

in distribution when conditioned on appropriate events of 𝑋𝑖,𝑗. The proof of the next

lemma appears in Appendix C.3.4.

Claim 5.3.4. (𝑋𝑗|𝑋𝑖,𝑗 = 𝑖) ∼ 𝑋𝑗, (𝑋𝑖|𝑋𝑖,𝑗 = 𝑗) ∼ 𝑋𝑖, (𝑋|𝑋𝑖,𝑗 = 𝑖) ∼ 𝑋, and

(𝑋|𝑋𝑖,𝑗 = 𝑗) ∼ 𝑋.

5.3.2.2 Proving restricted monotonicity

We prove that the revenue function 𝑓𝑀 is restricted-non-decreasing by an inductive ar-

gument. To better understand which sufficient properties come into play, the proof is

broken down into two lemmas: we first examine the case of a single arriving customer,

before extending our arguments to any random variable 𝑀 . It is worth mentioning

that this property holds regardless of how 𝑀 is distributed, whether IFR or not.

Lemma 5.3.5. In the expensive-products setting, the static expected revenue function

𝑓1 is restricted-non-decreasing.

Proof. It is easy to verify that the restricted-non-decreasing property is equivalent

to having 𝑓1(𝑆 ∪ {𝑖}) ≥ 𝑓1(𝑆) for any subset 𝑆 of size at most 𝐶 − 1 and any unit

173

𝑖. Observe that, if the product corresponding to 𝑖 is stocked by 𝑆, we clearly have

𝑓1(𝑆 ∪ {𝑖}) = 𝑓1(𝑆). When this product is not stocked in 𝑆,

𝑓1 (𝑆 ∪ {𝑖})− 𝑓1 (𝑆) =
𝑟𝑖𝑤𝑖

1 + 𝑤(𝒜) + 𝑤𝑖

+
∑︁

𝑘∈𝑆

𝑟𝑘𝑤𝑘 ·
(︂

1

1 + 𝑤(𝒜) + 𝑤𝑖

− 1

1 + 𝑤(𝒜)

)︂

=
𝑤𝑖

1 + 𝑤(𝒜) + 𝑤𝑖

·
(︃
𝑟𝑖 −

∑︁

𝑘∈𝑆

𝑟𝑘𝑤𝑘

1 + 𝑤(𝒜)

)︃

=
𝑤𝑖

1 + 𝑤(𝒜) + 𝑤𝑖

· (𝑟𝑖 − 𝑓1 (𝑆)) . (5.14)

This proves the desired inequality, since 𝑟𝑖 ≥ OPTstatic ≥ 𝑓1(𝑆), where the former

inequality follows from 𝑖 being an expensive product, and the latter holds since the

assortment 𝒜 stocked by 𝑆 has fewer than 𝐶 products (all expensive), implying

that its static expected revenue is at most OPTstatic, which stands for the maximum

possible static revenue when we are allowed to stock at most 𝐶 products (expensive

and cheap).

Lemma 5.3.6. For any instance of the dynamic assortment planning problem where

the static revenue function 𝑓1 is restricted-non-decreasing, the revenue function 𝑓𝑀 is

restricted-non-decreasing as well, for any demand random variable 𝑀 .

Proof. The preliminary observation is that, by the formula of conditional expectation,

it is sufficient to prove the desired property for a deterministic value of 𝑀 . Also, as

noted earlier, it is sufficient to prove that 𝑓𝑀(𝑆1) ≤ 𝑓𝑀(𝑇1) for any two initial offer

sets 𝑆1 ⊆ 𝑇1 ⊆ [𝑁] with cardinality at most 𝐶, that differ by at most one unit, i.e.,

|𝑇1 ∖ 𝑆1|≤ 1.

To this end, we leverage our coupling method for the purchase random variables,

constructed in Section 5.3.2.1, to derive a coupling of the consumption processes under

the initial subsets 𝑆1 and 𝑇1. Let 𝑆1, . . . , 𝑆𝑀 and 𝑇1, . . . , 𝑇𝑀 be the (random) residual

subsets of inventory units facing customers 1, . . . ,𝑀 , when respectively stocking the

initial subsets 𝑆1 and 𝑇1. We denote by𝒜1, . . . ,𝒜𝑀 and ℬ1, . . . ,ℬ𝑀 the corresponding

sequences of assortments.

We wish to define a coupling of these random variables such that 𝑆𝑘 ⊆ 𝑇𝑘 and

174

|𝑇𝑘 ∖ 𝑆𝑘|≤ 1, at each arrival 𝑘 ∈ [𝑀]. This coupling is constructed inductively over

the sequence of arrivals, by refining at each step our probabilistic space with respect

to the next arriving customer. Since the desired properties are clearly satisfied for

the base case 𝑘 = 1 by definition of 𝑆1 and 𝑇1, suppose the inductive hypothesis

holds until the 𝑘-th arrival. If 𝑆𝑘 = 𝑇𝑘, it is easy to see that the inductive property

propagates to the next arrivals, since the purchases made in the two consumption

processes are identical. Otherwise, let 𝑖 be the (single) unit contained in 𝑇𝑘 ∖ 𝑆𝑘. For

the next arriving customer, we distinguish between two cases:

∙ Product 𝑖 is contained in 𝒜𝑘. As a result, the 𝑘-th arriving customer is facing

the same assortment under both offer sets 𝑆𝑘 and 𝑇𝑘, i.e., 𝒜𝑘 = ℬ𝑘. Here, the

purchase random variable 𝑋 (with 𝑆 = 𝑆𝑘) defines a trivial coupling of the

purchases made by the first arriving customer in both cases, in the sense that

the purchases are identical and described by the outcomes of 𝑋 with respect to

𝒜𝑘. Consequently, the random residual sets facing the next arriving customer

satisfy 𝑆𝑘+1 ⊆ 𝑇𝑘+1 since 𝑆𝑘 ⊆ 𝑇𝑘 and the same unit of product 𝑋 can be

purchased in both cases. In addition, we have |𝑇𝑘+1 ∖ 𝑆𝑘+1|= |𝑇𝑘 ∖ 𝑆𝑘|≤ 1.

∙ Product 𝑖 is not contained in 𝒜𝑘. In this case, taking 𝑆 = 𝑆𝑘 and 𝒜 = 𝒜𝑘, we

use the coupling of 𝑋 and 𝑋𝑖 as a joint distribution for the purchases made by

the first arriving customer under the sets 𝑆𝑘 and 𝑇𝑘, respectively. By definition

of 𝑋|𝑋𝑖, observe that if the customer faced with 𝑇𝑘 purchases a product in

𝒜 ∪ {0}, i.e., 𝑋𝑖 ∈ 𝒜 ∪ {0}, then the customer faced with 𝑆𝑘 purchases the

same product, i.e., 𝑋 = 𝑋𝑖 (in Figure 5-1, there is a single horizontal edge

going into each white node of 𝑋, describing the same purchase option in 𝑋 and

𝑋𝑖). Indeed, our coupling entails that Pr[𝑋 = 𝑋𝑖|𝑋𝑖 ∈ 𝒜 ∪ {0}] = 1 due to

equation (5.11). As a result, since the 𝑘-th customer purchases the same unit

in both cases, the inductive hypothesis implies that 𝑆𝑘+1 ⊆ 𝑇𝑘+1. On the other

hand, the event {𝑋𝑖 = 𝑖} means that the customer faced with 𝑇𝑘 purchases the

last unit of product 𝑖, and thus, conditional to this event, the remaining set of

units is necessarily 𝑇𝑘+1 = 𝑇𝑘 ∖ {𝑖} = 𝑆𝑘, which clearly leads to 𝑆𝑘+1 ⊆ 𝑇𝑘+1.

175

In both cases, we have preserved the invariant |𝑇𝑘+1 ∖ 𝑆𝑘+1|≤ 1.

We have just obtained a coupling of the consumption processes such that 𝑆𝑘 ⊆ 𝑇𝑘

and |𝑇𝑘 ∖ 𝑆𝑘|≤ 1 for every 𝑘 ∈ [𝑀]. By exploiting this inclusion property between

subsets of units, we now prove that 𝑓𝑀(𝑆1) ≤ 𝑓𝑀(𝑇1). To this end, a natural trans-

formation of the expected revenue function is

𝑓𝑀(𝑆1) =
𝑀∑︁

𝑘=1

E [𝑓1(𝑆𝑘)] , (5.15)

where the overall expected revenue breaks down into the sum of expected revenues

generated by customers 1, . . . ,𝑀 , faced by the random residual sets of units 𝑆1, . . . , 𝑆𝑀 ,

respectively. Using a similar transformation for 𝑇1, we have

𝑓𝑀 (𝑇1)− 𝑓𝑀 (𝑆1) =
𝑀∑︁

𝑘=1

E [𝑓1(𝑇𝑘)− 𝑓1(𝑆𝑘)] .

Therefore, since 𝑓1 is assumed to be restricted-non-decreasing, and 𝑆𝑘 ⊆ 𝑇𝑘, the

latter expression is non-negative, meaning that the restricted-non-decreasing property

extends to 𝑓𝑀 .

5.3.2.3 Proving restricted submodularity

We now show that the transformed revenue function 𝑓𝑀 is also restricted-submodular,

regardless of how 𝑀 is distributed, by exploiting the coupling method described in

Section 5.3.2.1. We first examine the static case, before extending the desired property

to any demand random variable.

Lemma 5.3.7. For any instance of the dynamic assortment planning problem where

the static expected revenue function 𝑓1 is restricted-non-decreasing, this function is

restricted-submodular.

Proof. Let 𝑆 ⊆ [𝑁] be a set with |𝑆|≤ 𝐶 − 2, 𝒜 is the assortment stocked by 𝑆 and

let 𝑖 ̸= 𝑗 be two units in [𝑁] ∖𝑆. In order to prove that 𝑓1(𝑆 ∪{𝑖, 𝑗})− 𝑓1(𝑆 ∪{𝑗}) ≤
𝑓1(𝑆 ∪ {𝑖})− 𝑓1(𝑆), we distinguish between four cases:

176

1. Product 𝑖 is contained in 𝒜. Adding unit 𝑖 to any subset of units containing 𝑆

leaves us with the same assortment𝒜, meaning that 𝑓1(𝑆∪{𝑖, 𝑗})−𝑓1(𝑆∪{𝑗}) =

𝑓1(𝑆 ∪ {𝑖})− 𝑓1(𝑆) = 0.

2. Product 𝑗 is contained in 𝒜, product 𝑖 is not. In this case, adding unit 𝑗 to any

subset containing 𝑆 leaves us with the same assortment, thus 𝑓1(𝑆 ∪ {𝑖, 𝑗}) −
𝑓1(𝑆 ∪ {𝑖}) = 𝑓1(𝑆 ∪ {𝑗})− 𝑓1(𝑆).

3. Units 𝑖 and 𝑗 are of the same product, not contained in 𝒜. Here, we observe

that 𝑓1(𝑆 ∪ {𝑖, 𝑗}) − 𝑓1(𝑆 ∪ {𝑗}) = 0 while 𝑓1(𝑆 ∪ {𝑖}) − 𝑓1(𝑆) ≥ 0 since 𝑓1 is

restricted-non-decreasing.

4. Products 𝑖 and 𝑗 are different, and both not contained in 𝒜. By calculations

similar to those leading to equation (5.14), we get

𝑓1 (𝑆 ∪ {𝑖, 𝑗})− 𝑓1 (𝑆 ∪ {𝑗}) =
𝑤𝑖

1 + 𝑤(𝒜) + 𝑤𝑖 + 𝑤𝑗

· (𝑟𝑖 − 𝑓1 (𝑆 ∪ {𝑗}))

≤ 𝑤𝑖

1 + 𝑤(𝒜) + 𝑤𝑖

· (𝑟𝑖 − 𝑓1 (𝑆))

= 𝑓1 (𝑆 ∪ {𝑖})− 𝑓1 (𝑆) ,

where the inequality above holds since 𝑓1 is restricted-non-decreasing, thus

𝑓1(𝑆 ∪ {𝑗}) ≥ 𝑓1(𝑆).

Lemma 5.3.8. For any instance of the dynamic assortment planning problem where

the static expected revenue function 𝑓1 is restricted-non-decreasing, the revenue func-

tion 𝑓𝑀 is restricted-submodular as well, for any demand random variable 𝑀 .

Proof. By the formula of conditional expectations, we restrict attention to determin-

istic values of 𝑀 without loss of generality, and prove the claim by induction on 𝑀 .

Since the case 𝑀 = 1 corresponds to Lemma 5.3.7, suppose that restricted submodu-

larity has been established for 𝑀 − 1 arrivals. We show that, for any subset 𝑆 ⊆ [𝑁]

177

of cardinality at most 𝐶 − 2, and units 𝑖 ̸= 𝑗 ∈ [𝑁] ∖ 𝑆,

𝑓𝑀 (𝑆 ∪ {𝑖, 𝑗})− 𝑓𝑀 (𝑆 ∪ {𝑗}) ≤ 𝑓𝑀 (𝑆 ∪ {𝑖})− 𝑓𝑀 (𝑆) . (5.16)

The proof consists of the same case analysis made for the proof of Lemma 5.3.7. In

what follows, we only discuss the most difficult case, where products 𝑖 and 𝑗 are

different and not contained in the assortment 𝒜 stocked by 𝑆. The additional cases

have nearly-identical proofs and are not presented here to avoid redundancy.

A particularly instructive observation is that, for any subset of units 𝑇 ⊆ [𝑁],

the expected revenue function decomposes into the contribution due to the purchase

made by the first arriving customer, and that associated with the residual subset

of units and the remaining customers arrivals. Formally, letting 𝑅𝑀(𝑇) denote the

random revenue obtained after 𝑀 arriving customer facing an initial subset 𝑇 , and

using 𝑌 to designate the product purchased by the first arriving customer, we have

𝑓𝑀(𝑇) = E [𝑅𝑀(𝑇)] = E [𝑟𝑌] + E [𝑅𝑀−1 (𝑇 ∖ {𝑌 })] . (5.17)

In what follows, for ease of notation, we denote 𝑆+𝑖 = 𝑆 ∪ {𝑖}, 𝑆+𝑗 = 𝑆 ∪ {𝑗}, and

𝑆+𝑖𝑗 = 𝑆 ∪ {𝑖, 𝑗}. In order to derive inequality (5.16), we make use of the revenue

decomposition (5.17) under different initial subsets 𝑆, 𝑆+𝑖, 𝑆+𝑗, and 𝑆+𝑖𝑗, along with

their corresponding purchase random variables 𝑋, 𝑋𝑖, 𝑋𝑗, and 𝑋𝑖,𝑗.

By conditioning the revenue random variable with respect to 𝑋𝑖,𝑗, we leverage our

coupling method of Section 5.3.2.1 to explicitly compare the random purchases made

by the first arriving customer under different initial subsets, and establish the next

claim. Finally, the desired inequality (5.16) comes at an immediate consequence of

this claim, combined with the formula of conditional expectations.

Claim 5.3.9. E[𝑅𝑀(𝑆+𝑖𝑗)−𝑅𝑀(𝑆+𝑗)|𝑋𝑖,𝑗 = 𝛼] ≤ E[𝑅𝑀(𝑆+𝑖)−𝑅𝑀(𝑆)|𝑋𝑖,𝑗 = 𝛼]

Proof of Claim 5.3.9. We present here the case where 𝛼 ∈ 𝒜 ∪ {0}, the other cases

being treated through similar arguments in Appendix C.3.5. We begin by observing

that, conditional on the event {𝑋𝑖,𝑗 = 𝛼} where 𝛼 ∈ 𝒜 ∪ {0}, we necessarily have

178

𝑋𝑗 = 𝑋𝑖,𝑗 = 𝑋𝑖 = 𝑋 = 𝛼. Indeed, in the transition graph of the Markov chain

(Figure 5-1), observe that there is a single horizontal path going through each white

node of𝑋𝑖,𝑗, that describes the same purchase option across all variables. Formally, by

equation (5.8), observe that Pr [𝑋𝑖 = 𝛼|𝑋𝑖,𝑗 = 𝛼] = 1, while equation (5.11) implies

that Pr [𝑋 = 𝛼|𝑋𝑖 = 𝛼] = 1. Finally, Pr [𝑋𝑗 = 𝛼|𝑋𝑖,𝑗 = 𝛼] = 1 follows from Bayes

rule, using equation (5.6) along with the marginal distributions of 𝑋𝑗 and 𝑋𝑖,𝑗, which

are described by the MNL model (see Claim 5.3.3). Thus, we obtain:

E
[︀
𝑅𝑀

(︀
𝑆+𝑖𝑗

)︀
−𝑅𝑀

(︀
𝑆+𝑗
)︀⃒⃒
𝑋𝑖,𝑗 = 𝛼

]︀

= E
[︀
𝑟(𝑋𝑖,𝑗 |𝑋𝑖,𝑗=𝛼) +𝑅𝑀−1

(︀
𝑆+𝑖𝑗 ∖ {𝛼}

)︀]︀
− E

[︀
𝑟(𝑋𝑗 |𝑋𝑖,𝑗=𝛼) +𝑅𝑀−1

(︀
𝑆+𝑗 ∖ {𝛼}

)︀]︀

= E
[︀
𝑅𝑀−1

(︀
𝑆+𝑖𝑗 ∖ {𝛼}

)︀
−𝑅𝑀−1

(︀
𝑆+𝑗 ∖ {𝛼}

)︀]︀

≤ E
[︀
𝑅𝑀−1

(︀
𝑆+𝑖 ∖ {𝛼}

)︀
−𝑅𝑀−1 (𝑆 ∖ {𝛼})

]︀

= E
[︀
𝑅𝑀

(︀
𝑆+𝑖
)︀
−𝑅𝑀 (𝑆)

⃒⃒
𝑋𝑖,𝑗 = 𝛼

]︀
, (5.18)

where the first equality proceeds from equation (5.17), the second equality holds

since the terms 𝑟(𝑋𝑖,𝑗 |𝑋𝑖,𝑗=𝛼) = 𝑟(𝑋𝑗 |𝑋𝑖,𝑗=𝛼) = 𝑟𝛼 cancel out, the next inequality is due

to the inductive hypothesis (5.16), and the last equality is analogous to the first two

equalities (in reverse order).

5.3.2.4 Improved performance guarantees for special settings

A close examination of the statements of Lemmas 5.3.6, 5.3.7, and 5.3.8 reveals that,

for any integer 𝑠 ∈ [𝑁], the static expected revenue function 𝑓1 being restricted-𝑠-non-

decreasing is a sufficient condition for 𝑓𝑀 to be both restricted-𝑠-non-decreasing and

restricted-𝑠-submodular. Hence, when 𝑓1 is non-decreasing in the standard sense,

it follows that the function 𝑓𝑀 is non-decreasing and submodular. In such cases,

the standard analysis of the greedy algorithm for monotone submodular maximiza-

tion (Nemhauser et al. 1978), with appropriately-chosen error and confidence pa-

rameters for the evaluation oracle, provides an improved performance guarantee of

179

(1− 𝜖) · (1− 1/𝑒).

It is worth mentioning that the expensive-products problem naturally satisfies this

condition when 𝐶 ≥ 𝑛. Indeed, by Lemma 5.3.5, we know that 𝑓1 is restricted-𝑛-

non-decreasing. Now, consider a transformation that maps each set 𝑆 ⊆ [𝑁] to the

subset 𝑆 ⊆ 𝑆 obtained by keeping the lowest-index unit of each product stocked by 𝑆.

Clearly, this transformation preserves the static expected revenue, i.e., 𝑓1(𝑆) = 𝑓1(𝑆),

while ensuring that 𝑆 has at most 𝑛 units. Consequently, for any subsets 𝑆 ⊆ 𝑇 ⊆ [𝑁],

we infer that 𝑓1(𝑆) = 𝑓1(𝑆) ≤ 𝑓1(𝑇) = 𝑓1(𝑇) since 𝑓1 is restricted-𝑛-non-decreasing

and 𝑆 ⊆ 𝑇 .

This condition is also satisfied when the assortment of products has been chosen

in advance by solving the standard assortment optimization problem under the MNL

model, and it remains to set their inventory levels. It is easy to verify that 𝑓1 is non-

decreasing when the entire collection of products forms an optimal static assortment.

5.3.3 Competing against cheap products

In this section, we construct an inventory vector 𝑈𝒞 that guarantees a constant frac-

tion of the expected revenue of 𝑈*
𝒞 , which stands for the projection of the optimal

inventory 𝑈* on the cheap products. We begin by presenting the algorithm before

stating the performance guarantee obtained.

5.3.3.1 Algorithm

Step 1: Computing an optimal static assortment. As explained in Sec-

tion 5.3.1, we begin by optimally solving the standard assortment planning problem,

subject to a capacity constraint of 𝐶 on the number of products offered (Megiddo

1979, Rusmevichientong et al. 2010, Davis et al. 2013). Recall that the corresponding

optimal static assortment, that generates an expected revenue of OPTstatic, is denoted

by 𝒜*. We now highlight a basic property of optimal static assortments, claiming that

only expensive products are being stocked.

Claim 5.3.10. 𝒜* ⊆ ℰ.

180

This property follows from existing work on the capacitated assortment optimiza-

tion problem under the MNL model (see Proposition 1 of Talluri and van Ryzin (2004)

and endnote 2 of Rusmevichientong et al. (2010)). For completeness, we provide a

short proof in Appendix C.3.6.

Step 2: Deriving a newsvendor-like lower bound. To derive a lower bound,

we will neglect the effects of dynamic substitution, and consider a setting where

customers purchase their most preferred product until it stocks out. Specifically,

suppose that 𝑈 is an initial inventory vector stocking only units in the assortment

𝒜*. Then, for any product 𝑖 ∈ 𝒜*, the probability that an arriving customer purchases

that product is at least 𝜓𝑖 = 𝑤𝑖/(1 +𝑤(𝒜*)), regardless of the inventory levels of the

other products, as long as product 𝑖 has not stocked out. Indeed, as the inventory

vector is depleted due to previously-arriving customers, this can only increase the

probability of each remaining product to be consumed by the next customer. To better

understand the latter claim, consider two assortments 𝒜 ⊆ 𝒜. The probability that

an arriving customer purchases a unit of product 𝑖 ∈ 𝒜, when faced with assortment

𝒜, is 𝑤𝑖/(1 +𝑤(𝒜)). By inclusion, this quantity is smaller or equal to 𝑤𝑖/(1 +𝑤(𝒜)),

namely the probability of picking 𝑖 among the assortment 𝒜.

Consequently, the number of units purchased from 𝑖 if this product had an un-

limited number of units is stochastically larger than the binomial random variable

𝑌𝑖 ∼ 𝐵(𝑀,𝜓𝑖). However, since product 𝑖 has only 𝑢𝑖 units, we will actually be con-

sidering the truncated random variable 𝑌𝑖(𝑢𝑖) = min{𝑌𝑖, 𝑢𝑖}. Therefore, we obtain

the following lower bound:

E [ℛ (𝑈)] ≥
∑︁

𝑖∈𝒜*

𝑟𝑖 · E
[︀
𝑌𝑖(𝑢𝑖)

]︀
. (5.19)

This lower bound can be interpreted as the objective function of a multi-item newsven-

dor problem, where the demand is separable across the products of 𝒜*. In what

follows, this function is denoted by ℒ(𝑈) =
∑︀

𝑖∈𝒜* 𝑟𝑖 · E
[︀
𝑌𝑖(𝑢𝑖)

]︀
.

181

Step 3: Computing 𝑈𝒞 by greedily optimizing the lower bound. Finally, the

inventory vector 𝑈𝒞, used to compete against cheap products, is constructed by solv-

ing the multi-item newsvendor instance defined above. That is, we compute 𝑈 that

maximizes ℒ(𝑈), subject to
∑︀

𝑖∈𝒜* 𝑢𝑖 ≤ 𝐶. This optimization problem can be solved

exactly by a standard greedy procedure (see Muckstadt and Sapra (2010, Chap. 5)).

Namely, starting from an empty inventory vector, units are added iteratively until

reaching the capacity 𝐶, by picking at each step the unit with largest marginal con-

tribution to the objective function. In contrast to the original expected revenue, for

any inventory vector 𝑈 the lower bound ℒ(𝑈) can be computed by a simple dynamic

program in polynomial time.

5.3.3.2 Performance guarantee

The remainder of this section is devoted to proving the next theorem, showing that

𝑈𝒞 competes against the expected revenue of cheap products 𝑈*
𝒞 .

Theorem 5.3.11. E[ℛ(𝑈𝒞)] ≥ (1/4) · E[ℛ(𝑈*
𝒞)].

Our analysis proceeds by comparing an upper bound on E[ℛ(𝑈*
𝒞)] with a lower

bound on E[ℛ(𝑈𝒞)], using the IFR property. It bears some resemblance to the analysis

of Chapter 4, combined with additional structural properties of the MNL choice

model.

