
Splinter: Practical Private Queries on Public Data

by

Catherine Yun

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 12, 2017

Certified by. .
Vinod Vaikuntanathan

Associate Professor, EECS
Thesis Supervisor

Accepted by .
Dr. Christopher Terman

Chairman, Department Committee on Graduate Theses

2

Splinter: Practical Private Queries on Public Data

by

Catherine Yun

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2017, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Every day, millions of people rely on third party services like Google Maps to nav-
igate from A to B. With existing technology, each query provides Google and their
affiliates with a track record of where they’ve been and where they’re going. In this
thesis, I design, engineer, and implement a solution that offers absolute privacy when
making routing queries, through the application of the Function Secret Sharing (FSS)
cryptographic primitive.

I worked on a library in Golang that applied an optimized FSS protocol, and
exposed an API to generate and evaluate different kinds of queries. I then built a
system with servers that handle queries to the database, and clients that generate
queries. I used DIMACS maps data and the Transit Node Routing (TNR) algorithm
to obtain graph data hosted by the servers. Finally, I evaluated the performance of
my system for practicality, and compared it to existing private map routing systems.

Thesis Supervisor: Vinod Vaikuntanathan
Title: Associate Professor, EECS

3

4

Acknowledgments

I’d like to thank Frank for being incredibly supportive throughout my Master’s, and

for providing priceless life advice along the way. Vinod, Matei, and Shafi have also

been wonderful collaborators, and a pleasure to work with.

A special thanks to Eric for countless hours of system design, coding, and debug-

ging help, as well as endless moral support and inspiration. I wouldn’t be where I am

without you.

A shoutout to the folks at the Digital Currency Initiative at the Media Lab,

especially Jeremy and Neha, for helping me think through interesting applications of

function secret sharing to Bitcoin privacy.

Many thanks to my family for always believing in me and putting up with my

shenanigans, the MIT climbing team for keeping me sane, and my friends for making

sure I didn’t forget how to have fun.

5

6

Contents

1 Introduction 11

1.1 Motivations for Private Querying . 11

1.2 Potential Applications of Private Querying 12

2 Function Secret Sharing applied to private database queries 13

2.1 Overview of Function Secret Sharing 13

2.1.1 Function Secret Sharing Primitive 13

2.1.2 Function Secret Sharing for Database Queries 14

2.2 Implementation: Splinter . 16

2.2.1 Splinter Architecture . 16

2.2.2 Splinter Query Model . 17

2.2.3 Executing Splinter Queries . 19

3 Privacy-Preserving Map Routing 21

3.1 Overview . 21

3.2 Implementation . 22

3.2.1 The Server . 22

3.2.2 The Client . 24

3.2.3 Query Parsing . 25

3.2.4 Data Generator . 26

3.3 Optimization . 26

4 Conclusion 29

7

4.1 Results . 29

4.1.1 Regional Queries . 29

4.1.2 United States Queries . 31

4.2 Improvements and Next Steps . 32

4.2.1 Speeding up lookups over large tables 32

4.2.2 Routing Visualization . 32

4.2.3 FSS Server and Client Usability 33

5 Previous Work 35

5.1 Private Queries . 35

5.1.1 Private Information Retrieval 35

5.1.2 Garbled Circuits . 36

5.1.3 Encrypted Data Systems . 36

5.1.4 ORAM Systems . 37

5.2 Map Routing Algorithms . 37

5.2.1 Contraction Hierarchies . 37

5.2.2 Transit Node Routing . 37

5.3 Privacy-Preserving Map Routing . 38

8

List of Figures

2-1 Overview of how FSS can be applied to database records on two providers

to perform a COUNT query. 14

2-2 Simple example table with outputs for the FSS function shares 𝑓1, 𝑓2

applied to the ItemId column. The function is a point function that

returns 1 if the input is 5, and 0 otherwise. All outputs are integers

modulo 2𝑚 for some 𝑚. 15

2-3 Splinter architecture. The Splinter client splits each user query into

shares and sends them to multiple providers. It then combines their

results to obtain the final answer. The user’s query remains private as

long as any one provider is honest. 17

2-4 Splinter query format. The TOPK aggregate returns the top 𝑘 values of

expr for matching rows in the query, sorting them by sort_expr. In con-

ditions, the parameters labeled secret are hidden from the providers. 18

4-1 Performance metrics and lookup information for each FSS query issued

for a regional routing query over the New York data set, which has

264,346 nodes and 733,846 edges. 29

4-2 Performance metrics and lookup information for each FSS query issued

for a cross-country route request over the United States data set, which

has 23,947,347 nodes and 58,333,344 edges. 31

9

10

Chapter 1

Introduction

1.1 Motivations for Private Querying

Many online services let users query large public datasets: some examples include

restaurant sites, product catalogs, stock quotes, and searching for directions on maps.

In these services, any user can query the data, and the datasets themselves are not

sensitive. However, web services can infer a great deal of identifiable and sensitive user

information from these queries, such as their current location, political affiliation, sex-

ual orientation, income, etc. [35, 34]. This information can be used maliciously or put

users at risk of being targeted by practices such as discriminatory pricing [49, 45, 23].

For example, online stores have charged users different prices based on location [25],

and travel sites have also increased prices for certain frequently searched flights [46].

Even when the services are well-intentioned, server compromises and subpoenas can

expose the sensitive user information these web services store [43, 27, 42].

We can eliminate the concerns that stem from revealing query information by

building and using a system that can efficiently execute queries which are private to

all intermediate parties, including the database itself.

11

1.2 Potential Applications of Private Querying

There are two main categories of applications that benefit greatly from private query-

ing - applications where the queries reveal sensitive user data, such as locations or

a user account numbers that are supposed to be secret, and applications where the

queries reveal user behavior patterns.

In applications where the queries reveal sensitive user data, building clones of

location-based services such as Yelp and Google Maps with private queries could

be beneficial to people who don’t want the services they use to know their location

data, but still want to be able to use those services. In a similar vein, users of

Bitcoin want their account identifiers and the transactions pertaining to them to

be anonymous. However, when users fetch their balance from a Simplified Payment

Verification (SPV) node or check the blockchain depth of a transaction, the node they

query gains information about their account identifiers and the transactions they are

interested in. This is another case where private queries could help mask sensitive

information in queries, preserving the anonymity provided by Bitcoin.

In applications where the queries reveal user behavior patterns, building a flight

querying service with private queries would allow users to do searches for the flights

they are interested in, without worrying about travel sites taking advantage of that

information to increase prices for those flights.

