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Abstract

We study a dynamic global game model of coordination risk among a group of agents
invested in a project over a finite time horizon. Once every round each agent gets
a private noisy signal of the health of the project. The agent must then decide to
continue participating in the project in anticipation of receiving a full return on their
investment upon the projects successful completion or foreclose on the project early
and receive a reduced payout. This model extends the debt global game models of
coordination risk by Morris and Shin to a multi period model similar to Dynamic
Global Game Models of Angeletos, Hellwig and Pavan. This extended model allows
us to study coordination risk over a finite time horizon and introduce new information
structures of the the agents invested in the project.

Our main results come from extensions to the dynamic global game model. First,
we model public signals of the health of the project between all agents invested in
it and show under certain conditions that positive public information of the project
can decrease the projects chances of success. Second, we allow for agents to receive
private and public noisy signals of past actions, introducing herd behaviour. We then
show how this herd behaviour can increase the fragility of the system to external
shocks of public or private information concerning the fundamentals of the project.
Last, we introduce feedback into the reserve price that agents receive upon leaving
the project early. We show that this feedback can be a positive or negative force on
the health of the project. We conclude with an interpretation of the model to real
world bond yields and numerical examples.

Thesis Supervisor: Mardavij Roozbehani
Title: Principle Research Scientist
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Chapter 1

Introduction

1.1 Problem Motivation

Game theory provides a rich modelling framework to explain real world interactions

between agents. A classic example is the prisoner’s dilemma, where two criminals are

caught stealing from a bank but the authorities do not have enough proof of their

crime, only that they were trespassing [13]. The authorities propose a plea bargain to

each of the criminals: if you confess, you can walk away with no jail time but if you

do not confess and your partner does, you will be much worse off. If both confess they

will be in jail for a longer sentence, but if neither do, they will both only be charged

with the minor crime of trespassing. The Nash Equilibrium for each criminal with

these pay-offs is for each to confess, since they cannot coordinate or enforce what the

other criminal will say to the authorities. The decision matrix looks like the below.

Confess Lie

Confess (−7,−7) (−10, 0)

Lie (0,−10)) (−1,−1)

We imagine that before these two criminals were caught "trespassing" in the bank,

they faced a different coordination problem on whether to rob the bank. The two

bank robbers already had a plan of action for the night of robbery, but it involved

trusting that the other robber would show up that night to rob the bank. If only one
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robber showed up, all of his efforts would be in vain. Each robber only wants to go

forward with the plan if they believe that the bank has enough cash inside its vault

to make the heist worthwhile. The pay-off to each robber, assuming that there is a

cost of 1 associated with robbing the bank can be seen below.

Rob Bail

Rob (𝑉$ − 1, 𝑉$ − 1) (−1, 0)

Bail (0,−1)) (0, 0)

This game can have two Nash Equilibriums and no way to break the tie between

them without introducing agent preferences. We introduce noise into the underlying

state of the system to break the tie, while introducing the possibility of making a

sub-optimal decision. We make the amount of money in the vault, 𝑉$, unknown to

each robber and sampled from a normal random variable. Each robber gets their

own private estimate of this signal, 𝑉𝑖$ = 𝑉$ + 𝜂𝑖 where 𝜂𝑖 is some i.i.d. noise. This

new, but similar, problem set up introduces the concept of a global game. A global

game introduces uncertainty about the underlying state of the system a single Nash

Equilibrium can be chosen versus a system with perfect information and multiple

Nash Equilibria.

Global Games can be used to study various phenomena that have a coordination

problem between agents trying to make a decision such as currency attacks against

a central bank [22], depositors starting bank runs [10], or bond holders in a project

[2]. Many models of these phenomena assume that each agent has perfect information

regarding the fundamentals of the system, and categorize phase transitions that occur

when the fundamentals change, as well as how fragile the system is to outside shocks.

Introducing a global games framework allows to measure not just the phase transitions

in these systems but also how much of the phase transition is due to the inability to

coordinate between agents versus worsening fundamentals of the system.
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1.2 Contributions

In this section we summarize the main contributions of this thesis to coordination risk

in dynamic global game models and financial simulation of debt contract prices. The

main results are stated in the Dynamic Model Extensions section while numerical

examples of the phenomena discussed can be found in the appendix.

The dynamic global game literature has various models of games of repeated

attacks against a regime [4, 5, 6, 9, 14]. Our main contribution is to extend the dynamic

global game framework to model games of coordination risk between investors in a

project over multiple rounds. In this formulation, we have a continuum of creditors

invested in a single risky project. At each round, the creditors have the choice to

continue investing in the project or to foreclose and take a reserve price for leaving

the project before completion. If too many investors foreclose early, the project does

not have enough liquidity on hand and fails. The risk to the project becomes the

failure to coordinate among the projects creditor’s; if all of them were able to share

their private information and make decisions jointly no early investor withdrawals

would occur unless the project was guaranteed to fail. In studying and interpreting

the information structure of this new type of dynamic global game, we submit three

main contributions:

Positive information regarding the state of the project can induce investor with-

drawals. This result is counter-intuitive to how positive information affects an asset’s

price and doesn’t occur in standard debt models found in the finance literature [2, 21].

The information structure that causes this to occur can be found in other dynamic

global game models [6, 18]. Intuitively, the increased certainty of the public infor-

mation among all investors in the project can overpower their private information

estimate of the project, which among all the investors may have been higher than

the public information signal. In this scenario, the public information emboldens

investors to foreclose on the project.

Private and public feedback of the state of the project can make the project

more likely to fail. Financial and game theory models incorporate feedback to show
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path dependency [6, 7, 19]. We extend these feedback information structures into our

dynamic model of coordination risk to come to our conclusion of the increased fragility

of the system in two ways. First, a positive feedback loop can occur for sufficiently

strong public signals or if the information gained in the private feedback is sufficiently

strong. Second, a system with feedback becomes more sensitive to outside shocks to

its fundamentals than a system without feedback.

We introduce the concept of liquidity in the reserve price payouts if an investor

of the project decides to foreclose on the project. This type of feedback is common

in financial models [10, 16] but uncommon in the global games literature [20]. This is

accomplished by allowing the reserve price to be a function of the number of investors

that will foreclose on the project in any given round, introducing positive or negative

feedback. In the positive feedback case we assume that the project incurs a liquidation

penalty that grows in proportion with number of investors foreclosing on a given

round. For the negative feedback case we assume there is a robust market that the

project can access for liquidity so large withdrawals are easier to make.

This formulation of a dynamic global game model lends itself to interpreting bond

interest rates over time and how the information structure of debt contracts affect the

interest rates of the bond. In the real world data comparison section we discuss how

to interpret the model in terms of bond yields and compare to other models in the

literature. We also discuss possible ways to calibrate a dynamic global game model

to a set of data points.

1.3 Related Literature

The global game model on which the dynamic model is built upon was introduced

by Carrlsson and Damme [8]. From this base model, a rich assortment of strategic

behavior involving coordination risk has been explained involving currency crises,

bank runs, debt holders, and political organization [20]. We start by an overview of

the literature in global game currency crises that introduce various ways to interact

with the underlying state of the global game.
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Metz models public information in self fulfilling currency crises to show how agents

behavior differ in a game with and without public information and how in most cases

there will always be multiple equilibria possible with public information shocks [17].

Further characterizations of the multiplicity in global games with public and private

information is studied in Hellwig [20]. The model most similar to this thesis can be

found in Dynamic Global games of Regime change, which provides a global game

structure of attacking a regime over time [6]. This paper provides key insights the

the structure of equilibrium in a global game that is played over repeated rounds with

different information structures given to the players. These information structures

determine whether there are multiple equilibriums or a unique one, whether the regime

gets attacked on any given round, and whether the regime will get overthrown at some

round of the repeated dynamic global game. As the game is played over multiple

rounds, different amounts of information flow to the participants in different scenarios.

Dasgupta takes a different approach and studies a global game structure where agents

try to coordinate to make the same decision optimally over a finite horizon [9].

An approach with positive feedback built into the base model is taken by Dilp

Abrea and Markus Brunnermeier where they show how asset bubbles can exist within

a rational market framework instead of currency attacks [1]. Their model has a group

of investors buying a stock and causing a price increase because they believe "its

different this time." There is another group of informed investors that over time start

to short the stock due to its poor fundamental value. This model shows coordination

risk in terms of leaving an inflated bubble regime and how this bubble can form

in terms of positive feedback. We contrast this to periods of negative and positive

feedback when the reserve price in our dynamic global game model can vary to the

size of price movements. The study of how at each stage in the dynamic global game

a sequential equilibrium must be reached was studied by Kreps and Wilson [15].

13



1.4 Organization

Section 2 starts with an introduction to a one round static global game model describ-

ing coordination risk in a debt project. Section 3 extends the one round scenario to a

simple dynamic model that covers a debt project where investors can withdraw from

the project over a finite time horizon N. Section 4 extends the information structure

of the simple dynamic model to include public information, publicly known shocks

to the health of the project, private and public feedback of the current state of the

project and liquidity in terms of the reserve price of the project. Section 5 discusses

the interpretation of the model in terms of real world bond prices. Section 6 concludes

the thesis. In the appendixes there are numerical examples of the model.
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Chapter 2

Static Debt Model

We model a debt contract between a single owner of a risky project or bond requesting

debt from a continuum of small investors as a global game over two rounds, similar to

the Morris and Shin financial model for debt [21]. We expand on their initial model

by allowing positive or negative feedback in the reserve price of the debt contract,

which is the amount of cash an investor receives if they decide to pull money from

the project before it is completed.

