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The splitting function is a universal property of quantum chromodynamics (QCD) which describes
how energy is shared between partons. Despite its ubiquitous appearance in many QCD calculations, the
splitting function cannot be measured directly, since it always appears multiplied by a collinear singularity
factor. Recently, however, a new jet substructure observable was introduced which asymptotes to the
splitting function for sufficiently high jet energies. This provides a way to expose the splitting function
through jet substructure measurements at the Large Hadron Collider. In this Letter, we use public data
released by the CMS experiment to study the two-prong substructure of jets and test the 1 → 2 splitting
function of QCD. To our knowledge, this is the first ever physics analysis based on the CMS Open Data.
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Quantum chromodynamics (QCD), like any weakly
coupled gauge theory, exhibits universal behavior in the
small angle limit. When two partons become collinear in
QCD, the cross section for a 2 → n scattering process
factorizes into a 2 → n − 1 scattering cross section multi-
plied by a universal 1 → 2 splitting probability, with
corrections suppressed by the degree of collinearity.
Collinear universality is a fundamental property of QCD
and appears in many applications, most famously in
deriving the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
evolution equations [1–3] (see also [4–13]), and it is at
the heart of the factorization theorem in hadron-hadron
collisions [14,15]. In addition, parton shower generators are
based on recursively applying 1 → 2 splittings [16–18],
fixed-order subtraction schemes utilize the 1 → 2 splitting
function [19–21], and the kt jet clustering metric is based
on 2 → 1 recombination [22–24]. Collinear universality
can be extended to multiparton splittings at tree level and
beyond [25–41]; however, its all-orders validity [42,43] is
spoiled in the presence of Glauber modes [44–47]. More
recently, jet substructure techniques [48–52] have been
introduced to distinguish 1 → n decays of heavy particles
from 1 → n splittings in QCD in order to enhance the
search for new physics at the Large Hadron Collider (LHC)
[53–56].
Despite its ubiquity, however, the 1 → 2 splitting func-

tion cannot be directly measured at a collider, since
collinear universality is inseparable from the existence of
collinear singularities and closely related nonperturbative
fragmentation functions. Specifically, when two partons are
separated by an angle θ, the 1 → 2 splitting probability
takes the form

dPi→jk ¼
dθ
θ
dzPi→jkðzÞ; ð1Þ

where the Pi→jk are the Altarelli-Parisi QCD splitting
functions [3] which depend on the momentum fraction z
and the parton flavors i, j, and k. Crucially, this expression
has a real emission singularity in the θ → 0 limit, as required
to cancel corresponding virtual singularities from loop
diagrams. In this sense, there is no way to directly measure
the splitting function Pi→jkðzÞ in data, though there is of
course overwhelming indirect evidence that Pi→jkðzÞ is a
universal function from the many successes of QCD in
describing high-energy scattering (see, e.g., [57–67]).
In this Letter, we present a semidirect method to test the

1 → 2 splitting function in QCD by studying the two-prong
substructure of jets. Our method is based on soft drop
declustering [68] (see also [52,69,70]), which recursively
removes soft radiation from a jet until hard two-prong
substructure is found. When applied to ordinary quark- and
gluon-initiated jets with no intrinsic substructure, soft drop
exposes the collinear core of the jet. As shown in Ref. [71],
the momentum sharing between the two prongs (denoted
zg) is closely related to the momentum fraction z appearing
in Eq. (1), and the cross section for zg asymptotes to the
QCD splitting function in the high-energy limit. While
variants of zg have appeared in many jet substructure
studies (notably the

ffiffiffi
y

p
parameter in Refs. [52,72]), to

the best of our knowledge, no published zg distribution has
ever been presented using actual collider data, though there
are preliminary zg results from CMS [73], STAR [74], and
ALICE [75] Collaborations. Here, we present the first
analysis of zg using LHC data, taking advantage for the first
time of public data released by the CMS experiment [76].
The CMS Open Data are derived from 7 TeV center-of-