Upper bound on the expected revenue of 𝑈*
𝒞 . The important observation

is that, when initially stocking at most 𝐶 units of cheap products, each arriving

customer will generate an expected revenue of at most OPTstatic. As a result, the

expected revenue of 𝑈*
𝒞 is upper bounded by E[𝑀] · OPTstatic. In addition, since all

cheap products have by definition selling prices smaller than OPTstatic, another upper

bound on the expected revenue of 𝑈*
𝒞 is 𝐶 ·OPTstatic. Therefore,

E [ℛ (𝑈*
𝒞)] ≤ OPTstatic ·min {𝐶,E [𝑀]} . (5.20)

182

Lower bound on the expected revenue of 𝑈𝒞. To define our lower bound, we

begin by introducing an inventory vector 𝑈∝, where the inventory levels are scaled

proportionally to their revenue contribution toward OPTstatic. Ideally, for each prod-

uct 𝑖 ∈ 𝒜*, the inventory level of 𝑖 represents a fraction of 𝑟𝑖𝜓𝑖/OPTstatic of the total

capacity 𝐶 (recalling that 𝜓𝑖 = 𝑤𝑖/(1 + 𝑤(𝒜*))). Hence, we would have liked to

define the vector 𝑈̃ , where 𝑢̃𝑖 = (𝑟𝑖𝜓𝑖/OPTstatic) ·𝐶. However, this quantity may not

be integral, and is therefore rounded up to the nearest integer, creating the vector

𝑈∝. That is, 𝑢∝𝑖 = ⌈𝑢̃𝑖⌉ for every product 𝑖 ∈ 𝒜*, and 𝑢∝𝑖 = 0 otherwise. Due to our

rounding procedure, the overall number of units stocked by 𝑈∝ exceeds the capacity

𝐶 by a factor of at most 2 since

∑︁

𝑖∈𝒜*

𝑢∝𝑖 =
∑︁

𝑖∈𝒜*

⌈𝑢̃𝑖⌉ ≤
∑︁

𝑖∈𝒜*

𝑢̃𝑖 + |𝒜*|≤ 𝐶

OPTstatic

·
∑︁

𝑖∈𝒜*

𝑟𝑖𝜓𝑖 + |𝒜*|≤ 2𝐶 . (5.21)

Since the newsvendor-like objective function ℒ has diminishing marginals (Muckstadt

and Sapra 2010, Chap. 5), we infer that ℒ(𝑈∝) ≤ 2 · ℒ(𝑈𝒞) by observing that 𝑈𝒞 is

an optimal inventory vector for ℒ with 𝐶 units, while 𝑈∝ has at most 2𝐶 units.

Therefore, by the lower bound (5.19),

E [ℛ (𝑈𝒞)] ≥ ℒ (𝑈𝒞) ≥ ℒ (𝑈∝)

2
. (5.22)

Comparing the upper bound (5.20) with the lower bound (5.22). In the next

claim, we leverage the structure of 𝑈∝ as well as the IFR property to obtain a lower

bound on the marginal contribution of each product in 𝒜* toward ℒ(𝑈∝). The proof

is given in Appendix C.3.7

Claim 5.3.12. For every product 𝑖 ∈ 𝒜*, E[𝑌𝑖(𝑢
∝
𝑖)] ≥ (1/2) ·min{𝑢∝𝑖 ,E[𝑌𝑖]}.

183

By plugging Claim 5.3.12 into the lower bound stated in (5.22), we conclude that

E [𝑅 (𝑈𝒞)] ≥ 1

4
·
∑︁

𝑖∈𝒜*

𝑟𝑖 ·min {𝑢∝𝑖 ,E [𝑌𝑖]}

≥ 1

4
·
∑︁

𝑖∈𝒜*

𝑟𝑖 ·min {𝑢̃𝑖,E [𝑀] · 𝜓𝑖}

=
1

4
·
∑︁

𝑖∈𝒜*

𝑟𝑖𝑢̃𝑖 ·min

{︂
1,

E [𝑀] ·OPTstatic

𝐶 · 𝑟𝑖

}︂

≥ OPTstatic ·min {𝐶,E [𝑀]}
4𝐶

·
∑︁

𝑖∈𝒜*

𝑢̃𝑖

≥ E [𝑅 (𝑈*
𝒞)]

4𝐶
·
∑︁

𝑖∈𝒜*

𝑢̃𝑖

=
E [𝑅 (𝑈*

𝒞)]

4
.

Here, the second inequality holds since 𝑢∝𝑖 = ⌈𝑢̃𝑖⌉, the next equality follows from the

definition of 𝑢̃𝑖, the third inequality holds since all products in 𝒜* are expensive by

Claim 5.3.10, meaning that 𝑟𝑖 ≥ OPTstatic, the fourth inequality is derived from the

upper bound in (5.20), and the last equality holds since
∑︀

𝑖∈𝒜* 𝑢̃𝑖 = 𝐶.

5.4 Computational Experiments

In this section, we show that our algorithmic approach has a superior empirical per-

formance in comparison to existing heuristics on randomly-generated instances. In

particular, substantial gains in the expected revenue are demonstrated against these

heuristics, with better computational efficiency and robustness.

5.4.1 Generative models

Products and MNL parameters. Our simulations make use of 𝑛 = 20 products

and a capacity bound of 𝐶, taking values in {25, 50, 100}. Instances of the MNL

model are constructed by considering two alternative settings, with different levels of

heterogeneity in revenues and preferences.

184

∙ Setting A: The preference weights 𝑤𝑖 are i.i.d. samples of a uniform distribution

over the interval [0, 1]. The per-unit selling prices 𝑟𝑖 are i.i.d. random samples

of a standard log-normal random variable (with 𝜇 = 0 and 𝜎 = 1).

∙ Setting B: Here, we create instances having a greater dispersion of weights

and prices. Specifically, the weights are generated through i.i.d. samples of

a standard log-normal distribution, rescaled by a factor of 1/2 to remain on

average equivalent to setting A. The per-unit selling prices 𝑟𝑖 are now sampled

from a log-normal distribution with 𝜇 = 0 and 𝜎 = 2.

The demand. The random number of arriving customers 𝑀 is generated through

two families of distributions with finite support 0, . . . , 100 = 𝑀̄ : a truncated Poisson

distribution and randomly generated nonparametric distributions. The former uses

a random variable 𝒫 ∼ Poisson(0.35 · 𝑀̄), such that 𝑀 = min{𝒫 , 𝑀̄}. The latter

nonparametric distributions are constructed as follows. To enforce the IFR property,

we generate a decreasing sequence of 𝑀̄ failure rates, each of at most 5%. To this end,

we first draw 𝑀̄ i.i.d. samples of the uniform distribution over the interval [0, 0.04],

which are next sorted by increasing values, to obtain a sequence 𝑧1 ≤ · · · ≤ 𝑧𝑀̄ .

This sequence is used to specify the failure rate Pr[𝑀 = 𝑘|𝑀 ≥ 𝑘] = 𝑧𝑘+1 for every

𝑘 ∈ [0, 𝑀̄ − 1], and in addition, Pr[𝑀 = 𝑀̄ |𝑀 ≥ 𝑀̄] = 1.

5.4.2 Tested heuristics

The performance of our algorithm is compared against five different heuristics, whose

specifics are discussed in Appendix C.4: (i) a local search heuristic similar to that

of Goyal et al. (2016); (ii) a gradient-descent approach based on a continuous extension

of the revenue function, similar in spirit to the work of Mahajan and van Ryzin (2001);

(iii) the dynamic programming formulations devised by Topaloglu (2013) for variants

of our problem; (iv) the deterministic relaxation heuristic proposed by Honhon et al.

(2010); (v) a discrete-greedy heuristic. The latter forms a natural benchmark since

our approach relies primarily on greedy decisions, with the main difference of stock-

185

ing products within a restricted set, possibly with modified objective functions. In

addition, we report the revenue performance of the subroutine used in Section 5.3.3

to compete against cheap products, that scales the inventory levels proportional to

the expected sales within an optimal static assortment.

5.4.3 Additional technical details

We implemented our algorithm, as well as the above-mentioned heuristics, using

the Python programming language. The experiments described in this section were

conducted on a standard laptop with 2.5GHz Intel Core i5 processor and 8GB of

RAM.

The number of tested instances for each combination of parameters is 20. We

impose a time limit of 1000 seconds (per instance) for every algorithm. In case this

limit is reached before termination, we use an identical rounding procedure on the

current solution. Specifically, letting 𝑈 be the best inventory vector found after

1000 seconds, 𝑈 is linearly scaled and rounded down to the nearest integral vector:

𝑈 ′
𝑖 = ⌊ 𝑈𝑖

‖𝑈‖1 · 𝐶⌋. Finally, units are greedily added to 𝑈 ′ until an inventory vector of

exactly 𝐶 units is obtained.

To approximately evaluate the expected revenue function, each call to the random

oracle results in 500 samples. Although the number of samples needed to derive our

theoretical guarantee in Lemma C.1.3 could be significantly larger, we observed in

preliminary experiments that a greater number of samples has negligible impact on the

performance of the algorithms considered. However, the gradient-descent approach

and discrete-greedy algorithm become rapidly impractical for the instances tested

when the number of samples is increased.

Relative performance. For each instance tested, obtaining an estimate of the opti-

mal expected revenue through brute-force enumeration is computationally prohibitive.

Furthermore, we are not aware of any good empirical upper bound on the optimal

expected revenue. For example, using a sample average approximation method, the

resulting problem can be formulated as an integer program. However, using a state-

186

of-the-art commercial solver (Gurobi Optimization 2015), this IP incurred running

times greater than 1 hour, even for the simplest instances with 𝑛 = 𝑀̄ = 𝐶 = 20

and 500 samples. The latter approach can be made more tractable using a relax-

ation, where a custom solution is computed for each sample-path realization through

a separate IP. However, this approach produces low quality approximations.

For these reasons, we do not estimate the exact optimality gap attained by each

algorithm. Instead, the algorithms are compared on a relative basis where, for each

instance, the benchmark is set as the expected revenue of the most profitable in-

ventory vector obtained through all 4 algorithms. Then, the relative performance

of each algorithm is defined as the ratio between its expected revenue and that of

the benchmark. For example, if our algorithm attains for a particular instance an

expected revenue of 1, while all tested heuristics generate an expected revenue of 0.9,

the relative performance is 100% for our algorithm, and 90% for the others.

5.4.4 Results

Practical performance. As shown in Table 5.1, our algorithm exhibits moderate

to substantial performance gains in comparison to the heuristics under consideration,

for all configurations. Specifically, the average performance gains of our algorithm

range from 0.2% to 35.3%. Overall, the expected revenues are increased by an average

factor of 2.4% in comparison to the proportional scaling heuristic (a subroutine of our

algorithm to compete against cheap products), 7.4% in comparison to the Poisson-

based dynamic program, 6.8% in comparison to the normal approximation-based

dynamic program, 10.3% in comparison to the deterministic relaxation, 16.4% against

the local search algorithm, 8.5% in comparison to gradient descent, and 10.4% in

comparison to discrete-greedy. In addition, our algorithm is robust, as it outperforms

all heuristics for 66% of the instances.

Although discrete-greedy is closest in spirit to our algorithm, particularly for ex-

pensive products, the relative performance gap between the two approaches is sig-

nificant. Since the discrete-greedy algorithm is given access to a larger space of

incremental actions (augmenting the inventory level of any product) at each iteration

187

Table 5.1: Average revenue performance of the different algorithms tested.

Parameters Relative revenue performance (%)

M Setting 𝐶 ALG PRO PDP NDP DET LS GD DG

Poisson

A
25 99.6 98.8 96.6 94.5 79.9 90.5 95.1 97.9
50 99.7 98.6 93.8 88.2 75.7 84.4 96.2 96.4
100 99.9 97.6 86 94 85.8 86.3 96.3 93.6

B
25 99.3 97.5 97.7 97 88.3 90.7 95.6 96.3
50 99.7 97.6 91.3 95.3 92.3 92.5 95.2 81.5
100 99.3 96.9 78.8 94.6 94.8 92 92.4 80.6

Nonparametric

A
25 98.6 91.2 97.2 90.9 88.8 86.3 80.3 98.4
50 99.5 97.3 97.9 89 90.8 68.8 91.3 94.1
100 99.9 97.3 88.8 92 90.4 64.7 86.5 81.4

B
25 98.5 96.1 95.6 92.4 96.2 87.2 92.2 93.1
50 99.9 98.4 91.4 90 93.3 75 91.4 82.9
100 100 97.5 90.5 94.8 94.2 79.3 80 73.4

Here, ALG designates our algorithm, PRO is the subroutine of our algorithm to compete against
cheap products, PDP is the dynamic program under a Poisson process, NDP is the dynamic pro-
gram under a normal approximation, DET is the deterministic relaxation, LS corresponds to the
local search heuristic, GD designates the gradient-descent approach, and DG is the discrete-greedy
algorithm. Recall that setting A describes uniformly generated preference weights with log-normal
prices (scale 𝜎 = 1), and setting B corresponds to log-normal preference weights (𝜎 = 1) with
log-normal prices (𝜎 = 2).

188

in comparison to how our greedy procedures operate (augmenting inventory levels

within restrictive assortments), this result is somewhat surprising, as one could ex-

pect that a more constrained decision space would limit the flexibility in constructing

the stocking policy. However, the numerical results reported here provide empirical

evidence that the structural restrictions imposed on the stocking policy are in fact

beneficial, not only for purposes of analysis, but also in practical settings.

It is worth noting that, as the price and weight variabilities increase from setting A

to setting B, the relative performance of the discrete-greedy and the Poisson-based

dynamic program is negatively affected. On the other hand, our algorithm along

with the deterministic relaxation, the normal approximation, and the local search

algorithm have better robustness in the face of heterogeneity. Intuitively, in such

settings, it is expected that near-optimal inventory vectors are concentrated over

fewer products. Thus, it is not surprising that the deterministic relaxation and normal

approximation turn out to be more accurate, as further corroborated by Table 5.2

below.

Random stock-outs vs. other models. Our experiments demonstrate the ben-

efits of using a realistic modeling approach, that captures the stochastic nature of

stock-out events, even though the resulting model is not solved optimally. The pro-

portional scaling heuristic, based on the optimal static assortment (and used as a sub-

routine to compete against cheap products), has a rather satisfactory performance,

which is not entirely surprising in light of the guarantees established in Section 5.3.3.

However, its average revenue loss can be as large as 7.3%, thus supporting the value

of jointly studying the assortment and inventory dynamics. As shown in Table 5.2,

the model proposed by Topaloglu (2013) tends to be less accurate for larger capacity

values as well as for larger prices and weight variabilities. These trends are more pro-

nounced for the Poisson-based dynamic program, while the normal-based algorithm

tends to be more robust. This observation suggests that the flexibility to vary the

assortment over time provides greater value to the retailer in such regimes. Inter-

estingly, the accuracy of the deterministic relaxation tends to vary in the opposite

189

direction, as a function of the different parameters. Indeed, the quality of the approx-

imation and the optimality gap often improve as we scale-up the different parameters.

One possible intuitive explanation is that fluid approximation models become more

relevant asymptotically, as well as more tractable.

Table 5.2: Average absolute approximation errors and optimality gap of the mixed
integer program.

Model Setting 𝐶 PDP NDP DET GAP

Poisson

A
25 15.9% 31.9% 5.2% 30.3%
50 29.0% 81.1% 6.6% 27.9%
100 68.5% 101.6% 1.2% 22.6%

B
25 23.8% 36.9% 2.8% 16.1%
50 81.2% 127% 2.8% 10.3%
100 1118.4% 318.8% 6.1% 14.0%

Nonparametric

A
25 17.8% 12.7% 3.8% 52.9%
50 19.2% 34.3% 2.7% 15%
100 72.4% 47.5% 4.3% 12.9%

B
25 21% 26.2% 5.1% 8.8%
50 37.7% 48.9% 4.3% 12.8%
100 81.3% 54.3% 5% 9.5%

Here, GAP refers to the MIP optimality gap for the deterministic relaxation algorithm. The other
entries are the average absolute errors when using the optimal value of the approximate models
(DP-P, NDP, and DET) as a proxy for the expected revenue obtained in our stochastic dynamic
substitution model (by the same inventory vector).

Running time. As shown in Table 5.3, the normal approximation dynamic pro-

gram emerges as the fastest algorithm tested followed by our algorithm. In theory,

the former algorithm has a running time of 𝑂(𝑛·log(𝑝max

𝑝min
)), given the bisection search,

while our algorithm runs in time 𝑂(𝑛𝐶). On average over all configurations, both

algorithms cut the running time by more than 50% against all other heuristics. The

relative efficiency of our algorithm is mainly due to the restrictive greedy rules, which

limit the actions examined prior to each incremental decision, in comparison to the

local search and discrete-greedy heuristics.

The gradient-descent algorithm is particularly inefficient from a computational

perspective, presumably due to the likely existence of local minima, where the algo-

190

rithm progresses at a slower rate towards the final solution. Furthermore, due to its

parameter dependency (step size and stopping criterion), the gradient-descent algo-

rithm poses several implementation challenges. Even though we used here the best

parameter values found by trial and error, it is still possible that fine-tuned param-

eters for each configuration could improve the performance in terms of optimality

gaps and running times. Interestingly, as mentioned above, the optimality gap of the

deterministic MIP shrinks when we increase the capacity or the price and weights

variability, possibly since the combinatorial aspects are likely to be mitigated in an

asymptotic regime, and since the LP relaxation becomes tighter.

Table 5.3: Average running time of the algorithms tested.

Parameters Average running time (sec.)*

Model Setting 𝐶 ALG PDP NDP DET LS GD DG

Poisson

A
25 99 316 57 926 702 831 239
50 205 394 103 929 630 1000 595
100 357 711 170 801 673 1000 971

B
25 52 292 58 652 320 637 239
50 91 514 107 434 256 1000 520
100 203 795 167 271 247 1000 981

Nonparametric

A
25 126 241 44 1000 572 897 332
50 307 417 93 973 415 1000 807
100 667 682 165 792 688 1000 1000

B
25 57 280 49 707 154 1000 324
50 164 437 80 664 285 1000 765
100 348 772 160 622 351 1000 1000

*Recall that every algorithm is being run with a time limit of 1000 seconds.

5.5 Concluding Remarks

Applications of restricted properties. To derive our main result, the analysis in

Section 5.3.2 unravels hidden submodularity-like properties satisfied by the expected

revenue function, and utilizes new notions of monotonicity and submodularity. One

interesting direction for future research is to investigate whether these weaker prop-

erties could be used for closely related models in dynamic assortment planning, such

191

as the Markov chain choice model (Blanchet et al. 2016), which generalizes MNL,

or a mixture of Multinomial Logits (Bront et al. 2009, Méndez-Díaz et al. 2014,

Rusmevichientong et al. 2014, Feldman and Topaloglu 2015) with fixed number of

customer types.

Approximation guarantee without IFR. It would be interesting to determine

whether a constant-factor approximation for the MNL-based dynamic assortment

planning problem can be obtained under general (non-IFR) demand distributions.

Here, we mention in passing that the methods developed in this chapter allow us

to obtain an 𝑂(log 𝑛)-approximation in this general setting, using an appropriate

decomposition of the underlying set of products, combined with greedy procedures.

The specifics of the resulting algorithm and its analysis are given in Appendix C.2.

Open questions. A natural direction for future research is that of obtaining im-

proved approximation guarantees, which seems particularly challenging through the

techniques developed in this chapter, specifically due to the optimality loss incurred

by subadditivity-based bounds. Another important theoretical question is to estab-

lish hardness of approximation results for dynamic substitution models. In fact, it

might be NP-hard to evaluate (even approximately) the expected revenue function

at a given inventory vector. That being said, due to the stochastic nature of this

problem, any complexity results along these lines would be very interesting to obtain.

Finally, given their greedy nature and scalability, the algorithms we present are ap-

plicable in a broad range of settings. These include, for instance, product-specific per-

unit costs, general knapsack constraints for storage or display, matroid/extendibility

constraints on the assortment offered, etc. For such settings (and combinations

thereof), the only requirement is being able to efficiently solve the corresponding

static formulation. However, in its current form, our worst-case analysis holds un-

der a cardinality constraint, similar to previous analytical work on approximation

algorithms for dynamic assortment planning (Goyal et al. 2016, Segev 2015). An in-

teresting open question is that of devising provably-good algorithms for more general

192

constraint structures, which seem to require further technical developments.

193

194

Chapter 6

Future Research

We conclude this thesis by briefly outlining leads for future research in the area of

choice-based revenue management. We begin by describing several open technical

problems and model extensions that arise from our current work, focusing on assort-

ment and inventory optimization models. Next, we discuss a broader set of practical

questions, which we believe are critical to the adoption of nonparametric choice mod-

els by practitioners.

Optimization problems. We summarize in what follows the main open problems

and technical challenges that stem from this thesis:

∙ Assortment optimization under uniform distributions. As shown in Chapter 2,

when the distribution over ranked lists is uniform, i.e., 𝜆1 = 𝜆2 = · · · = 𝜆𝐾 =

1/𝐾, the assortment optimization problem is APX-hard. A natural question

is whether we can obtain a constant-factor approximation in this setting. This

encoding of the assortment optimization problem might be useful in practice,

since the number of samples 𝐾 needed to obtain an accurate estimates of the

revenue function (in an additive sense) grows as 𝑂(𝑝2max/𝑝
2
min(𝑛 log(𝑛))), by

standard concentration inequalities (see Rusmevichientong et al. (2006)).

∙ Assortment optimization under conjunctive consideration set models. The con-

junctive model, where customers form their consideration sets through a se-

195

quence of eliminations in the feature space, is the most common decision pro-

cess observed in empirical settings (Gilbride and Allenby 2004, Parkinson and

Reilly 1979, Belonax and Mittelstaedt 1978, Laroche et al. 2003). In addition,

this model is of interest since any collection of consideration sets can be repli-

cated by some conjunctive process, if products are embedded in a feature space

of large enough dimension. As such, it would be interesting to investigate the

parametric complexity of assortment optimization in small dimensions, similar

to the result obtained for disjunctive consideration set models, in Chapter 3.

∙ Extension of dynamic assortment optimization models. There are three practical

extensions of the inventory optimization models discussed in Chapters 4 and 5:

(i) knapsack capacity constraint: in order to capture storage space or working

capital limitations, it would be interesting to study a general setting, where each

product has a distinct marginal consumption of the capacity; (ii) newsvendor-

like objective: instead of imposing a hard constraint on inventory, it would be

more realistic in certain settings to introduce overage and underage costs; (iii)

general demand distribution: at the exception of the nested choice model, most

of our results rely on the Increasing Failure Rate property.

Estimation and optimal learning. The estimation of parametric and nonpara-

metric choice models remains a fundamental challenge, both in theory and in practice.

One initial step is to study the identifiability of nonparametric models, that is, to es-

tablish under which sufficient (or necessary) probabilistic conditions on the choice

data and the distribution over ranked lists, the ground truth model can be uniquely

recovered. Furthermore, this class of models has not been studied through the lens of

learn-and-earn tradeoffs, to balance preference learning with revenue generation. In

particular, it would be interesting to investigate how the “optimal” distribution spar-

sity grows as a function of the learning horizon. Finally, to the best of our knowledge,

for most choice models used in revenue management, it is unknown whether we can

obtain finite-sample estimators.

196

Nonparametric choice models with context information. While this thesis

is concerned with operationalizing nonparametric choice models in decision problems,

another challenge that currently limits the practical relevance of nonparametric mod-

els in predictive tasks, is the ability to leverage context information (e.g., customer-

level covariates and product attributes). Indeed, in most applications, choice data

offers little assortment variability whereas the context information varies greatly in

the customer population, so that leveraging this side information is essential in or-

der to learn detailed distributions over ranked lists. Also, in most categories, the

number of relevant attributes is significantly smaller than the number of products.

Thus, under limited data, it is critical to reduce the estimation task to the space of

attributes.

197

198

Appendix A

Appendix of Chapter 3

A.1 Modeling the Consideration Sets

Proof of Lemma 3.4.7. To ease the exposition, we define 𝑖 as the minimal product in

𝑆, and let 𝑣 designate a customer-type in 𝑇 . By definition, there exists a customer-

type 𝑢 ∈ 𝑇 such that 𝑖 ∈ 𝐶𝑢. Also, since 𝐺[𝑆, 𝑇] is a connected subgraph,give

there exists a path between 𝑣 and 𝑢. We now define 𝑣* ∈ 𝑇 as the customer-type

in 𝑇 which satisfies 𝑖 ∈ 𝐶𝑣* and has the shortest path with 𝑣. In other terms, 𝑣*

minimizes the length of a path between 𝑣 and 𝑥 over all 𝑥 ∈ 𝑇 such that 𝑖 ∈ 𝐶𝑥. This

set is not empty because it contains customer-type 𝑢. We are going to prove that

𝐶𝑣 ∩ [𝑖] ⊂ 𝐶𝑣* ∩ [𝑖].

