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Abstract

Waves, currents, and bathymetric change observed along 11 km of the southern shoreline of
Martha's Vineyard include storm events, strong tidal flows (> 2 m/s), and an inlet migrating 2.5
km in ~7 years. A field-verified Delft3D numerical model developed for this system is used to
examine the hydrodynamics in the nearshore and their effect on the migrating inlet. An initial
numerical experiment showed that the observed 700 tidal modulation of wave direction in the
nearshore was owing to interactions with tidal currents, and not to depth-induced refraction as
waves propagated over complex shallow bathymetry. A second set of simulations focused on the
separation of tidal currents from the southeast corner of Martha's Vineyard, showing the positive
correlation between flow separation and sediment transport around a curved shoreline.
Observations of waves, currents, and bathymetric change during hurricanes were reproduced in a
third numerical experiment examining the competition between storm waves, which enhance
inlet migration, and strong tidal currents, which scour the inlet and reduce migration rates. The
combined field observations and simulations examined here demonstrate the importance of wave
and tidal current forcings on morphological evolution at timescales of days to months.
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Introduction

1. Motivation: Inlets and Coastal Management

The livelihoods of the millions of people living within 100 km of a coastline (over 30% of the

population in the U.S.A alone) [Ache et al., 2015] depend on the ability of coastal managers to

plan for shoreline response to big waves and strong currents, especially as sea levels rise and

storms intensify. At present, there is no systematic method to predict shoreline evolution given

nearshore hydrodynamic conditions. State-of-the-art equations used to calculate sediment

transport owing to waves and currents include several "tuning" parameters to match predicted

with observed sediment transport [A moudry and Souza, 2011]. Tuning allows for reasonable

transport forecasts at individual sites with field observations, but has limited universal

applicability, especially in regions lacking observations. More field observations, coupled with

numerical sediment transport predictions, are needed to understand the nature of shoreline

evolution and to develop more universal transport equations.

Dynamic coastal environments such as inlets can be studied over relatively short timescales

(months to years) to investigate sediment transport in the field. Inlets are ubiquitous around the

world on sandy beaches [Mcninch and Luettich, 2000; Fitzgerald and Pendleton, 2002; Bertin et

al., 2009; Chaumillon et al., 2014], and often are associated with harbors, estuaries, aquaculture,

recreation, and a range of ecosystem services and associated societal benefits. Maintaining an

inlet for human use often requires expensive dredging of the inlet channel or nourishment of

neighboring beaches [Galgano, 2009], costing millions of dollars per year [Parsons and Powell,

2001; Williams and Micallef, 2009]. With better knowledge of sediment transport, these

8



activities could be targeted to maximize the desired impact on the inlet system, while minimizing

cost.

This thesis seeks to improve the understanding of nearshore sediment transport by focusing on a

sandy beach system along the southern shoreline of Martha's Vineyard, Massachusetts, U.S.A.

(Figure 1), which is characterized by a migrating inlet. Field data and a numerical model of this

dynamic coastal environment allow for detailed study of the interaction between waves, currents,

and sediment transport in the nearshore.

2. Katama Inlet

t 
Chappaquiddick I

Island

North, to -20
Cape Cod

-2011

- .''

IPIantic ocean

Figure 1: Martha's Vineyard, MA (green island) highlighting (black box) Katama Bay and
(orange box) Chappaquiddick Island. Satellite images outlined in black show the progression of
Katama Inlet (yellow circle) from 2005 to 2016 (years in lower right). Colored curves within the
orange box (upper right) show the rapid erosion of the corner of the island from (red curve)
2008, (blue curve) 2011, and (satellite image in the background) 2014.
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The transient southern inlet of Katama Bay in Martha's Vineyard, MA provides an ideal case

study of wave-current interaction and sediment transport. In a decadal cycle, the inlet opens

during a large storm, migrates to the east, and closes upon reaching Chappaquiddick Island

(Figure 1) [Ogden, 1974; Dunlop, 2013]. When the inlet is present it turns the Bay, which always

is open to the north via Edgartown Channel, into a passage for tidal flow between Vineyard

Sound and the Atlantic Ocean. Although the resulting tidal currents through the Bay strain

moorings at Edgartown Marina, they also improve navigation to the Atlantic and water quality

for the Bay shellfish farms [Arpin, 1970]. When the inlet is closed (sometimes for decades), the

Bay becomes stagnant, and engineered attempts to improve Bay water quality have been

unreliable. The 1937 artificial inlet lasted for more than a year, but most others (1873, 1919,

1932) closed in less time [Dunlop, 2013].

The Katama system is an example of how a coastal environment responds to regular oceanic

forcing, such as tides and waves, as well as to more powerful, but irregular forcing, such as

strong flows and big waves that occur during storms. Previous studies in the Martha's Vineyard

area have focused on inner shelf dynamics south of the island, using numerical model

simulations ([Ganju and Sherwood, 2010; Ganju et al., 2011] and many others) to explain tidal

controls on tidally rectified recirculation. Extensive field measurements within Katama Bay have

been used to study the impact of storm-force waves on flows out of the Bay [Orescanin et al.,

2014]. This thesis adds to the understanding of Katama and other coastal sandy systems by

focusing on the nearshore region in and offshore of Katama Inlet, using field observations of

waves, currents, and bathymetry in addition to numerical simulations to study the hydro- and

morphodynamics of the system.
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3. Methodology

Field experiments conducted by the WHOI PVLAB in the summers of 2011-2016 used a suite of

techniques to observe hydro- and morphodynamics around Katama Inlet. Acoustic Doppler

current profilers (ADCPs) were used in water depths >2 m to measure waves and profiles of

currents, whereas Acoustic Doppler Velocimeters (ADVs, wave and current meters) were used in

water depths <2 m to measure wave properties and currents. The pressure gages deployed with

the ADCP and ADV sensors also measured water level for tidal analysis. These sensor suites

were augmented with small boat-mounted ADCP transects to obtain measurements of the

vertical distribution of velocity along the ship track. To supplement the temporary deployments,

waves and currents were measured nearly continuously at the Martha's Vineyard Coastal

Observatory (MVCO), just offshore of the Katama study site.

Small boats with GPS and an acoustic altimeter were used to measure the nearshore bathymetry,

and a hand pushed dolly was used to measure subaerial topography. Bathymetry measurements

of the larger MV and Nantucket system were collected by the USGS. In addition, satellite

images of Katama Inlet were used to supplement the approximately twice yearly nearshore

bathymetric surveys.

A Delft3D FLOW-WAVE model was used to expand the spatial and temporal scales of the field

data. Delft3D was designed to simulate surfzone hydrodynamics and sediment transport, and

thus is an appropriate choice for the work presented here. The model has skill predicting

nearshore hydrodynamics ([Elias et al., 2000; Treffers, 2008], and many others), the bulk
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properties of sediment transport around San Francisco Bay [Erikson et al., 2013], the evolution

of beach bathymetry [Aarninkhofet al., 2006], and to study inlet migration [Tung et al., 2009],

tidal channel evolution [Xie et al., 2009], and beach nourishment [Grunnet et al., 2004]. The

extensive observations of tides, winds, waves, currents, and bathymetry near Katama Bay

provide a unique opportunity to implement, test, and calibrate the model to learn more about

shoreline response to oceanic forcing.

4. Thesis Outline

This thesis is divided into three chapters investigating nearshore hydrodynamics and sediment

transport owing to wave-current interaction, large-scale flow separation, and storm intensity.

Chapter 1 studies the impact of tidal currents on wave direction and details the field observations

that are used to validate model hydrodynamics. It describes how wave interactions with strong

inner shelf tidal flows result in large modulations to the directions of the wave field. Chapter 2

describes observations and model simulations of currents and sediment transport around the

curved shoreline of the island. The combination of observations and numerical experiments

suggest the importance of flow separation to nearshore sediment transport. Chapter 3 focuses on

the impact of storms on inlet migration on timescales of days and of months, investigating the

competing effects of waves and currents and the impact of storm clusters. In all chapters, field

observations provide the foundation for simulations of both realistic and idealized inlet systems

used to investigate the interdependence of waves, currents, and morphological evolution at this

dynamic coastal environment.
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Chapter 1:

Observations and model simulations of wave-current interaction on the inner shelf'

Abstract

Wave directions and mean currents observed for two 1-month-long periods in 7- and 2-m water

depths along 11 km of the southern shoreline of Martha's Vineyard, MA have strong tidal

modulations. Wave directions are modulated by as much as 700 over a tidal cycle. The

magnitude of the tidal modulations to the wave field decreases alongshore to the west, consistent

with the observed decrease in tidal currents from 2.1 to 0.2 m/s along the shoreline. A numerical

model (SWAN and Deflt3D-FLOW) simulating waves and currents reproduces the observations

accurately. Model simulations with and without wave-current interaction and tidal depth changes

demonstrate that the observed tidal modulations of the wave field primarily are caused by wave-

current interaction and not by tidal changes to water depths over the nearby complex shoals.

Simulations further show that the direction of tidally averaged wave-driven alongshore transport

in the surfzone primarily is owing to complex nearshore bathymetry and not wave-current

interaction.

'Parts of this chapter have been published as: Hopkins, J., S. Elgar, and B. Raubenheimer (2016),
Observations and model simulations of wave-current interaction on the inner shelf, J Geophys.
Res. Ocean., 121(1), doi:10.1002/2015JC010788.Used with permission as granted in the original
copyright agreement.
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1. Introduction

Understanding wave propagation across the continental shelf to the shore is critical to predicting

forces on shoreline structures, increases in wave-driven water levels, wave overtopping and

flooding, dangerous wave-driven surfzone currents, wave-driven sediment transport, and beach

erosion and accretion. As waves propagate (shoal) over increasingly shallow bathymetry,

conservation of energy flux causes wave heights to become larger before breaking. Breaking

waves dissipate energy while transferring momentum flux to the water column. In the surf zone,

the time-averaged wave-driven forcing raises water levels near the shoreline [Longuet-Higgins

and Stewart, 1964], producing alongshore varying sea levels and currents [Apotsos et al., 2008;

Shi et al., 2011; Hansen et al., 2015] and, in the case of obliquely incident waves, driving

alongshore currents in the direction of wave propagation [Longuet-Higgins, 1970; Thornton and

Guza, 1986; Guza et al., 1986; Feddersen et al., 1998; and many others]. The wave-orbital

velocities and wave-generated mean currents can transport sediment and act as a mechanism for

shoreline evolution [Fredsoe and Deigaard, 1992; van Rijn, 1993; Amoudry and Souza, 2011;

references therein; and many others].

The energy and direction of waves propagating across the continental shelf to the shore are

affected by the bathymetry and by currents, both of which cause shoaling and refraction. Wave

energy can be increased by shoaling and decreased by dissipative processes, including bottom

friction, whitecapping, and depth-limited breaking. Depth-induced refraction increases with

decreasing wave frequency and redirects wave crests to align with bathymetry in shallow water

(potentially resulting in areas with wave focusing and shadowing), although breaking waves are
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not necessarily normally incident. Similarly, currents change wave height and direction by

altering the wavenumber k, given by the linear dispersion relationship

a = V gktanh(kh) (1)

where a is the intrinsic wave frequency, g is the gravitational acceleration, and h is the water

depth. A current U interacting with the wave field causes the intrinsic frequency to be Doppler

shifted such that the apparent (e.g., observed) frequency w becomes [Longuet-Higgins and

Stewart, 1961; Wolfand Prandle, 1999]

o = -+ k - U (2)

which, by re-application of (1) to the Doppler-shifted frequency o in place of a, gives a new

wavenumber. Changes in wavenumber cause changes to energy flux, E Cg, where E is energy and

Cg = F(w, k) is the group velocity. Changes in wavenumber likewise affect wave direction, 0.

Similar to depth-induced changes, current-induced changes in 0 (relative to the current direction)

between two locations (A and B) are given by Snell's Law

kA sin(OA) = kBsin(OB) (3)

There have been many investigations of current-induced wave height growth or decay, usually

for the case of currents flowing in the same or opposite direction of the waves [Gonzales, 1984;

Jonsson, 1990; Wolf and Prandle, 1999; Olabarrieta et al., 2011, 2014; Elias et al., 2012; and

many others]. There are fewer observational studies of the current-induced changes in wave

direction, partially because waves propagating into an opposing or following current (0 =

00 or 1800), such as commonly occurs near strong jets from inlets, river mouths, and estuaries,

do not change direction (Eq 3). The change in direction is maximum for angles near 0 = 450,

and increases with current speed and wave frequency (Eqs 1-3) [ Wolf and Prandle, 1999].
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Previously, tidal modulations of +/- 100 have been observed in 12- to 18-m water depth for

relatively high-frequency (0.5 Hz) waves [Wolf and Prandle, 1999] and in 11 m depth for swell-

dominated (0.05 - 0.30 Hz) wave fields [Hansen et al., 2013]. It was hypothesized that the

modulation of the high-frequency wave direction was owing to tidal currents [ Woif and Prandle,

1999], and numerical simulations of one tidal cycle suggest the directional changes in the

observed swell wave field likewise were owing to currents, not to tidal changes in water depth

[Hansen et al., 2013]. Here, tidally modulated changes to wave heights and directions in 7- and

2-m water depths along an Atlantic Ocean shoreline are investigated with both observations from

two 1-month long periods and numerical model simulations. Simulations with idealized time-

invariant wave boundary conditions are then used to determine the impact of the observed wave-

current interaction on wave-driven sediment transport in the surf zone.

2. Methods

a. Field Observations

Water levels, waves, and currents were measured for approximately one month along 11 km of

the southern shoreline of Martha's Vineyard, MA (Figure 1) in both August 2013 and July-

August 2014. In 2013 and 2014 along the 7-m depth isobath, 1 -min mean current profiles in 0.5-

m high vertical bins between 0.5 m above the sea floor and the sea surface were obtained with

Nortek 1 MHz AWAC acoustic Doppler current profilers for 12 minutes every half hour,

followed by 1024 s of 2 Hz samples of bottom pressure, sea-surface elevation (from a 1 MHz

vertical acoustic beam), and near-surface velocities to estimate wave characteristics. In 2013 an

additional sensor was deployed in 12 m depth (Figure Ib), 8.8 km west of the eastern-most

sensor located at x=0 km. In 2014, 2 Hz observations of currents (0.8 m above the seafloor) and
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near-bottom pressure were measured with 10 MHz Sontek Triton acoustic Doppler velocimeters

at 5 locations along the 2-m depth isobath from x=0 to x=3.3 km (Figure Ic).

[b] -10
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Figure 1: Bathymetry (color contours, scales on the right) and nested grids (black rectangular
outlines) for (a) the full model domain, (b) the region near the shoreline of Martha's Vineyard,
and (c) the inner grid near the shoreline. Open (7 m depth) and filled (2 m depth) circles are
locations of colocated wave and current sensors. The 7-m depth sensors are labeled with their
distance (km) from the eastern-most sensor located at x = 0 km (open circle with "X"). The
sensor at x = 8.8 km was in 12 m depth. The yellow circle in (a) is NOAA buoy 44097 (-50 m
depth). Spatial resolutions (1000, 200, 40, and 13 m) are shown in the lower right-hand corner of
each grid. The sensors in (b) were deployed in 2013, and the sensors in (c) were deployed in
2014. Bathymetric contours near the shoreline of the two inner-most grids are shown in Figure 6.