mass proton-proton collisions recorded in 2010 and released
to the public on the CERN Open Data Portal in November
2014 [77]. The data are provided in analysis object data
(AOD) format, which is a CMS-specific data scheme based
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on the ROOT framework [78]. Crucially for the purposes of
studying jet substructure, the AOD format contains all of the
particle flow candidates (PFCs) [79,80] used for jet finding
within CMS [81], and we can apply jet substructure
techniques directly on the PFCs themselves. The AOD files
have an associated conditions database which include jet
energy correction (JEC) factors and recommended jet quality
cuts, though no specific calibration tools for jet substructure
studies. The main limitation of the 2010 CMS Open Data
release is that it does not come accompanied by detector-
simulated Monte Carlo samples, though this issue has been
partially addressed in the 2011 CMSOpen Data release [82].
Even without a detector simulation, we can improve the
robustness of our analysis by using a charged-particle subset
of PFCs with better angular resolution. Overall, this study
highlights the fantastic performance of CMS’s particle flow
algorithm and the exciting physics opportunities made
possible by this public data release.
Our analysis is based on 31.8 pb−1 [83,84] of data

collected using the Jet Primary Dataset [76], which con-
tains events selected by single-jet triggers and dijet triggers,
as well as some quadjet and HT triggers. We use the
HLT_Jet30U/50U/70U/100U/140U triggers for this
analysis, which gives us near 100% efficiency to select
single jets with transverse momentum pT > 85 GeV. All
jets in our analysis are clustered using the anti-kt jet
clustering algorithm [85] with radius parameter R ¼ 0.5;
we validated that the anti-kt jets reported by CMS in the
AOD format agree with those found by directly clustering
the PFCs with FASTJET 3.1.3 [86]. To gain a more trans-
parent understanding of the CMS data, we converted the
AOD file format into our own text-based MIT Open Data
(MOD) file format. Information about the MOD format as
well as a broader suite of jet substructure analyses will be
presented in a companion paper [87]. The substructure
results shown here use the RECURSIVETOOLS 1.0.0 package
from FASTJET CONTRIB 1.019 [88].
To validate initial jet reconstruction, Fig. 1 shows the pT

spectrum of the hardest jet in the event, with a pseudor-
apidity cut of jηj < 2.4 and transverse momentum cut of
pT > 85 GeV. This spectrum is obtained after applying the
“loose” jet quality criteria provided by CMS as well as
rescaling the jet pT by the provided JEC factors. For
comparison, we show the same spectrum obtained from
three parton shower generators with their default settings:
PYTHIA 8.219 [89], HERWIG 7.0.3 [90], and SHERPA 2.2.1 [91].
The qualitative agreement between all four samples is
excellent. Note that this spectrum is obtained after combin-
ing five different CMS triggers with prescale factors that
changed over the course of the 2010 run. No kinks are
observed at the transitions between the various triggers,
giving us confidence that we can derive jet spectra using the
trigger and prescale values provided in the AOD files.
We now turn to an analysis of the two-prong substructure

of the hardest jet, imposing a further cut of pT > 150 GeV

in order to avoid the large prescale factors present in the
HLT_Jet30U/50U triggers. To partially account for the
finite energy resolution and efficiency of the CMS detector,
we consider only PFCs within the hardest jet above
pmin
T ¼ 1 GeV. Moreover, because charged particles have

better angular resolution than neutral ones, our analysis will
be based only on charged particles with associated tracks;
we refer the reader to Ref. [87] for substructure analyses
with both charged and neutral PFCs. The charged PFCs are
reclustered with the Cambridge-Aachen (CA) algorithm
[92,93] to form an angular-ordered clustering tree. We then
apply the soft drop declustering procedure [68] in Fig. 2,
which recursively declusters the CA tree, removing the
softer pT branch until two-prong substructure is found
which satisfies

z > zcutθβ; z≡min½pT1; pT2�
pT1 þ pT2

; θ ¼ R12

R
: ð2Þ

Here, pT1 and pT2 are the transverse momenta of the two
branches of the CA tree, and R12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy12Þ2 þ ðϕ12Þ2

p
is

their relative rapidity-azimuth distance. Throughout our

FIG. 1. Jet pT spectrum from the CMS Open Data compared to
three parton shower generators. Indicated is the pT > 150 GeV
cut used in later analyses.

FIG. 2. Schematic of the soft drop algorithm, which removes
angular-ordered branches whose momentum fraction z is below
zcutθβ. The final groomed kinematics are indicated by the g
subscript.

