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by
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ABSTRACT

Microbial communities are typically incredibly diverse, with many species contributing to the
overall function of the community. The structure of these communities is the result of many
complex biotic and abiotic factors. In this thesis, my colleagues and I employ a bottom-up
approach to investigate the role of interspecies interactions in determining the structure of
multispecies communities. First, we investigate the network of pairwise competitive interactions
in a model community consisting of 20 strains of naturally co-occurring soil bacteria. The
resulting interaction network is strongly hierarchical and lacks significant non-transitive motifs, a
result that is robust across multiple environments. Multispecies competitions resulted in
extinction of all but the most highly competitive strains, indicating that higher order interactions
do not play a major role in structuring this community. Given the lack of non-transitivity and
higher order interactions in vitro, we conclude that other factors such as temporal or spatial
heterogeneity must be at play in determining the ability of these strains to coexist in nature. Next,
we propose a simple, qualitative assembly rule that predicts community structure from the
outcomes of competitions between small sets of species, and experimentally assess its predictive
power using synthetic microbial communities composed of up to eight soil bacterial species.
Nearly all competitions resulted in a unique, stable community, whose composition was
independent of the initial species fractions. Survival in three-species competitions was predicted
by the pairwise outcomes with an accuracy of -90%. Obtaining a similar level of accuracy in
competitions between sets of seven or all eight species required incorporating additional
information regarding the outcomes of the three-species competitions. These results demonstrate
experimentally the ability of a simple bottom-up approach to predict the structure of
communities and illuminate the factors that determine their composition.

Thesis supervisor: Jeff Gore
Title: Associate Professor, Physics

2



ACKNOWLEDGMENTS

First and foremost, I owe a debt of gratitude towards Jeff for his exemplary mentorship, patience,
support, and acceptance. In the same vein, I cannot overstate my appreciation for Jonathan. He is
the ultimate role model, both in the lab and out in the real world.

I am also grateful to the other members of the Gore Lab and the Physics of Living Systems
community for their good humor, camaraderie, and succor, and for introducing me to so many of
my other friends over the years. I will sorely miss their daily companionship going forward, but
fully anticipate continuing these friendships beyond the confines of Tech Square.

Ty, Kerry, and Monica each deserve special recognition for their heroic feats of organization and
their unfailingly sunny personalities, even in the face of my many administrative inadequacies.

To my classmates in the Micro program and its directors, past and present: Alan, Kris, Mike, and
Martin, I give my thanks for their dedication to this wonderful community. I would also like to
particularly acknowledge Bonnielee, who has been the nexus of the program since its inception. I
wish her all the best in her retirement.

I'm thankful to my committee members, Martin and Otto, for their expertise and agreeability,
and to my outside committee member, Benjamin Wolfe, for gamely showing up to my defense.

Over the years, I've been lucky to be supported by an excellent team of care providers at MIT
Medical. A special thanks to Drs. Shapiro, Kantrowitz, Ayala, and Fernandes; and to Evan, Kate,
Maya, and the group. I don't know where I would be without them.

A huge thanks to Tommaso, whose companionship has been very meaningful to me. Finally, I'm
grateful for the unwavering support of my family: Stewart, Jennifer, and Hannah. I know that
they have always thought the world of me, no matter what.

Thank you all.

3



TABLE OF CONTENTS

1. Introduction
1.1. Historical and modem perspectives on the origins and maintenance of diversity.. 8
1.2. Methods and motivations for investigating ecological communities..................... 9
1.3. A im s of this thesis................................................................................................... 9
1.4. References............................................................................................................... 11

2. Naturally co-occurring soil bacteria exhibit a robust competitive hierarchy and
lack of non-transitive interactions
2.1. Overview ................................................................................................................. 13
2.2. Results..................................................................................................................... 14
2.3. D iscussion............................................................................................................... 21
2.4. M ethods................................................................................................................... 22
2.5. References............................................................................................................... 26
2.6. Supplem entary M aterials........................................................................................ 29

3. Community structure follows simple assembly rules in microbial microcosms
3.1. Overview ................................................................................................................. 36
3.2. Results..................................................................................................................... 38
3.3. D iscussion............................................................................................................... 45
3.4. M ethods................................................................................................................... 46
3.5. References............................................................................................................... 51
3.6. Supplem entary M aterials........................................................................................ 54

4



LIST OF FIGURES

Chapter Two

Figure 2.1. Twenty strains of bacteria isolated from a single grain of soil were competed
against each other in all pairwise combinations................................................................... 15

Figure 2.2. The network of pairwise interactions among strains is strongly hierarchical... 17

Figure 2.3. Differences in growth parameters frequently predict the outcome of
com p etition ........................................................................................................................... 18

Figure 2.4. The interaction network contains very few cycles........................................... 19

Figure 2.5. As predicted by pairwise outcomes, only three species survive in all-versus-
all com petition ...................................................................................................................... 20

Supplementary Figure 2.1. Colony morphology of selected strains................................. 29

Supplementary Figure 2.2. The hierarchical network structure was reproduced across
m ultiple environm ents.......................................................................................................... 30

Supplementary Figure 2.3. Competitive performance was correlated across
environm ents........................................................................................................................ 3 1

Supplementary Figure 2.4. The likelihood of exclusion increases with larger carrying
capacity advantages.............................................................................................................. 32

Supplementary Figure 2.5. Simulations suggest that differences in growth rate may
result in increasing degrees of competitive hierarchy as the death rate increases............... 33

Supplementary Figure 2.6. Next-generation sequencing of representative co-cultures
supports the relative abundance estimates determined via plating...................................... 34

Chapter Three

Figure 3.1. A bottom-up approach to predicting community composition from
qualitative com petitive outcom es........................................................................................ 37

Figure 3.2. Pairwise competitions resulted in stable coexistence or competitive
ex clu sio n .............................................................................................................................. 39

Figure 3.3. Observed and predicted outcomes of trio competitions................................... 41

5



Figure 3.4. Survival in trio competitions is well predicted by pairwise outcomes............. 43

Figure 3.5. Predicting survival in more diverse competition required incorporating the
outcom es of the trio com petitions........................................................................................ 44

Supplementary Figure 3.1. Simple examples of applying the assembly rule.................. 54

Supplementary Figure 3.2. Competition experiments were performed by co-
inoculating species and propagating them through five growth-dilution cycles................. 55

Supplementary Figure 3.3. Growth rate in monoculture is correlated with competitive
ability, but does not predict pairwise competitive outcomes............................................... 56

Supplementary Figure 3.4. Inconsistent trio outcomes are likely due to rapid
ev o lution ............................................................................................................................... 57

Supplementary Figure 3.5. Interspecies interactions included interference competition
and facilitation ...................................................................................................................... 58

Supplementary Figure 3.6. The gLV model, fitted to experimental data, does not
improve predictability over the assembly rule................................................................... 59

Supplementary Figure 3.7. gLV simulations recapitulate the experimentally observed
proportions of pair outcomes, and yield a distribution of trio layouts similar to the
ob served one........................................................................................................................ 60

Supplementary Figure 3.8. gLV parameters were fitted to the trajectories of
m onocultures and pair com petitions................................................................................... 61

6



LIST OF TABLES

Chapter Two

Supplementary Table 2.1. Summary of strains used........................................................ 35

Chapter Three

Supplementary Table 3.1. Trio competitions typically resulted in a stable community
whose composition is independent of the starting fractions............................................... 63

Supplementary Table 3.2. Inferred growth rates and carrying capacities......................... 65

Supplementary Table 3.3. Inferred interspecies interaction parameters........................... 66

7



CHAPTER ONE

Introduction

1.1. Historical and modern perspectives on the origins and maintenance of diversity

The Yale limnologist G. Evelyn Hutchinson (1903-1991) had a profound influence on the field

of ecology in the 2 0th century, and on the our understanding of the maintenance of diversity in

particular. Hutchinson is perhaps best known for his so-called "paradox of the plankton'." With

this example, he calls attention to the tension between the intuitively undisputable competitive

exclusion principle 2 and the equally undisputable observation that multiple competing species

are regularly found coexisting in nature - his favored example being the seemingly paradoxical

coexistence of many highly similar species of plankton in a relatively homogeneous aquatic

environment. The basic tenets of the competitive exclusion principle are as old as the field of

ecology itself, being reflected in Charles Darwin's construction of the theory of natural selection3

4and Georgy Gause's mathematical formalization of the struggle for existence .

Of course, real ecosystems are incalculably more complex than the simple models we develop to

describe them; in his paper, Hutchinson provides a laundry list of complicating factors that could

contribute to the coexistence of his plankton species, ranging from microscale environmental

variations allowing for niche separation, to the stabilizing effects of commensalism and

predation, to the existence of non-equilibrium conditions with constant species turnover and

replenishment of species from external sources'. These ideas were have continued to form the

basis of much of theoretical5 and empirical 6 community ecology. In contrast, the idea that neutral

processes could have strong implications for the structure of ecological communities represents a

distinct, yet complementary school of thought 7'8 .

