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Abstract We show that every orthogonal polyhedron of genus g ≤ 2 can be un-
folded without overlap while using only a linear number of orthogonal cuts (parallel
to the polyhedron edges). This is the first result on unfolding general orthogonal
polyhedra beyond genus-0. Our unfolding algorithm relies on the existence of at
most 2 special leaves in what we call the “unfolding tree” (which ties back to the
genus), so unfolding polyhedra of genus 3 and beyond requires new techniques.

Keywords grid unfolding, linear refinement, orthogonal polyhedron, genus 2

1 Introduction

An unfolding of a polyhedron is produced by cutting its surface in such a way that
it can be flattened to a single, connected piece without overlap. In an edge unfold-
ing, the cuts are restricted to the polyhedron’s edges, whereas in a general unfold-
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ing, cuts can be made anywhere on the surface. It is known that edge cuts alone
are not sufficient to guarantee an unfolding for non-convex polyhedra [BDE+03,
BDD+98], and yet it is an open question as to whether all non-convex polyhedra
have a general unfolding. In contrast, it is unknown whether every convex polyhe-
dron has an edge unfolding [DO07, Ch. 22], but all convex polyhedra have general
unfoldings [DO07, Sec. 24.1.1].

The successes to date in unfolding non-convex objects have been with the
class of orthogonal polyhedra. This class consists of polyhedra whose edges and
faces all meet at right angles. Because not all orthogonal polyhedra have edge
unfoldings (even for simple examples such as a box with a smaller box extruding
out on top) [BDD+98], the unfolding algorithms use additional non-edge cuts.
These additional cuts generally follow one of two models. In the grid unfolding
model, the orthogonal polyhedron is sliced by axis perpendicular planes passing
through each vertex, and cuts are allowed along the slicing lines where the planes
intersect the surface. In the grid refinement model, each rectangular grid face under
the grid unfolding model is further subdivided by an (a × b) orthogonal grid, for
some positive integers a, b ≥ 1, and cuts are also allowed along any of these grid
lines.

There have been three phases of research on unfolding orthogonal polyhe-
dra. The first phase focused on unfolding special subclasses, which included or-
thotubes [BDD+98], well-separated orthotrees [DFMO05], orthostacks [BDD+98,
DM04], and Manhatten towers [DFO08]. These algorithms use the grid unfolding
model or the grid refinement model with a constant amount of refinement (i.e., a
and b are both constants).

The second phase began with the discovery of the epsilon-unfolding algo-
rithm [DFO07] which unfolds all genus-0 orthogonal polyhedra. A key component
of the unfolding algorithm is the determination of a spiral path on the surface of the
polyhedron that unfolds to a planar monotone staircase, from which the rest of the
surface attaches (without overlap) above and below. A drawback of that algorithm
is that it requires an exponential amount of grid refinement. Subsequent improve-
ments, however, reduced the amount of refinement to quadratic [DDF14], and then
to linear [CY15], with both algorithms following the basic outline of [DFO07].

The third phase of research addresses the next obvious challenge, that of un-
folding higher genus polyhedra. To our knowledge, the only attempt at this is that
of Liou et al. [LPW14]. They provide an algorithm for unfolding a special subclass
of one-layer orthogonal polyhedra in which all faces are unit squares and the holes
are unit cubes.

Thus the question of whether all orthogonal polyhedra of genus greater than
zero can be unfolded is still wide open, and is in a sense the natural endpoint of this
line of investigation. In this paper we take a significant step toward this goal by
presenting a new algorithm that unfolds all orthogonal polyhedra of genus 1 or 2.
The algorithm extends ideas from [CY15] by making several key modifications to
circumvent issues that arise from the presence of holes. As in [CY15], our algorithm
only requires linear refinement.
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1.1 Notation and Definitions

Let P be an orthogonal polyhedron of genus g ≤ 2, whose edges are parallel to the
coordinate axes and whose surface is a 2-manifold. We take the z-axis to define
the vertical direction, the x-axis to determine left and right, and the y-axis to
determine front and back. We consistently take the viewpoint from y = −∞. The
faces of P are distinguished by their outward normal: forward is −y; rearward is
+y; left is −x; right is +x; bottom is −z; and top is +z.1
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Fig. 1 (a) A polyhedron of genus one (bands are dark-shaded) (b) slabs S0 (with bands b00
and b01) and S1 (with band b10) delimited by Y0 and Y1; (c) slab S2 (with bands b20, b21, b22
and b23) delimited by Y1 and Y2; (d) slab S3 (with bands b30 and b31) delimited by Y2 and
Y3, and (e) slab S4 (with band b40) delimited by Y3 and Y4.

Imagine slicing P with y-perpendicular planes through each vertex. Let Y0,
Y1, Y2, . . . be the slicing planes sorted by y coordinate. Each (solid) connected
component of P located between two consecutive planes Yi and Yi+1 is called a slab.
For example, the polyhedron from Figure 1a has five slabs S0, S1, S2, S3 and S4,
which are depicted in Figure 1(b-e). Note that each slab is an extruded orthogonal
polygon with zero or more orthogonal holes, extruded in the y-direction. The cycle
of {left, right, top, bottom} faces surrounding either the entire slab or a hole in a
slab is called a band. Each slab has exactly one outer band, and zero or more inner
bands. Referring to the example from Figure 1, the slab S0 has outer band b00 and
inner band b01; S1 has outer band b10 and no inner bands; S2 has outer band b20
and inner bands b21, b22 and b23; S3 has outer band b30 and inner band b31; and
S4 has outer band b40 and no inner bands. Note that each band is associated with

1 The ±y faces are given the awkward names “forward” and “rearward” to avoid confusion
with other uses of “front” and “back” introduced later.
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a unique slab. The intersection of a band with an adjacent plane Yi (and similarly
in Yi+1) is a cycle of edges called a rim (so each band has exactly two rims).