Let 𝑗1, 𝑗2,... 𝑗𝑙 be sequence of customer-type nodes in 𝐺[𝑆, 𝑇] corresponding to the

shortest path between 𝑣 and 𝑣*:

⎧
⎨
⎩
𝑗1 = 𝑣* and 𝑗𝑙 = 𝑣

∀𝑟 ∈ [𝑙 − 1], ∃𝑎 ∈ 𝑆 s.t. (𝑗𝑟, 𝑎, 𝑗𝑟+1) is a path of 𝐺[𝑆, 𝑇]

Let 𝑎1, 𝑎2...,𝑎𝑙−1 be the corresponding sequence of maximal intersections of the con-

sideration set of each two subsequent customer-types along this path:

∀2 ≤ 𝑟 ≤ 𝑙, 𝑎𝑟 = max[𝐶𝑗𝑟 ∩ 𝐶𝑗𝑟−1]

199

By convention, we set 𝑎1 := 𝑖. We now prove by induction over 𝑟, 2 ≤ 𝑟 ≤ 𝑙, that

𝑎𝑟 > 𝑎𝑟−1 and 𝐶𝑗𝑟 ∩ [𝑎𝑟] ⊂ 𝐶𝑗𝑟−1 ∩ [𝑎𝑟].

∙ Base case (𝑟 = 2). We first note that 𝑎1 < 𝑎2. Indeed, since 𝑖 is the minimal

element of 𝑆, we can infer that 𝑎2 ≥ 𝑖. These indices can not be equal oth-

erwise 𝑖 ∈ 𝐶𝑗2 and we would obtain a strictly shorter path between 𝑣 and 𝑗2

by considering the path (𝑗2, 𝑎3, . . . , 𝑎𝑙, 𝑗𝑙) and this contradicts the minimality of

𝑙. We now prove the inclusion. We infer from the definition of weakly laminar

consideration sets that either 𝐶𝑗1 ∩ [𝑎2] ⊂ 𝐶𝑗2 ∩ [𝑎2] or 𝐶𝑗2 ∩ [𝑎2] ⊂ 𝐶𝑗1 ∩ [𝑎2]. In

addition, item 𝑖 is contained in 𝐶𝑗1 and 𝑖 /∈ 𝐶𝑗2 , otherwise it would contradict

the minimality of the path. Since 𝑖 /∈ 𝐶𝑗2 , we can infer that 𝐶𝑗2∩[𝑎2] ⊂ 𝐶𝑗1∩[𝑎2],

which leads to the desired result.

∙ Inductive step 𝑟 > 2. We begin by assuming that 𝑎𝑟 > 𝑎𝑟−1. Again, by defini-

tion, either 𝐶𝑗𝑟 ∩ [𝑎𝑟] ⊂ 𝐶𝑗𝑟−1 ∩ [𝑎𝑟] or 𝐶𝑗𝑟−1 ∩ [𝑎𝑟] ⊂ 𝐶𝑗𝑟 ∩ [𝑎𝑟]. We assume that

the latter is satisfied to prove a contradiction. Since we assume that 𝑎𝑟 > 𝑎𝑟−1,

the latter set inclusion leads to 𝑎𝑟−1 ∈ 𝐶𝑗𝑟 . Therefore, 𝐶𝑗𝑟−2 and 𝐶𝑗𝑟 both

contain product 𝑎𝑟−1 and (𝑗𝑟−2, 𝑎𝑟−1, 𝑗𝑟) is a path of 𝐺[𝑆, 𝑇]. Thus, we can

obtain a path between 𝑣* and 𝑣 of strictly smaller length using the shortcut

(𝑗𝑟−2, 𝑎𝑟−1, 𝑗𝑟) instead of (𝑗𝑟−2, 𝑎𝑟−1, 𝑗𝑟−1, 𝑎𝑟, 𝑗𝑟). However, this would contra-

dict the minimality of 𝑙. Thus: 𝐶𝑗𝑟 ∩ [𝑎𝑟] ⊂ 𝐶𝑗𝑟−1 ∩ [𝑎𝑟].

In order to prove the above assumption that 𝑎𝑟 > 𝑎𝑟−1, we now assume that 𝑎𝑟 ≤ 𝑎𝑟−1

and prove that it leads to a contradiction. By the induction hypothesis, we know that

𝐶𝑗𝑟−1 ∩ [𝑎𝑟−1] ⊂ 𝐶𝑗𝑟−2 ∩ [𝑎𝑟−1]. Thus, if 𝑎𝑟 ≤ 𝑎𝑟−1, it follows that 𝑎𝑟 ∈ 𝐶𝑗𝑟−1 ∩ [𝑎𝑟−1].

From the above inclusion, we obtain that 𝑎𝑟 ∈ 𝐶𝑗𝑟−2 . Therefore, there is an edge

between 𝑗𝑟−2 and 𝑎𝑟 and (𝑗1, 𝑎2, 𝑗2, . . . , 𝑗𝑟−2, 𝑎𝑟, 𝑗𝑟, . . . , 𝑗𝑙) would form a path between

𝑣* and 𝑣 of strictly smaller length, which contradicts the minimality of 𝑙. We can

thus obtain that 𝑎𝑟 > 𝑎𝑟−1.

So far, for any given 𝑣 ∈ 𝑇 , we have proven the existence of 𝑣* ∈ 𝑇 such that

𝐶𝑣 ∩ [𝑖] ⊂ 𝐶𝑣* ∩ [𝑖] and 𝑖 ∈ 𝐶𝑣* . Defining 𝑇 (𝑖) as the subset of customer-types in 𝑇

that consider product 𝑖, we may verify that the collection of subsets 𝐶𝑗 ∩ [𝑖] where

200

𝑗 ∈ 𝑇 (𝑖) is nested. As a consequence, this collection admits a maximal element, that

corresponds to a customer-type 𝑗* ∈ 𝑇 . Thus, we conclude that 𝐶𝑣 ⊆ 𝐶𝑗* for any

𝑣 ∈ 𝑇 .

Proof of Theorem 3.4.9. The proof is analogous to the previously considered mod-

els. We seek to upper-bound the quantity |Φ⟨𝒮⟩|. To this end, we let (𝑆, 𝑇) be a

subproblem of 𝒮. We have

Φ(𝑆, 𝑇) = [min(𝑆)]
⋂︁ (︃⋃︁

𝑗∈𝑇

𝐶𝑗

)︃

= [min(𝑆)]
⋂︁
⎛
⎝⋃︁

𝑗∈𝑇

⋃︁

𝑒∈[𝑑]

{︀
𝑖 ∈ [𝑛] : 𝑥(𝑗)𝑒 ≥ 𝑡(𝑗)𝑒

}︀
⎞
⎠

= [min(𝑆)]
⋂︁
⎛
⎝⋃︁

𝑒∈[𝑑]

⋃︁

𝑗∈𝑇

{︀
𝑖 ∈ [𝑛] : 𝑥(𝑖)𝑒 ≥ 𝑡(𝑗)𝑒

}︀
⎞
⎠

= [min(𝑆)]
⋂︁
⎛
⎝⋃︁

𝑒∈[𝑑]

{︂
𝑖 ∈ [𝑛] : 𝑥(𝑖)𝑒 ≥ min

𝑗∈𝑇
𝑡(𝑗)𝑒

}︂⎞
⎠ ,

where the second equality follows from Definition 3.4.8, and the third equality pro-

ceeds by changing the union order. We conclude by observing that for each 𝑒 ∈ [𝑑],

the quantity min𝑗∈𝑇 𝑡
(𝑗)
𝑒 can take at most 𝐾 distinct values. Therefore, we obtain

that |Φ⟨𝒮⟩| ≤ 𝑛 ·𝐾𝑑.

A.2 Marginalized Recursion

We give here the specifics of the marginalization algorithm described in Section 3.5.

Informal sketch. By constructing and updating an appropriate data-structure,

denoted by 𝒟(𝑆, 𝑇,𝐿) ∼ 𝒟, we prevent the redundant exploration of the children

subproblems appearing in equation (3.4). Specifically, we construct recursively a

directed graph 𝒟, illustrated by Figure (A-1). To this end, each node inserted in

𝒟 is labelled by a combination of a child subproblem, and the index of the last

201

customer-type in 𝑇 (𝑖) that has been processed, termed the layer of the node. At

each step, we consider all unmarked nodes, and process their next customer-type in

𝑇 (𝑖) according to the increasing index order. The dynamic program decides whether

the current customer-type is allocated to product 𝑖 or not. Each decision entails

a graph decomposition into children subproblems according to Lemma 3.5.1. The

corresponding nodes, with the respective customer-type layer, are inserted in 𝒟 as

unmarked nodes. Also, we add directed edges connecting the father node to its

respective children nodes. The procedure terminates when it attains the maximal

layer index.

Figure A-1: Recursion step of the marginalized dynamic program.

Layers: ̀

Allocation: ̀ 2 V

No allocation: ̀ /2 V

(s, t, L0)

(s, t \ {`}, L0)

(s1, t1, L
0)

(s2, t2, L
0)

(s3, t3, L
0)

(s, t, L0)

Decomposition of

`1 > ` `2 > `1 `3 > `2

Generation of the computational tree. More formally, we assume that the

customer-types 𝑇 (𝑖) are reindexed in an arbitrary order 𝑇 (𝑖) ∼ [𝑙] where 𝑙 = |𝑇 (𝑖)|.
We introduce a directed graph data-structure 𝒟(𝑆, 𝑇,𝐿), initially set empty. (In

the following, unless ambiguity arises, it is simply denoted 𝒟 for ease of exposition.)

Each node we add to 𝒟 is uniquely labelled by a tuple (𝑗, 𝑠, 𝑡) ∈ [𝑙] × 𝒫(𝑆) × 𝒫(𝑇)

where (𝑠, 𝑡,𝐿′) is a child subproblem appearing in equation (3.4) and generated by

an allocation contained in [𝑗]. The nodes are generated by an iterative procedure

described below:

202

∙ Base case. We start with an empty graph 𝒟 ← ∅. The first nodes that we

add correspond to the empty allocation 𝑉 = ∅. Namely, for each connected

components 𝐺𝐿′ [𝑆
(∅)
𝑢 , 𝑇

(∅)
𝑢], we insert a node in 𝒟 labelled (𝑆

(∅)
𝑢 𝑇

(∅)
𝑢 , 0). We

refer to them as the roots of 𝒟.

∙ Recursive step. Assume that a node with label (𝑠, 𝑡, 𝑗) has been added to 𝒟.

The next customer-type we consider, denoted 𝑗′, is the minimum of 𝑡∩ [𝑗+1, 𝑙].

The decision made at this stage is whether customer-type 𝑗′ gets allocated to

product 𝑖 or not. In the latter case, a node (𝑠, 𝑡, 𝑗′) is inserted in 𝒟 unless it

already belongs to the data-structure. Also, we create a directed edge between

the parent node labelled (𝑠, 𝑡, 𝑗) and its descendant (𝑠, 𝑡, 𝑗′). Conversely, in

case 𝑗′ is allocated to product 𝑖, we derive the residual graph 𝐺𝐿′ [𝑠, 𝑡 ∖ {𝑗′}]
and compute its connected components. Each connected component 𝐺𝐿′ [𝑠𝑢, 𝑡𝑢]

leads to the insertion of a new node (𝑠𝑢, 𝑡𝑢, 𝑗
′) unless it already belongs to 𝒟.

Also, directed edges are added between the parent node and its descendants in

𝒟.

The graph 𝒟 built via this recursive procedure is a directed forest – a cycle-free

directed graph. Indeed, the only edges are between father nodes and their offspring.

Because the customer-type index in the node label is monotonic (𝑗′ > 𝑗), there

cannot be any cycle. Finally, we observe that the leafs of 𝒟 uniquely represent all

subproblems generated by the allocations 𝑉 ⊆ 𝑇 (𝑖). Indeed, any 𝑉 corresponds to a

sequence of binary decisions in [𝑙]. This sequence of decisions defines a collection of

paths in 𝒟 starting from the root nodes. By construction, the subproblems described

by the labels of the terminating leafs are exactly the subproblems generated by 𝑉 .

In terms of running time, each distinct subproblem shows up in at most 𝑙 nodes

of 𝒟 (and 𝑙 is smaller than 𝐾). Therefore, the total running time to generate the DP

computational tree is upper bounded by 𝑂(𝑛𝐾2 · |𝒮|).

Solving equation (3.4). Once the DP computational tree has been drawn, the

subproblems are solved backwards using the recursive formula (3.4). By exploiting

203

the data-structure 𝒟(𝑆, 𝑇,𝐿), we show in this paragraph that the maximization prob-

lem (3.4) can be recast as a low dimensional dynamic program that can be solved

efficiently. That is, at each recursive step of the master dynamic program, we solve a

separate dynamic program, termed the marginalized dynamic program.

We consider a fixed instance (𝑆, 𝑇,𝐿). Suppose that all subsequent subproblems

have been solved as we move backwards over the computational tree. For ease of

exposition, the reference to the parameters (𝑆, 𝑇,𝐿) is omitted when introducing the

marginalized dynamic program, and the notations 𝑖, 𝑇 (𝑖),𝐿′, 𝑙 and 𝒟 are consistent

with the previous definitions.

By construction, we note that for each node of 𝒟, with label 𝑞 = (𝑠, 𝑡, 𝑗), the corre-

sponding subproblem (𝑠, 𝑡,𝐿′) has been generated by at least one allocation 𝑉 ⊆ [𝑗],

that we designate as 𝑉 (𝑞). We define the value function 𝐹 (𝑞) as the optimal expected

revenue from customer-types 𝑡 in the subproblem (𝑆, 𝑇,𝐿) under the constraints that

(i) product 𝑖 is stocked and (ii) the allocation of this product 𝑉 ⊆ 𝑇 (𝑖) satisfies

the constraint 𝑉 ∩ [𝑗] = 𝑉 (𝑞), i.e., the projection of 𝑉 on [𝑗] is 𝑉 (𝑞). Let 𝑗′ be

the next customer-type for which a decision is made when examining node 𝑞, i.e.,

𝑗′ = min([𝑗 + 1, 𝑙] ∩ 𝑇). Letting 𝒩 (𝑞) denote the children nodes of 𝑞 if 𝑗′ is allocated

to product 𝑖 and 𝑞′ be the child node of 𝑞 otherwise, we obtain:

𝐹 (𝑞) = max

⎛
⎝𝐹 (𝑞′) , 𝜆𝑗′ · 𝑃𝑖 +

∑︁

𝑢∈𝒩 (𝑞)

𝐹 (𝑢)

⎞
⎠

Indeed, if customer-type 𝑗′ is allocated to product 𝑖, it generate a revenue of 𝜆𝑗′ · 𝑃𝑖

and the residual graph decomposes into the connected subgraphs described by 𝒩 (𝑞).

Conversely, if 𝑗′ is not allocated to product 𝑖, the connected subgraph is not modified

further and the revenue is that of 𝐹 (𝑞′). This is consistent with the constraint (ii) as

𝑉 (𝑞′) = 𝑉 (𝑞) when 𝑗′ is not added to the allocation.

By applying this formula inductively from the leafs of𝒟, we compute 𝐹 (𝑞1),...,𝐹 (𝑞𝑟(∅))

where 𝑞1,...,𝑞𝑟(∅) are the root nodes of 𝒟. Conditional on the fact that 𝑖 is stocked,

204

we conclude that:

𝐽(𝑆, 𝑇,𝐿) =

𝑟(∅)∑︁

𝑢=1

𝐹 (𝑞𝑢)

Therefore, equation (3.4) is equivalent to:

𝐽(𝑆, 𝑇,𝐿) = max

⎛
⎝

𝑟(−)∑︁

𝑢=1

𝐽(𝑆−
𝑢 , 𝑇

−
𝑢 ,𝐿) , max

⎡
⎣

𝑟(∅)∑︁

𝑢=1

𝐹 (𝑞𝑢)

⎤
⎦
⎞
⎠

Example with the in-tree model. To flesh out our marginalized algorithm through

a concrete model, we argue now that this approach allows to solve efficiently the in-

tree model proposed by Honhon et al. (2012). Here, each product is represented by

a node in a rooted tree 𝒯 . Each consideration set in 𝒞 corresponds to a path from

the root to a given node – we will denote by 𝐶𝑣 the consideration set formed by

the path from the root to node 𝑣 ∈ 𝒯 . We further assume that such directed paths

define the increasing preference order, namely, the farther from the root, the more

preferred is a product, thus leading to some (non-unique) ranking function 𝜎. The

processing order is chosen as the reverse permutation 𝜎̄, that is, products are pro-

cessed from the root to the descendant nodes. To argue that the marginalization is

efficient, it is sufficient to show that, for any product 𝑖 ∈ [𝑛], we can restrict attention

to allocations 𝑉 ⊆ 𝑇 (𝑖) corresponding to subtrees of product nodes (here, without

ambiguity, we can mix each customer-type with his corresponding consideration set

and its left-most product node in 𝒯). To arrive at a contradiction, suppose we have

an optimal allocation 𝑉 ⊆ 𝑇 (𝑖) with 𝐶𝑖, 𝐶𝑗 ∈ 𝑉 , where 𝑗 is a descendent of 𝑖, and 𝑘

is on the path from 𝑖 to 𝑗 although 𝐶𝑘 /∈ 𝑉 . Since product 𝑖 has been allocated to the

customer-type 𝐶𝑗, who prefers product 𝑘 over 𝑖 according to 𝜎, it follows that product

𝑘 is not contained in 𝑆(𝑉). Consequently, all product nodes between 𝑗 and 𝑘 have

been eliminated from the residual graph, and therefore the customer-type node of 𝐶𝑘

is disconnected from any (non-trivial) connected component. Thus, we can assume

without loss of generality that 𝐶𝑘 ∈ 𝑉 .

Complexity Analysis. We now derive a general upper bound on the running time.

205

Proof of Proposition 3.5.2. The proof of the first claim follows from our previous

observations. At each node (𝑆, 𝑇,𝐿) of the computational tree, the running time for

generating the graph 𝒟(𝑆, 𝑇,𝐿) along with the running time for solving the marginal-

ized DP is at most 𝑂(𝑛·𝐾2·|𝒮|). Summing over all the nodes of the DP computational

tree, we obtain a total running time of 𝑂(𝑛 ·𝐾2 · |𝒮|2).
We now derive an upper-bound on the state space size. To this end, we construct

a function Φ that maps any subproblem generated along the recursion to a subset

of products as well as a product within this set. By definition, any subproblem

(𝑆, 𝑇,𝐿) ∈ 𝒮 has been generated by a sequence of decisions whereby some products in

{1, . . . ,min (𝑆)− 1} have been stocked. We define 𝒜(𝑆, 𝑇,𝐿) as a partial assortment

of products corresponding to a sequence of decisions prior to generating subproblem

(𝑆, 𝑇,𝐿). The mapping is described as follows:

Φ : 𝒮 → 𝒫([𝑛])× [𝑛]

(𝑆, 𝑇,𝐿) ↦→ (𝒜 (𝑆, 𝑇,𝐿) ∪ 𝑆,min (𝑆))

It is sufficient to show that this function is injective to obtain the desired result.

Assume that two subproblems satisfy Φ (ℐ1) = Φ (ℐ2) where ℐ1 = (𝑆1, 𝑇1,𝐿1) and

ℐ2 = (𝑆2, 𝑇2,𝐿
′). Then, by definition:

𝑆1 = Φ(1) (ℐ1) ∩ [Φ(2) (ℐ1) , 𝑛]

= Φ(1) (ℐ2) ∩ [Φ(2) (ℐ2) , 𝑛]

= 𝑆2 .

This proves that the two subproblems have the same subsets of products. By similar

observations, we can claim that both ℐ1 and ℐ2 are generated by the same sequence

of decisions, or equivalently the same assortment 𝒜 ⊆ Φ(1) (ℐ1) ∩ [Φ(2) (ℐ1) − 1]. We

also know that 𝐿 = 𝐿′ because the truncation vector is determined by the previous

stocking decisions. As a result, the only difference between the two subproblems

could only be caused by a different sequence of allocations. Therefore, it is sufficient

206

to prove that the set of customer-types remaining in the two connected subgraphs are

exactly the same in order to obtain that ℐ1 = ℐ2. Ad absurdum, assume 𝑗 ∈ 𝑇1 ∖ 𝑇2.
Because 𝑆1 = 𝑆2, this means that customer-type 𝑗 is still unsatisfied in ℐ1 whereas it

was allocated to a product in the sequence of decisions that generates the subproblem

ℐ2. Since 𝑗 has been satisfied along the generation of the subproblem ℐ2, there exists

a product 𝑖 in 𝒜 that belongs to 𝐶𝑗. In addition, since 𝐺𝐿[𝑆1, 𝑇1] is a connected

subgraph, this means there exists an edge between node 𝑗 and a product node 𝑖′ ∈ 𝑆1.

Along the generation of subproblem ℐ1, 𝑖 has been made available to 𝑗 but it was

not allocated to customer-type 𝑗 - as a result its consideration set has been truncated

to only account for products more preferred than 𝑖: 𝐿𝑗 < 𝜎𝑗(𝑖). Thus customer 𝑗

necessarily prefers 𝑖′ over product 𝑖. On the other hand, as product 𝑖 was allocated

to customer-type 𝑗 when generating ℐ2, the product 𝑖′ has been deleted because he

prefers it over 𝑖. Thus 𝑖′ /∈ 𝑆2 and since 𝑆1 = 𝑆2, we obtain a contradiction: 𝑖′ /∈ 𝑆1.

A.3 Proof of Theorem 3.6.1

We construct a function Ψ that maps any subproblem generated along the recursion

to a tuple that lies in a space of size 22𝑑−2ℎ. By showing that Ψ is injective, we obtain

the upper bound on the size of the state space.

Specifically, assuming that (𝑆, 𝑇,𝐿) ∈ 𝒮, we define 𝑖 as the next product to be

processed in 𝑆 and 𝒜 corresponds to the assortment decisions in [𝑖−1] which generate

this subproblem. The image of (𝑆, 𝑇,𝐿) by Ψ is defined as the tuple (𝑆0, 𝑇0,𝑥,𝑦)

where:

∙ (𝑆0, 𝑇0) is the subproblem of the unique-ranking dynamic program generated

by the sequence of stocking decisions 𝒜 ∩ [𝑖 − 2𝑑] over [𝑖 − 1] and such that

𝑇 ∩ 𝑇0 ̸= ∅,

∙ 𝑥 = 𝒜 ∩ [𝑖− 2𝑑+ 1, 𝑖− 1].

∙ and 𝑦 = 𝑆 ∩ [𝑖+ 1, 𝑖+ 2𝑑− 1].

207

To prove that this mapping is injective, we show that each subproblem (𝑆, 𝑇,𝐿) is

uniquely determined by the tuple (𝑆0, 𝑇0,𝑥,𝑦).

We begin by remarking that all preference lists 𝑗 in 𝑇 do not intersect with

𝒜 ∩ [𝑖 − 2𝑑]. Otherwise, we define 𝛼 as an arbitrary product of the intersection of

𝒜 ∩ [𝑖 − 2𝑑] with 𝐶𝑗. Then, by construction, 𝐿𝑗 ≤ 𝜎𝑗(𝛼). In addition, given that

𝜎𝑗 ∈ 𝐵(𝜎, 𝑑), any product in [𝑖 − 2𝑑] is preferred over products in 𝑆 (recall that the

products are numbered according to the central permutation 𝜎, meaning that 𝜎 is the

identity). As a result, 𝜎𝑗(𝛼) < 𝜎𝑗(𝛽) for all product 𝛽 ∈ 𝑆, meaning that 𝐶𝑗(𝐿𝑗) does

not intersect with 𝑆 which contradicts the connectivity of the subgraph 𝐺𝐿[𝑆, 𝑇].

