
MIT Open Access Articles

Scheduling multicast traffic with deadlines in wireless networks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Kim, Kyu Seob, et al. "Scheduling Multicast Traffic with Deadlines in Wireless
Networks." IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, 27 April -
May 2 2014, Toronto, Canada, IEEE, 2014, pp. 2193–201.

As Published: http://dx.doi.org/10.1109/INFOCOM.2014.6848162

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/113578

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/113578
http://creativecommons.org/licenses/by-nc-sa/4.0/

Scheduling Multicast Traffic with Deadlines in
Wireless Networks

Kyu Seob Kim, Chih-ping Li, and Eytan Modiano

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Abstract—We consider the problem of transmitting multicast
flows with hard deadlines over unreliable wireless channels.
Every user in the network subscribes to several multicast flows,
and requires a minimum throughput for each subscribed flow to
meet the QoS constraints. The network controller schedules the
transmissions of multicast traffic based on the instant feedback
from the users. We characterize the multicast throughput region
by analyzing its boundary points, each of which is the solution
to a finite-horizon dynamic programming problem over an
exponentially large state space. Using backward induction and
interchange arguments, we show that the dynamic programming
problems are solved by greedy policies that maximize the imme-
diate weighted sum throughput in every slot. Furthermore, we
develop a dynamic throughput-optimal policy that achieves any
feasible throughput vector by tracking the running performance
perceived by the users.

I. INTRODUCTION

The problem of scheduling real-time transmissions in a
wireless network has relevant applications, e.g., wireless users
download popular video streams over cellular networks. For a
video stream that is accessed by multiple users, it is efficient
for the base station to deliver the stream as a multicast flow
to a group of users. Transmitting multicast real-time flows in
wireless networks faces several challenges. Packets of real-
time traffic have hard delay constraints and are of no use after
the deadlines. Wireless channels are unreliable so that packet
loss is inevitable and retransmissions are necessary. Based on
individual QoS constraints, the users may also have different
throughput requirements for a multicast flow. An efficient
wireless scheduling algorithm for multicast communications
shall take these issues into account.

In this paper, we study the problem of transmitting multicast
flows with deadlines in wireless networks, with the assumption
that there is instant ACK/NACK feedback from the users to
the base station. We adopt the analytical framework in [1].
Consider a base station transmitting multicast flows to users
over unreliable wireless channels. We assume a time-slotted
system. Each multicast flow generates a packet periodically
with a hard delay constraint; packets that violate the delay
constraints are of no use and discarded immediately. In every
slot, the base station selects a multicast flow to transmit, based

This work is supported by NSF grant CNS-0915988, ONR grant
N00014-12-1-0064, ARO MURI grant W911NF-08-1-0238, and DTRA grants
HDTRA1-07-1-0004 and HDTRA-09-1-005.

on the information of the subset of subscribers having not
received the packets for all multicast flows. Since wireless
channels are unreliable, packets transmissions may fail, and
the users notify the base station whether transmissions are
successful at the end of every slot. The performance metric of
interest is the proportion of packets a user successfully receives
for each subscribed multicast flow, referred as the throughput
of the user for that flow. According to the QoS constraints, a
user has a minimum throughput requirement for each multicast
flow it subscribes. The goal of this paper is to study the set
of achievable throughput vectors in this multicast scheduling
problem, and develop adaptive control policies that support
any feasible throughput vector.

This multicast scheduling problem is studied in [1], with
the key assumption that users do not send any feedback to the
base station. In a large wireless network, collecting feedback
from the users may be infeasible. However, in a network of
moderate size, instant feedback can be readily available and
a scheduling policy can utilize such information to improve
the network performance. The difficulty in making scheduling
decisions based on the user feedback is that it is a dynamic
programming problem with an exponentially large state space,
where the base station decides which multicast flow to transmit
according to the subset of users having not received the packets
in every slot. As a result, there seems to be no closed-form
expression for the throughput region, and it is unclear whether
a simple scheduling policy exists to satisfy feasible throughput
requirements of the users. Our contributions in this paper are
as follows.

• We characterize the multicast throughput region with user
feedback by analyzing its boundary points, each of which
corresponds to a weighted sum throughput maximization
problem, which is formulated as a finite-horizon dynamic
programming problem.

• Using backward induction and interchange arguments,
we show that the weighted sum throughput maximization
problem is solved by greedy policies that transmits the
multicast flow maximizing the immediate weighted sum
reward in every slot. For the sake of exposition, we first
analyze the special case of transmitting unicast flows, and
generalize it to the multicast case.

• We develop adaptive throughput-optimal control policies

2

that achieve any feasible throughput vector in the mul-
ticast throughput region. This policy greedily transmits
a multicast flow in a slot by striking a balance between
serving a user with a large delivery debt owed by the
base station to satisfy its throughput requirement, and
transmitting a multicast flow that yields large throughput
gain from the unserved subscribers.

Scheduling multicast flows with deadlines over unreliable
wireless channels is considered in [1]–[3]. Work [1] assumes
homogeneous packet deadlines and that the user feedback is
unavailable, in which case the multicast throughput region is
decided by the number of slots allocated to each multicast flow.
Prior work [2] assumes heterogenous packet deadlines and
instant user feedback, and the multicast scheduling problem is
an instance of restless multi-armed bandits [4]. The problem of
transmitting unicast traffic with deadlines in wireless networks
has been investigated with different modeling assumptions [5]–
[11]. Scheduling packet transmissions with deadlines over
multi-hop networks are considered in [12]–[14].