We say that a rim r encloses a face of P if the portion of the Y -plane interior
to r is a face of P . In other words, all points enclosed by r in the Y -plane are also
on the surface of P . If there are points of the Y -plane enclosed by r that are not
on the surface of P , then we say that r does not enclose a face of P . For example,
in Figure 1 the rim of b10 in plane Y0, the rim of b22 in plane Y2 and the rim of
b40 in plane Y4 each enclose a face of P , but the rim of b00 in Y0 does not.

2 Overview of Linear Unfolding

Throughout this section, P is an orthogonal polyhedron of genus zero. We begin
with an overview of the algorithm in [CY15] that unfolds P using linear refinement.
In Section 3 we will detail those aspects of the algorithm that we modify to handle
orthogonal polyhedra of genus 1 and 2.

2.1 Unfolding Extrusions

Nearly all algorithmic issues in the linear unfolding algorithm from [CY15] are
present in unfolding polyhedra that are vertical extrusions of simple orthogonal
polygons. Therefore, we describe their unfolding algorithm for this simple shape
class first, before extending the ideas to all orthogonal polyhedra of genus zero.

Before going into details, we briefly describe the algorithm at a high level.
It begins by slicing P into slabs using y-perpendicular planes. For these vertical
extrusions, all the slabs are boxes. The adjacency graph of these boxes is a tree T .
Each leaf node b in T has a corresponding thin spiral surface path that includes
a vertical segment running across the back face of b (which must be a face of
P ) on the side opposite to b’s parent. The surface path extends from the bottom
endpoint of this vertical segment by cycling around b’s band until it reaches the
top endpoint, and from there it continues along two strands that spiral side-by-
side together on P , cycling around the bands on the path in T to the root node
box where the two strands terminate. At the root box, the endpoints of all the
pairs of strands are carefully stitched together into one surface path that can be
flattened in the plane as a monotone staircase. By thickening the surface path
to cover the band faces of P , and attaching the y-perpendicular faces above and
below it, the entire surface of P is flattened without overlap into the plane. Details
of the algorithm are provided in the sections that follow.

2.1.1 Unfolding Tree T

Again we restrict our attention to the situation where P is a vertical extrusion
of a simple orthogonal polygon, and describe the algorithm in detail. The unfold-
ing algorithm begins by slicing P with Yi planes passing through every vertex,
as described in Section 1. This induces a partition of P into rectangular boxes.
See Figure 2a for an example. The dual graph of this partition is a tree T whose
nodes correspond to bands, and whose edges connect pairs of adjacent bands. Fig-
ure 2b shows the tree T for the example from Figure 2a. We refer to T as the
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unfolding tree, since it will guide the unfolding process. For simplicity, we will use
the terms “node” and “band” interchangeably.
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Fig. 2 (a) Genus-0 polyhedron partitioned into boxes (b) Unfolding tree T rooted at b0.

Every tree of two or more nodes has at least two nodes of degree one, so
we designate the root of T to be one of these degree-1 nodes. In Figure 2b for
example, we may choose b0 as the root of T , although any of the other degree-1
nodes would serve as well. The rim of the root band that has no adjacent band is
called its front rim; the other rim is its back rim. For any other band b, the rim
adjacent to b’s parent in T is the front rim of b, and the other rim of b is its back
rim. Children attached to the front rim of their parent are front children; children
attached along the back rim of their parent are back children. Note that “front”
and “back” modifiers for rims and children derive from the structure of T , and are
not related to the “forward” and “rearward” ±y directions.

For reasons that will become clear later, we slightly alter the structure of T to
eliminate all non-leaf nodes without back children. For each such internal band b,
we perform a cut around its middle with a y-perpendicular plane. This partitions
b into two bands b′ and b′′, with b′ at the front and b′′ at the back of b. This change
in the partition is mirrored in T by replacing b with b′, and adding b′′ as a back
leaf child of b′. In Figure 2, node b1 is replaced by b′1 and b′′1 . Thus each non-leaf
node in T has at least one back child.

2.1.2 Leaf Node Unfolding

The unfolding of a leaf node b is determined by a spiral surface path whose end-
points lie on a top rim segment shared by b and its parent (necessarily on b’s
front rim, by definition). See Figure 3a where the endpoints are labeled e1 and
e2. Observe that the middle of the path consists of a vertical segment on b’s back
face, shown in red on the exploded view of the back face in Figure 3a and circled
in Figure 3b. We describe the spiral path as it extends out from the top and bot-
tom of this segment to connect up with the endpoints on the front rim. From the
bottom of the segment, the path moves parallel to the y-axis on the bottom face
and then cycles counterclockwise to the top face where it meets up with the top
end of the vertical segment. From there, both ends of the path cycle side-by-side
together in a counterclockwise direction while displacing toward the front rim. We
refer to this spiral path as the connector path, suggestive of its ability to connect
two points (e1 and e2) that are both located on the same rim. When unfolded and
laid horizontally in the plane, this spiral forms a monotone staircase, as depicted
in Figure 3b.
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Fig. 3 Unfolding a leaf band in counterclockwise direction; arrows indicate the direction
followed by the unfolding algorithm, starting at the back face vertical segment (shown in red
in (a) and circled in (b) of this figure).

Three-dimensional illustrations, such as the one in Figure 3a, become imprac-
tical for more complex examples, so we will use instead the 2D representation
depicted in Figure 3c. This 2D representation captures the counterclockwise direc-
tion of the blue and black portions of the path in Figure 3a, viewed from y = −∞
as they cycle side-by-side together from the back to the front rim; the arc symbol-
izes the vertical back face segment connecting them.

