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The spin-boson model is a simplified Hamiltonian often used to study non-adiabatic dynamics in large con-
densed phase systems, even though it has not been solved in a fully analytic fashion. Herein, we present
an exact analytic expression for the dynamics of the spin-boson model in the infinitely slow bath limit and
generalize it to approximate dynamics for faster baths. We achieve the latter by developing a hybrid approach
that combines the exact slow-bath result with the popular NIBA method to generate a memory kernel that is
formally exact to second order in the diabatic coupling but also contains higher-order contributions approxi-
mated from the second order term alone. This kernel has the same computational complexity as NIBA, but
is found to yield dramatically superior dynamics in regimes where NIBA breaks down—such as systems with
large diabatic coupling or energy bias. This indicates that this hybrid approach could be used to cheaply
incorporate higher order effects into second order methods, and could potentially be generalized to develop
alternate kernel resummation schemes.

I. INTRODUCTION

Condensed phase chemical processes are strongly in-
fluenced by the large number of solvent degrees of free-
dom that interact with the reacting molecules1–4. Accu-
rate modeling of condensed phase dynamics thus requires
incorporation of solvent effects, but this is difficult to
achieve via atomistic ab initio techniques as the compu-
tational cost scales steeply with the number of solvent co-
ordinates treated quantum mechanically. The generality
of such atomistic approaches5–10 makes them extremely
useful nonetheless11–14, but they may not represent the
best tools for many problems.

The success of Marcus theory1–3, on the other hand,
suggests that simple model systems containing a few pa-
rameters (obtained from experiment or calculations on
single potential energy surfaces) could be an alternate
route to study condensed phase non-adiabatic dynamics.
A well known example of such a model is the spin-boson
model15, which is used quite often to study the dynamics
of electron transfer4,16–18 as it reduces to the highly suc-
cessful Marcus theory under appropriate limits17. This
suggests that it can be viewed as a dynamical generaliza-
tion of Marcus theory that could be useful for studying
dynamics of electron transfer and non-adiabatic molecu-
lar dynamics in general.

However, an exact analytic solution for the population
dynamics of the spin-boson model has not yet been found,
despite the relative simplicity of the Hamiltonian. Vari-
ous numerical approaches like Quasi-Adiabatic Propaga-
tor Path Integral (QUAPI)19–24, Multi-Configurational
Time-Dependent Hartree (MC-TDH)25,26, Hierarchical
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Equations of Motion (HEOM)27,28 and Quantum Monte
Carlo (QMC)29,30 have therefore been used to study the
dynamics of the spin-boson model. Many of these ap-
proaches are formally numerically exact, but often incur
significant computational cost that makes exploration of
parameter space difficult. Analytic approximations like
the Non-Interacting Blip Approximation (NIBA)15,31,32

and generalized quantum master equations33–35 are also
often used to study the dynamics of the spin-boson
model, although they may also be quite computation-
ally expensive or be effective only in certain parameter
regimes.

In this paper, we present an exact analytic solution to
the spin-boson model in the limit of an infinitely slow
bath, and combine this result with NIBA to generate a
hybrid kernel for the dynamics of general baths with arbi-
trary spectral densities. This hybrid kernel approxima-
tion has the same computational complexity as NIBA,
but is found to yield much superior results in regimes
where the latter fails, being approximately as effective
as a fourth order resummed memory kernel approach
for all cases tested. In particular, it is found to give
quite good performance in problematic cases involving
low temperatures, large diabatic coupling and large en-
ergy biases, where NIBA is known to give qualitatively
incorrect behavior. This indicates that the hybrid ap-
proach is a promising alternative to naive NIBA, as it has
the same computational complexity but yields superior
results in all regimes tested. Consequently, it can be used
to cheaply explore a large parameter space for screening
purposes over a more expensive method like MC-TDH.
The developed approach is also able to approximate dy-
namics from second order information alone, suggesting
that it can potentially be generalized to develop a suite
of resummation methods that can be applied to problems
more general than the spin-boson model.
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II. THE SPIN-BOSON MODEL

The spin-boson model15 is one of the simplest mod-
els for open quantum systems, describing the interaction
between a two level system and a bath of harmonic os-
cillators. The model assumes that the diabatic coupling
V between the two system states is constant and the
system-bath coupling is linear in the bath coordinates.
There may however be a non-zero intrinsic energy bias ε
between the two system states.

Therefore, the Hamiltonian HSB , in the basis of or-

thogonal diabatic states |1〉 =

(
1
0

)
and |2〉 =

(
0
1

)
, is

given by:

HSB =

(
h1 V
V h2

)
(1)

h1 = − ε
2

+
∑
i

(
p2i

2mi
+

1

2
miω

2
i x

2
i + cixi

)
(2)

h2 =
ε

2
+
∑
i

(
p2i

2mi
+

1

2
miω

2
i x

2
i − cixi

)
(3)

The harmonic bath has a set of modes {xi} with fre-
quencies {ωi} and masses {mi}. These modes interact
linearly with the system states |1〉 and |2〉 via the cou-
pling constants {ci}. Consequently, h{1,2} are compact
descriptions for the bath Hamiltonians associated with
states |1〉 and |2〉.

There are typically a large number of bath modes
present but we are chiefly interested in the diabatic pop-
ulations and not the minutiae of individual bath coordi-
nates. It is therefore reasonable to treat the bath oscil-
lators as a continuum via a spectral density J(ω) of the
form36:

J(ω) =

N∑
i=1

πc2i
2miωi

δ(ω − ωi) (4)

It is known that the dynamics of the spin-boson model
is completely specified by V, ε and J(ω)31,36,37-though an
actual closed form expression remains elusive.

We also note that the spin-boson model is extremely
simplified and neglects many physical effects (non-
Condon effects38,39, Duschinski rotations40 and bath an-
harmonicity, to name a few) that are relevant in many
condensed phase processes of interest. However, the rela-
tive difficulty in solving even this simplified Hamiltonian
makes it reasonable to use the spin-boson model as a
starting point for method development and then gener-
alize to more complex models.