2.1 Overview

Here we explain the mechanics of a single round debt contract global game. We start

with a project that takes two rounds to realize any returns to its investors. The

project’s owner issues debt to a number of small investors that have the option to

pull out their money at a reserve price before the projects completion at the end of

round two where full repayment of the debt with interest is issued if the project is

successful.

In round one, each investor receives a private, noisy signal of how much liquidity

is available for early withdrawals of the project. Each investor decides to continue

financing the project into round two or foreclose on the loan at the end of round one

based on the value of this signal and shared prior information regarding the risk of

the project. Any signal where liquidity is estimated to be less than 0 means that the
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project is predicted to fail. For the project to succeed it must have on hand enough

liquidity to survive early withdrawals at the end of round one from investors who,

due to the noise in their signal, decide to withdraw.

In round two, the fate of the project is determined when the number of investors

who pulled their money out of the project in round one is revealed as well as the

amount of liquidity on hand for the project. If more investors pulled out their money

that there was liquidity on hand for the project, the project fails and investors get a

fraction of their expected return. If the project has enough liquidity on hand to pay

the investors that pulled out early the project succeeds and only the investors that

stayed in receive a full payout.

The investors decision to foreclose on the loan or continue financing the project

is dependant on the private signal they receive as well as common knowledge about

the viability of the project. Factors that influence the investors are the payout of

the project upon success or failure, how noisy the private signal was and the prior

probability distribution of the project’s success.

2.2 Model Parameters

The projects success at the end of round two are based on two factors: the underlying

state 𝜃 of the project and the proportion of investors that foreclosed. The underlying

state 𝜃 of the project can be thought of as the amount of short term liquidity the

project has on hand at the end of round two to satisfy demand for early withdrawals

from the project. It is assumed that if the project survives the liquidity withdrawals

it will be successful in round two. The underlying state of the project 𝜃 is modelled

as a random variable sampled from a normal distribution 𝑁(𝑧, 1
𝛼

) which is common

knowledge to all investors before investing in the project. This distribution can be

thought of as the expected amount of liquidity that projects of this type have based

on historical examples or common industry models. For example, if investors are

deciding to invest in a widget factory, 𝑁(𝑧, 1
𝛼

) represents the amount of liquidity

on hand halfway through building the factories similar to the current project. In
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standard practice we denote the number of investors staying in the project and not

foreclosing as 𝜃, which is always in the range [0, 1].

We allow for not all of the money on hand to be available for early investor

withdrawals at the end of round one. In this case we introduce 𝑤 ≥ 1 which represents

a sensitivity that the debtor has to investors calling in their loans early. 𝑤 can be

thought of as a liquidation friction upon the project when they have to liquidate

assets early. (If 𝑤 = .8 for example, then for every dollar of liquidity the project has

on hand only .8 can be used to pay off investors calling in the debt early.)

Contract payout terms for the debt financing are agreed upon before investors

choose to engage in the global game. Every investor is sufficiently enticed by the

estimated returns at the beginning of round one, even if they decide to pull funding

for the project early after receiving their private signal. There are three different

possible payouts for the investor outlined in the debt financing contract.

1. 𝐿: Full repayment of the debt with interest if the investor does not foreclose on

the project at the end of round one and the project is successful.

2. 𝐾*(𝜃): The reserve price, which is a monotonically increasing or decreasing

function of 𝜃. Amount received if the investor decide to foreclose at the end of

round one, earned regardless of the success or failure of the project.

3. 𝐾*: Amount received upon project failure and the investor not foreclosing on

the project.

The following relation between the debt contract payouts always hold for any

value of 𝜃

𝐾* < 𝐾*(𝜃) < 𝐿

The three possible payouts of this static debt game can be normalized to the

following if we let 𝜆(𝜃) = (𝐾*(𝜃) −𝐾*)/(𝐿−𝐾*),

17



Project Success Project Failure

Roll-over Loan 1 0

Foreclose Loan 𝜆(𝜃) 𝜆(𝜃)

If the 𝜃 sampled from this distribution is less than 0 or larger than 𝑙 , the project

will always fail or succeed regardless of how many investors foreclose. Additionally,

if the exact value of 𝜃 is known in round one, the model would degenerate to a

continuous game with one or two possible Nash Equilibrium in the interesting case

where the outcome of the project is uncertain, global game dynamics come into play.

Each investor of the continuum, denoted by 𝑖, observes the noisy signal 𝑥𝑖

𝑥𝑖 = 𝜃 + 𝑒𝑖

where 𝑒𝑖 is an IID and drawn from the normal distribution 𝑁(0, 1
𝛽
). This represents

each investors private information regarding the underlying state of the project which

is combined with the prior information of the distribution of 𝜃 to get each investors

best estimation of the state of the project.

2.3 Equilibrium Dynamics

A strategy for an individual investor 𝑖 consists of the decision to either foreclose or

roll over the loan given the investors private observation of 𝑥𝑖. Given the continuity of

the signal, we look for a Bayesian Nash Equilibrium based on a switching rule where

we assume there is a single threshold �̂� such that each investor only rolls over the

loan if the signal they observe is 𝑥 ≥ �̂�. With this switching strategy assumption we

construct a monotonic BNE solution to the global game. The intuition behind this

approach is that for sufficiently low signals of 𝑥𝑖, always foreclosing on the loan is a

strictly dominant strategy and that for sufficiently high signals of 𝑥𝑖, always rolling

over the loan is a strictly dominant strategy.

The BNE is characterized by two variables: �̂� determines the switching strategy

for each investor and 𝜃 is the proportion of investors in the range [0, 1] that decide to
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foreclose early. The value of these two variables are only dependent on the common

knowledge between all investors in the game, not the realization of 𝜃 for any game

that is played. In this sense, the solution of 𝜃 represents the lowest possible realized

value of 𝜃 the project can have and still be successful. Using two logical constraints

placed on the investors behavior we can solve for the BNE switching strategy and

minimum viable 𝜃.

First, there must exist a critical point where between the number of investors

calling in the loan early due to seeing a low signal and the number of investors that

see a signal in that range are equal to each other. This condition is the point where the

project has exactly the right amount of liquidity to fulfill early investor withdrawals.

𝑃 (𝑥𝑖 ≤ �̂�|𝜃) = 𝑤Φ(
√︀
𝛽(�̂�− 𝜃))

The status-quo is only abandoned if 𝜃 ≤ 𝜃, where 𝜃 becomes

𝜃 = 𝑤Φ(
√︀

𝛽(�̂�− 𝜃))

Second, there must exist an investor that upon receiving their signal is indifferent

(in the sense of maximizing their expected pay-off) between foreclosing on the loan

and continuing to invest in the project. Intuitively, this investor must exist since we

have continuum of private signals received by the investors. After normalizing the

payout of the project to be between 0 and 1, the expected payout of a successful

project becomes the probability that the project succeeds while the expected payout

of foreclosing is always 𝜆(𝜃).

𝑃 (𝜃 ≤ 𝜃|𝑥) = 1 − Φ((
√︀
𝛽 + 𝛼)(𝜃 − 𝛽

𝛽 + 𝛼
�̂�− 𝛼

𝛽 + 𝛼
𝑧)) = 𝜆(𝜃)

With these two equations we can solve for a �̂� that each investor will use to decide

to stay in the game or not as well as the number of investors that will decide to

foreclose early, 𝜃.

Φ−1(1 − 𝜆(𝜃))
√︀
𝛽 + 𝛼 = −𝛽�̂�− 𝛼𝑧 + (𝛽 + 𝛼)𝜃

19



−
√
𝛽 + 𝛼Φ−1(1 − 𝜆(𝜃)) − 𝜃(𝛽 + 𝛼) + 𝛼𝑧

𝛽
= �̂�

𝜃 = 𝑤Φ(

√
𝛽 + 𝛼√
𝛽

(𝛼𝑧 − Φ−1(1 − 𝜆(𝜃))) − 𝜃(
𝛽 + 𝛼√

𝛽
+ 1)) (1)

The only valid values of 𝜃 are between 0 and 1 and a bisection algorithm between

[0, 1] can be used to solve for valid values. As long as

𝛼√
𝛽
≤

√
2𝜋

𝑤

there is a unique solution to the above equation as found in the literature.

2.4 Limiting Behavior

2.4.1 Reserve Price Feedback

Here we discuss the limiting behavior in terms of feedback to the reserve price earned

by the investor for foreclosing on the project earlier.

By allowing the reserve payout price to depend on the proportion of investors

leaving, we introduce the concept of feedback based on the decision to foreclose or

stay in. In the final equilibrium equation we can see the direct impact of the reserve

price depending on the equilibrium of 𝜃.

Stabilizing feedback to the project owner occurs when 𝜆(𝜃 is monotonically de-

creasing as 𝜃 decreases. This means that compared to the static case of constant

𝜆, this feedback function will make the equilibrium solution of 𝜃 lower, so that the

project a priori has a higher chance of success. The intuition behind this behavior is

that as more investors decide to leave early, the pool of liquidity split between early

withdrawals gets smaller. This is acts as a deterrent to leaving early, as the reserve

price you will receive will be less while the expected value of staying in the project

increases. In the opposite case, where 𝜆(𝜃 is monotonically increasing as 𝜃 decreases,

provides positive feedback to the project owner and will increase the equilibrium
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solution of 𝜃.

This interplay between lambda and the health of the project can be intuitively

explained by looking how equilibrium values of 𝜃 over a range of 𝜆 and 𝑧. As 𝜆

increases for fixed 𝑧, the "cost", in terms of amount of money left on the table if the

project succeeds and the investor pulled out becomes less. Since its cheaper to leave

early, 𝜃 decreases as 𝜆 increases. In the case of fixed 𝜆 and increasing 𝑧, we have the

expected response of decreasing 𝜃, which means that as the prior distribution of 𝜃

increases, the lowest minimum viable 𝜃 decreases as pulling out of the project requires

a sufficiently higher negative signal to overcome the weight of the prior distribution

in the agents decision.