PRL 119, 132003 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

29 SEPTEMBER 2017

132003-2



analysis, we take the momentum fraction cut and angular
exponent to be, respectively,

zcut ¼ 0.1; β ¼ 0; ð3Þ

such that soft drop acts like the modified mass drop tagger
(mMDT) [69] with μ ¼ 1. The values of z and θ obtained
after the soft drop are referred to as zg and θg, where the g
subscript is a reminder that these values were obtained after
jet grooming. These two observables encode information
about the two nontrivial kinematic variables in the unpo-
larized 1 → 2 QCD splitting function from Eq. (1). Note
that zg is a ratio of pT scales, so not affected by the JEC
factor applied to the jet pT as a whole. Similarly, as a
dimensionless quantity, zg is relatively insensitive to the
absolute energy scale of the PFCs and is only mildly
affected by the pmin

T ¼ 1 GeV restriction.
The key observable used in jet substructure analyses at

ATLAS and CMS is the jet invariant mass [94–96]. The
track-only jet mass spectrum before and after the soft drop
is shown in Fig. 3 and compared to predictions from
PYTHIA. There is reasonable qualitative agreement between
the CMS Open Data and PYTHIA for m > 10 GeV; below
10 GeV, one expects deviations from the finite detector
resolution of CMS and the fact that the PFCs do not include
full hadron mass information. We emphasize that no
additional corrections have been applied to the CMS
Open Data, apart from the JEC factor needed to impose
the pT > 150 GeV criteria and the pmin

T ¼ 1 GeV PFC
restriction needed to account for finite energy resolution
and efficiency. Similarly, we are showing particle-level
predictions from PYTHIA using the default tune with no
detector simulation (but the same restriction to charged
hadrons with pmin

T ¼ 1 GeV). Because we do not have
access to detector-simulated Monte Carlo samples, and
because there is insufficient information in the AOD format

to estimate systematic uncertainties, the error bars shown
include only statistical uncertainties.
To see the two-prong structure revealed by the soft drop,

Fig. 4 shows the double-differential track ðzg; θgÞ spectrum
seen in the CMSOpen Data. The peak towards small values
of zg and θg reflects the double-logarithmic structure in
Eq. (1), since soft gluon emission from a hard quark or
gluon is approximated by

dPi→ig ≃ 2αsCi

π

dθ
θ

dz
z
; ð4Þ

where αs is the strong coupling constant and Ci is the
Casimir factor (4=3 for quarks, 3 for gluons). The zg
distribution is cut off by zcut, which regulates the soft
singularity of QCD. In principle, the θg distribution could
extend all the way to zero, but it is cut off both by the
angular resolution of the CMS detector and by nonpertur-
bative QCD effects which are relevant for θg ≃ ΛQCD=
ðzcutpTRÞ≃ 10−1. In addition, the perturbative θg → 0

singularity in Eq. (1) is regulated by a single-logarithmic
form factor [68], which we now exploit to perform analytic
calculations of the zg distribution.
In perturbative QCD, zg with β ¼ 0 is a collinear-unsafe

observable and therefore not calculable order by order in an
expansion in the strong coupling constant αs. In particular,
zg is ambiguous for a jet containing a single parton, and
therefore real emission singularities associated with two
partons (where zg is well defined) cannot cancel against
virtual emission singularities associated with one parton
(where zg is ill defined). That said, we can follow the
strategy outlined in Refs. [71,97] and express the normal-
ized zg probability distribution pðzgÞ as

pðzgÞ ¼
Z

dθgpðθgÞpðzgjθgÞ; ð5Þ

FIG. 3. Track jet mass spectra before and after the soft drop
procedure with β ¼ 0 (i.e., mMDT with μ ¼ 1), comparing the
CMS Open Data to PYTHIA.