12

Chapter 2

Function Secret Sharing applied to

private database queries

2.1 Overview of Function Secret Sharing

In this section, we give an overview of Function Secret Sharing (FSS), the main

primitive used in Splinter [16], and show how to use it in simple queries.

2.1.1 Function Secret Sharing Primitive

Function Secret Sharing [10] lets a client divide a function 𝑓 into function shares

𝑓1, 𝑓2, . . . , 𝑓𝑘 so that multiple parties can help evaluate 𝑓 without learning certain of

its parameters. These shares have the following properties:

∙ They are close in size to a description of 𝑓 .

∙ They can be evaluated quickly (similar in time to 𝑓).

∙ They sum to the original function 𝑓 . That is, for any input 𝑥,
𝑘∑︀

𝑖=1
𝑓𝑖(𝑥) = 𝑓(𝑥).

∙ Given any 𝑘 − 1 shares 𝑓𝑖, an adversary cannot recover the parameters of 𝑓 .

Although it is possible to perform FSS for arbitrary functions, practical FSS pro-

tocols only exist for point and interval functions. These take the following forms:

13

∙ Point functions 𝑓𝑎 are defined as 𝑓𝑎(𝑥) = 1 if 𝑥 = 𝑎 or 0 otherwise.

∙ Interval functions are defined as 𝑓𝑎,𝑏(𝑥) = 1 if 𝑎 ≤ 𝑥 ≤ 𝑏 or 0 otherwise.

In both cases, FSS keeps the parameters 𝑎 and 𝑏 private: an adversary can tell

that it was given a share of a point or interval function, but cannot find 𝑎 and 𝑏. In

Splinter, we use the FSS scheme of Boyle et al. [10]. The functions 𝑓𝑎 and 𝑓𝑎,𝑏 operate

over 𝑍2𝑚 (integers mod 2𝑚) where 𝑚 is the number of bits in the output range. For

the rest of the paper, we will assume that all computations are done over 𝑍2𝑚 . Under

this scheme, the shares 𝑓𝑖 for both functions require 𝑂(𝜆𝑛) bits to describe and 𝑂(𝜆𝑛)

bit operations to evaluate for a security parameter 𝜆 (the size of cryptographic keys)

where 𝑛 is the number of bits in the input domain. This contrasts to 𝑂(𝑛) bits and

operations to describe and evaluate the original functions.

2.1.2 Function Secret Sharing for Database Queries

We can use the additive nature of FSS shares to run private queries over an entire

table in addition to a single data record. We illustrate here with two examples.

Figure 2-1: Overview of how FSS can be applied to database records on two providers
to perform a COUNT query.

ItemId Price

ItemId1 Price1

ItemId2 Price2

… ...

ItemIdn Pricen

f1(ItemId1)

f1(ItemId2)

…
f1(ItemIdn)

r1 = f1(ItemIdi)
i=1

n

∑

answer =
r1 + r2

ItemId Price

ItemId1 Price1

ItemId2 Price2

… ...

ItemIdn Pricen

f2(ItemId1)

f2(ItemId2)

…
f2(ItemIdn)

r2 = f2(ItemIdi)

i=1

n

∑

14

Example: COUNT query. Suppose that the user wants to run the following

query on a table served by Splinter:

SELECT COUNT(*) FROM items WHERE ItemId = ?

Here, ‘?’ denotes a parameter that the user would like to keep private; for example,

suppose the user is searching for ItemId = 5, but does not want to reveal this value.

To run this query, the Splinter client defines a point function 𝑓(𝑥) = 1 if 𝑥 = 5 or 0

otherwise. It then divides this function into function shares 𝑓1, . . . , 𝑓𝑛 and distributes

them to the providers, as shown in Figure 2-1. For simplicity, suppose that there are

two providers, who receive shares 𝑓1 and 𝑓2.

Because these shares are additive, we know that 𝑓1(𝑥) + 𝑓2(𝑥) = 𝑓(𝑥) for every

input 𝑥. Thus, each provider 𝑝 can compute 𝑓𝑝(ItemId) for every ItemId in the

database table, and send back 𝑟𝑝 =
∑︀𝑛

𝑖=1 𝑓𝑝(ItemId𝑖) to the client. The client then

computes 𝑟1+𝑟2, which is equal to
∑︀𝑛

𝑖=1 𝑓(ItemId𝑖), that is, the count of all matching

records in the table.

ItemId Price 𝑓1(ItemId) 𝑓2(ItemId)
5 8 10 -9
1 8 3 -3
5 9 10 -9

Figure 2-2: Simple example table with outputs for the FSS function shares 𝑓1, 𝑓2
applied to the ItemId column. The function is a point function that returns 1 if the
input is 5, and 0 otherwise. All outputs are integers modulo 2𝑚 for some 𝑚.

To make this more concrete, Figure 2-2 shows an example table and some sample

outputs of the function shares, 𝑓1 and 𝑓2, applied to the ItemId column. There are

a few important observations. First, to each provider, the outputs of their function

share seem random. Consequently, the provider does not learn the original function 𝑓

and the parameter "5". Second, because 𝑓 evaluates to 1 on inputs of 5, 𝑓1(ItemId)+

𝑓2(ItemId) = 1 for rows 1 and 3. Similarly, 𝑓1(ItemId) + 𝑓2(ItemId) = 0 for row 2.

Therefore, when summed across the providers, each row contributes 1 (if it matches)

or 0 (if it does not match) to the final result. Finally, each provider aggregates the

15

outputs of their shares by summing them. In the example, one provider returns 23 to

the client, and the other returns -21. The sum of these is the correct query output,

2.

This additivity of FSS enables Splinter to have low communication costs for ag-

gregate queries, by aggregating data locally on each provider.

Example: SUM query. Suppose that instead of a COUNT, we wanted to run the

following SUM query:

SELECT SUM(Price) FROM items WHERE ItemId=?

This query can be executed privately with a small extension to the COUNT

scheme. As in COUNT, we define a point function 𝑓 for our secret predicate, e.g.,

𝑓(𝑥) = 1 if 𝑥 = 5 and 0 otherwise. We divide this function into shares 𝑓1 and 𝑓2.

However, instead of computing 𝑟𝑝 =
∑︀𝑛

𝑖=1 𝑓𝑝(ItemId𝑖), each provider 𝑝 computes

𝑟𝑝 =
𝑛∑︁

𝑖=1

𝑓𝑝(ItemId𝑖) · Price𝑖

As before, 𝑟1+𝑟2 is the correct answer of the query, that is,
∑︀𝑛

𝑖=1 𝑓(ItemId𝑖)·Price𝑖.