2.4.2 Static Limiting Behavior: Fundamental and Strategic

Uncertainty

Here we discuss how to categorize the changes in 𝜃 according to a change in the

fundamental value of 𝜃 or due to increased coordination risks.

We can categorize the risk that the investors face when choosing to foreclose or

roll-over their loan in terms of the information available to them. The reason behind

an investors choice in the global game can be due to the fundamental uncertainty in

the value of 𝜃, the state of the project and its probability of success, or in terms of

the the strategic uncertainty in not knowing what other investors will choose based

on their private signals.

When there is no fundamental uncertainty in the project for the investor it means

that the private information received completely reveals the state of the debtor

project. By letting 𝛽 approach infinity we see that the foreclosure pay-off of the

game determines the limiting behavior.

lim
𝛽→∞

𝜃 = 𝑤𝜆

For a global game with perfect information, upon receiving their private signals

investors will all make the same choice, as everyone will know the true realization of 𝜃.
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This gives the interpretation that the success of the project has a uniform expected

pay-off between 0 and 1. The rate of foreclosure therefore perfectly matches the

expected value of playing the game based on the pay out and not what other creditors

decide to do in the game. Therefore the 𝜃 distribution, the actual distribution of

outcomes in the game, only matters in the edge cases of where 𝜃 is larger than 1 or

smaller than 0.

The second interesting case is what occurs in the limit of of private information

while still having the unique equilibrium hold. If we look at a set of (𝛼, 𝛽) that

increases to infinity but always with the constraint that for a given constant 𝑐

lim
𝛽→∞,𝛼→∞

𝜃 𝑤ℎ𝑒𝑟𝑒
𝛼√
𝛽

= 𝑐 ≤
√

2𝜋

𝑤

Solving the global game equations with this constraint.

𝜃 = 𝑤Φ(𝑐(𝜃 − 𝑢 + Φ−1(𝜆)/𝑐))

This shows that even in the limit of no strategic uncertainty, in terms of knowing

what your fellow investors will do with their given private signal, the equilibrium is

still determined by the prior mean of the 𝜃 distribution as well as the foreclosure value

of the project.

2.4.3 Summary of Limiting Behavior

Here we provide two tables illustrating the effects that initial parameters have on the

equilibrium solution (𝜃, 𝑥). The first column represents the the effect on the equilib-

rium parameter as that initial condition for the given row approaches its minimum

possible value, while the second column is the effect on the equilibrium parameter as

the initial condition for the given row approaches its maximum possible value.

Debt Global Game Initial Value Effect on 𝜃
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Min Max

𝑧 = [−∞,∞] - +

𝛼 = [0,∞] [0, 1] 𝑀

𝛽 = [0,∞] [0, 1] 𝐹 *

𝜆 = [0, 1] - +

Debt Global Game Initial Value Effect on 𝑥

Min Max

𝑧 = [−∞,∞] - +

𝛼 = [0,∞] [−∞,∞] 𝑀

𝛽 = [0,∞] [−∞,∞] 𝐹 *

𝜆 = [0, 1] - +

Where in the case of diminishing 𝛼 or 𝛽, whether 𝜃 approaches [0, 1] (or 𝑥 ap-

proaching [−∞,∞]) is dependent on the initial conditions of 𝑢, 𝜆. 𝑀 represents that

multiple solutions become possible as 𝛼 grows larger, holding other variables constant.

𝐹 * represents some fixed value is approached in the limit.
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Chapter 3

Dynamic Model Equilibrium

We extend the static debt model to a dynamic debt model similar to the literature of

Dynamic Global Games of Regime Change [6], which consist of a series of global games

over time. Each subsequent round is modelled as global game but with additional

information that the project is still successful, altering the equilibrium dynamics and

solution set.

3.1 Overview

Extending the motivation from the static round, we allow investors to withdraw from

the project at a finite number of rounds before completion. Payouts in each round

represent the value of the project at that time, while we assume the investor only

cashes out of the project if they take the reserve price of a given round or stay until

project completion. We again assume that if a project has enough liquidity to survive

withdrawals that it is successful and all remaining investors are paid out in full.

The main difference of this model to the literature is the coordination risk is

in terms of a debt model instead of an attack model. This means that the payout

structure can now vary over time and that there is a finite number of rounds. The

interpretation of the model solution set is also interpreted backwards, taking 𝜃 as a

measure of risk in the project, so at the beginning of the dynamic game the investor

has the least information and is solving for a risk estimate of the riskiest part of the
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project. As time progresses, depending on the parameters of the dynamic game, the

project will get less riskier for the investors and as such should be able to survive

larger investor withdrawals.

Another addition to the standard model in the literature is allowing the reserve

price to be a function of the total number of investor withdrawals up that point. With

this it is possible to introduce positive or negative feedback into the dynamic global

game, which can model liquidity providing market makers or a withdrawal penalty

similar to a 𝑤 that worsens the health of the project upon large investor withdrawals.

3.2 Model Parameters

We expand the notation from the one round case to specify which round the game

is being played. There is a finite number of rounds denoted by 𝑡 = 1, 2, 3, ...𝑁 . The

prior normal distribution of 𝜃 is unchanged from the one round case, 𝑁(𝑧, 1
𝛼

). The

liquidity conversion cost, represented by 𝑤 in the one round case is assumed to be

constant throughout the global game and always in the range 0 < 𝑤 ≤ 1

Each round, every investor receives a noisy signal estimating the true value of the

liquidity on hand for the project that is independent of signals in given to the investor

in previous rounds and independent to the signal received by the other investors . We

denote the private noisy signal received by investor 𝑖 in round 𝑡 as 𝑛𝑖𝑡, which is

sampled as

𝑛𝑖𝑡 = 𝜃 + 𝑁(0,
1

𝜂𝑡
)

where 𝜂𝑡 is always positive, as new information only makes estimate of the state of

the debtor project more precise. We define 𝛽𝑡 as

𝛽𝑡 =
𝑡=𝑛∑︁
𝑛=1

𝜂𝑛

and note that for each round 𝑡, we the same multiplicity condition as the static

round case. Due to previous information, multiple solutions are still possible, but
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this multiplicity condition does reduce them.

𝛼√
𝛽𝑡

≤
√

2𝜋

𝑤
∀𝑡

At each round we will want to represent the best available private information

that an individual investor can use to make a decision, which we denote as 𝑥𝑖𝑡. Given

standard normal updating procedure we can solve for a general accumulated private

information metric 𝑥𝑡, which is the best available information at time 𝑡

𝑥𝑡 =
𝛽𝑡−1𝑥𝑡−1

𝛽𝑡

+ 𝑛𝑡
𝑛𝑡

𝛽𝑡

𝛽𝑡 = 𝛽𝑡−1 + 𝜂𝑡

Now we can specify a normal distribution distribution 𝑝𝑥𝑡|𝑥𝑡−1 that represents the best

estimate of 𝜃 given all previous rounds of signals.

𝑁(
𝛽𝑡−1𝑥𝑡−1

(𝛽𝑡 + 𝛼)
+

𝛼𝑧

(𝛽𝑡 + 𝛼)
,

1

(𝛽𝑡 + 𝛼)
)

This shows that for each round, given that the project is still viable, future information

regarding the project can be categorized as a sufficient statistic.

Similar to the one round case, there are three possible payout valuations in each

round 𝑡 for the investor. We assume that if an investor stays in the project, they do

not receive a payout that round and only receive a final payout when the project is

completed. The reserve price each round can vary based on the number of investors

leaving 𝐾*(𝜃1,2,3...𝑁). We assume once an investor has left the project he will not

return in the base model scenario. If the project fails the investor receives 𝐾*1,2,3...𝑁

while if the project has survived all withdrawal rounds a sum 𝐿 will be earned by

the investors still invested in the project. We assume any discount factors over time

are already incorporated into these values and normalize the payout each round to be

between 0 and 1 as in the static case. This produces a 𝜆(𝜃1,2,3...𝑁) time series which

helps determine whether investors leave at any point during the project.
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3.3 Notion of Equilibrium

Here we categorize the notion of equilibrium over multiple global game rounds. Since

the dynamic game has the possibility of multiple equilibria over time that cannot be

reduced with constraints on the initial conditions of the debt investment game, we

allow multiple characterizations of equilibrium conditions. At the beginning of each

period 𝑡 we denote whether the project still has enough liquidity on hand as 𝑃𝑡 = 1.

If the project during a round 𝑡 suffers from too many withdrawals and must terminate

early, we denote this with 𝑃𝑡 = 0. The options available to the investor each round

are 𝑎𝑖𝑡 = {0, 1} which denote whether the investor is staying in the project or leaving

early that round while 𝐴𝑡 = [0, 1] denotes the total number of investors that decided

to stay invested in the project.

Equilibrium in the dynamic game is characterized by a Perfect Bayesian Equilib-

rium during each round of the game. Every investor has a unique switching strategy

for each round 𝑡 denoted by 𝑎𝑡(𝑥𝑡) = [0, 1] with 𝑎𝑡 = 0 indicating the investor chose

to foreclose and 𝑎𝑡 = 1 the investor chose to roll over the loan. 𝑎𝑡 = (𝑎𝜏 )𝑡𝜏=1 denotes

a sequence of actions the investor took until period 𝑡. The switching rule 𝑥𝑖𝑡 are i.i.d

across periods conditional on 𝜃 thus any fully characterized strategy for the dynamic

global game depends on whether the regime made it to that round and each investors

private signal up to that point.