Uniqueness of 𝐿. We now argue that 𝐿 is uniquely determined by 𝑥. Indeed, if

𝑗 ∈ 𝑇 , then by the above remark, 𝐶𝑗 does not intersect with the projection of 𝒜 on

[𝑖− 2𝑑] and as result 𝐿𝑗 is a deterministic function of 𝑥:

𝐿𝑗 = min{𝜎𝑗(𝛼) : 𝛼 ∈ 𝑥}

Uniqueness of 𝑇 . We first show that 𝑇 ⊆ 𝑇0. Assume that 𝑗 ∈ 𝑇 . Using the

above remark again, we infer that 𝑗 is not satisfied and eliminated by the decisions of

stocking 𝒜∩ [𝑖−2𝑑] in the unique-ranking DP. As a result, 𝑇 is included in the set of

customer-type nodes of the residual graph obtained in the unique-ranking DP after

performing the graph operations associated with the sequence of stocking decisions

𝒜 ∩ [𝑖 − 2𝑑]. Thus, it is sufficient to verify that 𝑇 lies in a connected component

of the residual graph in order to prove that 𝑇 ⊆ 𝑇0. The key observation is that

the residual graph obtained by the stocking decisions of 𝒜 under the general DP is a

subgraph of the residual graph generated by the decisions of stocking 𝒜∩[𝑖−2𝑑] in the

unique-ranking DP. Indeed, the graph operations performed by the unique-ranking

algorithm are also performed at some step of the recursion of the general DP:

∙ Customer-type node deletions: by the above remark, any preference list that is

discarded as a result of the stocking decisions 𝒜∩ [𝑖−2𝑑] in the unique-ranking

DP is also discarded at some point of the decision sequence associated with 𝒜

208

in the general DP.

∙ Product node deletions: in the unique-ranking case, a product node is deleted

when it is processed. Given that the two algorithms follow the same processing

order, any product deleted in the unique-ranking case has also been deleted in

the general DP.

Therefore, because (𝑆, 𝑇,𝐿) is connected in the residual graph of the general DP, it is

also connected in the residual graph of the unique-ranking DP. Thus, 𝑇 ⊆ 𝑇0 and what

remains to be proven is the uniqueness of 𝑇0 ∖ 𝑇 conditional to Ψ(𝑆, 𝑇,𝐿). In fact, it

is immediate that 𝑇0 ∖ 𝑇 corresponds to the subset of preference lists nodes that get

deleted (or disconnected) due to the allocation of products 𝑥 = 𝒜∩ [𝑖− 2𝑑+ 1, 𝑖− 1].

Let 𝑗 be a preference list of 𝑇0 that satisfies 𝑥 ∩ 𝐶𝑗 ̸= ∅ while customer-type 𝑗 still

belongs to 𝑇 , meaning that 𝑗 has not been satisfied with any product of 𝑥. Let 𝛼 ∈ 𝑥

be the most preferred product of customer-type 𝑗 in 𝑥. Then, there necessarily exists

at least one product in 𝑆 ∩ 𝐶𝑗 preferred over product 𝛼 otherwise 𝐶𝑗(𝐿𝑗) ∩ 𝑆 = ∅
and the subgraph would not be connected. In fact, because the preference rankings

𝜎𝑗 are contained in 𝐵(𝜎, 𝑑), this product is at distance at most 2𝑑 from 𝛼, meaning

that it belongs to 𝑦. Reciprocally, if there exists a product in 𝑦 ∩ 𝐶𝑗 preferred over

𝛼, then it follows that 𝑗 has not been allocated to any product of 𝑥. In particular,

since 𝐶𝑗(𝐿𝑗) ∩ 𝑆 ̸= ∅, the customer-type node 𝑗 is connected with 𝑆 and thus 𝑗 ∈ 𝑇 .

This shows that 𝑇0 ∖ 𝑇 is uniquely determined as a function of the subsets 𝑥 and 𝑦,

which proves the desired result.

Uniqueness of 𝑆. In general, we have:

𝑆 =
⋃︁

𝑢∈𝑇

𝐶𝑗(𝐿𝑗) .

It immediately follows that the uniqueness of 𝑆 can be inferred from the uniqueness

of 𝑇 and 𝐿.

209

A.4 Quasi-convex Preference Lists

Claim A.4.1. For a fixed central permutation, there exists 2𝑛+1−𝑛− 2 quasi-convex

preference lists.

Proof. Let Σ(𝑛) be the set of quasi-convex preference lists over 𝑛 products. The

preference lists are uniquely defined by their consideration set and the quasi-convex

ranking function. For any fixed interval of length ℓ ∈ [𝑛], the ranking function can be

viewed as a permutation over ℓ elements: [ℓ] → [ℓ]. We now construct a mapping 𝜑

from any subset 𝑆 ⊂ [2, ℓ] to a quasi-convex permutation over the interval [ℓ]. 𝜑(𝑆)

is defined as follows:

⎧
⎨
⎩
𝜑(𝑆) is decreasing over [|𝑆|] with 𝜑(𝑆)⟨|[|𝑆|]⟩ = 𝑆

𝜑(𝑆) is increasing over [|𝑆|+ 1, 𝑛] with Φ(𝑆)⟨[|𝑆|+ 1, 𝑛]⟩ = [ℓ] ∖ 𝑆

Indeed, the quasi-convex permutation 𝜑(𝑆) is uniquely defined given its monotonicity

on each interval. It can be verified that this mapping is surjective (by taking 𝑆 equal

to the set of image values of the quasi-convex permutation on its decreasing interval

excluding the minimal value 1). Finally, it is injective by observing that if 𝜑(𝑆1) and

𝜑(𝑆2) are equal, in particular they share the same decreasing segments and 𝑆1 = 𝑆2.

Therefore, the cardinality of quasi-convex ranking functions over an interval of length

ℓ is 2ℓ−1. By remarking that there exists 𝑛 − ℓ + 1 distinct intervals of length ℓ, we

obtain:

|Σ(𝑛)| =
𝑛∑︁

ℓ=1

(𝑛− ℓ+ 1) · 2ℓ−1

= (𝑛+ 1) ·
𝑛−1∑︁

ℓ=0

2ℓ −
𝑛∑︁

ℓ=1

ℓ · 2ℓ−1

= (𝑛+ 1) · (2𝑛 − 1)− (𝑛− 1) · 2𝑛 − 1

= 2𝑛+1 − 𝑛− 2 .

210

A.5 Proof of Theorem 3.6.5

The processing order can be chosen as an arbitrary permutation - but to fix ideas, we

process the products in the increasing index order.

We incorporate to the model a ‘dummy’ preference list denoted by index 0 associ-

ated with the null utility vector 𝑢0 = 0⃗ as well as a ‘dummy’ product corresponding

to 𝑥0 = 0⃗. Also, note that in what follows, by abuse of language, a product may refer

to the corresponding graph node or its representation in the feature space.

Inductive hypothesis. We prove that each DP subproblem is characterized by a

polytope in the feature space defined by a constant number of facets, chosen among

a polynomial set of affine constraints. Specifically, we prove the following property

inductively. Suppose that (𝑆, 𝑇,𝐿) is generated along the recursion. Then, 𝐺𝐿[𝑆, 𝑇]

is the connected component of 𝐺𝐿[𝑆 ′, 𝑇 ′] that contains product node 𝑖 = min(𝑆),

where:

∙ There exists (𝑎, 𝑏, 𝑐, 𝑑) ∈ [𝑛]2 × [𝐾]2 such that 𝑆 ′ is defined as follows:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑧 = 𝑅𝑜𝑡
(︁𝜋

2
,𝑥𝑏 − 𝑥𝑎

)︁
,

𝐻(𝑎, 𝑏, 𝑐, 𝑑) =
{︀
𝑥 ∈ R2 : 𝑥 · 𝑢𝑐 ≤ 𝑢𝑐 · 𝑥𝑎, 𝑥 · 𝑢𝑑 ≤ 𝑢𝑑 · 𝑥𝑏, 𝑥 · 𝑧 ≥ 𝑥𝑎 · 𝑧

}︀
,

𝑆 ′ = {𝑗 ∈ [𝑖, 𝑛] : 𝑥𝑗 ∈ 𝐻(𝑎, 𝑏, 𝑐, 𝑑) ∖ 𝜕𝐻(𝑎, 𝑏, 𝑐, 𝑑)} .

∙ The set 𝑇 ′ is formed by all customer-types whose utility vector belongs to

the cone with extreme rays (𝑢𝑐,𝑢𝑑) (where the rays are ordered in the anti-

trigonometric order):

𝑇 ′ =
{︀
𝑗 ∈ [𝐾] : ∃𝜆1, 𝜆2 > 0 s.t. 𝑢(𝑗) = 𝜆1𝑢𝑐 + 𝜆2𝑢𝑑

}︀
.

∙ The truncation vector 𝐿 is given by:

∀𝑗 ∈ 𝑇 ′, 𝐿𝑗 = min(𝜎𝑗(𝑎), 𝜎𝑗(𝑏)) .

211

Before proving this result, observe that this property implies that there exists an

injective mapping from the state space 𝒮 to the space of 5-tuples, described by a

3-tuple of products and a pair of customer-types. As a result, we conclude that

|𝒮| = 𝑂(𝐾2𝑛3).

Base case. If (𝑆, 𝑇,𝐿) is one of the roots of the DP computational tree, no products

has been examined yet and 𝐺𝐿[𝑆, 𝑇] is a connected component of 𝐺. Then, we set

𝑎 = 𝑏 = 𝑐 = 𝑑 = 0 and 𝑖 = min(𝑆). The polyhedron 𝐻(𝑎, 𝑏, 𝑐, 𝑑) describes to the

entire space R2, 𝑆 ′ = [𝑛] and 𝑇 ′ = [𝐾]. The above property is immediately satisfied.

Recursive step. We assume that (𝑆, 𝑇,𝐿) satisfies the above properties with re-

spect to the tuple (𝑎, 𝑏, 𝑐, 𝑑) and (𝑆 ′, 𝑇 ′,𝐿). Let 𝑖 = min(𝑆) be the next item to be

examined.

If 𝑖 is not stocked in the assortment, we only need to discard product node 𝑖 from

the graph and compute the connected components of 𝐺𝐿[𝑆 ∖{𝑖}, 𝑇] to obtain the chil-

dren subproblems. Equivalently, by the induction hypothesis, any child subproblem

is a connected component of 𝐺𝐿[𝑆 ′ ∖ {𝑖}, 𝑇 ′]) and the above property is satisfied.

On the other hand, if the product 𝑖 is allocated to a subset of customer-types

𝑉 ⊆ 𝑇 (𝑖). We define 𝛼, 𝛽 as the indices corresponding to the extreme lines of the

cone 𝑐𝑜𝑛𝑣{𝑢ℎ : ℎ ∈ 𝑉 } - such that 𝑢𝛼,𝑢𝛽 are ordered in the anti-trigonometric

order. Using previous notation, any subproblem generated by the allocation 𝑉 is

a connected component of (𝑆(𝑉), 𝑇 (𝑉),𝐿′). We prove that it satisfies the desired

inductive property, either with respect to the parameters (𝑎, 𝑖, 𝑐, 𝛼), or with respect

to (𝑖, 𝑏, 𝛽, 𝑑), as illustrated by Figure A-2. In what follows, note that, by abuse of

language, utility vectors refer indifferently to vectors in the feature space, and to the

corresponding customer-types.

We begin by proving that the allocation 𝑉 necessarily corresponds to the cone of

utility vectors (𝑢𝛼,𝑢𝛽), meaning that 𝑇 (𝑉) is either contained in the cone (𝑢𝑐,𝑢𝛼) or

in the cone (𝑢𝛽,𝑢𝑑). To this end, assume that a preference list 𝑗 ∈ 𝑇 ′ has its utility

vector included in the cone (𝑢𝛼,𝑢𝛽), we seek to prove that 𝑗 ̸∈ 𝑇 (𝑉). This preference

212

Figure A-2: Recursive step: the allocation of product 𝑖 to the cone (𝑢𝛼,𝑢𝛽) gives
rise to independent subproblems, either contained in the polyhedra 𝐻(𝑎, 𝑖, 𝑐, 𝛼), or
𝐻(𝑖, 𝑏, 𝛽, 𝑑).

a b

i

H(a, b, c, d)

H(a, i, c, ↵) H(i, b, �, d)

Products Assortment
Edges of H-
polytopes Utility vectors

~u↵ ~u�

~uc ~ud

list would only pick a product whose scalar product is greater than 𝑥𝑖 · 𝑢(𝑗). Indeed,

either product 𝑖 lies the consideration set 𝐶𝑗, thus customer-type 𝑗 would only pick a

product preferred over 𝑖, or it does not belong to 𝐶𝑗 and any product it chooses has

its scalar product larger than the customer’s cut-off level. Given that customer-types

𝛼, 𝛽 are both satisfied with product 𝑖, then, all products which satisfy 𝑥 · 𝑢𝛼 ≥ 𝑥𝑖 · 𝑢𝛼

or 𝑥 · 𝑢𝛽 ≥ 𝑥𝑖 · 𝑢𝛽 have been removed. By Farkas lemma, since 𝑢(𝑗) is contained in

the cone (𝑢𝛼,𝑢𝛽), then any product 𝑥 which satisfies 𝑥 ·𝑢(𝑗) ≥ 𝑥𝑖 ·𝑢(𝑗) would satisfy

either 𝑥 · 𝑢𝛼 ≥ 𝑥𝑖 · 𝑢𝛼 or 𝑥 · 𝑢𝛽 ≥ 𝑥𝑖 · 𝑢𝛽. As a result, customer-type 𝑗 does not

prefer any product of 𝑆(𝑉) over 𝑖, meaning that customer-type node 𝑗 is disconnected

from 𝑆(𝑉). Hence, without loss of generality, we may assume that 𝑗 /∈ 𝑇 (𝑉).

We now prove that the products of 𝑆(𝑉) either lie in the polyhedron 𝐻(𝑎, 𝑖, 𝑐, 𝛼),

or within 𝐻(𝑖, 𝑏, 𝛽, 𝑑). Since all products that the customer-types 𝛼 and 𝛽 prefer over

𝑖 have been discarded, we already know that 𝑆(𝑉) is contained in the set 𝐻̄:

𝐻̄ = 𝐻(𝑎, 𝑏, 𝑐, 𝑑) ∖
(︁{︀

𝑥 ∈ R2 : 𝑥 · 𝑢𝛼 ≥ 𝑥𝑖 · 𝑢𝛼

}︀⋃︁{︀
𝑥 ∈ R2 : 𝑥 · 𝑢𝛽 ≥ 𝑥𝑖 · 𝑢𝛽

}︀)︁

Let 𝑗 ∈ 𝑇 (𝑉) designate a preference list in the residual graph. Since 𝑎, 𝑏 and 𝑖

are stocked in the assortment, the products contained in the truncated consideration

set 𝐶𝑗(𝐿
′
𝑗) necessarily have a scalar product with 𝑢(𝑗) greater than the following

quantities: 𝑥𝑎 · 𝑢(𝑗), 𝑥𝑖 · 𝑢(𝑗) and 𝑥𝑏 · 𝑢(𝑗). Equivalently, they lie in the affine half-

213

space defined by 𝑥 · 𝑢(𝑗) ≥ 𝑦, where:

𝑦 = max
(︀{︀

𝑥𝑎 · 𝑢(𝑗),𝑥𝑏 · 𝑢(𝑗),𝑥𝑖 · 𝑢(𝑗)
}︀)︀

.

By construction of the polyhedron 𝐻(𝑎, 𝑏, 𝑐, 𝑑), if 𝑢(𝑗) ∈ (𝑢𝑐,𝑢𝛼), then customer 𝑗’s

most preferred product among {𝑎, 𝑖, 𝑏} is either 𝑎 or 𝑖. Also, the intersection of 𝐻̄

with the half-space {𝑥 : 𝑥 ·𝑢(𝑗) ≥ 𝑦} is included in 𝐻(𝑎, 𝑖, 𝑐, 𝛼) and it has no product

in common with 𝐻(𝑖, 𝑏, 𝛽, 𝑑). Therefore 𝐶𝑗(𝐿
′
𝑗) is included in 𝐻(𝑎, 𝑖, 𝑐, 𝛼) and it does

not contain any product in 𝐻(𝑖, 𝑏, 𝛽, 𝑑). Conversely, if 𝑢(𝑗) ∈ (𝑢𝛽,𝑢𝑑), then customer

𝑗’s most preferred product among {𝑎, 𝑖, 𝑏} is either 𝑏 or 𝑖. In this case, 𝐶𝑗(𝐿
′
𝑗) is

included in the intersection of the affine half-space {𝑥 : 𝑥 · 𝑢(𝑗) ≥ 𝑦} with 𝐻̄, thus

it is contained in 𝐻(𝑖, 𝑏, 𝛽, 𝑑). Also, it does not contain any product in 𝐻(𝑎, 𝑖, 𝑐, 𝛼).

Combining the above two observation, since 𝑆(𝑉) is equal to the union of 𝐶𝑗(𝐿
′
𝑗) over

𝑗 ∈ 𝑇 (𝑉), we infer that any connected component of (𝑆(𝑉), 𝑇 (𝑉),𝐿′) has its products

either included in 𝐻(𝑖, 𝑏, 𝛽, 𝑑) or contained in 𝐻(𝑎, 𝑖, 𝑐, 𝛼).

To prove the desired inductive property, it remains to show that the allocation

information is fully captured by each polyhedron. By symmetry, we may focus on

𝐻(𝑖, 𝑏, 𝛽, 𝑑). Observe that the customer-type deletions give rise to the cone (𝑢𝛽,𝑢𝑑),

such that each customer-type whose utility vector lies in this cone is not discarded

at the moment. Similarly, the constraints of the polyhedra 𝐻(𝑖, 𝑏, 𝛽, 𝑑) with left-

hand side 𝑥 · 𝑢𝛽 and 𝑥 · 𝑢𝑑 capture all the product deletions active in the polyhedron

𝐻(𝑖, 𝑏, 𝛽, 𝑑). Finally, since 𝑏 and 𝑖 are the most preferred products among all products

stocked prior for any customer-type 𝑗 in the cone (𝑢𝛽,𝑢𝑑), the truncation of its

consideration sets is captured by the equality 𝐿𝑗 = min(𝜎𝑗(𝑖), 𝜎𝑗(𝑏)).

A.6 Capacitated Optimization

The approach that we have described extends to the capacitated variant of the prob-

lem. Specifically, we consider the assortment optimization problem wherein at most

𝐵 products can be stocked. This constraint represents storage or display space con-

214

straints, or the limited number of spots of a web page in the context of e-retail and

online advertising.

The complexity performance for the different model specifications analyzed in

Sections 3.4 and 3.6 carries over to the constrained setting, up to a polynomial factor.

Specifically, the problem is solved by an extension of our dynamic program. We

add a single state variable that encodes the remaining ‘capacity’ budget for each

subproblem, i.e., subproblems are duplicated to account for all possible budget values

[𝐵]. The new computational tree is inferred by adding edges between any pair of

duplicated subproblems that were previously linked by the recursive formula, as long

as the budget of the child subproblem is smaller than that of the father subproblem.

The recursive formula decides on how to spread the remaining capacity budget across

the children subproblems. We prove that, at each step of the recursion, the optimal

capacity allocation is determined by solving a shortest path problem that we explicitly

describe below. For sake of clarity we will only consider the unique-ranking case

wherein (𝑆, 𝑇,𝐿) ∼ (𝑆, 𝑇), but the reasoning is similar for the general algorithm.

State space. The state space is described by the 3-tuple (𝑆, 𝑇, 𝑏) where 𝑏 is a

new variable that encodes the maximal capacity budget. In this notation, 𝐽(𝑆, 𝑇, 𝑏)

designates the maximal expected revenue garnered from customer-types 𝑇 with an

assortment of at most 𝑏 products in 𝑆. The graph and subproblem notations remain

unchanged.

Recursion formula. The recursion formula should be generalized to account for

all potential different budget allocations. Hence, we introduce 𝐵(𝑏, 𝑟) the set of

all feasible allocations of a capacity of 𝑏 products between 𝑟 classes of customers:

𝐵(𝑏, 𝑟) = {𝑏 ∈ N𝑟 | ∑︀𝑟
𝑗=1 𝑏𝑗 = 𝑏}. The recursive formula between subproblems be-

215

comes:

𝐽(𝑆, 𝑇) = max

[︂
𝑃𝑖 ·

∑︁

𝑗∈𝑇 (𝑖)

𝜆𝑗 + max
𝑏∈𝐵(𝑏−1,𝑟(+))

𝑟(+)∑︁

𝑢=1

𝐽(𝑆+

𝑢 , 𝑇
+

𝑢 , 𝑏𝑢) , (A.1)

max
𝑏∈𝐵(𝑏,𝑟(−))

𝑟(−)∑︁

𝑢=1

𝐽(𝑆−
𝑢 , 𝑇

−
𝑢 , 𝑏𝑢)

]︂
(A.2)

Resource allocation problem. We observe that finding the optimal budget al-

locations in each max-expression (A.2) and (A.1) boils down to solving a simple

allocation problem of the form

max∑︀𝑘
𝑖=1 𝑏𝑖≤𝑏

𝑘∑︁

𝑖=1

𝑓(𝑖, 𝑏𝑖) ,

where the integral non-negative decision variables 𝑏𝑖 are coupled by a single constraint.

It is well known that this problem can be efficiently solved by means of dynamic

programming; see for instance Katoh and Ibaraki (1998).

A.7 Synthetic Computational Experiments

Generative models. The prices of products are sampled independently and iden-

tically from a log-normal distribution. The scale parameter is calibrated to reflect

realistically the variability of prices in the Shampoo product category. The probabil-

ity vector is drawn uniformly at random from the unit simplex. To generate instances

of the quasi-convex model, the collection of preference lists is formed by independent

and uniformly-distributed samples over the class of quasi-convex permutations. To

construct instances with arbitrary consideration sets, we use a random Bernoulli gen-

erator, as explained in Section 3.7.2. The ranking function is given by the increasing

price order.

Implementation of our algorithm. We use a ‘plain’ implementation of our al-

gorithm which follows the two-pass approach explained in Section 3.3. First, we

generate the computational tree using the recursive equations. Next, we compute the

216

value function by solving a maximum flow problem. In the quasi-convex case, each

subproblem is simply encoded by the latest three dynamic programming decisions,

leading to an implementation in time 𝑂(𝑛3𝐾).

A.8 State Space Collapse in Experiments

Table A.1: Relative size of the collapsed state space in comparison to naive enumer-
ation.

n K 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7

20 1000 17.8% 4.8% 1.7%
20 2000 22.5% 8.0% 3.6%
100 20 − < 0.1% < 0.1%

.

217

218

Appendix B

Appendix of Chapter 4

B.1 Additional Proofs

B.1.1 Proof of Lemma 4.2.6

In what follows, we prove a sufficient condition for subadditivity, stating that with

respect to any inventory vector, the deletion of units can only increase the consump-

tion probability of any remaining unit. Formally, any inventory vector 𝑈 is viewed

as a collection of units, each of which is a separate copy of a given product; within

units of the same product, a fixed (arbitrary) order is set, according to which they

are consumed by customers. We denote by 𝑈−𝑖 the inventory vector obtained from

𝑈 by deleting the first unit of product 𝑖, and use [ℰ𝑣|𝑈] to designate the event where

unit 𝑣 is purchased during the consumption process with the initial inventory vector

𝑈 .

Lemma B.1.1. For any inventory vector 𝑈 , any product 𝑖 ∈ [𝑛] with 𝑈𝑖 ≥ 1, and

any unit 𝑣 ∈ 𝑈−𝑖,

Pr
[︀
ℰ𝑣
⃒⃒
𝑈−𝑖

]︀
≥ Pr [ℰ𝑣|𝑈] .

Proof. Given an initial inventory vector 𝑈 , we designate by 𝑈(1), . . . , 𝑈(𝑀) the random

sequence of residual inventory levels facing each customer arrival, i.e., 𝑈(𝑚) is the

inventory vector facing the 𝑚-th arriving customer. To prove the desired claim,

219

it suffices to show that 𝑈(𝑚)(𝑤) ≥ 𝑈−𝑖
(𝑚)(𝑤) for any realization 𝑤 of the consumption

process. Here, any such realization corresponds to the specific outcomes of the number

of arriving customers 𝑀 and their choices of preference lists.

We now focus on a fixed realization 𝑤, and prove the latter claim by induction on

the arrival rank 𝑚. For 𝑚 = 1, we have by definition 𝑈(1)(𝑤) = 𝑈 > 𝑈−𝑖 = 𝑈−𝑖
(1)(𝑤).

For the general case, by the induction hypothesis, we have 𝑈(𝑚−1)(𝑤) ≥ 𝑈−𝑖
(𝑚−1)(𝑤).

Now let 𝑘 be the first product on the preference list of customer 𝑚 − 1 (picked

according to 𝑤) that is stocked by 𝑈(𝑚−1)(𝑤); we define 𝑘 =∞ when not such product

exists. As any product stocked by 𝑈−𝑖
(𝑚−1)(𝑤) is necessarily stocked by 𝑈(𝑚−1)(𝑤), there

are three cases:

1. 𝑘 =∞: Here, customer 𝑚− 1 does not purchase any unit with respect to both

𝑈(𝑚−1)(𝑤) and 𝑈−𝑖
(𝑚−1)(𝑤), meaning that 𝑈(𝑚)(𝑤) = 𝑈(𝑚−1)(𝑤) ≥ 𝑈−𝑖

(𝑚−1)(𝑤) =

𝑈−𝑖
(𝑚)(𝑤).

