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Abstract

While many industries can benefit from machine learning techniques for data analysis, they
often do not have the technical expertise nor computational power to do so. Therefore,
many organizations would benefit from outsourcing their data analysis. Yet, stringent data
privacy policies prevent outsourcing sensitive data and may stop the delegation of data
analysis in its tracks. In this thesis, we put forth a two-party system where one party
capable of powerful computation can run certain machine learning algorithms from the
natural language processing domain on the second party’s data, where the first party is
limited to learning only specific functions of the second party’s data and nothing else. Our
system provides simple cryptographic schemes for locating keywords, matching approximate
regular expressions, and computing frequency analysis on encrypted data. We present a full
implementation of this system in the form of a extendible software library and a command
line interface. Finally, we discuss a medical case study where we used our system to run a
suite of unmodified machine learning algorithms on encrypted free text patient notes.

Thesis Supervisor: Shafi Goldwasser
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Chapter 1

Introduction

As machine learning algorithms make their way into more fields and industries, the prob-

lem of data privacy becomes increasingly more important. In practice, in order for machine

learning algorithms to produce e↵ective results, an extremely large dataset is needed. There-

fore, a powerful computational cluster is required to handle the immense amount of data

computation. To bypass this problem, organizations often need to delegate their machine

learning computations to another, possibly untrusted, party. Computational power is only

one reason to delegate computation on your data. In some cases, organizations do not even

know which machine learning algorithms to run on their data and want third parties to not

only run machine learning algorithms on their data but also determine which algorithms

to run. This makes the data privacy problem even more di�cult. Organizations want to

delegate the ability to run arbitrary machine learning algorithms but want to keep any

sensitive, personally identifiable data private.

To address the data privacy problem, current industry best practices suggest methods for

“anonymizing” data, or blacklisting certain types of data points. For example, a financial

institution might remove all sequences of numbers that look like Social Security Numbers.

A medical institution might remove all names, identification numbers, and birthdays. While

this method might be simple to employ in structured data where identifiable information is

easily removable, many machine learning algorithms are most e↵ective on unstructured or

“free text” data. Anonymizing these types of documents proves to be very di�cult as private

information can be hidden in any sentence throughout a large body of human-written text.

For example, financial advisers might manually write account notes about a customer in a

bank record. A doctor often manually writes notes describing patient symptoms or feelings.

Some best practices for anonymizing data therefore suggest to manually read free text data

to find and remove personally identifiable information. Since these datasets are very large,

it isn’t always feasible for organizations to manually remove these types of sensitive data

points.
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1.1 Overview of Natural Language Processing (NLP) Prim-

itives

In this work, we consider certain machine learning algorithms from the Natural Language

Processing (NLP) domain. Informally, NLP is a set techniques for analyzing and deriv-

ing meaning from human language. Specifically, NLP algorithms take free text as input

and output one or more classifications about the free text. NLP algorithms are usually

specialized to specific types of input data and output classifications. For example, given a

paragraph describing a person’s review of a movie, an NLP algorithm might determine if

the review is positive or negative. NLP algorithms use a variety of methods to process free

text. Specifically, our work considers the following NLP methods: keyword search, regular

expression matching, and bag-of-words.

Keyword Search. One of the simplest methods to classify free text is to check if the

free text contains a keyword. The presence of specific keywords might indicate the meaning

of the text. For instance, a positive a movie review might contain keywords like “great”,

“best”, or “interesting”, while a negative review might contain keywords like “bad”, “worst”,

or “boring”. Therefore many NLP algorithms scan free text for well known keywords, and

use this information as one of the factors in classifying the free text.

Regular Expression Matching. As with keywords, the presence of specific phrases or ex-

pressions in free text may reveal the meaning of the free text. A regular expression is a string

of characters that encodes a specific search pattern. Regular expressions are particularly

useful for identifying a known phrase or a sequence of characters that can be written many

ways. For example, the regular expression ((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4} can

be used to match all US phone numbers. Another regular expression might be used to

match the many ways of writing numerical ratings in movie reviews like “5/10”, “5 out

of 10”, or “five out of ten”. Therefore, many NLP algorithms scan free text to check for

matches against well known regular expressions and use this information as another factor

in classifying the free text.

Bag-of-Words. The bag-of-words algorithm, also known as frequency analysis, takes free

text as input and maps each distinct word to the number of times it repeats in the free text.

For example, the free text “Alice likes fast cars and Bob likes red cars” would produce the

following bag-of-words:

"likes": 2

"cars" : 2

"Alice": 1

"Bob" : 1

10



"fast" : 1

"red" : 1

In addition to distinct words, bag-of-words can also be applied to “n-grams” where an n-

gram is an ordered list of n words. That is, an n-gram bag-of-words algorithm takes free

text as input and maps each distinct ordered tuple of n words to the number of times this

ordered tuple of n ordered words appear in the free text. For example, the free text “Alice

likes driving fast but Bob hates driving fast” would produce of the following bag-of-words

bi-gram:

"Alice likes" : 1

"likes driving": 1

"driving fast" : 2

"fast but" : 1

"but Bob" : 1

"Bob hates" : 1

Bag-of-words are useful for determining which words or n-grams (phrases) appear most

commonly throughout multiple free text documents. Many NLP algorithms uses this infor-

mation as a factor in deciding that two free text documents are similar and therefore should

have the same classification.

1.2 Our Contributions

In this work we design and implement a cryptographic two-party system where one party can

outsource common natural language processing computations to a computationally power-

ful, partially untrusted second party. Specifically, our system enables the computationally

powerful party to perform keyword search, approximate regular expression matching, and

bag-of-words computations on a second party’s encrypted free text data. Our contributions

are as follows.

• Two-party Model. We define a two-party computation model for outsourcing key-

word search and bag-of-words natural language processing computations on encrypted

data and motivate it with practical examples. We outline the privacy goals that this

system aims to achieve. We also define the three main operational phases of our sys-

tem, the free text encryption phase, the auxiliary key request phase, and the compute

phase to show how the system would work in a practical setting.

• Definitions of Privacy. We provide formal privacy definitions for cryptographic

schemes that perform keyword search and bag-of-words computations on encrypted

free text. Essentially, we require that for any encrypted free text the leaked infor-

mation constitutes only the locations of allowed keywords in keyword search and the

11



frequency counts of underlying plaintexts (where underlying plaintexts themselves are

not leaked) and nothing else.

• Cryptographic Constructions. We provide cryptographic constructions for per-

forming keyword search and bag-of-words computations on encrypted free text.

• Proofs of Privacy. We prove that our cryptographic construction achieve our def-

initions of privacy under the Random Oracle Model and the existance of a Pseudo-

random Permutation. Looking forward, this will be implemented using standard hash

functions such as SHA-256 and block ciphers such as AES.

• Implementation. We provide a complete software implementation our crypto-

graphic constructions as well as a command line interface to make our software usable

in practice.

• Medical Case Study. Finally, we show how we used our software to run a suite of

unmodified natural language processing algorithms on encrypted patient data and how

it achieved the same results as running the natural language processing algorithms on

plaintext patient data.

In the remainder of this chapter, we will define the basic two party model as stated

above, explain our results, and provide a roadmap for the rest of the thesis, and discuss

related work.

1.3 The Two-Party System

In our system there are two parties, (1) the data owner and (2) the data learner. The

owner has control over some set of free text documents and the learner is tasked with per-

forming keyword search and bag-of-words computations on the documents. However, the

owner’s data contains personally identifiable information, denoted PII, that only the owner

is privileged to know. Therefore, the owner must have the learner perform these computa-

tions without giving the learner the ability to discover any PII. The learner is assumed to

operate in the honest but curious paradigm. The learner is curious and therefore wants to

learn as much as possible, but the learner is honest and will not share the results of their

computations with unauthorized parties, including other leaners.

In an ideal privacy definition, we would like to state that the owner hides all PII from

the learner while giving the learner the ability to perform keyword searches and bag-of-

words computations. However, this definition would be seemingly unachievable because it

seems hard to formally define what personally identifiable information is. It might be that

a keyword looks harmless but it actually identifies a person. Therefore, we must be more

specific with our definition of privacy. We say that a keyword search scheme is private if

12



the learner can detect the locations of keywords in an encrypted free text document for

keywords that the owner allows and nothing else. We say that a bag-of-words computation

scheme is private if the learner can detect the locations of repeating plaintexts and nothing

else. This definition also requires that the plaintext itself is not revealed and instead a

unique placeholder for every plaintext is used in place.

One motivating case for our model is a hospital (data owner) and external medical re-

search scientists (data learners). The hospital owns many patient records, each of which

contains structured and unstructured data. The researchers wish to examine patient records

and learn about the possible links between certain diseases and symptoms. The researchers

have computational resources to perform execute such algorithms, and the hospital wants

to aid the researchers to benefit from their results.For example, to show the e↵ectiveness

of computational studies on electronic health records, a team of medical research scientists

used natural language processing techniques to diagnose bipolar patients [19]. They ran

these natural language process algorithms over a dataset with about 5 million patients, and

achieved a high success rate for correctly classifying patients with bipolar disease.However,

this study is only the very beginning. By making valuable data sets like these available,

data owners and learners can collaborate to make big discoveries that otherwise could have

gone unnoticed.

1.3.1 The Basic model

Our system has three main operational phases. In the encrypt phase, the data owner

encrypts a free text document and publishes the resulting ciphertexts. Next in the request

phase, a data learners can then request auxiliary keys for specific keywords or one auxiliary

key for bag-of-words. Finally in the compute phase, a learner uses these auxiliary keys to

find the locations of keywords and count repetitions of underlying plaintext in the encrypted

free text document.

Phase 1 - Encryption

The data owner encrypts its free text documents and posts the resulting encrypted free text

to a public location where data learners can read it. Once a free text document is encrypted

and published, it never needs to be re-encrypted. This is important because the data owner

is not computationally powerful and therefore should not be iterating over free text data

often. Encryption is especially e�cient in the case of multiple data learners since the owner

does not need to encrypt free text individually for each learner.
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Figure 1-1: The data owner encrypts then publishes. Multiple data leaners pull encrypted
free text records.

Phase 2 - Auxiliary Key Request

As shown in figure 1-2, learners request auxiliary keys for specific keywords and for bag-

of-words (frequency count) from the owner. The owner has the option to approve or reject

these auxiliary key requests. For example, the owner might reject a request if the keyword

looks like a person’s name or something clearly identifiable. The owner might also reject

because the learner is not authorized to search for the supplied keyword or the learner is

not authorized to compute a frequency count of underlying plaintext words. If the owner

approves the request, the corresponding auxiliary keys are sent to the sender.

Figure 1-2: Data learners request search keys. For example, the first data learner asks for
a search key to detect all ciphertexts that are encryptions of “cardiac”. The data owner
extracts the search key (to approve the request) and returns it to the learner.
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Phase 3 - Compute

Using the encrypted free text from phase 1 and the auxiliary keys from phase 2, the learner

will perform the keyword search and bag-of-words computations on the encrypted free text.

As shown in figure 1-3, the learner will discover the locations of of the requested keywords in

the encrypted free text. The learner will also discover the locations of repeating plaintexts

in the encrypted free text, where each distinct plaintext is marked by a unique placeholder.

Figure 1-3: Applying the auxiliary keys enables the learner to transform encrypted free
text data to reveal locations of keywords for corresponding keys (“cardiac” and “systolic”
in this example) and compute bag-of-words by revealing locations of repeating plaintexts.
A,B,C,D,E are placeholders to represent unique plaintext words.

Remark 1.3.1. We do not require a fixed order execution of these phases and each phase

can be performed an arbitrary number of times as long as the parties are still willing to

participate. Therefore, data owners can encrypt new data as it is created, and learners can

compute over this data using their existing auxiliary keys. Learners can also request new

auxiliary keys as their learning criterion changes based on possible intermediate findings.

Remark 1.3.2. As an extension of the basic model, the system could support further

interaction between the owner and the learner, where the owner sends the learner some

bounded auxiliary information about the ciphertext to the learner. This can also be for-

mally incorporated into our security definitions. Looking forward, this is something that our

implementation takes advantage of. Specifically, our implementation of bag-of-words com-

putations supports a protocol where the learner can ask the owner to reveal the plaintext

corresponding to a specific placeholder.

1.3.2 Public vs Private Encryption

It is important to note that our system is designed to operate in the private-key encryption

model. This means that only the data owner can encrypt free text. However, there exist

cryptographic systems that operate in the public-key encryption model, where the data
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owner holds onto a private-key but any other party like the data learner would be given the

public-key which they can use to encrypt free text words. Such a scheme could be useful

if there were multiple data owners. However, in this work we are primarily concerned with

models where only one party controls all data but several computationally more powerful

parties may want to search on the data. One reason for this decision is that we discovered

that there exist many applications that do not need the public-key encryption setting. As

a motivating example, we can consider hospital data systems. While each hospital collects

its own records, the hospital data systems are usually powered by a single large provider.

One such example is the Partners Healthcare Organization.

This relaxation allows us to design a simpler and more e�cient system based only on private-

key (symmetric) cryptographic primitives. In fact, as we will later show, our schemes rely

on practical, widely-used symmetric encryption primitives that enables us to achieve a high

level of performance. This e�ciency is key, since our primary goal is to enable outsourcing

machine learning computations over vast datasets.

1.4 Implementation of our System

We present an implementation of our system in the form a command line interface, named

Alvis, and a software library that can both be interfaced to work with arbitrary suites of

NLP algorithms. Our implementation is in the Golang programming language and works

on most operating systems. The source code can be found on https://github.mit.edu/

agrinman/alvis.

The command line interface is used as a standalone, deployable application to generates

keys, encrypts free text, requests auxiliary keyword and bag-of-words keys, and performs

keyword search and bag-of-word computations on encrypted free text. The software library

enables developers to programmatically integrate and use auxiliary keys to perform data

analysis on encrypted data in their custom NLP algorithms. Together, the command line

interface and the software library allow for both direct and programmatic use of our system.

Finally, we show that our implementation is e�cient. In section 4.4.1 we give detailed

performance benchmarks for each of our functions. Most importantly, we show that the

bottle neck of our system is performing AES (block cipher) operations. That is, each invo-

cation of our function performs about as fast as an AES operation. In today’s computing

environments, AES is often implemented as a hardware instruction which allows our system

to perform significantly better on modern hardware.
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1.5 Computing on Encrypted Patient Data

We used our implementation to perform Natural Language Processing (NLP) on encrypted

free text patient notes. We were inspired by a partnership between MIT and MGH that

sought out to learn about patients with heart failure problems that received Cardiac Resyn-

chronization Therapy (CRT). While this a successful therapy for a majority of patients,

about one third of CRT patients do not experience positive results [14]. More interestingly,

the causes of failure are not well understood [14].

One reason for the di�culty in understanding CRT failure conditions is the way that the

clinical results are recorded in patient records. Record keeping, while electronic, leaves a

lot to be desired for recording specific patient results, especially during CRT treatment.

Data is stored in many formats, and structured data often only contains a limited number

of important metrics. This means that the bulk of information, which could potentially

reveal CRT failure reasons, is hidden in free text doctor notes. Thus, clinical researchers

would need to manually read this data to determine causes, a task that is infeasible for a

large number of patient records [16].

Freel, Haimson, and Traub from the Massachusetts Institute of Technology (MIT), and

a clinical research doctor, Lindvall from the Massachusetts General Hospital (MGH) [16]

developed a suite of NLP algorithms, denoted FHTL, that improved the prediction accuracy

for the success of Cardiac Resynchronization Therapy, a treatment that fails for one third

of patients, by 9% [16].

We framed this medical case study in our two party model. Naturally, the hospital is

the data owner, maintaining a set of patient records. The MIT NLP researchers, collabo-

rated with a medical institution, like MGH, to learn about why Cardiac Resynchronization

Therapy treatments fail and how to predict their success.