We add in each row’s price, Price𝑖, 0 times if its ItemId is not 5, and 1 time if it is 5.

2.2 Implementation: Splinter

2.2.1 Splinter Architecture

There are two main principals in Splinter: the user and the providers. Each provider

hosts a copy of the data. Providers can retrieve this data from a public repository or

mirror site. For example, OpenStreetMap [38] hosts publicly available map, point-of-

interest, and traffic data. Data owners can also charge providers to access this data.

For a given user query, all the providers have to run it on the same view of the data.

Maintaining data consistency from mirror sites is beyond the scope of this paper, but

standard techniques can be used [50, 11].

16

Splinter Client

Splinter
Provider
Library

Splinter
Provider
Library

Splinter
Provider
Library

Figure 2-3: Splinter architecture. The Splinter client splits each user query into shares
and sends them to multiple providers. It then combines their results to obtain the
final answer. The user’s query remains private as long as any one provider is honest.

As shown in Figure 2-3, to issue a query in Splinter, a user splits their query into

shares, using the Splinter client, and submits each share to a different provider. The

user can select any providers of their choice that host the dataset. The providers

execute their shares to execute the user’s query over the cleartext public data, using

the Splinter provider library. As long as one provider is honest (does not collude with

others), the user’s sensitive information in the original query remains private. When

the user receives the responses from the providers, the user combines the responses

to obtain the final answer to their original query.

2.2.2 Splinter Query Model

Beyond the simple SUM and COUNT queries in the previous section, we have devel-

oped protocols to execute a large class of queries using FSS, including non-additive

aggregates such as MAX and MIN, and queries that return multiple individual records

instead of an aggregate. For all these queries, our protocols are efficient in both com-

putation and communication. On a database of 𝑛 records, all queries can be executed

in 𝑂(𝑛 log 𝑛) time and 𝑂(log 𝑛) communication rounds, and most only require 1 or 2

communication rounds.

Figure 2-4 describes Splinter’s supported queries using SQL syntax. Most op-

17

Query format:
SELECT aggregate1, aggregate2, . . .
FROM table
WHERE condition
[GROUP BY expr 1, expr 2, . . .]

aggregate:
∙ COUNT | SUM | AVG | STDEV (expr)

∙ MAX | MIN (expr)

∙ TOPK (expr, 𝑘, sort_expr)

∙ HISTOGRAM (expr, bins)

condition:
∙ expr = secret

∙ secret1 ≤ expr ≤ secret2
∙ AND of ‘=’ conditions and up to one interval

∙ OR of multiple disjoint conditions
(e.g., country="UK" OR country="USA")

expr: any public function of the fields in a table row
(e.g., ItemId + 1 or Price * Tax)

Figure 2-4: Splinter query format. The TOPK aggregate returns the top 𝑘 values of
expr for matching rows in the query, sorting them by sort_expr. In conditions, the
parameters labeled secret are hidden from the providers.

18

erators are self-explanatory. The only exception is TOPK, which is used to return

up to 𝑘 individual records matching a predicate, sorting them by some expression

sort_expr. This operator can be used to implement SELECT...LIMIT queries, but

we show it as a single "aggregate" to simplify our exposition. To keep the number

of matching records hidden from providers, the operator always pads its result to

exactly 𝑘 records.

Although Splinter does not support all of SQL, we found it expressive enough

to support many real-world query services over public data. Finally, Splinter only

natively supports fixed-width integer data types. However, such integers can also be

used to encode strings and fixed-precision floating point numbers (e.g., SQL DECI-

MALs). We use them to represent other types of data in our sample applications.

2.2.3 Executing Splinter Queries

Given a query in Splinter’s query format (Figure 2-4), the system executes it using

the following steps:

1. The Splinter client builds function shares for the condition in the query.

2. The clients sends the query with all the secret parameters removed to each

provider, along with that provider’s share of the condition function.

3. If the query has a GROUP BY, each provider divides its data into groups using

the grouping expressions; otherwise, it treats the whole table as one group.

4. For each group and each aggregate in the query, the provider runs an eval-

uation protocol that depends on the aggregate function and on properties of

the condition. Some of the protocols require further communication with the

client, in which case the provider batches its communication for all grouping

keys together.

19

20

Chapter 3

Privacy-Preserving Map Routing

3.1 Overview

Implementing map routing in Splinter is challenging because the provider can only

perform table lookups. Storing all possible shortest paths requires substantial amounts

of storage. For example, storing all shortest paths for New York City requires 236

rows! The user could download the map and find the shortest path locally, which is

bandwidth heavy, and the user would also have to download updates constantly.

Extensive work has been done to optimize map routing [5]. One algorithm com-

patible with Splinter is transit node routing (TNR) [4, 7], which has been shown to

work well in practice [6]. In TNR, the provider divides up a map into grids, which

contain at least one transit node, i.e. a node that is part of a "fast" path. There is

also a separate table that has the shortest paths between all pairs of transit nodes,

which represent a smaller subset of the map. For a given source node 𝑠𝑟𝑐 and target

node 𝑡𝑟𝑔, a client finds the shortest path between the two by first fetching the sets

of closest transit nodes 𝑇𝑠𝑟𝑐 and 𝑇𝑡𝑟𝑔. Then, for each pair of nodes 𝑡𝑠𝑟𝑐 ∈ 𝑇𝑠𝑟𝑐 and

𝑡𝑡𝑟𝑔 ∈ 𝑇𝑡𝑟𝑔, the client finds the path connecting 𝑠𝑟𝑐 to 𝑡𝑟𝑔 via 𝑡𝑠𝑟𝑐 and 𝑡𝑡𝑟𝑔. The

shortest of these paths is the shortest path between 𝑠𝑟𝑐 and 𝑡𝑟𝑔.

In our use case, all the paths between the pairs of transit nodes are pre-computed,

so the user would perform a select query for each pair of {𝑡𝑠𝑟𝑐, 𝑡𝑡𝑟𝑔}. They would

also perform a select query for the zone information for 𝑠𝑟𝑐 and 𝑡𝑟𝑔, so that they

21

can locally run a shortest path computation from 𝑠𝑟𝑐 to 𝑡𝑟𝑔 through the transit node

shortest paths.

3.2 Implementation

I implemented the map routing application in Golang, using the Golang crypto pack-

age for AES-NI hardware instructions for AES encryption. I implemented Splinter in

Golang, not only because of familiarity and usability, but also because of its excellent

cryptographic libraries.

The FSS library is about 1000 lines of code, and the applications on top of it are

about 1000 lines of code. The implementation of the library, client, and server can

be found at https://github.com/cathieyun/libfss.