2. 𝑘 <∞ and product 𝑘 is stocked by both 𝑈(𝑚−1)(𝑤) and 𝑈−𝑖
(𝑚−1)(𝑤): In this case,

customer 𝑚−1 purchases a single unit of product 𝑘 in 𝑈(𝑚−1)(𝑤) and 𝑈−𝑖
(𝑚−1)(𝑤),

implying that 𝑈(𝑚)(𝑤) ≥ 𝑈−𝑖
(𝑚)(𝑤).

3. 𝑘 <∞ and product 𝑘 is stocked by 𝑈(𝑚−1)(𝑤) but not by 𝑈−𝑖
(𝑚−1)(𝑤): Even though

customer 𝑚−1 purchases a single unit of product 𝑘 in 𝑈(𝑚−1)(𝑤), the remaining

number of units stocked of this product is still greater or equal to the same

quantity with respect to the residual vector after purchasing from 𝑈−𝑖
(𝑚−1)(𝑤).

For the latter, customer 𝑚 − 1 purchases a single unit of a product different

than 𝑘 or does not purchase at all; in either case, we have 𝑈(𝑚)(𝑤) ≥ 𝑈−𝑖
(𝑚)(𝑤).

220

B.1.2 Proof of Lemma 4.2.4

The claim follows by observing that

E [𝑋] = E
[︀
min {𝑋,𝐶}+ [𝑋 − 𝐶]+

]︀

= E
[︀
𝑋̄
]︀

+ Pr [𝑋 ≥ 𝐶] · E [𝑋 − 𝐶|𝑋 ≥ 𝐶]

≤ E
[︀
𝑋̄
]︀

+ 𝛿 · E [𝑋] .

The last inequality holds since 𝑋 is IFR and since

𝛿𝐶 ≥ E
[︀
𝑋̄
]︀

= E [min{𝑋,𝐶}] ≥ 𝐶 · Pr [𝑋 ≥ 𝐶] .

B.1.3 Counter-Examples

Lemma B.1.2. Under the nested choice model and a single arrival, the set function

𝑓 : {0, 1}𝑁 → R+ is neither monotone nor submodular .

Proof. Consider the following instance: there are three products denoted by {1, 2, 3}
with respective prices 𝑃1 = 1, 𝑃2 = 2 and 𝑃3 = 3, while the total capacity is 𝐶 = 1.

We model a single customer arrival, where the list (1, 2, 3) occurs with probability

1. With a slight abuse of notation, where sets are used instead of binary sequences,

it is easy to verify that for 𝑆1 = {3} and 𝑆2 = {1, 3}, we have 𝑓(𝑆1) > 𝑓(𝑆2), and

𝑓(𝑆1 ∪ {2})− 𝑓(𝑆1) = −1 while 𝑓(𝑆2 ∪ {2})− 𝑓(𝑆2) = 0.

Lemma B.1.3. Under the nested choice model and IFR demand distributions, the

expected revenue function is not concave.

Proof. Consider the following instance: there are two products denoted by {1, 2}, with

prices 𝑃1 = 0 and 𝑃2 = 1. There are two arriving customers, each of which draws the

preference list (1, 2) with probability 1/2 and the empty list with probability 1/2. We

consider the inventory vectors (2, 0), (0, 2) and (1, 1). We observe that E [ℛ(2, 0)] = 0,

221

E [ℛ(0, 2)] = 1 and E [ℛ(1, 1)] = 1/4. As a result, we obtain that

1

2
· E [ℛ(2, 0)] +

1

2
· E [ℛ(0, 2)] > E [ℛ(1, 1)] = E

[︂
ℛ
(︂

1

2
· (2, 0) +

1

2
· (0, 2)

)︂]︂
.

Lemma B.1.4. Under the interval choice model, the revenue function is not submod-

ular, even with deterministic arrivals and uniform prices.

Proof. To construct a counterexample, we consider the collection of products {1, 2, 3}
such that 𝑃1 = 𝑃2 = 𝑃3 = 1, and define the consumption process where there are

exactly two arrivals. Each of these customers samples a preference list according to

the following distribution: with probability 1 − 𝜖, the customer chooses the list (2),

and with probability 𝜖 she chooses the list (1, 2, 3), where 𝜖 < 1/2.

For this instance, focusing on the sets of products 𝑆1 = {3} and 𝑆2 = {2, 3}, we

have E[ℛ(𝑆1 ∪{1})]−E[ℛ(𝑆1)] = 𝜖2 whereas E[ℛ(𝑆2 ∪{1})]−E[ℛ(𝑆2)] = 𝜖 · (1− 𝜖).
Note that 𝜖 · (1− 𝜖) > 𝜖2 since 𝜖 < 1/2, meaning that

E [ℛ(𝑆2 ∪ {1})]− E [ℛ(𝑆2)] > E [ℛ(𝑆1 ∪ {1})]− E [ℛ(𝑆1)] .

222

Appendix C

Appendix of Chapter 5

C.1 General Constant-Factor Approximation

The approximation algorithm proposed in Section 5.3 relies on the efficient oracle as-

sumption in order to compute the expected revenue generated by any given inventory

vector. However, for the Multinomial Logit choice model, whether or not the expected

revenue function can be evaluated in polynomial time (even approximately) is still

an open question. We work around this difficulty by decomposing the set of products

beforehand, and arguing that the terms requiring more effort from an optimization

standpoint admit a sampling-based evaluation oracle, compatible with the algorithm

developed in Section 5.3. Consequently, we establish the following theorem.

Theorem C.1.1. For any 𝜖 ∈ (0, 1/4) and 𝛿 > 0, the dynamic assortment planning

problem under the Multinomial Logit choice model with IFR demand distribution can

be approximated within a factor of 0.122 − 𝜖, with probability at least 1 − 𝛿. The

running time of our algorithm is polynomial in the input size, 𝑛1/𝜖, and 1/𝛿. When

𝐶 ≥ 𝑛, this factor can be improved to 0.151− 𝜖.

High-level overview of the algorithm. To work around the estimation obstacle,

we make use of the decomposition idea explained in Section 5.2.2. Somewhat infor-

mally, sampling procedures fail to estimate the expected revenue accurately when

there are very low probability purchase events, that require an exponential number of

223

samples to be observed. Such rare events are possible when there is large variability

between the preference weights of different products. Thus motivated, as a prelimi-

nary step, we partition the set of products into two classes, light and heavy, based on

their respective MNL preference weights.

As a result, our decomposition generates two subproblems: one instance exclu-

sively formed by heavy products, and another instance comprised of light products.

Using an appropriate estimator, we show that the expected revenue in the heavy

products instance can be efficiently approximated through sampling. Consequently,

the methods developed in Section 5.3 provide a polynomial-time randomized algo-

rithm, with a constant-factor worst-case guarantee. On the other hand, we show

that a relatively simple approximation scheme can be derived for the light products

instance.

Partition of products. To formalize this approach, the collection of products [𝑛]

is decomposed into two sets:

∙ The set ℒ of light products, consisting of those with 𝑤𝑖 ∈ (0, 𝜖/𝑛].

∙ The set ℋ of heavy products, with 𝑤𝑖 ∈ (𝜖/𝑛,∞).

Product elimination. We further restrict attention to a smaller subset of heavy

products, by eliminating in advance certain products whose revenue contribution to-

ward E[ℛ(𝑈*)] is negligible. Specifically, let 𝑖max be the heavy product that maximizes

the quantity 𝑟𝑖𝑤𝑖/(1+𝑤𝑖) over all products 𝑖 ∈ ℋ stocked by 𝑈*
ℋ. From an algorithmic

perspective, 𝑖max can be guessed by considering |ℋ| options, and we can now define

the residual collection of heavy products ℋ̃ = {𝑖 ∈ ℋ : 𝜖2𝑟𝑖max

2𝑛2𝐶
≤ 𝑟𝑖 ≤ 2𝑛2𝐶·𝑟𝑖max

𝜖3
}.

Upper bound on the optimal expected revenue. We now argue that the classes

of products ℒ and ℋ̃ are sufficient to compete against 𝑈*. Recall that 𝑈*
ℒ denotes

the projection of the optimal inventory vector 𝑈* on light products, i.e., the vector

obtained from 𝑈* by setting the inventory levels of [𝑛] ∖ ℒ to zero. The vector 𝑈*
ℋ̃ is

defined in an analogous way. By exploiting the subadditive nature of the expected

224

revenue function (see Lemma 5.2.2), we derive an upper bound on E[ℛ(𝑈*)] in the

next lemma, whose proof is given in Appendix C.3.8.

Lemma C.1.2. E[ℛ(𝑈*
ℒ)] + E[ℛ(𝑈*

ℋ̃)] ≥ (1− 2𝜖) · E[ℛ(𝑈*)].

C.1.1 Efficient oracle for heavy products

Here, we show that the subproblem restricted to the heavy products ℋ̃ admits an

efficient oracle. That is, for any error parameter 𝜖 > 0 and confidence level 𝛿 > 0, we

devise a procedure to evaluate the expected revenue within a multiplicative factor of

1± 𝜖, running in time polynomial in the input size, 1/𝜖, and 1/𝛿.

For this purpose, suppose we are given an inventory vector 𝑈 that stocks at most

𝐶 units of products in ℋ̃, and wish to estimate E[ℛ(𝑈)]. Our evaluation procedure

samples 𝐿 = ⌈64𝐶6𝑛10/(𝜖12𝛿)⌉ independent realizations 𝑅1, . . . , 𝑅𝐿 of the random

variable ℛ(𝑈) conditional on 𝑀 ≥ 1. These conditional realizations are obtained

by sampling from a modified instance, where the number of arrivals 𝑀 is replaced

by 𝑀 |𝑀 ≥ 1. Next, the expected revenue E[ℛ(𝑈)] is estimated by the unbiased

estimator

𝑅̃ = Pr [𝑀 ≥ 1] · 1

𝐿
·

𝐿∑︁

ℓ=1

𝑅ℓ . (C.1)

Lemma C.1.3. The estimator 𝑅̃ provides an efficient oracle for the expected revenue

function, i.e.,

Pr

[︃⃒⃒
⃒⃒
⃒

𝑅̃

E [ℛ (𝑈)]
− 1

⃒⃒
⃒⃒
⃒ ≥ 𝜖

]︃
≤ 𝛿 .

Proof. The proof relies on bounding the variance of the conditional revenue relative

to its expected value, before applying Chebyshev’s inequality. Since 𝑈 stocks at

most 𝐶 units, the random variable ℛ(𝑈)|𝑀 ≥ 1 is upper bounded by 𝐶 · 𝑟𝑖1 for any

realization, where 𝑖1 ∈ ℋ̃ is the most expensive product stocked by 𝑈 . Also, letting 𝑖2

be the maximal preference weight product stocked by 𝑈 , an immediate lower bound

on the expectation of this random variable is given by

E [ℛ (𝑈)|𝑀 ≥ 1] ≥ 𝑟𝑖2𝑤𝑖2

1 + |ℋ̃|·𝑤𝑖2

≥ 𝜖𝑟𝑖2
2𝑛

, (C.2)

225

where the first inequality accounts for the expected revenue due to the first arriving

customer, who purchases a unit of product 𝑖2 with probability at least 𝑤𝑖2/(1 +

|ℋ̃|·𝑤𝑖2), given that 𝑖2 the has maximal preference weight among all products stocked

by 𝑈 , and the second inequality holds since 𝑤𝑖2 ≥ 𝜖/𝑛. Note that, since E[ℛ(𝑈)|𝑀 ≥
1] = E[ℛ(𝑈)]/Pr[𝑀 ≥ 1], we have:

Pr
[︁⃒⃒
⃒𝑅̃− E [ℛ (𝑈)]

⃒⃒
⃒ ≥ 𝜖 · E [ℛ (𝑈)]

]︁
= Pr

[︃⃒⃒
⃒⃒
⃒
1

𝐿
·

𝐿∑︁

ℓ=1

𝑅ℓ − E [ℛ (𝑈)|𝑀 ≥ 1]

⃒⃒
⃒⃒
⃒ ≥ 𝜖 · E [ℛ (𝑈)|𝑀 ≥ 1]

]︃
.

Hence, by Chebyshev’s inequality,

Pr
[︁⃒⃒
⃒𝑅̃− E [ℛ (𝑈)]

⃒⃒
⃒ ≥ 𝜖 · E [ℛ (𝑈)]

]︁
≤ var((1/𝐿) ·∑︀𝐿

ℓ=1𝑅ℓ)

𝜖2 · (E [ℛ (𝑈)|𝑀 ≥ 1])2
≤ 4𝐶2𝑛2

𝜖2𝐿
· 𝑟

2
𝑖1

𝑟2𝑖2
≤ 𝛿 ,

where the second inequality follows from (C.2), along with the upper bound of 𝐶2 ·𝑟2𝑖1
on the second moment of each sample 𝑅ℓ, and the last inequality holds since 𝐿 =

⌈64𝐶6𝑛10/(𝜖12𝛿)⌉ while 𝑟𝑖1/𝑟𝑖2 ≤ 4𝐶2𝑛4/𝜖5, by definition of ℋ̃.

C.1.2 Approximation scheme for light products

The approach for handling light products ℒ relies on identifying a newsvendor-like

lower bound, in the spirit of Section 5.3.3. The important observation is that, when we

are restricted to stocking only light products, each arriving customer faces a random

assortment 𝑆 ⊆ ℒ with total weight 𝑤(𝑆) ≤ |𝑆|·𝜖/𝑛 ≤ 𝜖. Thus, as long as product

𝑖 ∈ ℒ is available, it is purchased by an arriving customer with probability at least

𝑤𝑖/(1 + 𝜖) ≥ (1− 𝜖) · 𝑤𝑖, regardless of what the other available products are. Hence,

at least intuitively, at the cost of losing a negligible factor in optimality, one could

view the contribution of each product to the expected revenue as if it depends only

on the initial number of units stocked.

Algorithm. To turn this intuition into a concrete argument, suppose that 𝑈 is

an inventory vector that stocks only light products. Then, the number of units

purchased from each product 𝑖 ∈ ℒ is stochastically larger than the random variable

226

𝑌𝑖(𝑢𝑖) = min{𝑌𝑖, 𝑢𝑖}, where 𝑌𝑖 ∼ 𝐵(𝑀, (1− 𝜖) · 𝑤𝑖). Therefore,

E [ℛ(𝑈)] ≥
∑︁

𝑖∈ℒ

𝑟𝑖 · E
[︀
𝑌𝑖(𝑢𝑖)

]︀
. (C.3)

Our algorithm optimizes the latter newsvendor-like lower bound, by computing an

optimal solution to the following problem:

max
𝑈

{︃∑︁

𝑖∈ℒ

𝑟𝑖 · E
[︀
𝑌𝑖(𝑢𝑖)

]︀
:
∑︁

𝑖∈ℒ

𝑢𝑖 ≤ 𝐶

}︃
. (C.4)

As explained in Section 5.3.3, an optimal solution to this problem can be computed

efficiently by means of a greedy procedure. Note that the expectation E[𝑌𝑖(𝑢𝑖)] can

be computed in polynomial time with respect to 𝐶 and the maximum value of 𝑀 ,

using a simple dynamic program.

The next lemma shows that the inventory vector 𝑈ℒ, obtained by solving prob-

lem (C.4), guarantees a (1 − 𝜖)-approximation with respect to the inventory vector

𝑈*
ℒ.

Lemma C.1.4. E [ℛ(𝑈ℒ)] ≥ (1− 𝜖) · E [ℛ(𝑈*
ℒ)].

Proof. First, observe that the lower bound (C.3) can be complemented by an upper

bound on the expected revenue of 𝑈*
ℒ. Specifically, letting 𝑌 *

𝑖 ∼ 𝐵(𝑀,𝑤𝑖) and 𝑌 *
𝑖 =

min{𝑌 *
𝑖 , 𝑢

*
𝑖 }, we have

E [ℛ(𝑈*
ℒ)] ≤

∑︁

𝑖∈ℒ

𝑟𝑖 · E
[︀
𝑌 *
𝑖

]︀
. (C.5)

Based on inequalities (C.3) and (C.5), since 𝑈ℒ is an optimal solution to prob-

lem (C.4), it remains to show that the objective value of 𝑈*
ℒ with respect to the

latter problem is at least (1 − 𝜖) ·∑︀𝑖∈ℒ 𝑟𝑖 · E[𝑌 *
𝑖]. This follows by observing that

E[𝑌𝑖(𝑢
*
𝑖)] ≥ (1 − 𝜖) · E[𝑌 *

𝑖] for any product 𝑖 ∈ ℒ, where the latter inequality is an

immediate consequence of the next claim (proven in Appendix C.3.9), specialized for

𝜃 = 1− 𝜖.

Claim C.1.5. Let 𝑀 be a non-negative integer-valued random variable, and suppose

that 𝑋 ∼ 𝐵(𝑀,𝛼) and 𝑌 ∼ 𝐵(𝑀, 𝜃𝛼), where 𝛼 ∈ [0, 1] and 𝜃 ∈ [0, 1]. For some

227

integer 𝐶, let 𝑋̄ = min{𝑋,𝐶} and 𝑌 = min{𝑌,𝐶}. Then, E[𝑌] ≥ 𝜃 · E[𝑋̄].

C.1.3 Conclusion

To summarize, our algorithm computes two approximate inventory vectors, corre-

sponding to the weight classes ℒ and ℋ̃, and eventually picks the one with maximal

expected revenue.

∙ Heavy products. We employ the algorithm described in Section 5.3, for the

subproblem restricted to the heavy products ℋ̃. This algorithm relies on the

efficient oracle assumption, and therefore, we utilize the efficient sampling-based

procedure described in Appendix C.1.1, running in time polynomial in the input

size, 𝑛1/𝜖, and 1/𝛿. By Theorem 5.3.1, the random vector 𝑈ℋ̃ returned by this

algorithm satisfies E[ℛ(𝑈ℋ̃)] ≥ (0.139− 𝜖) ·E[ℛ(𝑈*
ℋ̃)], with probability at least

1− 𝛿.

∙ Light products. The vector 𝑈ℒ, returned by the algorithm described in Sec-

tion C.1.2, is a (1 − 𝜖)-approximation with respect to the expected revenue of

𝑈*
ℒ, i.e., E[ℛ(𝑈ℒ] ≥ (1 − 𝜖) · E[ℛ(𝑈*

ℒ]. In addition, this guarantee applies to a

lower bound, that can be efficiently computed through dynamic programming.

Establishing Theorem C.1.1. Since we pick the best vector out of 𝑈ℒ and 𝑈ℋ̃,

with probability at least 1− 𝛿, for any 𝛼 ∈ [0, 1] we obtain an expected revenue of at

least

max {E [ℛ(𝑈ℒ)] ,E [ℛ(𝑈ℋ̃)]}

≥ 𝛼 · E [ℛ(𝑈ℒ)] + (1− 𝛼) · E [ℛ(𝑈ℋ̃)]

≥ (1− 8𝜖) ·
(︀
𝛼 · E [ℛ(𝑈*

ℒ)] + 0.139 · (1− 𝛼)E
[︀
ℛ(𝑈*

ℋ̃)
]︀)︀

.

228

By choosing 𝛼 = 0.139/1.139 ≈ 0.122, we have

max {E [ℛ(𝑈ℒ)] ,E [ℛ(𝑈ℋ̃)]}

≥ 0.122 · (1− 8𝜖) ·
(︀
E [ℛ(𝑈*

ℒ)] + E
[︀
ℛ(𝑈*

ℋ̃)
]︀)︀

≥ (0.122− 2𝜖) · E [ℛ(𝑈*)] ,

where the last inequality is due to Lemma C.1.2. In the special case where 𝐶 ≥ 𝑛,

an improved guarantee of 0.151− 𝜖 is derived by plugging the refined approximation

ratio of 0.179− 𝜖 given by Theorem 5.3.1 for the heavy products vector 𝑈ℋ̃.

C.2 Logarithmic approximation for non-IFR demand

distributions

In what follows, recall that 𝑈* is an optimal inventory vector, and for any subset of

products 𝑆 ⊆ [𝑛] we use 𝑈*
𝑆 to denote the projection of 𝑈* on 𝑆.

Step 1: Decomposition. Similar to the algorithm described in Appendix C.1,

we begin by partitioning the set of products into the weight classes ℒ and ℋ, by

specifically choosing 𝜖 = 1/4. Since our approximation algorithm for light products

(Section C.1.2) does not rely on the IFR property, the resulting inventory vector 𝑈ℒ

still attains a performance guarantee of 3/4 with respect to 𝑈*
ℒ.

Now, let 𝑖max ∈ ℋ be the most expensive heavy product. From an algorithmic

perspective, this product can be guessed by considering |ℋ| options. With this defi-

nition at hand, we construct the subset of products ℋ+ ⊆ ℋ whose selling price is at

least 𝑟𝑖max/(8𝑛), and designate by ℋ− the remaining heavy products.

Step 2: Competing against cheap heavy products. Let 𝑈ℋ− be the inventory

vector that stocks 𝐶 units of product 𝑖max. In the next claim, whose proof is deferred

to the end of this section, we argue that 𝑈ℋ− is at least as good revenue-wise as 𝑈*
ℋ− .

Claim C.2.1. E [ℛ(𝑈ℋ−)] ≥ E
[︀
ℛ(𝑈*

ℋ−)
]︀
.

229

Step 3: Competing against expensive heavy products. We further decom-

pose ℋ+ into 𝐾 = ⌈log(8𝑛)⌉ nearly-uniform price classes ℋ+
1 , . . . ,ℋ+

𝐾 , where ℋ+
𝑘 =

{𝑖 ∈ ℋ+ : 𝑟𝑖max

2𝑘
< 𝑟𝑖 ≤ 𝑟𝑖max

2𝑘−1 }. Next, for every 𝑘 ∈ [𝐾], our algorithm computes

an inventory vector 𝑈ℋ+
𝑘

that compete against 𝑈*
ℋ+

𝑘

. To this end, consider the sub-

problem where only products in ℋ+
𝑘 can be stocked, and let 𝑓𝑘 be the corresponding

expected revenue set function, that specifies the expected revenue associated with

subsets of the extended collection of units ℋ+
𝑘 × [𝐶] (see Section 5.3.2). By rounding

up the selling prices of products in ℋ+
𝑘 to 𝑟𝑖max/2

𝑘−1, the resulting expected revenue

set function 𝑓𝑘 clearly satisfies, for any subset of units 𝑆,

1

2
· 𝑓𝑘 (𝑆) ≤ 𝑓𝑘(𝑆) ≤ 𝑓𝑘 (𝑆) . (C.6)

On the other hand, it is easy to verify that, when all selling prices are equal, the static

expected revenue function associated with an instance of the MNL model is non-

decreasing, implying in particular that 𝑓𝑘
1 is non-decreasing. As a result, the problem

of maximizing 𝑓𝑘(𝑆) over subsets 𝑆 of at most 𝐶 units falls within the special setting

discussed in Section 5.3.2.4. Therefore, the standard greedy algorithm, combined with

the sampling-based oracle of Appendix C.1 (with appropriate error and confidence

parameters), computes an inventory vector 𝑈ℋ+
𝑘

such that, with probability at least

1− 𝛿/𝐾,

E
[︁
ℛ
(︁
𝑈ℋ+

𝑘

)︁]︁
≥
(︂

1

2
·
(︂

1− 1

𝑒

)︂
− 𝜖
)︂
· E
[︁
ℛ
(︁
𝑈*
ℋ+

𝑘

)︁]︁
, (C.7)

where the latter performance guarantee follows from the approximation ratio of Sec-

tion 5.3.2.4 combined with (C.6).

Step 4: Picking the most profitable inventory vector. Finally, the algorithm

selects the most profitable inventory vector out of 𝑈ℒ, 𝑈ℋ− , 𝑈ℋ+
1
, . . . , 𝑈ℋ+

𝐾
. Since

the corresponding expected revenues are unknown, these vectors are compared us-

ing the randomized oracle (for 𝑈ℋ− , 𝑈ℋ+
1
, . . . , 𝑈ℋ+

𝐾
), and the previously-mentioned

lower bound for 𝑈ℒ. Given the subadditivity of the expected revenue function (see

230

Lemma 5.2.2), since ℒ,ℋ−,ℋ+
1 , . . . ,ℋ+

𝐾 form a partition of [𝑛], it follows that

E [ℛ (𝑈*
ℒ)] + E [ℛ (𝑈*

ℋ−)] +
∑︁

𝑘∈[𝐾]

E
[︁
ℛ
(︁
𝑈*
ℋ+

𝑘

)︁]︁
≥ E [ℛ (𝑈*)] .