There was little vertical structure to the mean currents in 7 and 12 m depth except in the bottom

and top 0.5 m high bins, so the interior bins were used to estimate depth-averaged flows. The two

12-min profiling periods every hour were combined to provide estimates of 1-hr means of the

depth-averaged currents. One-hr averages of the alongshore component of the single-point

velocity measurements in 2 m depth are assumed to be representative of depth-averaged

alongshore flows. The 2 Hz time series were used to estimate significant wave heights (Hig, 4

times the standard deviation of sea-surface fluctuations) and wave directions [Kuik et al., 1988]
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in the frequency (/) band 0.05 <f< 0.30 Hz. Bottom pressures were converted to sea-surface

elevation using linear wave theory.

The bathymetry in the region is complex (Figure 1), including islands, shoals, and the rapidly

migrating Katama Inlet [Ogden, 1974] that separates Katama Bay from the Atlantic Ocean.

Bathymetric surveys of the shoreline, inlet channel, and ebb shoal near Katama Inlet were

performed in summer 2013 and 2014 with a GPS and an acoustic altimeter mounted on a jetski.

The horizontal resolution of the j etski surveys is on the order of 10 m, with finer resolution near

steep features. Additional bathymetry was obtained during 1998 and 2008 USGS surveys

(Northeast Atlantic 3 arc second map [National Geophysical Data Center, 1999] and Nantucket

1/3 arc second map [Eakins et al., 2009]), and has horizontal resolution of 10 to 90 m. The

southern shoreline of Martha's Vineyard is oriented east-west (Figure 1). West of Katama Inlet,

bathymetry contours, especially in depths less than ~10 m are roughly parallel to the shoreline

(Figure Ib). However, south and east of Katama Inlet and Bay, the bathymetry is cross- and

alongshore inhomogeneous.

Offshore waves were measured in approximately 50 m depth with a Waverider buoy (Figure 1 a,

NOAA buoy 44097). Offshore waves were small to moderate (Hsig < 2 m), usually coming from

the south, southwest, or southeast (Figure 2). Tidal currents were more than 2.0 m/s at the

eastern-most 7-m depth sensor (x=0 kin, Figure 1), and decreased to less than 0.2 m/s 11 km to

the west (x=10.8 kin, Figure Ib) (discussed below). Maximum tidal currents in 2 m depth also

decreased from east (0.8 m/s at x~0 km, Figure Ic) to west (0.2 m/s at x~3.3 kin, Figure Ib).

These observations are consistent with prior studies of tidal propagation in the region [Chen et
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al., 2011], including the phase difference between the 0.5 m amplitude tides in Vineyard Sound

and the Atlantic Ocean, which drive tidal currents greater than 2 m/s through Muskeget Channel

(Figure 1). To the west of Muskeget Channel, tidal currents weaken and become east-west

oriented [Chen et al., 2011]. The measured (and modeled) alongshore changes in the tidal

modulation of currents, wave heights, and directions (discussed below) in 2- and 7-m water

depths in 2014 are consistent with those in 7 m depth in 2013, suggesting that the westward

decrease in tidal modulation is owing to a temporally constant spatial structure, not a change in

behavior from 2013 to 2014.
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Figure 2: Offshore (a,c) significant wave height and (b,d) wave direction (in nautical
coordinates, so that waves coming from the south have direction = 1800) estimated with
measurements from the NOAA Waverider buoy in 50-m water depth (Figure 1) in (a, b) 2013
and (c, d) 2014 versus time. The dashed lines at 180' are approximately shore normal in 7-m
water depth.

b. Numerical Model

A coupled wave and flow numerical model was used to investigate the processes leading to the

spatial and temporal structure of the waves and currents observed south of Martha's Vineyard.

Waves were modeled with SWAN [Booij et al., 1999] by solving the wave action conservation

equation, and currents were modeled with Delft3D-FLOW [Lesser et al., 2004] by solving the
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nonlinear shallow water equations. The wave model includes depth- and current-induced

refraction, and dissipation owing to whitecapping, depth-induced breaking, and bottom friction.

Wind was not implemented because observed winds usually were less than 5 m/s [mean

(standard deviation) were 2.8 (1.6) and 3.4 (2.0) m/s in 2013 and 2014, respectively]. For the

conditions observed here, model results with wind were not significantly different than results

without wind. Quartet and triad nonlinear interactions were turned off owing to the lack of wind

forcing, the relatively short propagation distances in deep water, and the focus on observations

seaward of the region of strong quadratic nonlinearities (where kh << 1). Although quadratic

nonlinear interactions are important to many aspects of wave evolution in shallow water

[Freilich and Guza, 1984], their effects on bulk (energy weighted) statistics of the wave field

(e.g., wave height, average direction, centroidal frequency) are relatively small [Gorrell et al.,

2011]. The circulation model includes the effects of waves on currents through wave radiation-

stress gradients, combined wave and current bed shear stress, and Stokes drift. The wave and

flow models were coupled, such that FLOW passes water levels and Eulerian depth-averaged

velocities to SWAN, and SWAN passes wave parameters to FLOW, which is run continuously

for < 0.25 s time intervals. Similar combined wave and circulation models have been used to

investigate wave-current interactions on the inner shelf [8-15 m depth Hansen et al., 2013], in

the surf zone [Hansen et al., 2014, 2015; Chen et al., 2015], near river mouths [Elias et al.,

2012], and in coastal bays [Mulligan et al., 2010].

SWAN and Delft3D-FLOW (in depth-averaged mode) were run over 3 (2013) and 4 (2014)

nested grids (Figure la) with both two-way (FLOW) and one-way nesting (SWAN). The

outermost grid, with 1 km resolution, spans about 150 km along the north and south boundaries
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and 100 km along the east and west boundaries. Nested in this coarse grid are finer grids of 200

and 40 m resolution in 2013, and a third grid with 13 m resolution in 2014 to compare with the

closely spaced observations (0 < x < 0.7 km, Figure Ic) obtained in 2014. Nesting allows

calculations on the coarser grids to serve as boundary conditions for the finer grids, enhancing

the resolution of the model near the shoreline with minimal computational cost. The combined

USGS large-scale and either the 2013 or the 2014 high-resolution shoreline bathymetry were

interpolated onto each of the nested grids.

SWAN has skill in a range of environments, including the inner shelf south of Martha's

Vineyard [12 to 27 m depth, Ganju and Sherwood, 2010; Ganju et al., 2011] and many shallow

water areas [Magne et al., 2007; Mulligan et al., 2010], whether forced with observations

[Gorrell et al., 2011; Chen et al., 2015; Hansen et al., 2013, 2014, 2015] or with output from

global wave models [van der Westhuysen, 2010; Kumar et al., 2012]. Here, SWAN was run in

stationary mode, with wave-field boundary conditions supplied every 3 hrs. Stationary mode

solves for equilibrium wave conditions for a given set of boundary conditions and is less

computationally expensive than non-stationary mode. For the 3-hr periods and for the wind and

wave conditions used here, the assumption of stationarity is not violated even for the largest grid.

For the 2013 bathymetry, boundary conditions were a JONSWAP frequency-directional (cosN(0),

where the default value of N=20 was used) spectrum based on the mean wave direction 0, Hsig,

and average wave period provided by the model WaveWatchIll [WWIII, Tolman, 2002] every 3

km along the open (water) boundaries of the outer grid. The wave model also was run using the

frequency-directional spectrum estimated with observations at the buoy in 50 m water depth

(Figure 1 a) applied uniformly at each point on the boundaries of the outer grid. For southerly
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waves (which are the most common) model skill was similar for the spatially variable WWIII

wave forcing and the spatially uniform buoy forcing. However, model skill was significantly

higher with the spatially varying WWIII boundary conditions than with the spatially constant

buoy conditions when waves at the buoy came from the north or northeast, in which case the

spatially varying wave field is not represented well by the measurements near the southwest

corner of the domain (Figure la). WWIII simulations were not available in 2014, so buoy

observations were used on the boundaries (wave conditions were southerly). In all cases, SWAN

solves the spectral action balance using 36 directional bins (10*/bin) and 37 frequency bands

logarithmically spaced between 0.03 and 1.00 Hz. The wave model used a depth-limited wave

breaking formulation without rollers [Battjes and Janssen, 1978] with the default value 7 = Hsig/h

= 0.73, and a JONSWAP bottom friction coefficient associated with wave orbital motions set

higher (0.100 m 2 /s 3) than the default (0.067 m2/s3) [Hasselmann et al., 1973]. The higher

coefficient resulted in more accurate modeled wave heights. Using default coefficients, observed

wave heights were under predicted using some friction formulations [Madsen et al., 1988] and

over predicted using other approaches [Collins, 1972]. Model wave directions were insensitive to

the friction formulation.

The circulation model Deflt3D-FLOW solves the time-varying nonlinear shallow water

equations on a staggered Arakawa-C grid using an alternating-direction-implicit solver [Lesser et

al., 2004] to compute currents throughout the modal domain. The model was run using the 13

most energetic satellite-generated tidal constituents [Egbert and Erofeeva, 2002] along open

boundaries, which were dominated by the M2 (~80% of the variance, with small changes

depending on location along the boundary) and N2 (~10% of the variance) constituents. In
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addition, the model used a free slip condition at closed (land) side boundaries, a spatially

uniform Chezy roughness of 65 m0 5 /s (roughly equivalent to a drag coefficient of Cd= 0.0023)

at bottom boundaries, and default Delft3D parameters for coupling the FLOW and WAVE

models [Deltares, 2014]. Second-order differences were used with a time step of 0.25 s for 2013

(40 m spacing in the highest resolution grid) and 0.15 s for 2014 (13 m spacing) for numerical

stability.

Model parameters (e.g., time steps, grid resolution) were chosen to accommodate future studies

of shoreline evolution in the Katama region on time scales varying from that of individual storms

to seasons to years. Spatial and temporal resolutions are fine enough for numerical stability and

verification with observations. Using higher resolution does not change simulation results

significantly and requires more computational effort.

3. Results

a. Model-Data Comparisons

Model predictions of the sea levels, waves, and currents are comparable with observations in 7-

and 2-m water depths in the area south of Martha's Vineyard. The model simulates the observed

3-hr sea-level fluctuations (primarily the M2 tide) fairly well (within a few cm), although

occasionally it under predicts the minima and maxima by as much as 0.10 to 0.15 m (Figure 3).

These model-data differences could be owing to imperfect tidal boundary conditions, inaccurate

model bathymetry, or unmodeled physical processes. Similar to previous results [van der

Westhuysen, 2010; Mulligan et al., 2010; Gorrell et al., 2011; Hansen et al., 2015; and many

others], the model skillfully predicts the wave heights observed in 7 (Figure 4a-c) and 2 m
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(Figure 5a,b) depth. Model-data wave height discrepancies in shallow water (e.g., Figure 5b)

could be caused by inaccurate model bottom friction, incorrect model simulations of sea level, or

inaccurate model bathymetry. The small errors in wave height (which typically are over

estimated at all tide levels) are more likely owing to inaccurate bathymetry than to the under

estimation of the range of sea level fluctuations. The model also skillfully predicts the wave

directions (Figures 4d-f, 5c,d), including the large tidal modulations observed near the eastern

edge of the domain (x=0.3 km, Figure 4f).
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Figure 3. Observed (black curves) and modeled (red curves) 3-hr average sea-surface elevations
(relative to mean sea level) versus time at locations (Figure ib) x = (a) 10.8, (b) 3.3, and (c) 0.3
km (distances are relative to the sensor at x = 0 km). RMSE values (normalized by the data
range) are given in the lower left-hand corners.
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Figure 4: Observed (black curves) and modeled (red curves) 3-hr (a-c) significant wave height
and (d-f) wave direction in 7-m water depth versus time at locations (Figure 1) x = (a, d) 10.8, (b,
e) 3.3, and (c, f) 0.3 km (distances are relative to the sensor at x = 0 km). Grey curves are the
observed offshore (50 m depth) wave heights and directions. RMSE values (normalized by the
data range) are given in the upper right-hand corners.
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Figure 5: Observed (black curves) and modeled (red curves) 3-hr (a, b) significant wave height
and (b, d) wave direction (c, d) in 2-m water depth versus time at locations (Figure 1) x = (a, c)
0.8 and 0 km (distances are relative to the sensor at x = 0 km). Grey curves are the observed
offshore (50 m depth) wave heights and directions. RMSE values (normalized by the data range)
are given in the upper right-hand corners.
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Model simulations suggest strong spatial inhomogeneity in wave heights (Figure 6a) and

directions (Figure 6b) onshore of the complex bathymetry, similar to nearshore waves in other

locations [Apotsos et al., 2008; Hansen et al., 2013; Chen et al., 2015; and others], and

consistent with the observations (colored circles in Figure 6). The tidal modulation of wave

heights (Figures 4 and 5) varied along the shoreline, resulting in a tidally varying alongshore

change in wave height (e.g., Figure 6a) in 7 m depth from 0 to as much as 35% of the offshore

wave height (Figure 7). The model simulates both the magnitude (Figure 6a) and the tidal

modulation (Figure 7b) of the observed alongshore gradient in wave height fairly well.
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Figure 6: Spatial distribution (color contours, scales on the right) of modeled (a) significant
wave height and (b) wave direction on 3 August 2013 09:00 hrs EDT during flood tide (flow
from west to east into Muskeget Channel). Black curves are depth contours every 5 m, and the
black circles are filled with the color of the observed values at those locations. If model and data
agree, the color inside the circle matches the color of the surrounding model contours.
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Figure 7: (a) Difference between the significant wave height observed in 7 mn depth at x = 3.3
and x = 10.8 kmn versus time. (b) Energy density of the time series of alongshore difference in
wave height versus frequency for observations (black curve) and simulated by the model
including tidal currents and water depth changes (blue curve), currents, but no depth changes
(green curve), and depth changes, but no currents (red curve). The spectra have 36 degrees of
freedom, and the 95% confidence levels are shown.

The amplitude of the observed mean currents (primarily M2) decreases from east (Figure 8c,f,

black curves) to west (Figure 8b,e and Figure 8a,d, black curves) by an order of magnitude, and

is modeled well (red curves in Figure 8). At the eastern edge of the domain (x=0.3 km), near the

strong tidal flows in Muskeget Channel (Figure 1), the model underestimates the western

component of the flow (Figure 8c), possibly owing to incorrect modeling of flow separation near

the southeast corner of Chappaquiddick Island (Figure 1). Model simulations (see Chapter 2)

suggest that the size and location of the region of flow separation are sensitive to bathymetry and

shoreline shape, which may not be accurate near the separation region. Model skill is higher a

few kmn to the west (e.g., x=3.3 km, Figure 8b), away from the separation region. Model-data

discrepancies in the relatively small cross-shore (north-south) flows (Figure 8d-f) may be owing

to neglect of cross-shore winds, Stokes-Coriolis currents [Lentz et aL, 2008], three-dimensional

effects, or incorrect bathymetry in the model.
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Figure 8: Observed (black curves) and modeled (red curves) 1-hr mean depth-averaged (a-c)
east and (d-f) north velocity in 7-m water depth versus time at locations (Figure 1) x = (a,b) 10.8,
(c,d) 3.3, and (e,f) 0.3 km. RMSE values (normalized by the data range) are given in the upper
right-hand corners.

