
Theory and Application of Neural and Graphical Models
in Early Cancer Diagnostics

by Adityanarayanan Radhakrishnan

S.B. Mathematics, EECS. M.I.T. 2016

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

c

&\\ rAs reser4

May 2017

The author hereby grants to M.I.T. permission to reproduce and to distribute publicly paper and
electronic copies of this thesis document in whole and in part in any medium now known or

hereafter created.

Author:

Certified by:

Accepted by:

Signature redacted
Department of Electrical Engineering and Computer Soen'c'e

Signature redacted
Caroline Uhler, Assistant Professor of EECS
May 26,2017

_____ Signature redacted _

Christopher Termahkirman, Masters of Engineering Thesis Committee

MASS TE
FT N UT

LIBRARIES
ARCH .IVES

MITLibraries
77 Massachusetts Avenue
Cambridge, MA 02139
http://Iibraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available.

Thank you.

The images contained in this document are of the
best quality available.

2

Theory and Application of Neural and Graphical Models in Early Cancer Diagnostics

by Adityanarayanan Radhakrishnan

Submitted to the Department of Electrical Engineering and Computer Science

May 26, 2017
In Partial Fulfillment of the Requirements for the Degree of Master of Engineering in

Electrical Engineering and Computer Science

ABSTRACT
With the recent availability of large training datasets and graphics processing units

(GPUs), we address challenges in the application of graphical models and neural

networks to prediction sensitive areas such as healthcare. We begin by presenting our

work in the context of learning graphical models from biological data. Namely, we

present a combinatorial perspective of Markov Equivalence Classes (MECs), which

defines the size of solution spaces when attempting to learn a graphical model from data.

Through our analysis, we show that the size of these MECs can be exponential with

respect to features of the graph (such as average degree). We then switch contexts to

address the challenge of developing interpretable complex models. Namely, we present a

variational-inference-motivated neural network, PatchNet, that provides visual

interpretability, and we present the application of our network to the Describable

Textures Dataset (DTD), the ISIC-ISBI Melanoma Classification Challenge, and cell

nucleus data.

3

1. INTRODUCTION TO THE ANALYSIS OF MARKOV EQUIVALENCE CLASSES

Bayesian networks or graphical models based on directed acyclic graphs (DAGs) are widely

used to represent complex causal systems in applications ranging from computational biology to

epidemiology, and sociology [23, 45, 51, 57]. A DAG entails a set of conditional independence

relations through the Markov properties. Two DAGs are said to be Markov equivalent if they

entail the same conditional independence relations. In general, observational data can only identify

a DAG up to Markov equivalence. For statistical causal inference it is therefore important to

enumerate and describe the set of Markov equivalence classes (MECs) and their sizes. If the

MECs are large in size, then causal inference algorithms that operate in the space of MECs as

compared to DAGs could significantly increase efficiency. However, gaining a full understanding of

the causal relationships in a system with a large MEC requires many interventional experiments

that deliberately and carefully alter one or more components of the system. The purpose of this

paper is to recast this important combinatorial and enumerative question from statistics in the

language of combinatorial optimization. This new perspective yields complexity results on the

problem in general, as well as solutions to the problem in some special cases.

The problem of enumerating MECs has been studied from two fundamental perspectives: (1)

enumerate all MECs on p nodes (as in [26]), and (2) enumerate all MECs of a given size (as

in [25, 60, 66]). At the heart of these studies is a result of Verma and Pearl [64], which states

that a MEC is determined by the underlying undirected graph (or skeleton) and the placement of

immoralities, i.e. induced subgraphs of the form X -+ Z <- Y. This characterization leads to a

representation of an MEC by a graph with directed and undirected edges known as the essential

graph [21 (or cPDAG [12] or maximally oriented graph [44]). In [26], Gillespie and Perlman use

this characterization to identify all MECs on p <_ 10 nodes; namely, they fix a skeleton on p

nodes, and then count the number of ways to compatibly place immoralities within the skeleton.

The works [25, 60, 66] give inclusion-exclusion formulae for MECs of a fixed size by utilizing the

combinatorial structure of the essential graph described in [2]. However, since essential graphs can

be quite complicated, these formulae are only realizable for relatively constrained classes of MECs.

In particular, [60] and [66] only consider MECs of size one, and [25] must fix the undirected edges

of the essential graphs to be enumerated.

As exhibited by these results, the implementation of combinatorial enumeration techniques ap-

pears difficult from perspective (2). On the other hand, perspective (1) has only been considered

4

via computer-enumeration [26]. A common approach to difficult graphical structure enumeration

problems is to specify a type of graph for which to solve the problem. This approach is used

in such problems as the enumeration of independent sets, matchings, and colorings [20, 21, 40].

Given a graph, it can be useful to consider a refined set of combinatorial statistics each of which

plays a role in the enumeration question. For instance, given a graph G researchers examine the

total number of independent sets (or the Fibonacci number of G) [48, 49], the maximum size of

an independent set (or independence number of G) [5, 42], and/or the number of independent sets

of a fixed size [40]. These refined statistics work together to give a complete understanding of the

problem of enumerating independent sets for G.

In the present paper, we initiate the combinatorial enumeration of MECs with respect to a fixed

undirected graph and thereby recast this enumeration problem in the language of combinatorial

optimization. For a graph G this amounts to enumerating all possible placements of immoralities

within G [64]. Thus, we are interested in the following combinatorial statistics:

(1) M(G), the total number of MECs on G,

(2) m(G), the maximum number of immoralities on G,

(3) mk(G), the number of ways to place exactly k immoralities on G, and

(4) M(G)freq = (s1(G), s2 (G), - . .), where si(G) denotes the number of MECs on G of size i.

The first three statistics fit together naturally in the polynomial presentation

m(G)

M(G; x) := E mk(G)xk, since then M(G; 1) = M(G).
k=O

In general, computing any or all of these statistics for a given type of graph appears to be difficult.

In this paper, we will prove the following theorem in support of this observation.

Theorem 1. Given an undirected graph G, the problem of computing a DAG g with skeleton G

and m(G) immoralities is NP-hard.

Here, we use the notion of NP-hardness as defined in [24, Chapter 5]. As with most NP-hard

problems, restricting to special cases can make the problem tractable. In this paper, we will

compute some or all of (1), (2), (3), and (4) for some special types of graphs that are important in

both statistical and combinatorial settings. Moreover, these special cases can offer useful structural

insights on the general problem. For example, it appears that the number and size of equivalence

classes is guided by the number of cycles and high degree nodes in the skeleton. In order to test

5

and verify these types of observations, we develop a computer program for the enumeration of the

combinatorial statistics (1), (2), (3), and (4) that expands on the original program of Gillespie

and Perlman [26]. Using this program we cannot only verify the observations that high degree

nodes and cycles in the skeleton play an important role, but we are also able to make the following

interesting observation, indicating the profound role played by the underlying skeleton.

Theorem 2. For p 10, every connected graph G on p nodes has a unique frequency vector

M(G)freq-

1.1. A summary of our contributions. The remainder of our analysis of MECs is organized as

follows. In Section 2, we examine some first and fundamental examples including paths, cycles, and

the complete bipartite graph K2,p. We compute all the desired combinatorial statistics specified

by (1), (2), (3), and (4) for these graphs. The first two examples exhibit an important connection

to independent sets and vertex covers. In Section 3, we consider our enumeration question in

the special setting of trees. Here, we derive results for stars, bistars, complete binary trees, and

caterpillar graphs. The former two examples play an important role in bounding the number and

size of MECs on tree graphs, and the latter two examples are fundamental to phlyogenetic modeling

[70]. Following this, we identify bounds on the number of MECs on a given tree that exactly parallel

the classically known bounds for independent sets in trees. We also identify tight bounds on the

size of a MEC on a given tree using properties of the associated essential graphs. In Section 4,

we prove Theorem 1 via a reduction of the minimum vertex cover problem. To do so, we prove

a correspondence between minimum vertex covers of a given triangle-free graph G and minimum

decompositions of G into non-overlapping stars, which we call minimum star decompositions. Using

this correspondence, we can compute the number m(G) for triangle-free graphs whose minimum star

decompositions are isomorphic as forests. We apply this result to recover m(G) for the complete

bipartite graph Kp,, and some special types of circulant graphs. In Section 5, we describe our

computer program for the computation of the statistics (1), (2) (3), and (4). This program collects

a variety of data on Markov equivalence classes and the skeleton of each class for all connected

graphs on p 10 nodes and for triangle-free graphs on p < 12 nodes. In particular, we compare

class size and the number of MECs per skeleton to skeletal features including average degree, max

degree, clustering coefficient, and the ratio of number of immoralities in the essential graph of

the MEC to the number of induced 3-paths in the skeleton. Finally, we see that this program

6

validates Theorem 2, and we also use it to address the analogous result in the case of unconnected

graphs. Since this work draws heavily on different concepts from two different fields, statistics and

combinatorics, we provide an extensive review of the required concepts and definitions from both

fields in the appendix.

2. SOME FIRST EXAMPLES

In this section, we provide some first examples for which we can compute all of the desired

combinatorial statistics (1), (2) (3), and (4). The first two examples are the path and cycle on p

nodes. Using some well-known results on the independent sets within these graphs, we can quickly

obtain the desired numbers. The third example presented in this section is the graph K 2,p. Unlike

the path and cycle, K2 ,p requires a more detailed analysis.

2.1. Paths and cycles. To compute the polynomial M(G; x) and the vector M(G)freq for paths

and cycles, we will use the notion of independent sets. We refer the unfamiliar reader to sec-

tion A.1 for all the necessary definitions. In this section, we will use two well-studied combinatorial

sequences, and their associated polynomial filtrations. Recall that the pth Fibonacci number Fp is

defined by the recursion

Fo := 1 F1 := 1, and Fp := Fp-1 + Fp- 2 for p > 2.

The pth Fibonacci polynomial is defined by

F(x) Z (E P k
k=O

and it has the properties that Fp(1) = Fp for all p 1 and Fp(x) = F,_i(x) + xFp- 2(x) for all

p > 2. Analogously, the pth Lucas number LP is given by the Fibonacci-like recursion

Lo := 2 Li := 1, and LP := Lp-1 + Lp- 2 for p > 2.

The pth Lucas polynomial is given by

Lo(x) :=2 Li(x) :=1, and Lp(x):= Lp 1 (x) +xLp- 2(x) for p > 2.

It is a well-known result that the independence polynomial of the path of length p, which we

denote by Ip, is equal to the (p + 1)'t Fibonacci polynomial and the independence polynomial of

7

the p-cycle Cp is given by the pth Lucas polynomial; that is to say,

I(Ip; x) = F(x) and I(Cp; x) = Lp(x).

With these facts in hand we prove the following theorem.

Theorem 3. For the path Ip and the cycle C, on p nodes we have that

M(Ip; x) = F_1i(x) and M(Cp: x) = Lp(x) - 1.

In particular, the number of MECs on I, and Cp, respectively, is

M(Ip) = Fp_ 1 and M(Cp) = Lp - 1,

and the maximum number of immoralities is

m(Ip+2) = m(Cp) = .

Proof. The result follows from a simple combinatorial bijection. Since paths and cycles are the

graphs with the property that the degree of any vertex is at most two, then the possible locations

of immoralities are exactly the degree two nodes. That is, the unique head node j in an immorality

i -+ j +- k must be a degree two node. In the path Ip, this corresponds to all p - 2 non-leaf vertices,

and for the cycle C this is all the vertices of the graph. Notice then that no two adjacent degree

two nodes can simultaneously be the unique head node of an immorality, since this would require

one arrow to be bidirected. Thus, a viable placement of immoralities corresponds to a choice of

any subset of degree two nodes that are mutually non-adjacent, i.e. that form an independent set.

Conversely, given any independent set in IP, a DAG can be constructed by placing the head

node of an immorality at each element of the set and directing all other arrows in one direction.

Similarly, this works for any nonempty independent set in Cp. (Notice that any MEC on the cycle

must have at least one immorality since all DAGs have at least one sink node.) The resulting

formulas are then

M(Ip;x) = I(Ip-2;x) = F_1 (x) and M(C :x) = I(Cp;x) - 1 = Lp(x) - 1,

which completes the proof.

8

It remains to compute the vectors M(Ip)freq and M(CP)freq and the maximum number of

immoralities m(Ip) and m(Cp). The formulae for these combinatorial statistics follow naturally

from the description of the placement of immoralities given in Theorem 3.

Theorem 4. The number se(Ip) of MECs of size f with skeleton Ip is the number of compositions

c1 + - +ck+1 =p-k of p-k into k+1 parts that satisfy

k+1

= flci
i=1

as k varies from 0, 1 ... ,J.

Proof. Let g be a DAG with skeleton Ip. We denote the Markov equivalence class of 9 by [9]. By

the proof of Theorem 3, we know that the immorality placements in [9] correspond to the nodes

in an independent k-subset I C [p] on the subpath Ip-2 of Ip induced by the non-leaf nodes of 1p.

The induced graph of the complement of I is a forest of k + 1 paths. Since each member of [9]

is a DAG with skeleton Ip that has no immoralities on these k + 1 paths, then each path contains

a unique sink. Each independent k-subset yields a distinct forest of k + 1 paths on [p]\I, which

corresponds to a unique partition of p - k into k + 1 parts. The formula for se(Ip) is then given by

considering all such possible placements of sinks on each path in the forests over all independent

sets. L

A similar argument using integer partitions allows us to compute the number of MECs of size f

on the p-cycle. We refer the reader to subsection A.4 for the unfamiliar terminology or notation.

Theorem 5. The number of MECs of size f in the p-cycle is

s L(C 2-1 (ksf (CP) E L T (M" mp-2k+1)'
k=1 m E P[p-2k+1,k,p-k],

where P[j, k, n] denotes the partitions of n with k parts with largest part at most j.

Proof. Since C, is a graph in which every node is degree 2, then each MEC of C, containing k

immoralities corresponds to an independent k-subset of [p] := {1, 2,... , p}, and the subgraph of

Cp given by deleting this k-subset consists of k disjoint paths. The size of this MEC is then the

product of the lengths of these paths. So we need only count the number of such subgraphs for

which this product equals f.

9

1 2

1 1 1 2

1 2 1 3 ,2

1 1

1 2

10 5 1 16 9 2

15 20 15 6 1 20 30 27 11 2

7 21 35 35 21 7 1 8 27 50 57 38 13 2

Pascal's triangle Lucas' triangle

FIGURE 1. Pascal's triangle is depicted on the left and Lucas' triangle on the right.
The pt diagonal of each triangle is the coefficient vector of Fp(x) and Lp(x), re-
spectively.

To count these objects, consider that each subgraph of Cp given by deleting an independent

k-subset of C, forms a partition of the p - k remaining vertices into k parts with maximum possible

part size being p - 2k + 1. Such a partition is represented by

(1mi, 2 M2, . . ., (p - 2k + 1)Mp-2k+1) E P[p - 2k + 1, k, p - k],

where mi,. .. ,mp-2k+1 > 0 and Z mi = k. The partition (1 ml, 2M2,. . ., (p - 2k + 1)mp-2k+1)

corresponds to an unlabeled forest consisting of mi i-paths, and the number of subgraphs of C,

isomorphic to this forest is

p k
k m, ... , mp-2k+l)

The desired formula follows since the size of each corresponding MEC is H 1k im* E

Remark 6. It is a well-known result that the coefficient of xk in the (p- 1)'t Fibonacci polynomial is

the binomial coefficient (P- 1), and that this is also the number of compositions of p - k into k + 1

parts. The former result says that the (p - 1)'t Fibonacci polynomial has coefficients given by the

(p - 1)'t diagonal of Pascal's triangle, and so the latter result gives a compositional interpretation

of the corresponding entry in Pascal's Triangle. In this subsection, we saw that this compositional

interpretation of (P--1) results in the proof of Theorem 4.

Analogously, the pth diagonal of a second triangle, called Lucas' triangle in [6], corresponds to

the coefficients of the pt Lucas polynomial. This triangle is depicted on the right in Figure 1.

10

Thus, the proof of Theorem 5 results in a combinatorial interpretation of the entries of this triangle

via partitions. In particular, the entry of the Lucas triangle corresponding to the kth coefficient of

L4(x) is

(lml,2m2,...,(p-2k+1)
m p2k+1)EP[p-2k+1,k,p-k k (m ,..., np2k+1

Moreover, the binomial recursion on the triangle implies that these coefficients satisfy the identity

[xk-Lp(x) = [Xk-1].Lp_ 2 + [xk] .Lp_1.

To the best of the authors' knowledge, such a partition identity is new to the combinatorial litera-

ture.

2.2. The complete bipartite graph K2,p. For convenience, we consider the partitioned vertex

set of K2 ,p to be the two distinguished nodes {a, b}. The remaining p nodes are labeled by [p] and

are collectively referred to as the spine of K 2,p. This labeling of K 2,p is depicted on the left in

Figure 2. First, it is easy to see that the maximum number of immoralities is given by orienting

the edges such that all edge heads are at the nodes a and b. This results in m(K2 ,p) = 2(P). Next,

we compute a closed form formula for the number of MECs for K2,p.

Theorem 7. The number of MECs with skeleton K 2 ,p is

p

M(K 2 ,p) = ((2P-k - 1+ k - k p2P-1.
k=O

Proof. To arrive at the desired formula, we divide the problem into three cases:

(1) The number of immoralities at node b is (P).

(2) The number of immoralities at node b is strictly between 0 and (P).

(3) There are no immoralities at node b.

Notice that cases (1) and (2) have a natural interpretation via the indegree at node b of the essential

graph of the corresponding MECs. Readers unfamiliar with the theory of essential graphs can find

the basics in section A.3. If the indegree at b is two or more, all edges adjacent to b are essential,

and the number of immoralities at node b is given by its indegree. Thus, we can rephrase cases (1)

and (2) as follows:

(1) The indegree of node b in the essential graph of the MEC is p.