An outline of this paper is as follows. Section II describes
the network model. The unicast and multicast throughput
regions are analyzed in Sections III and IV, respectively. The
throughput-optimal control policy is proposed in Section V,
followed by simulation results in Section VI.

II. NETWORK MODEL

We consider a wireless network consisting of a base station
sending multicast flows to N users {1, . . . , N}. Let F be
the set of multicast flows. For each flow f ∈ F , let Nf
be the subset of users that subscribe to multicast flow f ;
a user may subscribe to several flows simultaneously. We
consider a time-slotted system, where consecutive T slots
constitute a frame; the kth frame is [kT, (k + 1)T), k ∈ Z+.
Each multicast flow generates one packet at the beginning
of a frame.1 Suppose all packets have a hard deadline of T
slots, and packets that have not been received by all of its
intended receivers at the end of a frame are of no use and
discarded. In a slot, the base station broadcasts a packet of a
selected multicast flow to its subscribers over unreliable and
independent wireless channels. The transmission of a flow-f
packet to a user n ∈ Nf is successful with probability pn, and
fails otherwise. When a user receives a packet successfully, it
sends an acknowledgement to the base station over a perfect
control channel at the end of the slot. The base station uses the
ACK/NACK feedback information to schedule future packet
transmissions.

Without loss of generality, we can simplify the above
network model by assuming that each user subscribes to only
one multicast flow. As an example, consider a user subscribing
to two multicast flows. By defining two “agents” for the
user, where agent i ∈ {1, 2} is the only receiver for flow

1The results in this paper can be easily generalized to a stochastic traffic
model, or to a traffic model in which each flow generates multiple packets per
frame. The latter case is equivalent to replacing a multicast flow by a group
of subflows, each of which generates one packet per frame and has the same
set of subscribers.

i, transmitting two multicast flows to the user is equivalent to
scheduling the multicast transmissions to the two agents. See
Fig. 1 for an example. Note that the two agents should have the
same channel process as the user. Since the base station can
only transmit one multicast flow in a slot, at most one agent
receives data at any time. Therefore, it is adequate to assume
that the agents have independent wireless channels that have
the same packet erasure probability.

base
station

a

multicast
flow 1

b

multicast
flow 2

b1 b2

base
station

a

multicast
flow 1

multicast
flow 2

Fig. 1. The multicast system with a user subscribing to multiple flows on
the left is equivalent to the one on the right in which each user subscribes to
one flow.

Due to the unreliability of wireless channels and the hard
deadline constraints, not all packets can be delivered to the
users in a timely manner. Since real-time applications can usu-
ally tolerate some percentage of packet loss, the performance
metric of interest in this paper is the long-term proportion of
packets a user receives before deadlines, referred to as the user
n throughput. Define the indicator random variable dn(k) = 1
if user n successfully receives a packet in the kth frame, and
0 otherwise. Define the user n throughput as

dn = lim inf
K→∞

1

K

K−1∑
k=0

E[dn(k)].

Since a user receives only one multicast flow, the index n im-
plicitly specifies which multicast flow the user n subscribes to.

III. ACHIEVABLE THROUGHPUT REGION

We consider the class of scheduling policies that satisfy the
following properties: (i) they do not use future information;
(ii) they never idle the base station whenever there exists a
packet not received by all its subscribers by the deadline; (iii)
if all packets are delivered before the deadline, then the base
station remains idle until the end of the frame. We refer to
these scheduling policies as admissible policies. We define
the throughput region Λ as the set of achievable throughput
vectors (d1, . . . , dN) under the class Π of admissible policies.

To characterize the throughput region Λ, it suffices to focus
on the set Λ0 of achievable throughput vectors in the first
frame [0, T) under admissible policies. This is because the
multicast system renews itself at the end of a frame, and
therefore Λ = Λ0. An admissible policy π ∈ Π in the first
frame transmits a multicast flow in the kth slot, k ≤ T − 1,
according to the outcome of scheduling decisions in the
previous slots 0, 1, . . . , k − 1. Naturally, it is a finite-horizon
dynamic programming problem, where the state space is the
collection of subsets of users having not received packets in the
first frame, and the action space is the set of multicast flows for
transmission. Therefore, it is difficult to obtain the multicast

3

throughput region Λ0 in closed form. We take an alternative
approach that studies the throughput region Λ0 by analyzing
its boundary points. Each boundary point corresponds to a
weighted sum throughput maximization problem over the
course of the first frame. Specifically, let α = (α1, . . . , αN)
be a nonnegative weight vector, and consider the optimization
problem:

maximize
N∑
n=1

αn E[dπn(0)], subject to π ∈ Π, (1)

where E[dπn(0)] denotes the expected user n throughput in the
first frame (i.e., frame zero) under policy π. The solution to
the problem (1) specifies a boundary point at the intersection
of the throughput region Λ0 and the supporting hyperplane
that has the normal vector α and is tangent to Λ0. See Fig. 2
for an example.

Λ0

α

d*

Fig. 2. A boundary point d∗ at the intersection of the throughput region Λ
and the maximizing supporting hyperplane with a normal vector α ≥ 0. The
vector d∗ is the solution to the maximization problem (1) with weights α.

Next, we consider the throughput maximization problem (1)
as a finite-horizon dynamic programming problem, and show
that it is solved by a greedy policy that maximizes weighted
immediate sum throughput in very slot. For the ease of exposi-
tion, we first analyze the unicast case, i.e., each multicast flow
is subscribed by only one user. This approach is generalized to
the analysis of the multicast throughput region in Section IV.