III. MEMORY KERNELS

Memory kernels41–44 represent one possible approach
for studying the spin-boson and related models. We em-
ploy a generalized version of the memory kernel formal-
ism of Sparpaglione and Mukamel33 in this paper, where

the memory kernels K11/22(t, t1) control the dynamics
of the population pi(t) in the state |i〉 in the following
manner:

dp1
dt

=

t∫
0

(K22(t, t1)p2(t1)−K11(t, t1)p1(t1)) dt1 (5)

dp2
dt

=

t∫
0

(K11(t, t1)p1(t1)−K22(t, t1)p2(t1)) dt1 (6)

However, the only independent quantity here is the
difference p1(t)− p2(t) as p1(t) + p2(t) = 1 for all times.
This difference is termed as 〈σz〉 (t) since p1(t)− p2(t) =
Tr [ρ(t) (|1〉 〈1| − |2〉 〈2|)] = Tr [ρ(t)σz], where ρ(t) is the
time-dependent density matrix for the whole system. We
thus actually just have a single equation:

d 〈σz〉
dt

= −
t∫

0

(K−(t, t1) +K+(t, t1) 〈σz〉 (t1)) dt1 (7)

where K±(t, t1) = K11(t, t1)±K22(t, t1).
Time-dependent perturbation theory allows us to ex-

pand the population difference 〈σz〉 (t) and the kernels
K±(t, t1) into:

〈σz〉 (t) =

∞∑
m=0

V m 〈σz〉(m)
(t) (8)

K±(t, t1) =

∞∑
m=0

V mK
(m)
± (t, t1) (9)

where 〈σz〉(m)
(t) and K

(m)
± (t, t1) can be found via the

procedure described in Appendix A.
The popular non-interacting blip approximation

(NIBA)31,32,37 approximates K by only using the second-
order term (i.e. K ≈ V 2K(2)), yielding quite accurate
dynamics in the small V (‘outer sphere’) regime and re-
ducing to Marcus theory for slow bath frequencies at high
temperatures17. It is expected that the dynamics ob-
tained from kernels incorporating higher order terms will
be even more accurate, but would be much more com-
putationally expensive to obtain as kernels accurate to
2nth order in V require evaluation of 2n− 1 dimensional
oscillatory integrals. Therefore, alternative approaches
that can obtain reasonable approximations of higher or-

der terms from only second-order terms like 〈σz〉(2) are
desirable as they would incur a much lower computa-
tional cost.

A. Initial conditions

The rest of the paper will assume that the initial den-
sity matrix ρ(0) = p1(0) |1〉 〈1| ⊗ ρB + p2(0) |2〉 〈2| ⊗ ρB′ ,

which causes odd order power series terms 〈σz〉(2k+1)
(t)
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and K
(2k+1)
± (t) to be 0. We will perform relevant deriva-

tions with the even simpler initial condition of ρ(0) =
|1〉 〈1| ⊗ ρB =⇒ 〈σz〉 (0) = 1 for mathematical simplic-
ity, as the expressions derived from this form can be triv-
ially generalized to any initial separable diabatic density
matrix due to linearity of time evolution. In particular,
we would like to emphasize that Eqn 27 and beyond are
true for all ρ(0) = p1(0) |1〉 〈1| ⊗ ρB + p2(0) |2〉 〈2| ⊗ ρB′ .

The initial bath density matrix ρB is determined by
the nature of the dynamical process of interest. Ground
state electron transfer processes often use equilibrium

ρB =
e−βh1

Tr [e−βh1 ]
(β being the inverse temperature

1

kBT
)

as this describes a scenario where the bath modes are
in thermal equilibrium with the reduced Hamiltonian h1

associated with the state |1〉 (which has all the popu-
lation). On the other hand, non-equilibrium ρB of the

type
e−βh2

Tr [e−βh2 ]
can be useful for photochemistry, as

this corresponds to a situation where the population was
purely in |2〉 with the bath in thermal equilibrium, be-
fore an excitation at t = 0− led transfer of all the dia-
batic population to |1〉 without giving the bath modes
an opportunity to relax accordingly, due to difference
in timescales. We call this initial condition the “photo-
chemical” non-equilibrium condition throughout the rest
of the paper for convenience, although it need not cor-
respond to experimentally observable photochemistry for
all systems. Other non-equilibrium initial conditions may
also make physical sense for different processes. Unless
specified otherwise, all our expressions are valid for any

ρB =
e−βh3

Tr [e−βh3 ]
where h3 = h0 +

∑
i

dixi ({di} can be

any arbitrary real number) is a bath Hamiltonian with
the same frequencies and modes as h1/2, but with any
arbitrary set of equilibrium positions.

B. Power series terms

Evaluation of the non-zero even order terms in the
power series of 〈σz〉 (t) involves tracing over bath
modes. Time-dependent perturbation theory reveals

that the power series coefficients 〈σz〉(2n) (t) for ρ(0) =
|1〉 〈1|⊗ρB are completely specified by integrals of traces
f2n(t1, t2, t3 . . . t2n) where:

f2n(t1, t2, t3 . . . t2n) = Tr
[
O(t1)O†(t2)O(t3) . . . O†(t2n)ρB

]
(10)

O(t) = eih1te−ih2t (11)

For instance, we have:

d

dt
〈σz〉(2) (t) = −4

t∫
0

Re [f2(t, t1)] dt1 (12)

Similarly, 〈σz〉(4) (t) is expressed in terms of integrals of

f4, 〈σz〉(6) (t) by integrals of f6 and so on.

C. Non-Interacting Blip Approximation

Going up to second order alone, we discover that

K
(2)
11 (t, t1) = 2Re [f2(t, t1)] is consistent with Eqn. 12.

This expression is similar to the non-equilibrium golden
rule in Ref [45], although the formalism employed therein
is convolution free unlike Eqns 5-6. For the case of

ρB =
e−βh1

Tr [e−βh1 ]
(thermal equilibrium initial conditions),

this reduces to the well-known Non-Interacting Blip Ap-
proximation (NIBA)15,31,32. The second-order kernels

K
(2)
11/22 are then given by34:

K
(2)
11 (t, t1) = 2e−Q′(t−t1) cos

(
Q′′(t− t1) + ε (t− t1)

)
(13)

K
(2)
22 (t, t1) = 2e−Q′(t−t1) cos

(
Q′′(t− t1)− ε (t− t1)

)
(14)

Q′(t) =
4

π

∞∫
0

J(ω)

ω2
(1− cosωt) coth

βω

2
dω (15)

Q′′(t) =
4

π

∞∫
0

J(ω)

ω2
sinωt dω (16)

where J(ω) is the spectral density defined earlier in Eqn.
4. It can quickly be noted that these kernels only de-
pend on the time difference t − t1 and, as such, we can

simply replace the function of two variables K
(2)
11/22(t, t1)

with the univariate K
(2)
11/22(t − t1). The resulting kernel

K11/22(t) ≈ V 2K
(2)
11/22(t) is termed as the NIBA kernel.