While much of ecological theory has been developed with an eye towards macro-organisms,

microbial communities are equally as deserving of attention, and have a number of notable

differences from their larger scale counterparts. Microorganisms experience and move through

spaces in ways that counteract our intuition; they reproduce and evolve on short timescales,
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leading to complex eco-evolutionary dynamics; and they interact with each other in subtle and

varied ways. In recent years, the rise of metagenomics has revolutionized the field of microbial

ecology, allowing researchers to investigate microbial community structure in a way that is

impossible with traditional culture-based methods9'". Nevertheless, there is still a role for

experimental approaches in microbial community ecology, particularly in order to investigate the

factors that determine community structure and to validate techniques for engineering microbial

consortia.

1.2. Methods and motivations for investigating ecological communities

A greater understanding of how microbial communities are assembled could be useful for a

variety of human endeavors. For example, synthetic biologists may be interested in ways to

construct ecological communities that maximize the production or degradation of a particular

chemical compound, while in clinical settings, synthetic human-associated microbial

communities could be used to help treat or prevent diseases" .At the same time, conservationists

are concerned with preserving existing communities in the face of stark biotic and abiotic

challenges. Since microbes play an outsized role in how ecosystems function throughout the

biosphere , it is essential to understand both the patterns and processes of microbial community

assembly in order to effectively respond to global change. Finally, insights from microbial

ecology can be translated to macro-scale ecological communities and processes, with largely

overlapping applications. In addition to the intrinsic importance of microbes, model microbial

systems can be ideal go-betweens for the application of ecological theory to nature 3 '1 .

Experiments can be performed in minute volumes over short timescales of a few days or weeks,
15,16,17rather than months, years, or even decades, as is often the case with macro-scale ecology ' '

1.3. Aims of this thesis

When I formally submitted my thesis proposal in the spring of 2015, I did so with two specific

aims:
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1. To conduct pairwise competition experiments using bacterial strains isolated from

natural soil communities to investigate the relative importance of resource competition

versus chemically mediated antagonism in bacterial competition.

2. To conduct pairwise competition experiments using a synthetic bacterial community in

order to investigate the possibility of using observations of competitive exclusion,

coexistence, and/or bistability between pairs of species in order to qualitatively predict

the outcome of competition among three or more species.

I present here the results of these efforts. As I have learned to expect, things did not go entirely

as expected. In Chapter Two, my colleagues and I describe the process of establishing a model

system of naturally co-occurring soil bacteria and measuring competitive outcomes between

them in order to address my first aim. When we conceived of this experiment, we did so hoping

to investigate the links among phylogenetic relatedness, the strength of competition, resource

overlap, and the prevalence of antibiotic mediated antagonism in bacteria. The model system

proved to be ill-suited for this aim because it is characterized by intense competition resulting in

a strongly hierarchical interaction network with echoes of Hutchinson's paradox. In Chapter

Three, we propose a simple bottom-up approach for predicting the structure of a multispecies

community and test it in a model bacterial system. We found that our approach predicts

community structure with reasonable accuracy based on simple, qualitative measurements of the

type performed in Chapter Two.
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CHAPTER TWO

Naturally co-occurring soil bacteria exhibit a robust competitive hierarchy and lack of non-
transitive interactions

by Logan Higgins, Jonathan Friedman, Hao Shen, and Jeff Gore

2.1. Overview

Despite their small size, microbes play outsized roles at multiple ecosystem scales, from the

planetary' 8 to that of the human individual 9 . Like their macroscopic counterparts, microbes

typically exist in diverse communities whose functions are intimately related to their structure.

Diversity impacts an ecological community's stability, resilience to perturbations, and its ability

to provide ecosystem services20. Therefore, a long-standing area of interest in microbial ecology

has been understanding the factors that give rise to the diversity observed within microbial

communities . A better understanding of the structure of microbial communities is desirable

for both managing existing microbial communities2 3 and, eventually, engineering them de
24novo

One approach to studying the structure of a community is to investigate the network of

underlying interactions among its constituent members2 5 . These interactions can be classified

according to the effect the interaction has on the fitness of the interacting species. Since

interspecific competition is thought to be a dominant factor in determining whether a given

species can persist in a community 26,27, the network of competitive interactions between species

may be informative of the structure of the community within which the interaction takes place.

Features of competitive interaction networks that could contribute to community diversity can

include non-transitive motifs such as the classic rock-paper-scissors triad 28 , network

modularity29 , or overall trends towards weak interactions among species3

While non-transitivity in particular is often cited as a potential driver of interspecies

coexistence31,32,33, the degree to which it occurs in natural communities remains largely

unknown. Indeed, Levine and colleagues recently asserted that despite the theoretical potential of

non-transitive interactions to stabilize community structure, there is scant evidence that they are
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widespread in natural systems, and that further empirical studies are warranted3 4 . Recent

experimental work using a field-parameterized model of competition in annual plants35 and

naturally co-occurring Streptomyces bacteria suggest that rock-paper-scissors type interactions

may be less common in natural communities than we might assume; however, further studies of

competitive interaction networks in diverse ecological communities are warranted, particularly

among phylogenetically diverse natural assemblages.

Here, we add to this small but growing body of research that suggests that non-transitive

interactions may play a less significant role in maintaining species diversity than is commonly

assumed. We use a model system composed of soil-dwelling heterotrophic bacteria competing in

all pairwise combinations in laboratory culture and find that the overarching feature of the

resulting interaction network is a strong competitive hierarchy, a feature that is naturally at odds

with a high incidence of non-transitivity. Therefore, in the natural environment of these bacteria,

other factors must be at play that account for their ability to co-occur.

2.2. Results

To probe the network of pairwise interactions in a community of diverse microbes, we isolated a

collection 20 strains of naturally co-occurring heterotrophic soil bacteria drawn from 16 species

across seven genera and five families (Fig. 2.1a and Methods). The strains were isolated from a

single grain of soil. Similar to ref37, we co-inoculated all pairwise combinations of the strains at

varying initial fractions and propagated them through at least five growth-dilution cycles. During

each growth cycle, cells were cultured for 24 hours and then diluted by a factor of 100 into fresh

media. The final outcome of competition was determined by plating the cultures on solid agar

and counting colonies, which are morphologically distinct (Fig. 2.1c and Supplementary Fig.

2.1).
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Figure 2.1. Twenty strains of bacteria isolated from a single grain of soil were competed
against each other in all pairwise combinations. a, Phylogenetic tree of the 20 strains used in
this study. Tree was constructed using the full 16S gene. b, Growth rate (orange) and carrying
capacity (purple) of each strain in monoculture, as well as competitive score against other strains
(blue). Lighter shades correspond to lower values, while darker shades correspond to higher
values. c, We competed all 190 pairwise combinations of the soil isolates in the laboratory.
Colonies of different strains are visually distinct, allowing determination of final species
fractions at the end of competition.

Pairwise competitions resulted in one of three qualitatively different outcomes: exclusion,

coexistence, or bistability (Fig. 2.2a-c and Methods). In 153 of the 190 pairs (81%), only one

strain could invade the other and drove it to extinction, an outcome we call exclusion. Nineteen

pairs (10%) were mutually invasible, and thus exhibited coexistence over the time span of the

experiment. Finally, 15 pairs (8%) were mutually non-invasible, an outcome that we call

bistability. In a small number of pairs (3; 2%), we were unable to determine the outcome due to
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contamination. Due to the high incidence of exclusion outcomes, we conclude that these strains

interact in the experimental environment primarily through competition.

As a measure of the overall competitive ability of a given strain, we calculated its average

competitive score, which is simply the strain's mean final fraction in competition across all

partners. The competitive scores that we measured spanned nearly the entire possible range, from

a low of 0.03 to a high of 0.91 (Fig. 2.1b and Supplementary Table 2.1).