11

1 1

2 2

3 3
b ab

FIGURE 2. The graph K2 ,p is depicted on the left, and one of the essential graphs
counted in the proof of Theorem 7 is depicted on the right.

(2) The indegree of node b in the essential graph of the MEC is 1 < k < p.

In case (1), the MEC is determined exactly by the MEC on the star with center node a and p

edges. One can easily check (this is also proven as part of Theorem 9 in the following section) that

this yields 2P - p MECs.

Case (2) is more subtle. First, assume that the indegree at node b is 1 < k < p, and the arrows

with head b have the tails {1, 2,. .. k} c [p]. Then the remaining arrows adjacent to b are all

directed outwards with heads {k + 1,..., p}. Notice that no immoralities can happen at nodes [k]

along the spine, but some may occur at the nodes [p]\[k]. If there are no such immoralities, then

node a has indegree p, otherwise the essential graph would contain a directed 4-cycle. Similarly,

if, without loss of generality, we denote the nodes in [p]\[k] that are the heads of immoralities by

{k + 1, k + 2, ... , k+s} for 0 < s <p-k, then the nodes k+s+ 1,...,p are tails of the arrows

adjacent to node a. Thus, if the number of immoralities with heads in [p]\[k] is 0 < s < p - k,

then the immoralities with heads at node a are completely determined. Therefore, each s-subset

of [p]\[k] yields a single MEC. Figure 2 depicts an example of one such choice of immoralities. We

start by selecting the arrows to form immoralities at node b which forces the remaining arrows at

b to point towards the spine. We then select some of these to form immoralities at the spine, and

this forces the remaining arrows to be directed inwards towards a.

12

However, if s = p - k, the star induced by nodes {a, 1,2,... , k} determines the MECs. This

yields 2 k - k classes (see again Theorem 9). In total, for case (2) the number of MECs is

P-1S(P) (2P-k - 1 2 k - k) .
k=2

In case (3), we consider when there are no immoralities at node b, and we count via placement of

immoralities along the spine. There are 2P ways to place immoralities along the spine, one for each

subset of [p]. Suppose the immoralities along the spine have the heads {1, 2,..., k} for k < p - 1

(the cases k = p - 1 and k = p are considered separately). Then the remaining immoralities can

happen at node a. However, if there is an immorality with head at node a then all other arrows

adjacent to a are essential, some of which may point towards the spine with heads in the set [p]\[k].

Since there are no immoralities with head in the set [p]\[k], then any such outward pointing arrow

is part of a directed path from a to b. However, since there are no immoralities at node b, there can

be at most one such directed path. The presence of any such directed path forces a directed 4-cycle

since k < p - 1. Therefore, for k < p - 1 the nodes {k + 1, ... , p} must be tails of arrows oriented

towards node a, thereby yielding only a single MEC. Since k = p and k = p - 1 also yield only a

single MEC, case (3) yields a total of 2P classes. Combing the total number of MECs counted for

each of these cases yields the desired formula. L

Using the case-by-case analysis from the proof of Theorem 7 we can count the number of MECs

with skeleton K2 ,p of each possible size. Similarly, one can also recover the statistics mk(K 2 ,p) from

this proof. However, to avoid overwhelming the reader with formulae, we omit the expressions for

mk(K2,p).

Corollary 8. The possible sizes of a MEC with skeleton K2 ,p and the number of classes having

each size is as follows:

Class size Number of Classes

1 2 + EZ -2 (P) 2P-k

2 ___k=2_k

2 2 + (P)

3 < k < p - 11+ (P2)

p 2

13

Proof. Recall the case analysis from the proof of Theorem 7. In case (1) all MECs are size 1 except

for one which is size p. This yields 2P - p - 1 classes of size one and one class of size p. In case (2),

all MECs have size 1, unless s = p - k and there are no immoralities at node a, in which case the

class size is k. This yields (P) classes of size k for 1 < k < p, and

kk P-1

k=2

classes of size 1. In case (3), all MECs have size p - k for 0 < k < p - 1. When k = p - 1, we get a

single class of size 2, and when k = p we get one more class of size 1. The total number of MECs

of size 1 is then

p-1 p--1

(2P - p - -+P) +2p-k 1) = (2P - p - 1) + 1 + ()2P-k - (P)
k=2 k=2 k=2

=2P + 2 + P1 2p-k (P

k=2 () k=O

-1

= 2 + (P 2Pk.
k=2

The other formulas are quickly realized from the above arguments. L

3. TREES

In this section, we restrict our attention to the family of trees. First we will derive formulas

for some important collections of trees, including stars, that will be of significance in the coming

sections. We will then provide recursions for the number of MECs for some families of trees that

play important roles in phylogenetic modeling, namely caterpillar graphs and complete binary

trees [70]. Following this, in Section 3.4 we will derive bounds on the number and sizes of MECs

that hold for all trees. We first show that the minimum and maximum number of MECs for a tree

on p nodes is achieved by the path and star graph, respectively. These results are exactly analogous

to the results on independent sets in trees given in [48]. Finally, we will use the theory of essential

graphs to identify tight bounds on the sizes of MECs for trees. We will see that star graphs also

play an important role in achieving these bounds.

In the following, it will be helpful to label edges that have specified roles in certain Markov

equivalence classes. The green edges (labeled with L) indicate that these edges cannot be involved in

14

12

G1(p) ~K1,p G2(p, q)

FIGURE 3. On the left is a star and on the right is a bistar.

any immorality. The red arrows (labeled with *) indicate a fixed immorality in the partially directed

graph, and the blue arrows (labeled with o) represent fixed arrows that are not in immoralities.

3.1. Stars and bistars. Two fundamental types of trees are stars and bistars. A p-star is simply

the complete bipartite graph K1 , , and its center node is the unique node of degree p. For more

general purposes, we will denote the star K1 ,p as G1 (p). A bistar can be thought of as a gluing

of two stars in which a leaf node of one star is glued to the the center node of the other star.

We denote the bistar given by gluing a leaf of G,(q + 1) to the center node of G,(p) by G 2 (p, q).

Equivalently, the bistar G2(p, q) can be defined by attaching p leaves to one node of the 2-path 12

and q leaves to the other node. An example of a star and a bistar is given in Figure 3. The number

of MECs on stars and their sizes will play an important role in Section 4.

Theorem 9. The MECs on the p-star G1(p) have the polynomial generating function

M(G1(p); x) = 1 + E 2).

k>2

In particular,

M(G) = 2P - p.

Moreover, the corresponding class sizes are

si(G1(p)) = 2P - p + 1 and sp+i(G1(p)) = 1.

Proof. Any immorality i -+ j +- k in a DAG on G1 (P) must have the unique head node j being

the center node of G1 (P), and the tail nodes i and k must be leaves of G1(p). It follows that each

MEC on G1 (p) having at least one immorality is given by selecting any k-subset of the p leaves for

k > 2 to be directed towards the center node and then directing all other edges outwards. Each

15

0 0

S1 2 1 2 1 0 2 o

Case (1) Case (2) Case (3)

FIGURE 4. The three cases of the proof of Theorem 10.

such k-subset yields a unique MEC of size one containing (k) immoralities. The final MEC is the

class containing no immoralities. This class consists of all DAGs on G1 (p) with a unique source

node, and there are p + 1 such DAGs. L

The formulas in Theorem 9 allow us to obtain similar formulas for bistars. For convenience, in

the following we let

Pm(X) := E
k=1

Theorem 10. The MECs on the bistar G2 (p, q) have the polynomial generating function

M(G 2 (p, q); x) = M(Gi(p); x)Pq(x) + M(G1(q); x)Pp(x) + M(G1(p); x) + M(GI(q); x) - 1.

In particular,

M(G1(p, q)) = 2 p+q+1 - p2q - q2P - 1.

Moreover, the corresponding class sizes are

s 1(G 2 (p, q)) = 2 p+q+1 _ p2q - q2P - 2P - 2q,

sp+I(G 2 (p, q)) = - 1, sq+1(G2(p, q)) = 2P - 1, and sp+q+2(G2(p, q)) = 1.

Proof. To count the MECs on the bistar G2(p, q) we consider three separate cases defined in terms

of the edge {1, 2}. These three cases are:

(1) The edge {1, 2} is in an immorality with at least one of the p leaves attached to node 1.

(2) The edge {1, 2} is in an immorality with at least one of the q leaves attached to node 2.

(3) The edge {1, 2} is not in an immorality.

The three cases are depicted in Figure 4. In the first case, at least one of the p leaves attached

16

to node 1 must be in an immorality with the edge {1, 2}, and the q leaves attached to node 2

can display any pattern of immoralities of the star G, (q). This yields M(Gi (q); x)P(x) MECs

as counted by their number of immoralities. Similarly, case two yields M(Gi(p); x)Pq(x). In the

third case, in order for the edge {1, 2} to not appear in any immorality, we need that all edges at

the head of {1, 2} point towards the leaves. This yields M(G1(p); x) + M(G1(q); x) - 1 MECs as

counted by their number of immoralities. Thus,

M(G 2 (p, q); x) = M(G1(p); x)Pq(x) + M(G1(q); x)Pp(x) + M(Gi(p); x) + M(G1(q); x) - 1,

and evaluating this polynomial at 1 yields

M(Gi(p, q)) = 2 p~q+1 - p2 q - q2P - 1.

Finally, to count the classes by size we again filter by the three cases (1), (2), and (3). In the

first case, there are 2P - 1 ways for the edge {1, 2} to be in an immorality with any of the p leaves

at node 1, and there are 2 q - q possible patterns of immoralities that can occur among the q leaves

at node 2. One of these 2 q - q patterns has class size q + 1 (the class with no immoralities), and all

others have size one. Thus, case (1) yields 2P - 1 classes of size q + 1 and (2 q - q - 1) (2P - 1) classes

of size 1. Similarly, case (2) yields 2 q - 1 classes of size p + 1 and (2P - p - 1)(2P - 1) classes of

size 1. In case (3), if both sets of leaves contain no immoralities, then we get a single class of size

p + q + 2. If the p leaves at node 1 contain at least one immorality, then all leaves at node 2 must

be directed away from node 2, yielding 2P - p - 1 classes of size 1. Similarly, if the q leaves at node

2 contain at least one immorality, then we get another 2 q - q - 1 classes of size one. Summing over

these cases yields the desired formulas.

3.2. Caterpillars. The caterpillar graph Wp is defined to be the graph

G (1, 1,. . .,1) if p is even,
2

WP :=

GP+ (1, 1, ..., 1,10) if pis odd.
1 2

The first few caterpillar graphs are depicted in Figure 5. Our definition of the caterpillar is slightly

more general than the typical notion which considers only the graph GP (1, 1,..., 1) for p even.

The more general definition will allow us to develop a simple recursion for counting the number of

MECs for this family of graphs.

17

. L.MLV T MILL
W1 W2 W3 W4 W5 W6 W7

FIGURE 5. The first few caterpillar graphs.

Theorem 11. The number of MECs for the caterpillar graph W, is given by the recursion

M(WI) = 1, M(W2) = 1, M(W3) = 2, M(W4) = 3, M(W) = 7,

and for p > 6

M(WP) M(Wp- 1) + M(Wp- 2) if p is even,

3M(Wp- 2) + M(Wp- 4) - M(Wp- 5) if p is odd.

Proof. Notice first that when p is even, we can simply apply the Fibonacci recursion

M(GP (1, 1,..., 1)) = M(Gg (1, 1,.. ,0)) + M(GP _1(1, 1,..., 1)).

The recursion is based on whether or not the final edge is contained within an immorality.

Now let p = 2k + 1 be odd. We first show that

M(Wp) = M(Wp- 1) + 2M(Wp- 3) + M(Wp- 2) - M(Wp-2j-)
j=2

This recursion can be detected by considering the ways in which the final edge can or cannot be

in an immorality. That is, either it is not in an immorality, or it is in an immorality with some

nonempty subset of edges adjacent to it, as depicted in Figure 6. Collectively, cases (1), (2), and

(3) yield

M(Wp_1) + 2M(Wp- 3)

MECs. On the other hand, case (4) yields M(Wp- 2) minus some over-counted cases. The over-

counted cases correspond to exactly when the first immorality to the right of the one depicted in

case (4) points towards the right, as depicted in Figure 7. Each such case would naturally force at

18

least one more unspecified immorality. Thus, the total number of MECs counted by case (4) is

M(Wp- 2) - M(Wp-2-)-
j=2

Since p - 1 is even, we may apply the Fibonacci recursion to M(Wp- 1) to obtain

M(WP) - 2M(Wp- 2) = 2M(Wp- 3) - >M(Wp-2-)
j=2

We then consider the difference between M(Wp) - 2M(Wp- 2) and M(Wp- 2) - 2M(Wp- 4), and

repeatedly apply the Fibonacci recursion to the even terms. The result is

M(Wp) - 3M(Wp- 2) + 2M(Wp_ 4) = 3M(Wp- 3) - 4M(Wp 5).

Equivalently, we find that

M(W,) - 3M(Wp- 2) = 3M(Wp- 3) - 2M(Wp- 4)- 4M(W-5),

= 3M(Wp- 3) - 2(M(Wp_ 4) + 2M(W,_ 5)),

= 3M(Wp- 3) - 2(M(Wp- 3) + M(Wp- 5)),

= M(Wp- 3)- 2M(Wp-5),

= M(W,_ 4) + M(Wp- 5)- 2M(Wp-5),

= M(Wp_ 4) - M(Wp-5).

The final equality reveals the desired recursion. E

LLL...... 2

(3)

......
(2)

(4)

FIGURE 6. The four cases for the recursion on the caterpillar graph for p odd.

:2-:-.ThIL I &T. J:L. * .*
FIGURE 7. The over-counted cases of case (4) in the caterpillar recursion for p odd.

3.3. Complete Binary Trees. In the following, we let Tk denote the complete binary tree con-

taining 2 k - 1 nodes and Ak denote the additive tree constructed by adding one leaf to the root

node of Tk. These two trees are depicted in Figure 8 for k = 3.

We will now use a series of recursions to enumerate the number of MECs on T and Ak. We will

then show that the ratio <Ak)) < 4, which means that adding an edge to the root of a complete

binary tree increases the number of MECs by at most a factor of four. In practice, we observed

that the factor is around two for large k.

Before providing a recursion for M(T) and M(Ak), we introduce three new graph structures

Xk, Yk, and Zk in order to help simplify our recursions.

(1) Let Xk denote the partially directed tree whose skeleton is Ak and for which there is exactly

one immorality at the child of the root (note that the root of Ak has degree 1).

(2) Let Y denote the number of MECs on a complete binary tree with 2 k - 1 nodes such that

the root's edges are not involved in any immoralities.

(3) Let Zk denote the number of MECs on an additive tree with 2 k nodes such that there are

edges directed from the root r to its child c and from c to each of its children.

The graphs X 3 , Y3 , and Z 3 are depicted from left-to-right in Figure 9. Now we have the following

series of recursions for the graphs listed above.

FIGURE 8. The complete binary tree T3 is dep
A3 is depicted on the right.

icted on the left and the additive tree

19

20

0
0

X3

0
0 0

Z3Y3

FIGURE 9. From left-to-right, the graphs X3 , Y3 , and Z3 .

Theorem 12. The following recursions hold for the partially directed graphs Tk, Ak, Xk, Yk, and

Zk:

(1) M(Tk) = M(Ak_1) 2 + M(Yk) with M(Ti) = 1,

(2) M(Ak) = M(Tk) + 2M(Xk) + M(Tk_1) 2 with M(A1) = 1,

(3) M(Xk) = M(Tkl_) /M(Zk) with M(Xi) = 1,

(4) M(Yk) = 2M(Zkl)M(Tkl) - M(Zk_1) 2 with Y = 1, and

(5) M(Zk) = (2M(Xk-1) + M(Tk-2) 2 + M(Zk_1)) 2 with Z1 =Z = 1

We first prove statements (5), (3), (4) in this order and then use them to prove statements (2)

and (1).

Proof of statement (5). We prove this by analyzing the cases on the left subgraph of Zk and consider

possible immoralities at node s in Figure 10.

(1) If node s has exactly one immorality (as in the leftmost figure), then this substructure

contributes exactly M(Xkl) MECs. By symmetry, there are two ways in which node s

can have exactly one immorality, which means these cases contribute 2M(Xk-_) MECs.

0

0

C
e

Case 1

S

Case 2

0

S
0 0

Case 3

FIGURE 10.

21

FIGURE 11.

(2) If node s has three immoralities (as in the center figure), then this substructure contributes

exactly M(Tk-2) 2 MECs as we may treat nodes u, v as roots of complete binary trees Tk-2-

(3) If node s has no immoralities (as in the rightmost figure), then this substructure contributes

exactly M(Zk-_) MECs as we may treat the left subgraph as the graph Zk_1.

Finally, as we have just considered the cases on the left subgraph of Zk and as the immoralities on

the right subgraph of Zk are independent of the immoralities on the left subgraph, we square the

number of MECs on the left subgraph to conclude M(Zk) = (2M(Xk-) + M(Tk-2) 2 + M(Zkl)) 2.

Proof of statement (3). Suppose we label two nodes p and q in Xk as in Figure 11. By treating

node p as the root of the complete binary tree, and by treating node q as node s in the proof of

statement (5), we directly have that M(Xk) = M(Tk_1) /M(Zk).

Proof of statement (4). We will prove the desired recursion by considering the equivalence classes

for which the edges ea -and eb in Figure 12 are directed towards the root or away from the root.