The relatively strong tidal flows and the tidal changes in water depth can result in refraction and

tidal modulation of the wave field (including heights and directions), especially at the eastern

edge of the domain where currents are strongest (Figure 8c,f) and the offshore bathymetry is

most inhomogeneous (Figures 1 and 6). For example, the amplitudes of the M2 component of the

observed and modeled tidal currents and wave directions are largest in the east (x=0 km) and

decrease to the west (x=10.8 km) (Figure 9). Near the eastern edge of the domain (x < 0.5 km,

Figure 9) the model under predicts the M2 amplitudes of the mean currents (Figures 8c and 9)

and the wave directions, possibly because horizontal flow separation around Chappaquiddick

Island becomes important in this region. Additionally, small errors in the amplitude of tidal
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boundary conditions could contribute to mismatch between simulated and observed current and

wave direction M2 amplitudes.
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Figure 9: Amplitude of the observed (black symbols) and modeled (red curves) tidal (M2)
modulation of wave direction (open circles, dashed curve) and velocity magnitude (open
diamonds, solid curve) in 7 m depth versus distance from the eastern-most sensor (x = 0 km,
Figure 1). 95% confidence intervals of the M2 amplitude estimates, calculated using a tidal
frequency analysis of the time series ("T TIDE," Pawlowicz et al., 2002) are shown for the
observations. Some of the error bars for the observed velocity magnitude are smaller than the
diamond symbols. The errors in estimating model amplitudes (not shown) are similar to those
from the observations.

b. Simulations of Wave-Current Interaction

To determine if the M2 fluctuations in the wave field are caused by depth- or current-induced

refraction or both, the model was run with both currents and tidal depth oscillations, with tidal

depth oscillations, but no currents, and with currents, but no tidal depth oscillations. The

observed tidal fluctuations in the alongshore gradient of wave heights are simulated better by the

model with currents and depth changes (compare the blue with the black curve in Figure 7b) than

by the model with depth changes only (red curve, Figure 7b). The modeled gradients with

currents, but no depth changes (green curve, Figure 7b) are similar to those using the full model

(currents and depth changes, blue curve, Figure 7b), suggesting the modulations of the

alongshore gradients in wave heights primarily are caused by current-induced refraction.
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Model tests and Eqs (1-3) suggest that the observed tidal modulation in wave direction also is

owing to currents and not depth changes. For 0.1 Hz waves propagating from 50 to 7 m depth

across tidally varying currents with similar magnitudes to flows observed in Muskeget Channel,

Eqs (1-3) predict large ( -3 50) modulations to the wave direction, comparable with the

observations (Figures 4e,f, 5c,d, and 9) and with the model simulations that account for a

frequency-directional spectrum and spatially varying currents and bathymetry (blue curves in

Figure 10). In contrast, the observed tidal modulations of wave direction are not reproduced by

the model when currents are not included (red curves, Figure 10), but are reproduced for the

model with currents, but no tidal depth changes (green curves, Figure 10). Similar to previous

model runs for one tidal cycle [Hansen et al., 2013], the simulations suggest that the observed

tidal modulations of wave direction are caused primarily by current-induced refraction. As waves

refract over the bathymetry between 7 and 2 m depth, the tidal modulation of direction is reduced

to about +10' relative to shore normal (Figure 5 c,d). Consequently, alongshore currents (and

associated sediment flux) driven by breaking waves may change direction (or strengthen and

weaken) with the tide, even when offshore wave conditions are constant.
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Figure 10: (a) Wave direction versus time at x = 0.3 km and (b) energy density of the time series
of wave direction versus frequency for observations [black curve, (b) only] and simulated by the
model including tidal currents and water depth changes (blue curves), currents, but no depth
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changes (green curves), and depth changes, but no tidal currents (red curves). The spectra have
36 degrees of freedom, and the 95% confidence levels are shown. Model-data time series
comparisons are given in Figure 4f.

c. Wave Directions in Shallow Water

The impact of strong current-induced wave direction modulations on tidally-averaged wave-

driven sediment transport was tested using simulations with idealized, time-invariant wave

boundary conditions and nearshore bathymetry featuring a closed inlet (to eliminate effects of

inlet flows on nearshore transport). Specifically, wave conditions with three significant wave

heights (1, 3, and 5 m) and from three directions (south, southwest, southeast) were simulated

with and without tidal currents using both measured bathymetry (when the inlet was closed,

2015, Figure Ila,b) and an idealized version of the 2015 bathymetry with plane parallel depth

contours (Figure 11c). The resulting wave directions were averaged over several tidal cycles to

determine spatial variation in wave direction and direction modulation at 2 and 5 m depth. The

simulations suggest that as offshore wave heights increase for normally incident waves, mean

direction in 5 m depth increases (Figure 12a) and the tidal modulation of the wave direction

decreases (Figure 12b). Larger offshore waves have different energy-weighted directions and

smaller directional modulation because depth-induced breaking on the shallow bathymetry

farther offshore results in energy loss at higher frequencies in the wave spectrum (Eq 1-3).
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Figure 11: Color contours of water depth (2015 observations, red is shallow, blue is deep, scale
on the right) for idealized wave-current interaction model simulations with (a) three offshore
wave directions (normal, -300 from normal, +300 from normal) (white arrows) using (b)
measured and (c) idealized planar-parallel nearshore bathymetry.

Offshore wave direction also impacts the orientation of waves as they propagate over the shoals

south of the inlet (Figure 1). Waves from the south refract to the southwest, and waves from the

southeast refract to be more shore-normal. These changes in direction offshore of the inlet

(Figure 12) suggest the importance of inhomogeneous offshore bathymetry on tidally-averaged

wave direction in the nearshore.
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Figure 12: Tidally-averaged (a,b) wave direction and (c,d) wave direction modulation versus
alongshore distance owing to tidal currents in 5-m water depth for (a,c) offshore significant wave
heights of 3 (dark blue), 1 (teal), and 5 m (orange) and (b,d) offshore wave directions with
offshore wave height set to 3 m from south (shore normal, dark blue), southeast (-30 deg from
shore normal, red), and southwest (+30 deg from shore normal, green). The color contour plot on
top indicates depth (red is shallow, blue is deep, scale on the right) for the alongshore extent
shown in (a-d).

As waves approach the point of breaking, the relative importance of bathymetry and currents to

the tidally averaged wave direction changes. In 5-m water depth, the difference in wave direction

between model simulations with and without tidal currents is greater (about 10 deg, compare

dark blue with purple curves in Figure 13a)) than the difference between simulations with and

without inhomogeneous bathymetry (compare dark blue with teal in Figure 13a). The 10-degree

difference between simulations with and without tidal currents is owing to strong tidal

asymmetry in the alongshore currents (Figure 14). In contrast, wave directions in 2 m depth for

simulations with and without tidal currents showed similar alongshore mean directions, whereas
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the mean wave directions from simulations with inhomogeneous bathymetry (dark blue and

purples curves in Figure 13b) vary significantly relative to the directions of waves propagating

over plane parallel contours (light blue or teal curve in Figure 13b). The pattern in the mean

direction with inhomogeneous bathymetry matches the undulations in the shallow bathymetry

(Figure 13). The simulations suggest that, despite the impact of tidal currents on wave directions

on the inner continental shelf, the direction of waves at breaking (and subsequently the direction

of wave-driven surfzone sediment transport) at Katama primarily is owing to inhomogeneous

shallow water bathymetry.

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.
Alongshore Distance (kn)

Tidal Cr rents + Bathy
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Alongshore Distance (km)

Figure 13: Tidally averaged wave direction simulated at (a) 5- and (b) 2-m depth versus
alongshore distance for (dark blue) model runs with both tidal currents and inhomogeneous
bathymetry impacting wave direction, (purple) model runs with inhomogeneous bathymetry, but
no tidal current effect on waves, and (teal) model runs with tidal currents and planar parallel
bathymetry impacting wave direction. The color contour plot on top indicates depth (red is
shallow, blue is deep, scale on the right) for the alongshore extent shown in (a-d).
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Figure 14: Observed alongshore velocity in 2-m water depth (a) -0.1 (b) 0.6, and (c) 0.8 km west
of the inlet (see map inset). Dashed red lines mark zero velocity to highlight tidal asymmetry.

4. Conclusions

A combined wave (SWAN) and circulation (Delft3D-FLOW) numerical model accurately

simulates waves and currents observed in 7- and 2-m water depths near Katama Bay and Inlet,

on the southern shoreline of Martha's Vineyard, MA in the presence of strong (> 2 m/s) tidal

currents and complex bathymetry. The model reproduces the alongshore gradients in waves and

mean currents, as well as the large ( 350) tidal modulation of wave directions observed for two

1-month-long periods. Model simulations with and without wave-current interactions

demonstrate that the modulations of the wave field in 7 m depth primarily are owing to current-

induced refraction, and not to tidal changes in water levels. In contrast, wave directions in ~2 m

depth at this location are strongly affected by depth-induced refraction over inhomogeneous

shallow water bathymetry, rather than the result of interactions with the strong tidal currents in

deeper water. The comparisons with observations suggest that the model with wave-current
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interaction and with the parameters used here simulates waves and currents accurately in regions

with complex bathymetry and strong currents. These results further suggest that tidal

modulations in wave direction in other coastal environments with complex bathymetry and

strong currents also could be owing to wave-current interaction.
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Chapter 2:

Flow separation effects on shoreline sediment transport'

Abstract

Field-tested numerical model simulations are used to estimate the effects of an inlet, ebb shoal,

wave height, wave direction, and shoreline geometry on the variability of bathymetric change on

a curved coast with a migrating inlet and strong nearshore currents. The model uses bathymetry

measured along the southern shoreline of Martha's Vineyard, MA, and was validated with waves

and currents observed from the shoreline to -1 0-m water depth. Between 2007 and 2014, the

inlet was open and the shoreline along the southeast corner of the island eroded -200 m and

became sharper. Between 2014 and 2016, the corner accreted and became smoother as the inlet

closed. Numerical simulations indicate that the variability of sediment transport near the corner

shoreline depends more strongly on its radius of curvature (a proxy for the separation of tidal

flows from the coast) than on the presence of the inlet, the ebb shoal, or wave height and

direction. As the radius of curvature decreases (as the corner sharpens), tidal asymmetry of

nearshore currents is enhanced, leading to more sediment transport near the shoreline over

several tidal cycles. The results suggest that feedbacks between shoreline geometry and inner-

shelf flows can be important to coastal erosion and accretion along curved coastlines, even in the

vicinity of an inlet.

'Parts of this chapter have been published as: Hopkins, J., S. Elgar, and B. Raubenheimer (2017),
Flow separation effects on shoreline sediment transport, Coast. Eng., 125,
doi:10.1016/j.coastaleng.2017.04.007. Used with permission as granted in the original copyright
agreement.
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1. Introduction

Sediment transport on shorelines is affected by wave-orbital velocities, breaking-wave-driven

currents, tidal currents, and inlet flows. In particular, inlet flows can interrupt alongshore

sediment transport, resulting in sediment deposition inside the bay (flood tide delta), in the ocean

near the inlet mouth (ebb-tide delta or shoal) or farther offshore [Escoffier, 1940; Komar and

Inman, 1970; Slingerland, 1983; Adams et al., 2015, references therein and many others].

Erosion downstream of the inlet is possible owing to inlet-induced reduction in alongshore

sediment supply. The inlet influence can extend for more than 10 km along the coast [Fenster

and Dolan, 1996], although it often extends less than 4 km [Fenster and Dolan, 1996; Hicks et

al., 1999; Castelle et al., 2007; Adams et al., 2015]. The inlet region of influence depends on

many factors, including the geometry of the ebb shoal and main inlet channel [Fitzgerald, 1984],

the offshore bathymetry [Shi et al., 2011; Hansen et al., 2013], wave climate [Bertin et al., 2009;

Robin et al., 2009], tidal prism [Powell et al., 2006; Adams et al., 2015], and the presence of

headlands [Hume and Herdendorf, 1992; O'Connor et al., 2007].

Traditional knowledge associates increased sediment transport around the shoreline at Wasque

Point on the southeast corner of Martha's Vineyard, MA, USA (Figure 1) with the opening of the

nearby Katama Inlet [Ogden, 1974]. Katama Inlet breached in 2007 near the middle of Norton

Point (Figure Ic) and migrated east until it closed in 2015 (Figure I d). While the inlet was open,

the shoreline near the corner of Wasque Point eroded ~200 m [Figure 1 d, compare the purple

curve (2014) with the blue curve (2008, similar to 2007)]. Once Norton Point extended eastward
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and wrapped around Wasque Point, closing the inlet, the corner reverted toward its 2007 position

[Figure 1 d, compare the yellow curve (2015) with the blue curve (2008)]. Here, it is shown that

although the erosion and subsequent accretion of the southeast corner of Martha's Vineyard is

consistent with a potential reduction (increase) in alongshore transport when the inlet is open

(closed), the variability of transport (magnitude of erosion plus magnitude of deposition)

depends strongly on the radius of curvature of the corner, a proxy for flow separation.

Figure 1: (a) Location of Martha's Vineyard, MA, (b) photograph of Chappaquiddick Island,
Katama Bay and Inlet, and Wasque Point in 2014 [within the yellow box in (a)], (c) Google
Earth image of the Katama area 2 months after Norton Point was breached in Apr 2007, and (d)
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close up image of Wasque Point in 2015, with shorelines from 2008 (blue curve, similar to
2007), 2011 (green), 2014 (purple), and 2015 (yellow). Photograph in (b) by Bill Brine.

Similar to the Martha's Vineyard coastline, many shorelines with inlets also have complex

larger-scale bathymetry and strong inner-shelf currents, including inlets throughout New

England [Fitzgerald et al., 2002], along the U.S. Atlantic Coast [Mcninch and Luettich, 2000],

and on sandy coasts around the world [Bertin et al., 2009; Chaumillon et al., 2014]. Strong

currents near headlands or sharp shoreline transitions such as Wasque Point (Figure 1) can

impact sediment transport significantly. In particular, the separation of currents flowing around

headlands or sharp corners can generate eddies that suspend, transport, and deposit sediment

[McNinch and Luettich, 2009; Best, 1987; Signell and Geyer, 1991; White and Wolanski, 2008;

Spiers et al., 2009; and many others]. Sediment transport in this case scales as a cube of the

velocity [Bagnold, 1966] which becomes tidally asymmetric within the region of flow

separation, possibly generating a tidally-averaged transport in the nearshore.