This approach is expected to yield decent dynamics for
small V , as it is accurate to the lowest non-zero order for
this model.

For non-equilibrium initial conditions however, the
traces involved are not time-translationally invariant as
they depend on both (t, t1) and not just the difference
t − t1, unlike the equilibrium case. As an example,
this generalization for the case of non-equilibrium initial

ρB =
e−βh2

Tr [e−βh2 ]
results in kernels39:

K
(2)
11 (t, t1) = 2e−Q

′(t−t1) cos (φ(t, t1) + ε (t− t1)) (17)

K
(2)
22 (t, t1) = 2e−Q

′(t−t1) cos (φ(t, t1)− ε (t− t1)) (18)

φ(t, t1) = Q′′(t− t1) + 2Q′′(t1)− 2Q′′(t) (19)

which are very similar to the equilibrium kernels, aside
from the subtle difference stemming from the phase
φ(t, t1) not being time-translationally invariant. The

resulting kernels K11/22(t, t1) ≈ V 2K
(2)
11/22(t, t1) cannot

strictly be called NIBA kernels, but this is effectively a
natural extension of the idea behind NIBA, and is used
in its place for non-equilibrium initial conditions. Simi-
lar expressions had been derived earlier for both memory
kernel26 and non-equilibrium golden rule studies38.
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D. Resummed Kernels

NIBA is only correct to second order, and performs
quite poorly for systems with large diabatic coupling,
large energy bias or low temperature. The natural step
forward seems to be adding fourth or sixth order terms to
the approximate kernel. However, simply stopping there
might be problematic as finite truncations of perturba-
tion theory series are often not convergent46. Resum-
mation techniques help ameliorate this complication by
approximating the unknown higher order terms from the
known low order terms. The recipe for memory kernel
resummation has been outlined in Refs [34,47] and other
places, and we will not discuss the details here. We will
merely note that this approach yields significantly supe-
rior results compared to NIBA34,47,48 but this increased
accuracy comes with the much higher computational cost
of evaluating K(4) or other higher order kernels exactly.

IV. TRACE RELATIONS

Closed-form expressions for the traces f2n for n ≥ 1

are necessary for calculating 〈σz〉(2n) or K(2n). We dis-
covered that all traces f2n can be expressed in terms of
the second order trace f2 alone for any integer n and any
choice of the spectral density; if the initial bath density

matrix ρB equals
e−βh3

Tr [e−βh3 ]
for h3 = h1 +

∑
i

dixi ({di}

can be any arbitrary set of real numbers of cardinality
N). Specifically, we have:

ln f2n(t1, t2, t3 . . . t2n) =

2n−1∑
i=1

2n∑
j=i+1

(−1)
i+j+1

ln f2(ti, tj)

(20)

For example:

f4(t1, . . . t4) =
f2(t1, t2)f2(t2, t3)f2(t3, t4)f2(t1, t4)

f2(t1, t3)f2(t2, t4)
(21)

and similarly for f6, f8 etc.
Essentially, an initial bath density matrix correspond-

ing to a thermal state of any harmonic bath h3 with
same frequencies and modes as h1/2 is sufficient to sat-
isfy the trace factorization relationship Eqn. 20 (irre-
spective of the equilibrium positions of the bath modes
in h3) for any bath spectral density. Similar relationships
had been presented earlier for equilibrium initial condi-
tions of h3 = h1

37,49 but we believe that the case of
general h3 has not previously been reported. This rela-
tionship has been analytically verified to only 12th order
for h3 = h1 (equilibrium initial conditions) and 6th or-
der for h3 = h2 (“photochemical” non-equilibrium initial
conditions) due to the rather steep memory cost for the
evaluation of the integrals needed to find the analytic ex-
pressions with Mathematica50. It has however been veri-
fied numerically up to f60 for multiple h3 resulting from

random {di} over a large number of randomly selected
time indices {ti}, indicating that it is correct to 60th or-
der at least, and very likely beyond as well (though as of
now, we do not possess a proof for this conjecture). This
result is remarkable because it implies that for any spec-
tral density, the dynamics is a function of f2 alone. That
is to say that, in principle, one can predict all of the dy-
namics using only f2(t1, t2) as an input. In analogy with
time density functional theory51 (in which the dynamics
of a many particle system is written as a functional of the
one particle density alone), one can envision a f2(t1, t2)
functional theory - in which the dynamics are directly
predicted by some functional of f2 alone. NIBA is one
such theory, but the result above suggests that the exact
result can in principle be constructed from f2 alone.

V. CASE OF THE SLOW BATH

Though Eqn. 20 is quite useful in finding all the per-
turbation theory traces, it does not eliminate the need to
numerically integrate f2n over the 2n time indices in or-

der to find 〈σz〉(2n) (t). This quickly becomes intractable
due to the grid size growing exponentially with n, creat-
ing a practical upper limit for applying naive perturba-
tion theory even though we can find traces to arbitrary
order 2n rather simply via Eqn. 20.

However at short times, we may expand ln f2(t1, t2) as
a Taylor series about t1 = t2 = 0 to obtain:

ln f2(t1, t2) = ib(t1 − t2)− a(t1 − t2)2 + . . . (22)

where

b = Tr [(h1 − h2)ρB ] (23)

a =
Tr
[
(h1 − h2)2ρB

]
− (Tr [(h1 − h2)ρB ])

2

2
(24)

Higher order terms can be neglected when ωt1,2 � 1,
where ω is the characteristic response frequency of the
system. Taking this short-time/slow-bath approximation

and defining a Gaussian function g(t) = e−at
2+ibt, we

obtain:

f2(t1, t2) ≈ g(t1 − t2) (25)

f2n(t1, t2 . . . t2n) ≈ g(t1 − t2 . . .+ t2n−1 − t2n) (26)

which enables us to approximate all these traces as Gaus-
sian functions that can be analytically integrated. Car-
rying out the integrations over the time indices ti and
summing over all orders in V (in the manner described
in Appendix C), we find that:

˙〈σz〉(t) = V 2 ˙〈σz〉
(2)

(t)− 2V 3

t∫
0

J1(2V t1) ˙〈σz〉
(2)
(√

t2 − t21
)
dt1

(27)

˙〈σz〉
(2)

(t) = −Re

2
√
πe−

b2

4a erf
(

2at+ib
2
√
a

)
√
a

 (28)



5

(a) (b)

(c) (d)

FIG. 1. Comparison between GaussSB, NIBA and HEOM at V = 1, ωc = 10−4 and ε = 0.

where J1 is a Bessel function of the first kind. We note
that Eqn 27 holds for any initial density matrix of the di-
agonal form p1(0) |1〉 〈1|⊗ρB+p2(0) |2〉 〈2|⊗ρB′ , courtesy
the linearity of time evolution.