Therefore, by the union bound, with probability at least 1− 𝛿 we obtain that

max
{︁
E [ℛ (𝑈ℒ)] ,E [ℛ (𝑈ℋ−)] ,E

[︁
ℛ
(︁
𝑈ℋ+

1

)︁]︁
, . . . ,E

[︁
ℛ
(︁
𝑈ℋ+

𝐾

)︁]︁}︁

≥ (1/2) · (1− 1/𝑒)− 𝜖
𝐾 + 2

·

⎛
⎝E [ℛ (𝑈*

ℒ)] + E [ℛ (𝑈*
ℋ−)] +

∑︁

𝑘∈[𝐾]

E
[︁
ℛ
(︁
𝑈*
ℋ+

𝑘

)︁]︁
⎞
⎠

≥ 1

4(𝐾 + 2)
· E [ℛ (𝑈*)]

= Ω

(︂
1

log 𝑛

)︂
· E [ℛ (𝑈*)] .

where the first inequality holds due to the performance guarantees stated in Lemma C.1.4,

Claim C.2.1, and inequality (C.7).

Proof of Claim C.2.1.. Since the selling price of every product in ℋ− is at most

𝑟𝑖max/(8𝑛), an upper bound on the expected revenue of 𝑈*
ℋ− is given by

E [ℛ (𝑈*
ℋ−)] ≤ 𝑟𝑖max

8𝑛
· E [min{𝑀,𝐶}] .

On the other hand, when initially stocking the inventory vector 𝑈ℋ− , until product

𝑖max stocks out, each arriving customer purchases a unit of 𝑖max with probability

𝑤𝑖max/(1 + 𝑤𝑖max) ≥ 𝜖/(2𝑛) = 1/(8𝑛), where the latter inequality holds since 𝑤𝑖max ≥
𝜖/𝑛, given that 𝑖max is a heavy product. Consequently, letting 𝑌 ∼ 𝐵(𝑀, 1/(8𝑛)), we

have

E [ℛ (𝑈ℋ−)] ≥ 𝑟𝑖max · E [min{𝑌,𝐶}] ≥ 𝑟𝑖max

8𝑛
· E [min{𝑀,𝐶}] ≥ E [ℛ (𝑈*

ℋ−)] .

where the second inequality follows from Claim C.1.5 specialized with 𝜃 = 1/(8𝑛).

231

C.3 Additional Proofs

C.3.1 Proof of Lemma 5.2.1

Algorithm. For a small cardinality value, i.e., 𝐶 < 1/𝜖, one could simply enumerate

over all 𝑂(𝑛1/𝜖) possible subsets, and pick the one with largest estimated objective

value, according to an (𝜖/2, 𝛿/𝑛1/𝜖)-oracle. It is not difficult to verify that, by the

union bound, this enumerative procedure returns a 1 − 𝜖-approximate solution with

probability at least 1 − 𝛿. For large cardinality values (𝐶 ≥ 1/𝜖), the algorithm is

a standard greedy procedure. Starting with the empty set 𝑆0 = ∅, we add in each

step the element that generates the largest increase in the objective function, among

all unpicked elements. At each step, we call the random (𝜖/(2𝐶), 𝛿/(𝑛𝐶))-oracle to

evaluate the objective value associated with each unpicked element. Let 𝑆0, 𝑆1, . . . , 𝑆𝐶

be the sequence of subsets corresponding to the different steps in the algorithm, and

let 𝑆* be a fixed optimal subset. We assume without loss of generality that |𝑆*|= 𝐶,

as 𝑓 is restricted-non-decreasing.

Analysis. Since the greedy algorithm makes at most 𝑛𝐶 calls to the randomized

oracle, by the union bound the relative error associated with all estimates returned

by the (𝜖/(2𝐶), 𝛿/(𝑛𝐶))-oracle is upper bounded by 𝜖/(2𝐶) with probability at least

1 − 𝛿. From this point on, we establish the desired approximation guarantee under

this condition. Below, for any subsets 𝑆 and 𝑇 , we use 𝑓𝑆(𝑇) to denote the marginal

variation in 𝑓 when 𝑆 is augmented by 𝑇 , i.e., 𝑓𝑆(𝑇) = 𝑓(𝑆 ∪ {𝑇})− 𝑓(𝑆).

Claim C.3.1. Let 𝑆 and 𝑇 be disjoint subsets, with |𝑆|+|𝑇 |≤ 𝐶 and 𝑇 ̸= ∅. Then,

for every 0 ≤ 𝑘 ≤ |𝑇 |, there exists 𝑇𝑘 ⊆ 𝑇 with |𝑇𝑘|= 𝑘 and 𝑓𝑆(𝑇𝑘) ≥ (𝑘/|𝑇 |) · 𝑓𝑆(𝑇).

Proof. The proof follows by an inductive argument over 𝑘. The base case 𝑘 = 0

is clearly satisfied by 𝑇0 = ∅. For the general case, by the induction hypothesis,

there exists 𝑇𝑘 ⊆ 𝑇 with |𝑇𝑘|= 𝑘 and 𝑓𝑆(𝑇𝑘) ≥ (𝑘/|𝑇 |) · 𝑓𝑆(𝑇). Letting 𝑇 ∖ 𝑇𝑘 =

232

{𝑒1, . . . , 𝑒|𝑇 |−𝑘}, we have

𝑓𝑆∪𝑇𝑘
(𝑇 ∖ 𝑇𝑘) =

|𝑇 |−𝑘−1∑︁

𝑗=0

𝑓𝑆∪𝑇𝑘∪{𝑒1,...,𝑒𝑗} (𝑒𝑗+1) ≤
|𝑇 |−𝑘−1∑︁

𝑗=0

𝑓𝑆∪𝑇𝑘
(𝑒𝑗+1) ,

where the latter inequality holds since 𝑓 is restricted-submodular, by observing that

|𝑆 ∪ 𝑇𝑘 ∪ {𝑒1, . . . , 𝑒|𝑇 |−𝑘−1}|= |𝑆|+|𝑇 |−1 ≤ 𝐶 − 1. Consequently, there exists 1 ≤
𝑗 ≤ |𝑇 |−𝑘 such that 𝑓𝑆∪𝑇𝑘

(𝑒𝑗) ≥ 𝑓𝑆∪𝑇𝑘
(𝑇 ∖ 𝑇𝑘)/(|𝑇 |−𝑘). As a result, by defining

𝑇𝑘+1 = 𝑇𝑘 ∪ {𝑒𝑗}, we obtain

𝑓𝑆 (𝑇𝑘+1) = 𝑓𝑆 (𝑇𝑘) + 𝑓𝑆∪𝑇𝑘
(𝑒𝑗)

≥ 𝑓𝑆 (𝑇𝑘) +
1

|𝑇 |−𝑘 · 𝑓𝑆∪𝑇𝑘
(𝑇 ∖ 𝑇𝑘)

=

(︂
1− 1

|𝑇 |−𝑘

)︂
· 𝑓𝑆 (𝑇𝑘) +

1

|𝑇 |−𝑘 · 𝑓𝑆(𝑇)

≥
(︂
𝑘

|𝑇 | ·
(︂

1− 1

|𝑇 |−𝑘

)︂
+

1

|𝑇 |−𝑘

)︂
· 𝑓𝑆(𝑇)

=
𝑘 + 1

|𝑇 | · 𝑓𝑆(𝑇) ,

where the second equality holds since 𝑓𝑆∪𝑇𝑘
(𝑇 ∖𝑇𝑘) = 𝑓𝑆(𝑇)−𝑓𝑆(𝑇𝑘), and the second

inequality proceeds from the inductive hypothesis.

It immediately follows from Claim C.3.1 that, for every 0 ≤ 𝑘 ≤ 𝐶, there exists a

subset 𝑆*
𝐶−𝑘 ⊆ 𝑆* such that |𝑆*

𝐶−𝑘|= 𝐶 − 𝑘, and

𝑓∅
(︀
𝑆*
𝐶−𝑘

)︀
≥ 𝐶 − 𝑘

𝐶
· 𝑓∅ (𝑆*) . (C.8)

We can now analyze the sequence of subsets 𝑆0, . . . , 𝑆𝐶 produced by our (random)

greedy procedure, where we use 𝑒𝑘+1 to denote the unique element of 𝑆𝑘+1 ∖ 𝑆𝑘, for

every 0 ≤ 𝑘 ≤ 𝐶−1. To establish lower bounds on 𝑓𝑆𝑘
(𝑒𝑘+1) for every 0 ≤ 𝑘 ≤ 𝐶−1,

we make the following case disjunction:

∙ Case A: 𝑆*
𝐶−𝑘 ∖ 𝑆𝑘 ̸= ∅. Observe that 𝑆𝑘 and 𝑆*

𝐶−𝑘 ∖ 𝑆𝑘 are disjoint, and

|𝑆𝑘|+|𝑆*
𝐶−𝑘∖𝑆𝑘|≤ 𝐶. By Claim C.3.1, since 𝑆*

𝐶−𝑘∖𝑆𝑘 ̸= ∅ by the case hypothesis,

233

it follows that there exists an element 𝑒 ∈ 𝑆*
𝐶−𝑘 ∖ 𝑆𝑘 such that

𝑓𝑆𝑘
(𝑒) ≥ 1

|𝑆*
𝐶−𝑘 ∖ 𝑆𝑘|

· 𝑓𝑆𝑘

(︀
𝑆*
𝐶−𝑘 ∖ 𝑆𝑘

)︀

≥ 1

𝐶 − 𝑘 ·
(︀
𝑓∅
(︀
𝑆𝑘 ∪ 𝑆*

𝐶−𝑘

)︀
− 𝑓∅ (𝑆𝑘)

)︀

≥ 1

𝐶 − 𝑘 ·
(︀
𝑓∅
(︀
𝑆*
𝐶−𝑘

)︀
− 𝑓∅ (𝑆𝑘)

)︀

≥ 1

𝐶
· 𝑓∅ (𝑆*)− 1

𝐶 − 𝑘 · 𝑓∅ (𝑆𝑘) , (C.9)

where the third inequality holds since 𝑓 is restricted-non-decreasing and |𝑆𝑘 ∪
𝑆*
𝐶−𝑘|≤ 𝐶, while the last inequality proceeds from (C.8).

∙ Case B: 𝑆*
𝐶−𝑘 ∖ 𝑆𝑘 = ∅. In this case, 𝑆*

𝐶−𝑘 ⊆ 𝑆𝑘, and therefore

𝑓∅ (𝑆𝑘) ≥ 𝑓∅
(︀
𝑆*
𝐶−𝑘

)︀
≥ 𝐶 − 𝑘

𝐶
· 𝑓∅ (𝑆*) , (C.10)

where the first inequality holds since 𝑓 is restricted-non-decreasing, and the last

inequality follows from (C.8).

Concluding the analysis. Let 𝜇 ∈ [0, 1] be a parameter that will be optimized

later on, and let 𝐿 = ⌊(1−𝜇) ·𝐶⌋. When 𝑓 (𝑆𝐶) ≥ 𝜇 · 𝑓 (𝑆*), our algorithm attains a

𝜇-approximation. When 𝑓 (𝑆𝐶) < 𝜇 · 𝑓 (𝑆*), for every 𝑘 ≤ (1− 𝜇) · 𝐶 we necessarily

have 𝑆*
𝐶−𝑘 ∖ 𝑆𝑘 ̸= ∅, or otherwise

𝑓∅ (𝑆𝐶) ≥ 𝑓∅ (𝑆𝑘) ≥ 𝐶 − 𝑘
𝐶
· 𝑓∅ (𝑆*) ≥ 𝜇 · 𝑓∅ (𝑆*) ,

where the first inequality is due to 𝑓 being restricted-non-decreasing, and the second

inequality follows from (C.10); since 𝑓(∅) ≥ 0, the latter observation would imply

234

that 𝑓(𝑆𝐶) ≥ 𝜇 · 𝑓(𝑆*). As a result, in this setting we have

𝑓∅ (𝑆𝐶) ≥ 𝑓∅ (𝑆𝐿)

=
𝐿−1∑︁

𝑘=0

𝑓𝑆𝑘
(𝑒𝑘+1)

≥
𝐿−1∑︁

𝑘=0

(︂
1

𝐶
· 𝑓∅ (𝑆*)− 1

𝐶 − 𝑘 · 𝑓∅ (𝑆𝑘)− 𝜖

𝐶
· 𝑓 (𝑆*)

)︂

≥ 𝐿

𝐶
· 𝑓∅ (𝑆*)− 𝜇 · 𝑓∅ (𝑆*) ·

𝐿−1∑︁

𝑘=0

1

𝐶 − 𝑘 − 𝜖 · 𝑓 (𝑆*)

=

(︂
𝐿

𝐶
− 𝜇 · (𝐻𝐶 −𝐻𝐶−𝐿)

)︂
· 𝑓∅ (𝑆*)− 𝜖 · 𝑓 (𝑆*) ,

where 𝐻𝑚 =
∑︀𝑚

𝑘=1
1
𝑘

is the 𝑚-th harmonic number. Here, the first inequality holds

since 𝑓 is restricted-non-decreasing. The second inequality follows from (C.9), given

that all estimates of the evaluation oracle are accurate up to a relative error of 𝜖/(2𝐶).

The next inequality holds since 𝑓(𝑆𝑘) < 𝜇 · 𝑓(𝑆*) by hypothesis and since 𝑓(∅) ≥ 0.

Claim C.3.2. 𝐿/𝐶 − 𝜇 · (𝐻𝐶 −𝐻𝐶−𝐿) ≥ 1− 𝜇− 𝜇 ln𝜇−𝑂(𝜖).

Proof. Since |𝐻𝑛 − ln𝑛|= 𝛾 +𝑂(1/𝑛), where 𝛾 is the EulerâĂŞMascheroni constant,

we have

𝐿

𝐶
− 𝜇 · (𝐻𝐶 −𝐻𝐶−𝐿) ≥ 𝐿

𝐶
− 𝜇 · ln 𝐶

𝐶 − 𝐿 − 𝜇 ·𝑂
(︂

1

𝐶 − 𝐿

)︂

=
⌊(1− 𝜇) · 𝐶⌋

𝐶
+ 𝜇 · ln

(︂
1− ⌊(1− 𝜇) · 𝐶⌋

𝐶

)︂
− 𝜇 ·𝑂

(︂
1

𝐶 − ⌊(1− 𝜇) · 𝐶⌋

)︂

≥ 1− 𝜇− 1

𝐶
+ 𝜇 ln𝜇−𝑂

(︂
1

𝐶

)︂

= 1− 𝜇+ 𝜇 ln𝜇−𝑂 (𝜖) ,

where the first equality is obtained by substituting 𝐿 = ⌊(1 − 𝜇) · 𝐶⌋, and the last

equality holds since 𝐶 ≥ 1/𝜖.

Using the above claim, it follows that 𝑓∅(𝑆𝐶) ≥ (1−𝜇−𝜇 ln𝜇−𝑂(𝜖)) ·𝑓∅(𝑆*)− 𝜖 ·
𝑓(𝑆*), and since 𝑓(∅) ≥ 0, we have 𝑓(𝑆𝐶) ≥ (1−𝜇−𝜇 ln𝜇−𝑂(𝜖)) ·𝑓(𝑆*). Therefore,

our algorithm attains an overall approximation ratio of min{𝜇, 1−𝜇−𝜇 ln𝜇}−𝑂(𝜖).

235

The latter constant is optimized by picking 𝜇* ≈ 0.318, in which case we obtain a

performance guarantee of 0.318−𝑂(𝜖).

C.3.2 Proof of Lemma 5.2.2

To show that the expected revenue function is subadditive, it is sufficient to prove

that, in a given inventory vector, the deletion of any unit can only increase the

probability of every other unit to be purchased. Indeed, if 𝑈 = 𝑈1 +𝑈2, starting from

𝑈 , we can iteratively delete units to obtain 𝑈1 or 𝑈2 while increasing the consumption

probabilities of all remaining units at each step. This immediately implies that the

expected revenue generated by remaining units may only increase as well. Finally, by

combining the units of 𝑈1 and 𝑈2, the total expected revenue should be at least as

large as that of 𝑈 .

To formalize the above statement, for any unit 𝑣 stocked by some inventory vector,

we use 𝒞𝑣 to denote the event “unit 𝑣 is consumed”. With this definition, it remains

to establish the following claim.

Claim C.3.3. Let 𝑈 be some inventory vector, and let 𝑈− be a vector obtained by

deleting a single unit from 𝑈 . Then, for any remaining unit 𝑣 stocked by 𝑈−, we have

Pr [𝒞𝑣|𝑈−] ≥ Pr [𝒞𝑣|𝑈].

Let 𝑥 be the product of which one unit was deleted in order to obtain 𝑈− from

𝑈 . There are three cases:

1. The unit 𝑣 belongs to product 𝑥.

2. The unit 𝑣 does not belong to product 𝑥, and no additional units of 𝑥 are

stocked (i.e., 𝑈𝑥 = 1 and 𝑈−
𝑥 = 0).

3. The unit 𝑣 does not belong to product 𝑥, and at least one additional unit of 𝑥

is stocked (i.e., 𝑈𝑥 ≥ 2 and 𝑈−
𝑥 = 𝑈𝑥 − 1).

In what follows, we prove the claim for case 2, noting that the remaining cases

can be proven in a nearly-identical way. Moreover, by the formula of conditional

236

expectations, it is sufficient to establish the claim for a deterministic demand variable

𝑀 . For any event 𝐸, we use Pr𝑀 [𝐸|𝑈] to denote the probability of 𝐸 with 𝑀 arriving

customers and the initial inventory vector 𝑈 . Finally, to simplify the notation, we

make use of product 0 to designate the no-purchase option, with preference weight

𝑤0 = 0.

The proof is by induction on
∑︀𝑛

𝑖=1 𝑢𝑖 + 𝑀 . The base case, corresponding to
∑︀𝑛

𝑖=1 𝑢𝑖 +𝑀 = 1, implies that 𝑀 = 0. Hence, Pr𝑀 [𝒞𝑣|𝑈] = Pr𝑀 [𝒞𝑣|𝑈−] = 0.

In the general case, consider the random product 𝑋 picked by the first arriving

customer, including the no-purchase option 0. Then,

Pr𝑀 [𝒞𝑣|𝑈] = Pr𝑀 [𝑋 = 0|𝑈] · Pr𝑀 [𝒞𝑣|𝑋 = 0, 𝑈]⏟ ⏞
(I)

+ Pr𝑀 [𝑋 = 𝑥|𝑈] · Pr𝑀 [𝒞𝑣|𝑋 = 𝑥, 𝑈]

+
∑︁

𝑖∈𝑆(𝑈)∖{𝑥}

Pr𝑀 [𝑋 = 𝑖|𝑈] · Pr𝑀 [𝒞𝑣|𝑋 = 𝑖, 𝑈]⏟ ⏞
(II)

≤ Pr𝑀 [𝑋 = 0|𝑈] · Pr𝑀
[︀
𝒞𝑣|𝑋 = 0, 𝑈−]︀

+ Pr𝑀 [𝑋 = 𝑥|𝑈] · Pr𝑀 [𝒞𝑣|𝑋 = 𝑥, 𝑈]

+
∑︁

𝑖∈𝑆(𝑈)∖{𝑥}

Pr𝑀 [𝑋 = 𝑖|𝑈] · Pr𝑀
[︀
𝒞𝑣|𝑋 = 𝑖, 𝑈−]︀ . (C.11)

Here, we use 𝑆(𝑈) to denote the set of products stocked by the vector 𝑈 , i.e., 𝑆(𝑈) =

{𝑖 ∈ [𝑛] : 𝑢𝑖 > 0}. The inequality above hold since by the induction hypothesis,

(I) = Pr𝑀 [𝒞𝑣|𝑋 = 0, 𝑈] = Pr𝑀−1 [𝒞𝑣|𝑈] ≤ Pr𝑀−1

[︀
𝒞𝑣|𝑈−]︀ = Pr𝑀

[︀
𝒞𝑣|𝑋 = 0, 𝑈−]︀ .

In addition, if 𝑣 is the first available unit of product 𝑖 to be purchased,

(II) = Pr𝑀 [𝒞𝑣|𝑋 = 𝑖, 𝑈] = 1 = Pr𝑀
[︀
𝒞𝑣|𝑋 = 𝑖, 𝑈−]︀ ,

and otherwise,

(II) = Pr𝑀 [𝒞𝑣|𝑋 = 𝑖, 𝑈] = Pr𝑀−1 [𝒞𝑣|𝑈−𝑖] ≤ Pr𝑀−1

[︀
𝒞𝑣|𝑈−

−𝑖

]︀
= Pr𝑀

[︀
𝒞𝑣|𝑋 = 𝑖, 𝑈−]︀ ,

237

where 𝑈−𝑖 and 𝑈−
−𝑖 stand for the residual inventory vectors after a unit of product 𝑖

is consumed in 𝑈 and 𝑈−, respectively. On the other hand,

Pr𝑀
[︀
𝒞𝑣|𝑈−]︀ = Pr𝑀

[︀
𝑋 = 0|𝑈−]︀ · Pr𝑀

[︀
𝒞𝑣|𝑋 = 0, 𝑈−]︀

+
∑︁

𝑖∈𝑆(𝑈−)

Pr𝑀
[︀
𝑋 = 𝑖|𝑈−]︀ · Pr𝑀

[︀
𝒞𝑣|𝑋 = 𝑖, 𝑈−]︀ . (C.12)

To conclude the proof, note that since 𝑆(𝑈) = 𝑆(𝑈−) ⊎ {𝑥}, by equation (C.11)

and (C.12), we have

Pr𝑀
[︀
𝒞𝑣|𝑈−]︀− Pr𝑀 [𝒞𝑣|𝑈]

≥
(︀
Pr𝑀

[︀
𝑋 = 0|𝑈−]︀− Pr𝑀 [𝑋 = 0|𝑈]

)︀
· Pr𝑀

[︀
𝒞𝑣|𝑋 = 0, 𝑈−]︀

+
∑︁

𝑖∈𝑆(𝑈−)

(︀
Pr𝑀

[︀
𝑋 = 𝑖|𝑈−]︀− Pr𝑀 [𝑋 = 𝑖|𝑈]

)︀
· Pr𝑀

[︀
𝒞𝑣|𝑋 = 𝑖, 𝑈−]︀

− Pr𝑀 [𝑋 = 𝑥|𝑈] · Pr𝑀 [𝒞𝑣|𝑋 = 𝑥, 𝑈]

≥ Pr𝑀−1

[︀
𝒞𝑣|𝑈−]︀ ·

(︃ ∑︁

𝑖∈𝑆(𝑈−)∪{0}

Pr𝑀
[︀
𝑋 = 𝑖|𝑈−]︀−

∑︁

𝑖∈𝑆(𝑈)∪{0}

Pr𝑀 [𝑋 = 𝑖|𝑈]

)︃

= 0 ,

where the first inequality holds since Pr𝑀 [𝑋 = 0|𝑈−] ≥ Pr𝑀 [𝑋 = 0|𝑈] and Pr𝑀 [𝑋 = 𝑖|𝑈−] ≥
Pr𝑀 [𝑋 = 𝑖|𝑈] by the choice probabilities of the MNL model, combined with the fact

that Pr𝑀 [𝒞𝑣|𝑋 = 0, 𝑈−] = Pr𝑀−1 [𝒞𝑣|𝑈−] and Pr𝑀 [𝒞𝑣|𝑋 = 𝑥, 𝑈] = Pr𝑀−1 [𝒞𝑣|𝑈−],

while Pr𝑀 [𝒞𝑣|𝑋 = 𝑖, 𝑈−] = Pr𝑀−1

[︀
𝒞𝑣|𝑈−

−𝑖

]︀
≥ Pr𝑀−1 [𝒞𝑣|𝑈−] due to the inductive

hypothesis. The last equality proceeds from observing that the two sums of proba-

bilities are both equal to 1.

C.3.3 Proof of Claim 5.3.3

By construction, the marginal purchase probabilities of the random variable 𝑋𝑗 coin-

cide with the MNL probabilities given by 𝑃𝑗. It remains to show that this property

propagates to the random variables 𝑋𝑖,𝑗, 𝑋𝑖, and 𝑋 through the chain of conditional

distributions 𝑋𝑖,𝑗|𝑋𝑗, 𝑋𝑖|𝑋𝑖,𝑗, and 𝑋|𝑋𝑖. To avoid redundancy, we only present the

238

proof for the variable 𝑋𝑖,𝑗; those of 𝑋𝑖 and 𝑋 are based on similar ideas.