Flow separation and the generation of eddies depend on the radius of curvature of the corner (or

aspect ratio of a headland) [Best and Reid, 1984], the balance of bottom friction and current

strength, and the ratio of flow strength to local acceleration [Signell and Geyer, 1991]. Near

Wasque Point, the strong ebb jet through Muskeget Channel separates from the shoreline,

resulting in a quiescent zone at the southeastern corner of Chappaquiddick Island (Figure 1 a,b).

The evolution of the radius of curvature of Wasque Point, a primary control of flow separation,

over the lifetime of Katama Inlet (Figure 1 d) suggests that flow separation, in addition to the

inlet, could impact sediment transport at nearby shorelines. Here, field-tested numerical model

simulations are used to estimate the effects of an inlet, the ebb shoal, wave height, wave
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direction, and shoreline geometry on erosion and deposition along a curved coast with a

migrating inlet.

2. Numerical Simulations

Waves and currents were simulated with the numerical models SWAN (waves [Boo i et al.,

1999]) and Delft3D-FLOW (currents [Lesser et al., 2004]) using hydrodynamic settings detailed

in Chapter 1. Similar to previous studies at this location [Hopkins et al., 2015], for the no-wind

cases and relatively short evolution distances here, wind and nonlinear interactions were not

included.

Sediment transport [Van Rijn, 1993] was simulated using the modeled waves and currents. Most

model parameters were set to default values with a grain size of 500 [tm based on sediment

samples acquired around Katama Bay in 2013, except for the reference height (0.5 m), the

current-related reference concentration factor (0.25), and the wave-related suspended and bed-

load transport factors (0.1), which were reduced from the default values (1) that smoothed all

bedforms and produced unrealistic transport around the island. Reduction in the wave-related

transport factors has become standard practice for studies using Delft3D (Daly et al., 2014;

among others). Transport was averaged over several tidal cycles to remove variability within ebb

or flood flows. The divergence (convergence) of the transport vectors was used as a proxy for

erosion (deposition), and the morphology was not updated during the model run. These proxies

primarily are a function of the simulated hydrodynamics, which have been verified with field

observations at this [Hopkins et al., 2015] and other [Mulligan et al., 2010; Elias et al., 2012;

Hansen et al., 2013, 2014, 2015] shallow-water locations.
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Similarly to the model in Chapter 1, large-scale bathymetry within the model domain was

obtained during 1998 and 2008 USGS surveys (Northeast Atlantic 3 arc second map National

Geophysical Data Center, 1999] and Nantucket 1/3 arc second map [Eakins et al., 2009]), and

has horizontal resolution of 10 to 90 m. The bathymetry near the shoreline, inlet channel, bay,

and ebb shoal near Katama Inlet was obtained each summer between 2011 and 2015 with a GPS

and an acoustic altimeter mounted on a jetski. The horizontal resolution of the jetski surveys is

on the order of 10 m, with finer resolution near steep features. For 2008 (similar to 2007

immediately after the inlet was breached), the location of the inlet and the geometry of the

southeastern corner of Chappaquiddick Island (Figure 1) were estimated from satellite images.

When initialized with frequency-directional spectra from WaveWatchIII [Tolman, 2002] along

the offshore boundary of the model domain, and run over the bathymetry observed in 2015, the

model simulates the currents observed near the southeastern shoreline of Chappaquiddick Island,

including the sharp gradient from the strong ebb flows in Muskeget Channel (red in Figure 2) to

the quiescent zone of weak flows near the shoreline (blue in Figure 2). The observed currents

were estimated with an acoustic Doppler current profiler (ADCP) mounted on a small boat. Each

suite of six transects (Figure 2a and 2b) took about 2 h, during which time the tidal flows

changed (increasing ebb currents flowing from Vineyard Sound to the Atlantic), explaining some

of the discrepancies with the 1-h flow simulations.
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Figure 2. Observed (colored symbols within black outlines of the boat transects) and simulated
(color contours, scale above) currents near Wasque Point during approximately (a) mid- and (b)
maximum-ebb tide. If model and data agree, the colors along the transect lines match the colors
of the surrounding simulation contours. The observations (13 Jul 2015) from the ADCP transects
are averaged over depth and over -10 m along the track (boat speed -1 m/s). The simulated
currents are from 1-h model runs initialized with wave and tidal conditions corresponding
approximately to those observed during the middle of each -2-h long suite of transects.

3. Results and Discussion

Model simulations were used to investigate the effects of the inlet, the ebb shoal, incident wave

height, incident wave direction, and the shape of the southeast corner of Chappaquiddick Island

(a proxy for flow separation) on erosion and deposition of sediment near Wasque Point. Along

the offshore boundaries the model wave field had a JONSWAP spectral shape with Hsig = 1

(representative of typical conditions in this area occurring -70% of the time in the last decade) or

3 m (representative of storm events that occur -5% of the time) and 8 s waves with a cos20

directional distribution centered either on shore-normal or 30' west of normal. Tides on the

boundaries were set to values between spring and neap. Model simulations were averaged over

three tidal cycles for each year with observed nearshore bathymetry (2008, 2011-2015).
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The radius of curvature of the southeast corner of Chappaquiddick Island is used as a proxy for

flow separation [Best and Reid, 1984]. The center of the curve is at a point closest to where ebb

flows begin to separate from the shoreline, estimated as the location with the largest simulated

cross-shore velocity gradient near the corner (green circle in Figure 3a). The angles of tangents

to the shoreline (relative to the tangent at the center point) are calculated every 13 m on either

side of the center, and the slope of a least squares fit of distance as a function of angle is used as

the estimate of the radius of curvature (Figure 3b). The sum of the absolute values of total

erosion and total deposition within an area +/- 400 m from the center point extending from the

shoreline to 2-m water depth (Figure 3c) is used as a proxy for sediment transport. The results

are not significantly different for areas that extend between +/- 200 to +/- 500 m tangential to the

center and to 4-m water depth.
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Figure 3: (a) Color contours of elevation (relative to mean sea level, scale on right) on the
southeast corner of Chappaquiddick Island near Wasque Point in 2011. The black dots are the
shoreline, and the green circle is the center of the radius of curvature. (b) Distance from the
center point versus angle of tangents to the shoreline (relative to a tangent at the center). The
slope of the least squares fit (dashed line) is the radius of curvature. (c) Color contours of erosion
(blue) and deposition (red) (scale on right, arbitrary units) within a region between the shoreline
(black dotted curve) and 2 m depth (black dashed curve).

Seven scenarios were simulated for each of the 6 years with measured bathymetry. Erosion and

deposition were estimated for 1-m high normally incident waves using i) the measured

bathymetry (dark open circles in Figure 4), ii) the same bathymetry with the inlet artificially
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closed (dark closed circles on Figure 4), and iii) with the inlet open, but the ebb-tidal delta (ebb

shoal) replaced with alongshore uniform bathymetry similar to that on either side of the shoal

(open squares in Figure 4). In addition, erosion and deposition were simulated for 3-m high

incident waves for each year using iv) the measured bathymetry with normally incident waves

(light open circles in Figure 4), v) the measured bathymetry with normally incident waves and

the inlet artificially closed (light closed circles, Figure 4), vi) the measured bathymetry with

waves from 300 west of normal incidence (light open diamonds in Figure 4), and vii) the same

bathymetry with the inlet artificially closed with waves from 30' west of normal incidence (light

closed diamonds in Figure 4).
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.25- 2008 2011 e inlet Closed, im Waves
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Figure 4. (a) The variance of velocity cubed (proxy for shear stress at the bed) and (b) the sum
of the absolute values of simulated erosion and deposition along 400 m of the shoreline between
0- and 2-m water depths (Figure 3c) versus the radius of curvature of the southeastern corner of
Chappaquiddick Island in each of 6 years (colors, legend in upper right). Simulations used the
bathymetry observed each year with the inlet open (open symbols), with the inlet artificially
closed (closed symbols), with normally (circles) and obliquely (300 west of normal, diamonds)
incident offshore wave directions, and with the ebb shoal removed artificially (open squares) for
incident significant wave heights of 1 (dark colors) and 3 m (light colors). Inlet-open cases are
not shown for 2015 because the inlet was closed.

Although momentum from the inlet flows during ebb tide tends to enlarge the separation region a

few tens of meters (Figure 5), the simulated total erosion and deposition is not strongly affected

by closing the inlet [compare open with closed circles for each year (colors) in Figure 4].
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Similarly, removing the ebb shoal (Figure 4, open squares) does not have a significant effect on

erosion and deposition, except in 2014 (Figure 4, purple symbols), when the inlet mouth and ebb

shoal were < 0.5 km from Wasque Point (Figure Ib). As expected, there is more sediment

motion with 3 m waves than with 1 m waves with the inlet open or closed (Figure 4, compare

light with dark circles), and more transport with obliquely incident waves that drive more

alongshore flow (Figure 4, compare light diamonds with light circles), the differences in erosion

and deposition at the corner are relatively small. In contrast, the simulated erosion and deposition

depends more on changes in the radius of curvature than on the different scenarios in any year

(Figure 4), suggesting that sediment transport near the shoreline is influenced more by separation

from the coast of the strong Muskeget Channel ebb-tidal flows than on the presence or absence

of the inlet or the ebb shoal or on the details of the incident wave field. Sediment transport varies

with the cube of velocity, and thus the correlation of the spatial variance of velocity cubed with

radius of curvature (Figure 4a) suggests a direct link between radius of curvature and current-

driven sediment transport and morphological change around the curved coast.

Chappaquiddick 2
Island0

[b] 2011 i s

Figure 5: Contour maps of velocity magnitude (red = 2 m/s, blue = 0 m/s, color scale on the
right) at peak ebb around the southeast corner of Chappaquiddick Island for the inlet location at
(a) the middle of Katama Bay in 2008, (b) closer to the east of the Bay in 2011, and (c) south of
Chappaquiddick Island in 2014. The size of the quiescent zone (black curves) is larger for
simulations that include inlet flows (dashed) than simulations without inlet flows (solid).
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The simulations further suggest that the geometry of the separation region and the intensity of

the separated jet combine to influence sediment transport at the southeast corner, while vorticity

generated at the boundary of the quiescent zone does not correlate with radii of curvature or with

erosion and deposition (not shown). Instead, tidally asymmetric transport is enhanced at the

shoreline when the corner is sharper (smaller radius) and the ebb-tide quiescent zone is larger,

because sediment is mobilized during the stronger flood flows and deposited during ebb when

currents decrease. The strength of the ebb jet outside of the quiescent zone also increases when

the corner is sharper, allowing for more sediment motion (Figure 4a). In 2008, 1 year after

Katama Inlet formed, the radius of curvature was small and the simulations have relatively high

erosion and deposition near the shoreline (dark blue symbols in Figure 4). As the shoreline

eroded between 2011 and 2013, the radius of curvature increased, and although the shoreline

continued to erode, satellite images suggest the rate slowed (Figure 1d), consistent with the

reduction in simulated erosion and deposition (2011 through 2013 in Figure 4). In 2014 the inlet

mouth was south (rather than west) of Chappaquiddick Island (compare Figure 1b with Ic), and

Norton Point had extended eastward to within the separation region (Figure Ib), resulting in a

greatly sharpened corner (Figure Ib, purple symbols in Figure 4), and increased erosion and

deposition. Between summer 2014 (Figure 1 b) and summer 2015 (Figure 1 d) Norton Point

extended rapidly (several m/day from satellite and visual observations) until the inlet closed.

When the Norton Point sand spit reached the shoreline near Wasque Point in 2015, the corner

was smooth (largest radius of curvature), and erosion and deposition was smallest (yellow

symbols in Figure 4), consistent with visual observations that suggest the shoreline did not

evolve significantly between 2015 and 2016.
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Figure 6: Aerial photograph of the southeast corner of Chappaquiddick Island in October 2015
(inlet closed) overlaid with (dotted) aerial surveys of the shoreline in (black) 1999 and (grey)
2003 and (solid) walking GPS surveys conducted by the Martha's Vineyard Commission in (red)
Sept 2012, inlet open, (orange), Sept 2013, inlet open, (green) October 2014, inlet open, (blue)
April 2015, inlet closed, and (purple) April 2016, inlet closed. The shoreline position changes
more rapidly when the inlet is open (red - green) than when the inlet is closed (compare red and
green curves with black and grey dotted curves and the seaward edges of the blue and purple
curves). Data are courtesy of Chris Seidel at the Martha's Vineyard Commission (personal
communication).

Although the simulations suggest erosion and deposition near the shoreline do not depend

strongly on the presence or absence of the inlet, nor on wave-driven alongshore transport, there

is increased erosion downstream after the inlet opens, in contrast with a relatively stable

shoreline with the inlet closed (Figure 6). Disruption of alongshore transport or changes in

circulation when the inlet opens (e.g., the simulated tidally averaged momentum of the currents

near the southeast cormer of Chappaquiddick Island decreases up to 10% when the inlet is open)

may enhance corner erosion and impact the strength of flow separation around the corner. Field-

verified simulations with evolving morphology might help determine why the shoreline starts to

erode when the inlet opens, and why the shoreline is stable when the inlet is closed. The
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simulations here do not include morphological evolution. However, they suggest that erosion and

deposition decrease as the curvature of the southeast corner of Chappaquiddick Island increases

and separation from the coast of the strong Muskeget Channel ebb flows decreases.

These results apply to any curved coastline with strong tidal flows, where flow separation can

occur and either generate eddies or enhance the velocity variance in the nearshore (high flows

increase, low flows decrease) to move sediment. The relationship between bathymetric change

and radius of curvature (Figure 4) gives a broad indication of how the sharpness of a curved

coastline can affect nearshore sediment transport and bathymetric change by altering the

separation of currents from the shoreline. The strength of the tidal currents around the coastline

also influence the impact of flow separation, a parameter space which has been previously

explored (Signell and Geyer, 1991). The results presented here allow the impact of curvature on

sediment transport to be combined with previous results about flow separation for a more

complete picture of the impact of curved coastlines on both hydro- and morphodynamics in the

nearshore.
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Chapter 3:

Storm Impact on Morphological Evolution of a Sandy Beach

Abstract

Observations of waves, currents, and bathymetric change in the nearshore owing to two

hurricanes at Katama Inlet, Martha's Vineyard show over 2.5 m of erosion and accretion after

each storm. A numerical model (Delft3D) simulating waves, currents, and morphological change

reproduces the observations with minimal tuning of the sediment transport parameters. Model

simulations of a week of storm activity show that increased storm intensity (total energy of the

storm divided by the duration of the storm) enhances sediment transport in this mixed wave-and-

tidal energy environment, similar to other wave-dominated environments. Simulations of months

of storm activity further suggest that the presence of storms enhances the morphological

evolution at this site, and in particular the migration of Katama Inlet. The rate of evolution

depends on both the balance of wave and tidal current energy and the distribution of storms over

time.
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1. Introduction

Accurate predictions of changes in shoreline position are necessary for managing beaches, ports,

and coastal infrastructure, as well as for planning resilient nearshore communities. These

predictions rely in part on skillful numerical models of nearshore sediment transport and

morphological change, which can help determine the efficacy and longevity of natural features

such as barrier islands and marshes, as well as help predict the response of coastal environments

to rising sea levels.