The strains exhibit a strong competitive hierarchy. Very few strains were able to exclude a strain

with a higher competitive score; out of 187 pairwise competitions measured, only five resulted in

the lower-ranked strain excluding the higher-ranked one (Fig. 2.2d). The degree of hierarchy in

this interaction network is highly significant when compared to networks with randomized

outcomes (p < 10-19; Fig. 2.2e). To assess whether the hierarchical pattern was specific to a

particular environment, we repeated the competitions with subsets of the 20 primary strains in

different growth media and with different dilution rates (Supplementary Fig. 2.2). Not only were

the resultant interaction networks of these experiments also highly hierarchical (Fig. 2.2f), but

there were also correlations between the strains' competitive scores across the different

experimental conditions (Supplementary Fig. 2.3). Thus, we conclude that hierarchy in pairwise

competition is a central feature of this model community.
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Figure 2.2. The network of pairwise interactions among strains is strongly hierarchical. a-c,
Changes in relative abundance over time in three hypothetical pairs: one in which the outcome
was competitive exclusion; one in which the outcome was stable coexistence; and one in which
the outcome was bistability. The color-coded matrices inset into each diagram indicate the
qualitative outcome for the row species in competition with the column species. d, Pairwise
outcome matrix for the entire 20-strain assemblage. Outcomes are color coded as for a-c, with
white indicating an indeterminate outcome. Rows and columns are sorted in decreasing order of
each strain's competitive score. e, Histogram of so-called "hierarchy scores" for randomized
outcome matrices. The hierarchy score for a given matrix is calculated by summing the final
fractions of the row strain in competition with the column strain across all row-column pairs in
the upper triangle. The difference is highly significant (p < 10-20). f, Hierarchy scores for
pairwise interaction networks associated with varying environmental conditions and the
corresponding randomized networks. NB: 0.2X nutrient broth. M9: IX M9 minimal medium
supplemented with 0.2% casamino acids, 0.4% glycerol, and 1 mM thiamine HCl. Dilution rates
were either 1:100 or 1:10 per 24 hr, and experiments consisted of either the full complement of
20 bacterial strains or subsets of 12, as indicated in parentheses. Error bars represent +/- 1 s.d.
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Next, we asked what characteristics of a strain might best predict its performance in competition.

We hypothesized that strains that grow robustly in monoculture might have competitive

advantages over strains that grow more poorly, as indicated by large differences in early growth

rates and/or carrying capacities between the strains. Indeed, we found that growth rate was

positively correlated with competitive score (Fig. 2.3a) and that the faster-growing strain

excluded the slower one 67% of the time (Fig. 2.3c). Carrying capacity in monoculture was less

predictive of competitive superiority, but still outperformed random guessing (Fig. 3b and

Supplementary Fig. 2.4). While differences in these two parameters can be indicators of the

likelihood of a given competitive outcome, there are many exceptions, and, indeed, some of the

stronger competitors do not necessarily have correspondingly strong single-species growth

parameters.

a
20

100

0 .0.7

00

0 5 10 is 20
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Wlow &VAN
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Figure 2.3. Differences in growth parameters frequently predict the outcome of
competition. a, b, Correlation between rank in growth rate (as estimated using a time-to-
threshold method) or rank in carrying capacity (as measured using OD 600) and rank in
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competitive score. c, Distribution of competitive outcomes for all pairs, with pairs that exhibit
exclusion differentiated according to whether the faster or slower grower excludes the other.

An important corollary of the high degree of hierarchy we observed in the interaction network is

that non-transitive motifs are vanishingly rare. Non-transitive motifs are instances in which a

clear competitive hierarchy among members of a sub-group does not exist, the classic example

being a rock-paper-scissors (RPS) triad (Fig. 2.4a). Of the 987 triads in our collection for which

complete pairwise outcome data are available, only three (0.3%) display the RPS topology. This

number is significantly less than is found in randomized networks, where on average 14% of

triads were RPS (p < 1015; Fig. 2.4b). Furthermore, the three triads that we classify as RPS each

feature strains that display unusually high variability from experiment to experiment, possibly

due to rapid evolution, and further efforts to characterize these triads failed to reproduce the non-

transitive network topology. As dictated by its hierarchical structure, our network is also highly

enriched for perfectly hierarchical feedforward loops (Fig. 2.4a), which were observed in over

50% of triads (Fig. 2.4b). Due to the paucity and irreproducibility of observable non-transitive

relationships among our strains in vitro, we conclude that such relationships are unlikely to be a

significant contributor to their coexistence in a natural environment.

a b

o RPS randomized network

observed

0
.

MFL

other

0 02 0.4 0.6 0.8 1

Fraction of triads

Figure 2.4. The interaction network contains very few cycles. a, Schematics of a perfectly
non-transitive motif (i.e., rock-paper-scissors; top) and a perfectly transitive motif (i.e.,
feedforward loop; bottom) b, There were significantly fewer rock-paper-scissors triads and
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significantly more feedforward loops in the network of observed outcomes as compared to 1000
randomized networks. Error bars represent +/- 1 s.d.

Given the hierarchical structure of the pairwise interaction network, we wondered about the

potential of higher-order interactions and indirect effects among our strains to give rise to a

diverse community. To address this, we inoculated three replicate cultures with equal proportions

of all strains and propagated them through five growth-dilution cycles (Fig. 2.5b). The resulting

assemblages were highly replicable, and consisted of three strains representing some of the

strongest competitors in pairwise experiments (Fig. 2.5a,c), all of which were found to coexist

with each other in pairwise competition. Notably, this combination of survivors was consistent

with the simple community assembly rule put forth in ref3 7 : namely, that a strain is expected to

survive in multispecies competition if and only if it is not excluded by any other surviving

species. Since pairwise outcomes alone are sufficient to predict the outcome of multispecies

competition in this environment, we conclude that higher-order interactions are unlikely to play a

major role in structuring this community.
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Figure 2.5. As predicted by pairwise outcomes, only three species survive in all-versus-all
competition. a, Predictions of the outcome of multispecies competition based on pairwise
outcomes. b, All strains were mixed in equal proportion and allowed to reach equilibrium. c, In
three replicate cultures, only the same three strains survived, each of which was found to coexist
with the others in pairwise experiments.

2.3. Discussion

Theory predicts that there are may factors that can contribute to the generation and maintenance

of diversity in ecological communities. Non-transitivity, cooperation, bistability, weak

interactions, multiple limiting factors, and spatial or temporal segregation have all been

hypothesized to play a role38; however, there is little empirical data regarding the relative

importance of each of these factors in actual communities. Here, we explored one such

community. Our results led us to de-emphasize some factors (e.g., frequent bistability, non-

transitivity, and higher order interactions) while drawing increased focus on others (e.g., multiple

limiting factors and spatial or temporal segregation). Despite these hints, we still do not

completely understand the processes that give rise to the diversity we observe in nature.

Given that soil is a heterogeneous mixture with a multitude of microhabitats, microbial co-

occurrence in soil may be facilitated by niche separation and spatial demixing. This would allow

the coexistence of strains with strong inhibitory interactions in well-mixed environments.

Microbes in soil also experience a strongly fluctuating environment, which can lead to

coexistence of multiple strains over time via the soil spore bank. Members of the genus Bacillus

are particularly well known for their spore-forming ability, which may allow them to persist in a

non-vegetative, and therefore non-competitive state, until conditions favor their growth 39.

Finally, given the strong selection for strains that thrive under laboratory conditions, it is

plausible that the strains used in these experiments are in fact only minor players in the context

of the larger bacterial community in their native habitat, and isolated competition experiments in

the lab do not reflect the full complexity of interactions affecting these microbes in nature.

Simulations of our experimental system using the generalized Lotka-Volterra model (gLV)

predicted that, if the underlying ecological interactions among species are assigned at random,

the pairwise interaction network should become less hierarchical with decreasing death rates
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(Supplementary Fig. 2.5). In order to test this hypothesis, we competed a subset of pairs while

experimentally reducing the daily dilution rate from 1:100 to 1:10 (Fig. 2.2f). The hierarchical

network structure was robust to this manipulation (Supplementary Fig. 2.2a,b), and remained

highly correlated with growth rates in monoculture. While it is possible that reducing the death

rate further could weaken the hierarchy, we can nevertheless not rule out the possibility of an

underlying competitive hierarchy that is correlated with but distinct from the strains' growth

rates.

This experimental system also gives us the opportunity to test the importance of higher order

interactions in shaping communities. Higher order interactions are said to take place when the

presence of an additional species changes the interaction between two existing species40, and

have the potential to contribute to the maintenance of species diversity 41. In bacterial systems,

this can be driven by complex networks of selective antibiotic production and sensitivity42

Despite the potential for higher order interactions in our model community, our simple assembly

rule37, which disregards higher order interactions entirely, accurately predicted the survivors in

all-versus-all competition in vitro, suggesting that higher order interactions are not a major driver

of community structure in this instance.

The observation of high levels of diversity in communities of competing organisms is a long-

standing paradox in community ecology 43. In this work, we showed that a bottom-up approach to

studying community assembly can be useful in narrowing down the range of possible

explanations for the diversity we observe in nature. However, this approach necessitates

removing the organisms from their natural environment, including the larger community in

which the species of interest are embedded. Future work combining in vitro competition

experiments with a more mechanistic understanding of the influence of environment on species

survival would help to further explain the persistence of diversity in nature.