A. The Unicast throughput region

Let Λunicast
0 be the set of feasible throughput vectors in the

first frame under admissible policies, assuming the base station
serves unicast flows. The region Λunicast

0 is known to be the
base of a polymatroid up to a linear scaling [15]. As a result,
the weighted sum throughput maximization problem (1) in the
special case of serving unicast flows becomes the following
problem

maximize
N∑
n=1

αn E[dπn(0)]

subject to (E[dπn(0)])Nn=1 ∈ Λunicast
0 ,

and is solved by the following policy.

The Greedy Policy for a Unicast System (GreedyU)
1) In slot k ∈ {0, 1, . . . , T − 1}, transmit the unicast flow

j∗k ∈ argmaxj∈sk αj pj , (2)

where sk 6= ∅ is the subset of users having not received
the packets at the beginning of slot k. If sk = ∅ then
idle the system in slot k.

The GreedyU policy serves the user with the maximum
expected weighted throughput αj pj in every slot. This policy
is also known as the cµ rule in the context of polymatroid
optimization, and its optimality can be proved by using
the complimentary slackness condition in linear program-
ming [16]. This result, however, cannot be directly applied
to the analysis of the multicast throughput region, which is
not a polymatroid. Next, we present a new proof for the
optimality of the GreedyU policy using dynamic programming
methods. This new approach is needed to analyze the multicast
throughput region as a generalization of the unicast throughput
region.

B. Dynamic programming algorithm

Consider a finite-horizon dynamic programming problem
with the state space S = 2{1,...,N}, which is the collection of
all subsets of users. Each state sk ∈ S represents the subset of
users having not received their packets at the beginning of the
kth slot, k = 0, . . . , T−1. Initially, we have s0 = {1, . . . , N}.
Let uk be the control action taken in slot k; note that uk
is possibly random and is a function of the system state sk.
An admissible policy π ∈ Π in the first frame can be re-
written as π = (u0, u1, . . . , uT−1). At state sk, the set of
feasible scheduling decisions is Uk(sk) = {j | j ∈ sk}, where
uk(sk) = j means transmitting multicast flow j in slot k. The
feasible set Uk(sk) comes from the assumption that, under
an admissible policy, a unicast flow can be transmitted only
if its subscriber has not received the packet. Since wireless
channels are unreliable, taking action uk(sk) = j ∈ Uk(sk) at
state sk leads to two possible outcomes in slot (k+ 1): (i) we
have the state sk+1 = sk \ {j} if the transmission succeeds,
which occurs with probability pj ; (ii) we have sk+1 = sk if
the transmission fails. User j obtains a reward αj ≥ 0 if it
receives a packet. Define the reward function gk under the
control uk(sk) = j in the kth slot:

gk(sk, uk) = gk(sk, j) = αjXj , j ∈ Uk(sk),

where Xj is a Bernoulli random variable with mean pj . When
sk = ∅, let gk(sk, ·) = 0 for all k. We seek to solve the reward
maximization problem:

J∗(s0) , max
π∈Π

E

{
T−1∑
k=0

gk(sk, uk)

∣∣∣∣∣ s0

}
, (3)

where the expectation is with respect to the randomness of
wireless channels and scheduling decisions. We observe that
the dynamic programming problem (3) is equivalent to the
maximization problem (1) restricted to the unicast case.

According to [17, Prop. 1.3.1], the problem (3) is solved
by a dynamic programming algorithm as follows. Define the
functions

JT (sT) = 0, sT ⊆ S, (4)

4

Jk(sk) = max
uk∈Uk(sk)

E { gk(sk, uk) + Jk+1(sk+1) } , (5)

for k = 0, . . . , T − 1, where Jk can be computed backwards
after Jk+1, . . . , JT−1 are calculated. We have the following
results [17, Prop. 1.3.1].

1) The maximization problem (3) is solved by J∗(s0) =
J0(s0).

2) If the scheduling decision u∗k, which is a function of sk,
is the maximizer of Jk(sk) in (5) for each sk and k,
then the policy π∗ = (u∗0, u

∗
1, . . . , u

∗
T−1) is optimal and

solves (3).

C. Optimality of the GreedyU policy

Based on the above dynamic programming algorithm, the
next theorem shows that the GreedyU policy solves the reward
maximization problem (3).

Theorem 1. Given a fixed nonnegative weight vector
(α1, . . . , αN), the GreedyU policy solves the reward maxi-
mization problem (3), which is a special case of weighted
sum throughput maximization problem (1) in the special case
of serving unicast flows.

Proof: See Appendix A.
Using the GreedyU policy, we draw the unicast throughput

region Λ = Λ0 in a two-user wireless network. Consider a base
station serving two users. The channel reliability probabilities
are p1 = p2 = 0.2, and the frame size is T = 5. Fig. 3 shows
the unicast throughput region by computing a collection of
supporting hyperplanes, each of which intersects the region Λ
at a maximum weighted sum throughput vector computed by
the GreedyU policy.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

d1

d2

_=(1,1) _=(1.5,1) _=(5,1)

_=(0.5,1)

_=(0.1,1)

_=(0.01,1)

R

Fig. 3. The unicast throughput region in a two-user wireless network.