For equilibrium initial conditions we have b = ε + λ

and a =
2

π

∞∫
0

J(ω) cosh
βω

2
dω; where λ =

4

π

∞∫
0

J(ω)

ω
dω

is the Marcusian reorganization energy. a ≈ λ

β
in the

limit of frequencies {ωi} → 0. The expression for 〈σz〉 (t)
obtained with these values for a, b appears to be consis-
tent with the results obtained for a slow bath by Horn-
bach and Dakhnovski52, which makes us more confident
in overall accuracy of our result and the applicability to
general initial conditions beyond the equilibrium case.
The “photochemical” non-equilibrium initial condition,
on the other hand, yields the same a, but b = ε − λ in-
stead, indicating that for slow-baths at least, equilibrium
and “photochemical” conditions lead to same dynamics
if ε = 0.

We can also substitute the exact ˙〈σz〉
(2)

(t) =

−4

t∫
0

Re [f2(t, t1)] dt1 in Eqn 27 instead of the Gaussian

approximate form given in Eqn 28. This is done in the
hope of generalizing Eqn 27 to baths with non-Gaussian
f2 as the substitution makes Eqn 27 exact to order V 2

for any set of parameters. We call this version of Eqn
27 GaussSB as it is exact for spin-boson problems with
Gaussian f2.

VI. BENCHMARKING ACCURACY OF GAUSSSB

The lack of a rigorous proof for Eqn. 20 raises some
well warranted questions about the accuracy of GaussSB
even in the Gaussian limit, leading us to compare it
against HEOM27,28—a method known to be numerically

exact for J(ω) =
λ

2

(
ωωc

ω2 + ω2
c

)
if a sufficiently large

number of Matsubara frequencies are employed and a
high hierarchy depth used for calculations. This particu-
lar form of J(ω) appears to be suboptimal for GaussSB
on account of the long, slowly decaying high-frequency
tail, but we nonetheless stick with it for convenience in
benchmarking. We also compared GaussSB to NIBA in
order to determine the differences between the two, since
they both attempt to approximate the dynamics with the

second order term 〈σz〉(2) (t) alone. Comparisons were
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(a) (b)

FIG. 2. Comparison between GaussSB, NIBA and HEOM at ωc = 10−4, V = 1, λ = 1, β = 5 and ε = −1 for both equilibrium
and “photochemical” non-equilibrium initial conditions.

done in both the slow bath limit (where f2 is Gaussian
and GaussSB is expected to be exact) and the fast bath
limit (where f2 is decidedly non-Gaussian and GaussSB
is likely to fail).

HEOM calculations were done with the PHI code53

while both GaussSB and NIBA were implemented in
C++ employing the error function implementation by
Johnson54 and the GSL implementation of Quadpack in-
tegration routines55,56.

A. Slow Baths

GaussSB is expected to be valid in the ωc → 0 limit
(slow bath limit) and so ωc was set to 10−4 for all calcula-
tions in this subsection. We also set V = 1 throughout in
order to fix the timescale of oscillations in diabatic pop-
ulations. We first checked for cases without bias (ε = 0)
over a wide range of temperatures and reorganization
energies (0.1 ≤ λ, β ≤ 10). Only equilibrium initial con-
ditions were tested, as “photochemical” initial conditions
give the same Gaussian parameters a, b for cases where
ε = 0, and thus should yield same dynamics. Four dif-
ferent behaviors were observed in this regime and these
are depicted in Fig 1. There is visual agreement between
GaussSB and HEOM in each case presented (as well as
in many other cases tested that resulted in qualitatively
similar dynamics), while NIBA often even fails to repro-
duce the qualitative behavior. These tests are consistent
with our claim that GaussSB is exact in the slow bath
limit.

We next consider cases with bias, where equilibrium
and “photochemical” dynamics are expected to give dif-
ferent results. Two selected cases are depicted in Fig 2
and we observed similar behavior over other ranges of
parameters as well. NIBA is known to be problematic in
cases with large |βε|, often yielding absurd |〈σz〉 (t)| > 1.
We observe the same behavior here, but also find ex-

cellent agreement between GaussSB and HEOM, despite
GaussSB and NIBA both only employing second order

information 〈σz〉(2) (t) alone.

(a)

(b)
FIG. 3. Behavior of GaussSB in fast baths (ωc = 1): (a) The
coherent regime, and (b) The dissipative regime.
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B. Behavior for fast baths

GaussSB cannot be expected to work exactly for fast
baths since we explicitly used a small-time approxima-
tion taylor series to generate Gaussian traces and sum
the perturbation theory series. Numerical tests indicate
that this is indeed the case, with GaussSB being qualita-
tively incorrect in the dissipative regime. We believe that
the failure of GaussSB stems from slow decay of coher-
ent oscillations courtesy of the Gaussian approximation
(which implicitly assumes slow bath response), as it is
the bath response that ultimately causes the transition
from oscillatory behavior to dissipation. A related conse-
quence of this is that the formal rate constant associated
with GaussSB (obtained from integrating the memory
kernel from t = 0 to t → ∞) is always zero, indicating
that GaussSB cannot reproduce correct equilibrium pop-
ulations or replicate long time exponential decay of the
type predicted by Marcus theory and experimentally ob-
served in chemical processes at high temperatures. This
represents quite a major obstacle to using pure GaussSB
for realistic problems where the dissipative regime is in-
volved.

On the other hand, we do obtain qualitatively correct
behavior with GaussSB in regimes where the dynamics is
controlled by coherent oscillations as opposed to dissipa-
tion (namely cases with large β, V, ε), but the agreement
is not quantitative. We do however note that GaussSB
does much better than NIBA in this regime, again despite
both of them using only second order information alone.
Examples for behavior in both regimes are presented in
Fig. 3.