Changes in shoreline position are especially pronounced during storms, when high energy waves

and storm surge can alter the shoreface of a beach in just days or even hours ([Miller, 1999;

Lindemer et al., 2010; Herrling and Winter, 2014]; and many others). On decadal timescales,

long term observations of shoreline changes along barrier islands in the Gulf of Mexico [Morton

et al., 1995; Wahl and Plant, 2015] and the Outer Banks of the Carolinas [Moore et al., 2013]

suggest that storm events (both waves and storm surge) correlate with the evolution of the

coastline, with sea-level rise becoming more important on timescales of centuries. Additionally,

the enhanced shoreline changes observed in 2013 at beaches in Europe, relative to changes

observed during the previous decade, correlated with unusually energetic storm waves (rather

than to storm surge) [Masselink et al., 2016].

Many models accurately predict nearshore hydrodynamics during storms, including waves,

surge, setup, and, in some cases, overwash ([Hsu et al., 2006; Lindemer et al., 2010; Dietrich et

al., 2011; Mulligan et al., 2015]; and many others). Ideally, these hydrodynamics can be used in

numerical simulations to investigate the mechanisms of nearshore sediment transport and predict
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morphological evolution. However, at present sediment transport cannot be simulated accurately

without tuning to observed transport [Amoudry and Souza, 2011], and there are few comparisons

of simulations with observations of storm-induced sediment transport and morphological change.

As a result, there are few studies of the relative importance of occasional storms and daily tides

to shoreline evolution.

Martha's Vineyard i . . chappaquiddick

(2011 Shoreline) Ie (sland

ta a Katama Bay

S1 k m

MVCO (12m)
Atlantic Oceanan

Figure 1: Satellite image of Martha's Vineyard in 2011. White circles with yellow outlines
indicate locations of wave (MVCO, bottom left) and current (Inlet, middle right) sensors
deployed during Hurricanes Irene and Sandy. The red dotted curve surrounds the area surveyed
before and after Hurricane Irene (similar for Sandy). The pink dotted box encompasses the area
used to calculate sediment transport variance owing to storm conditions.

Here, field observations are used to calibrate a numerical model that simulates nearshore

hydrodynamics, sediment transport, and morphological change along the southern shoreline of

Martha's Vineyard, MA (Figure 1). The observations include waves, currents, and bathymetry

over several years (2011-2015) that contained hurricanes, nor'easter storms, and strong tidal

currents. Before the observation period, Norton Point, the sand barrier separating Katama Bay

from the Atlantic Ocean (Figure 1) breached during a strong nor'easter storm in April 2007. It

then migrated 2.5 km eastward until it closed in 2015 [Orescanin et al., 2016; Hopkins et al.,

2017]. Between 2011 and 2015 tidal currents observed in Katama Inlet (Figure 1) were as high
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as 2 m/s [Orescanin et al., 2016] and tidal currents flowing through Muskeget Channel

separating Vineyard Sound from the Atlantic (Figure 1) were as high as 3 m/s [Hopkins et al.,

2017]. The rapid morphological evolution and detailed hydrodynamic observations at this site

are used in a field-calibrated Delft3D model to investigate the relative roles of wave- and tidally-

driven sediment transport, the importance of storms in a mixed-energy wave and tide

environment, and the differences between short, highly energetic (e.g., hurricanes) and longer,

less energetic (e.g., nor'easters) storms.

[a] Hurricane Irene Maximum Storm Surge (ft) [b] Hurricane Sandy Maximum inundation (ft)

Figure 2: (a) Maximum storm surge owing to Hurricane Irene and (b) maximum inundation
owing to Hurricane Sandy along the East Coast of the United States. Martha's Vineyard had ~1
m of storm surge from Irene and ~1 m of inundation from Sandy.

2. Methods

a) Observations

Simulations of measured bathymetric change focus on Hurricanes Irene and Sandy, two of the

most energetic storms to hit the East Coast of the United States in the last few decades. In 2011,

Irene produced storm surge up to 1.2 m in the Northeast, and in 2012, Sandy caused inundation

of over 1.8 m in similar areas (Figure 2). In total, both storms caused several billions worth of
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damage to coastal communities and infrastructure along the sandy coast of the United States

[Avila and Cangialosi, 2011; Blake et al., 2013].

To track the impact of these storms on Katama, bathymetry from the northern end of Edgartown

Channel through Katama Bay and Inlet and across the ebb shoal in the ocean to the south (Figure

1, red curve) was measured with a GPS- and acoustic-altimeter-equipped personal watercraft.

The vertical resolution of the surveys is approximately 0.05 m, and the horizontal resolution is

0.10 m along transects separated by 5 (near complex bathymetry) to 60 m (uniform bathymetry).

Surveys were conducted before (August 6, 2011) and after (August 30, 2011) the passage of

Hurricane Irene (28-29 August 2011) and before (October 2, 2012) and after (November 11,

2012) the passage of Hurricane Sandy (30 October, 2012) and a nor'easter (November 7-9,

2012). The bay surface area is approximately 7.5 x 106 M 2, and water depths range from less than

1 m on the flood shoal to 10 m at the northern part of the Bay [Orescanin et al., 2016].

Offshore waves were measured in ~50 m depth with NOAA buoy 44097 (Figure 1), waves in 12

m depth were measured at the Martha's Vineyard Coastal Observatory (MVCO,

http://www.whoi.edu/mvco), and currents in Katama Inlet were measured with a pressure gage

colocated with an acoustic Doppler velocimeter with sample volume about 0.8 m above the

sandy seafloor in -2 m depth. Bottom pressures were corrected for atmospheric pressure

fluctuations and converted to sea-surface elevation fluctuations assuming hydrostatic pressure

and using linear theory.

b) Numerical Simulations of Sediment Transport
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Observations of the hydrodynamics and morphodynamics during the hurricanes were used to

calibrate and test the Delft3D numerical model (Chapter 1) on the southern coast of Martha's

Vineyard. The default sediment transport formulation (TRANSMOR2000, based on Van Rijn,

1993) was used to approximate the nonlinear response of sand grains to forcing by waves and

currents.

Sediment transport in the nearshore can be characterized as grains of noncohesive sediment at

the bed and in the water column that move owing to a combination of forcing by waves, currents,

and gravity. The motion depends on a balance between the weight of the grain (gravity), the

force required to overcome friction, and the stress imparted by the surrounding fluid. In addition,

grains interact with each other by colliding and bouncing, and by sheltering other grains from the

ambient flow field. Some numerical models can simulate the motion of collections of individual

sand grains by parameterizing grain-grain interactions [Drake and Calantoni, 2001; Calantoni et

al., 2004; Hsu and Liu, 2004; Amoudry et al., 2008; Yeganeh-Bakhtiary et al., 2009], but modern

computational resources are not sufficient to integrate the motion of billions of individual

particles comprising a beach.

Instead, most models of shoreline morphological evolution parameterize the basic physics

underlying grain motion. Often, transport is divided into bedload (grains move in the boundary

layer near the bed) and suspended load (grains are lifted into the water column above the bed

where they are advected by currents). Sediments can move both in the cross- and alongshore

directions. Although both modes and directions of transport are important, models for alongshore
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sediment transport are more skillful than those for cross-shore transport when applied to large

areas of coastline [Amoudry and Souza, 2011].

Early studies of alongshore transport solved for the total load using an approach that assumes a

portion of the flow energy transports sediment at the bed and a portion of the energy suspends

sediment that is then transported by currents in the water column [Bagnold, 1966; Bowen, 1980;

Bailard, 1981]. This "energetics" approach scales sediment transport q as wave energy

E-Hsig2 , giving q-Hsig2 . While best used on wave-dominated coastlines over long

timescales, energetics models driven with observations of waves and currents were used to show

that cross-shore gradients in seaward-directed mean currents ("undertow") drive sediment

offshore during storms, resulting in offshore migration of sand bars [Thornton et al., 1996;

Gallagher et al., 1998; Hsu et al., 2006], and that asymmetrical waves drive sediment onshore

during calmer conditions, resulting in onshore migration of sand bars [Hoefel and Elgar, 2003;

Hsu and Raubenheimer, 2006; Hsu et al., 2006]. However, by parameterizing important

processes, energetics models are limited [Van Wellen et al., 2000; Drake and Calantoni, 2001;

Van Rijn, 2002].

Recently, three-dimensional numerical models such as Delft3D have implemented sediment

transport formulations with parameterizations that approximate the force balance on grains [Van

Rin, 1985; Soulsby and Damgaard, 2005]. Bedload motion is initiated when the fluid-induced

bed stress exceeds a critical value, with the bedload transport qB given by [Meyer-Peter and

Muller, 1948; Fredsoe and Deigaard, 1992; Soulsby and Damgaard, 2005]
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qB = MT' (T - Tcr)p

where T is a non-dimensional bed shear stress (scaled as the cube of near-bed velocity) and Tcr is

the shear-stress threshold for motion. There are several expressions for r and for the values of the

constants m, n, p that depend on currents, waves, and bedforms [Amoudry and Souza, 2011].

The stress-based models approximate the turbulence in the boundary layer and the mean flow

field that lifts grains into the water column against the force of gravity. The suspended sediment

is advected by wave-orbital velocities and mean currents. Denser grains do not travel as far as

less dense grains because they are not suspended as high above the bed and because they fall

back to the bed more rapidly [Van Rijn, 1993; Harris and Wiberg, 2001; Lesser et al., 2004]. The

vertical distribution of sediment concentration usually is modeled by an advection-diffusion

equation that balances particle fall velocity with an empirical particle mixing coefficient that

depends on sediment properties and wave and current conditions [Amoudry and Souza, 2011].

Most parameterizations of the threshold of motion for bedload and of the vertical mixing of

suspended load depend on a bottom boundary layer that is affected by bottom roughness, which

is a function of sediment grain sizes and bedforms. Common bottom roughness formulations for

turbulent conditions assume a logarithmic velocity profile near the bed [Grant and Madsen,

1982; Fredsoe, 1984; Madsen, 1994], an approach that has been verified in laboratory studies

[van der A et al., 2011; Yuan and Madsen, 2014]. The calculations of bottom shear stress using

the bottom roughness and near-bed velocities include wave-current formulations [Madsen, 1994;

Soulsby and Clarke, 2005], as well as terms to account for a fixed rippled bed [Grant and
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Madsen, 1979] or a movable bed [Harris and Wiberg, 2001]. Although these formulations have

been tested in the laboratory, there are few verifications with field data.

Here, a commonly used version of the shear stress models [Van Rijn, 1993] (see Appendix 1 for

details) is applied to simulate the sediment transport and morphological change along the

southern shoreline of Martha's Vineyard near Katama Inlet (Figure 1) for conditions observed

during and between storms, and for a range of idealized conditions beyond those observed.

c) Calibration of Model Sediment Transport

The implementation of the model used in this chapter closely follows that described in Chapter 2.

However, here Delft3D is run with morphological updating, which requires the calibration of a

few free parameters in the sediment transport model. The two most commonly tuned parameters,

the coefficients for wave- and current-induced transport [Lesser et al., 2004] were set to 0.125

and 0.200, respectively, based on the morphological evolution and offshore waves observed over

a two-month long period with several storms (Appendix 2).

3. Results

a) Validation of Hydrodynamics

The Delft3D wave and circulation model accurately simulates the observed wave heights, wave

directions, and currents in 12, 7, and 2 m depth during calm conditions in 2013 and 2014 (see

Chapter 1). Model skill also is high during much more energetic storm events. In these cases,

offshore boundary wave conditions were given by observations of waves from the buoy in 50 m

depth south of Martha's Vineyard. The results are similar if the offshore boundary conditions are
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given by output from the WaveWatch3 (WW3) model. During hurricanes, wind forcing becomes

important for accurate simulations (see Appendix 2). Wind boundary data were acquired from

WW3 (forced by the Global Data Assimilation Scheme [Tolman, 2002]).

Using these wind and wave boundary conditions, the model simulates accurately the observed

wave heights (Figure 3a,e) and directions (Figure 3b,f) in 12-m depth water during both storms.

The model also simulates the currents observed in the inlet channel in approximately 2-m water

depth (Figure 3 c,d,g,h). Some of the discrepancies in the simulated east current during Irene

(Figure 3c) may be owing to spatially varying currents within the inlet that change on scales

smaller than a model grid cell, especially near the observations in complex shallow bathymetry.
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Figure 3: Observed (black curves) and modeled (red curves) (a,e) significant wave height and
(b,f) wave direction at MVCO (12 m depth), and (c,g) east-west and (d,h) north-south velocity
inside the inlet mouth (~2 m depth) for (a-d) Hurricane Irene and (e-h) Hurricane Sandy.
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b) Validation of Morphodynamics

A wide range of metrics for model morphodynamic skill can be examined depending on the

sediment transport quantities of interest, although interpreting these metrics often requires site-

specific knowledge ([Sutherland et al., 2004; Ganju et al., 2011; Daly et al., 2014; Luijendjk et

al., 2017]; and many others). For example, quantitative metrics can be used to test if changing a

model parameter produces a relatively more accurate simulation of observed morphological

evolution. However, it is difficult to use these metrics to determine if the model skill is poor or

good in an absolute sense. In contrast, qualitative metrics give a sense of absolute model skill on

a case-by-case basis, and are used here to evaluate model performance during storms. An

accompanying quantitative model validation is given in Appendix 2.

[a] Data - Irene [b] Model - Irene

>Chappaq 'diq
s1 d
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Figure 4: Bathymetric change (red is accretion, blue is erosion, scale on the right) between (a,c)
observed and (b,d) simulated hurricane conditions for Hurricanes (ab) Irene in 2011 and (c,d)
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Sandy in 2012. The observed pre- and post-storm bathymetries are interpolated onto the 13-m
horizontal spacing model grid.

The calibrated Delft3D numerical model simulates accurately the observed bathymetric changes

owing to Hurricanes Irene and Sandy. For example, the simulated spatial patterns and amplitudes

of erosion and deposition (Figures 4b,d) are similar to those observed (Figure 4a,c). Further, the

simulated bathymetric changes across and along the inlet, along the ebb shoal, and south of inlet

are consistent with the change observed during both storms (Figure 5). Some of the simulated

patterns in erosion and deposition are shifted spatially relative to the observed patterns (Figure

5). Spatial (wavenumber) spectra of the simulated and observed bathymetric change along

transects (Figure 6) are similar, suggesting that other than a small spatial shift, modeled

bathymetric changes are consistent with the observed changes. The spatial shift partially may be

because observed bathymetry, with 0.1 m spatial resolution in N-S and 10 m spatial resolution in

E-W, were stretched and compressed to fit onto the 13-m model grid and to seamlessly mesh

with observed bathymetry outside of the inlet location. The hydrodynamic and morphologic

simulation tests demonstrate that the field-calibrated model can be used to study morphological

evolution near Katama Inlet.