Recall that 𝑃𝑖,𝑗 is the product purchased by the first arriving customer in the

assortment stocked by 𝑆∪{𝑖, 𝑗}. Thus, we need to show that Pr[𝑋𝑖,𝑗 = 𝛼] = 𝑤𝛼/(1+

𝑤(𝒜) +𝑤𝑖 +𝑤𝑗) for any product 𝛼 ∈ 𝒜+𝑖𝑗 ∪{0}. For any product 𝛼 ∈ 𝒜+𝑗 ∪{0}, we

have

Pr [𝑋𝑖,𝑗 = 𝛼] =
∑︁

𝛽∈𝒜+𝑗∪{0}

Pr [𝑋𝑗 = 𝛽] · Pr [𝑋𝑖,𝑗 = 𝛼|𝑋𝑗 = 𝛽]

= Pr [𝑋𝑗 = 𝛼] · Pr [𝑋𝑖,𝑗 = 𝛼|𝑋𝑗 = 𝛼]

=
𝑤𝛼

1 + 𝑤(𝒜) + 𝑤𝑗

· 1 + 𝑤(𝒜) + 𝑤𝑗

1 + 𝑤(𝒜) + 𝑤𝑗 + 𝑤𝑖

=
𝑤𝛼

1 + 𝑤(𝒜) + 𝑤𝑗 + 𝑤𝑖

where the second equality proceeds from equation (5.7), that guarantees Pr[𝑋𝑖,𝑗 =

𝛼|𝑋𝑗 = 𝛽] = 0 for 𝛼 ̸= 𝑖 and 𝛽 ̸= 𝛼, and the next equality holds since the distribution

of 𝑋𝑗 is given by the MNL model with respect to products 𝒜+𝑗 ∪{0}, combined with

equation (5.6). In addition,

Pr [𝑋𝑖,𝑗 = 𝑖] =
∑︁

𝛽∈𝒜+𝑗∪{0}

Pr [𝑋𝑗 = 𝛽] · Pr [𝑋𝑖,𝑗 = 𝑖|𝑋𝑗 = 𝛽]

=
𝑤𝑖

1 + 𝑤(𝒜) + 𝑤𝑗 + 𝑤𝑖

·
∑︁

𝛽∈𝒜+𝑗∪{0}

Pr [𝑋𝑗 = 𝛽]

=
𝑤𝑖

1 + 𝑤(𝒜) + 𝑤𝑗 + 𝑤𝑖

where the second equality is due to our definition of 𝑋𝑖,𝑗|𝑋𝑗 (equation (5.5)).

C.3.4 Proof of Claim 5.3.4

To see why (𝑋𝑗|𝑋𝑖,𝑗 = 𝑖) ∼ 𝑋𝑗, observe that the event {𝑋𝑖,𝑗 = 𝑖} is independent of

the outcomes of 𝑋𝑗 as stated by equation (5.5). Similarly, given equation (5.9) along

with the equivalence 𝑋𝑖 ∼ 𝑃𝑖 shown in Claim 5.3.3, we infer that (𝑋𝑖|𝑋𝑖,𝑗 = 𝑗) ∼ 𝑋𝑖.

239

To establish the next equivalence, (𝑋|𝑋𝑖,𝑗 = 𝑖) ∼ 𝑋, observe that

𝑋 ∼ (𝑋|𝑋𝑖 = 𝑖) ∼ (𝑋|𝑋𝑖 = 𝑋𝑖,𝑗 = 𝑖) ∼ (𝑋|𝑋𝑖,𝑗 = 𝑖) ,

where the first equivalence holds since the distributions of 𝑋 and 𝑋|𝑋𝑖 = 𝑖 are both

prescribed by the MNL model with respect to𝒜 (see equation (5.12) and Claim 5.3.3),

and the second equivalence proceeds from the Markov property satisfied by the cou-

pling (𝑋|𝑋𝑖, 𝑋𝑖,𝑗) ∼ (𝑋|𝑋𝑖). Finally, the last equivalence follows from observing that

the event {𝑋𝑖,𝑗 = 𝑖} is contained in {𝑋𝑖 = 𝑖} due equation (5.8).

Finally, to show the equivalence (𝑋|𝑋𝑖,𝑗 = 𝑗) ∼ 𝑋, we have

Pr [𝑋 = 𝛼|𝑋𝑖,𝑗 = 𝑗] =
∑︁

𝛽∈𝒜+𝑖∪{0}

Pr [𝑋𝑖 = 𝛽|𝑋𝑖,𝑗 = 𝑗] · Pr [𝑋 = 𝛼|𝑋𝑖 = 𝛽,𝑋𝑖,𝑗 = 𝑗]

=
∑︁

𝛽∈𝒜+𝑖∪{0}

Pr [𝑋𝑖 = 𝛽] · Pr [𝑋 = 𝛼|𝑋𝑖 = 𝛽]

= Pr [𝑋 = 𝛼] ,

where the second equality is due to the equivalence (𝑋𝑖|𝑋𝑖,𝑗 = 𝑗) ∼ 𝑋𝑖 and the

Markov property.

C.3.5 Proof of Claim 5.3.9 (continued)

We begin by establishing a technical claim, useful for the upcoming analysis, whose

proof is deferred to the end of this section.

Claim C.3.4. For any subset 𝑆 ⊆ [𝑁] of cardinality at most 𝐶 − 1 and any unit

𝑖 ∈ [𝑁],

𝑓𝑀−1 (𝑆 ∪ {𝑖})− 𝑓𝑀−1 (𝑆) ≤ 𝑓𝑀 (𝑆 ∪ {𝑖})− 𝑓𝑀 (𝑆) .

We proceed with the remaining two cases: 𝑋𝑖,𝑗 = 𝛼 where 𝛼 ∈ {𝑖, 𝑗}.

240

Conditional on the event {𝑋𝑖,𝑗 = 𝑖}. When 𝑋𝑖,𝑗 = 𝑖, our coupling method entails

that 𝑋𝑖 = 𝑖 as well due to equation (5.8). As a result,

E
[︀
𝑅𝑀

(︀
𝑆+𝑖𝑗

)︀
−𝑅𝑀

(︀
𝑆+𝑖
)︀⃒⃒
𝑋𝑖,𝑗 = 𝑖

]︀
= E

[︀
𝑅𝑀−1

(︀
𝑆+𝑗
)︀
−𝑅𝑀−1 (𝑆)

]︀

≤ E
[︀
𝑅𝑀

(︀
𝑆+𝑗
)︀
−𝑅𝑀 (𝑆)

]︀

= E
[︀
𝑅𝑀

(︀
𝑆+𝑗
)︀
−𝑅𝑀 (𝑆)

⃒⃒
𝑋𝑖,𝑗 = 𝑖

]︀
,

where the first equality follows from the decomposition (5.17) by observing that the

terms 𝑟(𝑋𝑖,𝑗 |𝑋𝑖,𝑗=𝑖) = 𝑟(𝑋𝑖|𝑋𝑖,𝑗=𝑖) = 𝑟𝑖 cancel out, and the next inequality holds due to

Claim C.3.4. The last equality holds since 𝑋𝑗|𝑋𝑖,𝑗 = 𝑖 and 𝑋|𝑋𝑖,𝑗 = 𝑖 have the same

distribution as 𝑋𝑗 and 𝑋, respectively, as shown in Claim 5.3.4. Now, by reordering

the terms in the above inequality,

E
[︀
𝑅𝑀

(︀
𝑆+𝑖𝑗

)︀
−𝑅𝑀

(︀
𝑆+𝑗
)︀
|𝑋𝑖,𝑗 = 𝑖

]︀
≤ E

[︀
𝑅𝑀

(︀
𝑆+𝑖
)︀
−𝑅𝑀 (𝑆) |𝑋𝑖,𝑗 = 𝑖

]︀
. (C.13)

Conditional on the event {𝑋𝑖,𝑗 = 𝑗}. In this case, our coupling method entails

that 𝑋𝑗 = 𝑗 as well. Indeed, using Bayes rule, equation (5.6) along with the marginal

distributions of 𝑋𝑗 and 𝑋𝑖,𝑗 (see Claim 5.3.3), imply that Pr [𝑋𝑗 = 𝑗|𝑋𝑖,𝑗 = 𝑗] = 1.

Therefore,

E
[︀
𝑅𝑀

(︀
𝑆+𝑖𝑗

)︀
−𝑅𝑀

(︀
𝑆+𝑗
)︀⃒⃒
𝑋𝑖,𝑗 = 𝑗

]︀
= E

[︀
𝑅𝑀−1

(︀
𝑆+𝑖
)︀
−𝑅𝑀−1 (𝑆)

]︀

≤ E
[︀
𝑅𝑀

(︀
𝑆+𝑖
)︀
−𝑅𝑀 (𝑆)

]︀

= E
[︀
𝑅𝑀

(︀
𝑆+𝑖
)︀
−𝑅𝑀 (𝑆)

⃒⃒
𝑋𝑖,𝑗 = 𝑗

]︀
,(C.14)

where the first equality is a consequence of (5.17) by observing that the terms

𝑟(𝑋𝑖,𝑗 |𝑋𝑖,𝑗=𝑗) = 𝑟(𝑋𝑗 |𝑋𝑖,𝑗=𝑗) = 𝑟𝑗 cancel out, the next inequality follows from Claim C.3.4,

and the last equality holds since 𝑋𝑖|𝑋𝑖,𝑗 = 𝑗 and 𝑋|𝑋𝑖,𝑗 = 𝑗 have the same distribu-

tion as 𝑋𝑖 and 𝑋, respectively, by Claim 5.3.4.

Proof of Claim C.3.4. To establish the desired claim, recall that the random residual

subsets of units at the 𝑘-th arrival, obtained in the proof of Lemma 5.3.6, respectively

241

denoted by 𝑆𝑘 and 𝑇𝑘 when initially stocking 𝑆1 and 𝑇1 with 𝑆1 ⊆ 𝑇1 and |𝑇1∖𝑆1|≤ 1,

satisfy 𝑆𝑘 ⊆ 𝑇𝑘 for every realization. In addition, using a transformation similar to

that of equation (5.15), with 𝑆1 = 𝑆 and 𝑇1 = 𝑆 ∪ {𝑖}, we have

(𝑓𝑀 (𝑆 ∪ {𝑖})− 𝑓𝑀 (𝑆))− (𝑓𝑀−1 (𝑆 ∪ {𝑖})− 𝑓𝑀−1 (𝑆)) = E [𝑓1 (𝑇𝑀)− 𝑓1 (𝑆𝑀)] ≥ 0 .

To understand the latter inequality, note that since 𝑆𝑀 ⊆ 𝑇𝑀 for every realization,

and since these subsets have cardinality at most 𝐶, we have E[𝑓1(𝑇𝑀)− 𝑓1(𝑆𝑀)] ≥ 0

due to 𝑓1 being restricted-non-decreasing.

C.3.6 Proof of Claim 5.3.10

Suppose on the contrary that there exists a product 𝑖 ∈ 𝒜* with a selling price of

𝑟𝑖 < OPTstatic = E[ℛ1(𝒜*)], where ℛ1(𝒜) stands for the random revenue generated

by a single customer, when the set of stocked products is 𝒜. By calculations identical

to those leading to equation (5.14),

E [ℛ1(𝒜*)] =
𝑤𝑖

1 + 𝑤(𝒜*)
· 𝑟𝑖 +

(︂
1− 𝑤𝑖

1 + 𝑤(𝒜*)

)︂
· E [ℛ1 (𝒜* ∖ {𝑖})] .

In other words, E[ℛ1(𝒜*)] can be written as a convex combination of 𝑟𝑖 and E[ℛ1(𝒜*∖
{𝑖})]. Since 𝑟𝑖 < E[ℛ1(𝒜*)], it follows that E[ℛ1(𝒜* ∖ {𝑖})] > E[ℛ1(𝒜*)], contradict-

ing the optimality of 𝒜*.

C.3.7 Proof of Claim 5.3.12

The proof relies on the following technical claims regarding IFR distributions.

Lemma C.3.5 (Goyal et al. (2016)). Let 𝑀 be a non-negative integer-valued IFR

random variable. For any 𝛼 ∈ [0, 1], the random variable 𝑋 ∼ 𝐵(𝑀,𝛼) also follows

an IFR distribution.

Lemma C.3.6 (Chapter 4). Let 𝑋 be a non-negative IFR random variable, and for

some constant 𝐶 let 𝑋̄ = min{𝑋,𝐶}. Suppose that E[𝑋̄] ≤ 𝛿𝐶 for 𝛿 ∈ [0, 1]. Then,

242

E[𝑋̄] ≥ (1− 𝛿) · E[𝑋].

We argue that E[𝑌𝑖(𝑢
∝
𝑖)] ≥ E[𝑌𝑖]/2 whenever E[𝑌𝑖(𝑢

∝
𝑖)] ≤ 𝑢∝𝑖 /2. For this purpose,

based on Lemma C.3.5, since the number of customers 𝑀 is assumed to be IFR

distributed, we know that 𝑌𝑖 ∼ 𝐵(𝑀,𝜓𝑖) follows an IFR distribution as well. As a

result, by specializing Lemma C.3.6 with 𝛿 = 1/2 and 𝐶 = 𝑢∝𝑖 , which is equivalent to

assuming that E[𝑌𝑖(𝑢
∝
𝑖)] ≤ 𝑢∝𝑖 /2, we infer that E[𝑌𝑖(𝑢

∝
𝑖)] ≥ E[𝑌𝑖]/2. Therefore,

E
[︀
𝑌𝑖 (𝑢∝𝑖)

]︀
≥ 1

2
·min {𝑢∝𝑖 ,E [𝑌𝑖]} .

C.3.8 Proof of Lemma C.1.2

Let ℋ− be the set of heavy products whose selling price is less than 𝜖2𝑟𝑖max/(2𝑛
2𝐶),

and ℋ+ those with a selling price greater than 2𝑛2𝐶 ·𝑟𝑖max/𝜖
3. Following the approach

of Section 5.2.2, since the expected revenue function is subadditive (see Lemma 5.2.2),

we have

E [ℛ (𝑈*
ℒ)]+E [ℛ (𝑈*

ℋ−)]+E
[︀
ℛ
(︀
𝑈*
ℋ̃

)︀]︀
+E [ℛ (𝑈*

ℋ+)] ≥ E [ℛ (𝑈*
ℒ)]+E [ℛ (𝑈*

ℋ)] ≥ E [ℛ (𝑈*)] .

(C.15)

First, we observe that the contribution of any product 𝑖 ∈ ℋ− toward the expected

revenue of 𝑈*
ℋ− is at most

Pr [𝑀 ≥ 1] ·𝐶 · 𝑟𝑖 ≤ Pr [𝑀 ≥ 1] · 𝜖
2𝑟𝑖max

2𝑛2
≤ 𝜖

𝑛
·Pr [𝑀 ≥ 1] · 𝑟𝑖max𝑤𝑖max

1 + 𝑤𝑖max

≤ 𝜖

𝑛
·E[ℛ(𝑈*)] ,

where the first inequality holds by definition of ℋ−, and the second inequality holds

since 𝑖max is a heavy product. The last inequality is obtained by observing that the

optimal expected revenue E[ℛ(𝑈*)] is lower bounded by the corresponding quantity

with respect to the inventory vector that stocks a single unit of product 𝑖max and

nothing more, which is at least Pr[𝑀 ≥ 1] · 𝑟𝑖max𝑤𝑖max/(1 + 𝑤𝑖max). Consequently, by

summing over all products 𝑖 ∈ ℋ−, we infer that

E [ℛ (𝑈*
ℋ−)] ≤ 𝜖 · E [ℛ (𝑈*)] .

243

Hence, when ℋ+ = ∅, by inequality (C.15), it follows that E[ℛ(𝑈*
ℒ)] + E[ℛ(𝑈*

ℋ̃)] ≥
(1− 𝜖) · E[ℛ(𝑈*)].

In the opposite case, when ℋ+ ̸= ∅, consider some product 𝑖 ∈ ℋ+. As before, the

optimal expected revenue E[ℛ(𝑈*)] is lower bounded by the expected revenue when

stocking a single unit of product 𝑖, thus we obtain

E [ℛ (𝑈*)] ≥ Pr [𝑀 ≥ 1] · 𝑟𝑖𝑤𝑖

1 + 𝑤𝑖

≥ Pr [𝑀 ≥ 1] · 𝑛𝐶
𝜖2
· 𝑟𝑖max

≥ Pr [𝑀 ≥ 1] · 𝑛𝐶 · 𝑟𝑖1
𝜖2

· 𝑤𝑖1

1 + 𝑤𝑖1

· 1 + 𝑤𝑖max

𝑤𝑖max

≥ Pr [𝑀 ≥ 1] · 𝐶 · 𝑟𝑖1
2𝜖

≥ 1

2𝜖
· E [ℛ (𝑈*

ℋ)] , (C.16)

where 𝑖1 is the most expensive product stocked by 𝑈*
ℋ. Here, the second inequality

holds since 𝑟𝑖 ≥ 2𝑛2𝐶 ·𝑟𝑖max/𝜖
3 and 𝑤𝑖 ≥ 𝜖/𝑛, the third inequality follows by definition

of 𝑖max given that 𝑟𝑖max𝑤𝑖max/(1+𝑤𝑖max) ≥ 𝑟𝑖1𝑤𝑖1/(1+𝑤𝑖1), the fourth inequality holds

since 𝑤𝑖1 ≥ 𝜖/𝑛, and the last inequality is due to the fact that 𝑟𝑖1 is the most expensive

product on stock in 𝑈*
ℋ. By combining inequality (C.15) with (C.16), we conclude

that E[ℛ(𝑈*
ℒ)] ≥ (1− 2𝜖) · E[ℛ(𝑈*)].

C.3.9 Proof of Claim C.1.5

We first observe that using the formula of conditional expectation (relative to the

value of 𝑀), we can restrict attention to a deterministic 𝑀 . The desired inequality

is proven inductively over 𝐶. For 𝐶 = 0, we clearly have E[𝑌] = E[𝑋̄] = 0.

For 𝐶 ≥ 1, by the induction hypothesis, 𝑋̄ ′ = min{𝑋,𝐶−1} and 𝑌 ′ = min{𝑌,𝐶−
1} satisfy E[𝑌 ′] ≥ 𝜃 ·E[𝑋̄ ′], and we wish to prove an analogous inequality between the

expectations of 𝑋̄ = min{𝑋,𝐶} and 𝑌 = min{𝑌,𝐶}. Each of the Binomial variables

𝑋 and 𝑌 can be viewed as the terminating value of a Binomial process, counting

the number of successes among 𝑀 independent Bernoulli trials, with respective pa-

244

rameters 𝛼 and 𝜃𝛼. We begin by defining the stopping time 𝜏𝑋 that corresponds to

the first trial in which the Binomial process underlying the variable 𝑋, denoted by

𝑋1, . . . 𝑋𝑀 , attains the value 𝐶 − 1. If there are fewer than 𝐶 − 1 successes among

the 𝑀 trials, then 𝜏𝑋 = 𝑀 . Next, observe that the expected value of 𝑋 decomposes

as follows:

E
[︀
𝑋̄
]︀

= E [min{𝑋,𝐶 − 1}+ I [𝑋 > 𝐶 − 1]]

= E [min {𝑋,𝐶 − 1}] + Pr [𝑋 > 𝐶 − 1]

= E [min {𝑋,𝐶 − 1}] +
𝑀∑︁

𝜏=0

Pr [𝜏𝑋 = 𝜏] · Pr [𝑋 −𝑋𝜏 ≥ 1|𝜏𝑋 = 𝜏]

= E [min {𝑋,𝐶 − 1}] +
𝑀∑︁

𝜏=0

Pr [𝜏𝑋 = 𝜏] · Pr [𝑋 −𝑋𝜏 ≥ 1]

= E [min {𝑋,𝐶 − 1}] +
𝑀∑︁

𝜏=0

Pr [𝜏𝑋 = 𝜏] ·
(︁

1− (1− 𝛼)𝑀−𝜏
)︁
. (C.17)

The fourth equality follows from the independence of the Bernoulli trials, and the

last equality holds since 𝑋 −𝑋𝜏 ∼ 𝐵(𝑀 − 𝜏, 𝛼). In an analogous way, 𝜏𝑌 is defined

as the first trial in which the Binomial process underlying the variable 𝑌 attains the

value 𝐶 − 1, with 𝜏𝑌 = 𝑀 when 𝑌 < 𝐶 − 1. Based on the sequence of equations

leading to (C.17),

E
[︀
𝑌
]︀

= E [min {𝑌,𝐶 − 1}] +
𝑀∑︁

𝜏=0

Pr [𝜏𝑌 = 𝜏] ·
(︁

1− (1− 𝜃𝛼)𝑀−𝜏
)︁
. (C.18)

By the induction hypothesis, we already know that E[min {𝑌,𝐶 − 1}] ≥ 𝜃·E[min {𝑋,𝐶 − 1}].
Thus, given (C.17) and (C.18) it remains to show that

𝑀∑︁

𝜏=0

Pr [𝜏𝑌 = 𝜏] ·
(︁

1− (1− 𝜃𝛼)𝑀−𝜏
)︁
≥ 𝜃 ·

𝑀∑︁

𝜏=0

Pr [𝜏𝑋 = 𝜏] ·
(︁

1− (1− 𝛼)𝑀−𝜏
)︁
. (C.19)

Note that since the function 𝜙𝑘 : 𝑥 ↦→ 1 − (1 − 𝑥)𝑘 is concave over the interval [0, 1]

for any 𝑘 ∈ N, we infer that 𝜙𝑘(𝜃𝛼) ≥ 𝜃 · 𝜙𝑘(𝛼) + (1 − 𝜃) · 𝜙𝑘(0) = 𝜃 · 𝜙𝑘(𝛼), and

245

therefore

1− (1− 𝜃𝛼)𝑀−𝜏 ≥ 𝜃 ·
(︁

1− (1− 𝛼)𝑀−𝜏
)︁
.

Hence, by observing that the right-hand side of the latter inequality is non-decreasing

in 𝜏 , it is sufficient to prove that 𝜏𝑋 is stochastically smaller than 𝜏𝑌 to derive the

desired inequality (C.19). This property is easily derived by observing that the success

parameter of the process 𝑋1, . . . , 𝑋𝑀 is lower-bounded by that of 𝑌1, . . . , 𝑌𝑀 .

C.4 Tested Heuristics

Local search. The algorithm iteratively improves the objective value, where in each

step a single unit is transferred from one product to the other, until reaching a local

minimum. Starting with an initial inventory vector, we iteratively implement the

best swap between products, i.e., one that generates the largest incremental increase

in the expected revenue, evaluated through our sampling-based oracle. Specifically,

letting 𝑈 (𝑘) denote the inventory vector obtained at the beginning of step 𝑘, a swap is

represented by an ordered pair of products (𝑖, 𝑗), where the current inventory level 𝑢(𝑘)𝑖

of product 𝑖 is strictly positive. The inventory vector 𝑈 (𝑘)
𝑖→𝑗 resulting from this swap

is derived from 𝑈 (𝑘) through decreasing 𝑢(𝑘)𝑖 by one unit and augmenting 𝑢(𝑘)𝑗 by one

unit. With this definition, we either proceed to step 𝑘 + 1 with the inventory vector

𝑈
(𝑘)
𝑖→𝑗 that maximizes E[ℛ(𝑈

(𝑘)
𝑖→𝑗)] over all swaps (𝑖, 𝑗), or terminate the algorithm when

none of these swaps improves the expected revenue by a factor greater than 1%. To

alleviate the risk of ‘bad starts’, the vector 𝑈 (1) is defined by initially stocking 𝐶 units

of the product that maximizes 𝑟𝑖𝑤𝑖, similar to Goyal et al. (2016).

Gradient-descent approach. We consider a suitable adaptation of the stochastic

gradient-descent algorithm of Mahajan and van Ryzin (2001) to the MNL-based dy-

namic assortment planning problem. In contrast to the latter paper, here the revenue

function is defined only for integer-valued inventory vectors. Hence, similar to the

approach of Goyal et al. (2016), we utilize a continuous relaxation of the revenue func-

tion, defined through the Lovász extension of a discrete function. Letting 𝑓 : Z𝑛 → R

246

denote the expected revenue function, its Lovász extension 𝑓 : R𝑛 → R is defined as

𝑓(𝑈) = 𝑓(⌊𝑈⌋)+
𝑛∑︁

𝑖=1

(︀
𝑢𝜋(𝑖) − 𝑢𝜋(𝑖−1)

)︀
·
[︃
𝑓

(︃
⌊𝑈⌋+

𝑖∑︁

𝑘=1

𝑒𝜋(𝑘)

)︃
− 𝑓

(︃
⌊𝑈⌋+

𝑖−1∑︁

𝑘=1

𝑒𝜋(𝑘)

)︃]︃
,

where the permutation 𝜋 sorts products by the increasing fractional part of their

inventory, namely, 𝑢𝜋(1) − ⌊𝑢𝜋(1)⌋ ≤ · · · ≤ 𝑢𝜋(𝑛) − ⌊𝑢𝜋(𝑛)⌋. The Lovász extension is

piecewise linear, and its gradient can be approximately computed using the sampling-

based oracle given in Appendix C.1.1.