VII. INTERPOLATED KERNELS

Despite the issues related to applicability to fast baths,
we know GaussSB is accurate for time-scales shorter than
bath response, as evidenced by its accuracy in the slow
bath limit. NIBA is simultaneously known to be accu-
rate at times significantly larger than the bath response
as it can reproduce dissipative behavior, indicating that
an approach that smoothly ties these two regimes to-
gether could potentially be more effective than either.
This interpolation scheme should recover pure GaussSB
type behavior as t → 0, NIBA type behavior as t → ∞
and behavior intermediate between the two at all times
in between.This is distinct from hybrid quantum-classical
methods like MC-TDH25,26, as it combines exact quan-
tum mechanical results at two limiting cases, as opposed
to discriminating between different bath modes by treat-
ing only a fraction quantum mechanically.

One issue in constructing an interpolating scheme is
that GaussSB and NIBA approach population dynam-
ics in completely different ways. NIBA employs a non-

Markovian memory kernel to connect ˙〈σz〉 and 〈σz〉 while

GaussSB directly obtains ˙〈σz〉 via Eqn 27. The memory

kernel typically decays much more rapidly than the pop-
ulation transfer rate35, and thus it seemed more appro-
priate to connect the memory kernels of GaussSB and
NIBA together in order to better utilize the short-time
exactness of GaussSB. This led us to numerically in-
vert GaussSB 〈σz〉 to obtain kernels KGSB

11/22(t) and then

smoothly interpolate between these kernels and the exact

second order kernels K
(2)
11/22(t, t1) to get hybrid kernels

that tend to pure second-order at long times and pure
GaussSB at short times. Mathematically, this implies:

KI
11/22(t, t1) = u(t− t1)KGSB

11/22(t− t1)

+ (1− u(t− t1))K
(2)
11/22(t, t1) (29)

where KI is the interpolated kernel and u(t) is an inter-
polating function with the following properties:

1. u(t = 0) = 1.

2. lim
t→∞

u(t) = 0.

3. The rate of decay of u(t) (or equivalently, the
growth rate of 1 − u(t)) is inversely related to the
bath response time. This ensures that GaussSB be-
havior dies on the timescale of the bath response,
since it becomes increasingly inaccurate at long
times.

4. u(t) is well-behaved (i.e., non divergent and contin-
uous, preferably differentiable).

The kernel KI
11/22(t, t1) is thus almost pure GaussSB

when the two time indices t, t1 are close, almost pure
second order kernel when t, t1 are far and intermediate
between the two extremes at intermediate separations.

For the equilibrium case, K
(2)
11/22(t, t1) is the NIBA ker-

nel, and NIBA behavior is recovered at long times.
There exist many possibilities for u(t), depending on

what choices are made regarding bath response times.

For the previously employed J(ω) =
λ

2

ωωc
ω2 + ω2

c

form, it

is at least possible to unambiguously define a timescale
by means of ωc, but such an option is not open for all
spectral densities. This leads us to obtain decay rate

via θ(t) =

∞∫
0

J(ω) cosωt coth
βω

2
dω

∞∫
0

J(ω) coth
βω

2
dω

as θ(t) corresponds

to the normalized energy gap fluctuation autocorrelation

function
Re [〈δ∆E(t)δ∆E(0)〉]
〈δ∆E(0)δ∆E(0)〉

, where the numerator is

a quantity often computed in MD simulations to obtain
J(ω) and is thus readily available in most cases. This de-
cays smoothly from 1→ 0 as t runs from 0→∞. Conse-
quently, θ(t) is a measure of the dissipation rate of initial
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(a) (b)

(c) (d)

FIG. 4. Comparison of Interpolated kernel populations against HEOM, NIBA and Padé resummed kernel correct to fourth
order (with ωc = 1, β = 0.125, λ = 4 and ε = 0). The interpolated kernel approach performs better as V increases.

energy fluctuations and thus gives a timescale for switch-
ing to the dissipative regime. Furthermore, θ(t) = e−ωct

for Debye spectral densities at small β (high tempera-
tures, i.e. the classical limit), indicating that it in fact
decays with the same timescale as the bath frequencies.

θ(t) thus is a good metric for the rate of decay. That
is however not the only factor we should consider, as al-
though θ(t) contains information about bath frequencies
as well as some temperature effects, it does not at all
account for the energy gap ε which is known to affect
population coherence time-scales as well. Furthermore,
NIBA is known to be especially terrible for large |βε| (as
multiple figures in the preceding section highlight) and
this weakness also ought to be considered for building
u(t). We therefore propose u(t) = |θ(t)|p to be a general
form for the interpolating function u(t), where p is very
small for βε � 1 (allowing GaussSB to dominate) but
reduces to just 1 for ε = 0. p = sechβε was chosen by us
as it satsifies the above requirements and corresponds to

the eβA(ε), where A (ε) = − 1

β
ln coshβε is the component

of the Gibbs-Boguliubov free energy dealing with bias57.
NIBA performance is known to deteriorate as A(ε) in-

creases in magnitude57, indicating that p can be a decent
metric for controlling the GaussSB to NIBA switching
rate. The absolute value in u(t) = |θ(t)|p is taken since
though θ(t) ≥ 0 in most cases, a few pathological param-
eter sets might lead to θ(t) < 0, which would make tak-
ing non-integer powers problematic. Taking |θ(t)| solves
this issue, though it can lead to non-differentiable u(t) at
points where θ(t) = 0 changes sign. This is unfortunate,
but we feel it is an acceptable compromise due to its rar-
ity and because it does not lead to non-differentiable 〈σz〉
as it only affects the kernel.

For determining the accuracy of this interpolated ap-
proach, we considered a few Hamiltonian parameters
studied earlier via memory kernel resummation in Ref
[34] (all using equilibrium initial conditions) and com-
pared the performance of HEOM, NIBA, Interpolated
GaussSB and Padé resummed memory kernels58 (ob-
tained from data generated for Ref [34]) correct to fourth
order in V . The results for cases with ε = 0 are given
in Fig 4 and it appears that the interpolated kernel ap-
proach is comparable to (and for large V is superior to)
dynamics obtained from the much more computation-
ally expensive fourth-order resummed kernel approach.
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It thus appears that the interpolated kernel approach
could be a cheap and effective way to incorporate V 4

and higher order terms to NIBA at a significantly lower
computational cost than numerical evaluation of higher
order kernels for resummation. We also note that in ad-
dition to our chosen form of u(t), we experimented with
some different forms of u(t) (decaying exponentials and
Gaussians in ωct) for these cases and obtained roughly
similar behavior. This aspect however was not explored
in greater detail as other u(t) explored did not easily gen-
eralize to non Drude-Lorentz spectral densities where a
characteristic ωc is not apparent.