We use our system implementation to simulate the FHTL program on encrypted free text

patient notes. Our main results is that we can use to run the unmodified suite of NLP

algorithms on a encrypted patient data while achieving the same results as if the algorithms

were run on unencrypted data. These results are based on running trials of our software and

the FHTL algorithm on only a small subset of the original patient data files. The original

work by Freel et al [16] used about 900 patient data files, while we were limited to 10 (de-

ceased) patient files due to access restrictions and privacy regulations. We note that FHTL

was designed to run on small datasets [16] and that our trials indicate that the our software

will work on larger data sets, however more auxiliary keyword keys may be needed to show

that the execution of FHTL on encrypted data classifies as well as it would on plaintext data.
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One our motivations for developing this system is to give outside researchers access to

large patient data sets without leaking the personally identifiable information of patients.

Coincidentally, our limited access to the patient data set is a perfect example of why need

methods for preforming data analysis on encrypted patient data.

1.6 Thesis Roadmap

In the following chapter, we define the cryptographic primitives used by our work, including

the security assumptions that we will make in order to prove the privacy of our schemes.

Next, in chapter 3, we provide the formal definitions for our schemes to perform keyword

search and bag-of-words computations on encrypted data and we give formal definitions

of privacy for both of these schemes. We then provide the constructions for these schemes

based on the cryptographic primitives from chapter 2, and we prove that these constructions

meet the privacy definitions. In chapter 4, we describe the practical implementation our

constructions and demonstrate both a command line interface that is easy to use and

software library that is extendible and simple to integrate into existing programs. We

provide a performance analysis of our construction to show that it is highly e�cient. In

chapter 5, we present a detailed medical case study where we use our software to run a suite

of unmodified natural language process algorithms on encrypted patient data, achieving the

same results as if the algorithms were run on plaintext patient data. Finally, we conclude

the thesis by describing next steps and future work goals.

1.7 Related Work

There has been substantial work in topics related to searching on encrypted data. In this

section we describe several types of searchable encryption models and compare these existing

solutions to our work. Overall, most of the related work is based on advanced cryptographic

primitives such as Bilinear Maps and Learning With Errors, while our system is based on

simple primitives like hash functions and pseudorandom permutations that are e�cient and

heavily used, which enables us to fulfill the end goal of this work, to build this system and

use it in practice.

1.7.1 Client-Server Model: Symmetric Searchable Encryption

Much of the work on searchable encryption focuses on client-server model where the goal is

for the client to encrypt a database while the server maintains it and can perform delegated

searches for the client. Most constructions enable keyword search on the encrypted data.

This model is similar to our system in that the server is an adversary and it is more

computationally powerful. The server is therefore tasked with searching records. Client’s
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can create a type of decryption key that allows the server to find matching database records.

The objective is for the server to learn that the a record matches and returns it to the client

who can then decrypt. Thus, the server e↵ectively learns only that some records matched

an unknown query. In our system, the goal is for the computationally powerful party to

learn significantly more information, like locations of keywords and detections of repeating

underlying plaintexts, which would enable this party to compute more complicated natural

language processing algorithms over encrypted data.

Curtmola, Garay, Kamara, and Ostrovosky [15] provide a detailed discussion of e�cient

searchable encryption constructions based on symmetric encryption that work best in the

client-server model. Much of their work establishes security definitions of various construc-

tions for symmetric searchable encryption. Our work di↵ers in that we present a collabo-

rative, interactive protocol that is designed to leak more information like a frequency search.

Pandey and Rouselakis [20] introduced the new concept of Property Preserving Encryp-

tion (PPE) where a “Test” procedure can be executed on ciphertexts to determine if the

underlying plain-text has some property. They present a symmetric construction for pre-

serving the orthogonality property for vectors. This framework fits our model but currently

their constructions are based on bilinear maps which prove to be to ine�cient for the large

data volume that our work considers. Additionally, we focus on simpler properties that we

have observed are the main search primitives for e↵ective machine learning algorithms.

1.7.2 Public-key Encrypted Keyword Search

In the Public-key Encrypted Keyword Search (PEKS) model by Boneh et al [11], multiple

clients communicate through one or more servers. Therefore multiple parties must be able

to encrypt. One common use case for this model is a mail server used by multiple parties.

Emails must be confidential between parties, but each party should be able to delegate

searching an email for keywords to the mail server. One way to construct PEKS is to use

Identity Based Encryption (IBE). IBE was first introduced by Shamir [22] and the first

construction was produced by Boneh and Franklin [12] using Pairing Based Cryptography.

More so, the Boneh-Franklin IBE construction is anonymous which ensures that ciphertexts

do not reveal any information about the underlying identity (keyword). Unfortunately, as we

mentioned above, pairings are slow operations and limit usability when applied many times

over large data sets. Additionally, we emphasize again that our model does not require the

public encryption aspect for which PEKS is designed. Removing the public aspect allows

us to design a scheme based on simpler primitives and gain far better performance.
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1.7.3 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE), by Gentry [17], is a general solution for computing

on encrypted data. This scheme is the king of all solutions as it would allow the evaluation of

arbitrary machine learning algorithms over encrypted data. However, current constructions

are currently extremely ine�cient and would not feasible for the large data volume our work

considers.

1.7.4 Functional Encryption

Function Encryption (FE), first formalized by Boneh, Sahai, and Waters [13], uses general-

izations of IBE for placing arbitrary functions in the place of identity evaluation or attribute

matching. Hence, FE is a framework that enables an identity to decrypt a function of the

plain-text, where the function is taken over the ciphertext and the identity key. There

are several definitions of security and proposals for FE with specific functions and general

functions, where functions are expressed as circuit components with n-bit inputs. In the lit-

erature, there are constructions of FE schemes for functions such as inner product predicate

[13] and Goldwasser et al [18] put forth the first FE scheme for general functions. However,

all existing proposals either do not support multiple functions or are very ine�cient as they

use math that goes beyond simple computations such as hash functions. An interesting

case is FE for Regular Languages.

FE for Regular Languages. Most of our preliminary work focused on creating a FE

scheme to accomplish regular expression matching for general languages, one of our major

unsolved search primitives.

We noticed that in our two party model, the data owner is the only party that ever needs

to encrypt. This is fundamentally simpler than FE schemes in the public-key model. The

public-key model seems to be at least as hard as the private-key model, because a con-

struction for the public-key system could keep the public-key secret. However, most of

the FE schemes we encountered were in the public-key model because they are based on

generalizations of IBE and ABE schemes that are intentionally designed to support public

encryption. For example, one interesting FE construction we came across is Functional

Encryption for Regular Languages scheme by Waters [23]. This construction almost fits

the requirements for regular expression matching, except, the scheme falls short because it

only works in the public-index model where the underlying attributes are not kept private.

Unfortunately, the “attributes”, the words that regular expressions are evaluated on, are

made public in Water’s scheme. Therefore, Water’s scheme doesn’t protect the actual free

text words which we seek to keep private.

The scarcity of private-key FE schemes led us to believe that it could be easier to construct
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a private-key FE scheme for matching regular expressions. Specifically, we attempted to

create a private-key FE scheme FRE = (Setup,Extract, Encrypt, CheckMatch), a tuple

of four algorithms that work as follows.

• Setup creates the master secret key to be kept private throughout.

• Extract takes a Deterministic Finite Automaton (DFA) D that accepts a regular

language L(D), and the master secret key, to derive a functional secret key skfD fixed

on D, where

fD(x) =

8
<

:
1 if x 2 L(D)

0, otherwise

• Encrypt takes a string x and the master secret key to create a ciphertext c.

• CheckMatch takes a ciphertext c corresponding to an encryption of some string

x, and a functional secret key skfD to compute fD over the plaintext. That is,

CheckMatch(c, skfD) = fD(x).

We tried to adapt Water’s public-index/public-key scheme to protect the underlying plain-

text words. However, our main di�culty in constructing such a scheme is related to the

sequential, character by character approach that a DFA uses to eventually either accept or

reject an input string. That is, to functionally evaluate a DFA on a ciphertext it seems that

encryption must individually, sequentially protect each character of the plaintext. However,

if the DFA representing the regular language is also revealed by the functional secret key,

then an adversary might be able to learn about the plaintext based on where the functional

DFA evaluation fails on some ciphertext.

While we were not able to create a functional encryption scheme for evaluating general

regular expressions, we were still able to solve the problem in a practical way. Since our

keyword search is fast, our system can support searching with many keyword search keys.

Therefore, for a simple enough, finite, regular language we can simply generate the most

popular strings in the language and split them into keywords. Thus the matching of a

subset of keywords represents matching an approximated regular expression.
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Chapter 2

Notation and Cryptographic

Primitives

In this chapter we describe the cryptographic primitives and assumptions used by our work.

We start by defining some helpful notations.

2.1 Notation

Free text. An ordered list of words W = [w0, w1, . . . , wn], where each word wi 2 {0, 1}⇤,
is denoted as free text. Encryption of free text denotes an order list containing encryptions

of each wi. Often we denote a set of free text, which is a set of ordered lists, as WL = {Wi}
and denote the set of all possible free texts as WL⇤.

Concatenation. Let x, y 2 {0, 1}⇤. Then x||y denotes the bit string concatenation of

x and y.

Random Sampling. Let r
$ S denote selecting r 2 S uniformly at random. For

example, if S = {x|x 2 {0, 1}n}, then Pr[r|r $ S] = 1
2n .

Oracle. An oracle machine, often denoted by O, is an abstract Turing machine that

can only be accessed using a black-box interface. Often, other turing machines can be given

access to an oracle, to which they can only send inputs and receive outputs without seeing

or modifying the underlying construction of the oracle machine.

Negligible Functions. A function µ(·) is negligible function if and only if for all constants

c 2 N there exists an x0 2 N such that:

8x > x0 : |µ(x)| <
1

xc
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Let negl(x) denote a negligible function in x for some c, x0 2 N .

Negligible Advantage. For some negligible function negl(n), an random variable

e 2 {0, 1} has negligible advantage if

Pr[e = 1]  1

2
+ negl(n)

Polynomial Functions. poly(x) denotes an unspecified polynomial function in x where

there exists a constant c such that |poly(x)| < xc.

RFn (Random Function Family). Denote the uniform distribution over the set of

all functions from domain {0, 1}n to range {0, 1}n as RFn.

RPn (Random Permutation Family). Denote the uniform distribution over all per-

mutations from domain {0, 1}n to range {0, 1}n as RPn.

Fk (Keyed Function.) Given a function F : K ⇥ D ! R, the function Fk : D ! R
is derived by fixing F with some “key” k 2 K, such that Fk(·) = F (k, ·).

2.2 Cryptographic Hash Functions

Cryptographic hash functions map arbitrary length bit string inputs to fix sized outputs.

Cryptographic hash functions are used to transform long messages into short digests that

can be used to provide integrity for the full message. Digests are often included alongside

encrypted messages to detect any modifications to the encrypted message.

Definition 2.2.1. A hash function h : {0, 1}⇤ ! {0, 1}m, for m > 0, is cryptographic if it

satisfies the following properties:

• Pre-Image Resistance. Given any y 2 {0, 1}m it is computationally infeasible to

find any pre-image x such that h(x) = y.

• Second Pre-Image Resistance. Given x 2 {0, 1}⇤, it is computationally infeasible

to find x0 6= x such that h(x0) = h(x).

• Collision Resistance. It is computationally infeasible to find any x, x0 such that

x 6= x0 and h(x) = h(x0).
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Pre-image resistance means that given the output, it is computationally di�cult to con-

struct the input. Hence, given the hash of some data, an adversary will not be able to

reconstruct the original data. This property is often known as “one-way”ness. Second pre-

image resistance ensures that it is di�cult to find a di↵erent message that hashes to a target

message. Finally, collision resistance is a stronger notion of second pre-image resistance that

ensures it is di�cult to find any two messages that hash to the same output.

2.2.1 Secure Hashing Algorithm 2 (SHA-256)

SHA256 is a hash function, designed National Security Agency, and standardized by the

National Institute for Standards and Technology [21].

Definition 2.2.2. SHA256 is a hash function,

SHA256 : {0, 1}⇤ ! {0, 1}256

SHA256 is widely used today in many practical systems [6]. For the security of our work,

we assume that this hash function meets the definition of 2.2.1.

Assumption 2.2.1. SHA256 is a cryptographic hash function.

In our security proofs, we will go one step further and replace SHA256 with a random

oracle and prove that our system is secure in random oracle model.

2.3 Random Oracles

To prove the security of our cryptosystems that rely on cryptographic hash functions, we

need the concept of random oracle.

Definition 2.3.1. A Random Oracle is an oracle maps inputs x 2 {0, 1}⇤ to outputs in

y 2 {0, 1}l, where each bit of y is chosen uniformly and independently at random and l is

su�ciently long [10].

In other words, a random oracle is an oracle that on every unique input responds with

a truly random, unique output. On repeated inputs, the oracle responds with the same,

previously generated, outputs. In the work Mihir and Rogaway [8], the theoretical random

oracle has infinite length outputs, where the length can be truncated to a desired length l.

Typically, a random oracle is made available to all parties in cryptosystem and is not kept

private.

2.3.1 Random Oracle Model

Cryptosystems that rely on cryptographic hash functions are often proven in the Random

Oracle Model to capture the requirements of an ideal cryptographic hash function. There-

fore, random oracles are used as the ideal replacement to cryptographic hash functions in
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security proofs. Hence, a system that is provably secure when cryptographic hash functions

are replaced with random oracles is known as a system that is secure under the Random

Oracle Model.

2.4 Symmetric-Key Encryption

The symmetric-key encryption primitive is fundamental for establishing private communi-

cation channels between two or more parties. An encryption scheme is symmetric when the

same cryptographic key is used for both encryption and decryption.

Definition 2.4.1. A symmetric-key encryption scheme [9, Chapter 4] is a tuple of three

PPT cryptographic algorithms (Gen,Enc,Dec) where

• Gen is a randomized key generation algorithm that takes a security parameter 1k as

input and returns sk
$ {0, 1}k, denoted as sk  Gen(1k).

• Enc is a possibly randomized or deterministic encryption algorithm that takes as input

a key sk 2 {0, 1}k and m 2 {0, 1}⇤, and returns a ciphertext c 2 {0, 1}⇤, denoted as

c Encsk(m).

• Dec is deterministic encryption algorithm that takes as input a key sk 2 {0, 1}k and

c 2 {0, 1}⇤ and returns a message m 2 {0, 1}⇤ [ {?}, denoted as m Decsk(c).

and 8sk  Gen(1k),m 2 {0, 1}⇤,Decsk(Encsk(m)) = m.

2.4.1 Definitions of Privacy

In order to define the security of a symmetric-key encryption scheme, we must first de-

scribe the adversarial model. Namely, what abilities does the adversary possess? The

security definitions below will establish ciphertext indistinguishability under varying adver-

sarial abilities. Ciphertext indistinguishability says that an adversary will not be able to

distinguish ciphertexts based on the messages they decrypt to.

First, we can consider other types of security definitions. For example, a requirement

that the encryption key is never revealed or that no ciphertexts can be decrypted without

knowledge of the key. However, these definitions do not address the fundamental issue at

hand, the adversary should not be able to learn anything about the underlying message by

only seeing ciphertexts. The indistinguishability of ciphertexts provides a stronger notion

of privacy; an adversary that cannot distinguish between ciphertexts of any message will be

not be able to determine the decryption of a ciphertext nor the secret key.