Hurr2cane Sisdy

.* Acruslnlet I- Along Inlet - -AlongEbb Shoal d - South of Inlet mom

0
11n. 2 100 2 00 40 2W 00 4 00 8 00 200 4 00 6 00 800 200 400 60080

rstcceAlougneusct (in)

Figure 5: Observed (black curves) and simulated (red curves) changes in erosion and deposition
versus distance along transects located across the inlet mouth (blue), along the inlet channel
(black), across the ebb shoal (red), and on the southern shoreline of Norton Point. The location of
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each transect is shown in the color contour plots of bathymetric change on the left for (top)
Hurricane Irene and (bottom) Hurricane Sandy.
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Figure 6: Observed (black curves) and simulated (red curves) power spectral density versus
wavenumber of changes in erosion and deposition along the transects located (a,e) across the
inlet mouth (blue), (b,f) along the inlet channel (black), (c,g) across the ebb shoal (red), and (d,h)
on the southern shoreline of Norton Point. The location of each transect is shown in the color
contour plots of bathymetric change on the left in Figure 5 for (top) Hurricane Irene and (bottom)
Hurricane Sandy.

c) Storm Impact on Morphology on Day to Week Timescales

Alongshore sediment transport can be scaled roughly with the wave energy incident on a

shoreline, and thus episodic, high-wave events such as hurricanes shape the morphological

evolution of wave-energy dominated nearshore environments [Walstra et al., 2013; Herrling and

Winter, 2014; Kaji et al., 2014]. The effect of episodic events on mixed wave-and-current energy

systems is less well known, although recent studies at the Sand Engine in the Netherlands

suggest storm energy has a similar relationship to sediment transport in the presence of tidal

currents < 1 m/s [Luiendjk et al., 2017] when wave-driven currents in the nearshore approach 1

m/s [Radermacher et al., 2017]. Tidal currents near Katama (-3 m/s around the corner of

Chappaquiddick Island and -2 m/s through the inlet) can be stronger than those observed at the

Sand Engine (0.8 m/s) and wave-driven currents tend to be weaker owing to less obliquely
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incident waves (1 m/s at the Sand Engine compared with 0.2 to 0.9 m/s south of Katama Bay

depending on offshore wave heights and angles). Here, the field-verified Delft3D wave-current-

sediment transport model is used to determine the relative effects of short, energetic storms (e.g.,

hurricanes) and longer, less energetic storms (e.g., nor'easters) in the mixed wave-and-current

energy Katama Inlet system.

[a] Wave Height

Full Storm Profile
2/3 Peak Energy
1/2 Peak Energy
11/3 Peak Energy

+300 o -300

[c] Period

S s

12 s

7-
I I I -1

09/03
Time (month/day in 2011)

Figure 7: Boundary conditions for storm intensity simulations, including (a) significant wave
height, (b) wave direction, and (c) wave period. The energy under each curve of significant wave
height versus time (Figure 7a) is identical to that measured during Hurricane Irene (dark blue
curve), but distributed differently over time either to enhance the maximum (peak) energy (1 1/3
times, light blue curve) or to decrease peak energy either by 2/3 (red) or 1/3 (green). Offshore
wave boundary conditions were a JONSWAP spectral shape with a cos 200 directional
distribution, with wave height given by the time series in Figure 7a, and coupled with a mean
period and direction that was constant for each 6-day model simulation. Simulations were run for
different wave periods (Figure 7b) and wave directions (Figure 7c) that are similar to those
observed.

For these idealized model simulations of storm events, the wave boundary conditions were based

on observations at the 50-m depth waverider buoy collected during Hurricane Irene. The offshore

boundary significant wave height was modified to change the distribution of energy of Irene over
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time, while keeping the time-integrated storm energy constant (Figure 7a). JONSWAP spectra at

the boundary were generated based on the temporal distribution of offshore wave energy and a

range of peak periods and offshore wave directions (Figure 7b,c). To ensure identical numbers

of tidal cycles and tidal-current transport, all model runs were six days long regardless of the

length of the storm peak.

Storm intensity was calculated in 12 m depth (to account for wave transformation over shallow

offshore bathymetry) by integrating the energy of the storm under its peak (defined as the highest

70% of wave energy in the time series), and dividing by the duration of the peak. The amount of

sand eroded and accreted along the shoreline over the course of the storm is quantified by the

variance in the bathymetric change over the six days. The area used for the variance calculation

encompassed the most dynamic regions along the shoreline, between the beach and 6-m water

depth near the inlet and along the corner of Chappaquiddick Island (Figure 1, pink box).
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Figure 8: Spatial variance in bathymetric change versus (a) storm duration, (b) maximum storm
significant wave height, and (c) storm intensity. The variance is calculated over the area shown
in Figure 1, pink box. Intensity is defined as the integrated energy of the storm in 12-m water
depth divided by the storm duration. The dotted line in (c) is the least squares fit between
bathymetric change variance and storm intensity (R 2 = 0.78).

The idealized simulations suggest that for a range of storm durations (Figure 8a) and maximum

wave heights (Figure 8b) bathymetric change increases with higher storm intensity, even for

identical amounts of wave energy entering the model domain (Figure 8c). Thus, hurricanes

(shorter duration, higher maximum wave height storms) move more sand at Katama than

nor'easters (longer duration, lower maximum wave height storms) with similar overall energy.

Bathymetric change also increases with maximum significant wave height (Figure 8b), as

expected in wave-dominated environments because sediment transport scales with wave energy.
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Katama is a mixed-wave-and-tidal-current energy environment, and thus these results suggest the

influence of tidal currents is minimized during storm wave conditions.
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Figure 9: Shoreline erosion volume at the Sand Engine in the Netherlands versus (a) integrated
wave energy and (b) storm intensity (integrated wave energy divided by storm duration). Figure
9a and data for Figure 9b are from [Luijendijk et al., 2017], with permission.

The trend of bathymetric change with storm intensity is consistent with observations at the Sand

Engine in the Netherlands [Lujendijk et al., 2017]. Sand Engine observations included storms of

varying offshore energy that eroded the nourishment in an environment where wave-driven

nearshore currents usually are greater than the local tidal currents. The eroded volume is

correlated with the integrated storm energy (Figure 9a, [Lujendijk et al., 2017]). When the

integrated energy of the storms is transformed into intensity by dividing by the storm duration,

observations at the Sand Engine also suggest that there is a linear relationship between storm

intensity and sediment transport if there is sufficient sediment supply. Despite different relative

roles of wave- and current-driven transport, the similarity of the relationship between

bathymetric change and storm intensity at dissimilar nearshore environments (compare Figure

8c with Figure 9b) suggests that the temporal distribution of wave energy during storms can

impact bathymetric change in a range of mixed wave-and-current energy environments.
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d) Storm Impact on Morphology on Monthly Timescales

Morphological evolution over months to years can be affected by the number and timing of

storms. For example, a rapid sequence of storms ("clusters") may have a different impact than

the same storms separated farther in time [Splinter et al., 2014a; Dissanayake et al., 2015;

Angnuureng et al., 2017]. Here, model simulations are used to examine the effects of the number

and timing of storms on the 2-month-long evolution of the sandy shoreline near Katama Inlet.

[a] Nov. 30, 2012 [b]Feb. 04, 2013

Chappaou Ck

Katama Bay

4

[c][d Model Ero /Deposition 3

2 *

* 43
35mm Acreo

-4

Figure 10: Georectified satellite images depicting shoreline position around Katama Inlet for (a)
November 30, 2012 and (b) February 4, 2013, with (c) the corresponding approximate change in
the shoreline near the inlet, including the - 150 m accretion of the west side of the inlet (Norton
Point) and the ~ 35 m accretion of the south side of Chappaquiddick Island. Similar qualitative
trends are seen in (d) model simulations of bathymetric change over this time (red = accretion,
blue = erosion, black curves are pre- (solid curves) and post- (dashed curves) simulation
shorelines).
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Between November 30, 2012 and February 4, 2013 Norton Point accreted eastward about 150 m

and the beach on the southern shore of Chappaquiddick Island accreted approximately 35 m

(Figure 10). During this 2-month period there were four storms (Hsig >3 m), separated in time by

as little as a few days and as much as a month. (Figure 11).

Measured Winter 12-13 Boundary Conditions

E 8 ] L

a-]

6-

tw

4-
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4001

S200

In 0

Date (month/day in 2012)

Figure 11: (a) Significant wave height, (b) mean wave direction, and (c) peak wave
NOAA buoy 44097 located in 50-in water depth versus time. The red dashed line in
the storm wave height threshold (Hsig=3 in).

period at the
(a) marks

To test the impact of the timing of these storms on shoreline evolution, a series of simulations

were performed to (1) validate the model skill simulating the observed evolution using the

observed wave boundary conditions, (2) evaluate the model skill for simulations that use a

reduced (shorter) boundary condition time series and multiply the associated morphological

change by a scaling factor (MORFAC, [Lesser et al., 2004], see Appendix 3) and, (3) use the

computationally less demanding model to evaluate the impact of storms, storm timing, and storm

clustering on the migration rate of the inlet.
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Figure 12: Contours of simulated bathymetric change (red = accretion, blue = erosion, scale on
the right) for model runs with (a) no morphological acceleration (MORFAC = 1), (b)
morphological acceleration applied only to non-storm conditions (MORFAC = 1 during storms,
MORFAC = 10 otherwise), and (c) morphological acceleration applied at all times (MORFAC =
10). Compared with the MORFAC = 1 simulation, the Brier Skill Scores (see Appendix 2) of the
mixed MORFAC and MORFAC = 10 simulations are listed below each contour plot.

The growth of Norton Point and the Chappaquiddick beach simulated with the model using the

full observed wave boundary conditions is qualitatively consistent with the observed accretion

(compare Figure 1 Od with Figure 1 Oc). The eastward extent of the simulated accretion around

Norton Point is less than that estimated from the satellite images, possibly because wind, which

could enhance storm waves and subsequent accretion of the inlet (Appendix 2), was not

activated for this model run to save computation time.

Simulations with reduced wave boundary conditions (see Appendix 3) using MORFAC = 10

only for non-storm conditions and MORFAC = 1 for storms (Figure 12b) and using MORFAC =

10 for the full time series (Figure 12c) compare well with the full, MORFAC = 1 model run

79



(Figure 12a). Accelerated model runs reduce computation times six- to ten-fold relative to using

the full boundary time series, while not affecting the simulated morphological evolution

significantly (Figure 12).
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Figure 13: Contours of simulated bathymetric change (red = accretion, blue = erosion, scale on
the right) using MORFAC = 10 between Nov 2012 and Feb 2013 for different (a) wave and (b)
tidal current transport coefficients. In Figure 13a, increasing the wave transport coefficient
(values in bottom right of each panel, tidal current coefficient = 1) enhances accretion around the
west side of the inlet and in the inlet channel (dashed circles in top panels). In Figure 13b,
increasing the tidal current transport coefficient (values in bottom right of each panel, wave
coefficient = 0.2) enhances erosion within the inlet channel and around the corner of
Chappaquiddick Island (regions with high tidal current velocities, dashed circles in lower
panels).

Accelerated model runs were used to isolate the effects of waves and tidal currents on inlet

evolution by varying their respective transport parameters away from the tuned values used to

simulate Hurricanes Irene and Sandy (Figure 4). Accretion around the inlet increases as wave
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energy increases, especially in the inlet channel and on the shoreline near Norton Point and

Chappaquiddick Island (circled in Figure 13a). In contrast, erosion around the inlet increases as

the tidal current transport coefficient increases, especially in the inlet channel and around the

corner of Chappaquiddick Island (circled in Figure 13b).
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Figure 14: (a) Bathymetry (dark =deep water, light = shallow, scale on the right) measured in
2011 (white shaded area), 2012 (black curve), and 2014 (yellow curve) used in two-month-long
model runs with boundary conditions given by the observed wave time series (b) unaltered, (c)
with storms (Hsig > 3 m) removed, (d) with all the storms clustered at the beginning of the time
series and (e) with all the storms clustered at the end of the time series. The dated arrows point to
the approximate location of the inlet channel in each year.

The simulations suggest that strong tidal currents erode the inlet and hinder its migration,

whereas strong wave conditions accrete the inlet and enhance its migration. To test this

hypothesis, morphological evolution was simulated for 3 observed bathymetries that had

different inlet tidal currents. As Katama Inlet migrated eastward, it rotated from oriented N-S in

2011 to oriented E-W in 2014 (Figure 14), lengthened, narrowed, and shoaled, and the tidal

currents in the inlet channel decreased [Orescanin et al., 2016, 2017]. To investigate the effects
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of different sequences of the observed storms for different balances of wave-driven and tidal

currents, morphological evolution was simulated for 4 wave boundary time series applied to each

of the 3 inlet orientations. The boundary wave time series were the (1) observed time series of

waves (Figure 14b), (2) the same boundary conditions, but with storms (Hsig > 3 m) removed

(Figure 14c), (3) all the storms clustered at the beginning of the time series (Figure 14d), and (4)

all the storms clustered at the end of the time series (Figure 14e). Morphological evolution also

was simulated without waves by running Delft3D without SWAN.
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Figure 15: (top) Inlet bathymetric contours (dark blue = deep water, light blue = shallow) for the
three years used in the two-month-long simulations. The ratio of tidal current to wave-driven
transport (C/W) is given in the upper left. Black lines indicate the location of transects across the
inlet along which (bottom) depth is plotted for (a) 2011, (b) 2012, and (c) 2014 for (black) initial
model bathymetry, (blue) final bathymetry including storms (Figure 14b), (red) final bathymetry
without storms (Figure 14c), and (green) final bathymetry without waves.

Inlet currents decrease and wave-driven transport becomes more important as the inlet migrates

(Figure 15, C/W decreases left to right), and the inlet channel moves farther with stronger

wave conditions for all inlet orientations (Figure 15, compare the blue curves with the red
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and green curves). The simulated changes in the channel position suggest that both high wave

conditions and lower tidal currents through the inlet enhance inlet migration rates.

Norton
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aquiddick
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Figure 16: Mean sediment transport vectors using bathymetry measured in (a) 2011, (b) 2012,
and (c) 2014 (ratios of tidal- to wave-driven transport, C/W given in the upper left) simulated
with storms (blue arrows) and without waves (green arrows). Bathymetry of the inlet in (d) 2011,
(e) 2012, and (f) 2014 (dark = deep water, light = land) with transport vectors averaged both over
time and within the inlet for simulations with storms (blue), without storms (red), without waves
(green), with storms clustered at the front of the model run (yellow), and with storms clustered at
the end of the model run (pink). Averaged transport values are given for (blue) model runs with
storms and all other values are given as percentages of the storm model simulation. The time
series of waves used on the offshore boundaries are given in Figure 14.

For all bathymetric configurations, the sand to the west of the initial inlet channel is moved east

(Figure 16 a,b,c blue arrows), filling in the original channel, while strong currents around the

corner of Norton Point scour a new channel on the western side of the inlet (Figure 16 a,b,c

large, southward oriented arrows on west side of inlet). The eastward transport in the inlet is

more pronounced with storm conditions (Figure 16, compare the direction of the blue (storm)
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with the green (no wave) arrows)). The total transport (the sum of the transport vectors) within

the inlet area primarily is eastward for all cases (Figure 16d,e,f). Simulations with low or no

waves have a stronger southward transport component than simulations with storms (Figure 16

d,e,f, compare the blue with the red and green vectors), consistent with the different channel

migrations for different conditions (Figure 15 a,b,c). Similar to the MORFAC simulations

(Figure 13), the erosion (accretion) of the inlet channel decreases (increases) as the influence of

waves decreases (compare the blue and red curves with the green curves Figure 15). Thus, the

simulations suggest that high wave conditions enhance inlet migration, whereas in the absence of

waves, tidal currents erode the inlet channel and reduce eastward transport.