A crucial property required by the Chang and Yen’s unfolding algorithm [CY15]
and the algorithms from which that derives [DFO07,DDF14] is that the back rim
of each leaf band in T encloses a face of P . This is necessary because the connector
paths use a thin strip from the back faces of the leaves. Although it is easy to verify
this property for the simple shape class of extrusions, it is not obvious for arbitrary
genus-0 orthogonal polyhedra, but was proven true in [DFO07].

2.1.3 Internal Node Unfolding

Having established a spiral path for each leaf node, we then extend these paths to
the internal nodes in T , where an internal node is any non-leaf node other than
the root. We process internal nodes of T in order of increasing height of their
corresponding subtrees. This guarantees that, at the time an internal node b is
processed, its children in T have already been processed. We assume inductively
that having processed a front (back) child of b, the two endpoints of each spiral
path originating at a leaf in the child’s subtree are located side-by-side on the
front (back) rim of b. The goal in processing b is to extend these paths so that
the pairs of endpoints lie side-by-side on the top of b’s rim segment shared with
b’s parent. In Figure 2 for example, b′′1 would have already been processed at the
time b′1 is processed, and the paths need to be extended across b′1 to the front rim
of b′1 shared with its parent b9. The total number of spiral paths handled at b is
precisely the number of leaves in the subtree of T rooted at b.

Let r be the top rim edge shared by b with its parent in T . Refer to the
band labeled b and the edge labeled r in Figure 4 (which shows the unfolding
for the example from Figure 2). Let ξ1, ξ2, . . . , be the spiral paths corresponding
to the back children of b, listed in the order in which they are encountered in a
clockwise walk starting at the top left corner of b’s back rim). Our construction of
T guarantees that at least one such back spiral exists at each internal node in T .

For each i = 1, 2, . . ., we extend both ends of ξi by tracing along both sides of
an orthogonal path that makes one complete counterclockwise cycle around the
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top, left, bottom and right faces of b, while displacing toward the front of b, until it
reaches r. The complete cycle around b is important to ensure that the spiral can
later be thickened to cover the entire surface of b (hence the need for at least one
back child at each internal node). For i > 1, the orthogonal path corresponding
to ξi runs alongside the orthogonal path corresponding to ξi−1, to ensure that the
spiral paths do not cross one another. (In Figure 4, the spiral paths are labeled
in several places, to permit easy tracing. Because ξi only moves parallel to the y
axis and spirals counterclockwise around b, it can be laid flat in the plane as a
staircase monotone in the x-direction.
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Fig. 4 Unfolding internal nodes and the root band (b0) for the example from Figure 2; arrows
indicate the direction followed by the unfolding algorithm.

We now turn to processing the spiral paths corresponding to the front chil-
dren of b. Let ξ′1, ξ

′
2, . . . , be the front spiral paths encountered in this order in

a counterclockwise walk around the front rim of b, starting at any point on the
front rim of b. We extend both ends of each spiral ξ′i by tracing along both sides
of an orthogonal path that displaces slightly toward the back of b, then proceeds
counterclockwise and toward the front of b until it meets r. Note that, if ξi lies to
the left of r, then it will need to cycle around the top, left, bottom and right faces
of b, in order to meet r (see spiral ξ′1 = ξ5 in Figure 4). Again, care must be taken
to ensure that the orthogonal path corresponding to ξ′i does not cross any of the
orthogonal paths corresponding to the other (front and back) spiral paths.
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2.1.4 Root Node Unfolding

The last internal node of T whose spiral paths are extended to its parent in this
fashion is the (single) child b of the root band. As described, these spiral paths cycle
counterclockwise on b to reach the top rim segment r on the front rim of b, which by
definition is the back rim of the root band. Let ξ1, ξ2, . . . , ξ` be the extended spiral
paths listed in the order encountered in a clockwise walk around the front rim of b,
starting at the top left corner of the root’s back face. Here ` is the number of leaf
nodes in T . (For example, ` = 7 in the example from Figure 4.) Let L(ξi) be the left
endpoint of spiral ξi on r and let R(ξi) be the right endpoint. With this notation,
the endpoints from left to right on r are L(ξ1), R(ξ1), L(ξ2), R(ξ2), . . . , L(ξ`), R(ξ`).

The next step of the algorithm is to link these ` spiral paths into a single
path ξ that can be flattened in the plane as a monotone staircase. The starting
point of ξ is L(ξ1), and the first part of ξ consists of ξ1 followed by ξ`. These
two spiral paths are linked via a connector path on the root band that extends
from endpoint R(ξ1) to endpoint R(ξ`). See the 2D representation of the connector
path linking the right endpoint of ξ1 to the right endpoint of ξ7 in Figure 4. This
connector path is analogous to the connector paths followed at the leaf nodes,
but here the vertical segment is on the front face of the root band. Because the
root node has degree one and its only child is adjacent on its back rim, the root’s
front rim encloses a face of P , and so it is possible for the path to connect in this
manner. This connector path is depicted in Figure 5. From R(ξ`), the connector
path cycles counterclockwise to reach R(ξ1). From there, both parts of the path
(i.e., the extensions of R(ξ`) and R(ξ1)) cycle counterclockwise together towards
the front face. The part of the path extending from R(ξ`) meets the front face
vertical segment at its top endpoint, while the other part of the path extending
from R(ξ1) continues cycling to the bottom face and meets the vertical segment at
its bottom endpoint. (Observe that this path is a mirror image of the one depicted
in Figure 3.) Like a leaf node connector path, this path can be laid flat in the

x

y

z

R(ξ1)
R(ξ`)

Fig. 5 The connector path for the spiral paths ξ1 and ξ`; arrows indicate the direction followed
by the unfolding algorithm, up to the vertical segment on the front face.

plane as a monotone staircase. Because the counterclockwise cycling direction of
the connector path is consistent with that of ξ1 and ξ`, ξ1 can be laid flat on one
side of the path and ξ` can be laid flat on the other side, thus forming a single
monotone staircase. In this way we link ξ1 and ξ` to form the first part of ξ.