Cases with a non-zero ε pose a greater challenge, as
we know that neither GaussSB nor NIBA can accurately
determine the equilibrium populations in such cases and
thus the combined approach is unlikely to succeed in this
task either. It has been shown34 that it is possible to
adjust the resummation scheme to yield kernels correct
to fourth order that recover equilibrium populations in
a least-squares sense. This indicates that the interpo-
lated kernel in these cases should be expected to perform
worse than the optimal fourth order resummed kernel as
the latter has more information than the former. Fig 5
depicts the comparison of HEOM, NIBA, intepolated ker-
nel and optimized Landau–Zener resummation59 (found
to be superior to Padé for cases with bias34) for some
systems studied in Ref [34]. This comparison indicates
that the interpolated kernel approach gives dynamics of
comparable quality to fourth-order resummed kernels, al-
though it tends to perform worse at long times as it does
not contain information about 〈σz〉 (t→∞) that the re-
summation technique employs. Nonetheless, it recovers
quite reasonable short-time dynamics, with less informa-
tion and at a fraction of the cost relative to the fourth
order methods. Performance for the difficult cases where
exact 〈σz〉 (t→∞) is close to ±1 (such as Fig VII(a)) can
potentially be further improved by altering u(t) to ensure
recovery of correct equilibrium populations (perhaps via
tuning the power parameter p).

VIII. CONCLUSION AND FUTURE DIRECTIONS

We have found a relationship between perturbation
theory traces of the spin-boson model that allowed us to
solve for population dynamics analytically for the case of
a Gaussian trace f2(t1, t2). We call this method GaussSB
and validate its accuracy by benchmarking it against
the highly accurate HEOM method for infinitely slow
baths. GaussSB is unfortunately not particularly useful
for many problems of chemical interest since f2(t1, t2) is
only Gaussian for baths with small frequencies, though
it appears to recover the non-dissipative behavior at
low temperatures with qualitative accuracy for even fast
baths.

We remedy this by formulating a hybrid kernel that
is exact to second order in V and includes higher order
correction terms incorporated via GaussSB that decay

(a)

(b)

(c)

FIG. 5. Comparison of interpolated kernel populations
against HEOM, NIBA and optimized Landau–Zener re-
summed kernel correct to fourth order for cases with ε 6= 0.

on the timescale of the bath. This decay is controlled by
an interpolating function u(t), in order to prevent higher
order GaussSB terms (which become increasingly non-
exact at long times) from becoming too influential on
timescales larger than bath response. This hybrid ap-
proach yields qualitatively accurate dynamics for even
fast baths that is comparable in quality to results ob-
tained from using more computationally expensive re-
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summed memory kernels accurate to fourth order. The
hybrid kernel method is especially effective in regimes
where NIBA normally breaks down (large β, V, ε), indi-
cating that the interpolation approach was successful in
incorporating critical amounts of higher order behavior.

We have thus devised a hybrid method that interpo-
lates between NIBA and GaussSB to give quite accurate
dynamics for the spin-boson model for the same compu-
tational complexity as NIBA (since it does not need eval-
uation of expensive triple or higher order integrals). This
hybrid approach could thus be used in place of NIBA to
explore dynamics across a large parameter space since it
has superior performance to NIBA in traditionally prob-
lematic regimes and is not observed to ever perform any
worse that NIBA, on account of it incorporating higher
order effects that NIBA misses.

It should in principle be possible to generalize this ap-
proach to other model Hamiltonians like the linear vi-
bronic coupling (LVC) model39, as long as equivalent
slow-bath solutions like GaussSB exist. In practice, there
are problems stemming from the fact that simple trace
factorization relations like Eqn 20 have not been found
(and may simply not exist) for more sophisticated sys-
tems. Directly employing the GaussSB kernel (using

the exact 〈σ̇z〉(2) (t) for the model) might be an accept-
able compromise for such cases, even though it would
sacrifice exactness in the slow-bath limit. The result-
ing method would resemble a resummation scheme as
it would employ the exact second order term to approxi-
mate higher order terms, and would furthermore be much
cheaper than actually computing fourth order kernels for
the problem. We hope to explore the effectiveness of this
approach in the future to determine whether it has any
promise.

In the future, we also seek to explore routes to general-
ize GaussSB to have kernels correct to fourth (or higher)
order at all times and see if that yields improved dynam-
ics. The easiest way to achieve this is via a generalization

of Eqn 27 of the form

˙〈σz〉(t) =V 2 ˙〈σz〉
(2)

(t)

− 2V 3

t∫
0

J1(2V f(t1)t1) ˙〈σz〉
(2)
(√

t2 − t21
)
dt1

(30)

where the function f(t1) is chosen to ensure ˙〈σz〉(t) is ex-
act to fourth power in V . The kernel resulting from this
expression will be exact to fourth order as it contains
both second and fourth order information. Generalizing
even further, it appears that it might possible to generate
other resummation methods employing the general form
of Eqn. 27 that are exact in the limit of Gaussian f2.
They would still incur significant computational expense
in order to have exact fourth (or higher) order behav-
ior, but could potentially prove more effective than pure
Padé or Landau–Zener resummation and might not even
need interpolation on account of the extra information
supplied. It may also be possible to recover the correct
equilibrium populations with such kernels, and we hope
to study the accuracy of such kernels (both with interpo-
lation and without) in the future to determine whether
this is indeed the case.
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Appendix A: Time-Dependent Perturbation Theory

Time-dependent perturbation theory is the necessary
first step for any perturbative approaches to quantum
dynamics. We treat the diabatic coupling V as the
perturbation, which allows us to define the zeroth or-
der Hamiltonian , consequently enabling us to express
operator A(t) in the interaction picture as AI(t) =
eiH0tA(t)e−iH0t. The perturbation in the interaction

picture is thus VI(t) = eiH0t

(
0 V
V 0

)
e−iH0t = V σxI (t)

(σx being the Pauli matrix in the x direction) and the
interaction picture density matrix can be expressed as
ρI(t) = eiH0tρ(t)e−iH0t (where ρ(t) is the actual time
dependent density matrix). The von-Neumann equation
for the time-evolution of the interaction-picture density
matrix allows us to state that:
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ρI(t) = ρI(0)− i
t∫

0

[VI(t1),ρI(0)] dt1 −
t∫

0

dt1

t1∫
0

[VI(t1), [VI(t2),ρI(0)]] dt2 . . . (A1)

= ρI(0)− iV
t∫

0

[σxI (t1),ρI(0)] dt1 − V 2

t∫
0

dt1

t1∫
0

[σxI (t1), [σxI (t2),ρI(0)]] dt2 . . . (A2)

=

∞∑
m=0

V mρ
(m)
I (t) (A3)

where ρ
(m)
I (t) are independent of V .