3.2.1 The Server

I implemented a FSS server module that accepts queries for two-party FSS, though

my implementation could easily be extended to multi-party FSS as well. In two-party

FSS, there are two server instances that receive and process function secret shares.

The server expects input in the form of a GET request that includes the query

type, FSS key, pseudorandom function (PRF) keys, and the number of bits to match

on. It initializes an FSS server with the PRF keys and the number of bits to match

on, by calling the FSS library. Then it parses the query using different techniques,

depending on the query type:

1. COUNT: Integer matching

This is the simplest query type. The server scans through the corresponding

file line by line, getting the 𝑘𝑒𝑦 (the integer to count) for each line. It evaluates

the FSS point function over 𝑘𝑒𝑦 using the FSS library functions, and adds that

quantity to 𝑎𝑛𝑠𝑤𝑒𝑟.

2. SELECT: Integer matching, with a small integer return value.

The server scans through the corresponding file line by line, getting the 𝑘𝑒𝑦 (the

22

integer to match) and 𝑣𝑎𝑙𝑢𝑒 (the integer to return) for each line. It evaluates

the FSS point function over 𝑘𝑒𝑦 using the FSS library functions, multiplies the

result by 𝑣𝑎𝑙𝑢𝑒, and adds that quantity to 𝑎𝑛𝑠𝑤𝑒𝑟.

An example of this kind of query is the retrieval of what zone a node is in.

The node id is an integer, and the zone id is an integer.

3. SELECT: Integer matching, with a large return value.

The server scans through the corresponding file line by line, getting the 𝑘𝑒𝑦 (the

integer to match) and 𝑣𝑎𝑙𝑢𝑒 (a large integer, or a non-integer) for each line. It

evaluates the FSS point function over 𝑘𝑒𝑦 using the FSS library functions, mul-

tiplies each byte value in the 𝑣𝑎𝑙𝑢𝑒 byte array by that quantity, and adds the

multiplied array to the 𝑎𝑛𝑠𝑤𝑒𝑟 array.

An example of this kind of query is the retrieval of the zone data for a transit

node zone. The 𝑘𝑒𝑦 is the transit node id, which is an integer, and the 𝑣𝑎𝑙𝑢𝑒 is

the information for that zone, in the form of nodes and edges.

4. SELECT: Large input matching, with a large return value.

The server scans through the corresponding file line by line, getting the 𝑘𝑒𝑦

(multiple integers, or a non-integer) and 𝑣𝑎𝑙𝑢𝑒 (a large integer, multiple inte-

gers, or a non-integer) for each line. It converts 𝑘𝑒𝑦 into an integer using the

sha256 hash function, evaluates the FSS point function over the hash output,

multiplies each byte value in the 𝑣𝑎𝑙𝑢𝑒 byte array by that quantity, and adds

the multiplied array to the 𝑎𝑛𝑠𝑤𝑒𝑟 array.

An example of this kind of query is the retrieval of the shortest path between

two transit nodes. The 𝑘𝑒𝑦 is two integers, the ordered transit node pair, that

needs to be treated as one integer for the purpose of FSS evaluation. The 𝑣𝑎𝑙𝑢𝑒

is the shortest path between the two transit nodes, which is a large return value.

After iterating through the entire table and applying an FSS evaluation to the 𝑘𝑒𝑦 in

23

every line, the server now has 𝑎𝑛𝑠𝑤𝑒𝑟, which will be either an integer or an integer

array. The server will return 𝑎𝑛𝑠𝑤𝑒𝑟, which represents its answer share, to the client.

3.2.2 The Client

The client takes a query over a database, and generates function secret shares to send

to the server. The client does this by first determining the query type and the number

of bits to match on. It initializes an FSS client with the number of bits to match on,

and uses the FSS client to generate either two sets of point function keys, or two sets

of interval keys.

Point function keys are used when the query is an equality query (such as a 𝑠𝑒𝑙𝑒𝑐𝑡

or 𝑐𝑜𝑢𝑛𝑡). These keys represent two parts of a function that, when combined, evaluate

to 𝑏 when 𝑘𝑒𝑦 = 𝑎, and evaluate to 0 otherwise. For the 𝑐𝑜𝑢𝑛𝑡 query, 𝑏 = 1 because

the server actions should, when combined, increment 𝑎𝑛𝑠𝑤𝑒𝑟 by 1 every time 𝑘𝑒𝑦 = 𝑎.

For the 𝑠𝑒𝑙𝑒𝑐𝑡 query, 𝑏 = 1 because the server actions should, when combined, give

us the corresponding 𝑣𝑎𝑙𝑢𝑒 when 𝑘𝑒𝑦 = 𝑎. We assume for 𝑠𝑒𝑙𝑒𝑐𝑡 queries that only

one 𝑘𝑒𝑦 will match 𝑎. If this is not the case, and if the 𝑘𝑒𝑦 always maps to the same

𝑣𝑎𝑙𝑢𝑒, one could simply issue a 𝑐𝑜𝑢𝑛𝑡 query to figure out how many matches there

are, and divide 𝑎𝑛𝑠𝑤𝑒𝑟 by that quantity.

Interval keys are used when the query is a comparison query (such as > or <).

These keys represent two parts of a function that, when combined, evaluate to 𝑏 when

𝑘𝑒𝑦 < 𝑎 or 𝑘𝑒𝑦 > 𝑎 (depending on the comparison), and 0 otherwise. Interval queries

are generally used with 𝑐𝑜𝑢𝑛𝑡, to figure out the number of values greater or less than

𝑎. Therefore, 𝑏 = 1 because the server actions should, when combined, increment

𝑎𝑛𝑠𝑤𝑒𝑟 by 1 every time 𝑘𝑒𝑦 < 𝑎 or 𝑘𝑒𝑦 > 𝑎.

After the client generates two sets of keys, it sends one set to each server, along

with the query type, the corresponding pseudorandom function (PRF) keys, and the

number of bits to match on. It then waits for each server to send back an answer

share. Depending on the query type, the answer share will either be an integer or

integer array. The client adds the two answer shares together to determine the final

answer, and returns the final answer.

24

3.2.3 Query Parsing

A query to the routing server is a request for directions from point 𝑠𝑟𝑐 to point 𝑡𝑟𝑔.

The way this query is expressed as function secret shares depends on the proximity

of 𝑠𝑟𝑐 and 𝑡𝑟𝑔.

If 𝑠𝑟𝑐 and 𝑡𝑟𝑔 are in the same region, such as both within New York, then the

client will use the regional routing protocol, which takes five FSS queries:

1. Fetching the zone id for 𝑠𝑟𝑐

To figure out what zone 𝑠𝑟𝑐 is in, we will construct a function of query type 2

(see Section 3.2.1), matching on the integer value of 𝑠𝑟𝑐, and run it over the

node data file.