Next, we will formally define di↵erent models of security for the indistinguishability of

ciphertexts and the adversarial powers associated with them.
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Indistinguishability under Chosen-Plaintext Attack (IND� CPA)

Under chosen-plaintext attack the adversary has access to an encryption oracle and then

is given the ability to chose a pair of previously un-queried messages where the challenger

randomly encrypts one these messages. To win the game, he adversary must correctly guess

which message the ciphertext is an encryption of. The adversary is limited to a probabilistic

polynomial-time Turing machine. Now we formally present the initialization, querying, and

challenge phases of the security game.

1. Initialization. The challenger generates sk  Gen(1k). The secret key sk remains

secret to the challenger.

2. Querying. The adversary chooses polynomially many (in k) messages

M = {m0, . . . ,m
poly(k)}

The adversary receives encryptions for each message,

C = {Encsk(m0), . . . ,Encsk(m
poly(k)}

Note that the adversary can receive encryptions one at a time, and dependently choose

the next message to query.

3. Challenge. The adversary chooses two messages (m0,m1). The challenger privately

selects b
$ {0, 1}, and returns cb  Encsk(mb) to the adversary. The adversary can

continue querying by choosing polynomially many (in k) more messages and receive

encryptions for each message. The adversary responds to the challenge outputting

b0 2 {0, 1} to guess the value of b. If b0 = b the adversary wins the game, otherwise

the adversary loses.

Definition 2.4.2. A symmetric-key encryption scheme is said to be secure under Indistin-

guishability under Chosen-Plaintext Attack if for all PPT adversaries A,

Pr[b0 = b]  1

2
+ negl(k)

where the probability is taken over the random coins of the challenger to select sk and the

random coins of the adversary to choose messages M and m0,m1. Thus, the adversary has

a negligible advantage of guessing which message corresponds to the challenge encryption.

Indistinguishability under Adaptive Chosen-Ciphertext Attack (IND-CCA(2))

Next, we define a similar security definition, where the main di↵erence is that the adversary

is given polynomially many queries to both encryption and decryption oracles. The adver-

sary then similarly chooses a pair of challenge messages. The challenger randomly encrypts
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one these messages, after which the adversary must guess which message the ciphertext is

an encryption of. The adversary is once again limited to a probabilistic polynomial-time

Turing machine. Now we formally present the initialization, querying, and challenge phases

of the security game.

1. Initialization. The challenger generates sk  Gen(1k). The secret key sk remains

secret to the challenger.

2. Querying. The adversary chooses polynomially many (in k) messages

M = {m0, . . . ,m
poly(k)}

and ciphertexts

C = {c0, . . . , c
poly(k)}

The adversary then receives encryptions each of message:

E = {Encsk(m0), . . . ,Encsk(m
poly(k)}

and decryptions of each ciphertext:

D = {Decsk(c0), . . . ,Decsk(c
poly(k))}

Note that the adversary can receive encryptions and decryptions one at a time, and

dependently choose the next query.

3. Challenge. The adversary chooses two messages (m0,m1). The challenger privately

selects b
$ {0, 1}, and returns cb  Encsk(mb) to the adversary. The adversary can

continue querying by choosing polynomially many (in k) more messages or ciphertexts

and receive encryptions for each message and decryptions for each ciphertexts except

the challenge ciphertext cb. The adversary responds to the challenge outputting b0 2
{0, 1} to guess the value of b. If b0 = b the adversary wins the game, otherwise the

adversary loses.

Definition 2.4.3. A symmetric-key encryption scheme is said to be secure under Indistin-

guishability under Chosesn-Plaintext Attack if for all PPT adversaries A,

Pr[b0 = b]  1

2
+ negl(k)

where the probability is taken over the random coins of the challenger to select sk and the

random coins of the adversary to choose ciphertexts C, messages M and m0,m1. Thus, the

adversary has a negligible advantage of guessing which message corresponds to the challenge

encryption.
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IND� CPA =) Randomized Encryption

Proposition 2.4.1. A symmetric encryption scheme secure under IND� CPA must use a

randomized encryption algorithm.

Proof. Suppose for purposes of contradiction, that a symmetric encryption scheme SE =

(Gen,Enc,Dec) is secure under IND� CPA but Enc is deterministic. We can construct an

adversary A to do the following steps:

1. Generate a random message m 2 {0, 1}⇤, query the encryption oracle for c Enc(m).

2. Generate m0 6= m and set the challenge message pair to be (m,m0). The challenger

returns cb.

3. if cb = c then return 0, otherwise return 1

Since Enc is deterministic, then by definition, for any sk  Gen(1k), for any message

m 2 {0, 1}⇤, for any pair of encryptions c0  Encsk(m), c1  Encsk(m) it will be that

c0 = c1. Therefore, A wins the game with probability 1.

This contradicts the definition of security for SE under IND� CPA. Thus it must be that

SE is either not IND� CPA or Enc is randomized.

This proposition is important as it shows that deterministic encryption cannot satisfy even

the weaker definition of security, IND� CPA. Since our work aims to purposefully leak

repeated encryptions in some conditions, it is important to understand that it will not

provide IND� CPA security.

2.5 Pseudorandom Functions and Permutations

We use Block Ciphers to construct both randomized and deterministic symmetric encryp-

tion schemes by executing a block cipher under di↵erent modes of operation. In order to

analyze the security of block ciphers, we must first introduce pseudorandom functions and

permutations which we can be used to model an ideal block cipher.

2.5.1 Pseudorandom Functions

A Pseudorandom function family (PRF) is a family of probabilistic polynomial-time (PPT)

computable functions F : K⇥D ! R whose outputs are computationally indistinguishable

from random [9, Chapter 3].
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Definition 2.5.1. Pseudorandom Function Family. Let l,m be some polynomial functions

of the security parameter 1k. A family of functions Fs : {0, 1}k ⇥ {0, 1}l ! {0, 1}m is

pseudorandom if and only if

• Easy-to-compute. 8s 2 {0, 1}k, 8x 2 {0, 1}l Fs(x) can be computed in polynomial-

time.

• Computational Indistinguishability. For all PPT algorithms A, there exists a

negligible function negl(k) such that

|Pr[A(1k, Fs) = 1 | s $ {0, 1}k]� Pr[A(1k, F$) = 1 | F$
$ RFm]|  negl(k)

where the probability is taken over choice of s and F$. In other words, A can distin-

guish Fs from a random function F$ with no more than negligible probability.

2.5.2 Pseudorandom Permutations

A Pseudorandom permutation family (PRP) is a family of PPT computable permutations

F : K ⇥ D ! D where a randomly selected permutation from this family maps D onto D
in a manner that is computationally indistinguishable from a random permutation on D [9,

Chapter 3].

Definition 2.5.2. Pseudorandom Permutation Family. Let l be some polynomial function

of the security parameter 1k. A family of permutations F : {0, 1}k ⇥ {0, 1}l ! {0, 1}l is
pseudorandom if and only if

• Easy-to-compute. 8s 2 {0, 1}k, 8x 2 {0, 1}l Fs(x) can be computed in polynomial-

time.

• Computational Indistinguishability. For all PPT algorithms A, there exists a

negligible function negl(k) such that

|Pr[A(1k, Fs) = 1 | s $ {0, 1}k]� Pr[A(1k, F$) = 1 | F$
$ RP l]|  negl(k)

where the probability is taken over choice of s and F$. In other words, A can distin-

guish Fs from a random function F$ with no more than negligible probability.

2.5.3 Security Definitions for Indistinguishability

The computational indistinguishability requirement for pseudo-randomness ensures that

no probabilistic polynomial-time algorithm A, sometimes referred to as a computational

distinguisher, can distinguish a pseudorandom function or permutation from that of random

function or permutation. Next, we will formally define several adversarial models of security

for the indistinguishability of PRFs and PRPs.
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Indistinguishability Under Chosen-Plaintext Attack (IND-CPA)

In this security model, the computational distinguisher, denoted as the PPT adversary A,

has oracle access to a pseudorandom function in question Fs and a random function F$ with

the same domain and range. Let D,R be the domain and range of Fs, respectively. The

model has two main phases.

Query Phase.

1. A is given access to two oracles O0,O1. One of these oracles corresponds to Fs and

other F$. A does not know oracle maps to which function.

2. A can submit polynomially (in 1k) many queries to Ob, where b 2 {0, 1}, where for

each input query x 2 D, the adversary receives the response Ob(x).

Guess Phase.

1. A is then asked to decide which O0,O1 is the pseudorandom function Fs.

2. A outputs g 2 {0, 1} to respond that Og is the pseudorandom function.

3. A wins if Og = Fs. Otherwise, A loses.

If A can win with a non-negligible probability, then A distinguishes Fs from a ran-

dom function. If no such PPT algorithm A can be constructed such that A wins with

non-negligible advantage for randomly sampled Fs from F , PRF family, then F is a pseu-

dorandom function family secure for indistinguishability under chosen-plaintext attack.

Note that this adversarial model applies analogously when Fs is pseudorandom permu-

tation and F$ is a random permutation over the domain of Fs. Hence, PRPs can similarly

be provably secure in indistinguishability under chosen-plaintext attack model.

Indistinguishability Under Non-Adaptive/Adaptive Chosen-Ciphertext Attack

(IND-CCA)

In the case of pseudorandom permutations, we can consider the case where an adversary is

allowed to query an oracle that inverts the permutation. More formally, a PPT adversary

A has oracle access to pseudorandom permutation in question Fs and its inverse F�1
s as

well as oracle access to F$, a random permutation on the domain of Fs, and the inverse of

this random permutation F�1
$ . Let D,R be the domain and range of Fs, respectively. Note

that D = R for permutations. This model similarly has two main phases.

Query Phase.
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1. A is given access to four oracles O0,O�1
0 ,O1,O�1

1 . A does not know which pair of

oracles, O0,O�1
0 or O1,O�1

1 maps to the pair of permutations Fs, F�1
s .

2. A can submit polynomially (in 1k) many queries to Ob, where b 2 {0, 1}, where for

each input query x 2 D, the adversary receives the response Ob(x).

3. A can submit polynomially (in 1k) many queries to O�1
b , where b 2 {0, 1}, where for

each input query y 2 R, the adversary receives the response O�1
b (x).

Guess Phase.

1. A is then asked to decide which pair of oracles O0,O�1
0 or O1,O�1

1 corresponds to the

pseudorandom function and its inverse Fs, F�1
s .

2. Repeat querying:

• Non-Adaptive: A is allowed polynomially more queries to the O0,O1

• Adaptive: A is allowed polynomially more queries to all oraclesO0,O�1
0 ,O1,O�1

1

3. A outputs g 2 {0, 1} to respond that Og,O�1
g is the pseudorandom function and its

inverse.

4. A wins if Og,O�1
g = Fs, F�1

s . Otherwise, A loses.

If A can win with a non-negligible probability, then A distinguishes Fs, F�1
s from a

random permutation and its inverse. If no such PPT algorithm A can be constructed

such that A wins with non-negligible advantage for randomly sampled Fs and a randomly

sampled permutation on D, then Fs is secure in indistinguishability under chosen-ciphertext

attack.

2.6 Block Ciphers

Definition 2.6.1. A block cipher is a function E : {0, 1}k ⇥ {0, 1}n ! {0, 1}n. k is the key

length and n is the block length. A block cipher is a permutation. Therefore, there exits an

inverse function E�1 : {0, 1}k ⇥ {0, 1}n ! {0, 1}n such that

8s 2 {0, 1}k, x 2 {0, 1}n : E�1
s (Es(x)) = x

Block ciphers can only operate on inputs of a fixed size block length. In order to use block

ciphers over arbitrarily long messages, we must introduce block cipher operating modes.
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2.6.1 Block Cipher Modes

Block cipher operating modes enable the use of block ciphers to implement primitives like

symmetric-key encryption schemes for arbitrarily sized inputs in order to provide confi-

dentiality and/or integrity. Given a block cipher E : {0, 1}k ⇥ {0, 1}n ! {0, 1}n, a block

cipher mode is a set a procedures that take arbitrarily sized inputs and apply functions in

n-bit blocks of the input using the block cipher and its inverse. The forward application of

the block cipher is called encryption while the inverse application is called decryption [9,

Chapter 4].

In this section we will describe a widely used cipher block mode and state its security

based on the assumption that the block cipher is a pseudorandom permutation.

Cipher Block Chaining - CBC

Let Ek : {0, 1}n ! {0, 1}n be a block cipher with a fixed key k and inverse E�1
k . Below

we define the encryption and decryption procedures for operating a block cipher in Cipher

Block Chaining mode.

Encryption. The encryption function, denoted CBC� ENCRYPT, takes the following

input:

• Ek : {0, 1}n ! {0, 1}n, a block cipher with a fixed key k.

• IV 2 {0, 1}n, the initialization vector (IV).

• M = {M1, . . . ,Mc}, the message blocks where each Mi 2 {0, 1}n, and c is positive

integer greater than 0.

The algorithm then produces ciphertext blocks C = {C1, . . . , Cc} as follows:

Ci =

8
<

:
IV, if i = 0

Ek(Mi � Ci�1), otherwise

Decryption. The decryption function, denoted CBC� DECRYPT, takes the following

input:

• E�1
k : {0, 1}n ! {0, 1}n, the inverse of a block cipher with a fixed key k.

• IV 2 {0, 1}n, the initialization vector (IV).

• C = {C1, . . . , Cc}, the ciphertext blocks where each Ci 2 {0, 1}n, and c is positive

integer greater than 0.
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Let C0 = IV. The algorithm then produces plaintext message blocks M = {M1, . . . ,Mc} as

follows:

Mi = E�1
k (Ci)� Ci�1

Noticeably, if one bit in a ciphertext block Ci is flipped, the decrypted block Mi is com-

pletely corrupted, Mi+1 has the same bit flipped, but blocks Mi+2 and on are uncorrupted.

Hence, it is trivial to see that one could construct A to exploit this property to always

win in the IND� CCA2 security model. Thus, a pseuodrandom permutation block cipher

operating in CBC mode is not IND� CCA2 secure.

However, given a pseudorandom permutation block cipher, operated in CBC mode, we

have the following theorem.

Theorem 2.6.1. Let E : {0, 1}k ⇥ {0, 1}n ! {0, 1}n be pseudorandom permutation block

cipher. The symmetric-key encryption scheme SE � CBC = (Gen,Enc,Dec) is defined as

• Gen(1k) : sk
$ {0, 1}k

• Encsk(m)

1. Generate IV
$ {0, 1}n.

2. Compute C  CBC� ENCRYPT(Esk, IV,m)

3. Output (IV, C)

• Decsk(c)

1. Let (IV, C) c

2. Compute M  CBC� DECRYPT(E�1
sk , IV, C)

3. Output M

is secure under IND� CPA.

The proof of 2.6.1 from [9, Chapter 4] shows that if there is an adversary A that wins in

the IND� CPA security game for SE � CBC, then this adversary can be used to construct

an adversary A0 to win in the IND� CPA security game for the pseudorandom permutation

E.
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2.6.2 Padding

Typically, block cipher operating modes, like the one introduced in the previous section,

require that the input length is a multiple of the block length. To support arbitrary sized

inputs, we must pad the input.

Definition 2.6.2. A PKCS#7 padding of an input string x 2 {0, 1}⇤, for block-length n,

appends a 1 followed by 0r to x, where

r =

8
<

:
n, if 9c 2 N s.t. |x| = c · n
n� 1� (|x| mod n), otherwise

is returned.

A PKCS#7 un-padding of y 2 {0, 1}q·n, where q 2 N, q > 0, starts from least significant side

(right) and removes “0”s until the first “1” appears, after which the “1” is removed and the

remainder of the string is return.

From here on, when we refer to padding, the PKCS#7 scheme introduced above is

implied.

2.7 Advanced Encryption standard (AES)

The Advanced Encryption Standard (AES), originally created by Daemen and Rijmen, is a

block cipher that is widely used in practice today and standardized the National Institutes

of Standards and Technology [7]. Specifically, based on today’s best practices [4], we will

use the 256 bit key variant of AES, denoted AES� 256.