The switching rule each round uses 𝑝𝑡(𝜃; 𝑎𝑡) to denote the probability distribution

that the project fails round 𝑡 given all of the investors are using the same threshold

strategy 𝑎𝑡(𝑥𝑡) for that round. Let Ψ1(𝜃|𝑥1) be the c.d.f of the posterior beliefs for

the investors in period 1 and for 𝑡 ≥ 2, Ψ𝑡(𝜃|𝑥𝑡; 𝑎
𝑡−1) be the c.d.f of the posterior

beliefs conditional that the project has not failed, which must be true past round

one. We will later see this conditional knowledge introduces multiple equilibriums

into the dynamic game.

Using this notation we characterize the equilibrium strategies of the dynamic game

𝑎∞ if for every 𝑡
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𝑎1(𝑥1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎=[0,1](𝑎[

∫︁
𝑝1(𝜃; 𝑎1)𝑑Ψ1(𝜃|𝑥1)] + [1 − 𝑎]𝜆1)

𝑎𝑡(𝑥𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎=[0,1](𝑎[

∫︁
𝑝𝑡(𝜃; 𝑎𝑡)𝑑Ψ𝑡(𝜃|𝑥𝑡; 𝑎

𝑡−1] + [1 − 𝑎]𝜆𝑡

In the dynamic game, the first round plays out exactly the same as the static game

for each investor. Following periods can be characterized by a sequence (𝑥*
𝑡 , 𝜃

*
𝑡 )

∞
𝑡=1)

following a valid switching rule sequence 𝑎𝑡.

Valid switching rule sequences can be explained by the notion of a monotone

equilibrium set of strategies for the players. These strategies are monotonic because

once a proportion of investors choose to foreclose on the project but the project

continues, all investors know that the project’s health is at least 𝜃𝑡−1. All further

investor withdrawals will only occur if private information induces more than 𝜃𝑡−1

proportion of the investors to withdraw their money early.

Formally, the first round solution set of the dynamic global game follows from the

static case, producing a solution set (𝑥1, 𝜃1). We categorize a valid solution set for all

times 𝑡 as set of thresholds that produce a monotone equilibrium for a given sequence

(𝑥*
𝑡 , 𝜃

*
𝑡 )

∞
𝑡=1). A monotone equilibrium 𝜃*𝑡 = (0, 1) and 𝜃*𝑡 ≤ 𝜃*𝑡−1 for all 𝑡 ≥ 2 such that

1. An investor only forecloses early on the project on any round 𝑡 if 𝑥𝑡 < 𝑥*
𝑡

2. The project is in place at time 𝑡 ≥ 2 iff 𝜃*𝑡 < 𝜃*𝑡−1, the number of investors

staying in is larger than the minimum amount of liquidity in the project.

For the project to be successful at each subsequent round, the cut-off for what the

agents assume to be the valid 𝜃*𝑡 must be non increasing, as the cash on hand as the

project progresses should only decrease. In the subsequent sections we describe how

to find a monotonic equilibrium solution set for the dynamic game.
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3.4 Equilibrium Constraint Equations

The first round of the dynamic case plays out the same as the one round game. For

subsequent rounds, the two equations that determine whether the debt funding will

be valid at each round are similar as the static case, with the added constraint that

𝜃*𝑡 must be non increasing. Unlike the first round case, there may exist a scenario

where after the project succeeds the first round, no investor receives new private

information that would ever change their mind to foreclose on the project early. This

makes (𝜃*𝑡 = 0, 𝑥*
𝑡 = −∞) a possible valid solution set for any time 𝑡 > 1.

The first condition, that there must exist a critical point for a given (𝜃*𝑡 , 𝑥
*
𝑡 ) where

the proportion of investors that recall the loan early must match the number of

investors who received a signal to leave early. This equation’s dynamics are unchanged

from the one round case.

𝜃*𝑡 = 𝑤Φ(
√︀

𝛽𝑡(𝑥
*
𝑡 − 𝜃*𝑡 )

The second equation, that there must exist an investor that upon receiving their

signal is indifferent between rolling over the loan and foreclosing, exists with the

added condition that 𝜃*𝑡 < 𝜃*𝑡−1 if the investors choose to withdraw.

𝑃 (𝜃*𝑡 ≥ 𝜃𝑡|𝑥𝑡, 𝜃𝑡 < 𝜃*𝑡−1) = 𝜆𝑡

𝑃 (𝜃*𝑡−1 ≥ 𝜃*𝑡 ≥ 𝜃𝑡|𝑥𝑡)

𝑃 (𝜃*𝑡−1 ≥ 𝜃𝑡|𝑥𝑡)
= 𝜆𝑡

1 − 𝑃 (𝜃*𝑡−1 ≤ 𝜃*𝑡 |𝑥𝑡) − 𝑃 (𝜃𝑡 ≥ 𝜃*𝑡 |𝑥𝑡)

1 − 𝑃 (𝜃*𝑡−1 ≤ 𝜃*𝑡 |𝑥𝑡)
= 𝜆𝑡

1 − 1 − 𝑃 (𝜃𝑡 ≤ 𝜃*𝑡 |𝑥𝑡)

1 − 𝑃 (𝜃*𝑡−1 ≤ 𝜃*𝑡 |𝑥𝑡)
= 𝜆𝑡

1 −
Φ(

√
𝛽𝑡 + 𝛼( 𝛽𝑡

𝛽𝑡+𝛼
𝑥*
𝑡 + 𝛼

𝛽𝑡+𝛼
𝑧 − 𝜃*𝑡 ))

Φ(
√
𝛽𝑡 + 𝛼( 𝛽𝑡

𝛽𝑡+𝛼
𝑥*
𝑡 + 𝛼

𝛽𝑡+𝛼
𝑧 − 𝜃*𝑡−1))

= 𝜆𝑡

30



We introduce shorthand notation for analyzing the behavior of the dynamic game

after round one.

𝑢(𝑥, 𝜃*, 𝜃*−1, 𝛽, 𝛼, 𝑧) = 1 −
Φ(

√
𝛽𝑡 + 𝛼( 𝛽𝑡

𝛽𝑡+𝛼
𝑥*
𝑡 + 𝛼

𝛽𝑡+𝛼
𝑧 − 𝜃*𝑡 ))

Φ(
√
𝛽𝑡 + 𝛼( 𝛽𝑡

𝛽𝑡+𝛼
𝑥*
𝑡 + 𝛼

𝛽𝑡+𝛼
𝑧 − 𝜃*𝑡−1))

− 𝜆𝑡 𝑖𝑓 𝜃* > 𝜃*−1

𝑢(𝑥, 𝜃*, 𝜃*−1, 𝛽, 𝛼, 𝑧) = −𝜆𝑡 𝑖𝑓 𝜃* ≤ 𝜃*−1

𝑢(𝑥, 𝜃*, 𝜃*−1, 𝛽, 𝛼, 𝑧) represents the marginal pay-off that an investor 𝑖 receives for any

given round 𝑡 given the previous information that the project is still successful.

𝑋(𝜃*, 𝛽) = 𝜃* +
1√
𝛽

Φ−1(𝜃*)

𝑋(𝜃*, 𝛽) represents the critical point for a round where the number of investors pulling

their money from the project equal the number of investors receiving signals to leave.

𝑈(𝑋(𝜃*, 𝛽), 𝜃*, 𝜃*−1, 𝛽, 𝛼, 𝑧) = 𝑢(𝑥, 𝜃*, 𝜃*−1, 𝛽, 𝛼, 𝑧) 𝑓𝑜𝑟 𝜃* 𝑖𝑛 (0, 1)

𝑈(𝑥, 𝜃*, 𝜃*−1, 𝛽, 𝛼, 𝑧) = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑈(𝑥, 𝜃*, 𝜃*−1, 𝛽, 𝛼, 𝑧) = 0 for some ( ˆ(𝜃𝑡), �̂�𝑡) represents a solution set that satisfies both

of the constraints outlined in the constraints section.

Continuing the notion of monotone equilibrium, a sequence ( ˆ(𝜃𝑡), �̂�𝑡)
𝑡=𝑁
𝑡=1 is a mono-

tone equilibrium for a given action set (𝑎𝑡([0, 1]))𝑡=𝑁
𝑡=1 if the following conditions hold:

1) During every round 𝑡 of the global game, the investor chooses to stay in the

project, 𝑎𝑡 = 1, if their private signal is above the threshold signal for that round,

𝑥𝑡 > 𝑥*
𝑡 . Similarly, the investor chooses to leave, 𝑎𝑡 = 1, if their private signal is below

the threshold signal for that round, 𝑥𝑡 < 𝑥*
𝑡 .

2) The first round solution set is the solution set to the static round game. This

is the 𝜃*1 that solves 𝑈(𝜃*1, 𝜃
*
−1, 𝛽1, 𝛼, 𝑧) = 0 and 𝑥*

𝑡 = 𝑋(𝜃*1, 𝛽1)
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3) For all subsequent rounds there are two scenarios. The first is that there is

no new 𝜃*𝑡 solution to 𝑈(𝑥𝑡, 𝜃
*
𝑡 , 𝜃

*
𝑡−1, 𝛽𝑡, 𝛼, 𝑧) = 0 and the equilibrium solution for the

next round is 𝜃*𝑡 = 𝜃*𝑡−1 and 𝑥𝑡 = ∞. The second is there exists a new 0 < 𝜃𝑡 < 𝜃𝑡−1

that is a solution to 𝑈(𝑥𝑡, 𝜃
*
𝑡 , 𝜃

*
𝑡−1, 𝛽𝑡, 𝛼, 𝑧) = 0 and 𝑥*

𝑡 = 𝑋(𝜃*𝑡 , 𝛽𝑡)

This formulation of the monotone equilibrium categorizes the actions that an

individual investor takes each round given a valid solution set to the dynamic global

game. Before we explain how this equilibrium can be constructed, we note some key

properties 𝑈(𝑥𝑡, 𝜃
*
𝑡 , 𝜃

*
𝑡−1, 𝛽𝑡, 𝛼, 𝑧) used to analyze the solution set.