2. Fetching zone data for 𝑠𝑟𝑐

To get the node data, edge data, and transit node data for the zone that 𝑠𝑟𝑐

is in, we will construct a function of query type 3 (see Section 3.2.1), matching

on the integer value of the zone ID returned in step 1, and run it over the zone

data file.

3. Fetching the zone id for 𝑡𝑟𝑔

To figure out what zone 𝑡𝑟𝑔 is in, we will construct a function of query type 2

(see Section 3.2.1), matching on the integer value of 𝑡𝑟𝑔, and run it over the

node data file.

4. Fetching zone data for 𝑡𝑟𝑔

To get the node data, edge data, and transit node data for the zone that 𝑡𝑟𝑔

is in, we will construct a function of query type 3 (see Section 3.2.1), matching

on the integer value of the zone ID returned in step 1, and run it over the zone

data file.

5. Fetching the shortest path from 𝑇𝑠𝑟𝑐 to 𝑇𝑡𝑟𝑔

To get the shortest path from 𝑇𝑠𝑟𝑐 to 𝑇𝑡𝑟𝑔, we will construct a function of query

type 4 (see Section 3.2.1), matching on the combination of 𝑇𝑠𝑟𝑐 and 𝑇𝑡𝑟𝑔, and

run it over the shortest paths data file.

25

If 𝑠𝑟𝑐 and 𝑡𝑟𝑔 are not in the same region, such as in a cross-country query, then I

use more advanced techniques as described in Section 3.3.

3.2.4 Data Generator

The data generator takes node and edge data from the DIMACS [13] data set and

generates transit nodes using the Transit Node Routing (TNR) [4] algorithm, classifies

nodes into zones, generates zone data, and generates shortest path data between

transit nodes.

For example, for my inter-region query example, I used a real traffic map data

set from the Center for Discrete Mathematics and Theoretical Computer Science [13]

for New York City, which consisted of 264, 346 nodes and 733, 846 arcs. I modified

the source code from the Transit Node Routing paper [4] to output transit nodes.

As recommended in the paper, I generated 500 transit nodes, which was roughly the

square root of the number of nodes in the data set.

I divided the map into zones based on the proximity to transit nodes. I then

generated zone data, which includes transit node data, node data, and edge data, for

each of those zones. I saved the mapping from zones to zone data as the zone data

file. I also generated mappings from nodes to zones they belonged to, and saved that

as the node data file.

I then calculated the shortest path between all transit node pairs. The transit

node table for New York has about 250,000 rows. I saved the mapping from ordered

transit node pairs to their shortest path as the shortest paths data file.

3.3 Optimization

Because the data set for the entire United States is significantly larger than that of

New York [13], it also requires more transit nodes for the TNR algorithm to work. If

we were to use the TNR approach [4], we would need 5 thousand transit nodes and

a table of 25 million pair-wise shortest paths for the entire United States. Since the

longest of those pair-wise shortest paths would be a path going across the country,

26

and the size of the 𝑎𝑛𝑠𝑤𝑒𝑟 array has to be at least as long as the number of bytes in

the longest path, running an FSS query across this database would be impractical.

Instead, I implemented a second layer of TNR, by running the TNR algorithm

twice - once for the data set for the entire United States, and again for the resulting

transit nodes from the first iteration. Each node is associated with a 𝑙𝑜𝑐𝑎𝑙 transit

node and a 𝑠𝑢𝑝𝑒𝑟 transit node. To get a route between a 𝑠𝑟𝑐 and 𝑡𝑟𝑔 node in this

case, the client would fetch the 𝑙𝑜𝑐𝑎𝑙 and 𝑠𝑢𝑝𝑒𝑟 transit nodes associated with 𝑠𝑟𝑐 and

𝑡𝑟𝑔, and then fetch the zone info for each of those transit nodes. The client would

query for the shortest path data between the 𝑠𝑢𝑝𝑒𝑟 transit nodes, and run a shortest

path algorithm over the graph constructed from all of the zone and path data in order

to find the shortest path from 𝑠𝑟𝑐 to 𝑡𝑟𝑔.

An analysis of the performance of regional routing and optimized cross-country

routing will be presented in Section 4.1.

27

28

Chapter 4

Conclusion

4.1 Results

4.1.1 Regional Queries

Purpose Type Rows Key Val Time
1 𝑠𝑟𝑐 tn 2 264,346 20 B 20 B 1.25 sec
2 𝑡𝑟𝑔 tn 2 264,346 20 B 20 B 1.25 sec
3 𝑠𝑟𝑐 zone 3 500 20 B 25 kB 0.120 sec
4 𝑡𝑟𝑔 zone 3 500 20 B 25 kB 0.120 sec
5 𝑇𝑠𝑟𝑐 to 𝑇𝑡𝑟𝑔 4 250,000 40 B 1.5 kB 2.2 sec

Figure 4-1: Performance metrics and lookup information for each FSS query issued
for a regional routing query over the New York data set, which has 264,346 nodes
and 733,846 edges.

Purpose: the purpose of the query, which is discussed in Section 4.2.3.

Type: query type, which is detailed in Section 4.2.1.

Rows: number of rows in the corresponding table; how the table was generated is

detailed in Section 4.2.3.

Key: number of bytes in the key being matched on in the function secret share.

Val: number of bytes in the value being returned from the function secret share.

Time: amount of time the round-trip query took, on average.

29

Queries 1 and 2, and queries 3 and 4 can be issued in parallel. Therefore, the estimated

total time for a regional query is approximately 3.5 seconds. The total bandwidth

used is approximately 52 kB.

In comparison, the closest practical private querying implementation, built by Wu,

et al. [51], uses Private Information Retrieval techniques and takes between 140 and

371 seconds to calculate a route within a major city. The bandwidth required is 8-11

MB. Splinter is two orders of magnitude faster, and requires two orders of magnitude

less bandwidth to perform a shortest path routing query within a major city region.

We estimate this application’s server-side computation cost on Amazon EC2,

where the cost of a CPU-hour is about 5 cents [3]. Map queries cost about 2 cents

to run a shortest path query for NYC. Although it’s hard to predict real-world de-

ployment, we believe that this routing application’s low cost makes it economically

feasible to launch.

Studies have shown that many consumers are willing to pay for services that

protect their privacy [43, 44]. Well-known sites like OkCupid, Pandora, Youtube, and

Slashdot allow users to pay a monthly fee to remove ads that collect their information,

showing there is already a demographic willing to pay for privacy.