Continuing to link the spiral paths to form ξ, L(ξ`) is linked to endpoint L(ξ2)
using a connector path that runs alongside the previous connector path. Similarly,
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this connector path flattens to a monotone staircase and connects the two flattened
staircases ξ` and ξ2. The remaining endpoints are paired up similarly and linked
with connector paths. Specifically, R(ξi) is linked to R(ξ`−i+1) and L(ξi) is linked
to L(ξ`−i+2)), for i = 2, 3, . . . until one unpaired endpoint remains: L(ξ`/2+1) (if
` is even) or R(ξ(`+1)/2) (if ` is odd). This endpoint is where ξ terminates. See
R(ξ4) in Figure 4.

2.1.5 Completing the Unfolding

To complete the unfolding of P , the spiral ξ is thickened in the +y and −y direction
so that it completely covers each band. This results in a thicker strip, which can
be unfolded as a staircase in the plane. Then the forward and rearward faces of
P are partitioned by imagining the band’s top rim edges illuminating downward
light rays in these faces. The illuminated pieces are then “hung” above and below
the thickened staircase, along the corresponding illuminating rim segments that
lie along the horizontal edges of the staircase.

2.2 Unfolding Genus-0 Orthogonal Polyhedra

The unfolding algorithm described in subsection 2.1 for extrusions generalizes to
all genus-0 orthogonal polyhedra as described in [CY15], so we briefly present the
main ideas here and refer the reader to [CY15] for details.

Instead of partitioning P into boxes, the unfolding algorithm partitions P into
slabs as defined in Section 1. It then creates an unfolding tree T in which each
node corresponds to either an outer band (surrounding a slab) or an inner band
(surrounding a hole). Each edge in T corresponds to a z-beam, which is a thin
vertical rectangular strip from a frontward or rearward face of P connecting a
parent’s rim to a child’s rim. Note that a z-beam may have zero geometric height,
when two rims share a common segment. The spiral paths connect vertically along
the z-beams when transitioning from a child band to its parent. For a parent band
b, its front (back) children are those whose z-beams connect to b’s front (back) rim.
It was established in [DFO07] that the back rim of each leaf node in T encloses a
face of P .

2.2.1 Assigning Unfolding Directions

Unlike the case of extrusions, where all bands are unfolded in the same direction
(i.e., either all counterclockwise or all clockwise), general genus-0 orthogonal poly-
hedra may require different unfolding directions for different bands. For example,
if a z-beam is incident to a top rim edge of the parent and a bottom rim edge
of the child, then the unfolding direction (viewed from y = −∞) changes when
transitioning from the child to the parent. Figure 6 shows such an example: the
z1-beam is incident to a top rim edge of parent b0 and a bottom rim edge of child
b1 (see the unfolding tree in Figure 6b, which shows the parent-child relationship);
the unfolding direction is counterclockwise on b1 and clockwise on b0.

We assign unfolding directions for each band in a preorder traversal of the
unfolding tree T . Set the unfolding direction for the root band to counterclockwise.
At each band node b visited in a preorder traversal of T , if the edge in T connecting
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Fig. 6 (a) The unfolding direction changes when transitioning from child b1 to parent b0, the
root node in this example; bands, rims and z-beams have been assigned indices consistent to
those in (b) and (c) of this figure (b) Unfolding tree T (c) rim graph Gr, with b-edges marked
thick and z-edges thin.

b to its parent corresponds to a z-beam incident to both top and bottom rim points,
then set the unfolding direction for b to be opposite to the one for the parent (i.e.,
if the unfolding direction for the parent is counterclockwise, then the unfolding
direction for b will be clockwise, and vice versa.) Otherwise, the endpoints of the
z-beam connecting b to its parent are both top rim points or both bottom rim
points, and in that case b inherits the unfolding direction of its parent. (Recall
that a z-beam can have zero geometric height where two rims overlap.)

2.2.2 The Unfolding Procedure

The unfolding of a leaf band b follows the description in subsubsection 2.1.2 (Fig-
ure 4), except that the unfolding proceeds in the direction d assigned to b (as
described in subsubsection 2.2.1), and the spiral path may cycle around multiple
band faces instead of just four. When the two endpoints reach the z-beam on b’s
front rim, they track vertically along the z-beam, stopping side-by-side on the rim
of b’s parent.

At each internal node b in T , the unfolding proceeds as described in subsub-
section 2.1.3. Observe that there is a natural cyclic ordering of b’s front (back)
children that is determined by their z-beam connections around b’s front (back)
rim, which guides the order in which we process b’s children. Once the pairs of
endpoints reach the z-beam connection to b’s parent on b’s front rim, they move
vertically along the z-beam, stopping on the rim of b’s parent. At the root node,
these strips are glued together as described in subsubsection 2.1.4 (with the notion
of “left” and “right” altered to match the cyclic ordering of the children, so that
L(ξ) and R(ξ) are always encountered in this order in a clockwise walk along the
rim). In addition, the spiral paths followed on inner bands are the same as those
described previously for outer bands. For example, assume that the inner band b22
that forms a dent in the example from Figure 1 is a leaf band in T . Note that the
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interior of P surrounds b22 on all sides, except for the front which is the entrance
to the dent. Then the connector path is the same as in Figure 3a but is now viewed
as cycling on the surface of P inside the dent.