(1) Suppose that edge ea is directed away from the root, then edge eb can always be directed

so that it is not in an immorality at the root's right child. Thus we can consider the root's

right child to be the root of the complete binary tree Tk_1. Now since there cannot be an

e, eb ea eb e eb

Case010 0 0 0

00

0 00

Case 1 Case 2 Case 3

FIGURE 12.

22

C C C

Case 1 Case 2 Case 3

FIGURE 13.

immorality at the root's left child, the left subgraph of the root can be treated as the root

of the subgraph Zk_1. This case thus gives us M(Zk-l)M(Tk-1) MECs.

(2) Suppose that edge eb is now directed away from the root, then this case is symmetric to

the case above and so there are again M(Zkl)M(Tkl) MECs formed.

(3) In the above cases we have double-counted the cases where the edges ea and eb are both

directed away from the root. Thus we must subtract the number of MECs formed in this

case. However, in this case the left and right subgraphs from the root both represent Zk_.

Thus, there are M(Zk_1) 2 MECs in this case.

Hence we have that M(Yk) = 2M(Zk-_)M(Tk-_) - M(Zk_1) 2.

Proof of statement (2). To prove recursion (2), we will consider the three possible cases of immoral-

ities that can occur at the child c of the root as depicted in Figure 13.

(1) In the leftmost figure, if there is no immorality formed by the edge from the root to c, then

c can be treated as the root of the complete binary tree Tk. This case contributes M(Tk)

MECs.

(2) In the center figure, if there is exactly one immorality formed by the edge from the root to

s, then the root can be treated as the root of the tree Xk. This case contributes 2M(Xk)

MECs, as there are two ways in which the edge from the root to c can be in exactly one

immorality.

(3) In the rightmost figure, if there are three immoralities formed by the edge from the root to

c, then the children of c can be treated as roots of complete binary trees Tklj. This case

contributes M(Tk_1) 2 MECs.

23

Thus, summing over the three cases we have that M(Ak) = M(Tk) + 2M(Xk) + M(Tk_1)2.

Proof of statement (1). We can consider the following four cases depicted in Figure 14 based on

the immoralities formed by the root's edges ea and eb.

(1) If the edges ea and eb form an immorality at the root, then the root's children p and q can

be treated as roots of complete binary trees Tk-_. This case contributes M(Ti1)2 MECs.

(2) If the edge ea forms at least one immorality at p but edge eb is not in any immoralities,

then edge q can be treated as the root of a complete binary tree Tk-1. Now p can have

exactly one immorality, in which case the left subgraph of the root is the structure Xk-_

or p can have three immoralities, in which case the children of p can each be treated as

the root of a complete binary tree Tk-2. Now by symmetry we may consider immoralities

formed by the edge eb as well, which will double the number of MECs formed. Thus, there

are 2M(Tk-_)[2M(Xk-_) + M(T_1)2] MECs.

(3) If the edges ea and eb form immoralities at p and q, then by following the reasoning in the

previous case, there are 2M(Xkl) + M(Tk-2) 2 MECs formed.

(4) If the edges ea and eb form no immoralities, then the remaining graph is simply the structure

Yk. This case contributes M(Yk) MECs.

Summing over the different cases we have that

M(Tk) = M(Tk_1) 2 + 2M(Tk-_)[2M(Xk-1) + M(T_1) 2] + 2M(Xk-1) + M(Tk_2) 2 + M(Yk),

= [M(Tk_) + 2M(Xk-1) + M(Tk_2) 2 + M(Yk),

= M(Ak_1) 2 + M(Yk).

This completes the proof of Theorem 12.

Now that we have recursions for Tk and Ak, we can establish a bound on the number of MECs

given by adding an edge to the root of Tk to produce Ak. In order to do this, we will use the

following lemma.

ea 1 Cas eb a eb e eb

Cas~e1 Case2 Case3 Case4

FIGURE 14.

24

Lemma 13. For the partially directed graphs Tk and Zk we have that

M(Zk) < M(Tk).

Proof. If we omit the root and its edge from the graph Zk, then we see that every MEC formed in

Zk can also be formed in Tk. Further, since the MEC in Tk with an immorality at the root cannot

appear in Zk, we have a strict inequality. Hence, we have that M(Zk) < M(Tk). El

Now we show that adding an edge to the root of Tk increases the number of MECs by at most 4.

Theorem 14. The number of MECs on Ak and Tk satisfy

1M(Ak)I < MT)< 4.
M(Tk)

Proof. First we let R = M and Sk-1 M(k)2. By equation 2 of Theorem 12 we know that

M(Ak) = M(Tk) + 2M(Xk)+ M(Tk_1) 2,

and hence by equation 3 of Theorem 12

2M(Xk) M(Tk_1) 2

Rk=1+ +
M(Tk) M(Tk)

2M(Tk_1) M(Zk) M(Tk_1) 2

M(Tk) M(Tk)

Thus, it follows by Lemma 13 that

2 1
Rk<1+ +

Sk_1 Sk-1

and hence

Rk(< I+ < (1+)2

which completes the proof. l

3.4. Bounding the number and size of MECs for trees. We begin this subsection by deriving

upper and lower bounds on the number of MECs for trees on p nodes. These bounds are achieved

by the (p - 1)-star Gi (p - 1) and the p-path Ip, respectively. This result parallels the classic result

of [48], which states that the number of independent sets in a tree on p nodes is bounded by the

number of independent sets in G1 (p - 1) and the number of independent sets in IP , respectively.

25

Theorem 15. Let T, be a tree on p nodes. Then

Fp_ i = M(-Ip) < M(Tp):! M(G1(p - 1)) = 2P-1 - P + 1

Proof. We first prove the upper bound on M(Tp). Since T, is a tree, it has precisely p-1 edges, and

so there are 2P- 1 edge orientations on TP. Of these 2P- 1 orientations, the p orientations given by

selecting a unique source node in Tp all belong to the same MEC. So there are at most 2P-1 - p + 1

MECs for Tp. By Theorem 9, this bound is achieved by the (p - 1)-star Gi(p - 1).

To prove the lower bound, we use a simple inductive argument. Notice first that the bound is

true when p < 5. Now recall that every tree on p nodes can be constructed in one of two ways: (1)

attaching a leaf to a degree 1 node of a tree on p - 1 nodes, or (2) attaching a leaf to a node of

T,_ 1 that is a neighbor of a leaf. Thus, given a tree T on p - 1 nodes, it suffices to show that when

we construct T, from a tree Tp_ 1 via (1) or (2), the number of MECs increases by at least Fp- 3.

In case (1), we attach a leaf node v to a leaf u of Tp_ 1 , whose only neighbor in Tp_ 1 is some node

w. The MECs on Tp then come in two types: either the edge {v, u} is not in an immorality or it is

in the immorality v -+ u <- w. The number of classes in the first case is M(T_ 1) and the number

of classes in the second case is M(Tp_1\u). So by the inductive hypothesis we have that

M(Tp) > M(Tp_ 1) + M(Tp_ 1 \u) > F-2 + Fp_ 3 = Fp_1.

In case (2), the leaf node v is attached to some node u of Tp_ 1 that has at least one leaf w in Tp_ 1 .

The MECs on Tp contain two disjoint types of classes: classes in which the edge {v, u} is not in

an immorality and classes containing the immorality v -+ u +- w. Similar to the previous case, it

then follows from the inductive hypothesis that

M(Tp) > M(Tp_ 1) + M(Tp_1\w) > Fp- 2 + Fp- 3 = Fpi,

which completes the proof. 0

In the remainder of this section, we derive bounds on the size of the MEC for a fixed DAG Tp on

the underlying undirected graph Tp. These bounds will be computed in terms of the structure of the

essential graph T, of the MEC [7p]. To see why it is reasonable to work with the essential graph to

derive such bounds, recall the analysis of the MEC sizes for stars and bistars given in Theorems 9

and 10. In order to derive the possible sizes of these MECs, we implicitly counted all possible

26

orientations of the non-essential edges in the essential graph of each class. Since understanding the

possible orientations of these edges is equivalent to knowing the size of the class, we will bound

the size of the MEC of 7p- in terms of the number and size of the chain components of t,. We will

see that the computed bounds are tight, and that stars play an important role in achieving these

bounds. We refer the reader to Section A.3 for the basics and notation relating to essential graphs.

In the following, we assume that the essential graph Tf has chain components Ti, 72, - -, i for

E > 0. We also assume that each Ti is nontrivial; i.e. it has at least two vertices. We let g(Tf)

denote the directed subforest of the essential graph Tf consisting of all directed edges of fP, and we

let Ei, E2,... , Em denote its connected components.

Lemma 16. Let 7p be a directed tree on p nodes and 7p the corresponding essential graph. If Tp

has chain components T1, T2,. . ., Tj, then the size of the Markov equivalence class [Tp] is

t

#[7] = l| IV(Ti)I.
i=1

Proof. Each element of [7a] corresponds to one of the ways to direct the components T1,. .. ,',

each of which is a tree. Suppose we directed Tj so that it has two source nodes s, and S2. Then

along the unique path between s, and s 2 in the directed Ti, there must lie an immorality that is not

present in tp. Thus, the only admissible directions of the components ri have no more than one

source node. Since every DAG has at least one source node, the number of admissible directions of

each ri is precisely the number of ways to pick the unique source node of ri. This is precisely the

number of vertices in Ti, thereby completing the proof. E

Lemma 16 allows us to compute the following bounds on the size of a MEC for trees.

Theorem 17. Let Tp be a directed tree on p nodes and Tp the corresponding essential graph.

Suppose that Tf has f > 0 chain components Ti, T2, ... ,r and that the directed subforest g(Tp) of

Tp has m > 0 connected components Ei, e2 ,. . ., Em. Then

2f < #[Tp] < -

Proof. Notice first that the lower bound is immediate from Lemma 16 and the assumption that

each Tj is nontrivial. So it only remains to verify the proposed upper bound.

27

Let Li denote the number of chain components that are adjacent to &i for all i E [m]. Since the

chain components Ti, ... , rT are all disjoint, it follows that

1 +i fV(E2)|

for all i E [m]. Therefore, a lower bound on the size of the number of nodes in the directed subforest

g(7p) is given by
m

m + Z i: |v(g(Tp))|.
i=1

A closed form for the sum El Li is recovered as follows. Consider a complete bipartite graph Ke,m

whose vertices are partitioned into two blocks A and B where JAl = f and BI = im. The possible

ways to assemble the components Ti,...,jr and C1,..., Em into an essential tree are in bijection

with the spanning trees of Ke,m. For any such spanning tree T of Ke,m, each edge of T has exactly

one vertex in each of A and B. Thus,

m
S fi = EdegT(v) = deg (v).
i=1 VEA vEB

Since T is a tree, it follows that

M =ZvA degT(v) + EvEB degT(v)
(3.1) 2 f+m - 1.

i=1

Therefore,

2m + f - 1 < |v(g(p))|.

Moreover, since 7'T has p vertices, and each edge of a spanning tree of Ke,m corresponds to exactly

one of the vertices shared by g(tp) and the chain components T, ... , 0T, then we have that

(3.2) 5 V(i-)I = p + M + L - 1 - Iv(g(Tf))I.
j=1

Now by Lemma 16 and the arithmetic-geometric mean inequality, we have

t~ ~~ |

E= V(-Fj}|)

#[7p] = fJV(Tj)| j (T .
j=1

28

Thus, by applying equation 3.2, we conclude that

P + m + f 1 - V((T))) +
(p+m+e-1-(2m+f-1)

and so #[Tp] < ((p - m)/e)e, which completes the proof.

We now consider the tightness of the bounds in Theorem 17 by considering some special cases.

Notice first that the lower bound is tight exactly when each chordal component is a single edge.

The upper bound is tight exactly when IV(9(Tp))| 2m + f - 1 and each chordal component has

exactly p-"M vertices.

Corollary 18. Suppose g(tp) has precisely one connected component, i.e., g(Tp) is a directed tree.

Then

21 < #[3 IT,

and every directed tree TP for which the upper bound is tight has the same subtree 9(iT), namely

Gi(f) with all edges directed inwards.

Proof. The statement of the bounds is immediate from Theorem 17. So we only need to verify

the claim on the tightness of the upper bound. It follows from the more general bounds described

above, that the upper bound is tight exactly when IV(g(tp)) I= + 1 and each chordal component

has exactly 9 1 vertices. Since the chain components ri,..., ri are all distinct and g(7p) is a

directed tree with f + 1 vertices, then each rj is adjacent to exactly one of the f vertices of g(Tp),

and there remains only one vertex to connect these f vertices. Therefore, the skeleton of g(tp) is

the star G 1(k + 1). Moreover, since all essential edges in Tf are exactly the edges of G(Tp), then

all edges of 9(Tp) must be directed inwards towards the center node. An example of a graph for

which this upper bound is tight is presented on the left in Figure 15. l

To complement Corollary 18 we next consider the case when Tp has only one chain component.

Corollary 19. Suppose 'Tp has precisely one chain component T1. Then

m < #[p] p - 2 m,

and both bounds are tight when T1 = Gi(m - 1).

29

FIGURE 15. Graphs for which the bounds are tight when m = 1 (left) and when

k = 1 (right).

Proof. By Lemma 16 we know that #[T] = IV(iri)I; so the bounds presented here are bounds on

the size of the vertex set of the chain component Ti. Since the connected components El, . . . , Em of

9(p) are all disjoint, we know that Ti contains at least m vertices. On the other hand, since each

Ec contains at least one immorality and attaches to Ti at precisely one node, then each ei contains

at least two nodes that are not also nodes of ri. A graph for which the bounds are simultaneously

tight is depicted on the right in Figure 15. Notice that the chordal component ri is G,(m - 1). 0

Corollary 18 and Corollary 19 suggest the important role of the maximum degree of a graph for

the size of MECs. This is further supported and discussed via simulations in Section 5.

4. IMMORALITY NUMBERS AND STAR DECOMPOSITIONS

In this section, we focus on the immorality number m(G), i.e., the maximum number of immoral-

ities that can exist in a DAG on some underlying undirected graph G. This number is natural to

consider when one attempts to enumerate the MECs on G by counting all compatible placements

of immoralities. The work done in the previous sections provides the immorality numbers of the

following graphs.

(1) The cycle on p vertices: m(Cp) =

(2) The path on p vertices: m(Ip) = 2J

(3) The star on p + 1 vertices: m(Gi(p)) = (P)
(4) The gluing of two stars: m(G1(p, q)) = (P+1) + (q) when p ; q

(5) The complete bipartite graph K2,p: m(K 2,p) = 2(P)

30

However, the immorality number m(G) is in general difficult to compute; in fact, as we will see, it is

intimately tied to some well-studied NP-complete graph problems from combinatorial optimization.

Recall that a vertex cover of G is a subset S of vertices of G for which each edge of G is adjacent

to some vertex in S. A classic problem in combinatorial optimization is to identify a vertex cover

of minimum size for a given graph G. Formally stated, this is the search problem

Problem 20. MINIMUM VERTEX COVER

INPUT: An undirected graph G = (V, E).

OUTPUT: A subset C C V such that for all edges {u, v} E E either u E C or v E C and |C| is

minimized with respect to this property.

The decision version of this problem is called VERTEX COVER [36] and is stated as follows.

Problem 21. VERTEX COVER

INPUT: An undirected graph G = (V, E) and a nonnegative integer k.

PROPERTY: G has a vertex cover of size less than or equal to k.

A search problem H is said to be NP-hard if there is a polynomial time Turing reduction from

an NP-complete H' problem to H [24, Chapter 5]. That is, if we are given a polynomial time

algorithm A for solving H, then there exists a polynomial time algorithm for solving H' using A as

a hypothetical subroutine. In [47], it is shown that VERTEX COVER is NP-complete even when

restricted to triangle-free graphs. Moreover, given a polynomial time algorithm for solving MINI-

MUM VERTEX COVER, we can certainly derive a polynomial time algorithm to solve VERTEX

COVER (for triangle-free graphs or otherwise). Thus, MINIMUM VERTEX COVER is NP-hard

for both triangle-free and arbitrary graphs. Analogously, we consider the following search and

decision problems related to the computation of the immorality number m(G).

Problem 22. MAXIMUM IMMORALITIES

INPUT: An undirected graph G = (V, E).

OUTPUT: A DAG g with skeleton G and m(G) immoralities.

31

Problem 23. IMMORALITES

INPUT: An undirected graph G = (V, E) and a nonnegative integer k.

PROPERTY: There is a DAG g with skeleton G having at least k immoralities.

In the following, we will identify a polynomial time Turing reduction of MINIMUM VERTEX

COVER to MAXIMUM IMMORALITIES when restricted to triangle-free graphs. A polynomial

time solution to MAXIMUM IMMORALITIES would trivially yield a polynomial time solution to

the same problem in the triangle-free case. Since this would in turn solve an NP-complete problem,

we can conclude that the general instance of MAXIMUM IMMORALITIES is NP-hard. This will

prove Theorem 1, which was stated in Section 1.

In order to reduce MINIMUM VERTEX COVER to MAXIMUM IMMORALITIES for triangle-

free graphs, we will utilize a notion of star decompositions of G. In the special cases of the complete

bipartite graph Kp, and a family of circulant graphs, we will then use this connection to compute

m(G).

4.1. Star Decompositions. Let G = (V, E) be a connected, undirected graph. Recall that a

p-star is the complete bipartite graph K1 ,n and its center is the unique degree p node. A collection

of stars {S1, ... , Sk } is called a star decomposition of G if each Si is a subgraph of G and each

edge of G is an edge of exactly one star in the collection. Our definition of star decomposition is

a bit more general than the standard notion studied in graph decompositions. The classic notion

of a star decomposition adds the requirement that the stars S1, ... , Sk are all isomorphic to one

another. While the literature on which graphs admit a star decomposition of this type is quite

extensive [9, 16, 29, 61, 62, 63], there is substantially less work relating to the more general notion

we utilize here [41].