Definition 2.7.1. AES is a block cipher with key length 256 and block length 128.

AES� 256 : {0, 1}256 ⇥ {0, 1}128 ! {0, 1}128

2.7.1 Assumptions about AES in our Work

In this work, we use AES as our block cipher and CBC as our block mode. Thus, to make

provable security claims about our cryptographic schemes, we must first assume that our

block cipher is modeled after a pseudorandom permutation.

Assumption 2.7.1. AES is pseudorandom permutation family.

Therefore, based on our block cipher assumption, we can make a security claim about the

symmetric-key encryption algorithm, denoted as AES� CBC.
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Claim 2.7.1. By 2.7.1 and 2.6.1, AES� CBC is secure under IND� CPA.

Using the AES block cipher and the CBC block operating mode as described in 2.6.1, it

follows hat AES� CBC is secure under chosen-plaintext attack.
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Chapter 3

Privacy Definitions and

Constructions for Computing

Keyword Search and Bag-of-Words

on Encrypted Free Text

In this chapter we formally define two schemes, one for computing keyword search and

another for computing bag-of-words, both on encrypted free text. We then provide formal

privacy definitions for each scheme. Next, we describe constructions of each scheme based

on the cryptographic primitives defined in the previous chapter. Finally, we prove that

these schemes achieve our security definitions.

3.1 Computing Functions on Encrypted Data

When we discuss computing functions on encrypted free text, we mean that we would like to

compute a function of the underlying free text data without decrypting the text. Informally,

for a ciphertext c that is the encryption of w, we output f(w) for a pre-specified function

f . Our constructions use hash functions and pseuodrandom permutations for computing

keyword search and bag-of-words on encrypted free text.

Keyword Search. Given some encrypted free text and a keyword w, the keyword search

function can be used finds all encrypted free text words whose underlying plaintext is

equal to w. Specifically, given an auxiliary key skw for keyword w and an encrypted

free text document C = {c1, . . . , cn}, there exists a function D, such that for any i 2
{1, . . . , n}, D(skw, ci) = 1 if ci is an encryption of w and 0 otherwise. In the keyword set-

ting, auxiliary keys skw can be derived for each keyword w. Even though other words in

the encrypted free text document remain hidden, the presence of the keyword in the free
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text document is revealed just as it would if the data was unencrypted free text.

Bag-of-Words. Given some encrypted free text, the bag-of-words computation can be

used to find the locations and count the frequency of n-grams of the underlying free text

data. Specifically, given an auxiliary key skf and an encrypted free text document C =

{c1, . . . , cn}, there exists a function D, such that for any i, j 2 {1, . . . , n}, D(skf , ci, cj) = 1

if ci and cj are encryptions of the same underlying plaintext and 0 otherwise. D can be used

on every pair of ciphertexts in C to count the number of distinct repetitions of underlying

plaintexts and locate their index in the encrypted free text. This information can be used

to determine if two free text documents are similar based on which underlying plaintext

words repeat across the free text documents. Therefore, the main function of a bag-of-words

computation, as described in 1.1, still applies just as it would on unencrypted free text data.

3.2 Privacy Definition Overview

Our goal for privacy is to limit the information leaked by our schemes to precisely the results

of computing keyword search and bag-of-words computations on the encrypted free text data

and nothing else. That is, the auxiliary keys, sent during the auxiliary key request phase,

should only leak the functional decryption of the encrypted free text as specified above and

nothing else. For example, an auxiliary key skw for a keyword w should not reveal any

information about encryptions of a word w0 6= w. Similarly, a bag-of-words auxiliary key

should only reveal the locations of repeated underlying plaintexts but should not reveal

any information about what the underlying plaintext is. The fundamental data privacy

requirement in our algorithms is to ensure that knowledge of an auxiliary key precisely

limits the leaked information to that of the desired output of the function.

3.3 Keyword Search

The keyword search scheme, denoted PKS for “Private-key Keyword Search”, enables a

learner to check if a ciphertext is an encryption of some keyword. The leaner sends a

request to the owner with a specific keyword, and the owner decides to either approve the

request by deriving an auxiliary key for the specified keyword or reject the request and do

nothing. The learner can ask the owner for polynomially many keyword keys during any

time in the life cycle of the interaction between parties.

3.3.1 Cryptographic Scheme

Definition 3.3.1. The Private-key Keyword Search (PKS) cryptosystem is a tuple of four

algorithms (Setup,Extract,Hide, Check), where
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• PKS.Setup(1k) uses the security parameter 1k to randomly generate a master secret

key msk.

• PKS.Extractmsk(w) uses the master secret key, msk, and outputs a derived secret key

skw for keyword w.

• PKS.Hidemsk(w) uses the master secret key, msk, to output a ciphertext cw for input

word w.

• PKS.Checkskw(cw0) uses the secret key, skw for keyword w, on ciphertext cw0 and

outputs 1 if w = w0, otherwise outputs 0.

and the scheme is correct if 8(k > 0,msk  Setup(1k), w 2 {0, 1}⇤, skw  Extractmsk(w)):

Checkskw((Hidemsk(w)) = 1

3.3.2 Indistinguishability under Adaptive Chosen-Keyword Attack (IND-

CKA)

To capture the definition of privacy for this scheme, we present an adversarial model which

we denote Indistinguishability under Adaptive Chosen-Keyword Attack (IND�CKA). Like

the other indistinguishability definitions in chapter 2, our model has two parties, the chal-

lenger and a PPT adversary A which is given oracle access to PKS.Hide and PKS.Extract.

Remark 3.3.1. We emphasize that in this privacy definition we give the adversary the

ability to get encryptions (oracle access to PKS.Hidemsk). An alternative definition might

have the challenger instead decide on free text to encrypt and give to the adversary before

the query phase. We chose to give the adversary the ability to ask for encryptions because

we did not want to limit our definitions of privacy to a system where data is not dynamic.

Definition 3.3.2. The Private-key Keyword Search security Game
PKS

is defined as follows.

Setup Phase.

1. Challenger generates msk  PKS.Setup(1k).

2. Challenger chooses a set KW ⇢ {0, 1}⇤ of allowed keywords, where |KW| is poly(k).

Query Phase.

1. A can submit poly(k) queries: c OH(w) where w 2 {0, 1}⇤ and OH is an oracle for

the function PKS.Hidemsk
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2. A can submit poly(k) queries: skw  OE(w) where w 2 KW and OE is an oracle for

the function PKS.Extractmsk. Let KWsk Denote the set of keywords queried in this

phase.

Challenge Phase.

1. A selects two words w0, w1 2 {0, 1}⇤ where w0, w1 /2 KWsk.

2. Challenger secretly computes b
$ {0, 1}, cb  PKS.Hidemsk(wb) and outputs cb to A.

3. A can submit poly(k) queries: c OH(w) where w 2 {0, 1}⇤.

4. A can submit poly(k) queries: skw  OE(w) where w 2 KW , w /2 {w0, w1}.

5. A outputs b0 2 {0, 1}.

where the adversary wins Game
PKS

if b0 = b.

a PKS construction is said to be secure under Indistinguishability under Adaptive Chosen-

Keyword Attack, for any set of approved keywords KW ⇢ {0, 1}⇤ where |KW| = poly(k),

and for all PPT adversaries A that play Game
PKS

,

Pr[b0 = b]  1

2
+ negl(k)

where the probability is taken over the random coins of challenger in selecting msk and the

random coins of the adversary in selecting queries and the challenge words. That is, the

adversary has a negligible advantage in winning Game
PKS

.

Remark 3.3.2. We argue that the above security definition captures the privacy of our

data owner, data learner model because it upholds the privacy requirement that a data

learner (the adversary) should not be able to learn anything about a ciphertext that hides

a keyword for which the learner does not possess a secret key. Note that this security

definition is very similar to IND� CPA model defined in 2.4.1. In fact, if the challenger

were to choose an empty allowed keyword set (|KWsk| = 0) then IND � CKA collapses

directly into IND� CPA. KWsk is the crucial ingredient in the definition which restricts

the adversary from obtaining a secret key that can check if the challenge ciphertext hides

one the challenge words.
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Challenger Adversary

Choose msk  PKS.Setup(1k)

Choose KW ⇢ {0, 1}⇤, |KW| = poly(k) KW
w Extract queries: for poly(k) w 2 KW

skw  PKS.Extractmsk(w) skw

w Hide queries: for poly(k) w 2 {0, 1}⇤

cw  PKS.Hidemsk(w) cw

w0, w1 w0, w1 2 {0, 1}⇤ \ KW.

b
$ {0, 1}

cb  PKS.Hidemsk(wb) cb

w Extract queries: for poly(k) w 2 KW
skw  PKS.Extractmsk(w) skw

w Hide queries: for poly(k) w 2 {0, 1}⇤

cw  PKS.Hidemsk(w) cw

b0 Select b0 2 {0, 1}

Figure 3-1: Diagram of Game
PKS

3.3.3 Construction of an IND� CKA PKS Scheme

Let SE = (Gen,Enc,Dec). Let H be a cryptographic hash function as defined in 2.2.1, with

output length k. Below is a construction of a PKS scheme.

• PKS.Setup(1k):

1. msk
$ {0, 1}k

• PKS.Extractmsk(w):

1. skw  H(w||msk)

2. Output skw

• PKS.Hidemsk(w):

1. skw  PKS.Extractmsk(w)

2. c Encskw(1
n)

3. Output c

• PKS.Checkskw(c):

40



1. m Decskw(c)

2. If m = 1n ! Output 1

3. Otherwise ! Output 0

3.3.4 Correctness of PKS

It is easy to see that the construction above is correct. For any security parameter 1k for

k > 0, let msk 2 {0, 1}k, let w 2 {0, 1}⇤ be any word, and let skw 2 {0, 1}k. By the

correctness definition of the symmetric-key encryption scheme SE ,

Checkskw((Hidemsk(w)) = Decskw(Encskw(1
n)) = 1n

Hence, the equality condition in step 2 of the PKS.Check function will hold, and the function

will output 1 as desired.

3.3.5 Security Proof of PKS

Theorem 3.3.1. Let PKS = (PKS.Setup,PKS.Extract,PKS.Hide,PKS.Check), where its

hash function is replaced with a random oracle as defined in 2.3.1 and its symmetric en-

cryption scheme uses a pseudorandom permutation family E : {0, 1}k ⇥ {0, 1}n ! {0, 1}n

as defined in 2.6.1.

Then PKS is secure under Indistinguishability under Adaptive Chosen-Keyword Attack

(IND� CKA).

Proof. To show that PKS is secure under IND � CKA, we must show that there does not

exist a PPT algorithm A that wins Game
PKS

with more than negligible advantage. To prove

this, we will use a hybrid argument to show that over the random coin tosses of A and the

challenger, the outputs of oracle queries to PKS.Extract and PKS.Hide and the challenge

ciphertext cb are computationally indistinguishable from random.

Let poly1(k), poly2(k) be some polynomials in k. We can represent the distribution of a

Game
PKS

transcript between an adversary and a challenger with the following tuple:

D0 = (kw0, . . . , kw
poly1(k)

,

skkw0 , . . . , skkw
poly1(k)

,

w0, w1, . . . , w
poly2(k)

,

cw0 , cw1 , . . . , cw
poly2(k)

,

cb,

b0)
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where each kwi is a unique keyword generated by the challenger in KW , each skkwi is the

output of invoking the PKS.Extract oracle on kwi, each wi is a unique plaintext word gen-

erated by A, each cwi is the output of invoking the PKS.Hide oracle on wi, the challenge

ciphertext cb = PKS.Hide(wb), where b 2 {0, 1} is chosen randomly by the challenger, and

the adversary’s output is b0 2 {0, 1}.

From the definitions of PKS.Extract and PKS.Hide, where E : {0, 1}k ⇥ {0, 1}n ! {0, 1}n is

assumed to be a pseudorandom permutation family, we can re-write D0 as follows

D0 = (kw0, . . . , kw
poly1(k)

,

H(kw0||msk), . . . ,H(kw
poly1(k)

||msk),

w0, w1, . . . , w
poly2(k)

,

EncH(w0||msk)(1
n),EncH(w1||msk)(1

n), . . . ,EncH(c
poly2(k)

||msk)(1
n),

EncH(wb||msk)(1
n),

b0)

= (kw0, . . . , kw
poly1(k)

,

H(kw0||msk), . . . ,H(kw
poly1(k)

||msk),

w0, w1, . . . , w
poly2(k)

,

(iv0, EH(w0||msk)(1
n � iv0)), (iv1, EH(w1||msk)(1

n � iv1)),

. . . , (iv
poly2(k)

, EH(w
poly2(k)

||msk)(1
n � iv

poly2(k)
))

(ivf , EH(wb||msk)(1
n � ivf )),

b0)

where ivf and each ivi is a randomly sampled initialization vector as defined in 2.6.1.
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Step 1 - PKS.Extract Outputs are Pseudorandom

Next, let rkw0 be uniformly chosen. Define the hybrid distribution1

D1 = (kw0, . . . , kw
poly1(k)

,

rkw0 , . . . ,H(kw
poly1(k)

||msk),

w0, w1, . . . , w
poly2(k)

,

(iv0, EH(w0||msk)(1
n � iv0), (iv1, EH(w1||msk)(1

n � iv1)),

. . . , (iv
poly2(k)

, EH(w
poly2(k)

||msk)(1
n � iv

poly2(k)
)),

(ivf , EH(wb||msk)(1
n � iv0)),

b0)

where D1 is the same as D0 except H(kw0||msk) is replaced by rkw0 .

By our assumption that H is a random oracle, H maps every unique input to a uniformly

at random output of length k. Therefore, since msk is random, H(kw0||msk) is computa-

tionally indistinguishable from rkw0 . Thus, D0 is computationally indistinguishable from

D1, denoted D0 ⇡ D1.

Next, we define distributions D2, . . . , D
poly1(k)

, where each consecutive Di replaces the next

H(kwi||msk) with random rkwi

Di = (kw0, . . . , kw
poly1(k)

,

rkw0 , . . . , rkwi�1 , rkwi , . . . ,H(kw
poly1(k)

||msk),

w0, w1, . . . , w
poly2(k)

,

(iv0, EH(w0||msk)(1
n � iv0), (iv1, EH(w1||msk)(1

n � iv1)),

. . . , (iv
poly2(k)

, EH(w
poly2(k)

||msk)(1
n � iv

poly2(k)
)),

(ivf , EH(wb||msk)(1
n � ivf )),

b0)

By the same random oracle argument, for each consecutive pair of hybrid distributions,

Di�1 ⇡ Di. It follows that D0 ⇡ D
poly1(k)

.

1
This represents a modified Game

PKS

between the challenger and the adversary, where the challenger now

responds with uniform random values for the first Extract.
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Step 2 - PKS.Hide Keys are Pseudorandom

Next, let rw0 be uniformly chosen. Define the hybrid distribution2

D
poly1(k)+1 = (kw0, . . . , kw

poly1(k)
,

rkw0 , . . . , rkw
poly1(k)

w0, w1, . . . , w
poly2(k)

,

(iv0, Erw0
(1n � iv0), (iv1, EH(w1||msk)(1

n � iv1)),

. . . , (iv
poly2(k)

, EH(w
poly2(k)

||msk)(1
n � iv

poly2(k)
)),

(ivf , EH(wb||msk)(1
n � ivf )),

b0)

Again, by our assumption that H is a random oracle and since msk is random, H(w0||msk)

is computationally indistinguishable from rw0 . Therefore, Dpoly1(k)
⇡ D

poly1(k)+1. Similarly,

we define distributions D
poly1(k)+2, . . . , Dpoly1(k)+poly2(k)

, where each consecutive D
poly(k)+i

replaces the next H(wi||msk) with random rwi

D
poly1(k)+i = (kw0, . . . , kw

poly1(k)
,

rkw0 , . . . , rkw
poly1(k)

w0, w1, . . . , w
poly2(k)

,

(iv0, Erw0
(1n � iv0), (iv1, Erw1

(1n � iv1)),

. . . , (ivi, Erwi
(1n � ivi)), . . .