In the unfolded staircase, the portion of ξ on a z-beam corresponds to a vertical
riser. Thickening ξ proceeds as in the case of extrusions. The partitioning of the
forward and rearward faces also follows the case of extrusions, but in addition to
shooting illuminating rays down from top rim edges, bottom rim edges also shoot
rays downward to illuminate portions of faces not illuminated by the top edges.
The face pieces resulting from this partitioning method are hung above and below
the staircase, as in the case of extrusions, as described in [DFO07].

3 Unfolding Genus-2 Orthogonal Polyhedra

The unfolding algorithm described in Section 2 depends on two key properties
of P that are not necessarily true if P has genus 1 or 2. First, it requires the
existence of a band with a rim enclosing a face of P that can serve as the root
node of T . And second, it requires the back rim of each leaf node in T to enclose
a face of P . These two requirements are needed so that the connector paths can
use vertical strips on the enclosed faces in the unfolding. As a simple example of
a genus-1 polyhedron for which neither property holds, consider the case when P
is a box with a y-parallel hole through its middle. Slicing P with y-perpendicular
planes results in a single slab having one outer and one inner band. In this case,
no rim encloses a face of P . If we rotate P so that the hole is parallel to the x axis
instead, slicing produces four bands, and the band surrounding the frontward (or
rearward) box could serve as the root node. But every unfolding tree for the four
bands contains a leaf whose back rim doesn’t enclose a face of P .

In this section, we first show that there always exists an orientation for P such
that at least one band has a rim enclosing a face of P that can be used for the root
of T . Then we describe an algorithm that computes an unfolding tree for which
we can prove that the number of leaf bands whose back rims do not enclose a face
of P is at most g, where g is the genus of P . Finally, we describe changes to the
unfolding algorithm that allow it to handle up to g leaves that don’t enclose a face
of P , for g ≤ 2.

3.1 The Rim Unfolding Tree Tr

In order to establish these new results, we need finer-grained structures than the
band-based G and T , which we call Gr and Tr, both of which are rim-based. We
define the rim graph Gr for P in the following way. For each band b of P , add two
nodes rb and r′b to Gr corresponding to each of b’s rims. Add an edge connecting
rb and r′b and call it a band edge, or a b-edge for short. For each pair of rims that
can be connected by a z-beam, add an edge between them in Gr, and call it a
z-beam edge, or a z-edge for short. Figure 6 illustrates these definitions; for more
complex examples, see Figures 10 and 12. When referring to Gr, we will use the
terms node and rim interchangably. For any simple cycle C in Gr, we distinguish
between b-nodes of C, which are endpoints of b-edges in C, and z-nodes of C,
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incident to two adjacent z-edges in C. For any subgraph J ⊆ Gr, we use V (J) and
E(J) to denote the set of nodes and the set of edges in J , respectively.

Call a rim of Gr that encloses a face of P a face-node. A nonface-node in Gr

is a node whose rim does not enclose a face of P . In Figure 6 for instance, rb0 , rb1

and r′b2
are face-nodes, and r′b0

, r′b1
and rb2 are nonface-nodes.

Proposition 1 A rim r is a face-node of Gr if and only if every z-beam extending
from a horizontal edge of r and going up or down on the surface of P hits r. A
face-node of Gr is necessarily of degree one.

Lemma 1 If polyhedron P has genus g ≤ 2, then there is a direction for slicing
P such that Gr includes a face-node rF .

Mr b
P ′

b′

F

(a) (b)

Fig. 7 (a) A genus-2 polyhedron P with six extreme faces, all non-simply connected, that
includes a genus-0 cave P ′ with mouth M (b) Lemma 1: a polyhedron of genus g = 3 with no
slicing direction that yields a face-node.

Proof Define the extreme faces of P as those faces flush with the smallest bound-
ing box enclosing P . There must be at least one extreme face in each of the six
directions d ∈ {±x,±y,±z}. If any extreme face F , say in direction d, is simply
connected, then slicing P with a d-plane (parallel to F ) just adjacent to F will
create a band b one of whose rims rF encloses F . Thus, slicing P with d-planes
will result in Gr including the face-node rF , and the lemma is established.

Assume henceforth that each of the at least six extreme faces of P is not
simply connected. So each extreme face F includes at least one inner band b. We
now classify these bands b into two types.

Let r be the rim of an inner band b in face F . If cutting along r separates the
surface of P into two pieces, P ′ which includes b, and the remainder P \ P ′, then
we say that b is a cave-band. Let M be the “mouth” of the cave: the portion of the
Y -plane enclosed by the rim r. P ′ is a “cave” in the sense that an exterior path
that enters through M can only exit P ′ back through M again. See Figure 7a. A
band b that is not a cave-band is a hole-band. These have the property that there
is an exterior topological circle that passes through the mouth M once, and so
exits P ′ elsewhere.



Unfolding Genus-2 Orthogonal Polyhedra with Linear Refinement 13

Let P ′ be a cave with mouth M . P ′ ∪M is an orthogonal polyhedron P ′M ,
inverting what was exterior to P to become interior to P ′M . Say that cave P ′ has
genus 0 if P ′M has genus 0. We now claim that the lemma is satisfied if P has a
genus-0 cave. For we may apply the same procedure to P ′M : Examine its extreme
faces (one of which is M). If any extreme face (other than M) is simply connected,
we are finished. Otherwise, each extreme face includes an inner band b′. It cannot
be the case that b′ is a hole band, for then P ′M has genus greater than 0. Moreover,
b′ cannot be a cave band for a cave of genus greater than 0. For in both cases, we
could cut a cycle on the surface of P ′ that would not disconnect P ′. So b′ must
determine a genus-0 cave band, and the argument repeats. Eventually we reach a
simply connected extreme face.