The diabatic populations p1/2(t) can be obtained from
the density matrix by tracing out the bath modes and
taking the diagonal elements. Mathematically:

p1(t) = Tr [ρI(t) |1〉 〈1|] (A4)

=

∞∑
m=0

V mTrB

[
ρ
(m)
I (t) |1〉 〈1|

]
(A5)

p2(t) = Tr [ρI(t) |2〉 〈2|] = 1− p1(t) (A6)

p1/2(t) are not independent as p1(t) + p2(t) = 1, and
thus the population dynamics can be specified with only
knowledge of the difference p1(t)− p2(t). This is termed
as 〈σz〉 (t) as p1(t)−p2(t) = Tr [ρI(t) (|1〉 〈1| − |2〉 〈2|)] =
Tr [ρI(t)σz].

Thus we can express 〈σz〉 (t) as a power series in V ,

with the mth order term 〈σz〉(m)
(t) = TrB

[
ρ
(m)
I (t)σz

]
for all non-negative integers m. Expressing the kernels

K11/22(t) =

∞∑
m=0

V mK
(m)
11/22(t) as a power series in V and

equating terms with same order of V on both sides of
Eqns 5 and 6 allows us to express power series coefficients

K
(m)
11/22(t) in terms of 〈σz〉(m)

(t), which we have already

shown can be found from perturbation theory. Going

up to some finite order m and finding all 〈σz〉(k) (t) for
k ≤ m would thus provide us with the correct kernel

coefficients K
(k)
11/22(t), which can be directly employed or

be resummed to approximate the exact kernel correct to
all orders in V .

Appendix B: Taylor series for ln f2(t1, t2)

We have:

f2(t1, t2) = Tr
[
eih1t1e−ih2t1eih2t2e−ih1t2ρB

]
(B1)

∂f2(t1, t2)

∂t1
= iTr

[
eih1t1(h1 − h2)e−ih2t1eih2t2e−ih1t2ρB

]
(B2)

∂f2(t1, t2)

∂t2
= −iTr

[
eih1t1e−ih2t1eih2t2(h1 − h2)e−ih1t2ρB

]
(B3)

∂2f2(t1, t2)

∂t21
= −Tr

[
eih1t1(h1 − h2)2e−ih2t1eih2t2e−ih1t2ρB

]
(B4)

∂2f2(t1, t2)

∂t22
= −Tr

[
eih1t1e−ih2t1eih2t2(h1 − h2)2e−ih1t2ρB

]
(B5)

∂2f2(t1, t2)

∂t2∂t1
= Tr

[
eih1t1(h1 − h2)e−ih2t1eih2t2(h1 − h2)e−ih1t2ρB

]
(B6)

Since
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∂ ln f2(t1, t2)

∂t1
=

1

f2(t1, t2)

∂f2(t1, t2)

∂t1
(B7)

∂ ln f2(t1, t2)

∂t2
=

1

f2(t1, t2)

∂f2(t1, t2)

∂t2
(B8)

∂2 ln f2(t1, t2)

∂t21
=

1

f2(t1, t2)

∂2f2(t1, t2)

∂t21
−
(

1

f2(t1, t2)

)2(
∂f2(t1, t2)

∂t1

)2

(B9)

∂2 ln f2(t1, t2)

∂t22
=

1

f2(t1, t2)

∂2f2(t1, t2)

∂t22
−
(

1

f2(t1, t2)

)2(
∂f2(t1, t2)

∂t2

)2

(B10)

∂2 ln f2(t1, t2)

∂t1∂t2
= −

(
1

f2(t1, t2)

)2
∂f2(t1, t2)

∂t1

∂f2(t1, t2)

∂t2
+ f2(t1, t2)

∂2f2(t1, t2)

∂t1∂t2
(B11)

Expanding ln f2(t1, t2) as a Taylor series about t1 = t2 = 0 gives:

ln f2(t1, t2) = 0 + i(t1 − t2)Tr [(h1 − h2)ρB ]− 1

2

(
Tr
[
(h1 − h2)2ρB

]
− (Tr [(h1 − h2)ρB ])

2
)

(t1 − t2)
2
. . . (B12)

Higher order terms can be neglected if:

∂3 ln f2(t1, t2)

∂t31
= i
(

3Tr
[
(h1 − h2)2ρB

]
Tr [(h1 − h2)ρB ]−Tr

[
(h1 − h2)3ρB

]
− 2 (Tr [(h1 − h2)ρB ])

3
)

(B13)

etc are small, which is the case if the bath frequen-
cies {ωi} are small. As an example, the combined

third order term for equilibrium ρB =
e−βh1

Tr [e−βh1 ]

is − 2i

3π
(t1 − t2)3

∞∫
0

ωJ(ω) dω, which is guaranteed to

be small if J(ω) is only considerable for small ω.
Similarly, the fourth order term for this case is:

(t1 − t2)4

6π

∞∫
0

ω2J(ω) coth
βω

2
dω, which will be small if

J(ω) is only large for small ω.

Appendix C: Derivation of Slow Bath Solution

Integrating Gaussian f2n analytically yields a relation

between population growth terms ˙〈σz〉
(2n)

:

˙〈σz〉
(2n)

(t) = − 2

n− 1

t∫
0

t1 ˙〈σz〉
(2n−2)

(t1) dt1 (C1)

for all integers n > 1. This form is more convenient to
handle in Laplace space where we have:

L
[

˙〈σz〉
(2n)
]

(s) =
2

n− 1

1

s

d

ds
L
[

˙〈σz〉
(2n−2)

]
(s) (C2)

=
4

(n− 1)(n− 2)

1

s

d

ds

1

s

d

ds
L
[

˙〈σz〉
(2n−4)

]
(s)

(C3)

=
1

(n− 1)!