2.4. Methods

Strain isolation and identification. Bacterial strains were isolated from a single grain of soil

collected in September, 2015 in Cambridge, Mass., U.S.A. The grain weighted ~1 mg and was
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handled using sterile technique. The grain was washed in phosphate-buffered saline (PBS) and

serial dilutions of the supernatant were plated on nutrient agar (0.3% yeast extract, 0.5% peptone,

1.5% bacto agar) and incubated for 48 hr at room temperature. Isolated colonies were sampled

and cultured at room temperature in 5 mL nutrient broth (0.3% yeast extract, 0.5% peptone) for

48 hr. To ensure purity, the liquid cultures of the isolates were diluted in PBS and plated on

nutrient agar. Single colonies picked from these plates were once again grown in in nutrient

broth for 48 hr at room temperature and the resulting stocks were stored in 20% glycerol at -80'

C.

The 16S rRNA gene was sequenced via Sanger sequencing of DNA extracted from glycerol

stocks carried out at GENEWIZ (South Plainfield, New Jersey, U.S.A.). Sequencing was

performed in both directions using the company's proprietary universal 16S rRNA primers,

yielding assembled sequences - 1100 nt in usable length. Species names were assigned using the

Ribosomal Database Project's Seqmatch module44 based on the type strain with the highest

seqmatch score relative to the query strain. Three strains (B. toyonensis 1, 2, and 3) had identical

16S rRNA sequences, and were therefore differentiated using a 404-bp fragment of the pyrE

gene amplified using the primers 5'-TCGCATCGCATTTATTAGAA-3' and 5'-

CCTGCTTCAAGCTCGTATG-3' following protocols described in ref45 . A list of the strains

used, their competitive scores, and inferred growth parameters is given in Supplementary Table

2.1. For phylogenetic analysis, sequences were aligned using MUSCLE 46 and a tree was

constructed using PhyML 3.047'48.

Estimation of single-species growth parameters. The carrying capacity of each individual

strain was estimated to be its optical density at 600 nm (OD600) in 0.2X nutrient broth after five

repeated growth-dilution cycles, starting from an initial OD600 of 3 x10-. Growth curves at OD600

were measured in flat-bottomed 96-well microtiter plates (BD Biosciences) with lids sealed with

Parafilm in a Tecan Infinite M200 Pro plate reader over 48 hr at 250 C with maximum shaking.

An approximation of the exponential growth rate of each individual strain was extracted from the

growth curves using the time each strain took to reach a threshold optical density. The time-to-

threshold method was chosen over other estimates of growth rate due to wide variations in

growth patterns across the strains, which led to difficulties in fitting parameters to other

population growth models.
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Competition experiments. Prior to competition experiments, cells were streaked out on nutrient

agar plates, grown for 48 hr at room temperature, and then stored at 40 C for up to two weeks.

Single colonies were picked from these plates and grown for 24 hr at room temperature in 0.2X

nutrient broth.

The competitions were initiated by diluting each individual strain in 0.2X nutrient broth to an

OD6 0 0 of 3 x 10-. The diluted cultures were then mixed by volume to the desired starting ratios of

0.05/0.95 and 0.95/0.05 (Strain A/Strain B). The competitions were performed in 200 mL

volumes in flat-bottomed 96-well microtiter plates sealed with Titer Tops@ polyethylene sealing

films (Diversified Biotech). For each growth-dilution cycle, the cultures were incubated at 250 C

and shaken at 900 rpm for 24 hr. At the end of each cycle, the cultures were thoroughly mixed

and then diluted by a factor of 100 into fresh media. OD600 was measured at the end of each

cycle, and final species fractions were estimated after five (or, in the case of initially low plating

density, seven) cycles.

To measure the final species fractions, the co-cultures were diluted by a factor of 104 106

(depending on OD6 0 0 ) in PBS. Seventy-five mL of the diluent was plated onto 10 cm Petri dishes

containing 25 mL of nutrient agar and incubated at room temperature for 48 hr. All but a small

fraction of the strain pairs have distinct colony morphologies, so species fractions were estimated

by counting colonies of each type (median: 51 colonies per plate). Next-generation sequencing of

a subset of the co-cultures affirmed the accuracy of the plating technique (Supplementary Fig.

2.6).

Determining the outcome of competition. The result of competition was classified as one of

three outcomes: exclusion of a single strain, coexistence of both strains, or bistability. A strain

was said to exclude its competitor if it was the sole strain observed from both starting

frequencies after 5 cycles, or if it excluded its competitor when starting from an initial frequency

of 0.95 and achieved a frequency of 0.85 or greater when starting from an initial frequency of

0.05. Pairs were considered bistable if the strain that started out at a frequency of 0.95 excluded

the competitor. All other outcomes were classified as coexistence.
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Calculating competitive score and network hierarchy score. The competitive score si of each

strain i was defined as its mean fraction fri after co-culture with each of the n - 1 competitor

strains:

s= fri /(n - 1)
i*j

The hierarchy score (h.s.) for an n-member network is calculated as:

h.s. = fr,
Si>Sj

The network hierarchy score for the observed set of competitive outcomes was then compared

against the distribution of scores for 10,000 simulated networks in which each pair was randomly

assigned an outcome of exclusion, coexistence, or bistability with probability proportional to the

incidence of each outcome in the empirical dataset. The resulting distribution of hierarchy scores

was approximated using the normal distribution to determine p-values.

Identifying network motifs. The frequencies of distinct topologies among the ( =0 1140(3
three-strain networks were enumerated using the FANMOD software package 49 . Random

networks were simulated by assigning the outcome of exclusion to each pair of strains within the

simulated network with the probability 0.818, which is equal to the fraction of pairs in the

empirical dataset with that relationship. The occurrence of rock-paper-scissors and feedforward

loop motifs were enumerated for 1000 simulated networks and approximated by a normal

distribution to determine p-values.
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2.6. Supplementary Materials
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Supplementary Figure 2.1. Colony morphology of selected strains. Each strain possesses a

distinct morphotype when plated on nutrient agar, allowing for estimation of the relative

abundance of each strain following co-culture in liquid media.
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Supplementary Figure 2.2. The hierarchical network structure was reproduced across
multiple environments. Subsets of 12 soil bacterial strains were competed in all pairwise
combinations from two initial starting fractions (95%/5% and 5%/95% Strain A/Strain B) for
five rounds of batch culture. Experiments were carried out in one of two growth media (either a,
b, 0.2X nutrient broth or c, IX M9 + 0.2% casamino acids + 0.4% glycerol) and at one of two
daily dilution rates (either a, c, 1:100 or b, 1:10). After five successive growth-dilution cycles,
cultures were plated on nutrient agar and the relative abundance of each strain was estimated by
counting colonies. Under all environmental conditions tested, the resulting pairwise interaction
network was significantly more hierarchical than the corresponding randomized interaction
network (p < 106 for all cases).
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Supplementary Figure 2.3. Competitive performance was correlated across environments.
Competitive score in the primary environment (0.2X nutrient broth, dilution factor = 1:100)
versus: a, 0.2X nutrient broth, dilution factor = 1:10. b, M9 + 0.2% casamino acids + 0.4%
glycerol, dilution factor = 1:100. In both comparisons, competitive performance in the primary
environment was positively correlated with performance in the alternate environment.
Experiments were performed as described in Supplementary Fig. 2.2.
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Supplementary Figure 2.4. The likelihood of exclusion increases with larger carrying
capacity advantages. On average, we found that a strain is more likely to prevail in competition
if it has a large carrying capacity advantage relative to the competitor. Overall, we found that the
strain with the higher carrying capacity excludes the strain with the lower carrying capacity in
~59% of pairs. However, in a significant minority of cases (-23%), the low K strain excludes the
high K strain. As capacity threshold increases, the likelihood of coexistence and exclusion of the
high K strain both decrease.
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Supplementary Figure 2.5. Simulations suggest that differences in growth rate may result
in increasing degrees of competitive hierarchy as the death rate increases. We employed a
two-species generalized Lotka-Volterra (gLV) model to simulate pairwise interactions:

=X rix,0) - -&idt '' i"

where x, is the abundance of species i, r, is the intrinsic growth rate of species i, aji is the
interaction coefficient representing the effect of species j on the growth of species i, and 6 is the
death rate. a, b, simulated outcome matrices for 3 = 0 (a) and 6 = 0.6 (b). Intrinsic growth rates
were sampled from a gaussian distribution with mean 1 and standard deviation 0.2. Interaction
coefficients were sampled from a Gaussian distribution with mean 1 and standard deviation 0.3.
Outcomes are color coded as in Fig. 2.2d and Supplementary Fig. 2.3a-c. c, dilution rates were
varied between 0 and 1, with randomly assigned growth rates and interaction coefficients
sampled from the distributions used to generate a and b. Data points represent the mean +/- 1 s.d.
of 100 independent simulations.
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Supplementary Figure 2.6. Next-generation sequencing of representative co-cultures
supports the relative abundance estimates determined via plating. In order to validate our
method for estimating final species fractions, we amplified and sequenced the 16S rRNA gene
from 56 randomly selected co-cultures at the end of the 5-day experiment. We estimated the
relative abundance of each strain via sequencing and via plating. Shown above is a histogram of
the difference between these two estimates. Out of these samples, three contained significant
numbers of reads aligning to a species that is not in our collection, which we consider to be a
contaminant. If the contaminated samples are excluded, the mean error is reduced to 0.11. Other
sources of error include low colony counts for certain samples.
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Supplementary Table 2.1. Summary of strains used.

strain

Arthrobacter nitroguajacolicus
Arthrobacter oxydans
drthro-bacter 'humicola
Cupriavidus basilensis

Paenibacillus cellulositrophicus

Psychrobacillus insolitus
Rummeliibacilluspycnus

Bacillus simplex 1
Bacillus simplex 2

Bacillus aryabhattai 1
Bacillus aryabhattai 2.
Bacillus aryabhattai 3

Bacillus flexus
Bacillus toyonensis 1
Bacillus toyonensis 2
Bacillus toyonensis 3

Bacillus amyloliquefaciens 2
Bacillus amyloliquefaciens -2 .,,,,,

Bacillus altitudinis
Bacillus safensis

Never reached threshold 0D6 0 .

r

4.74 x 10-'
2.51 x 10~
3. 52 x 10~
5.36 x 10-

n/al
2.24 x 10-
4.25 x 10

n/a
n/a

1.3 7 x 10- 1

6.84 x 103

4.74 x 10-3

4.56 x -I
6.84 x I0 3

7.25 x 10-'
6.48 x 10-3

5.13 x 10"
5.60 x 10-
5.87 x 10-3

6.16 x 10-

K competitive
score

0.202
0.203
0.211
0.196
0.143-
0.062
0.153,
0.051
0.092
0.135
0.127
0.050
0.142
0.339
0.374
0.3 74
0.058
0.072
0.145
0.168
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0.396
0.188
0.4 14
0.844
0.319
0.132
0.361
0.028
0.079
0.453
0.374
0.240
0.527
0.909
0.896
0.884
0.758
0.752
0.730
0.756



CHAPTER THREE

Community structure follows simple assembly rules in microbial microcosms

by Jonathan Friedman, Logan M. Higgins, and Jeff Gore

This chapter is presented, with minor changes, as it originally appeared in Nature Ecology &
Evolution 1, 0109 (2017).

3.1. Overview

Virtually every environment on Earth is teeming with microbial life, from the human digestive

tract to hydrothermal vents, miles beneath the ocean's surface. These microbes are vital

components of natural ecosystems: microbial activity drives Earth's biogeochemical cycles50 ,

fertilizes crops , and directly influences human health and well-being52 . These functions are

typically performed not by a single species, but rather by a diverse community composed of

numerous interacting species. For example, there is a growing realization that numerous human

illnesses, such as inflammatory bowel disease, are associated with an altered microbial

community, rather than with any single pathogen5 3 . The ability to predict the structure of these

complex, multispecies communities is crucial for understanding how such communities form and

function, managing natural communities, and rationally designing functional communities de
54,55,56novo

Modeling and predicting microbial community structure is often pursued using bottom-up
57,58,59,60approaches that assume that species interact in a pairwise manner . However, pair

interactions may be modulated by the presence of additional species 61,62 , an effect that can

significantly alter community structure63 and may be common in microbial communities64 . While

it has been shown that such models can provide a reasonable fit to sequencing data of intestinal

microbiomes 65,66, their predictive power remains uncertain, as it has rarely been directly tested

experimentally (refs 67,68 are notable exceptions).

Current approaches to modeling microbial communities commonly employ a specific parametric

model, such as the generalized Lotka-Volterra (gLV) model69,7 0,7 1. Generating predictions from
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such models requires fitting a large number of parameter values from empirical data, which is

often challenging and prone to over-fitting. In addition, the exact form of the interactions needs

to be assumed, and a failure of the model can reflect a misspecification of the type of pairwise

interaction, rather than the presence of higher-order interactions.

Here we take an alternative approach in which qualitative information regarding the survival of

species in competitions between small sets of species (e.g., pairwise competitions) is used to

predict survival in more diverse multispecies competitions (Fig. 3.1). While this approach

forgoes the ability to predict exact species abundances, it does not require specifying and

parameterizing the exact form of interactions. Therefore, it is robust to model misspecification,

and requires only survival data, which can be more readily obtained than exact parameter values.

a
A B

BNC

A C

b
B

A4C

A and B coexist

B and C coexist

A excludes C

Can we predict
te outcomne?

Figure 3.1. A bottom-up approach to predicting community composition from qualitative
competitive outcomes. a,b, Qualitative information regarding the survival of species in
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competitions among small sets of species, such as pairwise competitions (a), is used to predict

survival in more diverse multispecies competitions, such as trio competitions (b). The particular

pairwise outcomes illustrated here reflect the true outcomes observed experimentally in one set

of three species (see Fig. 3.3b).

Intuitively, competitions typically result in the survival of a set of coexisting species, which

cannot be invaded by any of the species that went extinct during the competition. To identify sets

of species that are expected to coexist and exclude additional species, we first use the outcomes

of pairwise competitions. We propose the following assembly rule: in a multispecies competition,

species that all coexist with each other in pairs will survive, whereas species which are excluded

by any of the surviving species will go extinct. This rule formalizes an intuitive expectation

regarding how communities may assemble, and can be used to systemically predict community

structure from pairwise outcomes (Methods and Supplementary Fig. 3.1). Importantly, the rule

predicts the likely outcomes of competition, rather than the only possible ones. For example, for

limited parameter values, even the simple gLV model can generate outcomes that are

inconsistent with this assembly rule 3 .

3.2. Results

To directly assess the predictive power of this approach, we used a set of eight heterotrophic

soil-dwelling bacterial species as a model system (Fig. 3.2a and Methods). Competition

experiments were performed by co-inoculating species at varying initial fractions, and

propagating them through five growth-dilution cycles (Supplementary Fig. 3.2). During each

cycle, cells were cultured for 48 hours and then diluted by a factor of 1500 into fresh media,

which corresponds to ~10.6 cellular divisions per growth cycle, and ~53 cellular divisions over

the entire competition period. The overall competition time was chosen such that species

extinctions would have sufficient time to occur, while new mutants would typically not have

time to arise and spread. Community compositions were assessed by measuring the culture

optical density (OD), as well as by plating on solid agar media and counting colonies, which are

distinct for each species74 . These two measurements quantify the overall abundance of microbes
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in the community, and the relative abundances of individual species, respectively. All

experiments were done in duplicate.

Pairwise competitions resulted in stable coexistence or competitive exclusion of one of the

species. We performed competitions between all species pairs and found that in the majority of

the pairs (19/28 = 68%, Fig. 3.2b) both species could invade each other, and thus stably

coexisted. In the remaining pairs (9/28 = 32%) competitive exclusion occurred, where only one

species could invade the other (time trajectories from one coexisting pair and one pair where

exclusion occurs are shown in Fig. 3.2c. Outcomes for all pairs are shown in Fig. 3.2d). Species'

growth rate in monoculture was correlated with their average competitive ability, but, in line

with previous reports75, it could not predict well the outcome of specific pair competitions

(Supplementary Fig. 3.3).

a Enterobacter aerogenes (Ea)
Serratia marcescens (Sm)

Pseudomonas citronellolis (Pci)
Pseudomonas putida (Pp)

Pseudomonas aurantiaca (Pa)
Pseudomonas chlororaphis (Pch)0.05 Pseudomonas fluorescens (Pf)
Pseudomonas veronii (Pv)

b

d

/ Dynamics of
c .representative pairs

1.0 1.0

0~ 0
0.5 1 o.5

0.01 0.0
0 1 2 3 4 5 0 1 2 3 4 5

Time (growth cycles) Time (growth cycles)

Pui

B A A and B coexist

B - A A excludes B

Figure 3.2. Pairwise competitions resulted in stable coexistence or competitive exclusion. a,
Phylogenetic tree of the set of eight species used in this study. The tree is based on the full 16S
gene and the branch lengths indicate the number of substitutions per base pair. b, Coexistence
was observed for 19 of the 28 pairs, whereas competitive exclusion was observed for 9 of the 28
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pairs. c, Changes in relative abundance over time in one pair where competitive exclusion
occurred and one coexisting pair. The y axis indicates the fraction of one of the competing
species. In the exclusion example (right panel), the species fraction increased for all initial
conditions, resulting in the exclusion of the competitor. In contrast, in the coexistence case (left
panel), fractions converged to an intermediate value and both species were found at the end of
the competition. Error bars represent the standard deviation of the posterior beta distribution of
the fractions, based on colony counts averaged across replicates. d, Network diagram of the
outcomes of all pairwise competitions.