(iv
poly2(k)

, EH(w
poly2(k)

||msk)(1
n � iv

poly2(k)
)),

(ivf , Erwb
(1n � ivf )),

b0)

By the same random oracle argument as before, for each consecutive pair of hybrid distri-

butions D
poly1(k)+i�1 ⇡ D

poly1(k)+i. It follows that, D0 ⇡ D
poly1(k)+poly2(k)

.

2
This represents a modified Game

PKS

between the challenger and the adversary, where the challenger now

uses a uniformly random key in the first response to a PKS.Hide queries.
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Step 3 - PKS.Hide Query Ciphertexts are Pseudorandom

Next, let u0 be uniformly chosen. Define the hybrid distribution3

D
poly1(k)+poly2(k)+1 = (kw0, . . . , kw

poly1(k)
,

rkw0 , . . . , rkw
poly1(k)

w0, w1, . . . , w
poly2(k)

,

(iv0,u0), (iv1, Erw1
(1n � iv‘)),

. . . , (iv
poly2(k)+1, Erw

poly2(k)
(1n � iv

poly2(k)+1))

(ivf , Erwb
(1n � ivf )),

b0)

Suppose there exists a PPT algorithm that computationally distinguishes between

D
poly1(k)+poly2(k)

and D
poly1(k)+poly2(k)+1

It follows, there exists a PPT algorithm Dist that takes a transcript from Game
PKS

as input

and outputs 1 or 0. Without loss of generality, we interpret 1 as a guess that the transcript

is from the distribution D
poly1(k)+poly2(k)

and 0 as a guess that the transcript is from the

distribution D
poly1(k)+poly2(k)+1. It follows that Dist is correct with probability greater than

1
2 + negl(k) where the probability is taken over the coin tosses of A and the challenger.

Then, we can use Dist to construct a PPT algorithm PRPDistinguisher to computationally

distinguish pseudorandom permutation families from random. Let PRPDistinguisher(Og) be

a PPT algorithm that distinguishes a pseudorandom permutation g from a truly random

permutation with oracle access to g using Og.

PRPDistinguisher(Og):

1. Generate the transcript by running A and the challenger, using the hybrid distribution

t 2 D
poly1(k)+poly2(k)+1 to represent the challenger’s modified responses, except now

3
This represents a modified Game

PKS

between the challenger and the adversary, where the challenger now

responds to the first PKS.Hide query with a uniformly random value.
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replace the first invocation of the PRP E with a call to the oracle Og(1n � iv0):

t = (kw0, . . . , kw
poly1(k)

,

rkw0 , . . . , rkw
poly1(k)

w0, w1, . . . , w
poly2(k)

,

(iv0,Og(1n � iv0), (iv1, Erw1
(1n � iv1)),

. . . , (iv
poly2(k)+1, Erw

poly2(k)
(1n � iv

poly2(k)+1))

(ivf , Erwb
(1n � ivf )),

b0)

where each rkwi , rwi , ivf , ivi
$ {0, 1}k

2. Output Dist(t)

By replacing E with Og in the definition of Dist, it follows that

Pr[PRPDistinguisher(Og) = 1 | g is pseudorandom ] =

= Pr[Dist(t) = 1 | t D
poly1(k)+poly2(k)

]

>
1

2
+ negl(k)

where the probability is taken over coin tosses of PRPDistinguisher and Dist. Therefore,

PRPDistinguisher is a computational distinguisher for pseudorandom permutations. This

contradicts our pseudorandomness assumption for E.

Therefore, no such PPT algorithm Dist exists. It follows that

D
poly1(k)+poly2(k)

⇡ D
poly1(k)+poly2(k)+1

from which it follows that D0 ⇡ D
poly1(k)+poly2(k)+1.

Next, let each hybrid distribution

D
poly1(k)+poly2(k)+i 2 {D

poly1(k)+poly2(k)+1, . . . , Dpoly1(k)+2·poly2(k)}
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be defined as

D
poly1(k)+poly2(k)+i = (kw0, . . . , kw

poly1(k)
,

rkw0 , . . . , rkw
poly1(k)

w0, w1, . . . , w
poly2(k)

,

(iv0, u0), (iv1, u1), . . . , (ivi,ui),

. . . , (iv
poly2(k)

, Erw
poly2(k)

(1n � iv
poly2(k)

)),

(ivf , Erwb
(1n � ivf )),

b0)

where by pseudorandomness of E, we use the same argument as above to show that

D
poly1(k)+poly2(k)+i�1 ⇡ D

poly1(k)+poly2(k)+i. It follows that D0 ⇡ D
poly1(k)+2·poly2(k).

Step 4 - Challenge Ciphertext is Pseudorandom

Let uf be uniformly chosen and define the final hybrid distribution4

DF = (kw0, . . . , kw
poly1(k)

,

rkw0 , . . . , rkw
poly1(k)

w0, w1, . . . , w
poly2(k)

,

(iv0, u0), (iv1, u1), . . . , (iv
poly2(k)

, u
poly2(k)

),

(ivf ,uf ),

b0)

Again, by the pseudorandomness of E, we use the same argument as above to show that

D
poly1(k)+2·poly2(k) ⇡ DF . Then, it follows that D0 ⇡ DF . Clearly, DF is a random distri-

bution over the coin tosses of the challenger and the adversary. Therefore D0 is computa-

tionally indistinguishable from random.

Hence, any transcript of Game
PKS

is computationally indistinguishable from random. Specif-

ically, the challenge ciphertext cb and the outputs of all oracle queries are computationally

indistinguishable from random. Therefore, any PPT adversary wins Game
PKS

with negligi-

ble advantage.
4
This represents a modified Game

PKS

between the challenger and the adversary, where the challenger now

sends a challenge ciphertext that is sampled uniformly at random.
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3.4 Bag-of-Words (Frequency Count)

The bag-of-words or frequency count search scheme, denoted PFS for “Private-key Fre-

quency Search”, enables a learner to find all locations where a ciphertext is the encryption

of repeated plaintext in a set of encrypted free text records. The learner asks the owner

for a frequency count auxiliary key only once. After this key is released to the learner, the

learner is able to compute frequency counts for all underlying plaintexts.

3.4.1 Cryptographic Scheme

Definition 3.4.1. The Private-key Frequency Search (PFS) cryptosystem is a tuple of three

algorithms (Setup,Disguise,Recognize), where

• PFS.Setup(1k) uses the security parameter 1k and randomly generates a master secret

key msk, and a frequency secret key skf .

• PFS.Disguisemsk,skf
(w) uses the master secret key, msk, and frequency key, skf , to

output cw, a ciphertext for a word w.

• PFS.Recognizeskf (cw, cw0) uses the frequency secret key, skf , and outputs 1 if w = w0

and 0 otherwise.

and the scheme is correct if

8(k > 0,msk, skf  Setup(1k), w, w0 2 {0, 1}⇤, d0  Disguisemsk(w), d1  Disguisemsk(w
0))

if w = w0 then:
Recognizeskf (d0, d1) = 1

and if w 6= w0 then:
Recognizeskf (d0, d1) = 0

3.4.2 Indistinguishability under Restricted-Plaintext Attack (IND-RPA)

To capture the definition of privacy for this scheme, we present an adversarial model which

we denote Indistinguishability under Restricted-Plaintext Attack (IND� RPA). Our model

has two parties, the challenger and a PPT adversary A which is given the frequency key sk

and oracle access to PFS.Disguise. Unlike other indistinguishability definitions, this model

requires the adversary to select challenge plaintexts that have not been sent as queries to

any oracles and after the challenge ciphertext is set, the adversary can continue querying the

oracle except with the chosen challenge plaintexts. Therefore, in this model the adversary

only has restricted access to the encryption oracle.

Remark 3.4.1. Once again, in this privacy definition we give the adversary the ability to

get encryptions (oracle access to PFS.Disguisemsk). Alternatively the challenger could have
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instead generated some free text to encrypt and send to the adversary before the query

phase. We chose to give the adversary the ability to ask for encryptions because we do not

want to limit our definitions of privacy to a system where data is not dynamic.

Definition 3.4.2. In the Private-key Frequency Search security Game
PFS

Setup Phase.

1. Challenger generates msk, skf  PFS.Setup(1k).

2. Challenger sends skf to A.

Query Phase.

1. A can submit poly(k) queries: c OD(w) where w 2 {0, 1}⇤ and OD is an oracle for

the function PFS.Disguisemsk,skf
. Let W be the set of words queried in this phase.

Challenge Phase.

1. A selects two words w0, w1 2 {0, 1}⇤ where w0, w1 /2W.

2. Challenger secretly computes b
$ {0, 1}, cb  PFS.Disguisemsk,skf

(wb) and outputs cb

to A.

3. A can submit poly(k) queries: c OD(w) where w 2 {0, 1}⇤ \ {w0, w1} .

4. A outputs b0 2 {0, 1}.

where A wins Game
PFS

is b0 = b.

A PFS construction is said to be secure under Indistinguishability under Restricted-Plaintext

Attack if for all PPT adversaries A,

Pr[b0 = b]  1

2
+ negl(k)

where the probability is taken over the random of coins of the challenger for selecting msk

and skf , and the random coins of the adversary for selecting queries and the challenge

words. Thus, the adversary has a negligible advantage in guessing which word is disguised

in the challenge ciphertext.
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Challenger Adversary

Choose msk, skf  PFS.Setup(1k) skf

w Queries: for poly(k) w 2W ⇢ {0, 1}⇤
cw  PFS.Disguisemsk,skf

(w) cw

w0, w1 w0, w1 2 {0, 1}⇤ \W

b
$ {0, 1}

cb  PFS.Disguisemsk,skf
(wb) cb

w Queries: for poly(k) w 2 {0, 1} ⇤ \{w0, w1}
cw  PFS.Disguisemsk,skf

(w) cw

b0 Select b0 2 {0, 1}

Figure 3-2: Diagram of Game
PFS

Remark 3.4.2. The restricted nature of the game captures the privacy requirements of

our data owner, data learner model because it upholds that a data learner (the adversary)

should not be able to learn anything more than if two ciphertexts are disguises of the same

underlying plaintext. The restrictions ensure that the adversary cannot use previously

known information about the ciphertext of the challenge plaintexts. Thus, if the adversary

can distinguish between ciphertexts of previously un-queried plaintext, then the adversary

wins.

3.4.3 Construction of an IND� RPA PFS Scheme

Let the block cipher E : {0, 1}k ⇥ {0, 1}n ! {0, 1}n be a pseudorandom permutation used

in a symmetric-key encryption scheme SE = (Gen,Enc,Dec) as defined in 2.6.1. Let H
be a cryptographic hash function as defined in 2.2.1, with output length k. Below is a

construction of a PFS scheme.

• PFS.Setup(1k):

1. skf
$ {0, 1}k

2. msk
$ {0, 1}k

3. Output msk, skf

• PFS.Disguisemsk,skf
(w):

1. c Encskf (H(w||msk))
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2. Output c

• PFS.Recognizeskf (c, c
0):

1. y  Decskf (c)

2. y0  Decskf (c
0)

3. Output 1 if y = y0, otherwise output 0

3.4.4 Correctness of PFS

It is easy to see that the construction above is correct. For any security parameter 1k for

k > 0, let msk, skf 2 {0, 1}k. By the correctness definition of the symmetric-key encryption

scheme SE , for all w,w0 2 {0, 1}⇤:

if w = w0 then:

Recognizeskf (Disguisemsk,skf
(w),Disguisemsk,skf

(w0)) = 1

since

Decskf (Encskf (H(w||msk)) = H(w||msk)

= H(w0||msk)

= Decskf (Encskf (H(w0||msk))

(3.1)

and if w 6= w0 then:

Recognizeskf (Disguisemsk,skf
(w),Disguisemsk,skf

(w0)) = 0

since

Decskf (Encskf (H(w||msk)) = H(w||msk)

6= H(w0||msk)

= Decskf (Encskf (H(w0||msk)))

(3.2)

3.4.5 Security Proof for PFS

Theorem 3.4.1. Let PFS = (PFS.Setup,PFS.Disguise,PFS.Recognize), where its hash

function is replaced with a random oracle as defined in 2.3.1 and its symmetric encryption

scheme uses a pseudorandom permutation family E : {0, 1}k ⇥ {0, 1}n ! {0, 1}n as defined

in 2.6.1.
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Then PFS is secure under Indistinguishability under Restricted Plaintext Attack (IND �
RPA).

Proof. To show that PFS is secure under IND � RPA, we must show that there does not

exist a PPT algorithm A that wins Game
PFS

with more than negligible advantage. To prove

this, we will use a hybrid argument to show that over the random coin tosses of A and the

challenger, the outputs of oracle queries to PFS.Disguise and challenge ciphertext cb are

computationally indistinguishable from random.

Let poly(k) be some polynomial in k. We can represent the distribution of a Game
PFS

transcript between an adversary and a challenger with the following tuple:

D0 = (skf ,

w0, w1, . . . , w
poly(k),

cw2 , . . . , cw
poly(k)

,

cb,

b0)

where skf is randomly generated by the challenger, each wi is a unique plaintext word

generated by A, each cwi (i � 2) is the output of invoking the PFS.Disguise oracle on wi,

the challenge ciphertext cb = PFS.Disguise(wb), where b 2 {0, 1} is chosen randomly by the

challenger, and the adversary’s output b0 2 {0, 1}.

From the definition of PFS.Disguise, where E : {0, 1}k ⇥ {0, 1}n ! {0, 1}n is assumed

to be a pseudorandom permutation family, we can re-write D0 as follows

D0 = (skf ,

w0, w1, . . . , w
poly(k),

cw2 , . . . , cw
poly(k)

,

cb,

b0)

= (skf ,

w0, w1, . . . , w
poly(k),

(iv2, Eskf (H(w2||msk)� iv2)), . . . , (iv
poly(k), Eskf (H(w

poly(k)||msk)� iv
poly(k))),

(ivf , Eskf (H(wb||msk)� ivf )),

b0)
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where ivf and each ivi is a randomly sampled initialization vector as defined in 2.6.1.

Step 1 - Input to PFS.Disguise Blockcipher is Pseudorandom

Let rw2 be uniformly chosen, and define the hybrid distribution5

D1 = (skf ,

w0, w1, . . . , w
poly(k),

(iv2, Eskf (rw2 � iv2)), . . . , (iv
poly(k), Eskf (H(w

poly(k)||msk)� iv
poly(k))),

(ivf , Eskf (H(wb||msk)� ivf )),

b0)

whereD1 is the same asD0 except (iv2, Eskf (H(w2||msk)�iv2)) is replaced by (iv2, Eskf (rw2�
iv2)).

By our assumption that H is a random oracle, H maps every unique input to a uniformly

at random output of length k. Therefore, since msk is random, H(w2||msk) � iv2 is com-

putationally indistinguishable from rw2 � iv2. Thus, D0 ⇡ D1.

Next, we define distributions D2, . . . , D
poly(k). Each consecutive Di replaces the next

(ivi, Eskf (H(wi||msk)� ivi)) with (ivi, Eskf (rwi � ivi)), where rwi is random.

Di = (skf ,

w0, w1, . . . , w
poly(k),

(iv2, Eskf (rw2 � iv2)), . . . , (ivi, Eskf (rwi � ivi)), . . .