In the following, the trivial star refers to K1,0 , and the size of a star S is the size of its edge

set, which we denote by ISI. The size of a star decomposition S is the number of stars in the

decomposition, and it is denoted ISI. Given a star decomposition S = {S1,... ,Sk} let v(S) E

Rk denote the vector of the sizes of stars in S ordered greatest-to-least from left-to-right. So if

ISil IS21 - - Skl then v(S) = (IS11, 1S21,..., Ski). If S is a star decomposition of size k

with cardinality vector v(S) E Rk, for m > k we embed v(S) E R"' by appending zeros to the

right end of v(S) E Rk. Notice that this corresponds to appending trivial stars to S. We call

a star decomposition of G reduced if it contains no trivial stars. Notice that the largest reduced

32

FIGURE 16. The three nonisomorphic reduced star decompositions of the 4-cycle

star decomposition contains at most |El stars. A minimum star decomposition of G contains

the minimum number of stars over all star decompositions of G. Notice that a minimum star

decomposition will always be reduced. Since the maximum number of stars in a reduced star

decomposition of G is IEI, then any minimum star decomposition contains at most JEl stars. Also,

given a star decomposition S, we call the set of all centers of stars in S the center set of S, and we

denote it by C(S). Note that if a star consists only of a single edge, then we simply choose one of

its endpoints to be the center node.

For any DAG 9 on the undirected graph G we can construct a star decomposition of G as follows.

For each node v E V, consider the substar S, in G whose center is v and whose edges are those

directed into v in the DAG g. The star decomposition of G induced by g is then

S(9) := {SV : V E V}.

Notice that an induced star decomposition will not be reduced, and may contain intervals K1,1 .

Remark 24. Not all star decompositions of a graph G are induced by some DAG on G. For example,

any graph has a star decomposition consisting of precisely its set of edges. In the case of the 4-cycle,

for instance, this decomposition cannot arise from a DAG.

Since a star decomposition induced by a DAG always contains at least one trivial star, we make

the following important definition. A minimum star decomposition of G is induced by a DAG g on

G if it is a reduction of the star decomposition induced by g.

Example 25. Consider C4, the cycle on 4 nodes. Up to isomorphism, C4 admits the three reduced

star decompositions depicted in Figure 16. From this we can see that the minimum star decomposi-

tions of C4 are all isomorphic to {K 1,2 , K1 ,2 }. The two right-most star decompositions in Figure 16

are each induced by DAGs. For example, the middle decomposition is induced by the DAG 9 1 and

33

the right-most decomposition is induced by the DAG G2 as depicted in Figure 17. The left-most

star decomposition in Figure 16 is the maximum cardinality reduced star decomposition of the

4-cycle, which consists of exactly one copy of K1,1 for each edge of C4.

Example 25 demonstrates the properties of minimum star decompositions that we will use to

study the immorality number of triangle-free graphs. Notice first that the center set of each star

decomposition is a vertex cover of C4 and that the minimum vertex covers of G are center sets

of minimum star decompositions. Indeed, there exists a many-to-one correspondence between

minimum star decompositions and minimum vertex covers of G.

Lemma 26. Suppose S is a minimum star decomposition with center set C(S). Then C(S) is a

minimum vertex cover of G.

Proof. Recall that the center set C(S) of any star decomposition S is a vertex cover of G. Therefore,

any minimum star decomposition has to be at least as large as any minimum vertex cover of G.

Suppose that for any minimum vertex cover C of G we can find a star decomposition of G with

center set C. Then it follows that any minimum star decomposition has size exactly that of a

minimum vertex cover of G. Moreover, the center set of any minimum star decomposition must

be a minimum vertex cover. Thus, to complete the proof, we need only show that any minimum

vertex cover of G is the center set of some star decomposition of G.

For a node v of a graph G we let N[v] denote the neighbors of v in G including the node v itself.

Suppose that C = {cI, ... , ck} is a minimum vertex cover of G. Let S(C) = {S1, ... , Sk} denote

the star decomposition of G given by setting

Si := (N[c1]),

Si :=(N[ci]\ (Uj <;N[cj])), for i > 1.

S(91)2 8(g 2

FIGURE 17. The DAGs g, and g2 and their induced (nonreduced) star decompositions.

34

Since S is a star decomposition of G with center set C, this completes the proof. 0

Lemma 27. Suppose C is a minimum vertex cover of G and S is any star decomposition of G.

with center set C. Then S is a minimum star decomposition.

Proof. Recall that the center set C(S) of any star decomposition S of G is a vertex cover of G.

Thus, just as stated in the proof of Lemma 26, we know that any star decomposition of G is at

least as large as any minimum vertex cover of G. By the construction in the proof of Lemma 26,

we know in fact that this lower bound is tight. Thus, any star decomposition with center set that

is a minimum vertex cover must have minimum size. I

Lemma 28. Suppose S is a minimum star decomposition of G with cardinality vector v(S) E REI

such that v(S)Tv(S) is maximum over all star decompositions of G. Then S is induced by some

DAG with skeleton G.

Proof. Note first that any star decomposition S = {S1,... , Sk } of G is induced by some directed,

but not necessarily acyclic, graph g(S). Namely, 9(S) is the directed graph whose arrows are given

by directing all edges of Si so that their heads are at the center node of Si for all i E [k]. Since

each edge of G appears in exactly one star in S, this definition yields a unique directed graph.

For the sake of contradiction, suppose S is a minimum star decomposition of G for which

v(S)Tv(S) is maximized, but S is not induced by a DAG. Then S is induced by the directed

graph g(S)O := 9(S) constructed in the previous paragraph. By assumption, g(S)o contains some

directed cycles. Notice that if v is any node contained in a directed cycle, then by the construction

of g(S)o we know v E C(S), since v has nonzero indegree in g(S)o. Therefore, all vertices in all

directed cycles in 9(S)o lie in the center set C(S).

Let vo be a node of highest G-degree that is contained in a directed cycle in g(S)o. Reorient

all arrows of g(S)o so that vo is a sink, and denote the resulting directed graph by G(S)1. Notice

that the directed cycles in g(S)1 are precisely the directed cycles of g(S)o that do not use the node

vo. In particular, g(S)1 contains strictly less directed cycles than G(S)o. This is because changing

node vo into a sink eliminated precisely the directed cycles that passed through vo.

We iterate this procedure as follows: Let

i-1

vi E V\ UN[vj]
j=1

35

be a node of highest G-degree that is contained in a directed cycle in g(S)j. Reorient all arrows of

g(S)i so that vi is a sink, and denote the resulting directed graph by g(S)i+1 . Note that g(S)i+1

contains strictly less directed cycles than g (S)i. Therefore, iterating this process must result in

some DAG 9(S)m.

The center set of the (reduced) induced star decomposition of 9(S)m is contained in the center

set of S, since all nodes on any directed cycle in g(S)o are contained in C(S). Therefore, since S

is a minimum star decomposition, so is S(9(S)m).

Now consider the associated vectors v(S), v(S(g(S)m)) E RIEI. Since at each step in the construc-

tion of g(S)m we selected a center node vi of highest possible degree, then v(S) <Iex v(S(g(S)m)),

and in particular

v(S)T v(S) < v(S(g(S)m)) T V(S(g(S)m)),

which is a contradiction. l

In some special instances when the minimum star decompositions of a graph G are well-understood,

we can use this theory to compute m(G). Recalling Example 25, notice that the minimum star

decompositions of C4 are all isomorphic to one another as forests, and each minimum star decom-

position of C4 is induced by a DAG. With this example in mind, we prove the following theorem.

Theorem 29. Let G be a triangle-free, undirected graph whose minimum star decompositions are

all isomorphic to one another as forests. Then given any minimum star decomposition S(G) =

{S1,. . . , Sk} of G the immorality number of G is

k

m(G) = (ISi)
i=1

Proof. Since the maximum size of a minimum star decomposition is lEt, we can simply assume

k = |El by filling out the set with trivial stars. That is, without loss of generality we assume that

all star decompositions considered have the same cardinality k = IEl, but may contain trivial stars.

A minimum star decomposition is then simply one with the maximum number of trivial stars.

Recall that for every DAG g on G we can construct the induced star decomposition S(9) =

{S1 ,..., Sk}. Since G is triangle-free, the number of immoralities in G is precisely

k

(Si
2=

36

Each such induced star decomposition admits a vector in Rk for each permutation o E Sk of

cardinalities

(So(1) 1,1 S,()| ., - .>So-(k) 1) E R,

and we let v(g) denote any one of these vectors. More generally, any star decomposition S of G

admits such a vector of cardinalities for each permutation o- E Sk, any one of which we denote

by v(S) E Rk. Let V(G) denote the set of all possible choices of vectors v(S) for all possible star

decompositions of G. Then our goal is to maximize the objective function

(4.1)

over the set V(G) C Zko. Since the objective function satisfies

k X)k 2 k

and for all (XI,. .. ,Xk) E V(G), we have that

k

= El = k,
i=1

then we are interested in solving the integer optimization problem

maximize xTx

subject to L' 1i -=k,

x E Zio

x E V(G).

The presentation of this optimization problem is redundant, but it is to emphasize the fact that

any vector in V(G) lies in the kth dilate of the probability simplex Ak, which we denote by kAk.

Therefore, we are simply maximizing the length over all vectors in the probability simplex that also

lie in the set V(G). Since the value of xTx strictly increases as we approach the boundary of kAk

then the star decompositions with the maximum number of trivial stars will yield the maximum

value of the objective function. These are the minimum star decompositions, all of which are

isomorphic as trees, and therefore have the same vectors v(S) up to a permutation of coordinates.

Since we have assumed that at least one of these star decompositions is induced by a DAG, it

37

follows that the maximum value of the original objective function (4.1) is the immorality number

of G. E

Collectively, Lemmas 26, 28, and Theorem 29 allow us to prove Theorem 1.

4.2. Proof of Theorem 1. Let G be a triangle-free graph, and suppose that we have a polynomial

time algorithm that returns a DAG G* with skeleton G for which G* has the maximum number

of immoralities. By Lemma 28 and Theorem 29, we know that the maximum value of EYE (ISi)

is achieved by a minimum star decomposition induced by a DAG. Since the value of EE ('p) is

exactly equal to the number of immoralities in a DAG with a triangle-free skeleton, it follows that

our DAG G* induces a minimum star decomposition S(G*) that maximizes E E (I). We know

by Lemma 26 that the center set C(S(G*)) is a minimum vertex cover of G. Therefore, we have a

polynomial time algorithm for computing a minimum vertex cover of the triangle-free graph G. It

is clear that a polynomial time algorithm for MAXIMUM IMMORALITIES for arbitrary graphs

trivially yields a polynomial time algorithm for MAXIMUM IMMORALITIES for triangle-free

graphs. Therefore, since MINIMUM VERTEX COVER is NP-complete for triangle-free graphs,

we know that the general instance of MAXIMUM IMMORALITIES is NP-hard. This completes

the proof of Theorem 1. 0

Remark 30. Recall that there is trivially a polynomial time Turing reduction of MINIMUM VER-

TEX COVER to VERTEX COVER. Conversely, it is well-known that VERTEX COVER is self-

reducible. That is, given a polynomial time algorithm for VERTEX COVER one can find a poly-

nomial time algorithm solving MINIMUM VERTEX COVER. Collectively, this says that solving

MINIMUM VERTEX COVER is no more or no less hard than solving VERTEX COVER. Since

the former direction is trivial, the critical observation made here is the self-reducibility of VERTEX

COVER.

The proof of self-reducibility for VERTEX COVER is standard across many NP-complete struc-

tural search problems for graphs, and it goes as follows. Given a graph G = (V, E), the minimum

size of a vertex cover must be between 0 and JVf. Thus, by a binary search, we can determine in

polynomial time the size k* of a minimum vertex cover of G. Then, to recover a vertex cover C

with size k* of G, we first pick a vertex v and delete it from G. If the resulting graph has a vertex

cover of size k* - 1, then v is in a minimum vertex cover of G, if not we return the vertex v, and

38

repeat with another vertex. Iterating this procedure produces a minimum vertex cover of G in

polynomial time.

While the self-reducibility of many other graph structure search problems are proved using a

similar argument, this proof is unusable for IMMORALITIES. The analogous argument for IM-

MORALITIES would require considering all subsets of neighbors of the node v and deleting the

corresponding star. Since the number of such queries for a given vertex v is only bounded by (de2(v)),

this algorithm is not polynomial in time. However, this does not prove that IMMORALITIES is

not self-reducible, nor does it prove that IMMORALITIES is not NP-complete.

We now present a few special cases in which star decompositions allow us to compute m(G) via

an application of Theorem 29: In Section 4.3 we compute m(G) for the complete bipartite graph

Kp,p and in Section 4.4 for some special circulant graphs.

4.3. The complete bipartite graph Kp,p. In [26] Gillespie and Perlman note that the maximum

number of induced 3-paths over all skeletons on n nodes, for each n < 10 is given by the complete

bipartite graph K[nJ . The number of induced 3-paths in the graph K~zj is quickly seen

to be

a~n= [n[n-2
a" 3 2 2 '

which is sequence A111384 of [56]. Since induced 3-paths in an undirected graph G are exactly

the possible locations of immoralities in a DAG with skeleton G, it is reasonable to ask for the

immorality number of the complete bipartite graph Kp,p. As one would hope, the immorality

number of Kp,, turns out to be exactly one half the number of induced 3-paths.

We now use Theorem 29 to compute the immorality number of Kp, via star decompositions. To

do so, we make one additional observation.

Lemma 31. The minimum star decompositions of Kp,p are all isomorphic to

p times

Proof. We prove a slightly stronger statement. Let N[v] denote the subgraph of a graph G induced

by the vertex v and its set of neighbors. Let the vertices of Kp, be the partitioned set A U B where

A := {ai,.. . , ap} and B := {b,. . ., bp}. We claim that the minimum star decompositions of Kp,,

39

are only

{N[ai] : i E [p]} and {N[bi] : i E [p]}.

To see this assume otherwise. Suppose that {S1, .. . , Sk } is a minimum star decomposition of K,,,

and let ci denote the center of star Si for all i E [k]. We also set C {ci, ... ,}

Suppose first that k = p and that A n C # V and B n C $ 0. Without loss of generality, assume

that A n C = {a,..., ai} for some e < k. Then for all i > e it must be that bi E B n C, since

otherwise the edge {ai, bi} would not appear in any star in {Sj,..., Sk}. Since k = p, it follows

that BnC = {be+,... ,bp}. However, this means that for all i < e and j ;> f +1, the edges {aj,bi}

are not in any star, which is a contradiction.

Now suppose that k < p. It is quick to see that if C C A or C c B then there exist edges of Kp,,

not contained in stars. So A n C 7 0. The proof then follows from applying the same argument as

in the case when k = p to derive a contradiction. L

Theorem 32. The immorality number of Kp,p is p .

Proof. Notice that Kp, is triangle-free. By Lemma 31, the minimum star decompositions of Kp,,

are all isomorphic as forests. Moreover, any such minimum star decomposition is induced by a

DAG g on Kp, that has exactly p sinks located along either the node set A or the node set B.

The result then follows from Theorem 29. l

4.4. Some triangle-free circulants. Circulant graphs are natural generalizations of the cycle

graphs, and both their independence polynomials and independence numbers have been studied

extensively [4, 7, 8, 10, 32]. However, as is shown by these references, there is no known general

formula for the Fibonacci number, the independence number, nor the independence polynomial

of these graphs. As is exhibited by the various examples of trees studied in Section 3, it appears

that graphs with more high degree nodes will consistently admit MECs of smaller size. This makes

d-regular graphs a fertile testing ground for the enumeration of MECs, and their associated sizes.

Since circulants are always d-regular, we wish to study their MEC sizes and quantities as distributed

by number of immoralities analogously to the case of independence polynomials. Similar to the

case of independent sets, this picture is difficult to achieve, even in special cases. In the following,

we compute the immorality number of some special classes of triangle-free circulants.

Recall that a circulant on p nodes is a graph whose nodes are identified with Z/pZ, and whose

edges are given by a specified connection set C c Z/pZ. In the undirected setting, we assume

40

C is closed under additive inverses. The circulant on p nodes with connection set C is denoted

X(p, C) and has edges {i, j} for all pairs i and j satisfying i - j E C. We often abbreviate the

connection set C via a subset of [2] by omitting the additive inverse of each element. As a corollary

to Theorem 29, we can determine the immorality number of some triangle-free circulant graphs.

Corollary 33. Let p be even, and suppose that X(p, C) is a triangle-free circulant graph containing

a p-cycle for which the maximum independent subset is of size 2. Then

m(X(pC))= 21C

Proof. Recall that a set of nodes in a graph G is a minimum vertex cover if and only if its complement

is an independent set in G. Since X(p, C) contains a p-cycle, then without loss of generality we

can assume that 1 E C. Since 1 E C and the maximum independent subset of X(p, C) is equal to

the one of Cp of size p/2, then any minimum independent set is given by selecting precisely every

other vertex of the graph as we walk along the p-cycle given by 1 E C. Moreover, such a vertex set

is also a minimum vertex cover. Thus, if {ci, . . . , cg } is a maximum independent set in X(p, C),

then there is only one possible star decomposition with center set {ci, ... , c }, namely

{(N[c1]), ... (N[cy]) ~K1,21Ic, K1,21CI,.. K1,21CI}

Since the only two maximum independent sets in X(p, C) share this property, it follows from

Lemma 27 that all minimum star decompositions of G are isomorphic. Thus, by Theorem 29 we

conclude that

m(X(pC)) = p (21C|)

Notice that Corollary 33 applies to any triangle-free circulant with p even, 1 E C, which has all

other elements of C being odd. On the other hand, we cannot apply the same techniques to compute

the immorality numbers for p odd, since such circulants may contain nonisomorphic minimum star

decompositions.