Now we have reduced to the situation that each of P ’s six or more extreme
faces contains either a hole-band, or a genus-(≥ 1) cave band. Let the number of
these bands be h and c respectively. We now account for the genus g of P , and the
number of extreme faces. Each cave of genus-(≥ 1) contributes at least 1 to g. A
hole-band in an extreme face could exit through that same face, or exit through a
different extreme face, or exit through a non-extreme face. In the first two cases,
two hole-bands contribute 1 to g; in the third case, one hole band contributes 1 to
g. So h hole-bands contribute at least h/2 to the genus, and we have the inequality
c+ h/2 ≤ g ≤ 2.

We have defined h and c to be the number of such bands in extreme faces, and
we know that each of the at least six extreme faces must have one or more hole-
or genus-(≥ 1) cave-bands. So we must have c+ h ≥ 6. But these two inequalities
have no solutions in non-negative integers. ut

Figure 7b shows that Lemma 1 is tight. Henceforth we assume P is oriented so
that the direction guaranteed by the lemma slices P with Y -planes, and so Gr has
a face-node rF . This node will become the root of the unfolding tree.
Figure 8 shows an example of a genus-2 polyhedron sliced with Y -parallel planes
in the direction identified by Lemma 1, which yields two face-nodes r1 and r′7.
The rim graph Gr for this polyhedron is depicted (ahead) in Figure 12b, with r1
selected as root.

Lemma 2 Gr is connected and contains no nonface-leaf nodes.

Proof Call a maximal connected surface piece of P located in a plane Yi a z-patch
(suggestive of the fact that it might contain z-beams). First note that the subset of
rims belonging to a z-patch induces a connected component in Gr (call it a z-patch
component) that contains z-edges only. For example, the front face of band b5 in
Figure 10 is a z-patch that connects rims r′1 and r′4 to r5 with z-beams.

The connectedness of P ’s surface implies that all z-patches are connected to-
gether by bands. In Gr, this corresponds to all z-patch components being con-
nected together by b-edges. It follows that Gr is connected.

Next we show that there are no nonface-leaves in Gr. Suppose there is a node
r in Gr of degree 1 that does not enclose a face of P . Because all nodes in Gr

are connected by a b-edge to the rim on the other side of the band, there is a
b-edge adjacent to r. Now consider extending z-beams up and down from every
horizontal edge of r. Because r does not enclose a face of P , at least one of the
z-beams must hit the rim of another band by Proposition 1. But then r also has
a z-edge adjacent to it, giving it a degree of at least 2, a contradiction. ut
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Fig. 8 Genus-2 polyhedron partitioned into slabs.

Note that Gr for the genus-3 example in Figure 7b has no leaf nodes at all, and
so satisfies this lemma vacuously.

Our next goal is to find a rim spanning tree Tr of Gr with at most g nonface-
leaves, which will ultimately similarly limit the number of nonface-leaf nodes of
T . The RimUnfoldingTree method for achieving such a Tr is outlined in Algo-
rithm 1. It reduces Gr to a tree by repeatedly removing a z-edge from an existing
cycle, thus breaking the cycle. In addition, it does this in such a way that at most
g nonface-leaf nodes are created. If we were to break a cycle by removing an ar-
bitrary z-edge from it, it may be that both endpoints of the z-edge have degree
two, and thus removing it would result in the creation of two new leaf nodes, both
of which would be nonface-nodes. To avoid this, our RimUnfoldingTree algo-
rithm strategically selects a z-edge e with at least one endpoint, say u, of degree
3 or more. Thus the removal of e results in the creation of at most one new leaf.
More importantly, the algorithm ensures that one of u’s three or more adjacent
edges is an edge that is not part of any current (simple) cycle. Call this edge e′,
and note that e′ will never be removed by the algorithm, because the algorithm
only removes cycle edges. The existence of e′ guarantees that u’s degree will not
drop below 2 (for if the degree of u were to reach 2, then because one of the two
adjacent edges is e′ and not part of a cycle, the other adjacent edge cannot be
part of a cycle either, and therefore neither edge will be removed). This property
of u will be important in bounding the number of nonface-leaf nodes created by
the algorithm.

Let us walk through a few iterations of the RimUnfoldingTree algorithm
with the help of the example from Figure 9. The initial graph Tr = Gr and the
subgraph (not necessarily connected) induced by its cycles are shown in Figure 9a.
The nodes r′1, r4, r′4, and r7 in H are all candidates for the selection of u in the
first iteration of the algorithm, and the algorithm picks one of them – say, u = r′1
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Tr = RimUnfoldingTree(Gr)

Initialize Tr ← Gr

while Tr is not a tree do
Let H ⊂ Tr be the subgraph of Tr induced by all simple cycles in Tr

Pick an arbitrary node u ∈ V (H) incident to an edge e′ in E(Tr) \ E(H)
Pick an arbitrary z-edge e ∈ E(H) incident to u
Remove e from Tr

end
return Tr

Algorithm 1: Computing a rim spanning tree of Gr.
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Fig. 9 Algorithm RimUnfoldingTree (a) Tr and H at the beginning of the first iteration:
the algorithm identifies e = (r′1, r2) to be removed from Tr (b) Tr and H at the beginning of
the second iteration: the algorithm identifies e = (r3, r2) to be removed (c) Tr and H at the
beginning of the third iteration: the algorithm identifies e = (r′3, r4) to be removed, and so on.

– arbitrarily. This node is incident to two z-edges (r′1, r2) and (r′1, r3) of H, so the
algorithm picks one of them – say, (r′1, r2) – arbitrarily, and removes it from Tr.
The resulting Tr, and the subgraph induced by its cycles, are shown in Figure 9b.
At this point, nodes r3, r4, r′4, and r7 are candidates for the selection of u in the
second iteration of the algorithm, and the algorithm picks one of them – say, r3 –
arbitrarily. This node is incident to a single z-edge (r3, r2) of H, so the algorithm
removes it from Tr. The resulting Tr, and the subgraph induced by its cycles, are
shown in Figure 9c. This process continues in a similar way, until Tr contains no
cycles. A valid output produced by this algorithm is shown in Figure 12c.