IV. THE MULTICAST THROUGHPUT REGION

Next we consider the scheduling problem of transmitting
multicast flows in the wireless network. Similarly, we charac-
terize the multicast throughput region by analyzing its bound-
ary points, each of which is the solution to the maximization
problem (1) with some weight vector α ≥ 0.

To solve the maximization problem (1), we let Uf (t) be the
subset of users that subscribe to multicast flow f but have not
received the packet from f at the beginning of slot t in the the

first frame, 0 ≤ t ≤ T − 1. Since no users receive packets at
the beginning of a frame, we have Uf (0) = Nf for all flows
f ∈ F . We consider the following greedy policy.

The Greedy Policy for a Multicast System (GreedyM)
1) Fix a nonnegative weight vector α = (α1, . . . , αN).
2) In slot t ∈ {0, . . . , T − 1}, compute

rf (t) =
∑

i∈Uf (t)

αi pi

for each flow f ∈ F ; let rf (t) = 0 if Uf (t) = ∅.
3) In slot t, pick the multicast flow

f∗ ∈ argmaxf∈F rf (t).

If rf∗(t) > 0, then broadcast a flow-f∗ packet. Other-
wise, idle the system in slot t.

The quantity rf (t) is the expected weighted sum throughput
in slot t by transmitting a flow-f packet to the subset Uf (t)
of subscribers having not received the packet. Therefore, the
GreedyM policy transmits the multicast flow that yields the
maximum throughput gain in every slot. By using similar
backward induction and interchange arguments as those used
to prove Theorem 1, the next theorem shows that the GreedyM
policy solves the maximization problem (1) in the multicast
system.

Theorem 2. Given a fixed nonnegative weight vector
(α1, . . . , αN), the GreedyM policy solves the throughput max-
imization problem (1) in the multicast system.

Proof: See Appendix B.

V. THROUGHPUT-OPTIMAL POLICY

Consider the problem that each user n has a minimum long-
term throughput requirement qn ≥ 0 for its multicast flow. As-
sume (q1, . . . , qN) ∈ Λ is feasible. We develop a throughput-
optimal policy that achieves any feasible throughput vector
(q1, . . . , qN) in the multicast throughput region Λ.

Our policy is an adaptive control policy that keeps track of
the average throughput of the users, and seeks to optimize the
following tradeoff: whether to transmit packets to a user whose
running throughput severely violates the delivery requirement,
or transmit a multicast flow that has not been received by
many subscribers? Specifically, define the indicator function
dn(k) = 1 if user n receives the packet from its subscribed
flow in the kth frame, or 0 otherwise. At the beginning of the
kth frame, define

Dn(k) =

k−1∑
j=0

(
qn − dn(j)

)
, (6)

as the amount of accumulated throughput the base station owes
to user n to achieve its throughput requirement qn after the
first k frames. Let Dn(0) = 0 for all n. Define D+

n (k) =
max{Dn(k), 0} as the delivery debt the base station owes to

5

user n; the debt is zero if a user receives more than it should,
i.e., Dn(k) < 0. We consider the following policy.

Frame-Based Max-Weight Policy (MW)
1) In the kth frame, apply the admissible policy π ∈ Π that

maximizes the weighted sum throughput
∑N
n=1D

+
n (k) ·

E[dn(k)] in the frame.

Note that the expectation E[dn(k)] is with respect to both
unreliable channels and control decisions. We observe from
the term

∑N
n=1D

+
n (k) ·E[dn(k)] that the MW policy seeks to

improve the weighted sum of delivery debts owed to the users
in every frame. Next, the maximization problem in the MW
policy is equivalent to maximizing the expected weighted sum
throughput in a frame with the weight αn = D+

n (k) for user
n in the maximization problem (1). From the GreedyM policy
in Section IV, the MW policy becomes the following policy.

Frame-Based Throughput-Optimal Policy (TO)
1) In slot t of the kth frame, observe the subsets
{Uf (t)}f∈F of unserved users and compute

rf (t) =
∑

n∈Uf (t)

D+
n (k) · pn

for each multicast flow f ∈ F .
2) Transmit the multicast flow f∗ ∈ argmaxf∈F rf (t) in

slot t if rf∗(t) > 0; otherwise, idle the system.

The sum
∑
n∈Uf (t) pn is the throughput gain of transmitting

multicast flow f in slot t. Therefore, the GreedyM policy
serves the multicast flow f∗ that maximizes rf (t) in order
to strike a balance between maximizing immediate throughput
gain and reducing the delivery debts D+

n (k) owed to the users.
The next theorem shows that the MW and the TO policies are
throughput optimal.

Theorem 3. The MW policy (i.e., the TO policy) is through-
put optimal in the multicast system. That is, the MW policy
achieves any feasible throughput vector (q1, . . . , qN) in the
multicast throughput region Λ.

Proof: See Appendix C.

VI. SIMULATION RESULTS

We study via simulations how the user feedback affects
the throughput performance of multicast transmissions in
unreliable wireless networks. This is compared to the prior
work that studies the problem of scheduling multicast flows
with deadlines, assuming the user feedback is unavailable [1].