(
2

s

d

ds

)n−1
L
[

˙〈σz〉
(2)
]

(s)

(C4)

by repeated application of Eqn C2. This permits us to

sum the infinite power series for ˙〈σz〉 in Laplace space,
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as we have:

L
[

˙〈σz〉
]

(s) = L

[ ∞∑
n=1

V 2n ˙〈σz〉
(2n)

]
(s) (C5)

=

∞∑
n=1

V 2n

(n− 1)!

(
2

s

d

ds

)n−1
L
[

˙〈σz〉
(2)
]

(s)

(C6)

= V 2 exp

(
2V 2

s

d

ds

)
L
[

˙〈σz〉
(2)
]

(s) (C7)

= V 2 exp

(
4V 2 d

ds2

)
L
[

˙〈σz〉
(2)
]

(s) (C8)

= V 2L
[

˙〈σz〉
(2)
]

(
√
s2 + 4V 2) (C9)

Returning to the time domain, we have via known inverse
Laplace transforms60:

˙〈σz〉(t) = V 2 ˙〈σz〉
(2)

(t)− 2V 3

t∫
0

J1(2V t1) ˙〈σz〉
(2)
(√

t2 − t21
)
dt1

(C10)

˙〈σz〉
(2)

(t) = −4

t∫
0

Re [f2(t, t1)] dt1 (C11)

= −Re

2
√
πe−

b2

4a erf
(

2at+ib
2
√
a

)
√
a

 (C12)

where a 6= 0. J1 is a Bessel function of the first kind,
giving us an analytical solution to the spin-boson model
for all baths with trace f2 Gaussian in time.

Appendix D: GaussSB in the limit of Rabi Oscillations

If we consider the trivial case of J(ω) = 0, we obtain
f2(t1, t2) = eiε(t1−t2), which is a complex exponential and
not actually a Gaussian. Thus a = 0 and we can’t use
Eqn. 28 directly, but it is easy to use Eqn. C10 and find:

˙〈σz〉
(2)

(t) = −4

t∫
0

Re [f2(t, t1)] dt1 = −4 sin εt

ε
(D1)

˙〈σz〉(t) = −
4 sin

(
t
√

4V 2 + ε2
)

√
4V 2 + ε2

(D2)

=⇒ 〈σz〉 (t) =
4V 2 cos

(
t
√

4V 2 + ε2
)

+ ε2

4V 2 + ε2
(D3)

which is the exact result that can be directly calculated
for this trivial example, showing that it correctly recovers
the Rabi limit.

Appendix E: Kernels from Populations

GaussSB gives 〈σz〉 (t) directly and does not employ
any memory kernels. Nonetheless, it would be prefer-
able to interpolate between time non-local memory ker-
nels that population growth rates to fully exploit the the
complete short-time information contained in GaussSB,
compelling us to determine ways to invert the GaussSB
populations 〈σz〉 (t) to yield kernels.
We begin from the one time-index version of the
Sprapaglione-Mukamel formalism33 as there is no way (or
reason) to introduce a second time index whose behav-
ior we cannot solely recover from the univariate 〈σz〉 (t).
Specifically, we use a variant of Eqn 7 where:

d 〈σz〉
dt

= −
t∫

0

(K−(t− t1) +K+(t− t1) 〈σz〉 (t1)) dt1 (E1)

= −
t∫

0

K+(t1) 〈σz〉 (t− t1)dt1 −
t∫

0

K−(t1)dt1 (E2)

Differentiating Eqn. E2 with respect to time, we obtain:

¨〈σz〉(t) = −
t∫

0

K+(t1) ˙〈σz〉(t− t1)dt1 −K−(t)−K+(t) 〈σz〉 (0)

(E3)

Let us consider two initial conditions: 〈σz〉 (0) = ±1
and call the corresponding 〈σz〉 (t) as 〈σz〉± (t). Then we
have:

¨〈σz〉±(t) = −
t∫

0

K+(t1) ˙〈σz〉+(t− t1)dt1 −K−(t)∓K+(t)

(E4)

=⇒ ¨〈σz〉+(t)− ¨〈σz〉−(t) = −
t∫

0

K+(t1)
(

˙〈σz〉+(t− t1)

− ˙〈σz〉−(t− t1)
)
dt1 − 2K+(t) (E5)

GaussSB gives us ˙〈σz〉±(t−t1) from which we can obtain

the second derivatives ¨〈σz〉±(t− t1) via direct differenti-
ation of Eqn 27 or finite differences (which was the route
we took). Then we can solve Eqn. E5 numerically on a
grid for K+(t) (by treating the integral as a finite sum
via trapezoid rule and solving the resulting system of lin-
ear equations for instance, as we have done: but other
approaches like Archimedes summation or other Newton-
Coates approaches should be equally valid), making use
of the fact that K+(0) = 4V 2 since only second order
terms matter then. Finally, back substitution of K+(t)
in Eqn E4 is sufficient to recover K−(t), yielding the ker-
nels.

Appendix F: Kernels in Laplace Space

Eqn. E5 offers an interesting alternative approach
for accessing kernels via Laplace space. Taking Laplace
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transforms on both sides, we obtain:

s
(
L
[

˙〈σz〉+
]

(s)− L
[

˙〈σz〉−
]

(s)
)

= −L [K+] (s)
(
L
[

˙〈σz〉+
]

(s)− L
[

˙〈σz〉−
]

(s)
)
− 2L [K+] (s) (F1)

=⇒ L [K+] (s) = −
s
(
L
[

˙〈σz〉+
]

(s)− L
[

˙〈σz〉−
]

(s)
)

2 + L
[

˙〈σz〉+
]

(s)− L
[

˙〈σz〉−
]

(s)
(F2)

= −
sV 2

(
L
[

˙〈σz〉
(2)

+

]
(
√
s2 + 4V 2)− L

[
˙〈σz〉

(2)

−

]
(
√
s2 + 4V 2)

)
2 + V 2L

[
˙〈σz〉

(2)

+

]
(
√
s2 + 4V 2)− V 2L

[
˙〈σz〉

(2)

−

]
(
√
s2 + 4V 2)

(F3)

We can determine L
[

˙〈σz〉
(2)

±

]
(s) via simple Laplace

transform from time-domain and then use it to find
L [K+] (s) (and similarly L [K−] (s)). However, inverse
Laplace transforms are numerically unstable and thus
using this route to obtain time domain kernels is sub-
optimal.
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