Shoreface and dune erosion increases with increased frequency and clustering of storms in wave-

dominated shorelines [Splinter et al., 2014a; Dissanayake et al., 2015]. Here, the model is used

to investigate the effects of storm sequencing on morphological change in a mixed wave and

tidal-current energy environment. The time series of offshore waves observed for 2 months

(Figure 14) was rearranged to place the storms (Hsig > 3 m) at the start or the end of the record,

or removed entirely. Relative to using the observed time series of offshore waves, simulations

with storms clustered at the beginning cause more southward and less eastward transport (Figure

16, yellow vector), whereas storms clustered at the end cause more eastward transport with

lower current-to-wave ratios, and no southward transport (Figure 16, pink vectors), suggesting

that the sequence of storms affects the inlet migration rate in this two month period, consistent

with previous results [Splinter et al., 2014b; Dissanayake et al., 2015]. When all of the storms

are at the start of the simulation, the channel morphology evolves rapidly, creating a new channel

on the western side of the inlet. During subsequent low-wave conditions, the tidal-current-driven
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erosion of the inlet channel is stronger than the wave-driven accretion, deepening the new

channel (allowing for stronger currents) and hindering eastward sediment transport. Conversely,

when all of the storms are at the end of the simulation, the initial channel fills in gradually and

the new channel forms more slowly, reducing current-related transport relative to the front-end

storm cluster scenario. The final cluster of high waves drives more transport eastward, resulting

in net eastward transport, an effect that is more pronounced as the inlet migrates east and waves

become more important (Figure 16, d-f).

Although during the 2-month period simulations with storms (Hsig > 3 m, blue vectors in Figure

16) led to more eastward transport than simulations without storms (red vectors in Figure 16), the

simulations without waves have similar eastward transport components (green vectors in Figure

16), but more southward transport, likely leading to increased erosion of the inlet channel and

slower inlet migration. Depending on the inlet configuration, this enhanced southward transport

could erode the inlet enough to prevent migration in the absence of waves.

4. Conclusion

Numerical simulations of morphological evolution on the southern shoreline of Martha's

Vineyard, MA near the migrating Katama Inlet were validated with measured bathymetric

change owing to Hurricanes Irene and Sandy, as well as with shoreline change estimated with

satellite images spanning two months in winter 2012-13. Model results show that on timescales

of days to weeks, storm intensity influences bathymetric change in a sandy nearshore

environment, with higher storm intensity (e.g., hurricane conditions) correlated with more

bathymetric change. On timescales of months, simulations suggest that higher wave energy
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relative to tidal current energy causes faster inlet migration, whether owing to storm conditions

(large waves) or inlet orientation (inlet currents decrease). Model simulations further suggest that

even without storms, but with moderate waves, the inlet migration rate increases as the inlet

approaches Chappaquiddick Island, because tidal currents through the inlet decrease as it

migrates, rotates, narrows, lengthens, and shoals. The presence of storms, whether clustered or

spaced over time, enhances eastward transport and the migration rate of the inlet. Thus, the

observations and simulations suggest that storm conditions influence the morphological

evolution of a sandy beach system (in this case, the migration of an inlet), with the bathymetric

change increasing with increasing storm energy, intensity, and frequency. However, for a mixed

wave-and-tidal energy system, such as investigated here where tidal currents usually are stronger

than breaking-wave driven currents, shoreline evolution can continue without storms, with the

system bathymetry reworked by storms, producing different bathymetric patterns depending on

the sequences of storms.
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Conclusions and Future Work

The work presented here focuses on nearshore observations at a field site in Martha's Vineyard,

MA that exhibits measurable morphological change over timescales ranging from weeks to

years. The most prominent feature at this site is the migrating Katama Inlet, which has a history

of breaching, moving east, and closing over the course of a decade. Measurements and numerical

simulations of waves, currents, and bathymetry from 2011 to 2016 at this sandy inlet site are

used to explore nearshore processes, including wave-current interaction and bathymetric change

on a range of spatial and timescales, that could inform studies at other dynamic mixed energy

wave and current coastal systems.

Katama Bay and Inlet can be viewed as a channel for flow between Vineyard Sound to the north

of the Bay (open via Edgartown Channel) and the Atlantic Ocean to the south (open via Katama

Inlet). As such, this thesis focuses on the impacts of waves and currents on sandy coastal

environments, rather than specific features of a single-inlet system. The first chapter centers on

waves and currents, with field-verified Delft3D simulations used to demonstrate that the

observed tidal modulation of wave direction is owing to interaction with tidal currents. The

simulations also show that, in a tidally averaged sense, in shallow water near and within the

surfzone the changes to wave direction from depth-induced refraction over complex nearshore

bathymetry override the changes in wave direction owing to wave-current interaction on the

inner shelf.

The second chapter further explores this complex bathymetry, focusing on the curved shoreline

at the southeast corner of Martha's Vineyard, which eroded hundreds of meters coincident with
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the inlet opening. Observations of flow fields around this corner reveal a region of flow

separation where the strong ebb tide jet to the east of the island separates from the shoreline as it

rounds the corner, creating a quiescent zone. The Delft3D model, further validated with these

observations, is used to determine the effect of the inlet and the region of flow separation on the

sediment transport near the shoreline at the corner. Model results show that the intensity of the

flow separation region, controlled by the curvature of the corner, correlates with the amount of

erosion and deposition around the corner, with sharper corners producing more intense

separation and sediment transport. These results suggest a feedback between corner shape and

flow separation. The feedback may end once the inlet wraps around the corner of the island and

closes, creating a smoother corner with correspondingly less intense separation.

The third chapter combines observations of waves, currents, and bathymetric change during

storm events, as well as observations of shoreline change over timescales of months to

understand the impact of storms on inlet evolution. Delft3D simulations of storms with a range

of intensities reveal that higher intensity wave events (e.g., hurricanes) cause more bathymetric

change than lower intensity wave events (e.g., nor'easters) in this mixed wave-and-tidal current

energy system. Further simulations of month-long shoreline change reveal that the presence of

storms can enhance inlet migration, and that the sequencing and frequency of these storms may

also have an impact on the rate of inlet migration.

Future Work

The observational data collected in the five years the PVLAB monitored this field site will be

instrumental in ongoing studies to refine the characterization of sediment transport in the
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nearshore. With more time and higher computational power, model simulations spanning

bathymetric surveys from year to year can be used to test broader ranges of storm frequency and

energy to refine the understanding of how these influence nearshore sediment transport.

Additionally, long model simulations without waves could be run to test for the existence of a

"steady state" for the inlet when only tidal currents drive sediment transport. Results from

Chapter 3 suggest that tidal currents alone scour the inlet, potentially keeping it open if waves

are not present to accrete the inlet. Whether or not this results in a steady state depends on the

currents through the inlet, the asymmetric tidal alongshore currents owing to flow separation

(possibly driving net transport east), and the feedback between tidal currents and shoreline

erosion at the corner of Chappaquiddick Island.

Year-long simulations also may be useful for exploring seasonal patterns in waves, currents, and

bathymetric change at this site, and for simulating the closure of the inlet, which occurred most

recently in April 2015. A model able to simulate the inlet closing will require accurate

parameterizations of overwash and cross-shore transport, so future work focusing on improving

numerical models for these processes could benefit from Katama observations.

Future methodology work also includes determining better wind boundary conditions in the

model. Large-scale atmospheric models other than WW3 could supply wind data to the Katama-

verified Delft3D model to improve wind and wave simulations before and after Hurricanes Irene

and Sandy. These tests could determine the wave and current conditions for which accurate wind

boundary conditions are important and for which wind can be neglected.
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The observations and simulations presented here demonstrate the importance of wave-current

interactions, inner shelf currents, nearshore and inlet tidal flows, and complex bathymetry to

sediment transport and morphological evolution on a sandy shoreline.
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Appendix 1:

Sediment Transport Implementation in Delft3D

Sediment transport calculations used to simulate morphodynamics at Katama are based on

formulas developed by Van Rijn (1993) and implemented in Delft3D [Lesser et al., 2004]. Here,

a brief description of the processes used in the Delft3D sediment module, specific to non-

cohesive sediment and a 2DH implementation, is given to inform the results of simulated

morphological change discussed in Chapter 3. All constant, user-specified values applied in this

study are provided where appropriate.

Sediment motion is treated separately as suspended load (sand moving as a tracer in the water

column) or bedload (sand moving in a boundary layer above the bed). A reference level above

the bed is used to distinguish between the two types of motion, where sand above this level is

considered suspended load and below this level is considered bed load. The reference bed level is

given by

a = min max (cks, , 0.01h), 0.20h]

where

cl = user defined proportionality factor = I

ks= user defined current related roughness height = 0.01 m

Ar = wave induced ripple height = 0.025m

h = water depth

The reference bed level is bounded below and above by fractions of the water depth h to ensure a

distinction between submerged seafloor and the ambient water column. Above this level, the

suspended load formula is a standard advection-diffusion equation tracking sediment
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concentration, with source and sink terms specific to the processes of sand transport. In

particular, sources include sand kicked up into the water column from the bed, and sinks include

the settling velocity of sediment. Here, settling velocity is given as

10V 0.01(s - 1)gD30
WS = (1 + - 12_ so

D50D

where

v = kinematic viscosity coefficient of water

D50 = representative diameter of sediment fraction

s = ratio of sediment density ps to water density p,

This sediment sink formulation considers only properties of the ambient water and sand grain to

describe a downward flux owing to gravitational forces.

The source term of sand is modeled as a diffusion process, with a vertical diffusive flux

calculated using the turbulence closure formula specified by the user. Here, with the model in

2DH mode, the vertical eddy diffusivity is a constant supplied by the user. The vertical diffusive

flux E, with this constant set as default ES = 10 m 2 /S, is determined by

E = E ~S az

The implementation of this partial differential equation requires a vertical profile of sediment

concentration near the bed. In 2D mode, this cannot be explicitly calculated. Instead, it is

assumed to be a standard parabolic profile given as

S[a(h-z) 
A

c(z) = Ca [z(h - a)]

where

c(z) = concentration of sediment fraction
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ca = user - defined reference concentration of sediment fraction (see below)

z = elevation above bed

A =wsu
K

K = von - Karman constant = 0.4

u, = bed shear velocity

The reference concentration ca of sand at the reference height a sets the bounds of the vertical

sediment profile, and is determined by

Ca = 0 .0 1 5Ps aD2.3

where

(S1

D= D50 2s13 = non-dimensional particle diameter

Ta= (=crbCw+Awbw)-TCr non-dimensional bed shear stress
Tcr

The components of the non-dimensional bed stress incorporate the effects of both waves

(subscript w) and currents (subscript cw) on the bed, characterized as efficiency factors (it) and

shear stress values (r). These are given by Van Rijn (1993) for currents, which rely on a

"current-related" friction factor (fe) as follows

2
Tb,cw = PwU*

PC =
fC

where

f'= 0.24 [iogio ( 2
3D90

[ 12h)]-
f, = 0.24 1o1010(k
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and

D90 = 1.5D50

The shear stress owing to currents depends primarily on simulated bed shear velocities (from

Delft3D -FLOW) and on an approximated bed roughness (comparing D90 , which characterizes

the largest sediment grain sizes in a bed, to ks, which characterizes a user-defined roughness

height, in the friction factor above). This approximation of bed roughness is one of many aspects

of the sediment transport module which could be improved with more detailed formula (as

opposed to a simple coefficient), though for the purposes of this study the default method and

value of ks works well (see Chapter 3).

For waves, the expressions are similar, using a "wave-specific" friction factor (f.) which

depends on the characteristics of the wave field calculated in Delft3D-WAVE

1
Tb,w = -Pwfw(Us)2

y,= max 0.063, (1.5 H) 2 )

where

U5 = peak orbital velocity at the bed

f,= exp -6 + 5.2 (A6o 1 9 )
ks,w

Hs= significant wave height

ksw = user - defined wave roughness = 0.05

A5 = = peak orbital excursion at bed
2w r

T= wave period
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To produce the non-dimensional shear stress Ta, the formulas for shear stress produced by waves

and currents are compared to the critical shear stress for sediment motion

T=r = (Ps - pw)gDo6cr

where 6 cr is the threshold Shield's parameter approximated for different non-dimensional

sediment diameters D, . The Shield's parameter is an empirical relationship between sediment

properties and a threshold of shear stress needed for bed motion. This relationship is often shown

in graphical form, but for the purposes of a numerical model it must be distilled into approximate

equations. The constants used in general form of this equation change between given ranges of

values for D., with the general expression given as

0cr = C1D*

The constants C1 and C2 are different for a given range of sediment diameters, highlighting the

empirical nature of this relationship.

Though the calculation of suspended sediment transport is divided into several different

components seen above, thse describe a straightforward process by which sand is being kicked

up into the water column (a balance of shear stress owing to waves and currents vs. critical shear

stress of motion), moved as a passive tracer once it is in the water column, and pulled back to the

bed via gravitational forces (settling velocity).

Bedload transport is given as a more condensed formula, though with similar dependence on

critical shear stress values. In this case, calculating the bedload transport magnitude requires a

comparison of near-bed shear velocities and the critical shear velocity which matches to the
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Shield's parameter for the type of sand grain at the bed. The general formula for bedload

magnitude is given as [Van Rijn, 1993]

Sb= 0.006pswsD5oM0  Me02

where

2

M Veff - sediment mobility number owing to waves and currents
(s - 1)gD50

2
(Veff - Vcr) 2

Me = = excess mobility number
(s - 1)gD50

Veff = (vi + Un

and

Vcr = critical depth - averaged velocity based on the Shield's curve [Van Rin, 1985]

VR = depth - averaged velocity

Uon = near - bed orbital velocity based on significant wave height

The values for velocities owing to waves and currents are supplied to the sediment transport

module by Delft3D (FLOW and WAVE). Since Sb only describes the amount of sand being

moved, it is further split into wave and current components to calculate the direction of the

transport owing to each of these factors (one component acting in the direction of near-bed

currents, the other in the direction of wave propagation). Similarly, suspended sediment is also

split into two components, one corresponding to the direction of waves and the other to the

direction of currents.

The expression for the total sediment transport is therefore a sum of four components: suspended

load in the direction of waves (Ss,,), suspended load in the direction of currents (Ss,,), bedload in
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the direction of waves (Sb,,), and bedload in the direction of currents (Sbc). These final sediment

transport values are multiplied by tuning constants before being re-combined into the final

transport sum, as seen below

Stotai = CuiSsw + Cu2 Ss,c + Cu3 Sb,w + Cu4S(b,s)

The tuning parameters cu allow the user to calibrate the final transport calculations to better

resemble any data at hand. These coefficients are the calibration parameters mentioned most

often in Chapter 3 and associated appendices, as they help account for processes not explicitly

mentioned in the sediment transport formula (such as detailed asymmetry/skewness and wave

streaming).