. . . , (iv
poly(k), Eskf (H(w

poly(k)||msk)� iv
poly(k))),

(ivf , Eskf (H(wb||msk)� ivf )),

b0)

By the same argument as before, for each consecutive pair of hybrid distributions, Di�1 ⇡
Di. It follows that D0 ⇡ D

poly(k).

5
This represents a modified Game

PFS

between the challenger and the adversary, where the challenger

responds to the first PFS.Disguise query, by replacing the input to E with a uniformly chosen random value.
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Let rwb be uniformly chosen and define the distribution6

D
poly(k)+1 = (skf ,

w0, w1, . . . , w
poly(k),

(iv2, Eskf (rw2 � iv2)), . . . , (iv
poly(k), Eskf (rw

poly(k)
� iv

poly(k))),

(ivf , Eskf (rwb � ivf )),

b0)

By the same argument as before, D
poly(k) ⇡ D

poly(k)+1. It follows that D0 ⇡ D
poly(k)+1.

Step 2 - PFS.Disguise Ciphertexts are Pseudorandom

Let u2 be uniformly chosen. Define the following hybrid distribution7

D
poly(k)+2 = (skf ,

w0, w1, . . . , w
poly(k),

(iv2,u2), . . . , (iv
poly(k), Eskf (rw

poly(k)
� iv

poly(k))),

(ivf , Eskf (rwb � ivf )),

b0)

where this distribution is like the last, except (iv2, Eskf (rw2 � iv2) is replaced by (iv2, u2).

Suppose there exists a PPT algorithm that computationally distinguishes betweenD
poly(k)+1

and D
poly(k)+2. It follows, there exists a PPT algorithm Dist that takes a transcript from

Game
PFS

as input and outputs 1 or 0. Without loss of generality, Dist guesses 1 if the

transcript is from the distribution D
poly(k)+1 and 0 if the transcript is from the distribution

D
poly(k)+2. It follows that Dist is correct with probability greater than 1

2 + negl(k) where

the probability is taken over the coin tosses of A and the challenger.

Then, we can use Dist to construct a PPT algorithm PRPDistinguisher to computationally

distinguish pseudorandom permutation families from random. Let PRPDistinguisher(Og) be

a PPT algorithm that distinguishes a pseudorandom permutation g from a truly random

permutation with oracle access to g using Og.

PRPDistinguisher(Og):

6
This is the same modified Game

PFS

between the challenger and the adversary as in D
poly(k), except now

the challenger responds with challenge ciphertext, compued by replacing the input of E with a uniformly

chosen random value.

7
This represents a modified Game

PFS

between the challenger and the adversary, where the challenger

replaces the first call to E with a uniformly chosen random value.
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1. Generate the transcript by running A and the challenger, using the hybrid distribution

t 2 D
poly(k)+2 to represent the challenger’s modified responses, except now replace the

first invocation of the PRP E with a call to the oracle Og(rw2):

t = (skf ,

w0, w1, . . . , w
poly(k),

(iv2,Og(rw2), . . . , (ivpoly(k), Eskf (rw
poly(k)

)),

(ivf , Eskf (rwb � ivf )),

b0)

where each rwi , ivf , ivi
$ {0, 1}k

2. Output Dist(t)

By the definition of Dist and since Eskf is replaced with the Og,

Pr[PRPDistinguisher(Og) = 1 | g is pseudorandom ] =

= Pr[Dist(t) = 1 | t D
poly(k)+1]

>
1

2
+ negl(k)

where the probability is taken over coin tosses of PRPDistinguisher and Dist. Therefore,

PRPDistinguisher is a computational distinguisher for pseudorandom permutations. This

contradicts our pseudorandomness assumption for E.

Therefore, no such PPT algorithm Dist exists. It follows that D
poly(k)+1 ⇡ D

poly(k)+2,

from which it follows that D0 ⇡ D
poly(k)+2.

Next, let each hybrid distribution

D
poly(k)+i 2 {D

poly(k)+2, . . . , D2·poly(k)}
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be defined as

D
poly(k)+i = (skf ,

w0, w1, . . . , w
poly(k),

(iv2, u2), . . . , (ivi,ui), . . . ,

. . . , (iv
poly(k), Eskf (rw

poly(k)
� iv

poly(k))),

(ivf , Eskf (rwb � ivf )),

b0)

where by pseudorandomness of E, we use the same argument as above to show that

D
poly(k)+i�1 ⇡ D

poly(k)+i. It follows that D0 ⇡ D2·poly(k).

Step 3 - Challenge Ciphertext is Pseudorandom

Finally, let uf be uniformly chosen and define the final hybrid distribution8

DF = (skf ,

w0, w1, . . . , w
poly2(k)

,

(iv2, u2), . . . , (iv
poly(k), upoly(k)),

(ivf ,uf ),

b0)

Again, by the pseudorandomness of E, we use the same argument as above to show that

D2·poly2(k) ⇡ DF . Then, it follows that D0 ⇡ DF . Clearly, DF is a random distribution

over the coin tosses of the challenger and the adversary. Therefore D0 is computationally

indistinguishable from random.

Hence, any transcript of Game
PFS

is computationally indistinguishable from random. Specif-

ically, the challenge ciphertext cb and the outputs of all oracle queries are computationally

indistinguishable from random. Therefore, any PPT adversary wins Game
PFS

with negligi-

ble advantage.

8
This represents a modified Game

PFS

between the challenger and the adversary, where the challenger now

sends a challenge ciphertext that is sampled uniformly at random.
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Chapter 4

Implementation of a Software

Library and Command Line

Interface for PKS and PFS

In this chapter we describe our implementation of PKS and PFS in the form a command

line interface and a software library. The command line interface, implemented using the

software library, is intended to be used as a standalone, deployable application to generate

master keys, encrypt free text data files, extract keyword and frequency auxiliary keys,

and apply extracted keys to encrypted data to perform keyword search and bag-of-words

computations. Additionally, the software library enables developers to programmatically

integrate obtained auxiliary keys to perform data analysis on encrypted data in their custom

NLP algorithms. Together, the command line interface and the software library allow for

both direct and programmatic use of PKS and PFS.

4.1 Preliminaries

Our implementation is written in the Golang, an open source and cross-platform program-

ming language developed by Google [2]. Our CLI, named Alvis, is available in binary form

for macOS, Linux, and Windows in both x86-32 and x86-64 architectures.

4.1.1 Dependencies

The most important dependency in our implementation is on the Golang standard cryptog-

raphy library crypto [1]. Below is a list of the cryptography modules used in our system.

• crypto/aes - implements AES (2.7).

• crypto/cipher - implements block cipher operating modes, namely CBC (2.6.1).

• crypto/rand - implements cryptographic pseudorandom number generator.
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• crypto/sha256 - implements the cryptographic hash function SHA256 (2.2.1).

A complete list of our implementation’s dependent packages is provided in appendix A.1.

4.2 Helpful Functions

Before we dive into the details of the software library implementation, we will describe

several helpful functions that are used throughout our implementation.

Hash Function

We use the crypto/sha256 package’s implementation of SHA-256, denoted SHA256, as our

cryptographic hash function.

Random Number Generation: rand

The rand function uses the crypto/rand package to pseudo-randomly generate bit strings.

More specifically, rand(n) returns a pseudo-random bit string y 2 {0, 1}n.

Base36 Encoding: b36Encode, b36Decode

The b36Encode, b36Decode functions use the standard Golang big number package (math/big)

to convert byte arrays to strings in Base 36 and vice versa. The Base 36 alphabet is shown

in 4.1.

↵b36 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}
(4.1)

We use Base 36 to encode ciphertexts to be compatible with NLP algorithms. As we will

see, our compute algorithms collate ciphertexts and plaintexts into a “partially decrypted”

free text format that unaltered NLP algorithms can search on. Since many NLP algorithms

first manipulate free text, such as transforming all words to lower case or filtering out punc-

tuation, we are restricted to the limited Base 36 character set as opposed to a more compact

encoding scheme like Base 64.

We can compute the compactness of Base 36 as follows. A single character (8 bits) in

Base 36 represents log2(36) = 5.17 bits. Thus, for every 5.17 bits, 8 bits are needed. Thus,

Base 36 expands a bit string by ⇡ 1.55 times.
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PKCS#7 Padding: Pad,Unpad

The Pad,Unpad functions implement the standard PKCS#7 padding scheme as defined in

2.6.2.

AES-CBC: Encrypt,Decrypt

The Encrypt,Decrypt functions implement the encryption, decryption operations using the

AES block cipher together with the CBC block mode as defined in section 2.6.1.

4.3 Library Modules

Our implementation is comprised of the following four modules.

• PKS implements the PKS construction as specified by 3.3.3.

• PFS implements the PFS construction as specified by 3.4.3.

• KFEncrypt uses the master keys of PKS and PFS to encrypt free text.

• KFCompute applies auxiliary keys to encrypted free text to compute NLP algo-

rithms.

Now, we will describe each module in detail.

4.3.1 PKS

As described in 3.3.3, thePKS implements the four algorithms (Setup,Extract,Hide, Check).

Below we provide the implementation details of each algorithm. Note that the implemen-

tation uses AES with key size 256 and block length 128.

PKS.Setup and PKS.Extract

PKS.Setup and PKS.Extract, shown in algorithms 1 and 2, follow the mathematical definition

of 3.3.3 closely.

Algorithm 1 Generate the master secret key
1: procedure PKS.Setup
2: msk  rand(256)
3: return msk

Algorithm 2 Extract a secret key for a keyword

1: procedure PKS.Extractmsk(w) . w 2 {0, 1}⇤
2: sk  SHA256(w||msk)
3: return sk
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PKS.Hide

PKS.Hide, shown in algorithm 3, follows 3.3.3 but also encodes the ciphertext in Base 36.

Algorithm 3 Hide a word

1: procedure PKS.Hidemsk(w) . w 2 {0, 1}⇤
2: sk  PKS.Extractmsk(w)
3: v  1128

4: c Encryptsk(v)
5: c0  b36Encode(c)
6: return c0

PKS.Check

PKS.Check, shown in algorithm 4, follows 3.3.3 closely, but first decodes the ciphertext from

Base 36.

Algorithm 4 Check if a ciphertext encrypts a plaintext keyword

1: procedure PKS.Checksk(c) . c 2 ↵b36

2: c0  b36Decode(c)
3: v0  1128

4: v1  Decryptsk(c
0)

5: if v0 = v1 then
6: return true
7: else
8: return false

4.3.2 PFS

As described in 3.4.3, the PFS implements the three algorithms

(Setup,Disguise,Recognize)

Below we provide the implementation details of each algorithm and we also add two new

algorithms PFS.Extract, which simply returns the secret frequency key, and PFS.Uncover

which enables anyone with the msk to fully decrypt an ciphertext. Note that the imple-

mentation uses AES with key size 256 and block length 128.

PFS.Setup and PFS.Extract

PFS.Setup, shown in algorithms 5 and 6, follows the mathematical except generates an

additional secret key skr. Additionally, we provide the PFS.Extract algorithm to pull out

the frequency key, skf , from msk.
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Algorithm 5 Generate the master secret key
1: procedure PFS.Setup
2: skd  rand(256)
3: skr  rand(256)
4: skf  rand(256)
5: msk  (skd, skr, skf )
6: return msk

Algorithm 6 Extract the frequency secret key
1: procedure PFS.Extractmsk

2: return msk.skf

PFS.Disguise

PFS.Disguise, shown in algorithm 7, follows 3.4.3 except it uses the additional secret key

skr to produce a standard AES-CBC encryption of the plaintext words. The ciphertext

components are concatenated and encoded in Base 36.

Algorithm 7 Hide a word

1: procedure PFS.Disguisemsk(w) . w 2 {0, 1}⇤
2: c0  Encryptmsk.skr(w)
3: c1  Encryptmsk.skf

(SHA256(w||msk.skd))
4: c b36Encode(c0||c1)
5: return c

PFS.Recognize

PFS.Recognize, shown in algorithm 8, first decodes the ciphertext from Base 36 and separates

the components. Note that in our implementation of PFS.Recognize, it does not take two

ciphertexts as input. Instead it returns the y value from 3.4.3 that can be compared to

the y0 value of any other ciphertext. The reason for this is to enable an algorithm to avoid

invoking PFS.Recognize to check equivalence of the underlying plaintexts for every pair of

ciphertexts. Instead, the algorithm can do native “equals” comparisons just as it would do

if the data was not encrypted.

PFS.Uncover

Given the master secret key msk, PFS.Uncover, uses the the additional skr to fully decrypt

any ciphertext using the first component that is unused in 8.

4.3.3 KFEncrypt

The KFEncrypt module combines the implementations of the PKS and PFS schemes to

encrypt free text words. The module is comprised of the following components.
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Algorithm 8 Recognize a ciphertext by removing the randomized encryption layer

1: procedure PFS.Recognizesk(c) . c 2 ↵b36

2: c0||c1  b36Decode(c)
3: y  Decryptsk(c1)
4: return y

Algorithm 9 Uncover a ciphertext by decrypting and returing the underlying plaintext

1: procedure PFS.Recognizemsk(c) . c 2 ↵b36

2: c0||c1  b36Decode(c)
3: n Decryptmsk.skr(c0)
4: return n

• data structures for storing master keys and extracted keys

• methods for generating and extract keys (via {PKS,PFS}Setup and {PKS,PFS}Extract)

• in-place encryption (hiding and disguising) of free text words in custom data structures

Storing and Generating the Master Key

The master key data structure follows the format specified in 4.2, with the FrequencyMasterKey

substructure. MasterKey is generated by invoking the PKS.Setup,PFS.Setup functions.

MasterKey {
mskkw : {0, 1}256

mskfq : FrequencyMasterKey

}

FrequencyMasterKey {
d : {0, 1}256

r : {0, 1}256

f : {0, 1}256

}

(4.2)

And each component of the msk structure is filled by invoking the statements in 4.3.

MasterKey.mskkw  PKS.Setup(256)

MasterKey.mskfq  PFS.Setup(256)
(4.3)

Storing and Extracting the Auxiliary Keys

The keyword auxiliary key data structure has the format in 4.4, whereas the frequency

auxiliary key is simply a bit string FrequencyKey 2 {0, 1}128 and does need a specific storage

structure. Auxiliary keys are extracted using PKS.Extract and PFS.Extract.
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KeywordKey {
word : {0, 1}⇤

key : {0, 1}256

}

(4.4)

KeywordKey.key PFS.Extract
MasterKey.mskkw

(w)

KeywordKey.word w
(4.5)

FrequencyKey MasterKey.mskfq.f (4.6)

In-Place Encryption: Hiding and Disguising Free Text Words

The last component of the KFEncrypt module enables a data learner to take an arbitrary

data structure, hide and disguise the free text words, and replace the plaintexts with the

ciphertexts in-place. This functionality maintains compatibility with existing NLP algo-

rithms that already search over these custom data structures. To this end, we provide the

following interface to that can be implemented for any data structure.

Searchable Interface

1. CountFreeTextRecords : ?! N

2. GetFreeTextRecordAtIndex : N!WL⇤

3. SetFreeTextRecordAtIndex : N⇥WL⇤ ! ?

In turn, any data structure that provides an implementation for 4.3.3, denoted as i� searchable,

we provide the HideAndDisguiseFreeText implementation shown in algorithm 10.

The main function of algorithm 10 is to replace every free text plaintext word with a

ciphertext consisting of two sub-ciphertexts, one for each scheme. The result is that the

structure of the custom data storage type is un-altered.