One obstacle to this application’s use is that many current data providers, such

as Yelp and Google Maps, are based primarily on showing ads and mining user data.

Nonetheless, there are already successful open databases containing most of the data

in these services, such as OpenStreetMap [38], and basic data on locations does not

change rapidly once collected.

30

4.1.2 United States Queries

Purpose Type Rows Key Val Time
1 𝑠𝑟𝑐 local, super tns 3 23,947,347 20 B 40 B 110 sec
2 𝑡𝑟𝑔 local, super tns 3 23,947,347 20 B 40 B 110 sec
3 𝑠𝑟𝑐 local zone 3 5000 20 B 300 kB 0.220 sec
4 𝑡𝑟𝑔 local zone 3 5000 20 B 300 kB 0.220 sec
5 𝑠𝑟𝑐 super zone 3 100 20 B 300 kB 0.09 sec
6 𝑡𝑟𝑔 super zone 3 100 20 B 300 kB 0.09 sec
7 𝑆𝑇𝑠𝑟𝑐 to 𝑆𝑇𝑡𝑟𝑔 4 10,000 40 B 100 kB 0.55 sec

Figure 4-2: Performance metrics and lookup information for each FSS query issued
for a cross-country route request over the United States data set, which has 23,947,347
nodes and 58,333,344 edges.

Queries 1 and 2, and queries 3, 4, 5, and 6 can be issued in parallel. Therefore,

the estimated total time for a cross-country query is approximately 110 seconds. The

total bandwidth used is about 130 kB.

The bandwidth requirements are reasonable for a routing query, but the round

trip times are not very practical. It is unlikely that a client would wait for almost

two minutes for a response to a routing query, for the sake of privacy. We will discuss

potential improvements in Section 4.2.1.

31

4.2 Improvements and Next Steps

4.2.1 Speeding up lookups over large tables

Queries 1 and 2 in Figure 4-2, which require iterating over about 24 million rows

in the database of nodes, are by far the largest contributors to the run time of the

United States queries. There are several potential ways to speed up this step, which

I will discuss.

The client could find the local zone and super zone of their 𝑠𝑟𝑐 and 𝑡𝑟𝑔 nodes

without querying the server, if they have the latitude and longitude of their 𝑠𝑟𝑐 and

𝑡𝑟𝑔 nodes and can locally run the code that groups nodes into local and super zones.

This would take a trivial amount of processing on the client side, but it does assume

that the client has prior knowledge of coordinate information about the 𝑠𝑟𝑐 and 𝑡𝑟𝑔

nodes. If the client wanted to route between any nodes in the U.S. map, they would

have to have a table of 24 million rows, with a mapping of nodes to their coordinates,

stored locally. This would be costly to download and store, but it would be a one-time

operation. This is a potential solution, but one goal of building this system is to limit

the amount of data that clients have to download and store locally.

Alternatively, if the client is not concerned about revealing the regions that their

𝑠𝑟𝑐 and 𝑡𝑟𝑔 nodes belong to, the system can be implemented such that queries 1 and

2 only access the tables corresponding to the region for each node. If each region is

of a similar size to the New York region, queries 1 and 2 would take 1-2 seconds each

(see Section 4.1.1).

4.2.2 Routing Visualization

A goal for this application is for it to be intuitively usable for people without coding

experience. Having a visualization and turn-by-turn directions is crucial for this goal.

One possibility for implementing this is by integrating the querying functionality

of this application with the front-end of OpenStreetMap [38], an open-source map

database and routing application.

32

4.2.3 FSS Server and Client Usability

The FSS server and client detailed in this paper are not restricted to just this map

routing application - they can be used for any database and most queries. Therefore,

I want to generalize the functionality of these modules, and make it easy to integrate

them into other privacy-sensitive querying applications. Doing so would make it easier

to build services that protect sensitive user information, as mentioned in Section 1.2.

My research with Splinter and private maps querying has shown that private queries

are practical to implement and run, and I hope that more services can adopt this

querying model to allow for more protection of user data and behavior patterns online.

33

34

Chapter 5

Previous Work

5.1 Private Queries

Our research on private queries is related to work in Private Information Retrieval

(PIR), garbled circuit systems, encrypted data systems, and Oblivious RAM (ORAM)

systems. In this section, we will compare the private querying system we built -

Splinter - to previous work in this space.

5.1.1 Private Information Retrieval

Our system, Splinter, is most closely related to systems that use Private Information

Retrieval (PIR) [12] to query a database privately. In PIR, a user queries for the 𝑖th

record in the database, and the database does not learn the queried index 𝑖 or result.

Much work has been done on making PIR protocols more efficient [39, 37]. Work has

also been done to extend PIR to return multiple records [21], but it is computationally

expensive. Our work is most closely related to the system presented by Olumofin and

Goldberg in [36], which implements a parametrized SQL-like query model similar to

Splinter using PIR. However, because this system uses PIR, it has up to 10× more

round trips and much higher response times for similar queries.

Popcorn [22] is a media delivery service that uses PIR to hide user consumption

habits from the provider and content distributor. However, Popcorn is optimized for

35

streaming media databases, like Netflix, which have a small number (about 8000) of

large records.

The systems above have a weaker security model: all the providers need to be

honest. In Splinter, we only require one honest provider. Moreover, Splinter is more

practical than these systems because it extends Function Secret Sharing (FSS) [10, 18],

which lets it execute complex operations such as sums in one round trip instead of

only extracting one data record at a time.

5.1.2 Garbled Circuits

Systems such as Embark [28], BlindBox [47], and private shortest path computation

systems [51] use garbled circuits [9, 19] to perform private computation on a single

untrusted server. Even with improvements in practicality [8], these techniques still

have high computation and bandwidth costs for queries on large datasets because a

new garbled circuit has to be generated for each query. (Reusable garbled circuits [20]

are not yet practical.) For example, the recent map routing system by Wu et al. [51]

has a 100× higher response time and 10× higher bandwidth cost than Splinter.

5.1.3 Encrypted Data Systems

Systems that compute on encrypted data, such as CryptDB [40], Mylar [41],

SPORC [15], Depot [31], and SUNDR [29], all try to protect private data against

a server compromise, which is a different problem than what Splinter tries to solve.

CryptDB is most similar to Splinter because it allows for SQL-like queries over en-

crypted data. However, all these systems protect against a single, potentially com-

promised server where the user is storing data privately, but they do not hide data

access patterns. In contrast, Splinter hides data access patterns but is only designed

to operate on a public dataset that is hosted at multiple providers and hide the user’s

query parameters.