There always exist a solution set to the dynamic game. In the simplest case, there

is always a solution to the first round since it is static global game. In all subsequent

rounds, if no solution to 𝑈(𝑥𝑡, 𝜃
*
𝑡 , 𝜃

*
𝑡−1, 𝛽𝑡, 𝛼, 𝑧) = 0 can be found, then the initial 𝜃*1

carries over to all subsequent rounds and the threshold for switching stays at +∞.

In cases where there will be different values of 𝜃𝑡 than the initial round, the new

values will always be monotonically decreasing but above 0. This behavior repre-

sents that the project, once under way, can only get less risky as time progresses,

which means that less of a liquidity buffer should be needed for completion. This is

represented in the constraint equations by the truncation of the probability in the

indifference constraint.

Now we categorize 𝑈(𝑥𝑡, 𝜃
*
𝑡 , 𝜃

*
𝑡−1, 𝛽𝑡, 𝛼, 𝑧) as a non-monotonic function that has

three different value regimes. For values in the range 𝜃*𝑡 = [𝜃*𝑡−1, 1] the function

takes the constant negative value −𝜆𝑡. This is due to a a combination of the trun-

cation of the previous rounds beliefs making sure no new value of 𝜃 can be found

as well as the indifference constraint defaulting to the opposite of 𝜆𝑡. A 𝜃*𝑡 < 𝜃*𝑡−1,

𝑈(𝑥𝑡, 𝜃
*
𝑡 , 𝜃

*
𝑡−1, 𝛽𝑡, 𝛼, 𝑧) begins to increase. This can be seen from the decreasing nu-

merator in 𝑈() that is not initially counterbalanced by the lower threshold in 𝑥*
𝑡 .

The intuition being that a lower threshold can only occur if more agents switch. As

𝜃*𝑡 → 0 however, this behavior switches and starts to approach the marginal pay-off,

1−𝜆𝑡. This can be seen that the numerator of the indifference constraint approaches

0 faster for small values of 𝑥*
𝑡 than the denominator since 𝜃*𝑡 < 𝜃*𝑡𝑡−1. Combining

these observations we note that 𝑈() will have a single peak and that this peak may
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or may not be above 0 or occur in the range [0, 𝜃*𝑡−1].

The last observation on 𝑈() we observe is in the limit of perfect information.

While we only model scenarios with a finite number of rounds, we can allow almost

perfect private information in the last round of the global game.

𝑙𝑖𝑚𝛽→∞𝑈(𝜃*𝑁 , 𝜃
*
𝑁−1, 𝛽𝑡, 𝛼, 𝑧) = 1 − 𝜆𝑁 − 𝜃*𝑁

We now let 1−𝜆𝑁 act as a lower bound to the final value that 𝜃𝑡 can take in dynamic

global game, which can only occur when investors receive almost perfect information

about the underlying state of the project. This means given a 𝜃*𝑡−1 > 1 − 𝜆𝑁 with

a large enough new information signal 𝛽𝑡, a new equilibrium solution set could be

reached. Similarly the converse, if 𝜃*𝑡−1 < 1 − 𝜆𝑁 , no amount of new information

received by an investor can induce a new solution set.

3.5 Constructing an Equilibrium

To construct an equilibrium for any given dynamic game, we first solve the one round

case. Given this solution set and the above notation we outline an iterative algorithm

to compute valid solution sets.

1. Start with 𝜃𝑡−1 and a project that is still viable at time 𝑡.

2. Let 𝑋𝑡(𝜃𝑡, 𝛽𝑡) be a function that returns the value of 𝑥𝑡 that exists to satisfy

the first critical point constraint, using 𝜃𝑡 as a free parameter.

3. Use 𝑢(𝑥𝑡, 𝜃𝑡, 𝜃𝑡−1, 𝛽𝑡, 𝛼, 𝑧) to calculate the value of the marginal indifference con-

straint for a given value of 𝜃𝑡. We can now calculate a value for 𝑈(𝑥𝑡, 𝜃𝑡, 𝜃𝑡−1, 𝛽𝑡, 𝛼, 𝑧)

by using 𝑋𝑡(𝜃𝑡, 𝛽𝑡) to get the only satisfactory value of 𝑥𝑡 that will satisfy the

critical point constraint for a given value of 𝜃𝑡.

4. Find 𝑈* = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑈(𝑋𝑡(𝜃𝑡, 𝛽𝑡), 𝜃𝑡, 𝜃𝑡−1, 𝛽𝑡, 𝛼, 𝑧)) 𝑖𝑛 [0, 𝜃𝑡−1].

5. If 𝑈* < 0, this round admits no new value of 𝜃 and therefore no investors pull

out money this round, 𝜃𝑡 = 𝜃𝑡−1. This is because 𝑈(...) is a concave function.
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6. If 𝑈* > 0 there could be valid solutions. Check the endpoints of the range

for 𝑈(𝑋𝑡(𝜃𝑡 = 0, 𝛽𝑡), 𝜃𝑡 = 0, 𝜃𝑡−1, 𝛽𝑡, 𝛼, 𝑧) < 0 and 𝑈(𝑋𝑡(𝜃𝑡 = 𝜃𝑡−1, 𝛽𝑡), 𝜃𝑡 =

𝜃𝑡−1, 𝜃𝑡−1, 𝛽𝑡, 𝛼, 𝑧) < 0 and then use a bisection search algorithm to find new

valid values of 𝜃𝑡

Each round 𝑡 when solving for 𝑈(𝑥𝑡, 𝜃𝑡, 𝜃𝑡−1, 𝛽𝑡, 𝛼, 𝑧) there are three different sce-

narios. 𝑈(𝑥𝑡, 𝜃𝑡, 𝜃𝑡−1, 𝛽𝑡, 𝛼, 𝑧) can admit no solution so that we use the previous 𝜃𝑡−1

with no new investors foreclosing on the project. The project can admit one solution

to 𝑈(𝑥𝑡, 𝜃𝑡, 𝜃𝑡−1, 𝛽𝑡, 𝛼, 𝑧). In the third case 𝑈(𝑥𝑡, 𝜃𝑡, 𝜃𝑡−1, 𝛽𝑡, 𝛼, 𝑧) can admit two solu-

tions for round 𝑡 which we denote as 𝜃𝐿, 𝜃𝐻 representing the low and high solution

for the new 𝜃𝑡 respectively.

There can be up to two solutions for each round after the first, producing up to

2𝑁−1 different valid solutions for a multi-period game. We observe that solution sets

over time can be categorized into two different regimes, a low solution set and a high

solution set. Once a low solution set has been played in a round of the dynamic game,

a high solution set for the remaining rounds can never occur again At any point there

is a high solution set, with enough additional private information in future rounds

its possible to remain on the high solution set path but also at any point drop down

to the low solution path. If there is not enough new private information, the last

round status quo can stay in place so no new path, high or low is taken. Using this

information we reduce the total number of possible paths from being exponential in

𝑁 to being upper bounded by 2𝑁 − 1 in the worst case. When analyzing a given

dynamic global game with multiple solution sets, we will only look at the best case

path, which is the highest time series value of 𝜃𝑡 over time.

3.6 Equilibrium Behavior

Here we summarize the type of monotone equilibrium that occurs in the dynamic

global game. We start by observing the behavior that the mean of the prior distribu-

tion of the success of the project, 𝑧, has on the equilibrium values of 𝜃.

Sufficiently large values of 𝑧 are interpreted by investors in the project that there
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is little chance that the project will fail. If the project survives withdrawals the first

round, on all subsequent rounds the new information gained in the private signals

of the investors is not enough to discount the the large value of 𝑧 combined with

knowledge that the project has survived the first round. While in future rounds there

may be perfect information regarding the state of the project, no investor will leave

the project given that they know that all other investors stayed in with the project the

first round. This means that for sufficiently high enough 𝑧 there is a unique monotone

equilibrium solution set no matter the number of rounds or new information.

Since we are only looking at a finite number of rounds, there may not be enough

new information gained in these rounds to find a second monotone equilibrium. In

this case, 𝑧 < 𝑧, but there is only still one unique monotone equilibrium. We denote

this region with 𝑧

In the final case if 𝑧 < 𝑧 there exist multiple monotone equilibrium within the

given finite round. We therefore categorize 𝑧 for a given global game with parameters

(𝑁, 𝛽𝑚𝑎𝑥) as being a part of these three above regimes. The final observation is that

when 𝜆𝑡 < 1/2 for all 𝑡, 𝑧 = 𝑧 and there will either be multiple solution sets the

second round or none at all.
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Chapter 4

Dynamic Game Extensions

In this section we explore extensions to the base dynamic game through enhanced

information structures. We begin with the base dynamic model and add additional

parameters to the set of equilibrium equations to incorporate public information,

public shocks to the health of the project, feedback in terms of knowledge of previous

rounds and feedback in terms of the reserve price of the project. Each section begins

with a motivating example and an explanation how to update base dynamic model

procedure to find a monotone equilibrium. Each section concludes with remarks on

the equilibrium behavior of the expanded model. All of these additional information

structures can be made independently of each other besides the feedback of the reserve

price, which requires private or public feedback of the value of 𝜃 in previous rounds.

4.1 Public Information

Public information in global games is a natural first extension studied in the literature

with currency attacks over multiple rounds [6] and in idealized two round global

games [2]. We continue this here by extending our debt model to include public

information that is shared between all participants. This public information can be

thought of as a quarterly earnings report on the status of the project or some other

periodic information that over time paints a clearer picture of how the company

operates. This additional information gained over time does not reflect a change in
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the projects fundamentals, but better knowledge concerning the prior distribution

that the project liquidity was sampled from. Additional information concerning a

change in the underlying liquidity will be treated as a "shock" to the project, in

terms of a sudden change of financial straights, will be explored in the next section.