4.3.4 KFCompute

In 4.3.4 we use extracted keys to modify the encrypted free text data structures to make

them searchable by NLP algorithms. Specifically, we will roughly unwind algorithm 10
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Algorithm 10 Hide and Disguise plaintext

1: procedure HideAndDisguiseFreeText(ds,masterKey) . ds, a data structure that
conforms to the i� searchable interface, masterKey as MasterKey

2: n ds.CountFreeTextRecords()
3: ctr  0
4: while ctr < n do
5: W  ds.GetFreeTextRecordAtIndex(ctr)
6: Let [w0, . . . , w|W |] W
7: C = []
8: for all wi 2 [w1, . . . , w|Wctr|] do
9: c0  PKS.HidemasterKey.mskkw(wi)

10: c1  PFS.DisguisemasterKey.mskfq
(wi)

11: C[ctr] c0||c1
12: ds.SetFreeTextRecordAtIndex(i, C)
13: ctr = ctr + 1
14: return ds

limited to the set of obtained auxiliary keys, and end up with a partially decrypted free

text.

The main function for algorithm 11 is to try to execute PKS.Check with each keyword

key, and if the check succeeds then replace the combined ciphertexts with the single plain-

text keyword stored in the keyword key structure. Otherwise, use PFS.Recognize with skf

to replace the combined ciphertexts with the single, recognizable deterministic function of

the plaintext. If the keyword key decrypts, the plaintext gives us both full knowledge of the

ciphertext and the ability to compute frequency counts with it. If not, then at the least we

replace a randomized ciphertext with a deterministic pseudorandom function of the plain-

text. This allows a machine learning algorithm to always compute frequency counts with

the possibility of discovering the keyword if there exists a compatible keyword key.

Note that algorithm 11 can also be invoked without the auxiliary key for frequency. The

algorithm would just skip that step in the procedure.

In the next chapter we provide a case study in the medical field to show exactly how

this mechanism can be used to run unmodified real NLP algorithms on encrypted data.

4.4 Performance

One of the key features of a system like ours must be performance. Scanning over tens

of millions of plaintexts is computationally intensive, but when factoring in ciphertext ex-

pansion and decryption for each plaintext, a small slowdown at the lower level can make

the system unusable. Since we rely solely on well known, popular cryptography primitives,

our system performs well. In fact, on many machines some of our cryptographic primitives
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Algorithm 11 Check and Recognize plaintext

1: procedure CheckAndRecognizeFreeText(ds,K, skf ) . ds, a data structure that
conforms to i� searchable, K is a set of extract keys as KeywordKey structures, and skf
is the frequency secret key

2: n ds.CountFreeTextRecords()
3: ctr  0
4: while ctr < n do
5: C  ds.GetFreeTextRecordAtIndex(ctr)
6: Let [c0, . . . , c|Cctr|] C
7: W = []
8: for all ci 2 [c1, . . . , c|Cctr|] do
9: Let ci,0||ci,1  ci

10: for all ski 2 K do
11: Let ci,0||ci,1  ci
12: if PKS.Checkski.key(ci,0) then
13: W [ctr] = ski.word
14: continue
15: if W [ctr] = ”” then
16: W [ctr] = PFS.Recognizeskf (ci,1)
17: continue
18: ds.SetFreeTextRecordAtIndex(i,W )
19: ctr = ctr + 1
20: return ds

are implemented as hardware instructions, increasing performance substantially. Next, we

provide a detailed breakdown on the performance of the functions in our implementation.

4.4.1 Runtime Performance

We ran our benchmarks on a “General Purpose” Amazon Web Services (AWS) m4.large

Virtual Machine, that run on 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) processors [3].

Benchmarks were run 1,000,000 times and averaged to calculate time per operation. All

units are in nanoseconds per operation (ns/op).

Note that the key size is 256 bits and block length is 128 bits. The encrypt/decrypt

benchmarks in table 4.1 are using AES � CBC (2.7.1) on a single block message. The

hash function of the concatenation of two strings, SHA256(a||b), is benchmarked with input

lengths |a| = 128 and |b| = 256 to provide an upper-bound on typical usage lengths.

While we have provided many benchmarks to analyze the performance of our system, pri-

marily two benchmarks actually determine if our system is usable or not: PKS.Check and

PFS.Recognize. CheckAndRecognizeFreeText (algorithm 11), is the bulk of the work a data

leaner must perform to compute NLP on the encrypted data.
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Table 4.1: Cryptographic Primitive Benchmarks
rand 3421 ns/op
AES� CBCEncrypt 3531 ns/op
AES� CBCDecrypt 1225 ns/op
SHA256(a||b) 3048 ns/op

Table 4.2: PKS Implementation Benchmarks
PKS.Setup 3427 ns/op
PKS.Extract 3149 ns/op
PKS.Hide 6324 ns/op
PKS.Check 1261 ns/op

For each free text word in the data set, the learner must do a PFS.Recognize operation

and then iterate over all keyword search keys in possession and do PKS.Check operation.

Assuming that free text words are constant sized (we can approximate the range of English

words from 40 � 80 bits, or 5 � 10 characters). If n is the number of free text words in

the data set, w is the number of keyword keys, then the complexity of this function is

O(n ⇥ (w + 1)) = O(nw). Since we designed our system to support many keyword search

keys, the PKS.Check operation must be extremely fast. To this end, we also benchmarked

its main dependency, a single AES�CBC�Decrypt on one block. Essentially, our goal is to

have the PKS.Check benchmark be as close as possible to the baseline AES�CBC�Decrypt

benchmark.

As we see in tables 4.2 and 4.3, a AES � CBCDecrypt operation is 1225 ns versus the

1261 ns for a PKS.Check operation. Thus our algorithm spends an additional 36 ns beyond

the baseline decrypt operation.

Relative to the benchmarking machine, can do 793,021 PKS.Check operations per second.

4.4.2 Ciphertext Expansion

In addition to the runtime performance, the size of the ciphertexts is very important to

performance. We can look at the ciphertext expansion rate, or the size increase, after re-

placing plaintext words with both PKS and PFS ciphertexts.

A PKS ciphertext is the encryption of a single 128 bit block, followed by an appended

Table 4.3: PFS Implementation Benchmarks
PFS.Setup 10275 ns/op
PFS.Disguise 10065 ns/op
PFS.Recognize 1361 ns/op

66



IV, and then all encoded in Base36. Thus, 256 bits are encoded in Base 36. By the expan-

sion ratio in 4.2, 1.55 ⇤ 256 ⇡ 397 bits are needed.

A PFS ciphertext is a 32-byte SHA256 hash. After encryption and Base 36 encoding, it

becomes an IV plus 3 blocks (after padding) or 128 ⇤ 4 ⇤ 1.55 = 794 bits.

Thus, combining these two ciphertexts into one, we get that the total expansion is 1191 bits

or about 150 bytes. For example, for each English word (which ranges between 5 and 10

bytes), ciphertexts are 15 to 30 times bigger.

4.5 Alvis: The Command Line Interface for PKS and PFS

Alvis is the command line interface (CLI) for generating the master key, encrypting (hiding

and disguising) arbitrarily structured plaintext data structures, extracting auxiliary keys,

and applying these keys to (checking and recognizing) arbitrarily structured ciphertext data

structures.

Alvis is a ready-to-use application that data owners can use to encrypt data and issue

auxiliary keys to give to data learners. Learners can use Alvis and issued keys to run their

NLP algorithms over the encrypted data.

The remainder of this section describes the Alvis interface and how to use it.

Figure 4-1: The Alvis help screen showing all the commands.

4.5.1 Serialization

To serialize data structures and write them to disk we use Java Script Object Notation

(JSON) [5]. JSON is natively compatible with data structures in Golang.
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4.5.2 Setup

The setup command,

alvis setup -out master.key

generates the master key for the system and stores it in the structure from 4.2, where the

flag -out specifies the file path to write the data structure to. As an example, the file

contents of "master.key" look as follows.

{

"FrequencyKey": {

"DetachedKey": "53nl80klBxz9waF0KpB422O2yjSe68sLZvBu8Xvesso=",

"InnerKey": "EctboHEQof9hcEHGPola6itq/Lu+z+JI3YFesd/Cgww=",

"OuterKey": "9h0MyLrczDPt9mSi9wFqNoX7xzAx1OVo4RzuloumqSE="

},

"KeywordKey": {

"Key": "Oh6pI6vsDjcs5OAz7QwsS+LlG84YCaCQsshSYr8jP78="

}

}

Note that symmetric keys (in the space of {0, 1}256) are Base 64 encoded.

4.5.3 Extract

The alvis extract command uses the {PKS,PFS}Extract algorithms as specified in algo-

rithms 2 and 6 to extract keyword and frequency search keys.

Keyword Keys

To extract keyword keys, invoke the following command:

alvis extract keyword -msk master.priv -words words.txt -out-dir keys

where once again -msk specifies the path to the master key. The -words flag specifies a

text file comprised of keywords (each on a newline) for which an auxiliary key is requested.

The -out-dir specifies a directory for where to write the KeywordKey (4.5) structures. For

example, a words file containing

ejection

fraction

is

of

patient

doctor
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paralysis

generates a directory of keys as shown in figure 4-2.

Figure 4-2: First, list the extracted keyword key files. Next, show the contents of frac-
tion.sk.

Frequency Keys

To extract the frequency key, invoke the following command:

alvis extract frequency -msk master.priv -out freq.sk

where -out specifies the file path to write the bytes of the extracted frequency key.

4.5.4 Encrypt

The encrypt command,

alvis encrypt

-msk master.priv

-data-dir /a/path/to/records/

-out-dir /a/path/to/encrypted/records

uses the master key file, as noted above, to run the encryption procedure (otherwise known

as hide and disguise or algorithm 10). The -data-dir flag specifies which data files to pull

free text words from. The -out-dir specifies where to write the modified, now free text

hidden and disguised, data files.

4.5.5 Decrypt

The decrypt command,

alvis decrypt

-key-dir keys/

-freq-key freq.sk

-freq-index /a/path/to/index/file -data-dir /a/path/to/encrypted/data/

-out-dir /a/path/to/partially-decrypted-searchable/data
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uses the master key file, as noted above, to run the decryption procedure (otherwise known

as check and recognize) in algorithm 11. The arguments in the command are as follows.

• -key-dir specifies the directory of keyword key files, as shown in 4-2

• -freq-key specifies the path to the frequency key

• -freq-index specifies the file path to store the index mapping c1 ! c0 (in algorithm

7 )

• -data-dir flag specifies which data files to pull the hidden and disguised free text

words from

• -out-dir specifies where to write the modified, now checked and recognized, data

files.

Note that freq-index is necessary to map the deterministic part of the frequency ciphertext

to the randomized part. The randomized part is need to decrypt back to the plaintext

(Uncover - algorithm 9).

4.5.6 Uncover

The uncover command,

alvis uncover -msk master.priv

-freq-index /a/path/to/index/file

-file /a/path/to/recognized/ciphertexts/file

uses the master key file, as noted above, to run the uncover operation as specified by

algorithm 9. The arguments in the command are as follows.

• -freq-index specifies the file path to store the index mapping c1 ! c0 (in algorithm

7 )

• -file specifies a file that has recognized frequency ciphertexts, that is the decrypted

c1 from algorithm 7.

In the next chapter we document our case study of using Alvis on a real medical patient

data set for which we run a suite of NLP algorithms that utilizes the auxiliary keys in our

system to compute on partially encrypted data.
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Chapter 5

Computing on Encrypted Patient

Data

In this chapter we describe how we applied our command line interface, Alvis, to a suite

of natural language processing algorithms that were successful on unencrypted medical pa-

tient records. Our main results is that we can use Alvis to run the unmodified suite of NLP

algorithms on a encrypted patient data while achieving the same results as if the algorithms

were run on unencrypted data.

The remainder of the chapter is outlined as follows. First, we give the background on the

patient data and the high-level summary of what the NLP algorithm was able to achieve.

Next, we explain the privacy problems that prevent wider-scale access to this kind of data

for machine learning researchers. Then we dive into details of the patient data structure

and specific classification goals of the NLP algorithm. Finally, we explain how the machine

learning researcher and the hospital data administrator fit our two party model of data

owner and data learner. We then conclude by demonstrating the usage of Alvis to both

encrypt and compute on patient data using the unmodified suite of NLP algorithms.

5.1 Background

The NLP algorithm in this case study seeks to learn about patients with heart failure

problems that received Cardiac Resynchronization Therapy (CRT). While this a successful

therapy for a majority of patients, about one third of CRT patients do not experience pos-

itive results [14]. More interestingly, the causes of failure are not well understood [14].

One reason for the di�culty in understanding CRT failure conditions is the way that the

clinical results are recorded in patient records. Record keeping, while electronic, leaves a

lot to be desired for recording specific patient results, especially during CRT treatment.
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Data is stored in many formats, and structured data often only contains a limited number

of important metrics. This means that the bulk of information, which could potentially

reveal CRT failure reasons, is hidden in free text doctor notes. Thus, clinical researchers

would need to manually read this data to determine causes, a task that is infeasible for a

large number of patient records [16].

5.1.1 NLP on Patient Data Reveals Important Information

Natural Language Processing (NLP) and is used to solve this exact problem. With NLP,

clinical researchers can programmatically process the free text doctor’s notes and extract

common threads over many patient record files.

In our specific case study, this is exactly what a team of machine learning researchers,

Freel, Haimson, and Traub from the Massachusetts Institute of Technology (MIT), and a

clinical research doctor, Lindvall from the Massachusetts General Hospital (MGH), accom-

plished [16]. Specifically, the team’s suite of NLP algorithms and analysis improved the

prediction accuracy for the success of CRT treatment by 9% [16]. While this doesn’t com-

pletely solve the problem, it could save millions of dollars for both hosptials and patients

and possibly prevent a patient from undergoing an intensive treatment that will ultimately

fail. We abbreviate the team’s suite of algorithms as FHTL.

The team ran their algorithm on only about 900 patients from which the above results

were achieved. A larger data set would likely strengthen the results and improve the pre-

diction success rate.

5.1.2 Privacy Regulations Prevents Large Scale Data Access

One major issue that prevents access to larger patient data sets is the inherent privacy prob-

lem that comes with releasing data to an external research group, such as MIT machine

learning researchers. Hospitals are bound to protect the PII of patients, and in particular,

free text doctor’s notes could contain a lot of sensitive data that is hard to anonymize

programmatically. For example, the note could mention details about where the patient

lives or the patients family members. Such information is di�cult to sensor, and man-

ual anonymizing is infeasible. Thus, hospital’s are hesitant to give out large patient data

sets which in turn stunts the discoveries made by good-intentioned external research parties.

This is the primary motivation for introducing cryptography as a possible solution to the

problem. The main question, as seen by hospitals and external researchers is, can hospitals

encrypt patient data such that external researchers can learn from the data without discov-

ering the PII of patients?
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In the remainder of the chapter, we explain how we used Alvis to facilitate search on en-

crypted data alongside the FHTL machine learning algorithm. We show that our system is

an important, practical step to answering the question above.

5.1.3 Hospital: Data Owner, Researcher: Data Learner

First, we frame the medical case study in our two party model, data owner versus data

learner. It is easy to see that the hospital is the data owner, maintaining a set of patient

records. We note that this is a slight simplification, as in some cases there exists a company

(like Partners Healthcare) that administers patient record keeping systems for multiple hos-

pitals. In this case, the administering party is the data owner, as they are responsible for

keeping the PII of patients private.

The external (machine learning) researchers are the data learning party. We emphasize

that the data learning party is specifically separate from the hospital and thus is not able

to view PII of patients.

As the results of 5.1.1 indicate, the collaboration between computer scientists like ma-

chine learning researchers and medical institutions is essential to transforming the large

amounts of raw patient data siting in hospital databases into knowledge.

Therefore, this perfectly fits our model. The data learning party or the MIT machine

learning researchers wish to collaborate with a medical institution, like MGH, to learn

about why CRT treatments fail and how to predict their success.

5.2 Patient Data Records

First, we will introduce the structure of the patient data records to better explain the kinds

of information they contain and the format they use. Each patient record is stored in

a JSON file (4.5.1), containing both structured and unstructured (free text) information

about each patient visit to the hospital. In table 5.1 we include the data type breakdown

provided by Freel et al [16] for their sample of patients.