Remark 34. Notice that we can use Theorem 29 to compute some of the immorality numbers listed

at the start of this section very quickly. For example, the minimum star decomposition of G1(p)

is clearly the graph itself, so by Theorem 29 m(Gi(p)) = (). Similarly, the graph K2 ,p can be

41

decomposed into two stars, both of which are isomorphic to K1 ,p, in precisely one way, and therefore

this is its unique minimum star decomposition. It follows by Theorem 29 that m(K 2,p) = 2(P).

Similarly, Theorem 29 implies that m(G2 (p, p)) =(i) +()-

On the other hand, if p $ q, then the minimum star decompositions of G2 (p, q) are all size

two but need not be isomorphic. Therefore, Theorem 29 does not apply. In a similar fashion,

Theorem 29 cannot be applied to the caterpillar graphs W,.

5. COMPUTATIONAL ANALYSIS

In this section, we describe the computer program we used to test our conjectures and collect

relevant statistics. This program can be found at https: //github. com/aradha/mec-generat ion_

tool. Using the data collected, we then empirically examined how the structure of the skeleton

effects the size and number of its associated Markov equivalence classes. In particular, we examined

how the size and number of Markov equivalence classes relates to the clustering coefficient and

distribution of high degree nodes in the underlying skeleton for general and triangle-free graphs.

The theory developed in this paper was motivated by the first computer program written for

the enumeration of MECs. This program was created by Gillespie and Perlman who described

their program, and the resulting data, in [26]. For each skeleton on p < 10 nodes, the Gillespie

and Perlman algorithm logged the maximum number of induced 3-paths, the maximum number of

MECs, the total number of equivalence classes, and the size of each class. Our program expands

on this original program in two ways: for skeletons on p 10 nodes, our program collects more

data about each skeleton, and it produces all such data for all triangle-free skeletons on p 5 12

nodes. The new program now catalogues the same information as the original Gillespie and Perlman

algorithm for each skeleton as well as the degree sequence of the skeleton, the number of triangles,

and the number of immoralities per equivalence class. This additional data, especially in the

triangle-free setting, allows us to more carefully analyze how the structure of the skeleton impacts

the number and size of its associated MECs. In the following, we first provide a brief description

of the algorithm and the hashing scheme used. We then validate the correctness of implementation

of the algorithm. Finally, we analyze the data gathered. We first validate Theorem 2 and we

also discuss the analogous result in the case of unconnected graphs. Then we compare the size

and number of Markov equivalence classes to the clustering coefficient, the average degree, and

the maximum degree of the skeleton. We also study how Markov equivalence class size relates to

42

the ratio of immoralities in the essential graph of the class to the number of induced 3-paths in

the underlying skeleton. All analyses are conducted for both general (connected) and triangle-free

graphs.

5.1. The algorithm. There are three main components in our program's data pipeline which we

now describe.

(1) The first component is the main class that reads in skeleton data generated using tools from

nauty and Traces [43].

(2) The second component is a DAG generator that directly generates all DAGs on a given

skeleton. Such a generator is realized using the algorithm published by Barbosa and Swar-

cfiter in [3]. It is essential to directly generate all DAGs rather than generating all directed

graphs and then pruning out the ones containing cycles, since the number of directed cyclic

graphs dominates the number of directed graphs for a large number of vertices.

(3) The final main component is a DAG enumerator that generates the frequency vector

M(G)freq when given the DAGs on a given skeleton G. In order to generate the num-

ber of MECs of each size on a given skeleton, this component creates a bit representation

for each MEC by first creating a bit mask of the possible immoralities that could occur in

the skeleton. Each DAG is then traversed. If three vertices are found to be in an immorality

then the Cantor pairing function is used to hash the triple of their integer labels to the lo-

cation of the bit in the immorality bit mask. Since the Cantor pairing function is invertible

and since the number of vertices in each graph is small, we have a valid, non-overflowing

hash function. After comparing the resulting hashes for all DAGs on the given skeleton, a

pair of integers is returned for each MEC: the number of immoralities in the MEC and the

size of the MEC.

It is an important feature of the algorithm that this component of the pipeline has access

to data on the given skeleton. This allows us to collect data on the skeleton in relation

to each MEC. Using this, for each skeleton we record the number of induced 3-paths, the

degree sequence, the number of edges, and the number of triangles.

To handle the around 12 million undirected graphs on 10 nodes, we split these graphs

into approximately 500 files across 10 directories, allocating 16 threads to process each

directory. Running this process in parallel takes 5 days as compared to the 253 CPU hours

(approximately 94 days) by Gillispie and Perlman [25].

43

-0.03O

-0.025,

0.020E

-0.0152

0.010

.0.005

35

25 0
2 6 15 20

ls S 10 12 5

FIGURE 18. The proportion of MECs on connected graphs with 10 nodes as dis-
tributed by log class size and number of edges.

5.2. Correctness of the algorithm. In order to verify the correctness of our implementation,

we matched our program's output with that of the algorithm used by Gillespie and Perlman. In

Figure 18 for instance, we are able to use our program to reproduce the same distribution of the

proportion of MECs with respect to class size and number of edges as observed in [26, Figure 4]. We

also compared performance in terms of speed and memory utilization. Our program runs in nearly

the exact time measured by Gillespie and Perlman: we measured that our algorithm also takes

around three minutes for eight vertices and only a few seconds or milliseconds for fewer vertices.

However, we have better memory utilization than Gillespie and Perlman as the number of bits

we store for hashes is dependent on the number of possible immoralities in the skeleton rather than

on the number of possible triples of vertices. We also use Java to do our data processing. Thus,

since we only need a print out of the data collected in subsection 5.1 (3) for each skeleton processed,

the garbage collector clears out our hash map allocation after each skeleton. This allows us to not

only log the class size and the number of MECs per skeleton, but also the number of immoralities

per class as well as the number of induced 3-paths, the degree sequence, the number of edges, and

the number of triangles. Thus, despite the fact that our algorithm only matches the Gillespie and

Perlman algorithm in time, it is collecting significantly more data per skeleton.

5.3. Data analysis. Using the data collected from our program, we first verify that Theorem 2

holds. We then examine a series of plots that highlight the relationships between the structure

44

M(G)freq Skeleton 1 Skeleton 2

24 K 4 UK1 UK1 uK1 uK uKlu K 1 K 3 UK2UK2uK1 UK1 UK1

48 K 4 U K 2 U K 1 U K 1 U K1 u K1 K 3 U K 2 U K 2 U K 2 U K1

144 C4 Ku K1 K 1 u K 1 K 3 U K 3 U K 2 U K 2

720 K6 U K 1 U K1 u K1 u K1 K 5 u K 3 U K1 u K1

1440 K 6 U K 2 U K1 U K1 K 5 U K 3 U K 2

2880 K6 U K 2 U K2 K 5 U K 4 U K1

(72, 24) K4 U I3 u K 1 uK1 uK 1 K 3 U 13 U K 2 U K 2

TABLE 1. Table describing the 10-node graphs with the same MEC frequency vector.

of the underlying skeleton and the number and size of the associated MECs. All plots have been

generated using matplotlib [34].

5.3.1. Validity of Theorem 2. After running the algorithm on all connected graphs with up to

ten nodes, we verified that there was no pair of skeleta with p < 10 nodes that have the same

frequency vector M(G)freq. This indicates that the MEC frequency vectors M(G)freq bijectively

map to skeletons of connected graphs up to ten nodes. Similarly, when we ran our algorithm on

all graphs with ten nodes including graphs that were not necessarily connected, we found that the

only collisions occurred on graphs G and H with the following property: Let G = G, u ... u Gm

and H = H1 U ... U H, be the decompositions of G and H into connected components. Let G n H

denote the set consisting of the connected components that are shared between G and H up to

isomorphism. Now let G\ G n H = Gil U -. U Gim and H \ G n H = H71 U ... U Hj,,, where

i, .1.., Im E [m] and Ji,. .. , jn E [n], be the remaining subgraphs. Then

m n

IGkI = IHj,1.
k=1 t=1

For example, over all graphs with ten nodes, there are seven such examples that occurred. These

are shown in Table 1.

5.3.2. Skeletal structure in relation to the number and size of MECs. The theory developed in this

paper and the computational verification of Theorem 2 support the intuition that the undirected

structure of the skeleton of a DAG plays a fundamental role in the size of its MEC as well as

the number of other MECs that have the same skeleton. In the triangle-free setting, the results

of Section 3 and Theorem 29 highlight the significance of the number and density of high degree

nodes within the skeleton of the DAG. In this section, we parse these observations in terms of the

45

computational data collected via our computer program. Specifically, we will compare class size

and the number of MECs per skeleton to skeletal features including average degree, max degree,

clustering coefficient, and the ratio of number of immoralities in the essential graph of the MEC to

the number of induced 3-paths in the skeleton.

Recall that the (global) clustering coefficient of a graph G is defined as the ratio of the number

of triangles in G to the number of connected triples of vertices in G. The clustering coefficient

serves as a measure of how much the nodes in G cluster together. Figure 19 presents two plots:

one compares the clustering coefficient to the log average class size and the other compares it to

the average number of MECs. This data is taken over all connected graphs on p < 10 nodes with

25 edges (to achieve a large number of MECs). As we can see, the average class size grows as the

clustering coefficient increases. This is to be expected, since an increase in the number of triangles

within the DAG should correspond to an increase in the size of the chordal components of the

essential graph. On the other hand, the average number of MECs decreases with respect to the

clustering coefficient, which is to be expected given that the class sizes are increasing. This decrease

in the average number of MECs empirically captures the intuition that having many triangles in

a graph results in fewer induced 3-paths, which represent the possible choices for distinct MECs

with the same skeleton.

Figure 20 presents a pair of plots, the first of which compares the average degree of the underlying

skeleton of the DAG to the log average class size of the associated MEC. The second plot compares

the average degree of the skeleton to the average number of MECs it supports. Both plots present

Figure lb
Figure la

4.0- 150000 -

3.5-

3. 100000
I

2.5 0

2.0

i0000
-L.5//

0.5 0 -

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Clustering Coefficient Clustering Coefficient

FIGURE 19. Clustering coefficient as compared to log average class size and the
average number of MECs.

46

Figure 3b

Figure 2b 120000 Connected

12 Connected Triangle Free
-. Triangle Fre 100000

10-
0 80000 2

6 - 60000

2 20000

01 0

2 4 6 2 4 6 8
Average Degree Average Degree

FIGURE 20. Average degree versus log average class size and average number of
MECs for all graphs and triangle-free graphs on 10 nodes.

one curve for all connected graphs and a second curve for triangle-free graphs on 10 nodes. For

connected graphs on 10 nodes the left-most plot shows a strict increase in the log average MEC class

size as the average degree of the nodes in the underlying skeleton increases. This is to be expected

since graphs with a higher average degree are more likely to contain larger chordal components. On

the other hand, the average class size for triangle-free graphs increases for average degree up until

approximately 2.0, and then shows a steady decrease for larger average degree. Since the average

degree of a tree on p nodes is 2 - 1, this suggests that the largest MECs amongst triangle-free

graphs have skeleta being trees. As such, the bounds developed in Section 3 of this paper can be,

heuristically, thought to apply more generally to all triangle-free graphs.

The right-most plot in Figure 20 describes the relationship between average degree and the

average number of MECs for all connected graphs and triangle-free graphs on 10 nodes. We see

from this that in the setting of all connected graphs, the skeleta with the largest average number of

MECs appear to have average degree 7, whereas in the triangle-free setting, the higher the average

degree the more equivalence classes the skeleta can support. This supports the intuition that the

more high degree nodes there are in a triangle-free graph the more equivalence classes the graph

can support. Theoretically, a portion of this intuition is captured by Theorem 29. The left-most

plot in Figure 21 depicts the relationship between the maximum degree of a node in a skeleton

and the average class size on the skeleton for all connected graphs and for triangle-free graphs

on at most 10 nodes. For all graphs, the relationship appears to be almost linear beginning with

maximum degree 5, suggesting that average class size grows linearly with the maximum degree of

47

Figure 3a

Figure 2a 60000 Connected
7Triangle Free]

50000
6

40000

3 r 20000-

2 10000

Connected
I

1 w-' Triangle Free

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
Max Degree Max Degree

FIGURE 21. Maximum degree versus log average class size and average number of
MECs for all graphs and triangle-free graphs on 10 nodes.

the underlying skeleton. This growth in class size is due to the introduction of many triangles as the

maximum degree grows. On the other hand, in the triangle-free setting we actually see a decrease

in average class size as the maximum degree grows, which empirically reinforces this intuition.

The right-most plot in Figure 21 records the relationship between the maximum degree of a

node in a skeleton and the average number of MECs supported by that skeleton for all connected

graphs and triangle-free graphs on at most 10 nodes. For all graphs, we see that the average

number of MECs grows with the maximum degree of the graphs, and this growth is approximately

exponential. In the triangle-free setting, the average number of MECs appears to be unimodal,

but would be increasing if we considered also all graphs on p > 10. For triangle-free graphs there

is only one graph with maximum degree 9, namely the star G1 (9), where the number of MECs is

29 - 9. For connected graphs the average number of MECs is pushed up by those cases consisting

of a complete bipartite graph where in addition one node is connected to all other nodes.

The final plot of interest is in Figure 22, and it shows the relationship between Markov equivalence

class size and the ratio of the number of immoralities in the essential graph to the number of induced

3-paths in the skeleton for all connected graphs and triangle-free graphs on 10 nodes. That is, it

shows the relationship between the class size and how many of the potential immoralities presented

by the skeleton are used by the class. It is interesting to note that, in the triangle-free setting, as

the class size grows, this ratio appears to approach 0.3, suggesting that most large MECs use about

a third of the possible immoralities in triangle-free graphs. In the connected graph setting, as the

class size grows, we see a steady decrease in the value of this ratio. This supports the intuition

48

that a larger class size corresponds to an essential graph with large chordal components and few

immoralities.

6. INTRODUCTION TO INTERPRETABLE NEURAL NETWORKS

There have been significant improvements to feed-forward convolutional networks culminating in

the recent success of ResNet [31] in the ImageNet [53] challenge. These (now standard) networks

are powerful due to their ability to exploit global context to make a more informed decision.

By incorporating non-linear layers, these models use complex combinations of features to derive

an accurate label estimate given all the pixels in the input image. The complex interactions

between features make it difficult to inspect the learned features visually. Without an easy means

of interpreting learned features, the applicability of these models to prediction sensitive areas such

as health care is limited. For example, Caruana et al. [111 analyzed models trained to predict the

risk of death by pneumonia for patients. They found that these models had learned that having

asthma was indicative of a low risk of dying by pneumonia. However, the reason for this learned

feature was that patients with asthma were immediately admitted to the ICU when they had

pneumonia, and so they would be treated immediately. Thus, asthmatic patients appeared in the

training data as examples of patients with low-risk of death by pneumonia. Although often highly

accurate, due to the uninterpretability of the learned features, neural networks are often deemed

too risky for applications in health care [17].

The goal of our work is to provide a convolutional network for binary classification problems on

images that can provide interpretable visual representations of the learned features as heatmaps,

Figure 5

0.4- Connected
Triangle Free

0.3

0.2

0.0 -

0 2 4 6 8 10 12 14
Log Class Size

FIGURE 22. Class size versus the ratio of the number of immoralities to the number

of induced 3-paths in the essential graph.

49

simply by inspecting the outputs of the feed-forward layers. To accomplish this, our network

PatchNet first provides classification decisions on small patches of an image to determine whether

a given patch contains features of either class, and then averages the decisions made on all the

patches across an image to make a global classification decision. Hence, PatchNet allows for a

trade-off between generalization error and feature interpretability: by restricting the size of patches,

generalization error increases since the model is limited in global context for classification, but

feature interpretability increases as we can visualize the learned features for each patch of an

image.

PatchNet is motivated by mean-field approximation techniques from variational inference as well

as ensemble methods. As is done in mean-field approximations, instead of learning conditional

probability distributions for predicting the label for an image given the entire image, we instead

learn a simpler conditional probability distribution for predicting the label given a small patch of

the original image. Now unlike a true mean-field approximation, we do not multiply the predictions

for each patch to get a global prediction, but rather treat each of these patch predictions as an

ensemble of smaller classifiers and average their classifications to generate a global classification

decision.

The remainder of this paper is organized as follows. Section 7 describes previous methods for

interpreting or rationalizing features learned by neural networks. Section 8 describes the Patch-

Net architecture, its convergence behavior, how to extract heatmaps for interpreting the learned

features, and Precision-PatchNet, an extension of PatchNet for classification tasks where obtain-

ing a high precision is important, as is common when working with medical images. We present

the results of PatchNet for classifying textures from the Describable Textures Dataset (DTD) [13]

and the results of Precision-PatchNet on the ISIC-ISBI Melanoma Classification Challenge [28] in

Section 9. We end with concluding remarks and an outline of future work in Section 10.

7. RELATED WORK

A prominent approach used to understand the inner workings of a complex neural network is

the deconv technique. Variations of this technique such as DeconvNet [69] or Guided Backpropa-

gation [58] pick a neuron in a convolutional neural network (CNN), do a forward pass on a sample

image, and set the chosen neuron's gradient to 1 and all other gradients in the same layer to 0.

Doing backpropagation on this signal and blocking the negative gradients, results in an alteration

50

to the image that represents the neuron's positive contributions to the network as a whole. A

similar method was described in [54], where the authors propose an optimization technique that

feeds an image forward through a CNN and then backpropagates from the last layer with a specific

class target.

Although these techniques allow for visual introspection of the learned features and classes, there

are a few drawbacks: (1) All techniques require applying alterations to the true gradient by block-

ing signals or using regularization parameters. (2) The backpropagation of the gradient through

multiple layers provides noisy estimates of the true learned features. (3) The learned features are

based on global context, making it inherently difficult to understand how different features work

together to create a classification decision and substantially reducing feature interpretability.