Starting with the initial solution 𝑈 (0) = 0, and letting 𝑈 (𝑘) denote the solu-

tion obtained at the end of step 𝑘, each iteration consists of computing 𝑈 (𝑘+1) =

max{0, 𝑈 (𝑘) + 𝜖∇𝑓(𝑈 (𝑘))}, where 𝜖 is the step size. When the latter vector does

not lie in the feasible region {𝑈 ∈ R𝑛 : ‖𝑈‖1 ≤ 𝐶}, it is projected onto the

boundary by linear rescaling. Through trial and error, we picked a step size of

𝜖𝑘 = max{0.05·𝐶, 𝐶−‖𝑈𝑘‖1
2
}. The algorithm terminates when 𝑈 (𝑘+1) hits the boundary

(i.e., ‖𝑈 (𝑘+1)‖1 = 𝐶) and the objective value does not improve by a factor greater than

0.5%. Since the gradient-descent algorithm is particularly slow, we force termination

after 250 iterations. Finally, it remains to ‘round’ the resulting inventory vector to

an integral one. Suppose that 𝑈 (𝑘+1) is the inventory vector obtained following the

gradient-descent algorithm; then ⌊𝑈 (𝑘+1)⌋ is augmented greedily, by stocking at each

step a unit of the product with maximal marginal expected revenue, until reaching

𝐶 units.

Dynamic programming. With some similarities to our setting, Topaloglu (2013)

studied a joint assortment and inventory problem, where the demand is formed by

a Poisson arrival process. However, the problem considered is incomparable to our

setting, since his formulation does not take into account stock-out substitution effects.

Instead of being governed by stock-outs, the assortment dynamics is at the discretion

of the retailer, who can vary the offered assortment over time to better balance

stocking constraints. Still, the algorithm devised by Topaloglu (2013) is a reasonable

alternative to our approach, especially since the optimal policy in his model was

247

proven to have a compact structure, being a mixture over at most 𝑛 assortments

under a Poisson demand process and a single assortment under a suitable normal

approximation.

In the above-mentioned model, the problem formulation is given by:

max
𝑈,𝑦

∑︁

𝑖∈[𝑛]

(︃
𝑟𝑖 · E

[︃
min

{︃
𝑈𝑖,Poisson

(︃
E [𝑀] ·

∑︁

𝑆:𝑖∈𝑆

𝑦(𝑆) · 𝑤𝑖

1 + 𝑤(𝑆)

)︃}︃]︃
− 𝑐 · 𝑈𝑖

)︃

s.t.
∑︁

𝑆⊆[𝑛]

𝑦(𝑆) = 1

Here, 𝑈 is the offered inventory vector, and for each possible assortment 𝑆 ⊆ [𝑛]

there is a corresponding decision variable 𝑦(𝑆) that describes its probability to be

offered. In addition, the parameter 𝑐 stands for the per-unit cost of any product.

This parameter can be thought of as the Lagrangian multiplier associated with the

cardinality constraint; in our setting, it can be determined through a bisection search.

Now, since the objective function above is separable with respect to the products, one

can cast this problem in dynamic programming terms. Specifically, we introduce the

change of variable 𝛼𝑖 =
∑︀

𝑆:𝑖∈𝑆 𝑦(𝑆) · 𝑤𝑖

1+𝑤(𝑆)
, where 𝛼𝑖 is the consumption rate of

product 𝑖, and incorporate simple compatibility constraints between different prod-

ucts: 𝛼0+
∑︀

𝑖∈[𝑛] 𝛼𝑖 = 1 and 𝛼𝑖 ≤ 𝑤𝑖

𝑤0
·𝛼0. At each step of the recursion, corresponding

to some product 𝑖 ∈ [𝑛], we approximately guess the consumption rate 𝛼𝑖, which im-

mediately implies an optimal stocking level 𝑈𝑖 to balance between marginal revenue

and cost. We also implement the simplified recursion developed by Topaloglu (2013)

under a normal approximation of the demand process. For a detailed description of

these algorithms, we refer the reader to Sections 5 and 7 of his paper.

Deterministic relaxation. An additional approach that deals with stock-out sub-

stitution is the continuous-time deterministic relaxation developed by Honhon et al.

(2010) and later on studied by Honhon and Seshadri (2013). Here, the stochastic

nature of the choice process is overlooked. Given the initial inventory vector 𝑈 and

its corresponding assortment 𝑆, one assumes that each product 𝑖 ∈ 𝑆 is consumed

248

at a constant rate of 𝛼𝑖 = 𝑤𝑖/(1 + 𝑤(𝑆)), until one of the products in 𝑆 is depleted.

Specifically, the first stock-out occurs at time min𝑖∈𝑆(𝑈𝑖/𝛼𝑖). Similarly, at the be-

ginning of each subsequent epoch, the consumption rates are updated to reflect the

changes of assortment, and the current epoch terminates at the next stock-out event.

In this setting, the total consumption of products is indeed deterministic with respect

to the initial stocking decisions. To optimize the latter, Honhon et al. (2010) devised

a dynamic programming approach that exploits the special structure of epochs and

runs in time 𝑂(8𝑛). Due to the exponential dependency on the number of products,

this approach is not applicable in our experimental setting, with 𝑛 = 20 products.

Instead, we cast the resulting deterministic model as a mixed integer program and

use a state-of-the-art commercial solver (Gurobi Optimization 2015). To obtain faster

convergence, the solver is given access to a warm-start solution, using the same initial

inventory vector as the local search heuristic described earlier. In most cases, the

solver indeed returns close-to-optimal solutions (to the relaxation) within the allowed

time limit of 1000 seconds. This benchmark is informative from a modeling perspec-

tive, since it sheds light on the relative merits of using a deterministic demand process

rather than the actual stochastic one.

Discrete-greedy. The discrete-greedy algorithm starts with zero inventory levels

for all products, and iteratively augments the current inventory vector by a single unit

of the product that incurs the largest increase in the expected revenue, until reaching

𝐶 units. The expected revenue is evaluated using our sampling-based procedure.

It is worth mentioning that this approach is the closest in spirit to the way our

algorithm operates on heavy-expensive products, where a restricted-non-decreasing

and restricted-submodular set function is approximately maximized through a greedy

procedure (see Section 5.3.2).

249

250

Bibliography

Aggarwal, Gagan, Tomás Feder, Rajeev Motwani, An Zhu. 2004. Algorithms for multi-
product pricing. Automata, Languages and Programming . Springer, 72–83.

Ailon, Nir, Moses Charikar, Alantha Newman. 2008. Aggregating inconsistent information:
ranking and clustering. Journal of the ACM (JACM) 55(5) 23.

Alon, Noga, Nabil Kahale. 1998. Approximating the independence number via the theta-
function. Mathematical Programming 80 253–264.

Alon, Noga, Joel H. Spencer. 2004. The probabilistic method . John Wiley & Sons.
Anupindi, Ravi, Sachin Gupta, Munirpallam A Venkataramanan. 2009. Managing variety on

the retail shelf: using household scanner panel data to rationalize assortments. Retail
Supply Chain Management . Springer, 155–182.

Aouad, Ali, Vivek Farias, Retsef Levi, Danny Segev. 2015. The approximability of as-
sortment optimization under ranking preferences. Working paper. Available at SSRN
2612947 (June 3rd, 2015).

Aouad, Ali, Danny Segev. 2015. Display optimization for vertically differentiated locations
under multinomial logit choice preferences .

Belonax, JJ, Y Mittelstaedt. 1978. Evoked set size as a function of number of choice criteria
and information variability. Advances in Consumer Research 48–51.

Ben-Akiva, Moshe E, Steven R Lerman. 1985. Discrete Choice Analysis: Theory and Appli-
cation to Travel Demand . MIT Press.

Berbeglia, Gerardo, Gwenaël Joret. 2015. Assortment optimisation under a general dis-
crete choice model: A tight analysis of revenue-ordered assortments. Working paper.
Available at SSRN 2620165 (June 19th, 2015) .

Bertsimas, Dimitris, Velibor V Mišic. 2015. Data-driven assortment optimization. Tech.
rep., Working paper, MIT Sloan School.

Bettman, James R, Mary Frances Luce, John W Payne. 1998. Constructive consumer choice
processes. Journal of Consumer Research 25(3) 187–217.

Bierlaire, Michel. 2003. Biogeme: a free package for the estimation of discrete choice models.
Swiss Transport Research Conference.

Blanchet, Jose H., Guillermo Gallego, Vineet Goyal. 2016. A markov chain approximation
to choice modeling. Operations Research 64(4) 886–905.

Brandstatter, Eduard, Gerd Gigerenzer, Ralph Hertwig. 2006. The priority heuristic: Mak-
ing choices without trade-offs. Psychological Review 113 (2) 409–432.

Brisoux, Jacques E, Michel Laroche. 1981. Evoked set formation and composition: An
empirical investigation under a routinized response behavior situation. NA-Advances
in Consumer Research (8).

251

Bront, Juan José Miranda, Isabel Méndez-Díaz, Gustavo Vulcano. 2009. A column gener-
ation algorithm for choice-based network revenue management. Operations Research
57(3) 769–784.

Campbell, Brian Milton. 1969. The existence of evoked set and determinants of its magnitude
in brand choice behavior. Ph.D. thesis, Columbia University.

Chandukala, Sandeep R, Jaehwan Kim, Greg M Allenby, Thomas Otter. 2008. Choice Models
in Marketing: Economic Assumptions, Challenges and Trends. Now Publishers Inc.

Chen, Feng, Yehuda Bassok. 2008. Variety and substitution. Working paper.
Davis, J., G. Gallego, H. Topaloglu. 2013. Assortment planning under the Multinomial Logit

model with totally unimodular constraint structures. Work in Progress.
Davis, James M., Guillermo Gallego, Huseyin Topaloglu. 2014. Assortment optimization

under variants of the Nested Logit model. Operations Research 62(2) 250–273.
Dawes, Robyn M. 1979. The robust beauty of improper linear models in decision making.

American Psychologist 34 571–582.
Debreu, Gerard. 1960. Review of R. D. Luce, Individual choice behavior: A theoretical

analysis 50 186–188.
Désir, Antoine, Vineet Goyal. 2014. Near-optimal algorithms for capacity constrained as-

sortment optimization. Available at SSRN 2543309 .
Désir, Antoine, Vineet Goyal, Danny Segev, Chun Ye. 2015. Capacity constrained assort-

ment optimization under the markov chain based choice model. Working paper, avail-
able as SSRN report 2626484.

Edmonds, Jack, Rick Giles. 1977. A min-max relation for submodular functions on graphs.
Annals of Discrete Mathematics 1 185–204.

Einhorn, Hillel J, Robin M Hogarth. 1975. Unit weighting schemes for decision making.
Organizational Behavior and Human Performance 13(2) 171–192.

Farias, Vivek, Srikanth Jagabathula, Devavrat Shah. 2013. A non-parametric approach to
modeling choice with limited data. Management Science 59(2) 305–322.

Feige, Uriel. 1998. A threshold of ln𝑛 for approximating set cover. Journal of the ACM
45(4) 634–652.

Feldman, Jacob, Huseyin Topaloglu. 2014. Revenue management under the markov chain
choice model. Working paper.

Feldman, Jacob B., Huseyin Topaloglu. 2015. Bounding optimal expected revenues for as-
sortment optimization under mixtures of multinomial logits. Production and Operations
Management 24(10) 1598–1620.

Fisher, Marshal. 2011. Don’t trust your gut with assortment planning. Harvard Business
Review.

Fisher, Marshall L., Ramnath Vaidyanathan. 2009. An algorithm and demand estimation
procedure for retail assortment optimization with results from implementation. Work-
ing paper (Philadelphia: The Wharton School).

Ford, Lester Randolph. 1957. Solution of a ranking problem from binary comparisons.
American Mathematical Monthly 64(8) 28–33.

Gallego, Guillermo, Anran Li, Van-Anh Truong, Xinshang Wang. 2016. Approximation
algorithms for product framing and pricing. Tech. rep., Working paper, available online
as SSRN report.

252

Gallego, Guillermo, Huseyin Topaloglu. 2014. Constrained assortment optimization for the
nested logit model. Management Science 60(10) 2583–2601.

Gaur, Vishal, Dorothée Honhon. 2006. Assortment planning and inventory decisions under
a locational choice model. Management Science 52(10) 1528–1543.

Gigerenzer, Gerd, Daniel G Goldstein. 1996. Reasoning the fast and frugal way: models of
bounded rationality. Psychological review 103(4) 650.

Gigerenzer, Gerd, Reinhard Selten. 2002. Bounded rationality: The adaptive toolbox . MIT
press.

Gilbride, T. J., G. M Allenby. 2004. A choice model with conjunctive, disjunctive, and
compensatory screening rules. Marketing Science 23(3) 391–406.

Golrezaei, Negin, Hamid Nazerzadeh, Paat Rusmevichientong. 2014. Real-time optimization
of personalized assortments. Management Science 60(6) 1532–1551.

Goyal, Vineet, Retsef Levi, Danny Segev. 2016. Near-optimal algorithms for the assortment
planning problem under dynamic substitution and stochastic demand. Operations Re-
search 64(1) 219–235.

Grover, Rajiv, Marco Vriens. 2006. The Handbook of Marketing Research: Uses, Misuses,
and Future Advances. Sage Publications.

Guadagni, Peter M, John DC Little. 1983. A Logit model of brand choice calibrated on
scanner data. Marketing Science 2(3) 203–238.

Gurobi Optimization, Inc. 2015. Gurobi optimizer reference manual. URL
http://www.gurobi.com.

Halperin, Eran. 2002. Improved approximation algorithms for the vertex cover problem in
graphs and hypergraphs. SIAM Journal on Computing 31(5) 1608–1623.

Håstad, Johan. 1996. Clique is hard to approximate within 𝑛1−𝜖. Proceedings of the 37th
Annual Symposium on Foundations of Computer Science. 627–636.

Hauser, John R. 1978. Testing the accuracy, usefulness and significance of probabilistic
models: An information theoretic approach. Operations Research 406–421.

Hauser, John R., Min Ding, Steven P. Gaskin. 2009. Non compensatory (and compensatory)
models of consideration-set decisions. Sawtooth Software Conference Proceedings.

Hauser, John R., Birger Wernerfelt. 1990. An evaluation cost model of consideration sets.
Journal of Consumer Research 393–408.

Hess, Stephane, Michel Bierlaire, John Polak. 2007. A systematic comparison of continuous
and discrete mixture models. European Transport (37).

Honhon, D., S. Jonnalagedda, X. A. Pan. 2012. Optimal algorithms for assortment selection
under ranking-based consumer choice models. Manufacturing & Service Operations
Management 14(2) 279–289.

Honhon, Dorothée, Vishal Gaur, Sridhar Seshadri. 2010. Assortment planning and inventory
decisions under stockout-based substitution. Operations Research 58(5) 1364–1379.

Honhon, Dorothée, Sridhar Seshadri. 2013. Fixed vs. random proportions demand models
for the assortment planning problem under stockout-based substitution. Manufacturing
& Service Operations Management 15(3) 378–386.

Howard, J. A., J. N. Sheth. 1969. The Theory of the Buyer Behavior . John Wiley.
IHL. 2015. Retailers and the ghost economy: $1.75 trillion reasons to be afraid. Tech. rep.,

IHL Group.

253

Jagabathula, Srikanth. 2014. Assortment optimization under general choice .
Jagabathula, Srikanth, Paat Rusmevichientong. 2016. A nonparametric joint assort-

ment and price choice model. Management Science (Articles in advance). doi:
10.1287/mnsc.2016.2491.

Karger, David R., Rajeev Motwani, Madhu Sudan. 1998. Approximate graph coloring by
semidefinite programming. Journal of The ACM 45(2) 246–265.

Katoh, Naoki, Toshihide Ibaraki. 1998. Resource allocation problems. Handbook of combi-
natorial optimization 2 159–260.

Kök, A Gürhan, Marshall L Fisher. 2007. Demand estimation and assortment optimization
under substitution: Methodology and application. Operations Research 55(6) 1001–
1021.

Kök, A Gürhan, Marshall L Fisher, Ramnath Vaidyanathan. 2009. Assortment planning:
Review of literature and industry practice. Retail supply chain management . Springer,
99–153.

Lancaster, Kelvin. 1975. Socially optimal product differentiation. The American Economic
Review 567–585.

Lancaster, Kelvin J. 1966. A new approach to consumer theory. The Journal of Political
Economy 132–157.

Laroche, Michel, Chankon Kim, Takayoshi Matsui. 2003. Which decision heuristics are used
in consideration set formation? Journal of Consumer Marketing 20(3) 192–209.

Li, Guang, Paat Rusmevichientong, Huseyin Topaloglu. 2015. The d-level nested logit model:
Assortment and price optimization problems. Operations Research 63(2) 325–342.

Liu, Qian, Garrett Van Ryzin. 2008. On the choice-based linear programming model for
network revenue management. Manufacturing & Service Operations Management 10(2)
288–310.

Luce, Robert Ducan. 1959. Individual Choice Behavior a Theoretical Analysis. John Wiley
& Sons.

Mahajan, Siddharth, Garrett van Ryzin. 2001. Stocking retail assortments under dynamic
consumer substitution. Operations Research 49(3) 334–351.

Maystre, Lucas, Matthias Grossglauser. 2015. Fast and accurate inference of Plackett–Luce
models. Advances in Neural Information Processing Systems. 172–180.

McBride, Richard D, Fred S Zufryden. 1988. An integer programming approach to the
optimal product line selection problem. Marketing Science 7(2) 126–140.

McFadden, Daniel. 1973. Conditional Logit analysis of qualitative choice behavior. Frontiers
in Econometrics 105–142.

McFadden, Daniel. 1980. Econometric models for probabilistic choice among products.
Journal of Business 53(3) S13–S29.

McFadden, Daniel, Kenneth Train. 2000. Mixed mnl models for discrete response. Journal
of applied Econometrics 15(5) 447–470.

Megiddo, Nimrod. 1979. Combinatorial optimization with rational objective functions.
Mathematics of Operations Research 4(4) 414–424.

Méndez-Díaz, Isabel, Juan José Miranda-Bront, Gustavo Vulcano, Paula Zabala. 2014. A
branch-and-cut algorithm for the latent-class Logit assortment problem. Discrete Ap-
plied Mathematics 164 246–263.

254

Muckstadt, John A, Amar Sapra. 2010. Principles of Inventory Management: When You
Are Down to Four, Order More. Springer Science & Business Media.

Nagarajan, Mahesh, Sampath Rajagopalan. 2008. Inventory models for substitutable prod-
ucts: optimal policies and heuristics. Management Science 54(8) 1453–1466.

Negahban, Sahand, Sewoong Oh, Devavrat Shah. 2012. Iterative ranking from pair-wise
comparisons. Advances in Neural Information Processing Systems. 2474–2482.

Nemhauser, George, Laurence Wolsey, Marshall Fisher. 1978. An analysis of approximations
for maximizing submodular set functions. Mathematical Programming 14(1) 265–294.

Parkinson, T. L., M. Reilly. 1979. An information processing approach to evoked set forma-
tion. Advances in Consumer Research 6(1) 227–231.

Payne, J. W., J. Bettman, R. James, M. F Luce. 1996. When time is money: Decision
behavior under opportunity-cost time pressure. Organizational behavior and human
decision processes 66(2) 131–152.

Pentico, David W. 1974. The assortment problem with probabilistic demands. Management
Science 21(3) 286–290.

Plackett, Robin L. 1975. The analysis of permutations. Applied Statistics 24(2) 193–202.
Posavac, Steven S., Tracy Meyer, Frank R. Kardes, James J. Kellaris. 2005. A selective

hypothesis testing perspective on price-quality inference and inference-based choice.
Journal of Consumer Psychology 15 (2) 159–169.

Pras, Bernard, John Summers. 1975. A comparison of linear and nonlinear evaluation process
models. Journal of Marketing Research 276–281.

Ratliff, Richard M, B Venkateshwara Rao, Chittur P Narayan, Kartik Yellepeddi. 2008.
A multi-flight recapture heuristic for estimating unconstrained demand from airline
bookings. Journal of Revenue and Pricing Management 7(2) 153–171.

Reilly, Michael, Thomas L Parkinson. 1985. Individual and product correlates of evoked set
size for consumer package goods. Advances in Consumer Research 12.

Roberts, John H, James M Lattin. 1991. Development and testing of a model of consideration
set composition. Journal of Marketing Research 429–440.

Rusmevichiengtong, Paat, Benjamin Van Roy, Peter W. Glynn. 2006. Nonparametric ap-
proach to multiproduct pricing. Operations Research 54(1) 82–98.

Rusmevichientong, Paat, Zuo-Jun Max Shen, David B Shmoys. 2010. Dynamic assortment
optimization with a Multinomial Logit choice model and capacity constraint. Opera-
tions Research 58(6) 1666–1680.

Rusmevichientong, Paat, David Shmoys, Chaoxu Tong, Huseyin Topaloglu. 2014. Assort-
ment optimization under the multinomial logit model with random choice parameters.
Production and Operations Management 23(11) 2023–2039.

Rusmevichientong, Paat, Huseyin Topaloglu. 2012. Robust assortment optimization in rev-
enue management under the Multinomial Logit choice model. Operations Research
60(4) 865–882.

Rusmevichientong, Paat, Benjamin Van Roy, Peter W. Glynn. 2006. A nonparametric
approach to multiproduct pricing. Operations Research 54(1) 82–98.

Ryzin, Garrett van, Siddharth Mahajan. 1999. On the relationship between inventory costs
and variety benefits in retail assortments. Management Science 45(11) 1496–1509.

Samet, Hanan. 1990. Applications of spatial data structures. Addison-Wesley.

255

Sauré, Denis, Assaf Zeevi. 2013. Optimal dynamic assortment planning with demand learn-
ing. Manufacturing & Service Operations Management 15(3) 387–404.

Segev, Danny. 2015. Assortment planning with nested preferences: Dynamic programming
with distributions as states? Working paper, available as SSRN report #2587440.

Shaked, M., J.G. Shanthikumar. 1994. Stochastic Orders and Their Applications. Academic
Press, New York.

Silk, Alvin J, Glen L Urban. 1978. Pre-test-market evaluation of new packaged goods: A
model and measurement methodology. Journal of marketing Research 171–191.

Sinha, Ashish, Anna Sahgal, Sharat K Mathur. 2013. Practice prize paper—category
optimizer: A dynamic-assortment, new-product-introduction, mix-optimization, and
demand-planning system. Marketing Science 32(2) 221–228.

Smith, Stephen A., Narendra Agrawal. 2000. Management of multi-item retail inventory
systems with demand substitution. Operations Research 48(1) 50–64.

Talluri, Kalyan, Garrett van Ryzin. 2004. Revenue management under a general discrete
choice model of consumer behavior. Management Science 50(1) 15–33.

Talluri, Kalyan T, Garrett J Van Ryzin. 2006. The Theory and Practice of Revenue Man-
agement , vol. 68. Springer Science & Business Media.

Topaloglu, Huseyin. 2013. Joint stocking and product offer decisions under the multinomial
logit model. Production and Operations Management 22(5) 1182–1199.

Tversky, A. 1972a. Choice by elimination. Journal of Mathematical Psychology 9 341–367.
Tversky, A. 1972b. Elimination by aspects : A theory of choice. Psychological Review 79

281–299.
Tversky, A., S. Sattath. 1979. Preference trees. Psychological Review 86 542–573.
Tversky, Amos, Daniel Kahneman. 1975. Judgment under uncertainty: Heuristics and biases.

Utility, probability, and human decision making , vol. 185. Springer, 141–163.
Urban, Glen L. 1975. Perceptor: A model for product positioning. Management Science

21(8) 858–871.
van Ryzin, Garrett, Gustavo Vulcano. 2014. A market discovery algorithm to estimate a

general class of nonparametric choice models. Management Science 61(2) 281–300.
Vulcano, Gustavo, Garrett van Ryzin, Wassim Chaar. 2010. Choice-based revenue manage-

ment: An empirical study of estimation and optimization. Manufacturing & Service
Operations Management 12(3) 371–392.

Wächter, Andreas, Lorenz T Biegler. 2006. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical program-
ming 106(1) 25–57.

Zeithalm, Valarie A. 1988. Consumer perception of price, quality and value: a means-end
model and synthesis of evidence. Journal of Marketing 52 2–22.

256