We note that the the structured segments of the file are not encrypted as they have

already been de-identified. Structured fields are often computer generated and therefore

consistent which makes it simple to programmatically remove PII. Thus, we continue by

focusing only on unstructured free text data.

Freel et al [16] note that patient records contain roughly ten times more structured data

than free text documents, but when comparing the number of sentences in free text to the

number of structured entries, they estimate that roughly one third of CRT related infor-
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Table 5.1: Breakdown of Patient Data Types [16]
Data Type Contained Information # Documents # Entries/Sentences
Structured Inpatient/Outpatient

Duration of stay
ICD-9 Code
Lab type Value
High/Low indicator

3,100,000 44,000,000

Free Text Relevant labs (EF,
QRS)
Clinical characters
(LBBB, sinus
rhythm)
Cardiologist notes
Summary of lab
values
Symptoms
Family history
Social history

245,000 26,000,000

mation is stored in free text sentences. They o↵er the following examples to highlight this

point.

Example 5.2.1. “This is a 54-year-old woman with end stage heart failure secondary to

Chagas disease. Her main symptoms are shortness of breath, chest discomfort, anxiety, and

existential distress.” [16]

Example 5.2.2. “A very pleasant 68-year-old gentleman with a history of ischemic car-

diomyopathy presented with class III symptoms of heart failure, has had an upgrade of his

device to biventricular implantable cardioverter-defibrillators, currently in sinus rhythm.”

[16]

We see that both of the 5.2.1 and 5.2.2 examples contain a lot of information about

each patient’s respective conditions. We also note that example 5.2.2 contains the doctor’s,

likely irrelevant commentary, that the patient was “very pleasant”. While this information

is likely innocent and unrevealing, it is easy to see how other similarly irrelevant information

could indicate PII.

5.3 FHTL’s Free Text Search Methods

The FHTL machine learning algorithm utilizes several NLP models, summarized below, to

extract information from free text patient notes [16].

1. Clinical Value Extraction (CVE). Use of regular expressions to extract already-

known prediction factors for CRT like NYHA Class, LVEF, QRS, LBBB, and Sinus

Rhythm.
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2. Bag of Words (BOW). Use frequency analysis of bigrams or n-grams to reduce

the number of relevant sentences across patient records by locating similarities and

overarching themes. No previous knowledge expected.

3. Paragraph Vectors. Represent free text paragraphs as variable length sequences

of words to form fixed-sized feature vectors. These are used to predict a given word

in a sentence (or sequence of words) given the fixed dimensional feature vectors.

4. Stop Words. Remove frequently, often meaningless, English words from the free

text notes such that the remaining words are more meaningful and more likely to be

related to underlying data analysis goals.

Next, we discuss how the PKS and PFS schemes are compatible and manage to maintain

the information obtained in the above methods while hiding PII.

5.3.1 CVE

The regular expressions used in FHTL are simple enough such that they can be approxi-

mated with a modest-sized set of keywords to be extracted using PKS. Below we give some

example regular expressions and a list of keywords used to approximate them.

• Left Ventricular Ejection Fraction (LVEF):

(?:ef|ejection fraction)\s*(?:of|is)?[:\s]*([0-9]*\.?[0-9]*)

can be approximated requesting keywords

ef, ejection, fraction, of, is, \%

and keywords 8i 2 {0, . . . , 100}, i and i%.

• Ischemic:

non(?:-| )ischemic

can be approximated requesting

ischemic, non-ischemic, non

• New York Heart Association Classification (NYHA Class):

class (i+v*|[1-4])(?:(?:/|-)(i+v*|[1-4]))?

nyha", "nyha(?: class)? (i\+v*|[1-4])(?:(?:/|-)(i+v*|[1-4]))?

75



can be approximated requesting

class, of, nyha, I, II, III, IV

5.3.2 BOW and Paragraph Vectors

PFS, our general bag-of-words (frequency analysis) scheme, perfectly fits the bag of words

model and the representation of paragraphs as length-N word sequences.

As noted in our discussion of PFS, the PFS.Recognize operation transforms a ciphertext

into a deterministic string to enable counting plaintext repetitions. While the underlying

FHTL algorithm might not see the plaintext words, only a deterministic function of them,

later the PFS.Uncover can be used by the hospital administrator to inspect the output of a

BOW search.

As shown in CheckAndRecognize, algorithm 11, the deterministic function of the ciphertext

is used to replace the randomized ciphertexts in-place. This maintains that the “partially

decrypted” resulting free text, which FHTL will search over, is still in paragraph form,

translating the original plaintexts into either the same plaintexts (for extracted keyword

keys) or deterministic functions of the plaintexts (for an extracted frequency key.)

5.3.3 Stop Words

Stop words are English words that contain little to no information like “about, above,

across, after, afterwards, again”. Stop words can easily be filtered by requesting keyword

keys for each stop word. We note that this is a perfect example of the data owner party

(the hospital) releasing or white listing certain words known to be harmless for the data

learner to filter out. That is, FHTL will see stop words the same way they do as when

searching over plaintext data and can remove them to leave behind the more meaningful,

likely “covered” but recognizable deterministic ciphertexts.

5.4 Alvis Implements the Searchable Interface for Patient

Data

The first step is to describe how Alvis interacts with patient data files as they are in a

custom format. To this end, we implemented the Searchable interface as described in 4.3.3

and added it to the Alvis implementation.

The Searchable methods, CountFreeTextRecords and {Get, Set}FreeTextRecordAtIndex, are

implemented by iterating over every hospital visit entry in the patient data file, ignoring all
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entries except those that contain a “free text” field name. To get or set free text words at

an index i, simply find the ith “free text” field, and either read or write the free text words

in that entry. Note that as a precursor, we implemented a function to remove all unwanted

characters, make all text lower-case, and split the free text paragraphs into an ordered list.

Thus the list of words taken from a free text paragraph is cleansed of all bad characters

prior to processing for encryption.

5.5 Using Alvis in Practice

Our main result is that we can use our software to run the unmodified FHTL program

on encrypted patient record files, and specifically, based on trials over a small subset of

patient records we have found that executions of FHTL on the encrypted patient files us-

ing Alvis, produce the same outputs as executions of FHTL on the unencrypted patient files.

We note that our results are based on running trials of our software and the FHTL al-

gorithm on only a small subset of the original patient data files. The original work by

Freel et al [16] used about 900 patient data files, while we were limited to 10 (deceased)

patient files due to access restrictions and privacy regulations. We note that FHTL was

designed to run on small datasets [16] and that our trials indicate that the our software

will work on larger data sets, however more auxiliary keyword keys may be needed to show

that the execution of FHTL on encrypted data classifies as well as it would on plaintext data.

For the remainder of the chapter we will walk through the process of using Alvis the run

the FHTL machine learning algorithm on encrypted free text patient data files. This work-

flow closely follows that of section 4.5. In most cases Alvis integrates as pre-processing or

post-processing step, meaning it is not necessary to make any changes to FHTL.

5.5.1 Hospital Generates Master Key

The first step is for the hospital administrator to execute the setup command to generate a

master secret key. Note that this master key must be kept in a safe location and its secrecy

essential because it can be used to decrypt all encrypted patient data. Figure 5-1 shows an

example invocation of the setup command and the associated master key that is created.

Figure 5-1: The hospital generates the master secret key.
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5.5.2 Hospital Encrypts

In the encryption step, the hospital administrator encrypts patient record files. Specifically,

Alvis uses the searchable interface for patient data files, as explained in 5.4, to extract free

text words from the patient file. The hospital executes the command figure 5-2 to transform

every ordered list of free text words into an ordered list of PKS and PFS ciphertexts using

the HideAndDisguiseFreeText algorithm, as explained in section 10.

Figure 5-2: The hospital encrypts patient data files. The next two commands show excerpts
from an encrypted patient file.

Figure 5-2 also shows the two types of ciphertexts (PKS and PFS) in the resulting

encrypted free text notes. Afterwards, the encrypted patient files are published to some

storage service where the machine learning researchers can download them.

5.5.3 Researcher Requests Auxiliary Keys

Next, in the auxiliary key request step, the researcher requests keys for keywords and the

frequency key. Specifically for the keywords, in our case study, the MIT machine learninger

team would request search keys for approximating the regular expressions in section 5.3.1

and the stop words as explained in section 5.3.3.

The machine learning researchers can package their requested keywords in a plaintext file,

denoted keywords.txt, where each keyword is on a new line. Figure 5-3 shows an excerpt of

what such a file could look like. Finally, the researcher sends keywords.txt to the hospital

for approval.

5.5.4 Hospital Grants or Rejects Search Keys

Upon approving the list keywords in keywords.txt and approving the ability to compute

a frequency count, the hospital administrator executes the commands in figure 5-4 and 5-5

to extract all the corresponding keyword keys and a frequency key.

The hospital administrator then sends the resulting directory of keyword key files and

the frequency key file back to the researcher.
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Figure 5-3: The researcher compiles a list of requested keywords for the hospital.

Figure 5-4: The hospital extracts keywords from the approved list and writes each keyword
key to a file in the specified keyword key directory.

5.5.5 Researcher Partially Decrypts Patient Files

Upon receiving the directory of keyword keys and the frequency key, the researcher executes

the command shown in figure 5-6 on the published, encrypted patient files ( 5.5.2) using

the keyword and frequency keys. This command invokes the CheckAndRecognizeFreeText

algorithm described in 11, using the same searchable interface explained in above in 5.4.

As we can see the excerpt from the partially decrypted patient file in figure 5-6, contains a

paragraph with mixed deterministic (“recognized”) ciphertexts and plaintext keywords for

which the researcher has a keyword key to “check”.

5.5.6 Researcher Runs FHTL on Partially Decrypted Patient Files

After “partially” decrypting as described above, the researcher can now run the unmodified

FHTLmachine learning algorithm on the patient files in the created searchable_patients/
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Figure 5-5: The hospital extracts the frequency key and writes it to a specified file.

Figure 5-6: The researcher “partially” decrypts the encrypted patient files. An excerpt of
a partially decrypted patient file is then shown.

directory. Since free text notes still “look” like plaintext words, due to the unchanged para-

graph structure, deterministic Base 36 encoded ciphertexts, and decrypted keywords, the

FHTL algorithm works as it would on completely plaintext data except now it outputs

partially encrypted results. An excerpt of the output computed by running FHTL is shown

in figure 5-7. While the excerpt in figure 5-7 shows a bag of words output, other NLP

Figure 5-7: An example output of running FHTL on the partially decrypted patient data.

methods, like those described in section 5.3, were used to in conjunction with bag of words

to filter out irrelevant data and extract certain feature vectors.

Most importantly, the partially encrypted bag-of-words output can usually remain en-

crypted as the underlying plaintext is not needed for the correctness of the algorithm.

When FHTL is executed on a set of data it’s goal is to classify each record in some cat-

egory. In the case of the research study, the goal is to decide if the patient will have a

successful CRT treatment or not. The bag-of-words output is shown in figure 5-7 is to

highlight the FHTL algorithm tra�cs in partially encrypted data.
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For reference, figure 5-8 shows the result of running FHTL on the plaintext patient data.

These results match those of figure 5-7.

Figure 5-8: The execution of FHTL on unencrypted data.

However, in some cases the bag-of-words output can be useful while an NLP algorithm

is being developed or modified. Therefore, it is possible that the machine learning research

might occasionally desire to ask the hospital administrator to reveal the mapping of certain

placeholders to corresponding plaintexts.

5.5.7 Auxiliary Information: Uncovering Deterministic Ciphertexts for

BOW Output

The excerpt output shown in figure 5-7 is a bag of words (bi-gram, in this case) output,

showing the most frequently occurring pairs of words. While some of these words are de-

crypted (via keyword keys), many others are unknown to the learner. That is, the output

is partially encrypted.

From an honest execution of a well constructed machine learning algorithm like FHTL,

most bag of words outputs will not contain PII, as PII will likely not repeat across patient

files. Thus, it might be the case that the researcher should be able to uncover these un-

known words, as long as the hospital administrator approves.

To this end, the researcher can copy the output of FHTL to a file output.txt and send

it to the hospital. In turn, a hospital administrator can use algorithm 9) to uncover the

underlying plaintext words. After manually inspecting the short list of uncovered plaintext

bi-gram words, the hospital can decide if the uncovered words contain PII and if they do

not, return the plaintext back to the researcher.
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Chapter 6

Conclusion

In this work we designed and implemented a system where one data owning party can

outsource keyword searches, approximate regular expression matching, and bag-of-words

computations on encrypted free text data to a group of computationally more powerful,

partially untrusted data learning parties. The first phase of our system enables the data

owner to encrypt their data one time. The auxiliary key request phase allows data learning

parties to request specific auxiliary keys and the compute phase uses these keys to perform

basic NLP techniques like keyword search, approximate regular expression matching, and

bag of words computations on encrypted free text data.

We provided formal privacy definitions and constructions for our schemes, and proved that

our constructions achieve our privacy definitions using simple cryptographic primitives.

We implemented our schemes to provide both a software library to be integrated into ex-

isting applications, and Alvis, a command line interface that is ready to be deployed in real

systems. We also created a searchable interface for data learners to integrate their custom

data structures, enabling search on arbitrarily encrypted free text data structures.

Finally, we presented our work on a real-world case study, the data analysis of encrypted

patient data. We used a pre-existing suite NLP algorithms that already proved to be fairly

e↵ective searching on patients with records of Cardiac Resynchronization Therapy. With-

out modifying the underlying algorithms, we were able to use Alvis to compute these NLP

algorithms on encrypted free text patient data.

6.1 Code

All of our code, both the software library and the command line interface, is available for

review at https://github.mit.edu/agrinman/alvis.
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6.2 Future Work

While our work exhibits a fully-operable implementation that can be deployed today, more

work is required to improve the usability and usefulness of the system.

6.2.1 Graphical User Interface

An important step is to add a graphical user interface (GUI) to act as substitute to the

command line interface. While it is likely that most data learning parties are technical,

hospital administrators will need a friendly GUI to select patient data files for encryption,

approve requested keywords and frequency keys, and “uncover” ciphertexts like the special

case in section 5.5.7.

6.2.2 Pilot for Computing on Encrypted Patient Data

A necessary next step is to introduce our system to both hospitals and machine learning

researchers through a collaborative pilot. This pilot will be helpful to further validate our

two party model, confirm that the interaction in our system is manageable, and that the

search results prove to be useful.

While our implementation makes almost no assumptions about the data and operates on

the very simplest input-output interface using files, it is likely that hospitals will need to in-

tegrate this tool as some pre/post-processing step deeper in their data management systems

and a pilot would reveal the necessary next steps for a complete integration.

6.2.3 Testing on More Machine Learning and NLP Algorithms

Finally, our case study and primary motivation throughout this work has been searching

on CRT-related patient data using the FHTL machine learning algorithm. However, our

implementation is not specific to this study and therefore could be used with almost any

computational study on patient data. Therefore, our next steps include finding more ma-

chine learning algorithms in the medical space to test alongside our implementation.

To understand where else our system could be practical and deployable, we need to look at

other case studies in di↵erent fields. To this end, we also plan to look at financial algorithms

to understand if there are certain companies like banks that need to outsource computing

to collaborative, but not fully trusted, machine learning researchers.
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Appendix A

Software Dependencies

A.1 Internal Golang Dependencies

bytes

crypto/aes

crypto/cipher

crypto/rand

crypto/sha256

encoding/json

errors

fmt

io/ioutil

log

math/big

net/http

net/http/pprof

os

path

runtime

strings

sync

unicode

A.2 External Golang Dependencies

https://github.com/fatih/color

https://github.com/urfave/cli
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