4.1.1 Model Parameters

After the first round we assume all investors receive a noisy public signal of the true

𝜃 in the form of

𝑧𝑡 = 𝜃 + 𝑁(0,
1

𝜂𝑧𝑡
)

where 𝜂𝑡 is always positive, as new information only makes estimate of the state of the

debtor project more precise. Similarly this source of noise is IID between round and

IID from the noise given in the private investor estimate of 𝜃 between all investors.

We use standard normal updating procedure to solve for (𝑧𝑡, 𝛼𝑡), the best available

public information of the debtor at time 𝑡 based on the prior information of the debtor

and all public announcements.

𝑧𝑡 =
𝛼𝑡−1𝑧𝑡−1

𝛼𝑡

+ 𝜂𝑧𝑡
𝑧𝑡
𝛼𝑡

𝛼𝑡 = 𝛼𝑡−1 + 𝜂𝑧𝑡

The simple interpretation of the public signal each round is a shared update to the

prior distribution of 𝜃 between all investors. When solving for a monotone equilibrium

this added information is only used in the indifference constraint equation, represented

by 𝑧𝑡 in 𝑢(𝑥, 𝜃*𝑡 , 𝜃
*
𝑡−1, 𝛽𝑡, 𝛼𝑡, 𝑧𝑡). Each round 𝑧𝑡 is path dependant on the realized noise

when a public signal is sampled each round.
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4.1.2 Equilibrium Behavior: Positive Public Information Can

Cause Investor Withdrawals

The most significant change with public information s not that investor withdrawals

on any round become possible regardless of 𝜃 or 𝛽 if the public information increases

precision 𝛼 and is of a large enough negative value 𝑧𝑡. This model now captures some

of the outside uncertainty that can occur when noisy public signals are received by

all participants, even if the true value is well above the public information value.

A not intuitive result of including public information shocks is that positive news

of the state of project, or an update 𝑧𝑡 > 𝑧𝑡−1, is not always beneficial. Intuitively, we

can see that if a project’s prior distribution of success is sampled from an expected

value positive but large variance distribution, knowledge that the project has survived

previous rounds of investors leaving is more valuable to the investor. Upon a public

information announcement the expected prior distribution can be larger than the pre-

vious round but with less variance in possible project outcomes, making the previous

knowledge of surviving investor withdrawals less valuable versus the investors private

signal.

This behavior occurs in the indifference constraint 𝑢(𝑥, 𝜃*𝑡 , 𝜃
*
𝑡−1, 𝛽𝑡, 𝛼𝑡, 𝑧𝑡). Increas-

ing 𝛼 has the effect of increasing the weight of public information versus the agents

private signal, as well as making the knowledge of the distribution of 𝜃 more precise.

The cases where this information decreases 𝜃𝑡 is best compared with the solution set

(𝜃*𝑡�𝑝
, 𝑥*

𝑡�𝑝
when there is no public information. In the case there is public information,

and the new public information is 𝑧𝑡 > 𝑧𝑡�𝑝 but also 𝑧𝑡 < 𝑥*
𝑡�𝑝

, which indicates that

the private information is not as positive as the public information concerning the

project. As long as the increase in 𝛼𝑡 > 𝛼𝑡−1 is small enough, the weight of the

negative private information overshadows the increase in public information.
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4.2 Public Shocks

In this section we introduce the concept of a public shock the project’s fundamentals.

The shock, negative or positive, can occur any time after the the first round and its

exact affect is known to all investors of the project. The possible values of 𝜃𝑡, 𝑥𝑡 are

directly altered by these shocks, since there is no uncertainty in the shock value. The

ability to introduce shocks into the model help incorporate real world scenarios where

external events to the project, such as government regulation or natural disasters,

provide a noticeable shift in the project fundamentals.

4.2.1 Model Parameters

We modify our equilibrium solution set, {𝜃*𝑡 , 𝑥*
𝑡}𝑡=𝑁

𝑡=1 , to include a dependency on a

series of external shocks over the dynamic global game rounds which we denote by

(ℎ1, ℎ2, ℎ3, ..., ℎ𝑁). These external shocks are independent of the value of 𝜃 and i.i.d

every round. When calculating a new equilibrium, these shocks directly influence the

value of 𝜃 when computing both equilibrium constraints. Due to this dependency, we

each of the solution set variables are a function of the shock that occurred in that

round, {𝜃*𝑡 (ℎ𝑡), 𝑥
*
𝑡 (ℎ𝑡)}𝑡=𝑁

𝑡=1

To determine and construct a monotone equilibrium, we modify the inputs to

our shorthand notion for finding an equilibrium. The indifference constraint becomes

𝑢(𝑥𝑡, 𝜃
*
𝑡 + ℎ𝑡, 𝜃

*
−1 + ℎ𝑡, 𝛽𝑡, 𝛼, 𝑧𝑡 + ℎ𝑡), where we add the current round shock to 𝜃*𝑡−1

to represent that the previous rounds threshold of the state of the system is affected

by the current shock since historical shocks do not carry over into the future. The

critical point constraint becomes 𝑋(𝜃*𝑡 +ℎ𝑡, 𝛽𝑡). Since shocks are linear in their effect

on 𝜃*𝑡 , merely using the modified 𝜃*𝑡 + ℎ𝑡 in the equilibrium constraints and adjusting

the prior mean of the distribution is enough to solve for a new equilibrium.
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4.2.2 Equilibrium Behavior: Multiple Solution Sets Are Al-

ways Possible

Public shock to fundamentals do not affect how individual investors process private

or public information regarding the state of the project, the shocks only provide

a momentary shift to the equilibrium. This lack of new information to process is

important, as previous results in the dynamic model equilibrium behavior are still

valid. However, the case of only a single monotone equilibrium for a set of parameters

no longer holds as a future negative shock could cause a loss of confidence in the

project and induce investor withdrawals that would not have occurred without the

shock, similar to the public information case. One can also imagine the opposite

case, where investor withdrawals are occurring every round but a large positive shock

occurs and convinces the remaining investors to stay invested in the project.

We contrast these results with Frankel, which show how a continuum of investors

choosing between projects to invest in will have multiple equilibria solutions [12]. The

introduction of shocks in this case however help differentiate possible investments to

investors and resolves the indeterminacy of multiple equilibriums in his model.

4.3 Private and Public Feedback

The only information from the actions of individual investors in previous rounds

received is whether the project is still viable. This information is manifested in

the monotonically decreasing 𝜃 as the rounds progress, as well as the conditional

probability in the indifference constraint after round one. In this section, we allow

investors to learn a noisy estimate of how many investors chose to leave the project

and take the reserve price. This information can be distributed to each investor or

can be a public signal shared among all investors.

This feedback mechanism introduces a path dependency on whether the noisy

feedback in the beginning of the global game is positive or negative. The resulting

herd behavior was initially studied in Banerjee [7] and we elaborate on the effects
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that this extra information has in terms of the sensitivity of the system to public

information shocks.

4.3.1 Model Parameters

To incorporate previous information into the current agents’ beliefs about the project

we must make sure that the normal information structure is preserved. Dasgupta

provides a method to incorporate this information in a global games model over

multiple periods [9]. We use the same approach here in updating our dynamic model.

�̂�𝑖𝑡 = 𝑆(𝜃𝑡−1,Ξ𝑖𝑡) and 𝑍𝑡 = 𝑆(𝜃𝑡−1, 𝜉𝑖𝑡)

Ξ𝑖𝑡 = 𝑁(0,
1

𝛾𝑥
𝑡

) 𝜉𝑖𝑡 = 𝑁(0,
1

𝛾𝑧
𝑡

)

𝑆(𝜃, 𝑣) = Φ−1(𝜃) + 𝑣 for 𝜃 in (0, 1)

If there are no investor withdrawals the previous round, there is no private or

public signal distributed to investors. If there is new information, it can never reveal

the exact number of investors leaving the previous round, or the exact value of 𝜃

would be revealed to the participants and the global game aspect would be over

and we would settle into an indeterminate Nash equilibrium. We keep the sufficient

statistic property of the investors estimate of private and public information by taking

the inverse normal of the value (𝜃 = (0, 1) so this is always valid) and adding IID

noise.

Now we outline how each investor updates their private and public information

with these feedback signals over time.

𝑥𝑡 =
𝛽𝑡−1𝑥𝑡−1

𝛽𝑡

+ �̃�𝑡
𝑛𝑡

𝛽𝑡

+ 1𝑡−1
𝛽𝑡−1𝛾

𝑥
𝑡

𝛽𝑡

(𝑥*
𝑡−1 −

Ξ𝑖𝑡√︀
𝛽𝑡−1

)
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𝑧𝑡 =
𝛼𝑡−1𝑧𝑡−1

𝛼𝑡

+ 𝑧𝑡
𝑛𝑧
𝑡

𝛼𝑡

+ 1𝑡−1
𝛽𝑡−1𝛾

𝑧
𝑡

𝛽𝑡

(𝑥*
𝑡−1 −

𝜉𝑖𝑡√︀
𝛽𝑡−1

)

𝛽𝑡 = 𝛽𝑡−1 + 𝑛𝑥
𝑡 + 1𝑡−1𝛽𝑡−1𝛾

𝑥
𝑡

𝛼𝑡 = 𝛼𝑡−1 + 𝑛𝑧
𝑡 + 1𝑡−1𝛽𝑡−1𝛾

𝑧
𝑡

Where 1𝑡−1 is an indicator function signifying whether there were investor with-

drawals from the project the previous round. While (𝑥𝑡, 𝑧𝑡, 𝛼𝑡, 𝛽𝑡) retain their normal

distributions, their values are now dependant on the actions of previous rounds, mak-

ing each equilibrium solution path dependant.