Next, we measured the outcome of competition between all 56 three-species combinations.

These competitions typically resulted in a stable community whose composition was

independent of the starting fractions (Supplementary Table 3.1). However, 2 of the 56 trios

displayed inconsistent results with high variability between replicates. This variability likely

resulted from rapid evolutionary changes that occurred during the competition (Supplementary

Fig. 3.4). All but one of the other trio competitions resulted in stable communities with a single

outcome, independent of starting conditions. This raises the question of whether this unique

outcome could be predicted based upon the experimentally observed outcomes of the pairwise

competitions.

Trios were grouped by the topology of their pairwise outcome network, which was used to

predict their competitive outcomes. The most common topology involved two coexisting pairs,

and a pair where competitive exclusion occurs (30/56 = 54%). To illustrate this scenario,

consider a set of three species, labeled A, B, and C, where species A and C coexist with B in

pairwise competitions, whereas C is excluded when competing with A. In this case, our proposed

assembly rule predicts that the trio competition will result in the survival of species A and B, and

exclusion of C (Fig. 3.3a). This predicted outcome occurred for a majority of the experimentally

observed trios (Fig. 3.3b), but some trio competitions resulted in less intuitive outcomes (Fig.

3.3c). For example, one of the 30 trios with this topology led to the extinction of A and the

coexistence of B and C (Fig. 3.3c). The experimentally observed outcomes of competition in this

trio topology highlights that our simple assembly rule typically works, and the failures provide a

sense of alternative outcomes that are possible given the same underlying topology of pairwise

outcomes. Unpredicted outcomes may occur due to several mechanisms, which are discussed in

Section 3.3.
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Another frequent topology was coexistence among all three species pairs (15/56 = 27%), in

which case none of the species is predicted to be excluded in the trio competition (Fig. 3.3d).

Such trio competitions resulted either in coexistence of all three species, as predicted by our

assembly rule (Fig. 3.3e), or in the exclusion of one of the species (Fig. 3.3f). Overall, 5 different

trio layouts and 11 competitive outcomes have been observed (Fig. 3.3g-k). Notably, all

observed trio outcomes across all topologies can be generated from simple pairwise interactions,

including the outcomes which were not correctly predicted by our assembly rule7 3 . An incorrect

prediction of our simple assembly rule is therefore not necessarily caused by higher-order

interactions.
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Figure 3.3. Observed and predicted outcomes of trio competitions. Changes in species

fraction were measured over time for several trio competitions. a-c, Trios involving two

coexisting pairs and one pair where competitive exclusion occurs. In these plots, each triangle is
a simplex denoting the fractions of the three competing species. The simplex vertices correspond

to a community composed solely of a single species, whereas edges correspond to a two-species
mixture. The edges thus denote the outcomes of pair competitions, which were performed

separately. Trajectories (grey arrows) begin at different initial compositions, and connect the

species fractions measured at the end of each growth cycle. Dots mark the final community

compositions. a, Schematic example, showing that only species A and B are predicted to coexist
for this pattern of pairwise outcomes. b, Example of a trio competition which resulted in the

predicted outcome. c, An example of an unpredicted outcome. d-f, Similar to a-c, but for trios
where all species coexist in pairs. g-k, All trio layouts and outcomes, grouped by the topology of

the pairwise outcome network. With the exception of one trio, all trio competitions resulted in a

unique outcome. Dots denote the final community composition (not exact species fractions, but

rather species survivals). One trio displayed bistability, which is indicated by two dots

representing the two possible outcomes. Two trios displayed inconsistent results with high

variability between replicates, which is indicated by a question mark.

Overall, survival in three-species competitions was well predicted by pairwise outcomes. The

assembly rule predicted species survival across all the three-way competitions with an 89.5%

accuracy (Fig. 3.4a), where accuracy is defined as the fraction of species whose survival was

correctly predicted. To get a sense of how the observed accuracy compares to the accuracy

attainable when pairwise outcomes are not known, as a null model, we considered the case where

the only information available is the average probability that a species will survive in a trio

competition (note that this probability is not assumed to be available in our simple assembly

rule). Using this information, trio outcomes could only be predicted with a 72% accuracy (Fig.

3.4a and Methods). We further compared the observed accuracy to the accuracy expected when

species interact solely in a pairwise manner, according to the gLV equations with a random

interaction matrix (Methods). We found that the observed accuracy is consistent with the

accuracy obtained in simulations of competitions that parallel our experimental setup (p=0.29,

Fig. 3.4b). Survival of species in pairwise competition is therefore surprisingly effective in

predicting survival when species undergo trio competition.
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Figure 3.4. Survival in trio competitions is well predicted by pairwise outcomes. a,
Prediction accuracy of the assembly rule and the null model, where predictions are made solely
based on the average probability that species survive in trio competitions. b, The distribution of
accuracies of prediction made using the assembly rule from gLV simulations that mirror our
experimental design. The experimentally observed accuracy is consistent with those found in the
simulations.

Nonetheless, there are exceptional cases where qualitative pairwise outcomes are not sufficient

to predict competitive outcomes of trio competitions. Accounting for such unexpected trio

outcomes may improve prediction accuracy for competitions involving a larger set of species.

We encode unexpected trio outcomes by creating effective modified pairwise outcomes, which

replace the original outcomes in the presence of an additional species. For example, competitive

exclusion will be modified to an effective coexistence when two species coexist in the presence

of a third species despite one of them being excluded from the pair competition. The effective,

modified outcomes can be used to make predictions using the assembly rule as before (Methods

and Supplementary Fig. 3.1). By accounting for unexpected trio outcomes, the assembly rule

extends our intuition, and predicts community structure in the presence of potentially complex

interactions.
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The ability of the assembly rule to predict the outcomes of more diverse competitions was

assessed by measuring survival in competitions among all seven-species combinations, as well as

the full set of eight species (Fig. 3.5a). Using only the pairwise outcomes, survival in these

competitions could only be predicted with an accuracy of 62.5%, which is barely higher than the

61% accuracy obtained when using only the average probability that a species will survive these

competitions (Fig. 3.5b). A considerably improved prediction accuracy of 86% was achieved by

incorporating information regarding the trio outcomes (Fig. 3.5b). As in the trio competitions,

the observed accuracies are consistent with those obtained in gLV simulations that parallel the

experimental setup, both when predicting using pairwise outcomes alone (p=0.53), or in

combination with trio outcomes (p=0.21, Fig. 3.5c).
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rule from gLV simulations that mirror our experimental design. In these simulations, predictions
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were made using either pair outcomes only, or pair and trio outcomes. In both cases, the
experimentally observed accuracies are consistent with those found in the simulations.

3.3. Discussion

Our assembly rule makes predictions that match our intuition, but there are several conditions

under which these predictions may be inaccurate. First, community structure can be influenced

by initial species abundances76, as has recently been demonstrated in pairwise competitions

between bacteria of the genus Streptomyces77 . Our assembly rule may be able to correctly predict

the existence of multiple stable states, as it identifies all putative sets of coexisting, non-invasible

species in a given species combination. However, we did not have sufficient data to evaluate the

rule's accuracy in such cases, as multi-stability was observed in only one of all our competition

experiments.

Complex ecological dynamics, such as oscillations and chaos, can also have a significant impact

on species survival78' 79, making it difficult to predict the community structure. These dynamics

can occur even in simple communities containing only a few interacting species. For example,

oscillatory dynamics occur in gLV models of competition between as few as three species 73 , and

have been experimentally observed in a cross-protection mutualism between a pair of bacterial

strains 0 . In contrast, our competitions predominantly resulted in a unique and stable final

community. This occurred despite the fact that we observed complex inter-species interactions

involving interference competition and facilitation (Supplementary Fig. 3.4). These results

indicate that complex ecological dynamics may in fact be rare, though it remains to be seen

whether they become more prevalent in more diverse assemblages. Relatedly, prediction is

challenging in the presence of competitive cycles (e.g. "Rock-Paper-Scissors" interactions),

which often lead to oscillatory dynamics, and are thought to increase species survival and

community diversity 81,82. Such non-hierarchical relationships are absent from our competitive

network, and thus their effect cannot be evaluated here.