FIG. 4. Double-differential distribution of track zg versus θg in
the CMS Open Data, i.e., the dimensionless probability density
pðzg; θgÞ whose integral is 1.
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where pðθgÞ is the probability distribution for θg and
pðzgjθgÞ is the conditional probability distribution for zg
given a fixed value of θg. While zg is collinear unsafe, the
conditional probability distribution pðzgjθgÞ is calculable
as a perturbative expansion, since any finite value of θg will
remove the one-parton region of phase space. By resum-
ming the pðθgÞ distribution to all orders in αs, the θg → 0

limit is regulated, and the integral in Eq. (5) yields a finite
distribution for pðzgÞ. In this way, zg is a collinear unsafe
but “Sudakov safe” observable [97].
Remarkably, to the lowest nontrivial order, the proba-

bility distribution for pðzgÞ can be directly expressed in
terms of the QCD splitting function as [71]

pðzgÞ ¼
X
i

fipiðzgÞ; ð6Þ

where fi is the fraction of the event sample composed of
jets initiated by partons of flavor i (i.e., quarks or gluons),
and

piðzÞ ¼
P̄iðzÞR

1=2
zcut

dz0P̄iðz0Þ
Θðz > zcutÞ þOðαsÞ; ð7Þ

where

P̄iðzÞ ¼
X
j;k

½Pi→jkðzÞ þ Pi→jkð1 − zÞ�: ð8Þ

The zg distribution is a flavor-averaged, z-symmetrized,
zcut-truncated, and normalized version of the QCD splitting
function. Because of a supersymmetric relationship
between the quark and gluon splitting functions [98,99],
P̄i is the same for quarks and gluons to an excellent
approximation, such that

pðzgÞ≃
2

zg
1−zg

þ 2
1−zg
zg

þ 1

3
2
ð2zcut − 1Þ þ 2 log 1−zcut

zcut

; ð9Þ

and the probability distribution for zg is independent of αs
at leading order. In this way, measuring zg exposes the
QCD splitting function. The predicted zg distribution can
be refined by performing higher-order calculations. As
in Ref. [71], we calculate pðθgÞ to modified leading-
logarithmic (MLL) accuracy, which includes running
coupling effects and subleading terms in the splitting
functions. We also calculate pðzgjθgÞ to leading fixed order
in the collinear approximation and obtain an analytic
prediction for pðzgÞ using Eq. (5). While not shown below,
the theoretical uncertainties on pðzgÞ can be estimated by
varying the different renormalization scales that enter the
calculation [87].

In Fig. 5, we show the zg distribution for our jet selection,
comparing the analytic expression in Eq. (5) [which
extends Eq. (9) to MLL accuracy], three parton shower
generators, and the CMS Open Data. Strictly speaking, the
theoretical calculation described above should be modified
[100,101] to account for the fact that the current analysis is
based only on charged particles; for this reason, we show
pðzgÞ without its uncertainty band to emphasize its quali-
tative nature. Notwithstanding the above, the CMS Open
Data agree very well with the theory calculation as well as
with the Monte Carlo parton showers, and the characteristic
1=z behavior expected from the QCD splitting function is
seen in all distributions. The one point where there is a
noticeable (but expected) difference between the open data
and the parton showers is at zg ¼ 0, which corresponds to
jets that have only one constituent after a soft drop. Because
close-by particles can be reconstructed as a single PFC
due to finite angular resolution, the CMS Open Data are
expected to have more “one-particle” jets than the parton
shower generators. We have evidence that the small differ-
ence between the parton showers and the theory distribu-
tion at zg ≃ zcut is due to growing logarithms of zg that are
not resummed in our MLL approach. We verified that these
discrepancies are suppressed for zcut ¼ 0.2 and enhanced
for zcut ¼ 0.05, consistent with this expectation.
The CMS Open Data represent a new chapter in particle

physics, since, for the first time, high-quality collider data has
been released to scientists not affiliated with an experimental
collaboration. In this Letter, we applied state-of-the-art jet
substructure techniques on the CMSOpenData and exposed
the QCD splitting function, which encodes the universal
behavior of gauge theories in the collinear limit. This was
possible only because of theoretical advances on Sudakov
safe observables, which allowed us to predict the zg dis-
tribution from first principles, and the fantastic experimental

FIG. 5. Distribution of zg from mMDT and soft drop. The
theory distribution is from an all-particle prediction yet agrees
very well with the track-based distributions.
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performance of the CMS detector, which allowed us to
perform a detailed study of the substructure of jets. We hope
this Letter inspires scientists outside of the LHC
Collaborations to incorporate CMS Open Data into their
research and motivates the LHC Collaborations to continue
their support of open data initiatives.
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