36

5.1.4 ORAM Systems

Splinter is also related to systems that use Oblivious RAM [48, 30]. ORAM allows a

user to read and write data on an untrusted server without revealing her data access

patterns to the server. However, ORAM cannot be easily applied into the Splinter

setting. One main requirement of ORAM is that the user can only read data that

she has written. In Splinter, the provider hosts a public dataset, not created by any

specific user, and many users need to access the same dataset.

5.2 Map Routing Algorithms

5.2.1 Contraction Hierarchies

Using Contraction Hierarchies is a technique to speed up shortest-path routing by

first precomputing a contracted graph [17]. This allows queries to be faster and

to require less computation than other shortest-path routing methods. However, it

still requires processing during the querying phase, which is not practical for our

applications because any processing of one table entry would need to also be applied

to every other table entry, to preserve query privacy.

5.2.2 Transit Node Routing

Transit Node Routing is another technique to speed up shortest-path routing, by first

finding transit nodes and precomputing the shortest distances between them. Transit

nodes are nodes with the property that every shortest path that is non-local (covers

a large distance) will travel along the shortest path between the origin’s transit node

and the destination’s transit node. The TRANSIT algorithm [24] implements Transit

Node Routing, and can answer non-local shortest path queries with a speed-up of two

orders of magnitude faster than the best previously reported query processing times.

Most importantly for our purposes, TRANSIT finds shortest paths by combining

information from a small number of look-ups in a table. This allows us to apply our

techniques of Function Secret Sharing to the table look-ups that TRANSIT uses, in

37

order to implement efficient shortest path private queries.

5.3 Privacy-Preserving Map Routing

There have been numerous approaches toward private shortest path computation.

Some approaches [14, 26] hide the client’s location by using approximate locations,

or by submitting dummy requests from other locations. Other works [32, 33, 52]

use cryptographic protocols such as PIR to hide source and destination pairs, which

provide location privacy but do not hide the server’s routing information.

A practical implementation of privacy-preserving shortest path computations [51]

uses Symmetric Private Information Retrieval (SPIR), Oblivious Transfer, and Yao’s

garbled circuits. It computes routes one hop at a time - that is, each query the

user issues will return the next step along the shortest path to their destination,

where a step roughly corresponds to an intersection between streets. This is arguably

practical, as clients may want to view their whole route at once instead of loading it

one step at a time.

38

Bibliography

[1] Proceedings of the 9th Symposium on Operating Systems Design and Implemen-
tation (OSDI), Vancouver, Canada, October 2010.

[2] Proceedings of the 13th Symposium on Networked Systems Design and Imple-
mentation (NSDI), Santa Clara, CA, March 2016.

[3] Amazon. Amazon EC2 Instance Pricing. https://aws.amazon.com/ec2/
pricing/.

[4] Julian Arz, Dennis Luxen, and Peter Sanders. Transit node routing reconsidered.
In Experimental Algorithms, pages 55–66. 2013.

[5] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route
planning in transportation networks. arXiv preprint arXiv:1504.05140, 2015.

[6] Holger Bast, Stefan Funke, and Domagoj Matijevic. Ultrafast shortest-path
queries via transit nodes. The Shortest Path Problem: Ninth DIMACS Imple-
mentation Challenge, 74:175–192, 2009.

[7] Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. Fast routing
in road networks with transit nodes. Science, 316(5824):566–566, 2007.

[8] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Ef-
ficient garbling from a fixed-key blockcipher. In Proceedings of the 34th IEEE
Symposium on Security and Privacy, pages 478–492, San Francisco, CA, May
2013.

[9] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Proceedings of the 19th ACM Conference on Computer and Commu-
nications Security (CCS), pages 784–796, Raleigh, NC, October 2012.

[10] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Proceedings
of the 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), pages 337–367. Sofia, Bulgaria, April
2015.

39

[11] Chi-Hung Chi, Choon-Keng Chua, and Weihong Song. A novel ownership scheme
to maintain web content consistency. In International Conference on Grid and
Pervasive Computing, pages 352–363. Springer, 2008.

[12] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private
information retrieval. Journal of the ACM (JACM), 45(6):965–981, 1998.

[13] DIMACS. 9th DIMACS Implementation Challenge - Shortest Paths. http:
//www.dis.uniroma1.it/challenge9/download.shtml.

[14] Matt Duckham and Lars Kulik. A formal model of obfuscation and negotiation
for location privacy. In Proceedings of the 11th International Conference on
Pervasive Computing, pages 152–170, Munich, Germany, May 2005.

[15] Ariel J. Feldman, William P. Zeller, Michael J. Freedman, and Edward W. Felten.
SPORC: Group collaboration using untrusted cloud resources. In Proceedings of
the 9th Symposium on Operating Systems Design and Implementation (OSDI)
[1].

[16] Shafi Goldwasser Vinod Vaikuntanathan Frank Wang, Catherine Yun and Matei
Zaharia. Splinter: Practical private queries on public data. In Proceedings of
the 14th Symposium on Networked Systems Design and Implementation (NSDI),
pages 299–313, Boston, MA, March 2017.

[17] Schultes Geisberger, Sanders and Delling. Contraction Hierarchies: Faster and
Simpler Hierarchical Routing in Road Networks. In Proceedings of the 7th Inter-
national Workshop on Experimental Algorithms, pages 319–333, Cape Cod, MA,
May 2008.

[18] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In
Proceedings of the 33rd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques (EUROCRYPT), pages 640–658. Copen-
hagen, Denmark, May 2014.

[19] Shafi Goldwasser. Multi party computations: past and present. In Proceedings
of the 16th Annual ACM Symposium on Principles of Distributed Computing
(PDC), pages 1–6, 1997.

[20] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryp-
tion. In Proceedings of the 45th Annual ACM Symposium on Theory of Comput-
ing (STOC), pages 555–564, Palo Alto, CA, June 2013.

[21] Jens Groth, Aggelos Kiayias, and Helger Lipmaa. Multi-query computationally-
private information retrieval with constant communication rate. In International
Workshop on Public Key Cryptography, pages 107–123. Springer, 2010.

40

[22] Trinabh Gupta, Natacha Crooks, Srinath TV Setty, Lorenzo Alvisi, and Michael
Walfish. Scalable and private media consumption with Popcorn. In Proceedings of
the 13th Symposium on Networked Systems Design and Implementation (NSDI)
[2], pages 91–107.

[23] Aniko Hannak, Gary Soeller, David Lazer, Alan Mislove, and Christo Wilson.
Measuring price discrimination and steering on e-commerce web sites. In Pro-
ceedings of the Conference on Internet Measurement Conference (IMC), pages
305–318, 2014.