In the absence of multi-stability or complex dynamics, our approach may still fail when

competitive outcomes do not provide sufficient information regarding the interspecies

interactions. This could be due to higher-order interactions, which only manifest in the presence
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of additional species, or because only qualitative information regarding survival is utilized. The

observed accuracy of the assembly rule was consistent with the one found in gLV simulations,

but this does not necessarily indicate that our species interact in a linear, pairwise fashion. In fact,

fitting the gLV model directly to our pairwise data does not improve predictability

(Supplementary Fig. 3.6). Determining whether, in any particular competition, predictions fail

due to insufficient information regarding the strength of linear interactions, non-linear

interactions, or higher-order interactions will require more detailed measurements.

Controlling and designing microbial communities has numerous important application areas

ranging from probiotic therapeutics, to bioremediation and biomanufacturing54 . The ability to

predict what community will be formed by a given set of species is crucial for determining how

extinctions and invasions will affect existing communities, and for engineering desired

communities. Our results suggest that, when measured in the same environment, community

structure can be predicted from the outcomes of competitions among small sets of species,

demonstrating the feasibility of a bottom-up approach to understanding and predicting

community structure. While these results are encouraging, they were obtained using a small set

of closely related species in well-controlled laboratory settings. It remains to be seen to what

extent these results hold in other systems and in more natural settings, involving more diverse

assemblages which contain additional trophic levels, in the presence of spatial structure, and over

evolutionary time scales.

3.4. Methods

Species and media. The eight soil bacterial species used in this study are Enterobacter

aerogenes (Ea, ATCC#13048), Pseudomonas aurantiaca (Pa, ATCC#33663), Pseudomonas

chlororaphis (Pch, ATCC#9446), Pseudomonas citronellolis (Pci, ATCC#13674), Pseudomonas

fluorescens (ATCC#13525), Pseudomonas putida (ATCC#12633), Pseudomonas veronii

(ATCC#700474), and Serratia marcescens (Sm, ATCC#13880). All species were obtained from

ATCC. The base growth media was M9 minimal media,2 5 which contained IX M9 salts (Sigma

Aldrich, M6030), 2 mM MgSO4, 0.1 mM CaCl2, IX trace metals (Teknova, T1001). For the

final growth media, the base media was supplemented with 1.6 mM galacturonic acid and 3.3
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mM serine as carbon sources, which correspond to 10 mM of carbon for each of these substrates.

These carbon sources were chosen from a set of carbon sources commonly used to characterize

soil microbes (Biolog, EcoPlate) to ensure that each of the eight species survives in monoculture.

Nutrient broth (0.3% yeast extract, 0.5% peptone) was used for initial inoculation and growth

prior to experiment. Plating was done on 10cm Petri dishes containing 25 mL nutrient agar

(nutrient broth with 1.5% agar added).

Competition experiments. Frozen stocks of individual species were streaked out on nutrient

agar Petri plates, grown at room temperature for 48 hr, and then stored at 4 'C for up to 2 weeks.

Prior to competition experiments, single colonies were picked and each species was grown

separately in 50mL Falcon tubes, first in 5ml nutrient broth for 24 hr and next in 5 ml of the

experimental M9 media for 48 hr. During the competition experiments, cultures were grown in

Falcon flat-bottom 96-well plates (BD Biosciences), with each well containing a 150 pl culture.

Plates were incubated at 25 'C without shaking, and were covered with a lid and wrapped in

Parafilm. For each growth-dilution cycle, the cultures were incubated for 48 hr and then serially

diluted into fresh growth media by a factor of 1500.

Initial species mixtures were performed by diluting each species separately to an optical density

(OD) of 3*10~4. Different species were then mixed by volume to the desired composition. This

mixture was further diluted to an OD of 10~4 from which all competitions were initialized. For

each set of competing species, competitions were conducted from all the initial conditions in

which each species was present at 5%, except for one more abundant species. For example, for

each species pair there were 2 initial conditions with one species at 95% and the other at 5%,

whereas for the 8 species competition there were 8 initial conditions each with a different species

at 65% and the rest at 5%. For a few species pairs (Fig. 3.2a-b), we conducted additional

competitions starting at more initial conditions. All experiments were done in duplicate.

Measurement of cell density and species fractions. Cell densities were assessed by measuring

optical density at 600 nm using a Varioskan Flash plate reader. Relative abundances were

measured by plating on nutrient agar plates. Each culture was diluted by a factor between 105

and 106 in phosphate-buffered saline, depending on the culture's OD. For each diluted culture, 75

pl were plated onto an agar plate. Colonies were counted after 48 hr incubation at room
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temperature. A median number of 85 colonies per plate were counted. To determine species

extinction in competition between a given set of species, we combined all replicates and initial

conditions from that competition, and classified as extinct any species whose median abundance

was less than 1%, which is just above our limit of detection.

Assembly rule predictions and accuracy. For any group of competing species, predictions

were made by considering all possible competitive outcomes (e.g. survival of any single species,

any species pair, etc.). Outcomes that were consistent with our assembly rule were those that

were predicted to be a possible outcome of the competition (Supplementary Fig. 3.1). For any

given competition, there may be several such feasible outcomes, however a unique outcome was

predicted for all our competition experiments.

Pairwise outcomes were modified using trio outcomes as following: Exclusion was replaced with

coexistence for pairs that coexisted in the presence of any additional species. Coexistence was

replaced with exclusion whenever a species went extinct in a trio competition with two species

with which it coexisted when competed in isolation. Only modifications cause by the surviving

species, or an invading species were considered. Therefore, a new set of modified pairwise

outcomes was generated for each putative set of surviving species being evaluated.

The prediction accuracy was defined as the fraction of species whose survival was correctly

predicted. When the assembly rule identified multiple possible outcomes, which occurred only in

the gLV simulations, accuracy was averaged over all such feasible outcomes. Additionally, when

the competitive outcome depended on the initial condition, accuracy was averaged across all

initial conditions.

For reference, we computed the accuracy of predictions made based on the probability that a

species will survive a competition between the same number of species. For example, for

predicting trio outcomes, we used the proportion of species that survived, averaged across all trio

competitions. Using this information, the highest accuracy would be achieved by predicting that

all species survive in all competitions, if the average survival probability is > 0.5, and predicting

that all species go extinct otherwise.
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Simulated competitions. To assess the assembly rule's expected accuracy in a simple case in

which species interact in a purely pairwise manner, we simulated competitions using the

generalized Lotka-Volterra (gLV) dynamics:

x i = rixi 1- xi + E aiix)
i:Ai

where xi is the density of species i (normalized to its carrying capacity), ri is the species' intrinsic

growth rate, and cij is the interaction strength between species i and j. For each simulation, we

created a set of species with random interactions where the aij parameters were independently

drawn from normal distribution with a mean of 0.6 and a standard deviation of 0.46. Results

were insensitive to variations in growth rates, thus they were all set to 1 for simplicity. These

parameters recapitulate the proportions of coexistence and competitive exclusion observed in our

experiments, and yield a distribution of trio layouts similar to the one (Supplementary Fig. 3.7).

The probability of generating bistable pairs in these simulations is low (-3.7%, corresponding to

one bistable pair in a set of eight species), and we further excluded the bistable pairs that were

occasionally generated by chance, since we had not observed any such pairs in the experiments.

The accuracy of the assembly rules in gLV systems was estimated by running simulations that

parallel our experimental setup: A set of eight species with random interaction coefficients was

generated, and the pairwise outcomes were determined according to their interaction strengths.

These outcomes were used to generate predictions for the trio competitions using our assembly

rule. Next, all three-species competitions were simulated with the same set of initial conditions

used in the experiments. Finally, the predicted trio outcomes were compared to the simulation

outcomes across all trios to determine the prediction accuracy. Thus, a single accuracy value was

recorded for each set of eight simulated species. Similarly, for each simulated eight-species set,

the pair and trio outcomes were used to generate predictions for the seven-species and eight-

species competitions, and their accuracy was assessed by comparing them to the outcomes of

simulated competitions. Prediction accuracy distributions were estimated using Gaussian kernel

density estimation from the accuracy values of 100 simulated sets of eight species.
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One-sided P-values evaluating the consistency of the experimentally observed accuracies with

the simulation results were defined as the probability that a simulation would yield an accuracy

which is at least as high as the experimentally observed one.

Code availability. An implementation of the assembly rule and the gLV simulations, as well as

routines for evaluating the rule's accuracy are freely available online at:

https://bitbucket.org/yonatanf/assembly-rule.