The model accounts for the effects of bed slope. A user can choose one of several different

formulations to calculate a coefficient which, when multiplied with bedload transport, either

enhances or reduces transport in a particular direction.

The convergence and divergence of the resulting sediment transport vectors indicates the

locations of erosion and deposition in the domain. Delft3D performs a series of extra checks to

ensure the stability of these calculations, including setting cells with accretion above the water

level to be "dry" (i.e. land) and that all sediment calculations are performed in depths greater

than a user-defined threshold depth (in this case, 0.1 in).
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Appendix 2:

Delft3D Morphodynamic Validation

1) Delft3D Morphological Models

Observations of waves, currents, and bathymetry acquired at Katama Inlet during Hurricanes

Irene and Sandy were used to evaluate sediment transport and morphological updating in

Delft3D. The default sediment transport formulation, TRANSPOR2000 ([van Rin, 2000]), was

used in all model tests. TR2000 calculates separately bed load and suspended load owing to

waves and currents. For bedload, it uses wave-orbital velocities and near-bed mean currents to

determine a critical bed stress for sediment motion. For suspended load, an advection-diffusion

equation is used to move sediment in the water column. As applied here in 2DH mode, the

turbulence closure options are limited to a user-prescribed constant eddy viscosity and diffusivity

(default values used). All model parameters were set to default values except the sediment grain

size (D50 = 500 pm), the inclusion of a stationary wave roller model, and the tuning of wave-

and current-related transport coefficients (the default coefficients of 1 produced unrealistic

transport patterns).

More recently, TRANSPOR2004 was released in updated open source versions of Delft3D.

Unlike TR2000, TR2004 includes parameterizations of the effects of bed roughness owing to

megaripples and dunes on bed shear stress owing to wave-orbital velocities. Thus, TR2004 is

more appropriate in deeper waters with dunes and larger bedforms than occur in the shallow

depths of interest around Katama. Moreover, previous work shows relatively small differences in

simulated sediment transport between the two approaches ([Van Rijn et al., 2004]).
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2) Metrics for Validation

The Brier Skill Score is used to compare the relative skill of different simulations, similar to

other 2DH numerical morphological studies ([Ganju and Schoellhamer, 2009; Ganju et al.,

2011; Ranasinghe el al., 2011; Daly et al., 2014; Luijendijk et al., 2017]). The skill score is

defined in discrete form as

BSS = 1 - AZm)

where Azo is the observed and AZm is the modeled bathymetric change. A BSS = 1 indicates

perfect model skill. A BSS < 1 indicates the simulated morphological evolution diverges from

the observations. The score can be used to examine in more detail how model and data disagree

(or not) as follows ([Sutherland et al., 2004])

BSS =y
1+ E

C0VAZo, AZm)2

/ 2

UAz 
J

(AZm - (AZO) 2
y=

/IAzo) 2
E = 1
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where a- is the standard deviation, a shows how well the model simulates sand location (a = 1 is

considered good), f shows how well the model simulates the volume of sand moved (fl = 0 is

considered good), y shows how well the model simulates the average bed level (y = 0 is good),

and e is a normalization term. Both forms of the BSS are used here to compare numerical

simulations with observations of bathymetric change during Hurricanes Irene and Sandy

(Chapter 3).
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Figure 1: Bathymetric change contours (red = accretion, blue = erosion, scale on the right)
owing to Hurricane Irene for (a) observations, (b) model simulations without wind, (c) model
simulations with wind, (d) model simulations with wind and new transport coefficients, and (e)
model simulations with wind and including the week of bathymetric change before Irene. The
Brier Skill Score is indicated in bold (lower left) with the components of the skill score above (a
= location error and f = magnitude error).
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Figure 2: Bathymetric change contours (red = accretion, blue = erosion, scale on the right)
owing to Hurricane Sandy for (a) observations, (b) model simulations without wind, (c) model
simulations with wind, (d) model simulations with wind and new transport coefficients, and (e)
model simulations with wind and including the nor'easter which occurred after the hurricane.
The Brier Skill Score is indicated in bold (lower left) with the components of the skill score
above (a = location error and f = magnitude error).

3) Irene and Sandy

Model skill, according to the BSS, is higher for Hurricane Irene than Sandy, but relatively low

for each compared with an ideal BSS ("excellent" is classified as a BSS > 0.5, "good" is a BSS >

0.2, and "fair" BSS > 0.1 [Lu jendijk et al., 2017]). Although the simulated bathymetric change

is qualitatively consistent with the observed changes (Figures 3-5 in Chapter 3), the best BSS for

these runs fall into either the "good" or "fair" category. Some of the error could be owing to the

(not modeled) morphological evolution that occurred during the times between the bathymetric

surveys and the 6-day periods around the storms that were simulated.

Breaking the BSS into its components for each model run reveals that most of the error is in the

a term, or the spatial discrepancies between model and data (Figures 1 and 2). This is likely a
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consequence of transforming the observed pre-storm bathymetry (surveyed in a relatively small

area near the inlet) to both fit on the model 13-m grid and mesh smoothly with previously

observed bathymetry outside of the pre-storm survey area. As a result, the pre-storm bathymetry

used in the model was distorted slightly in space relative to surveyed pre-storm bathymetry, and

likewise the change in bathymetry from pre- to post-storm had the same distortion, leading to

errors in the location of bathymetric features between model and data.

The model skill is higher for Hurricane Irene than Hurricane Sandy, possibly because the spatial

shift arising from putting the observed bathymetry on the model grid was reduced by the 60%

larger spatial extent of the pre- and post- Hurricane Irene bathymetric surveys.

Additionally, the peak of each storm occurred at different phases of the tidal cycle, which could

impact the response to the storm-force waves. However, overall bathymetric evolution during the

storms did not change significantly if the time series of waves on the boundary was shifted 6

hours, suggesting that storm timing did not have a significant impact.

4) Coefficient Calibration

The sediment transport model in Delft3D is a parameterized equation based on the initiation of

motion of sand owing to shear stress, and relies on bulk parameters averaged over several sand

grains to describe the motion of sediment in a large area. As such, the transport equations must

be "tuned" to specific field sites to account for the physics not captured by the parameterizations.

The four parameters that describe the relative importance of bed or suspended loads owing to

either waves or currents were adjusted in TR2000 to match observations at the Katama site. All
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coefficients have default values of 1.0, but previous studies ([Daly et al., 2014]; among others)

have suggested reducing the coefficients of wave-driven transport by a factor of 10.

Simulations of the bathymetric change during the hurricanes using 1.0 for current-related

coefficients and 0.1 for wave-related coefficients were similar to observations. However, using

these coefficients for simulations of the morphological evolution between December 2012 and

February 2013 (see Chapter 3) resulted in less accretion near the inlet and southern shoreline of

Chappaquiddick Island than was observed. Reducing the current coefficients reduced the erosion

around the inlet, whereas increasing the wave coefficients enhanced accretion around the inlet

and the eastern side of Norton Point (Chapter 3, Figure 11). The coefficients (wave= 0.200,

current = 0.125) that best reproduced the observed accretion were determined with an iterative

process that began with doubling the wave coefficient, comparing two months of change

between model and data, and adjusting the current coefficient in response. Bathymetric change

during the hurricanes simulated with the original values for the coefficients is similar to the

change simulated with coefficients tuned to the evolution observed over 2 winter months

(compare Figure 1c with Id and Figure 2c with 2d).

5) Boundary Condition Calibration

Standard boundary conditions for model runs included observed waves (from a buoy in 50-m

water depth or from WW3 model output, see Chapter 1) and satellite-derived tidal constituents

[Egbert and Erofeeva, 2002]. Optional boundary conditions include wind and atmospheric

pressure during storms. Observed winds were spatially sparse (with only one station on Martha's

Vineyard and one station on Nantucket for the entire model domain), so WW3 winds were used
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in the model where possible and when they could be verified with observations. Wind

coefficients in the model were left at default values. Similarly, WW3 pressure fields were used in

model simulations. Neither wind nor pressure were included in idealized model runs which did

not simulate a specific observed morphological change.

Comparisons between runs of Hurricanes Irene and Sandy with and without wind show

significantly greater skill with the inclusion of wind (Figures lb with ic and Figure 2b with

2c). Including spatially varying atmospheric pressure did not result in significant improvement in

model skill (not shown).

6) Calibration to Full Observation Period

The effects of including the full time series (big and small waves) between the surveys were

evaluated when computationally reasonable. Bathymetry was measured 3 weeks before and 2

days after Hurricane Irene, as well as immediately before Hurricane Sandy and then 7 days later

after the passage of a small nor'easter. The weeks before Irene and the nor'easter after Sandy

were included in hurricane simulations with available boundary conditions and compared to

simulations of each hurricane alone.

Increasing the duration of the pre-Irene waves, winds, and currents to include the 3 weeks before

the storm and the 6 days during the storm was computationally prohibitive. A complete

simulation was run starting 1 week immediately prior to Irene and continuing through the 6-day

storm simulation to determine the change in model skill with a reduced amount of pre-storm

conditions.
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Figure 3 Observed (black) and simulated (red) (a,b) significant wave height and (c,d) wave
direction versus time in 12-m water depth at MVCO during (a,c) Hurricane Irene and (b,d) a
nor'easter after Hurricane Sandy.

WW3 predictions of winds and wave directions can be inaccurate at some locations along the

boundaries of the model domain, and thus the waves simulated with and without wind before

Hurricane Irene (Figure 3 a,c) and during the nor'easter after Hurricane Sandy (Figure 3b,d) are

not accurate in 12 m depth. Consequently, the model skill for simulating morphological change

between the surveys did not increase (and occasionally decreased) with these longer time series

(compare Figure 1c with le and Figure 2c with 2e). As with hurricanes, wind is likely

important to simulate observed morphological change owing to nor'easters (post-Sandy) and

leading into hurricanes (pre-Irene). The effect of wind on waves, as seen at MYCO, was

inaccurate during the nor'easter when the model was forced with wind conditions from WW3

(Figure 3a,b). Model simulations without wind and waves (pre-Irene) and without wind (post-

Sandy) (not shown) did not perform better.

The skill of simulations that included a few-day period around a hurricane, but not the sediment

transport that may have occurred in the several weeks before or after the hurricane (when

111



bathymetric surveys were obtained) suggests that wave and current conditions during a storm are

the primary driver of sediment transport (Figures 1 and 2, compare (a) and (c-d)). Simulations

that include accurate boundary conditions for all the time between surveys (before and after the

hurricanes) would increase model skill compared with the surveys, but the bulk of the transport

occurs during the storm events.
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Appendix 3:

Wave Reduction Method

Morphological acceleration factors (MORFACs) are used to reduce the computational cost of

numerical simulations of morphological evolution ([Lesser et al., 2004]). The procedure assumes

the sediment transported by a specific set of hydrodynamic conditions can be multiplied by a

factor MORFAC = n to estimate the sediment transported by n realizations of these conditions.

Thus MORFAC = 1 is the model simulation run in full, whereas MORFAC = 10 is the model run

with the sediment transport accelerated 10-times. The use of a MORFAC must be validated

against a full model run for any given environment because it applies a linear acceleration to a

nonlinear process.

Measured Winter 12-13 Boundary Conditions
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Figure 1: (a) Significant wave height, (b) mean wave direction, and (c) peak wave period at the
NOAA buoy 44097 located in 50-rn water depth versus time. The red dashed line in (a) marks
the storm wave height threshold (Hsig-3 in).

Here, boundary conditions (the 3 parameters: wave height, direction, and period, Figure 1) for

the winter of 2012-13 were estimated every hour from observations from a NOAA buoy (44097)
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located in 50 m depth offshore of Katama Bay. There are many methods to condense these

conditions for different values of MORFAC ([Yeganeh-Bakhtiary et al., 2009; Ganju et al.,

2011; Ranasinghe et al., 2011; Hansen et al., 2013; Daly et al., 2014]). Here, with MORFAC

10, the significant wave height was divided into a histogram of 10 equally sized bins spanning

the range of observed wave heights. The most commonly occurring period and direction in each

wave height bin were selected as the representative period and direction for that wave height.

The boundary conditions consist of a reduced (by MORFAC) set of wave heights, periods, and

directions from each bin, with the number of hours comprising wave conditions from each bin

occurring in proportion to the number of wave conditions of that size in the full time series.

The end result is a time series that is a fraction of the length of the original, in this case one-tenth

as long, with wave heights chosen from the ten bins based on frequency, and wave direction and

period chosen within each of these ten bins to match the wave heights. The time series can then

be randomly distributed (keeping triples of height, direction, and period together) or clustered to

distribute storm conditions as desired. Significant wave heights greater than 3 m on the boundary

are considered to be storm conditions.

The boundary condition can consist also of a mixed MORFAC. For example, for some model

runs here, MORFAC = 10 is applied to the non-storm waves and MORFAC = 1 is applied during

storms (Hsig > 3 m). The simulated morphological evolution is similar with MORFAC=1, a

mixed MORFAC, and MORFAC=10 (Figure 10, Chapter 3). The effects of the sequence and

spacing of storms can be investigated by shifting the timing of the storms to be closer together or

farther apart in the simulation run.

115



References

Daly, C. J., K. R. Bryan, M. R. Gonzalez, A. H. F. Klein, and C. Winter (2014), Effect of
selection and sequencing of representative wave conditions on process-based predictions of
equilibrium embayed beach morphology, Ocean Dyn., 64(6), 863-877, doi:10.1007/s10236-
014-0730-9.

Ganju, N. K., B. E. Jaffe, and D. H. Schoellhamer (2011), Discontinuous hindcast simulations of
estuarine bathymetric change: A case study from Suisun Bay, California, Estuar. Coast.
ShelfSci., 93(2), 142-150, doi:10.1016/j.ecss.2011.04.004.

Hansen, J. E., E. Elias, J. H. List, L. H. Erikson, and P. L. Barnard (2013), Tidally influenced
alongshore circulation at an inlet-adjacent shoreline, Cont. Shelf Res., 56, 26-3 8,
doi:10.1016/j.csr.2013.01.017.

Lesser, G. R., J. A. Roelvink, J. a. T. M. van Kester, and G. S. Stelling (2004), Development and
validation of a three-dimensional morphological model, Coast. Eng., 51, 883-915,
doi: 10.1016/j.coastaleng.2004.07.014.

Ranasinghe, R., C. Swinkels, A. Luijendijk, D. Roelvink, J. Bosboom, M. Stive, and D. Walstra
(2011), Morphodynamic upscaling with the MORFAC approach: Dependencies and
sensitivities, Coast. Eng., 58(8), 806-811, doi: 10.101 6/j.coastaleng.2011.03.010.

Yeganeh-Bakhtiary, A., B. Shabani, H. Gotoh, and S. S. Y. Wang (2009), A three-dimensional
distinct element model for bed-load transport, J. Hydraul. Res., 47(2), 203-212,
doi: 10.3 826/jhr.2009.3 168.

116