4.3.2 Equilibrium Behavior: Increased Sensitivity to Public

Shocks

We compare a dynamic game with and without private feedback and note the differ-

ences in equilibrium behavior. The private feedback’s the main effect is to provide

more private information to the investor over time, allowing more opportunities for

them to withdraw from the project if they become confident that the project is doing

badly. In this sense, the private feedback is almost equivalent to a dynamic global

game without feedback but with better precision in the private information for in-

vestors over time.

The herding effect is most prominent when we introduce public feedback, since

this affects the precision as well as the mean of the prior distribution. To illustrate,

imagine there is just one public signal after the first round. If this signal is sufficiently

positive, no further withdrawals can occur as the positive signal will prevent investor

withdrawals the second round and will have positive feedback into future rounds

increasing the positive signals of the health of the project. In the opposite scenario,

more investor’s may leave upon a bad signal, which leads to even more investors

leaving on the second round given the outflow on the first round, causing a cascading
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effect based on a spurious bad signal the first round.

In the same way that the cascading effect occurs when an extremely bad or good

public signal is seen, a public shock has the same effect on the outcome of the dynamic

global game. Given a dynamic global game subject to shocks with feedback versus

one without it, the variance of possible outcomes, good and bad, will be larger in the

model with feedback due to the cascading effect described above.

4.4 Reserve Price Feedback

In this section, we introduce feedback into the reserve price received by an investor

that leaves the project before completion. This feedback allows us to model outside

forces that could affect the project’s ability to tap into its liquidity pool. We imagine

the scenario, good for the project and its investors, that there is an robust market for

the intermediate goods produced by the project. This would allow the project easy

access to liquidate its goods on any round with a large investor withdrawal. We can

also imagine the opposite, a market scarce of resell opportunity, where the effects of

large investor withdrawals from the project are magnified due to poor liquidity. Both

of these examined in the equilibrium behavior section.

4.4.1 Model Parameters

Any reserve price feedback mechanism must be monotonically increasing or decreasing

over (0, 1), the range of valid 𝜃 values to guarantee that there is a uniquely dominant

BNE switching strategy. We denote this reserve price function as in the static case

𝐾*(𝜃𝑡), which we assume has the same behavior to investor outflows on every round.

The normalized reserve price for any payout becomes 𝜆(𝜃𝑡) = (𝐾*(𝜃𝑡) −𝐾*𝑡)/(𝐿𝑡 −

𝐾*𝑡).

This update only affects the indifference constraint when solving for a possible

equilibrium solution set 𝑢(𝑥𝑡, 𝜃
*
𝑡 + ℎ𝑡, 𝜃

*
−1 + ℎ𝑡, 𝛽𝑡, 𝛼, 𝑧𝑡 + ℎ𝑡) and indirectly effects the

equilibrium switching value for any round. For the investors to calculate the reserve

price for any given round would require the exact value of 𝜃𝑡, which means if an exact
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reserve price was known by the investors it would be equivalent to knowing the true

value of 𝜃. To prevent this from occurring we only allow reserve price feedback to

dynamic global games where there is private or/and public information about the size

of past investor withdrawals, which serves as an estimate of the reserve signal that

an investor would receive on any given round.

4.4.2 Equilibrium Behavior: Positive and Negative Feedback

Possible

These reinforcing feedback effects are studied in a two round context for risky assets

by Morris and Shin [19]. The results here differ in that by adding multiple rounds,

negative feedback does not make the equilibrium worse on every given round, only

those with withdrawals. There are scenarios where a large withdrawal from the project

and knowledge that the project survived the withdrawal makes the project more

resilient to negative information in the following rounds. This contrasts with the

feedback effects for risky assets and the negative feedback spiral that can occur with

small but consistent withdrawals over time.
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Chapter 5

Model Interpretation and Data

Analysis

In this section we outline how to use the dynamic global game model structure to price

bond yields. We explain how the dynamic global game model allows us to incorporate

coordination risk between the bond holders decision to foreclose on the project as well

as the inherit risk in lending money to a venture that might not succeed.

5.1 Static Bond Pricing Model

To compare and contrast bond prices produced from the static global game model, we

price bonds as if there was one creditor that will realize the the project if 𝜃 > 0 or take

the reserve price if 𝜃 < 0, known as the Merton Model [16]. The model also produces

the same results if formulated as a multitude of creditors behaving independently in

choosing to stay in the project. In this case, there is no coordination risk and the

yield of the bond corresponds directly to the probability of failure of the project.

A quick review of how bonds are typically quoted and priced. The par value of a

bond is how much is returned to the investor at the end of the bond term. The bond

yield is typically the yearly interest accrued by the bond divided by its par value.

Finally, the bond price is the final discounted value that an investor would receive

over the lifetime of the bond. We are interested in the bond yield as a measure of
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value and riskiness in lending money.

𝑌 𝑖𝑒𝑙𝑑 =
𝑃𝑎𝑟 − 𝑃𝑟𝑖𝑐𝑒

𝑃𝑟𝑖𝑐𝑒

To price a bond in the Merton model, we assume common knowledge of a prior

distribution of the bond’s ability to repay itself, equal to the 𝑁(𝑢, 1/𝛼) in the global

games model. The health of a company, or 𝜃, is sampled from this prior distribution

and the 𝑃 (𝜃 < 0) = 𝑌 𝑖𝑒𝑙𝑑. With perfect coordination between the investors in the

bond, the creditors would only try to foreclose on the company if they believe the

company is going to fail for sure. This contrasts to the global game solution, where

𝜃 > 0 introduces coordination risk to the lenders, increasing bond yields. We illustrate

this with an example. In the case of an ex ante mean 𝑢 = 2, 𝛼 = 1 we can calculate

the yield as

Φ(
√
𝛼(𝜃𝑖 − 𝑢)) = Φ(−2) ≈ .023

In the global games approach, we allow coordination risk, which introduces a

higher 𝜃 threshold when calculating the bond yield. To do so, we have some prior

values for the global game model,

𝑧 = 1, 𝜆 = .5

and can now solve for the equilibrium value of 𝜃 which will be used to calculate a

corresponding bond yield of

Φ(
√
𝛼(𝜃𝑖 − 𝑢)) = Φ(.212𝑢− 2) ≈ .039

which is higher than the Merton model because of the added coordination risk

that is priced in.
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5.2 Dynamic Bond Pricing Model

We extend the bond pricing model introduced in the static case to the multiple period

case. Here, we interpret a valid solution set of 𝜃𝑡 as a yield curve computed from the

longest dated bond. The first 𝜃1 represents the bond price for the farthest dated yield

curve from the end of the project and we would expected this to have the highest

yield as the investors have the most uncertainty regarding the outcome of the project.

As 𝜃*𝑡 ≤ 𝜃*𝑡−1 holds for all subsequent 𝑡, as the game progresses 𝜃𝑡 is decreasing which

means that the bond yields are getting cheaper due to the passage of time and that

more information is known of the riskiness of the project. Even in the case of no

new private information, the passage of time should decrease the price of the bond as

there is less inherent risk, which matches the behavior of the 𝜃 equilibrium equations

[11]. This comparison is not perfect as there are solutions where a lowest 𝜃* is found

on the first round or in a round before the end of the game and no other investor

withdrawals occur. In these cases it is important that the prior health of the project

is uncertain enough to introduce possible withdrawals in the future as well as 𝛽 over

time increases enough to allow some investors to be confident that they should leave.

Next, within the context of the dynamic bond pricing model we examine what

the ideal parameters and information structure would be for the project to maximize

its chance of success. The goal of the project owner and the investors that do not

foreclose are to maximize the chance of the project getting to completion and therefore

maximizing 𝜃𝑛 over the horizon of the game [3].

For this analysis, we assume that investors are always optimistic and when pre-

sented with multiple equilibrium in a round they always take the equilibrium with

the higher 𝜃𝑡. If the project must switch to a lower equilibrium 𝑡ℎ𝑒𝑡𝑎𝐿𝑡 during one of

the rounds, it is always preferable to delay this switch as long as possible. One can

see this from how 𝜃𝐻 path must be bounded by its previous value, and that lower

values of 𝜃𝐻 are due to increased information about the health of the system. Due to

the single peak of the indifference constraint 𝑈(), as 𝜃𝐻 decreases 𝜃𝐿 increases as the

time progresses, so a later switch is always preferable.
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If the debtor can control the terms of 𝜆𝑡, the best case scenario is to have a very

low 𝜆1, as this will allow for a high 𝜃1 and then in subsequent rounds choose 𝜆𝑡 > .5

to disincentive future withdrawals given the information that project survived any

withdrawals in the first round.

Increasingly accurate 𝛽𝑡 updates to the private information of the investors is a

double edge sword depending on the previous value of 𝜃 and the amount of informa-

tion already revealed. If there is little new information and a bad prior, subsequent

rounds decrease the strategic uncertainty and allow for more investor withdrawals. If

there is a good prior, surviving previous rounds will decrease fundamental uncertainty

and strategic uncertainty. If the precision of information revealed is significant over

previous rounds, this will decrease 𝜃𝐻 but increases 𝜃𝐿 for any given round. Therefore

depending on which equilibrium that the debtor believes will occur the next round

will determine whether the debtor would want to give out more private information

on the project.

5.3 Fitting a Dynamic Game To Data

In this section we describe how we fit a bond yield curve to the dynamic global game

parameters. We pose this as a constrained minimization problem and discuss how to

reduce the dimensions of the model.