Let EWSTnofb(α) be the maximum expected weighted
sum throughput of multicast transmissions without the user
feedback, where α ≥ 0 is a weight vector. In this case, the
expected throughput of a user is decided by the number of
slots the user is served. Let τf be the number of slots flow f
is transmitted in a frame. The expected throughput of a user n
subscribing to flow f in a frame is the probability that the user

0100 1000 1100 0001 0010 0011 0101 0110 0111 1001 1010 1011 1101 1110 1111
0.8

1

1.2

1.4

1.6

1.8

Weight Vector

Normalized
Expected
Weighted
Sum
Throughput

Feedback
No Feedback

flow1 flow2 flow1+flow2

Fig. 4. The weighted sum throughput using instant feedback outperforms that
without feedback. The setup is as follows. Frame size T = 5. There are two
multicast flows. Users 1 and 2 subscribe to flow 1 with (p1, p2) = (0.4, 0.8),
and users 3 and 4 subscribe to flow 2 with (p3, p4) = (0.9, 0.4). The x-
axis represents different weight vectors α = (α1, α2, α3, α4) ⊆ {0, 1}4.
The y-axis represents the normalized expected weighed sum throughput
EWSTfb(α)/‖α‖ and EWSTnofb(α)/‖α‖. There is no throughput improve-
ment for the first six α vectors because they correspond to the cases where
only one flow has positive weights.

successfully receives the packet at least once; the probability
is (1− (1− pn)τf). As a result, we have

EWSTnofb(α) = max∑
f∈F τf=T

∑
f∈F

∑
n∈Nf

αn(1− (1− pn)τf).

Notice that since packets are transmitted blindly, the weighted
sum throughput is maximized by using every slot of the frame;
hence the constraint

∑
f∈F τf = T . An algorithm is provided

to solve this maximization problem in [1]. Let EWSTfb(α)
be the maximum expected weighted sum throughput with the
user feedback. The GreedyM policy in this paper achieves
EWSTfb(α) by Theorem 2. Fig. 4 shows the normalized val-
ues of EWSTfb(α) and EWSTnofb(α) under different weight
vectors, confirming that the user feedback improves maximum
system throughput.

A. The popularity of a multicast flow

We examine how the number of subscribers in a multicast
flow affects the throughput performance. Consider two flows
having the same number of subscribers. All subscribers are
assumed to have the same channel reliability probability p.
We consider the following performance metric:

EWSTfb(1)− EWSTnofb(1)

EWSTfb(1)
× 100%, (7)

which is the normalized throughput gain from the feedback
information. Fig. 5 shows that the metric (7) increases as the
number of users per flow decreases for different values of
channel reliability p. That is, the user feedback provides more
throughput gain when a multicast flow becomes less popular.
One cause of throughput loss in the no-feedback case is that
the base station retransmits a flow for which all subscribers
have received the packet. This event occurs during the first
retransmission of a flow f in a frame with probability p|Nf |.

6

a

b

c d

Fig. 5. The normalized throughput gain of feedback-aware transmissions as
a function of channel reliability probability and the number of subscribers per
flow. Frame size T = 10.

This implies that, when the number |Nf | of users per flow
decreases, it is more likely that a blind retransmission results
in no throughput gain, which contributes to the throughput gap
between the two cases.

The points c and d in Fig. 5 show that, when channel
conditions are good, there is little throughput loss of blind
transmissions. This is because the frame size is large enough
so that eventually most of the packets will be delivered.
The point a is where feedback-aware multicast transmissions
have the largest throughput gain. Here, the channel reliability
probability p is low so that the feedback-aware transmissions
need the entire frame for packet delivery, leaving few idle
slots in the frame probabilistically. Since the only way for
the throughput performance of blind transmissions to be close
to that of feedback-aware transmissions is to benefit from
retransmissions during the idle slots unused by feedback-aware
transmissions, there is no room for blind transmissions to
improve throughput in this case.

B. Frame size

We examine how the size of a frame affects the throughput
performance. Consider three multicast flows, each of which
has two subscribers. Every user has the same channel re-
liability probability p = 0.3. Fig. 6 shows the per-user
throughput under both with-feedback and no-feedback cases
for different frame sizes. When the frame size is small, the
throughput is the same because we would expect that blind
transmissions in a round robin fashion yield the maximum
throughput in the symmetric case. When the frame size is
large, the probability of a user not receiving the packet at
the end of a frame is negligible, and thus blind transmissions
incur no throughput loss. For other frame sizes, we observe
that multicast transmissions with feedback outperforms those
without feedback as expected.

C. The number of multicast flows

We study the throughput gain of feedback-aware transmis-
sions as the number of multicast flows varies. We assume
that every user has channel reliably probability p = 0.3, and

0 5 10 15 20 25 30 350

0.2

0.4

0.6

0.8

1

Number of Slots per Frame

EWST
per client

No Feedback

Feedback

Fig. 6. The per-user throughput gain of feedback-aware multicast transmis-
sions as a function of the frame size. A multicast network with three flows
and two subscribers per flow is considered.

1 2 3 4 5

2.5

3

3.5

4

4.5

Number of Flows

Total
EWST

No Feedback

Feedback

Fig. 7. The throughput gain of feedback-aware transmissions as a function
of the number of multicast flows in the network.

that the frame size is T = 5. Each multicast flow has three
subscribers. Fig. 7 shows the system throughput in both with-
feedback and no-feedback cases. When there is only one flow,
blindly serving the flow in every slot is throughput optimal.
When the number of flows is sufficiently large, e.g., being
equal to the frame size, then blindly serving a different flow in
each slot is as good as feedback-aware transmissions under the
symmetric scenario. In other cases, we expect that scheduling
multicast flows using feedback improves throughput over that
without using feedback.