A different approach is taken in [39], where a Natural Language Processing model is developed

that provides rationales for why a text review is classified as positive or negative. Their model

consists of two networks, one to provide tags for whether a word in the review is indicative of

"sentiment", and another to classify based on the tagged words. Unfortunately, this approach

cannot directly be applied to image classification, since there is no clear analogy between tagging

words in a sentence and tagging pixels in an image, as the space of words is much larger than the

space of pixel values. Furthermore, naively dropping pixels by techniques such as zeroing them out

is not equivalent to dropping irrelevant words in a sentence, since zero value pixels still provide

context to the image.

8. PATCHNET

In this section, we provide the mathematical motivation for our model architecture, present the

architecture, and develop insights into its convergence behavior for special classes of data. We

then present a slight modification that incentivizes our model to reduce the false positive rate for

classification. We conclude the section with an explanation on how to easily extract global and

filter heatmaps from our model to view the learned features.

8.1. Motivation and Notation. Suppose we are given a dataset D consisting of a list of images

I(1), I(), ... I(k) with each I() E {0, 1, 2. . .N - 1}nxnx c along with a corresponding list of labels

YJ(i), Yj(2) .- -, yI(k) with each yi(i) E {0, 1}. Feed-forward CNNs such as VGG [55] or ResNet [31]

directly estimate the distributions Pyji(yjI), which are conditional distributions given all pixel

values. Since we will concentrate solely on binary classification, it suffices to estimate Pii1 (1II).

51

FIGURE 23. PatchNet architecture. The subnet S is displayed on the left, and the
global network consisting of repeated applications of the subnetwork is shown on
the right.

Instead of directly estimating the conditional probability distribution given all pixel values in the

image, our model estimates conditional probability distributions of patches of pixels in the image

and then averages all estimates across the patches to create a global estimate. Formally, if an

image is chunked into 1 possibly overlapping patches p(l), p(2), ... , p() with P(i) E {0, 1, 2,.. .N -

l}m'xn'xc with 3 < m' < m, 3 < n' < n, then our model estimates Plii(lII) as P 111(1II) =

1 l;= 1 Qj11P (IIP(i)), where Q is a single learned distribution applied to each patch.

There is an inherent tradeoff between patch size (m', n'), generalization error, and visual inter-

pretability of the learned features. For instance, with m' = m and n' = n, our model can mimic any

CNN by simply letting the estimate for Q be the estimate determined by the CNN. In this case,

the generalization error achieved by the model is the same as that of the mimicked network, but

the visual interpretability of the learned features suffers due to the scale of feature detection. By

using small m', n', the distribution Q is estimated across a smaller input space allowing detection

of local features. As we will show in Section 8.3, smaller patch sizes provide visual interpretability

of the features used for classification at the expense of a potentially larger generalization error.

8.2. Model Architecture. Our model consists of two components: (1) a global network g that

outputs a global classification decision given an entire image; (2) a local network S that outputs a

local classification decision given a patch; see Figure 23.

We now describe the feed-forward pass of our architecture. When an input image I is fed into g,

g chunks the image into a list of 1 patches of size m' x n' x c, namely [p(l), p(2), ... P()] with each

P(j) E {, 1, ... 2 5 5 }m'xn'xc. Next, these patches are aggregated and sent to S as a mini-batch.

52

Then S([p(l), p(2), ... P(0]) = [Q P(1)(P)), QJ1 p(2) (i1p(2)). Q1 1 pm P()] , where Q11piji is

determined as follows. A CNN consisting of 7 layers of convolutions with 64 filters with kernel size

3 and 1 pixel of padding followed by ReLU activations in each layer is applied to P(i) to get 64

M/ x n' filter output images. Then 64 linear models are applied as a dot product to each of these

filter output images to reduce the m' x n' outputs to size 1 outputs, and a Tanh activation is applied

to each output. Lastly, a linear layer is applied as a dot product to these 64 outputs resulting in

a single value Q11puj) for each patch, which is converted to QijP3) by a sigmoid transformation.

Finally, Y averages [Q1 1p) (1 JP 1)), Q1 1p(2) (11p(2)),.. . Q11P (I IP())] , the output from S, to obtain

the global classification estimate P1|1(11I). Given a label y* and a global prediction Pii(11I) we

use the binary cross entropy loss to determine the loss of the model, namely

(8.1) L(I, y*) = -y* log(P 11 (1I)) - (1 - y*) log(PO 1I(OI)).

It is important to note that the weights for the CNN and the linear layers used to produce

Q1 1p(j) are shared across all patches P(). Thus, the local network S used to produce Q1 1p(j) must

be able to identify features for class 1 and class 0 on a local scale. Furthermore, by performing an

average instead of using a linear layer to obtain the output IPii(11I), we are inherently forcing S to

independently identify as many features of class 1 and class 0 as possible without providing global

context, thereby enhancing interpretability of the learned features.

8.3. Convergence Behavior of PatchNet. The main limitation of such an approach is that the

patch size parameters m', n' must be tuned based on the scale of features present in the data set.

Intuitively, selecting too small values for m', n' forces S to learn just the area of structures in images

as features, while selecting too large values of m', n' results in uninterpretable feature interactions.

For many applications, domain expertise can be used for choosing an appropriate patch size.

Another limitation of this model is that when an image only contains few patches with features

indicative of class 1, then the model would not be able to correctly classify it as class 1, since the

patches P with Q1|p, close to 1 would be out-voted by the patches PO with Q1|pO close to 0. This

is illustrated via the following simple example: Suppose that our data space D consists only of

two images: (1) The class 0 image that is simply a m x n x 1 image of 0 valued pixels; (2) the

class 1 image that is a m x n x 1 image with all 0 valued pixels except for the pixels in the upper

left ! x 2 x I rectangle, which all have value 1 (see Figure 24). Suppose also that our model

53

p 0P
P 1

Po PC

0P P (3p + p,)/4'

FIGURE 24. The class 0 images and class 1 images are depicted on the left and right
respectively. As indicated, the images are segmented into 4 disjoint patches. We
denote by po the value of Q 11p(IJPo) for a patch PO containing all 0-valued pixels
and by pi the value of Q11p, (i JPI) for a patch P1 containing all 1-valued pixels.

uses x 1 x 1 patches with a stride of i in the first dimension and a stride of Z in the second2 2

dimension. That is, the model is trained on 4 patches for each class with only the upper left patch

of class 1 images containing features indicative of class 1. Now suppose we train on a balanced

set T of T images and labels {(IP), y*), (2 , y (2), . . . (IT) y* (T)} from both classes k E {0, 1},
kI kk I k

then we can deduce the values of po := QiipO (1IPo) and pi := Q 11p1 (1IP1) for patches P containing

all 0-valued pixels and patches P containing all 1-valued pixels in closed form. Given L(I, y*) as

defined in equation (1), the loss for all images in our training set is

T T 3o+p
L(T) = TL(Io, y)+ L(11, y*) = -Tlog(1 -po) - Tlog 3PoA+P)

i=1 i=1

To minimize this loss, we first analyze the derivative with respect to pi, namely

DL T

Dpi 3po + pi'

which is always negative (since po, pi, T Z 0) and hence closest to 0 when p, = 1. Taking derivatives

with respect to po yields
DL' 3po + pi + 3po - 3

PO -T
apo T PO(3po + p1)

which is 0 when po = . Substituting these values back into the global predictions, we obtain that

P, 1 (lI11) = } for class 1 images I1 and Pii (11Io) = for class 0 images I. Hence, with a rounding

threshold for class 1 of .5 + c, at convergence, our model would predict that all images belong to

class 0. However, even though the resulting accuracy would only be 50%, the feature heatmap

(constructed as described in Section 8.4) would still indicate that there is a feature representative

of class 1 in the upper left corner of the image, since Q11py(ifp(iJ)) = 1 for all patches P(O)

containing only 1-valued pixels.

54

This limitation explains mathematically why there is a trade-off between generalization error

and interpretability: if there are few patches with features indicative of class 1 in class 1 images,

then these patches must all output values Qp close to 1 in order for Pi1i,(1 Ii) to be closer to 1,

and so the heatmap visualization will identify the regions of the image that are indicative of class 1.

However, these patches can be outvoted by patches with features indicative of class 0 leading to a

global misclassification of the image. See Appendix B for a generalized analysis of the convergence

behavior and examples of the architecture displaying this behavior at convergence.

8.4. Extracting Visualizations. We now present how we can introspect layers of our model

to easily provide visualizations of the features learned by the model. We refer to the gray-scale

visualizations we generate as "heatmap" visualizations, since brighter pixels in the visualizations

indicate that the model found a feature relevant to class 1, while darker pixels indicate a feature

relevant to class 0. We provide two sets of heatmap visualizations and their corresponding pixel

intensity histograms as follows.

The global heatmap visualization for an image is constructed by first computing Q1 p(i,j) (1 1P(i,')

for all patches P(',i), where P(',i) is the patch centered at location (i, j) in the first two dimensions

of the original image (zero-padding is used for border locations), and then viewing an m x n image

where each pixel at location (i', j') of the image is the value of Qllp(ti,,') (1IP(i')).

The filter heatmap visualizations are similar to global heatmap visualizations, except that a

heatmap image is constructed for each filter in the last convolutional layer by using the output

of the Tanh layer across all patches. We show the construction for filter 1 and apply the same

construction for the other 63 filters. For each patch P(',j) centered at location (i, j) in the first two

dimensions of the original image (again with zero-padding for border locations), we compute the

output of the Tanh layer and label the value corresponding to filter 1 as PF'j where F('j E [-1, 1].

Now we simply view the m x n image where each pixel at location (i', j') of the image is the min-max

rescaled value of F ' to get the filter heatmap for filter 1.

In this way, we generate and view 65 heatmap visualizations for each image fed to the model: 1 for

the global heatmap and 64 for the filter heatmaps. As an aside, another approach to constructing

filter or global heatmap visualizations is to average the predicted heatmap pixel values across all

patches containing the given pixel. We found that this approach provided empirically inferior

results in heatmap smoothness than the above described visualizations.

55

Cracked Images Perforated Images

PU

FIGURE 25. Samples of class 0 (cracked) images and class 1 (perforated) images are
depicted on the left and right respectively.

8.5. Precision-PatchNet. In various applications, it is crucial to obtain high precision results,

i.e., with few false positives. For example, a current problem with mammography for breast cancer

detection is its high false positive rate: recent studies revealed that the chance of having a false

positive result after 10 yearly mammograms is about 50-60% [22, 33, 35]. Such results can cause

unnecessary worries and surgeries. We thus present a variation of PatchNet that is optimized for

image classification tasks where having a low false positive rate matters more than overall accuracy.

For such precision-based tasks, the CNN S should additionally minimize the number of patches

P outputting high values of Qp for class 0 images, i.e., S should reduce the false positive rate

for the patch-based classification in addition to being accurate. This can be achieved by a minor

adjustment to the network, namely by introducing separate loss metrics for images in class 0 and

class 1. For class 1 images, we keep the originally described binary cross entropy loss metric and

hence the resulting loss function is as described in equation (1). However, for class 0 images, we

introduce a binary cross entropy loss on Q11p(11P) for each patch P and average it over all patches,

i.e.,

(8.2) 1(Io, 0) = log(1 - Q0 1 (3)(11 P()))

for an image I with 1 patches. This loss function incentivizes the model to assign low probabilities

Q1 1p(11P) to each patch P in class 0, enforcing a low false positive rate among patches in class 0.

9. EXPERIMENTAL RESULTS

We now show the performance of PatchNet in providing interpretable features and analyze the

trade-off between visual feature interpretability and generalization error for different patch sizes in

applications to the classification of textures and melanoma. For each experiment we provide the

56

patch size, and training, validation, and test sets used to train our model. All of our models use

the Adam optimizer with a learning rate of 5 - 10-5, with batch sizes of either 8 or 16. We used

Kaiming normal initialization [30] for all convolution layers and used min-max scaling to normalize

the input images to have pixel values in the range [0, 1]. For all experiments, we augmented the

training set using random horizontal and vertical reflections of the input images. Finally, to select

the best model, we used a patience strategy [27], where we declared convergence when the model

had not seen any improvement in validation loss for 2000 epochs. The software and hardware used

for these applications is described in Appendix E and F.

9.1. Describable Textures Dataset (DTD). DTD [13] is a collection of real-world texture

images annotated with "human-centric" attributes. The dataset consists of 47 classes of textures

with 120 images per class. The image sizes range from 300 x 300 x 3 to 640 x 640 x 3. Although

other texture datasets exist, such as CUReT [18], UMD [68] or UIUC [38], this dataset is the most

extensive in terms of number of images per class.

We trained our model on two classes of images: (1) class 0 images are drawn from the "cracked"

textures; (2) class 1 images are drawn from the "perforated" textures. We chose these classes

as they have textures that are present on a local scale and these local textures generally repeat

throughout the image. Samples from each of these classes are shown in Figure 25.

Since the images are of different sizes, we sampled random 128 x 128 x 3 crops from the training

set for each batch and used centered 128 x 128 x 3 crops from the validation and test sets to validate

and test. We used patches of size 15 x 15 x 3 and a stride of 3 in each of the first two dimensions.

As provided by DTD, we split the data into 40 images per class for each of the training, validation,

and test sets. The classification performance is summarized in Figure 26 along with a comparison

to the performance of SVM trained with the widely used Parameter Free Threshold Adjacency

Statistics (PFTAS) features [15]. As shown in Appendix C, adding any other standard texture

features caused the model to greatly overfit. PatchNet slightly under-performs the SVM model on

test accuracy, even though both models over-fit the data.

Model Train Validation Test Reference\Prediction Cracked Perforated

Neural Model 88.8% 76.3% 67.5% Cracked 34 6

Linear Model 99.3% 80.7% 73.3% Perforated 20 20

FIGURE 26. The accuracy of our models and the confusion matrix for the DTD test set.

57

Cracked Images Perforated Images

Sample Images*.*
from Test Data *.'

Corresponding
Global Heat-maps

FIGURE 27. The global heatmaps for images sampled from the DTD test set.

The confusion matrix in Figure 26 shows that misclassification predominantly occurred for the

perforated images. The global heatmaps for these images in Figure 27 show that the model correctly

classified every perforation, but because in many images there is a larger amount of background than

perforation, the model misclassified some perforated images. These results are thus in accordance

with the mathematical derivation in Section 8.3.

As is also apparent from Figure 27, the model learned to identify dark contiguous regions in

an image as perforations, while dark lines in an image were identified as cracks. Since the global

heatmaps can be explained without any technical background, we would argue that the features

learned by PatchNet are easier to interpret than the standardly used PFTAS texture features.

9.2. ISBI-ISIC 2016 Melanoma Challenge. Melanoma is a skin cancer that develops from pig-

mented lesions on the skin. The International Skin Imaging Collaboration (ISIC) Archive provided

a collection of 1250 melanoma images (900 for training, 350 for testing) for the 2016 Melanoma

Classification Challenge [28]. We used the 2016 melanoma detection challenge instead of the 2017

challenge, since testing data is currently only available for the 2016 challenge.

The data is split into benign (class 0) and malignant (class 1) skin lesions. Due to the high

class imbalance with around 5 times more benign than malignant examples, we up-sampled the

malignant class during training. The size of the original images is around 700 x 1000 x 3. Due to

Model Train Validation Test Reference\Prediction Benign Malignant Reference\Prediction Benign Mali-nant
Patch size 15 90.6% 86.1% 72.3% Benign 393\136\256 16\13\48 Benign 393\137\261 9\12\43
Patch size 31 94.9% 88.3% 76.8% Malignant 61\12\57 345\19\18 Malignant , 32\9\45 381\22\3(

FIGURE 28. From left to right: train, validation, and test accuracies for the Patch-
Net model trained using 15 x 15 x 3 patches and 31 x 31 x 3 patches; confusion
matrix for the PatchNet model trained using 15 x 15 x 3 patches; confusion matrix
for the PatchNet model trained using 31 x 31 x 3 patches.

58

Benign classifications 15 x 15 patches Malignant classifications 15 x 15 patches

Sample Images
from Test Data

Corresponding
Global Heat-mapsft

15 x 15 x 3 Patches
x x

Corresponding
31 x 31 x 3 Patches

FIGURE 29. The global heatmaps for images sampled from the test set for patches
of size 15 x 15 x 3 and 31 x 31 x 3.

memory limitations, we rescaled these images to 128 x 170 x 3 prior to training, validating, and

testing.

We now present the results of training two precision-based models. The first uses patches of size

15 x 15 x 3 with a stride of 5 in each of the first two dimensions. The second uses patches of size

31 x 31 x 3 with a stride of 10 in each of the first two dimensions. The resulting accuracies and

confusion matrices are shown in Figure 28. Although both models over-fit, they both succeeded in

minimizing the number of false positives during training and validation. In addition, as predicted

by the mathematical derivation in Section 8.3, the larger patch size achieved a higher accuracy

overall.

In Figure 29 we visualize the global heatmaps for sample test data using both models. As

predicted in Section 8.3, there is a trade-off between generalization and visual interpretability

for different patch sizes: the heatmaps for the model with larger patch size are more noisy as

a consequence of training on patches with little overlap, but this model generalizes better. The

heatmaps show that the model has learned to identify dark regions or spotted regions (known as

globules) and irregular surroundings of regions (known as streaks). Interestingly, these are some

of the features used by domain experts to classify melanoma. The 2016 ISBI-ISIC Melanoma

Challenge also gives examples of images where these features were annotated. A comparison to the

features found by PatchNet is shown in Figure 30.