Data availability. The data that support the findings of this study are available from the

corresponding authors upon reasonable request.
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3.6. Supplementary Materials
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Supplementary Figure 3.1. Simple examples of applying the assembly rule. We consider
three examples of competing species and their pairwise and trio (in panel c) competitive
outcomes. In each example, we enumerate all possible candidate sets of surviving species. For
each set, we denote whether all species within the set coexist, and whether all species not
included in the set are excluded by at least one surviving species. Sets that fulfill both of these
conditions are predicted to be feasible outcomes of the competition. a, The most common pattern
of pairwise outcomes among three species observed experimentally. Species C is not expected to
survive along with species A, and A and B are both predicted to survive, since they are not
excluded by any other species. Therefore, in this simple case, the only predicted outcome is
survival of A and B, and the exclusion of C. b, A trio involving a bistability between species A
and C. This case is predicted to have two possible competitive outcomes: A being the sole
survivor, since it excludes B and cannot be invaded by C; or exclusion of A and coexistence of B
and C. The latter can be a stable outcome since A cannot invade in the presence of C. c, An
example including unexpected trio outcomes. Species C is excluded in the trio ABC, despite
coexisting with A and excluding B in pairwise competition. Additionally, species A survives in
tro ABD despite being excluded by D in isolation. The only predicted outcome in this case is
survival of A, B, and D, and exclusion of C. Survival of A, C, and D, and exclusion of B is not a
predicted outcome since C, rather than B, is excluded in the presence of A.
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Supplementary Figure 3.2. Competition experiments were performed by co-inoculating
species and propagating them through five growth-dilution cycles. During each cycle, cells
were cultured for 48 hours and then diluted by a factor of 1500 into fresh M9 media
supplemented with galacturonic acid and serine as sole carbon sources. Community
compositions were assessed by measuring the culture optical density (OD), as well as by plating
on solid agar media and counting colonies, which are distinct for each species. Community
composition was quantified at the end of the fifth cycle for all competitions, or at the end of
every cycle in cases where the dynamics of competitions were investigated (Fig. 3.2 c, Fig. 3.3
b,c,e,f).

55

nouat ipuass t



a b
20

1.00 OPch QEa *Pp outcome
"a -- fast excludes slow

15 - coexistence
0.75 U

OSm - - - slow excludes fast
U)L

0 0.50 10
4- Opci d)1
0. E
E

0.25).

Papear=0.40 (p=0.33) -------
0.00 0

0.0 0.2 0.4 0.6 0.8 0.0 0.1 0.2 0.3 0.4 0.5
growth rate (1/hr) growth rate difference threshold

Supplementary Figure 3.3. Growth rate in monoculture is correlated with competitive
ability, but does not predict pairwise competitive outcomes. a, Faster growing species tend to
survive pairwise competitions more often than slow growers. b, The probability that a fast-
growing species will exclude a slow-growing species in pairwise competition increased with the
difference between their growth rates. Nonetheless, even pairs which had a big discrepancy in
growth rates where roughly as likely to coexist as they were to result in exclusion of the slow
grower. To estimate growth rates, growth curves were measured for each species in a Tecan
Infinite 200 Pro plate reader. Growth rates were estimated as the exponential growth rate which
corresponds to the measured time it took each species to reach a given optical density (1 02) from
a known initial density (~10~4). These growth rates account for any initial lag time, or slower
growth period, which may impact species' competitive performance.
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Supplementary Figure 3.4. Inconsistent trio outcomes are likely due to rapid evolution. a,b,
In two trios, we observed high variability in competitive outcomes between initial conditions, as
well as between replicates. Both of these cases involved a common pair of species: Ea-Pv. The
triangle are simplex plots, with edges indicating the pairwise outcomes, and dots denoting the
fractions of species at the end of competitions. Dot colors indicate the initial condition of the
competition: at the beginning of competition, the species with the corresponding color was
present at 90% of the total cell density, and the other two species were at 5% each. Competitions
starting from each initial condition were done in duplicate. c, To test whether this variability
could arise during the experiment, we performed additional competitions between Ea and Pv,
involving eight biological replicates and six initial fractions for each replicate. For each
biological replicate, a colony of each species was picked at the beginning of the experiment and
grown in rich media and subsequently in the experimental media prior to the beginning of
competitions (Methods). While all competitions resulted in the coexistence of both species, the
coexistence fraction varied significantly. Most of this variability occurred across the biological
replicates, potentially indicating adaptation during the growth prior to the beginning of
competitions. d, Fraction trajectories for two initial conditions of three of the biological
replicates, highlighting the variability between biological replicates.
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Ea Pa Pch Pci Pf Pp Pv Sm
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Supplementary Figure 3.5. Inter-species interactions included interference competition and
facilitation. a, Several species grew to a higher density in the presence of an additional species
than in monoculture. The impact of each competitor on each focal species was quantified by
calculating its relative yield, defined as: (density in coculture - density in monoculture)/(density
in coculture + density in monoculture). A negative relative yield indicates growth hindrance,
whereas positive values indicated facilitation. b, Interference competition was detected by
growing species on supernatant media in all pairwise combinations. Supernatant was obtained by
filter sterilizing experimental media in which monocultures were grown for 48 hr. The
supernatant media was composed of supernatant supplemented with carbon sources and nutrients
to minimize the effect of resource depletion. Species were grown in the supernatant media, and
their final density when grown of supernatant obtained from other species was compared to the
density achieved when grown on their own supernatant by calculating a relative yield defined as:
(density on other supernatant - density on self supematant)/(density on other supernatant +
density on self supernatant).
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a'l Accuracy for 3-species competitions

SS

Supplementary Figure 3.6. The gLV model, fitted to experimental data, does not improve
predictability over the assembly rule. gLV model parameters were inferred from time
trajectories of monocultures and pairwise competitions (Supplementary Fig. 3.8). The inferred
parameter values were used to simulate trio competitions (a) or competitions between sets of
seven and eight species (b), and to predict species survival.
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Supplementary Figure 3.7. gLV simulations recapitulate the experimentally observed
proportions of pair outcomes, and yield a distribution of trio layouts similar to the
observed one. a, gLV simulations included only pairs displaying competitive exclusion or
coexistence, in proportions matching the experimentally observed ones. Bistable pairs that were
generated in the simulation were discarded. b, The majority of trio layouts that occurred in the
simulations were also observed experimentally, with a median of ~4/56 novel trio layouts
occurring in the simulations. Medians and interquartile ranges (IQR) of occurrences in
simulations are computed using 100 independent simulations. For each simulation, we created a
set of eight species with random interactions strengths (Qij) independently drawn from normal
distribution with a mean of 0.6 and a standard deviation of 0.46. Pairwise outcomes and trio
layouts were determined from the interaction strengths.
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Supplementary Figure 3.8. gLV model parameters were fitted to the trajectories of
monocultures and pair competitions. a, A growth rates (r) and carrying capacities (K) were
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fitted to each monoculture trajectory, using eight replicates per species (Supplementary Table

3.2). b, Interaction coefficients (a1j) were fitted to trajectories of pair competitions, using the

inferred growth rates and carrying capacities (Supplementary Table 3.3). Each pair was

competed in duplicate from two initial conditions where one species constituted 95% of the

community and the other 5%. Some data are missing due to contamination or failed plating. Each

species' OD was determined from the total culture OD and the species fractions, as measured by

colony counting. Fits were done by simulating the growth and dilution cycles with gLV

dynamics within a cycle, and minimizing the root-mean-square difference between the simulated

dynamics and observed ones. The minimization was done using the Nelder-Mead method, as

implemented in the minimize function from the python scipy package (v 0.16.0).
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Supplementary Table 3.1. Trio competitions typically resulted in a stable community whose
composition is independent of the starting fractions. Only a single trio (Pp, Pch, Sm) showed
consistent bistability, with species survival depending on the initial community composition.
Trios are sorted by layout and competitive outcomes. Species are ordered to match the layouts
shown in Fig. 3.3. Survival (extinction) is indicated by a value of 1 (0). Survival values are not
indicated for the two trios that did not display reproducible outcomes (Supplementary Fig. 3.4).
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Supplementary Table 3.2. Inferred growth rates and carrying capacities. Growth rates and
carrying capacities were found by fitting the time trajectories of each species to the gLV model
(Supplementary Fig. 3.8). Note that in the case of single species, the gLV model simplifies to the
logistic growth model. Given values were found by jointly fitting the data from all replicates.
Errors indicate the standard-deviation of parameter values when fitted to each replicate
separately.

r
0.46 0.02
0.55 0.07
0.18 0.07
0.16 0.03
0.25 0.08
0.65 0.09
0.57 0.06
0.34 0.03

K
0.13 0.007
0.07 0.007
0.11 0.006
0.01 0.0005
0.05 0.007
0.14 0.009
0.11 0.005
0.15 0.006

Ea
Pa

Pci
Pf
Pp
PVN
Sm
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Supplementary Table 3.3. Inferred interspecies interaction parameters. Note that these are
interaction parameters (aij) which are not normalized by
corresponding gLV equations are:

Ea
1

-0.18
-0.11
-0.32
-0.02
0.87
0.83
0.96

= riNi (1

Pa Pch
0.69

1
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0
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1.09
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the carrying capacity.
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