VII. CONCLUSION

This paper studies the multicast scheduling problem for
transmitting periodically generated traffic with hard deadlines
over unreliable wireless channels. We study the set of achiev-
able timely throughput vectors by analyzing the boundary of
the multicast throughput region. Using backward induction
and interchange arguments in dynamic programming, we
show that the boundary points are surprisingly achieved by
greedy policies that seek to maximize immediate weighted
sum throughput in every slot. We utilize this greedy policy to
design adaptive throughput optimal policies over the multicast
throughput region. This policy optimizes the tradeoff between
serving a user not receiving enough packets to satisfy its QoS
constraint, and transmits a multicast flow that yields large

7

throughput gain from its subscribers. Through simulations,
we identify conditions under which feedback-aware multicast
transmissions have the largest, or the lowest, throughput gain
over those that do not use the user feedback.

REFERENCES

[1] I. Hou and P. R. Kumar, “Broadcasting delay-constrained traffic over
unreliable wireless links with network coding,” in ACM Int. Symp.
Mobile Ad Hoc Networking and Computing (MobiHoc), 2011.

[2] V. Raghunathan, V. Borkar, M. Cao, and P. R. Kumar, “Index policies
for real-time multicast scheduling for wireless broadcast systems,” in
IEEE Proc. INFOCOM, Apr. 2008, pp. 1570–1578.

[3] X. Li, C.-C. Wang, and X. Lin, “Throughput and delay analysis on
uncoded and coded wireless broadcast with hard deadline constraints,”
in IEEE Proc. INFOCOM, 2010.

[4] P. Whittle, “Restless bandits: Activity allocation in a changing world,”
J. Appl. Probab., vol. 25, pp. 287–298, 1988.

[5] I. Hou, V. Borkar, and P. Kumar, “A theory of QoS for wireless,” in
IEEE Proc. INFOCOM, Apr. 2009, pp. 486–494.

[6] I. Hou and P. R. Kumar, “Queueing systems with hard delay constraints:
a framework for real-time communication over unreliable wireless
channels,” Queueing Syst., vol. 71, pp. 151–177, 2012.

[7] ——, “Scheduling heterogeneous real-time traffic over fading wireless
channels,” in IEEE Proc. INFOCOM, 2010.

[8] ——, “Admission control and scheduling for QoS guarantees for
variable-bit-rate applications on wireless channels,” in ACM Int. Symp.
Mobile Ad Hoc Networking and Computing (MobiHoc), 2009.

[9] J. Jaramillo, R. Srikant, and L. Ying, “Scheduling for optimal rate
allocation in ad hoc networks with heterogeneous delay constraints,”
IEEE J. Sel. Areas Commun., vol. 29, no. 5, pp. 979–987, May 2011.

[10] A. Dua and N. Bambos, “Downlink wireless packet scheduling with
deadlines,” IEEE Trans. Mobile Comput., vol. 6, no. 12, pp. 1410–1425,
Dec. 2007.

[11] S. Shakkottai and R. Srikant, “Scheduling real-time traffic with deadlines
over a wireless channel,” Wireless Networks, vol. 8, no. 1, pp. 13–26,
Jan. 2002.

[12] Z. Mao, C. E. Koksal, and N. B. Shroff, “Online packet scheduling with
hard deadlines in multihop networks,” in IEEE Proc. INFOCOM, 2013.

[13] R. Li and A. Eryilmaz, “Scheduling for end-to-end deadline-constrained
traffic with reliability requirements in multi-hop networks,” in IEEE
Proc. INFOCOM, 2011.

[14] I. Hou, “Providing end-to-end delay guarantees for multi-hop wireless
sensor networks over unreliable channels,” arXiv report. [Online].
Available: http://arxiv.org/abs/1204.4465

[15] I. Hou, A. Truong, S. Chakraborty, and P. R. Kumar, “Optimality of
periodwise static priority policies in real-time communications,” in IEEE
Conf. Decision and Control (CDC), 2011.

[16] D. D. Yao, “Dynamic scheduling via polymatroid optimization,” in
Performance Evaluation of Complex Systems: Techniques and Tools,
Performance 2002, Tutorial Lectures. London, UK: Springer-Verlag,
2002, pp. 89–113.

[17] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 2005, vol. I.

APPENDIX A
PROOF OF THEOREM 1

Applying the dynamic programming algorithm in Sec-
tion III-B to the unicast scheduling problem, (5) becomes

Jk(sk) = max
j∈sk

{
αjpj + pjJk+1(sk \ {j})

+ (1− pj)Jk+1(sk)
}

(8)

if sk 6= ∅ and Jk(sk) = 0 otherwise. The optimal policy
π∗ = (u∗0, u

∗
1, . . . , u

∗
T−1) satisfies

u∗k(sk) ∈ argmaxj∈sk

{
αjpj + pjJk+1(sk \ {j})

+ (1− pj)Jk+1(sk)
}
. (9)

To show that the greedy decisions j∗k in (2) are optimal, it
suffices to show that j∗k = u∗k(sk) for all sk and k. We establish
this result by backward induction and interchange arguments.
It is useful to define the cost-to-go function under a policy
π = (u0, u1, . . . , uT−1):

Jπ(s, k) = E

{
T−1∑
i=k

gi(si, ui)

∣∣∣∣∣ sk = s

}
, s ∈ S.

Consider the following four cases.
(i) In any slot k, if sk = ∅ then all users are served and

the system stays idle. If sk = {j} for some j, then we have
u∗k(sk) = j∗k = j and the base station must transmit the flow
j because there is one flow left. It remains to discuss the case
|sk| ≥ 2 in each slot k.