We start with a time series of bond yields, 𝑌𝑡 = (𝑌1, 𝑌2, ...𝑌𝑁) , which represent

bonds of different maturities for the same underlying company. The value of time

between each bond maturity will be represented by the increase in private information

that the investor receives in each round of the game. Also note that 𝑌𝑁 maps to the

first round of the dynamic global game, 𝜃1. To produce this time series of bond yields

from a solution set to a dynamic global game, we calculate each round the bond yield

given the 𝑡ℎ𝑒𝑡𝑎𝑡 for that round and the (𝑢, 𝛼) that describe the prior probability as

described in the static bond pricing section. In the case that 𝛼 changes over time due

to public shocks, we update accordingly.

For any given time series of bond yields, there will be more free parameters than
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data points to be fitted by the four parameters (𝛼, 𝜆, 𝑢, 𝑤) since we have a variable

for the amount of new information received each round, 𝛽𝑁 . We can assume some

prior knowledge of (𝑍) as a parameter that represents an estimates of the imme-

diate liquidation value of the company. In practice, we find that having less than

three free parameters and solving for an approximate solution oftentimes lead to bad

approximations. For now we leave (𝛼, 𝑢, 𝜆) as free parameters to be found in the

optimization

Next we define a score function to be minimized that will determine how far a

guess of initial parameters for our dynamic game is from being representative of a

bond yield curve.

𝑓(𝛼, 𝑢, 𝜆, 𝛽1, ..., 𝛽𝑁 |𝑤, 𝑌1, ...𝑌𝑁) =
𝑁∑︁
𝑖=1

(𝑌𝑁+1−𝑖 − Φ(
√
𝛼(𝜃𝑖 − 𝑢)))2

where 𝜃1...𝜃𝑁 represents the best case scenario solution for a dynamic global game

with the given function parameters. We now formulate the minimization problem

below.

minimize
𝛼,𝑢,𝜆,𝛽1,...,𝛽𝑁

𝑓(𝛼, 𝑢, 𝜆, 𝛽1, ..., 𝛽𝑁 |𝑤, 𝑌1, ...𝑌𝑁)

subject to 𝛽𝑖 > 0, 𝑖 = 1, . . . , 𝑁 𝛽𝑖 ≥
(𝑤𝛼)2

2𝜋
, 𝑖 = 1, . . . , 𝑁

0 < 𝜆 < .5 𝛼 > 0

This minimization function is non-linear in its input parameters and when using a

standard optimization library, a local instead of global minimum is found depending

on the initial parameters and accuracy tolerance levels.
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Chapter 6

Conclusions

In this thesis we create a new dynamic global game model that describes coordina-

tion risk among a group of agents over time. We present a method to construct an

equilibrium solution set of the base dynamic model, a characterization of different

equilibrium regimes in the model and a financial interpretation to the model parame-

ters. We expand the base dynamic model to include public information, public shocks

to the health of the project, information feedback of previous investor withdrawals

from the project, and reserve price feedback received by investors. These additional

information structures show how positive public information is not always beneficial

to the health of the project, how introducing feedback on previous rounds withdrawals

makes the project more fragile with respect to public information shocks and how to

incorporate liquidity into a global games framework through feedback in the reserve

price. We formulate an optimization problem over the free parameters of the dy-

namic model to fit data to the model. Finally, we finish with fitting a hypothetical

companyâĂŹs bond yield curve to provide an estimate of the health of the company.

6.1 Future Work

This thesis provided a modeling framework for dynamic global game debt models over

time, similar to the literature on dynamic global game models of currency attacks [6].

Future work could be done to provide a more rigorous analysis of fragility of the sys-
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tem to external shocks when feedback is introduced, similar to the work on liquidity

currency crises[19]. In the same vein analytical instead of simulated solutions on how

additional public information can hurt the prospects of the project over time is a logi-

cal next step [4]. Introducing a large investor that controls a significant portion of the

projects funding would provide another interesting avenue to reducing coordination

risk among investors, as explored in currency crises attack models [20]. Finally, richer

financial debt contracts could be fitted to the extended dynamic model by introduc-

ing estimates of public information and expanding our optimization formulation to

include these free parameters.

54



Appendix A

Numerical Examples

A.1 Static Model

We start with the following parameters

𝛼 = 1 , 𝛽 = 5 𝑢 = .8, 𝜆 = .3 , 𝑤 = .95

First, check that there is a single unique solution to the game,

𝛼√
𝛽
≤

√
2𝜋

𝑤

1√
5
≤

√
2𝜋

.3

.447 ≤ 2.639

Now, we solve for 𝜃 by taking the combined indifference constraint and using a bisec-

tion algorithm to search for a valid value in range [0, 1]

0 = 𝑤Φ(

√
𝛽 + 𝛼√
𝛽

(𝛼𝑧 − Φ−1(1 − 𝜆(𝜃))) − 𝜃(
𝛽 + 𝛼√

𝛽
+ 1)) − 𝜃

𝜃 = .188

We can now solve for �̂� using the constraint that there must exist a critical point of
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the investors foreclosing on the project and receiving a signal to do so

𝜃 = 𝑤Φ(
√︀

𝛽(�̂�− 𝜃))

�̂� =
Φ−1( 𝜃

𝑤
)

√
𝛽

+ 𝜃

�̂� = −.191

We interpret these results so that an investor will choose to foreclose on their share

of the investment at the end of round one if the private signal they see is below

−.191. For the project, if the project’s sampled 𝜃 > .188, the project will survive

early investor withdrawals.

A.2 Dynamic Model

We use the dynamic game model structure to analyze a project that will payout in full

over three rounds. The primary factor that determines whether the dynamic game

will be interesting to analyze rests on the payout structure of the game. Let us take

a $1000 initial investment in the project that will be worth 10% more each round. In

the case of early withdrawal the $600 is recouped and only $300 is recovered if the

project fails.

𝑡1 𝑡2 𝑡3

𝐿𝑡 $300 $300 $300

𝐾*𝑡 $600 $600 $600

𝐾*
𝑡 $1100 $1200 $1300

Normalizing each round we get

𝜆(1,2,3) = (3/8, 3/9, 3/10)

For this example we set the rest of the parameters to

𝛼 = 1 , 𝑢 = .3 , 𝑤 = 1 , 𝛽(1,2,3) = (1, 3, 10)
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Using the iterative optimization method each round we obtain the following solutions

sets, where (𝜃, �̂�) represent a valid solution that round.

Round 1 = (.839, 1.828)

Round 2 = (.839,∞)

Round 3 = (.751, .932), (.297, .154)

This example shows in round two that there is not enough new information to

cause any more withdrawals from the project and the previous equilibrium is main-

tained. In Round 3 enough new information is introduced and there are now two

valid solution sets, a high 𝜃 and low 𝜃.

Below we provide an example of a six round dynamic game that further illustrates

the branching between the high path and the low path of the valid solution sets.
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A.3 Dynamic Model with Public Shocks and Infor-

mation Feedback

Here we examine the combined effects of public shocks and information feedback

between rounds. We start by examining the effect of private feedback on the dynamics

of the game, where investors learn how many investors left the project in previous

rounds. The legend describes the prevision of which the investors learn of the previous

rounds value, ranging from .01− 50. The higher the precision of the information, the

higher the best case scenario for that project.

Private Feedback
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Next we examine the case of introducing public shocks and public feedback on

the stability of the project over time. First, we examine the case of introducing

varying shocks into the system only on the second round. We see that positive shocks

have a positive effect on the equilibrium over time, while negative shock lowers the

equilibrium over time.

Public Shocks In the Second Round

Now, we introduce a slight public feedback precision of 1 each round and note

that the system is now worse off due to the shocks.

Public Shocks in the Second Round with Feedback
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A.4 Dynamic Model with Reserve Price Feedback

Here we examine the effect of having the reserve price 𝜆 be dependant on the number

of investors who leave the project in any given round. Instead of earning a constant

𝜆, we determine the reserve price of any round as a function of how many investors

leave that round according to the linear function

𝜆(𝜃) = (𝜃 − .5)/𝑥 + .25

where 𝑥 represents the legend in each of the below graphs. This means large values

of 𝑥 translate to nearly constant values of 𝜆 over any possible range of 𝜃.
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First we examine the case of positive feedback, which means that a lower reserve

price is earned by all investors the more that leave, so there is a less of an incentive

to leave. We note that the more aggressive the loss in value over time, the higher the

the chance of success of the project by the end of round three.

Positive Reserve Price Feedback Shifts curve up

Next we examine the case of negative feedback, which means that a higher reserve

price is earned by all investors the more that leave, so there is a more of an incentive

to leave when others leave.

Negative Reserve Price Feedback Shifts curve down
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A.5 Fitting Data Example

Let us start with a yield curve of 𝑌 = (.15, .19, .22, .25) which represent 1, 2, 3 and 4

year bond maturity yields for a hypothetical company. We take 𝑤 = 1 and an initial

guess.

𝛼 = 1, 𝑢 = .9, 𝜆 = .25, 𝛽1 = 1, 𝛽2 = 1.5, 𝛽3 = 2.25, 𝛽4 = 3.375

A solution to the minimization problem:

𝛼 = .684, 𝑢 = 1.5, 𝜆 = .224, 𝛽1 = 1.93, 𝛽2 = 1.72, 𝛽3 = 2.25, 𝛽4 = 3.35
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𝜃1 = .684, 𝜃2 = .565, 𝜃3 = .439, 𝜃4 = .245

Checking the four constraints on 𝛽𝑖 in the form 𝛽𝑖 − (𝑤𝛼)2

2𝜋
≥ 0

1.8 > 0, 1.6 > 0, 2.2 > 0, 3.3 > 0
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