As a side remark, the 2016 ISBI-ISIC Melanoma Challenge also illustrates the risks of using

CNNs for medical applications. Since various malignant training examples had a lense around

the melanoma, the model learned this as a feature. The second malignant example in Figure 29

59

shows that the model learned to classify the lens as part of a malignant lesion, when clearly the

background is not part of the region of interest.

The ISIC also provided ground truth segmentations for the skin lesions. Interestingly, while

most models for segmentation need to be trained on labeled segmentation data, by viewing the

filter heatmaps from our models trained solely for classification, we were able to identify filters that

provide lesion segmentations directly; see Figure 30.

Inspired by our segmentation results for melanoma, we trained PatchNet to also classify between

images of human cell nucleil, an important preprocessing task in the classification of cancerous cells.

In Figure 31 we present sample segmentation results obtained by PatchNet; for a careful analysis

see Appendix D. Remarkably, although PatchNet was not trained on any labeled data for nucleus

segmentation, it achieves precise segmentations regardless of the proximity of multiple nuclei and

halo (i.e., intensity drop-off) effects.

10. CONCLUSION AND FUTURE WORK

By forcing independent local classification decisions on patches, PatchNet is able to re-construct

interesting global and filter heatmaps that provide easy introspection into learned features. In

addition to interpretability, an interesting side effect of PatchNet is that select filters can directly

be used for image segmentation. In future work, it will be interesting to further investigate the

performance of our model for image segmentation. Since the described implementation is limited

by existing hardware, an interesting line of future work is to investigate patch-level data parallelism

techniques to increase our model's scalability.

1We would like to thank G. V. Shivashankar (National University of Singapore) for providing the images.

Original Image PatchNet Segmentation Given Segmentation PatchNet Features Given Features

FIGURE 30. From left to right: original images sampled from the ISBI-ISIC
melanoma dataset, segmentation provided by a filter from PatchNet, segmentation
provided by ISBI-ISIC, features extracted by a filter from PatchNet, annotation of
globules provided by ISBI-ISIC.

60

FIGURE 31. Three samples of nucleus segmentation as achieved by PatchNet for

connective tissue cells in mice. The original image is shown on the left with the

corresponding segmentation on the right.

ACKNOWLEDGEMENTS

I wish to thank Brendan McKay for some helpful advice in the use of the programs nauty and

Traces [43]. I wish to thank Ali Soylemezoglu for his help in developing linear models to compare

with our PatchNet model. I wish to thank Charles Durham for his help and guidance in developing

the PatchNet architecture, the visualization techniques for PatchNet, and the hardware used to

train PatchNet. I wish to thank Liam Solus for all his help and guidance in the entirety of our

analysis of Markov Equivalence Classes. Most importantly, I wish to thank Caroline Uhler for her

immense support and guidance over the past year and a half in our Markov Equivalence analysis,
PatchNet development, and for helping me develop as a researcher.

APPENDIX A. BASIC DEFINITIONS AND NOTATION

A.1. Graphs.

A.1.1. Basic definitions. An (undirected) graph G is a pair of sets (V, E) in which V is some node

set and E is the edge set, where an edge is taken to be an unordered pair of nodes {i, j} for i, j E V.

We say that two nodes i, j are adjacent in G = (V, E) if {i, j} E E, or equivalently, we say that

i is a neighbor of j and vice versa. The neighborhood of a node i E V in a graph G = (V, E)

is the set of all neighbors of i in G including the node i itself. A node is said to be incident to

an edge e E E if i is one of the two defining nodes of e. The degree of a node i in a graph G

is the number of edges incident to i in G, and it is denoted by degG(i). When the graph G is

understood, we often write deg(i). A node i is called a leaf of G when deg(i) 1. A path in

an undirected graph G is an alternating sequence of nodes and edges (vi, el, V2, e 2 , -. . , en, vn+i) in

which ei {vi, vi+1 } for all i E [n]. A cycle in an undirected graph G is an alternating sequence of

nodes and edges (vi, e1 , v2 , e2 , ... , en, Vn+1) in which ei {vi, vi+ 1} for all i c [n], and vi = Vn+I-
A graph G = (V, E) is called connected if there exists a path in G between every pair of nodes in

V. An undirected graph is called a forest if it contains no cycles. A tree is a connected forest.

A graph g = (V, E) is directed if the edge set E is a set of arrows, where an arrow is defined

to be any ordered pair of nodes, denoted (i, j) or i * j for i, j E V. In an arrow i j the node

i is referred to as the tail of the arrow and the node j is referred to as the head. A directed cycle

in a directed graph g is an alternating sequence of nodes and arrows (vi, el, v2, e2, .. . , en, vn+) in

which ei = vi - vi+1 for all i E [n], and vi = Vn+1. A directed acyclic graph (or DAG) is a directed

graph that does not contain any directed cycles. A node i is called a parent of node j in a directed

graph g if i j E E. In this case, the node j is called a child of node i. A node j is called a

descendant of a node i if there is a directed path in g from i to j. In this case, then node i is an

ancestor of j. We denote the set of parents, descendants, and ancestors of node i, respectively, by

pa(i), de(i), and an(i). The set of non-descendants of i is nd(i) := V\({i} U de(i)).

A partially directed graph is a pair G = (V, E) with node set V for which the set E consists of

some edges {i, j} and some u -+ v for i, j, u, v E V. Both, DAGs and partially directed graphs

have an underlying skeleton, which is the undirected graph given by replacing every arrow i -+ j
with the edge {i, j}. The collection of all partially directed graphs include both, directed and

undirected graphs, as subcollections. For this reason, we make the following definitions in the

61

setting of partially directed graphs, and simply note that they specify to directed and undirected
graphs accordingly. A subgraph of a partially directed graph C = (V, E) is a partially directed
graph C' = (V', E') for which V' C V and E' c E. An induced subgraph of C is a subgraph
C' = (V', E') of C for which an edge or arrow e E E is in E' if and only if its two incident nodes
are in V'. We often call C' the subgraph induced by V' and denote this by writing C' = (V'). We
say that two partially directed graphs C = (V, E) and C' = (V', E') are isomorphic if there is a
bijection p : V -+ V' such that {i,j} is an edges of C if and only if {(i),W(j)} is an edge of
C' and i -+ j is an arrow of C if and only if p(i) - y(j) is an arrow of C'. A path in a partially
directed graph G is an alternating sequence of nodes and edges/arrows (vi, el, v2, e2 ,... , en, vn+l)

in which ei = {vi, vi+1} (or ei = vi -+ vi+1) for all i E [n]. If the path includes no arrows it is
called undirected, and if includes at least one arrow it is called directed. A cycle in an undirected
graph G is an alternating sequence of nodes and edges/arrows (vi, el, v2, e2, .- -, en, vn+i) in which
ei = {vi, vi+1} (or ei = vi -+ vi+1) for all i E [n], and vi = vn+1. If the cycle contains no arrows
it is called undirected and if it includes at least one arrow it is called directed. A chain graph is a
partially directed graph containing no directed cycles. The chain components of a chain graph are
the connected components of its subgraph consisting of all its edges.

A.1.2. Some important graph classes and their notation. We now define some special classes of
graphs that we will consider in this paper, and specify their notation. The p-path is the undirected
graph I, := ([p], E) for which E : {{i, i + 1} : i E [n - 1]}. The p-cycle is the undirected graph

C : = ([p], E) for which E := {{i, i + 1} : i E [n - 1]} U {{1, n}}. A chordless cycle in a graph G
is any induced subgraph of G that is a cycle. A graph is called chordal if every chordless cycle in
G is a 3-cycle. The complete graph on p nodes is the undirected graph K := ([p], E) for which
E := {{i, j} : ij E [p]}. Given two disjoint node sets V and W for which #V = p and #W = q,
the complete bipartite graph on V and W is the undirected graph Kp,q :{{i, j} : i E V, j E W}.
The p-star is the complete bipartite graph K1 ,, and we often denote the p-star by G1 (p). For

p # 1, the center node of G1 (p) is the unique node of degree p, and for p = 1 the center of G1 (p) is
chosen to be one of the two nodes of the graph. A bistar can be thought of as a gluing of two stars
in which a leaf node of one star is glued to the the center node of the other star. We denote the
bistar given by gluing a leaf of Gi(q + 1) to the center node of G,(p) by G 2 (p, q). Equivalently, the
bistar G2(p, q) can be defined by attaching p leaves to one node of the 2-path 12 and q leaves to the

other node. More generally, we can define the graph Gp(qi, q2, . . ., qp) to be the undirected graph
given by attaching qi leaves to node i of the p-path Ip. A rooted undirected graph G = (V, E) is an
undirected graph with a unique distinguished node r E V called the root of G. A complete binary
tree is a rooted tree in which the root node has degree two and every other non-leaf node has degree
three. A circulant on p nodes is a graph whose nodes are identified with Z/pZ, and whose edges
are given by a specified connection set C c Z/pZ. In the undirected setting, we assume C is closed
under additive inverses. The circulant graph on p nodes with connection set C is denoted X(p, C)
and has edges {i, j} for all pairs i and j satisfying i - j E C. We often abbreviate the connection
C via a subset of [R] by omitting the additive inverse of each element.

A.1.3. Independent sets and vertex covers. In this subsubsection we let G = (V, E) be a undirected
graph. An independent set in G is subset of mutually non-adjacent nodes S C V. A vertex cover

of G is a subset of nodes S c V for which every edges of G is incident to some node in S. The
complement in V of an independent set is always a vertex cover in V. In particular, the complement
of a maximum independent set is a minimum vertex cover. The independence number of G is the
size of any maximum independent subset of G, and the Fibonacci number of G is the total number
of independent sets of G. Let ak(G) denote the number of independent subsets of size k in G,
a(G) denote the independence number of G and F(G) denote the Fibonacci number of G. These

62

numbers collect into the polynomial generating function

I(G; x) := E ak(G)xk,
k>O

which we call the independence polynomial of G. In particular, I(G; 1) = F(G).

A.2. DAG Models. Let (Xv : v E V) denote a vector of random variables that are indexed by the
nodes of some directed acyclic graph D = (V, E). The set of arrows and non-arrows in D encode a
set of conditional independence constraints on random variables X, which are called the Markov
properties of the DAG D. The directed acyclic graphical model associated to D is the family of
multivariate probability distributions that abide by the Markov properties of D. To specify the
Markov properties we will use, we first recall the a notion of directed separation (or equivalently,
directed connectedness) for directed graphs.

An undirected path in the DAG D is an alternating sequence of nodes and arrows

Ir = (vi, e1, v2, e2,. - -, en-1, vn)

in which the arrow ei is either vi -+ vi+1 or vi <- vi+1 for all i. A collider on an undirected path
in D is any subsequence (vi, ei, v 2 ,e 2 , v 3) such that el = vi -+ v 2 and e2 = v 2 +- v3. Given a DAG
D, we consider the graphical model associated to D by the directed global Markov property. Two
nodes u and v in D are said to be d-connected given C C V\{u, v} if there exists an undirected
path 7r from u to v for which

(1) all colliders on 7r are in C U an(C), and
(2) there is no non-collider on 7r that is also in C.

If A, B, and C are disjoint subsets of V with A and B being nonempty, then C is said to d-separate
A and B if there are no u E A and v E B that are d-connected given C. The directed global
Markov property associates the DAG D = (V, E) with the set of conditional independence relations
XA I XB I Xc for all triples A, B, and C for which C d-separates A and B. Oftentimes, multiple
DAGs have the same set of d-separation relations, and thereby encode the same set of conditional
independence statements. If two DAGs encode the exact same conditional independence relations
with respect to the directed global Markov property we call them Markov equivalent. Given a DAG
D = (V, E), the collection of all DAGs that are Markov equivalent to D, including D itself, is called
the Markov equivalence class of D. In this paper we denote the Markov equivalence class of D by
[D]. There is a well-known characterization of when two DAGs are Markov equivalent, and it is
given in terms of their skeleta and their set of immoralities. An immorality in a DAG D is a triple
of node (a, b, c) for which D contains the arrows a -+ b and b +- c but D does not contain either of
the arrows a -+ c or a +- c.

Theorem 35. [64, Verma and Pearl] Two DAGs are Markov equivalent if and only if they have
the same skeleton and the same set of immoralities.

For a more thorough treatment on the basics of graphical models in algebra and combinatorics
see [19, Chapter 3].

A.3. Essential graphs. Let g be a DAG and let [9] denote the MEC containing G. An essential
arrow in 9 is an arrow which appears in all elements of [9]. That is, i -+ j is an essential arrow
of 9 if and only if i -+ j is an arrow of G' for all G' E [9]. We also refer to such an arrow as an
essential arrow of the MEC [9]. The essential graph of the class [9] is the partially directed graph
whose set of arrows is precisely the essential arrows of [9] and whose set of edges is those edges
{i, j} in the skeleton of 9 that support non-essential edges in G. We denote the essential graph
of [9] by 9. Recall that the chain components of a chain graph are the connected components of
its subgraph consisting of all its undirected edges. We call the connected directed components of
an essential graph its essential components. An arrow i -+ j is called strongly protected in a chain

63

i J i i

FIGURE 32. The edge i -* j is strongly protected if it occurs in any of the above configurations.

graph if it occurs in any one of the configurations depicted in Figure 32. The following theorem
provides a characterization of the partially directed graphs that are essential graphs of MECs.

Theorem 36. [2, Andersson et. al] A partially directed graph G = (V, E) is the essential graph g
for some DAG g if and only if G satisfies the following conditions:

(1) G is a chain graph.
(2) Every chain component of G is chordal.
(3) The configuration i -+ j - k does not occur as an induced subgraph of G.
(4) Every arrow i -+ j is strongly protected in G.

A detailed development of the theory of essential graphs is found in [2].

A.4. Enumerative definitions. A composition of a positive integer n into k parts is an ordered
sum of k positive integers equaling n, i.e.

C +c2 + --- + c = n.

The positive integers ci,..., ck are called the parts of the composition. A partition of the positive
integer n is a sequence of integers A := (A,, A2 , ...) satisfying Ej Ai = n and A, A 2 ... > 0.
The nonzero integers Ai are called the parts of the partition, and we say that A has k parts if
#{I : Ai > 0} = k. We let P[k, n] denote the set of partitions of n with k parts, and we let P[j, k, n]
denote the partitions of n with k parts with largest possible part j. Note that our notation differs
slightly from the notation used in [591, in which p(j, k, n) denotes the number of partitions of n with
at most k parts and largest part being j. If the partition A has mi parts equaling i then we may write
A - (1ml, 2m2). When A E P[j, k, n], then A = (1mw, 2m2, .. . , jmj) and so A is uniquely identified
with the integer vector (mi, m2, .. ., M). In this case, we simply write (ml, m2, ... , mj) E P[j, k, n].
A wealth of enumerative combinatorics, including a very complete treatment of compositions and
integer partitions, can be found in [59].

APPENDIX B. GENERALIZED CONVERGENCE BEHAVIOR OF PATCHNET

Generalizing from the results in Section 3.3, we analyze how the value of Qp for each patch P
is related to the fraction of features indicative of class 1 present in class 1 images, the fraction of
features indicative of class 0 present in class 0 images, and the fraction of features shared among
both classes. Intuitively, the model will assign low Qp outputs for each patch P with a feature
indicative solely of class 0, high Qp outputs for each patch P with a feature indicative solely of
class 1, and roughly Qp = .5 for patches with features shared between class 0 and 1. In this section,
we perform a case analysis on simplified images that contain only features that are indicative of
class 1 or features that are shared between class 0 and class 1. We mathematically determine the
exact values of Qp for each patch after convergence.

Due to the nature of our loss function, we can mathematically analyze the behavior of the model
to understand the relationship between the visual heatmap and presence of class 1 features in
the dataset under some simplifying assumptions. Namely, suppose that the images in the dataset
contain only features, fc, common to both classes of the image or features, fi, indicative of class 1.

64

Now suppose that on average there are a patches in class 1 that are indicative of f, and b patches in
class 1 that are indicative of fi, and that all a + b patches of class 0 are indicative of fe with a > b.
Let us further assume that each patch contains only one of f, or fi, and so Q1 1p()(1JP()) = po for

all j such that patch P() contains f, and Ql1 p(1)(IP(j)) = pi for all j such that P() contains fi.
Then, as in Section 3.3, at convergence the model minimizes the loss

L -log I -(a + b)p log apo + bpi

(a+b) (a+b

= -log(1 - po) - log aPo+bpi

In order to minimize the loss, we set the derivatives with respect to po and pi equal to 0. The
derivative with respect to pi is:

9L a+b b
0 pi apo+bpia+b

b

apo + bpi

This derivative is always less than 0 as a, b, p1, po ;> 0. Hence, the model will simply try to
maximize the value of pi to bring the derivative closer towards 0. Thus, at convergence, p1 = 1.
Now examining the derivative with respect to po:

aL

Po= 0

1 a+b a

P0 - 1 apo + bpi a + b
-- > apo + bp 1 + apo - a = 0

-> apo+b+apo-a=0

a-b
== P0 =

2a

Hence the largest possible value for po is -, which occurs when b =0. Note that we performed
this analysis for a > b. If a < b, as po is constrained to be in the range [0, 1], the value of po will
simply be 0 at convergence.