(ii) Consider the tail subproblem that we seek to maxi-
mize the cost-to-go function in the last slot [T − 1, T) of
the frame. In this slot, from (8) we have JT−1(sT−1) =
maxj∈sT−1

{αj pj} because JT (sT) = 0 for all sT . Therefore,
u∗T−1(sT−1) = j∗T−1 for all sT−1.

(iii) Consider the tail subproblem where the system is
at state sT−2 and we maximize the cost-to-go function
J (π)(sT−2, T −2) over policies π ∈ Π in the last two slots of
the frame. Consider the two policies: π1 = (. . . , u

(1)
T−2, u

∗
T−1)

and π2 = (. . . , u
(2)
T−2, u

∗
T−1), where

u
(1)
T−2(sT−2) = k1 , argmaxj∈sT−2

αj pj ,

u
(2)
T−2(sT−2) = l, l 6= k1.

In other words, both policies adopt the optimal action in slot
(T − 1). But in slot [T − 2, T), policy π1 uses the greedy
decision while policy π2 uses any other decision in slot (T−2).
Define k2 = argmaxj∈sT−2\{j∗} αj pj . It follows that

J (π1)(sT−2, T−2) = αk1pk1+pk1αk2pk2+(1−pk1)αk1pk1 ,

J (π2)(sT−2, T − 2) = αlpl + plαk1pk1 + (1− pl)αk1pk1
= αlpl + αk1pk1 .

By definition, we have αk1pk1 ≥ αk2pk2 ≥ αlpl. It follows
that J (π1)(sT−2, T −2) ≥ J (π2)(sT−2, T −2) for any l 6= k1.
Therefore, u∗k(sT−2) = argmaxj∈sT−2

αj pj .
(iv) To prove by backward induction, given 0 < t ≤ T − 1,

assume that the optimal policy at state sk is u∗k(sk) =
argmaxj∈sk αjpj for all k ≥ t. We consider the tail sub-
problem where the system is at state st−1 and we maximize
the cost-to-go J (π)(st−1, t − 1) during slots in [t − 1, T).
Consider the two policies: π1 = (. . . , u

(1)
t−1, u

∗
t , . . . , u

∗
T−1) and

π2 = (. . . , u
(2)
t−1, u

∗
t , . . . , u

∗
T−1), where

u
(1)
t−1(st−1) = k1 , argmaxj∈st−1

αj pj ,

u
(2)
t−1(st−1) = l, l 6= k1.

In other words, policy π1 uses the greedy decision in slot t−1
and optimal decisions afterwards. Policy π2 serves another

8

user l 6= k1 in slot t−1 and uses optimal decisions afterwards.
Now, given the policies π1 and π2, we define a third policy
π3 = (. . . , u

(3)
t−1, u

(3)
t , u∗t+1, . . . , u

∗
T−1) working as follows: (i)

greedily serve user k1 in slot t−1 according to π1; (ii) always
serve user l in slot t, where user l is chosen by policy π2 in
slot t− 1. Policy π3 uses the optimal actions after slot t.

We compare the two policies π1 and π3 starting at slot t−1.
They are almost the same except that policy π3 may serve a
suboptimal user in slot t. From the Principle of Optimality [17]
we have

J (π1)(st−1, t− 1) ≥ J (π3)(st−1, t− 1). (10)

Next, we have

J (π3)(st−1, t− 1) = αk1pk1 + pk1 J
(π3)(st−1 \ {k1}, t)

+ (1− pk1) J (π3)(st−1, t),

J (π3)(st−1 \ {k1}, t) = αlpl + pl Jt+1(st−1 \ {k1, l}, t+ 1)

+ (1− pl) Jt+1(st−1 \ {k1}, t+ 1),

J (π3)(st−1, t) = αlpl + pl Jt+1(st−1 \ {l}, t+ 1)

+ (1− pl) Jt+1(st−1, t+ 1).

Similarly, we have

J (π2)(st−1, t− 1) = αl pl + pl Jt(st−1 \ {l}, t)
+ (1− pl) Jt(st−1, t)

Jt(st−1 \ {l}, t) = αk1 pk1 + pk1Jt+1(st−1 \ {k1, l}, t+ 1)

+ (1− pk1) Jt+1(st−1 \ {l}, t+ 1),

Jt(st−1, t) = αk1 pk1 + pk1 Jt+1(st−1 \ {k1}, t+ 1)

+ (1− pk1) Jt+1(st−1, t+ 1)

From the above, we can observe that

J (π3)(st−1, t− 1) = J (π2)(st−1, t− 1). (11)

Comparing (10) and (11) shows that

J (π1)(st−1, t− 1) ≥ J (π2)(st−1, t− 1),

which holds for all users l 6= k1 = argmaxj∈st−1
αj pj served

in slot t− 1 by policy π2. As a result, we have u∗t−1(st−1) =
argmaxj∈st−1

αj pj . This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

The proof is similar to that of Theorem 1, and we provide
a sketch of the proof. Let sk be the subset of users having
not received the packets at the beginning of slot k. A policy
π in the first frame is π = (u0, . . . , uT−1), where uk maps
the state sk to a multicast flow f to transmit in slot k. For
example, the greedy policy consists of these decisions

u
(G)
k (sk) ∈ argmaxf∈F rf (t), k = 0, . . . , T − 1.