[24] Stefan Funke Holger Bast and Domagoj Matijevic. TRANSIT: Ultrafast shortest-
path queries with linear-time preprocessing. In Proceedings of the 9th Center
for Discrete Mathematics and Theoretical Computer Science, Piscataway, NJ,
September 2006.

[25] Jeremy Singer-Vine Jennifer Valentino-Devries and Ashkan Soltani. Websites
Vary Prices, Deals Based on Users’ Information, December 24 2012. Wall Street
Journal.

[26] Hong Va Leong Ken C. K. Lee, Wang-Chien Lee and Baihua Zheng. Navigational
path privacy protection. In Proceedings of the 18th International Conference on
Information and Knowledge Management, pages 691–700, Hong Kong, China,
November 2009.

[27] Jason Kincaid. Another Security Hole Found on Yelp, Facebook Data
Once Again Put at Risk, May 11 2010. http://techcrunch.com/2010/05/11/
another-security-hole-found-on-yelp-facebook-data-once-again-put-at-risk/.

[28] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Ratnasamy, and Zhi Liu.
Embark: Securely outsourcing middleboxes to the cloud. In Proceedings of the
13th Symposium on Networked Systems Design and Implementation (NSDI) [2],
pages 255–273.

[29] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha. Secure un-
trusted data repository (SUNDR). In Proceedings of the 6th Symposium on Oper-
ating Systems Design and Implementation (OSDI), pages 91–106, San Francisco,
CA, December 2004.

[30] Jacob R Lorch, Bryan Parno, James Mickens, Mariana Raykova, and Joshua
Schiffman. Shroud: Ensuring private access to large-scale data in the data cen-
ter. In Proceedings of the 11th USENIX Conference on File and Storage Tech-
nologies (FAST), pages 199–213, San Jose, CA, February 2013.

[31] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi,
Mike Dahlin, and Michael Walfish. Depot: Cloud storage with minimal trust. In
Proceedings of the 9th Symposium on Operating Systems Design and Implemen-
tation (OSDI) [1].

41

[32] Kyriakos Mouratidis. Strong location privacy: A case study on shortest path
queries. In Proceedings of the 29th IEEE International Conference on Data En-
gineering, pages 136–143, Brisbane, Australia, April 2013.

[33] Kyriakos Mouratidis and Man Lung Yiu. Shortest path computation with no
information leakage. In Proceedings of the 38thInternational Conference on Very
Large Databases, pages 692–703, Istanbul, Turkey, August 2012.

[34] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large
sparse datasets. In Proceedings of the 29th IEEE Symposium on Security and
Privacy, pages 111–125, Oakland, CA, May 2008.

[35] Arvind Narayanan and Vitaly Shmatikov. Myths and fallacies of personally
identifiable information. Communications of the ACM, 53(6):24–26, 2010.

[36] Femi Olumofin and Ian Goldberg. Privacy-preserving queries over relational
databases. In Proceedings of the 10th Privacy Enhancing Technologies Sympo-
sium, pages 75–92, Berlin, Germany, July 2010.

[37] Femi Olumofin and Ian Goldberg. Revisiting the computational practicality
of private information retrieval. In Financial Cryptography and Data Security,
pages 158–172. 2011.

[38] OpenStreetMap. OpenStreetMap. https://www.openstreetmap.org/.

[39] Rafail Ostrovsky and William E Skeith III. A survey of single-database private
information retrieval: Techniques and applications. In Public Key Cryptography
(PKC), pages 393–411. 2007.

[40] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Bal-
akrishnan. CryptDB: Protecting confidentiality with encrypted query processing.
In Proceedings of the 23rd ACM Symposium on Operating Systems Principles,
pages 85–100, Cascais, Portugal, October 2011.

[41] Raluca Ada Popa, Emily Stark, Jonas Helfer, Steven Valdez, Nickolai Zeldovich,
M. Frans Kaashoek, and Hari Balakrishnan. Building web applications on top of
encrypted data using Mylar. In Proceedings of the 11th Symposium on Networked
Systems Design and Implementation (NSDI), pages 157–172, Seattle, WA, April
2014.

[42] Fahmida Y. Rashid. Twitter Breached, Attackers Stole 250,000 User
Data, February 2 2013. http://securitywatch.pcmag.com/none/
307708-twitter-breached-attackers-stole-250-000-user-data.

[43] Ramprasad Ravichandran, Michael Benisch, Patrick Gage Kelley, and Norman M
Sadeh. Capturing social networking privacy preferences. In Proceedings of the 9th
Privacy Enhancing Technologies Symposium, pages 1–18, Seattle, WA, August
2009.

42

[44] Patrick F Riley. The Tolls of Privacy: An underestimated roadblock for electronic
toll collection usage. Computer Law & Security Review, 24(6):521–528, 2008.

[45] Felix Salmon. Why the Internet is Perfect for Price Discrimination,
September 3 2013. http://blogs.reuters.com/felix-salmon/2013/09/03/
why-the-internet-is-perfect-for-price-discrimination/.

[46] Rick Seaney. Do Cookies Really Raise Airfares?, April 30 2013.
http://www.usatoday.com/story/travel/columnist/seaney/2013/04/
30/airfare-expert-do-cookies-really-raise-airfares/2121981/.

[47] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. Blindbox:
Deep packet inspection over encrypted traffic. In Proceedings of the 2015 ACM
SIGCOMM, pages 213–226, London, United Kingdom, August 2015.

[48] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. Path ORAM: An extremely simple oblivious
RAM protocol. In Proceedings of the 20th ACM Conference on Computer and
Communications Security (CCS), Berlin, Germany, November 2013.

[49] Adam Tanner. Different customers, Different prices, Thanks to big data,
March 21 2014. http://www.forbes.com/sites/adamtanner/2014/03/26/
different-customers-different-prices-thanks-to-big-data/.

[50] Renu Tewari, Thirumale Niranjan, and Srikanth Ramamurthy. WCDP: A proto-
col for web cache consistency. In Proceedings of the 7th Web Caching Workshop.
Citeseer, 2002.

[51] David J Wu, Joe Zimmerman, Jérémy Planul, and John C Mitchell. Privacy-
preserving shortest path computation. In Proceedings of the 2016 Annual Net-
work and Distributed System Security Symposium, San Diego, CA, February
2016.

[52] Loren Schwiebert Yong Xi and Weisong Shi. Privacy preserving shortest path
routing with an application to navigation. In Pervasive and Mobile Computing,
pages 13:142–149. 2014.

43