As a concrete example of this convergence behavior in practice, we can examine the behavior of
the model on a sample binary data set where class 0 consists of all black 128 x 128 images (each
pixel has value 0), and class 1 consists of 128 x 128 images with a white square of size 64 x 64 in
the upper left hand corner (each pixel has value 1) (a larger version of the sample image in Section

3.3).
We train our model using 17 x 17 patches and a stride of 17 in either direction. In this case,

there are some patches that contain both f, and fi. Yet as there are only a few such patches, the
actual values of po and p1 should only be slightly noisy. We use zero padding and a stride size of 1
to visualize the outputs of Q on each of the 128 - 128 = 16384 patches centered at each pixel value
in the original image. Since the fi features are contained in a 64 x 64 square in the upper left
corner of the image, we claim that there are approximately b = 64 -64 = 4096 patches that contain

fi.-
Now, by our calculations, we expect that po = (163844) = i and that p1 = 1. That is, we

expect our model to output a value of } for patches containing only f, and 1 for patches containing

65

Feature Train Validation Test

PFTAS + Haralick 99.9% 83.1% 45.7%

PFTAS + Zernike + Haralick 100.0% 82.6% 44.7%

PFTAS 99.3% 80.7% 73.3%

PFTAS + Zernike Moments 99.8% 80.0% 46.8%

Zernike + Haralick 92.4% 78.8% 46.3%

Haralick 91.9% 78.4% 49.5%

Zernike 65.7% 64.3% 45.6%

TABLE 2. Training, Validation, and Test results for SVM across DTD [13] data splits.

Feature Train Validation Test

PFTAS + Zernike + Haralick 98.9% 82.9% 46.2%

PFTAS + Haralick 98.9% 82.8% 44.5%

PFTAS + Zernike Moments 98.3% 81.6% 48.5%

PFTAS 98.0% 81.4% 65.0%

Zernike + Haralick 90.3% 79.2% 45.9%

Haralick 89.1% 77.6% 45.5%

Zernike 65.7% 64.6% 45.6%

TABLE 3. Training, Validation, and Test results for
DTD [13] data splits.

Logistic Regression across

Model Train Validation

Neural Model 94.9% 90.9%

TABLE 4. Training and validation results for PatchNet across the nucleus dataset.

only fi. Indeed, after our model had converged to a local minimum, the model output a value of
0.333 for patches consisting of only f, and output a value of 0.982 for a patch consisting of only fi.

APPENDIX C. LINEAR MODELS FOR DTD

In this section, we describe all linear models used on the DTD data for cracked and perforated
images [13]. The training, validation, and test accuracies for the SVM model and logistic regression
model are shown in Table 2 and Table 3, respectively. We ran the linear models using popular
texture features extracted using the Mahotas library [14]. From these tables it is apparent that
all linear models overfit with these texture features. The best test accuracy was achieved by using
the SVM model with only PFTAS features (as reported in Section 4.1). However, if we were to
select our models based on validation accuracy, as is typically done in practice, the best model is
SVM using both PFTAS and the Haralick features, which achieves a poor test accuracy of 45.7%,
significantly worse than the test accuracy achieved by PatchNet.

Reference\ Prediction

BJ

NIH3T3

BJ

428\68

1\1

NIH3T3

47\14

474\81

TABLE 5. Confusion matrix for training\validation data from

NIH3T3 Images

I
the nucleus dataset.

BJ Images

01
FIGURE 33. Samples
picted on the left and

of class 1 (NIH3T3) images and class
right respectively.

0 (BJ) images are de-

APPENDIX D. CELL NUCLEUs DATA

In this section, we discuss the results of running our model for the problem of extracting cell nuclei
from images obtained by our collaborator G. V. Shivashankar (National University of Singapore).
This task is an important preprocessing step for identifying cancerous cells in tissue images. The
dataset of cell nuclei consists of connective tissue cells from humans (BJ cells) and mice (NIHT3
cells). Sample images of NIH3T3 nuclei and BJ nuclei are shown in Figure 33.

D.1. Nucleus Crops. We first run PatchNet on pre-segmented nuclei crops of BJ (class 0) and
NIH3T3 (class 1). The images are of size 128 x 128 x 1. We used 557 images of each class for
training and 82 images of each class for validation. We trained using 17 x 17 x 1 patches with a
stride of 5. The resulting accuracies and confusion matrix given in Table 4 and 5 show that the
model was able to achieve a high validation accuracy for this dataset.

BJ NIH3T3

Sample Images
from Validation Data

Corresponding
Global Heat-maps

FIGURE 34. Samples of class 0 (BJ) images and class 1 (NIH3T3) images are
depicted on the left and right respectively along with the corresponding global
heatmaps pictured below.

66

'774L

I NIHM
,

67

We now present the global heatmaps in Figure 34. From the heatmaps, we see that the model
very accurately learns the regions occupied by NIH3T3 and BJ nuclei. We also see that the model
assigns a grey value to the background indicating that the background is common to both images.
All 64 filter heatmaps are presented in Figure 35 and 36.

FIGURE 35. Four columns of 8 pairs of filter heatmaps with the class 0 filter heatmap
appearing in the left of the column pairs and the class 1 filter heatmap appearing
in the right of the column pairs.

As indicated by the large proportion of grey filter pairs, we see that not all filters are required to
achieve high accuracy on this dataset, indicating that our model has more capacity than required
for this problem. In addition, we see that some filters that are contributing to classification are able
to pick up the bright dots on the NIH3T3 nuclei as features. These are known features indicative of
mouse cells. We also note the presence of filters that seem similar to edge detectors on the internal
regions of the nuclei.

D.2. Nucleus Segmentation. Inspired by our ability to find filters that segmented melanoma
from the ISBI-ISIC challenge as presented in Section 4.2, we ran PatchNet on the original un-
segmented 512 x 512 x 1 images of BJ and NIH3T3 cells with a patch size of 17 x 17 x 1 in order
to determine if there were filters able to segment the nuclei without any preprocessing.

Representative examples of unsegmented nucleus images are shown in Figure 37. Note the
following two interesting properties of these unsegmented images: (1) NIH3T3 images tend to have
more nuclei per image than BJ images; (2) there are noticable "halo" effects, creating a region of
higher pixel values around the nuclei, which makes the segmentation task difficult using standard
segmentation methods.

Figure 38 and 39 show the results of two particular filters of PatchNet when trained on classifying
between the unsegmented images. These filters accurately segment out the nuclei as dark ovals
regardless of halo effects and regardless of the fact that 2 BJ nuclei appear together in an image.
Figure 39 shows that filter 57 is able to segment out the cell nuclei and at the same time identifies

68

FIGURE 36. The remaining 4 columns of 8 pairs of filter heatmaps with the class 0
filter heatmap appearing in the left of the column pairs and the class 1 filter heatmap
appearing in the right of the column pairs.

BJ NIH3T3

FIGURE 37. Samples of class 0 (BJ) images and class 1 (NIH3T3) images are de-
picted on the left and right respectively.

the texture features that identify NIH3T3 cells, namely the bright spots in the cell nuclei. These
segmentation results are quite remarkable, taking into account that the model was not trained on
labeled data for nucleus segmentation.

APPENDIX E. SOFTWARE

We ran our neural network models on PyTorch [50] 0.1.12 on Python 3.6 packaged under Ana-
conda [1] 4.3.17 with Nvidia driver version 375.51, Cuda version 8.0.61 and CuDNN version 5.1.0.

69

FIGURE 38. Heatmaps for filter 55 of PatchNet for the nuclei in Figure 37.

FIGURE 39. Heat maps for filter 57 of PatchNet for the nuclei in Figure 37.

We used SciKit-Learn [46], Numpy [67] and Mahotas [14] as tools while developing our neural

and linear models. We used Facebook's Visdom [65] as a tool to visualize filters and display them

for this paper.

APPENDIX F. HARDWARE

For training PatchNet, we used one server running Ubuntu 16.04.2 with an Intel i7-4930K at

3.40GHz with 56GB DDR3 RAM and two Nvidia Titan x (Pascal) with 12GB of GDDRX RAM.

REFERENCES

[1] Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Continuum Analytics, Nov. 2016. Web.

https://continuum.io
[2] S. A. Andersson, D. Madigan, and M. D. Perlman. A characterization of Markov equivalence classes for acyclic

digraphs. The Annals of Statistics 25.2 (1997): 505-541.
[3] V. C. Barbosa and J. L. Szwarcfiter. Generating all the acyclic orientations of an undirected graph. Information

Processing Letters 72.1 (1999): 71-74.
[4] M. Basid and A. Ili. On the clique number of integral circulant graphs. Applied Mathematics Letters 22.9 (2009):

1406-1411.
[5] B. Bollobis. The independence ratio of regular graphs. Proceedings of the American Mathematical Society (1981):

433-436.

70

[6] B. Braun and L. Solus Shellability, Ehrhart theory, and r-stable hypersimplices. Submitted to Journal of Combi-

natorial Theory Series A. ArXiv preprint arXiv:1408.4713 (2015).
[7] J. Brown and R. Hoshino. Independence polynomials of circulants with an application to music. Discrete Math-

ematics 309.8 (2009): 2292-2304.
[81 J. Brown and R. Hoshino. Well-covered circulant graphs. Discrete Mathematics 311.4 (2011): 244-251.

[9] P. Cain. Decomposition of complete graphs into stars. Bulletin of the Australian Mathematical Society 10.01

(1974): 23-30.
[10] J. M. Carraher, D. Galvin, S. G. Hartke, A. J. Radcliff, and D. Stolee. On the independence ratio of distance

graphs. ArXiv preprint arXiv:1401.7183 (2014).

[11] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, N. Elhadad. Intelligible models for healthcare: Predicting

pneumonia risk and hospital 30-day readmission. In Knowledge Discovery and Data Mining (KDD), 2015.

[12] D. M. Chickering. Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning

Research 2 (2002): 445-498.
[13] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the wild. In the Conference

on Computer Vision and Pattern Recognition (CVPR), 2014.
[14] L.P. Coelho. Mahotas: Open source software for scriptable computer vision. Journal of Open Research Software.

1(1), p.e3. DOI: http://doi.org/10.5334/jors.ac

[15] L.P. Coelho et al. (2010) Structured Literature Image Finder: Extracting Information from Text and Images in

Biomedical Literature. In: Blaschke C., Shatkay H. (eds) Linking Literature, Information, and Knowledge for

Biology. Lecture Notes in Computer Science, vol 6004. Springer, Berlin, Heidelberg.

[16] E. Cohen and M. Tarsi. NP-completeness of graph decomposition problems. Journal of Complexity 7.2 (1991):

200-212.
[17] G. Cooper, C. Aliferis, R. Ambrosino, J. Aronis, B. Buchanan, R. Caruana, M. Fine, C. Glymour, G. Gordon,

B. Hanusa, J. Janosky, C. Meek, T. Mitchell, T. Richardson, and P. Spirtes. An evaluation of machine-learning

methods for predicting pneumonia mortality. Artificial Intelligence in Medicine, 9(2):107138, 1997.

[18] K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink. Reflectance and texture of real world surfaces.

ACM Transactions on Graphics, 18(1):134, 1999.
[19] M. Drton, B. Sturmfels, and S. Sullivant. Lectures on Algebraic Statistics. Vol. 39. Springer Science & Business

Media, 2008.
[20] J. A. Ellis-Monaghan and C. Merino. Graph polynomials and their applications I: The Tutte polynomial. Struc-

tural Analysis of Complex Networks. Birkhduser Boston, 2011. 219-255.
[21] J. A. Ellis-Monaghan and C. Merino. Graph polynomials and their applications II: Interrelations and interpre-

tations. Structural Analysis of Complex Networks. Birkhiuser Boston, 2011. 257-292.
[22] J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher. Ten-year risk of false

positive screening mammograms and clinical breast examinations. The New England Journal of Medicine, 338:

1089-96, 1998.
[23] N. Friedman, M. Linial, I. Nachman and D. Peter. Using Bayesian networks to analyze expression data. Journal

of Computational Biology 7 (2000): 601-620.
[24] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of NP-completeness. A

Series of Books in the Mathematical Sciences. WH Freeman and Company, New York, NY 25.27 (1979): 141.

[25] S. B. Gillispie. Formulas for counting acyclic digraph Markov equivalence classes. Journal of Statistical Planning

and Inference 136.4 (2006): 1410-1432.
[26] S. B. Gillispie and M. D. Perlman. Enumerating Markov equivalence classes of acyclic digraph models. Proceedings

of the Seventeenth Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 2001.

[27] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
[28] D. Gutman, N. C. F. Codella, E. Celebi, B. Helba, M. Marchetti, N. Mishra, and A. Halpern. Skin lesion analysis

toward melanoma detection: A challenge at the International Symposium on Biomedical Imaging (ISBI) 2016,
hosted by the International Skin Imaging Collaboration (ISIC), 2016; arXiv:1605.01397.

[29] N. Hamada, H. Ikeda, S. Shiga-eda, K. Ushio, and S. Yamamoto. On claw-decomposition of complete graphs and

complete bigraphs. Hiroshima Mathematical Journal 5.1 (1975): 33-42.
[30] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on

ImageNet classification. In the International Conference on Computer Vision (ICCV), 2015.
[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In the Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.
[32] R. Hoshino. Independence polynomials of circulant graphs. Library and Archives Canada, 2008.
[33] R. A. Hubbard, K. Kerlikowske, C. I. Flowers, B. C. Yankaskas, W. Zhu, D. L. Miglioretti. Cumulative probability

of false-positive recall or biopsy recommendation after 10 years of screening mammography: a cohort study. Annals

of Internal Medicine, 155(8):481-92, 2011.
[34] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science and Engineering 9.3 (2007): 90-95.

71

[35] Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer screening: an

independent review. Lancet. 380(9855):1778-86, 2012.

[36] R. M. Karp Reducibility among combinatorial problems. Complexity of Computer Computations. Springer US

(1972): 85-103.
[37] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization; The International Conference on Learning

Representations (ICLR), 2015.
[38] S. Lazebnik, C. Schmid, and J. Ponce. Sparse texture representation using local affine regions. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 27(8):21692178, 2005.

[39] T. Lei, R. Barzilay, and T. S. Jaakkola. Rationalizing Neural Predictions. Conference on Empirical Methods in

Natural Language Processing, 2016.
[40] V. E. Levit and E. Mandrescu. The independence polynomial of a graph - a survey. Proceedings of the 1st

International Conference on Algebraic Informatics. Vol. 233254. 2005.
[41] C. Lin, and T-W. Shyu. A necessary and sufficient condition for the star decomposition of complete graphs.

Journal of Graph Theory 23.4 (1996): 361-364.
[42] J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge University Press, 2001.

[43] B. D. McKay and A. Piperno. Practical graph isomorphism, II. Journal of Symbolic Computation 60 (2014):

94-112.
[44] C. Meek. Causal inference and causal explanation with background knowledge. Proceedings of the Eleventh Con-

ference on Uncertainty in Artificial Intelligence (1995): 403-410.
[45] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge, 2000.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, 0. Grisel, M. Blondel, P. Prettenhofer, R.

Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, . Duchesnay. Scikit-learn:

Machine Learning in Python. Journal of Machine Learning Research (JMLR) 12, pp. 2825-2830, 2011.

[47] S. Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae Universitatis Carolinae

15.2 (1974): 307-309.
[48] H. Prodinger and R. F. Tichy. Fibonacci numbers of graphs. Fibonacci Quarterly 20.1 (1982): 16-21.

[49] H. Prodinger and R. F. Tichy. Fibonacci numbers of graphs. II. Fibonacci Quarterly 21.3 (1983): 219-229.

[50] PyTorch. http: //pytorch.org
[51] J. M. Robins, M. A. Hernin and B. Brumback. Marginal structural models and causal inference in epidemiology.

Epidemiology 11.5 (2000): 550-560.
[52] R. W. Robinson. Counting labeled acyclic digraphs. New Directions in the Theory of Graphs. Academic Press

(1977): 239-273.
[53] 0. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. In the International Journal of

Computer Vision (IJCV), 2015.
[54] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification

models and saliency maps, 2013; arXiv:1312.6034.

[55] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In the Inter-

national Conference on Learning Representations (ICLR), 2015.
[56] N. J. Sloane. The On-Line Encyclopedia of Integer Sequences. (2003).
[57] P. Spirtes, C. N. Glymour and R. Scheines. Causation, Prediction, and Search. MIT Press, Cambridge, 2001.

[58] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The All Convolutional

Net, 2014; arXiv:1412.6806.

[59] R. Stanley. Enumerative Combinatorics, vol. 1. Wadsworth and Brooks/Cole, Pacific Grove, CA, 1986; second

printing. (1996).
[60] B. Steinsky. Enumeration of labelled chain graphs and labelled essential directed acyclic graphs. Discrete Mathe-

matics 270.1 (2003): 267-278.
[61] M. Tarsi. Decomposition of complete multigraphs into stars. Discrete Mathematics 26.3 (1979): 273-278.

[62] K. Ushio. G-designs and related designs. Discrete Mathematics 116.1 (1993): 299-311.

[63] K. Ushio, S. Tazawa and S. Yamamoto. On claw-decomposition of a complete multipartite graph. Hiroshima

Mathematical Journal 8.1 (1978): 207-210.
[64] T. Verma and J. Pearl. An algorithm for deciding if a set of observed independencies has a causal explanation.

Proceedings of the Eighth International Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann

Publishers Inc., 1992.
[65] Visdom. https: //github. com/f acebookresearch/visdom
[66] S. Wagner. Asymptotic enumeration of extensional acyclic digraphs. Algorithmica 66.4 (2013): 829-847.

[67] S. van der Walt, S. Colbert and Gal Varoquaux. The NumPy Array: A Structure for Efficient Numerical

Computation. Computing in Science & Engineering, 13, 22-30 (2011), DOI:10.1109/MCSE.2011.37

72

[68] Y. Xu, H. Ji, and C. Fermuller. Viewpoint invariant texture description using fractal analysis. In the International
Journal of Computer Vision (IJCV), 83(1):85100, jun 2009.

[69] M. D. Zeiler and R. Fergus. (2013) Visualizing and understanding convolutional networks. In the European
Conference on Computer Vision (ECCV) (1) 2014: 818-833.

[70] P. Zwiernik. Semialgebraic Statistics and Latent Tree Models. CRC Press, 2015.