In the last slot (T − 1) of the first frame, the base station
should transmit the flow

u
(G)
T−1(sT−1) = argmaxf∈F rf (T − 1)

to maximize the the weighted throughput in this slot.
Denote by J (π)(st, t) the cost-to-go function of policy π

from slot t with the “initial” system state st at time t. Given
a slot t ≤ T − 1, assume that applying the greedy decisions
from slot t and onwards is optimal.

That is, for any policy π1 = (u0, . . . , uT−1) we define a
new policy π2 = (u0, . . . , ut−1, u

(G)
t , . . . , u

(G)
T−1) and assume

that
J (π2)(st, t) ≥ J (π1)(st, t), for each st.

Consider the policy π3 = (u0, . . . , ut−2, u
(G)
t−1, . . . , u

(G)
T−1), and

we seek to show that

J (π3)(st−1, t− 1) ≥ J (π2)(st−1, t− 1), for each st−1. (12)

Fix a given state st−1 in slot t − 1. We assume that
ut−1(st−1) 6= u

(G)
t−1(st−1); otherwise, equation (12) holds with

equality.
Given policies π2 and π3, we define a policy π′2 as follows:
1) Acting the same as π2 from slot 0 to t− 2.
2) Choosing the greedy decision u(G)

t−1 in slot t− 1.
3) Let f be the multicast flow that policy π2 would transmit

in slot t− 1, according to the fixed “initial state” st−1.
Then transmit the flow f in slot t regardless of the
current state st.

The only different between π3 and π′2 is the decision in slot t.
By the induction assumption and the Principle of Optimality,
policy π3 outperforms π′2 after slot t− 1, that is,

J (π3)(st−1, t− 1) ≥ J (π′2)(st−1, t− 1). (13)

Next we argue that

J (π′2)(st−1, t− 1) = J (π2)(st−1, t− 1). (14)

In slot t− 1, let f∗ be the greedy decision and f is the actual
flow served by π2. We have assumed f∗ 6= f . Because f∗ is
the greedy decision that is not taken by π2 in slot t − 1, it
remains to be the greedy decision in slot t for π2. As a result,
policy π2 serves flow f in slot t − 1 and f∗ in slot t. On
the other hand, policy π′2 serves flow f∗ in slot t − 1 and f
in slot t. Because channels are i.i.d. over slots, the statistical
behavior of policies π2 and π′2 are the same over the two slots
t − 1 and t. Therefore, equation (14) holds. Combining (13)
and (14) shows that greedy policy is optimal in slot t−1. This
completes the proof.

APPENDIX C
PROOF OF THEOREM 3

Define the Lyapunov function in the kth frame:

L(k) =
1

2

N∑
n=1

(D+
n (k))2. (15)

From (6), we have

D+
n (k + 1) = max{Dn(k) + qn − dn(k), 0}

≤ max{D+
n (k) + qn − dn(k), 0}

≤ max{D+
n (k)− dn(k), 0}+ qn.

9

The first inequality follows Dn(k) ≤ D+
n (k) and the second

inequality uses qn ≥ 0. Squaring the above and using simple
arithmetics, we obtain

L(k + 1)− L(k) ≤ N +

N∑
n=1

D+
n (k)(qn − dn(k)). (16)

Define the Lyapunov drift over the kth frame:

∆(k) = E[L(k + 1)− L(k) | H(k)],

where H(k) is the system history prior to the kth frame.
From (16), we have

∆(k) ≤ N +

N∑
n=1

D+
n (k)qn −

N∑
n=1

D+
n (k)E[dn(k) | H(t)].

(17)
The MW policy is designed to minimize the right-hand side
of (17).

Let (q1, . . . , qN) be a feasible throughput vector within the
multicast throughput region Λ. It follows that there exists
a boundary point d∗ = (d∗1, . . . , d

∗
N) of Λ that dominates

(q1, . . . , qN) entrywise, i.e., d∗n ≥ qn for all n. Let π0 be
the stationary policy that achieves d∗, and under this policy
we have

E[dn(k) | H(t)] = d∗n ≥ qn.

Since the max-weight policy minimizes the right-hand side
of (17), comparing it with policy π0 yields

N∑
n=1

D+
n (k)E[dMW

n (k) | H(t)] ≥
N∑
n=1

D+
n (k)d∗n.

As a result, the inequality (17) evaluated under the max-weight
policy satisfies

∆(k) ≤ N +

N∑
n=1

D+
n (k)qn −

N∑
n=1

D+
n (k)E[dMW

n (k) | H(t)]

≤ N +

N∑
n=1

D+
n (k)qn −

N∑
n=1

D+
n (k)d∗n ≤ N.

Taking expectation and summing over k = 0, . . . ,K − 1, we
have

E[L(K)] =
1

2

N∑
n=1

E[
(
D+
n (K)

)2
] ≤ KN.

Since D+
n (K) ≥ 0, we have

E[
(
D+
n (K)

)2
] ≤ 2NK, n = 1, . . . , N.

It follows that, as K →∞,

E[D+
n (K)]

K
≤

√
E[(D+

n (K))2]

K2
≤
√

2N

K
→ 0.

Using Dn(K) ≤ D+
n (K), we have

lim sup
K→∞

E[Dn(K)]

K
≤ 0⇒ lim inf

K→∞

E[−Dn(K)]

K
≥ 0.

Plugging in Dn(K) =
∑K−1
k=0 (qn − dn(k)), we conclude

lim inf
K→∞

1

K

K−1∑
k=0

E[dn(k)] ≥ qn,

and the max-weight policy achieves the throughput require-
ment vector (q1, . . . , qN).