Lemma 3 The RimUnfoldingTree algorithm produces a spanning tree of Gr.

Proof By Lemma 1, Gr (and therefore Tr) includes a node of degree one that
is not part of a cycle in Gr and therefore is not in H. This implies that there
is at least one edge in E(Tr) \ E(H) incident to a node u of H (because Tr is
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connected). This proves the existence of the node u picked in each iteration of the
RimUnfoldingTree algorithm. Because u is part of at least one cycle in H, its
degree is at least two in H. The edge in E(Tr) \ E(H) incident to u contributes
another unit to the degree of u; therefore u has degree at least three in Tr. By
the definition of Gr, no two b-edges in Gr are adjacent, since any two b-edges are
connected by a path of one or more z-edges in Gr. (Recall a z-edge might have zero
geometric height, when two rims share a common segment.) This implies that, out
of the two or more edges in E(H) incident to u, at least one is a z-edge. This proves
the existence of the edge e picked in each iteration of the RimUnfoldingTree
algorithm. Removing e from Tr breaks at least one cycle in H, so the size of H
decreases in each loop iteration. It follows that theRimUnfoldingTree algorithm
terminates and produces a tree Tr that spans all nodes of Gr. ut

Theorem 1 The number of nonface-leaves in the rim tree Tr produced by the
RimUnfoldingTree algorithm is no greater than the genus g of P .

Proof Consider a z-edge e = (u, v) removed from Tr in one iteration of the RimUn-
foldingTree algorithm. The node u is incident to at least two edges in E(H)
and at least one edge in E(Tr) \E(H); therefore its degree is at least three in Tr.
The removal of e from Tr leaves u of degree at least two, so u does not become a
leaf in Tr. This argument holds even if u is picked repeatedly in future iterations
of the RimUnfoldingTree algorithm, so u will not become a leaf in Tr.

If v has degree three or more in Tr prior to removing e from Tr, then v does
not become a leaf after removing e. So suppose that v has degree two in Tr before
removing e. Recall that every node in Gr is connected by a b-edge to the other rim
of its band. Because the RimUnfoldingTree algorithm never removes a b-edge,
this property holds in Tr as well. It follows that the other edge incident to v (in
addition to the z-edge e) must be a b-edge. Hence any leaf node in Tr created by
the RimUnfoldingTree algorithm is an endpoint of a b-edge in Tr.

By Lemma 2, Gr does not include any nonface-leaves, so any nonface-leaves in
Tr must have been created by theRimUnfoldingTree algorithm. Let r1, r2, . . . , rk

be the set of leaves in Tr created by the RimUnfoldingTree algorithm. If k ≤ g,
then the theorem is true.

Assume now that k > g. For each i, let bi be the band with rim ri. Because
Tr includes all the b-edges from Gr, it must be that Tr includes the b-edge (ri, r

′
i)

corresponding to bi, so the parent r′i of ri in Tr is the other rim of bi. For each
i = 1, 2, . . . , k, we perform a cut on P ’s surface along a closed curve around the
middle of bi, between its rims ri and r′i. Refer to Figure 10a, which shows the cuts
around the middle of b1 and b2 as dashed lines. Note that r1 and r2 are nonface-
nodes corresponding to b1 and b2 respectively, as inferred from the rim unfolding
tree Tr shown in Figure 10b (edges of Tr are marked solid, with b-edges thicker
than z-edges). We now show that these cuts do not disconnect the surface of P ,
contradicting our assumption that k > g.

To see this, consider any two points ci and c′i on bi that are separated by the
cut around bi, with ci on the same side of the cut as ri, and c′i on the same side
of the cut as r′i. Let ei = (ri, ui) be the z-edge whose removal from Tr created the
leaf ri (so ui here plays the role of u in the RimUnfoldingTree algorithm, and
by our observation above, ui is not a leaf in Tr). We construct a path pi on the
surface of P connecting ci to c′i as follows: the path pi starts at ci, moves towards
ri and along the z-beam corresponding to ei to the rim ui, then follows the path
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Fig. 10 Theorem 1 (a) example polyhedron of genus 2; cuts around the middle of bands b1
and b2 are marked with dashed lines (b) Rim tree Tr with root r3 and 2 nonface-leaves, r1
and r2. Thick and thin edges are band- and z-edges respectively.

in Tr from ui to the rim r′i, and finally across bi to c′i. See Figure 10, which traces
the paths p1 and p2 on the polyhedron surface. Note that ri is the only leaf visited
by pi (because ui is not a leaf), so pi does not cut across any of the leaves rj , for
j 6= i. This implies that pi connects ci and c′i in the presence of all the other cuts.
Since this is true for each i, we conclude that these cuts leave the surface of P
connected, contradicting our assumption that k > g. ut

3.2 The Unfolding Algorithm

Let Tr be the rim tree computed by the RimUnfoldingTree algorithm described
in subsection 3.1. We pick the root of Tr to be a face-node identified by Lemma 1,
and call its corresponding band the root band. This guarantees that the front face
of the root band is a face of P and thus it can be used in constructing the connector
paths linking the spiral paths associated with the root’s children.

For ease in describing the modified spiral paths we use for genus-1 and genus-2
polyhedra, we first convert Tr into a standard unfolding tree T having bands for
nodes rather than rims. We do this by simply contracting the b-edges. Specifically,
we replace each b-edge (ri, r

′
i) and its two incident nodes ri and r′i by a single

node bi whose incident edges are the z-edges incident to ri or r′i. Let T be the tree
resulting from Tr after contracting all the b-edges, with its root node corresponding
to the root band. For example, Figure 12d (ahead) shows the tree T obtained by
contracting b-edges of the tree Tr in Figure 12c. The two pairs of boxed nodes will
be explained shortly.

Observe that the edges in T are in a one-to-one correspondence with the z-
edges in Tr. For example, consider a z-edge (ri, rj) in Tr such that node ri is
the parent of rj . Then in T , there is an edge (bi, bj) where bi is the parent of
bj . Furthermore, rj is the front rim of bj because of the z-beam connection to its
parent determined by the z-edge (ri, rj). Any other nodes adjacent to bj in T are
its front or back children, depending on whether the corresponding z-edges in Tr
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connect to its front rim (rj) or its back rim. In this way, the rim connections that
are explicitly represented in Tr are preserved in T through the assignment of front
and back rims/children.

There is not, however, an immediate one-to-one correspondence between leaf
nodes in Tr and leaf nodes in T . If r′i is a leaf in Tr and its parent ri has no
other children, then clearly bi in T has degree 1, and we note that its back rim
is r′i. See, for example, the leaf r5 in Figure 12c (ahead) and the corresponding
leaf b5 in Figure 12d. But suppose ri has one or more other children in Tr besides
the leaf r′i. Then these other children are connected via z-edges to ri, and node
bi in T has degree greater than 1 and is not a leaf. Specifically, bi in T has one
or more front children connected via z-beams to its front rim ri, and it has no
back children (because its back rim r′i is a leaf in Tr). This is the case for the
leaf node r2 from Figure 12c, whose parent node r′2 has another child r4; the
corresponding node b2 in T is not a leaf in T . Similarly, the parent r7 of leaf node
r′7 from Figure 12c has another child r′5, and the corresponding node b7 is not a
leaf in T . But we handle this in the same way as in a standard unfolding tree (as
described in subsubsection 2.1.1) by splitting band bi into two bands b′i and b′′i .
In T , bi is replaced by b′i and has b′′i as a back leaf child. See Figure 12d, which
shows node b2 split into b′2 and b′′2 , and node b7 split into b′7 and b′′7 . The front
rim of b′i is rim ri and the back rim of b′′i is rim r′i. In this way, each leaf r′i in
Tr has a corresponding leaf node in T whose back rim is r′i, and vice versa. If
r′i is a nonface-leaf in Tr, then we will also say the corresponding leaf in T is a
nonface-leaf, meaning that its band’s back rim does not enclose a face of P . These
observations, along with Theorem 1, establish the following corollary.

Corollary 1 The number of nonface-leaves in the unfolding tree T is at most g,
where g ≥ 0 is the genus of P .

Using T , we assign unfolding directions to each band as described in subsub-
section 2.2.1. If T has no nonface-leaves, then we complete the unfolding of P
using the linear unfolding algorithm from [CY15] (as summarized in Section 2).
We now show how to modify the unfolding algorithm to handle the cases when T
has one or two nonface-leaves. Because a nonface-leaf b has a back rim that does
not enclose a face of P , there might be no vertical back face segment available for
b’s connector path. For these leaves, we use a spiral path that has one endpoint on
b’s back rim and the other endpoint on b’s front rim. The path cycles around the
band faces in the unfolding direction of b from the back point to the front point.
(In Figure 3, this would be just the portion of the path that extends from the top
of the back rim to endpoint e1.) Corollary 1 implies that this can occur for at most
two leaves in T (since we assume P to have genus g ≤ 2). For all face-leaves, we
proceed as before in extending both ends of the spiral path from the band’s back
rim to its front rim. Figure 12a shows examples of the spiral paths for nonface-
leaves b5 and b′′2 and face-leaf b′′7 . For b5 (b′′2 ), the end of its path located on its
back rim is labeled t2 (t1); from t2 (t1) the path is shown cycling clockwise to the
front rim. For b′′7 , it uses a connector path which allows both ends to cycle to its
front rim, as illustrated on its top and bottom faces.

The processing of internal nodes is handled as before by extending the spiral
paths towards the root. The only difference is that for the (at most 2) spiral paths
originating at nonface-leaves, there is only one end of the path to extend. After
processing the internal nodes, the ends of the spiral paths are at the root band.
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Specifically, each spiral path originating at a face-leaf has two endpoints located
on the back rim of the root band, and each spiral path originating at a nonface-leaf
has one endpoint located on the back rim of the root band. The challenge here is to
connect all these spiral paths together at the root band into a single final strip that
starts on the back rim of one nonface-leaf and (if there is a second nonface-leaf)
ends on the back rim of the other. (This is one place where the assumption that
g ≤ 2, and so there are at most two nonface-leaves (by Corollary 1), is crucial.)
Because the front rim of the root node does enclose a face of P , it is possible to
use strips from its enclosed face for the connectors.

3.2.1 Root Node Unfolding: One Nonface-Leaf Case

First we describe how to link the leaves’ extended spiral paths together at the root
node, and unfold the root band in the process, for the case when T has exactly one
nonface-leaf. Let ξ1, ξ2, ..., ξ` be the spiral paths corresponding to the ` face-leaves
in T (excluding the one nonface-leaf). After processing all the internal nodes, the
two ends of each of these spiral paths are located side-by-side on the back rim r
of the root band, as previously illustrated in Figure 4. Let t be the spiral path
corresponding to the nonface-leaf. One end of t is on r, and the other end is on
the back rim of its leaf. If ` > 1, we assume the spiral paths of the face-leaves
are labeled in clockwise order around the root’s back rim, with t located in the
middle between ξd`/2e and ξd`/2e+1. We then begin by linking all these spiral paths
into one strip ξ as described in subsubsection 2.1.4 for the case when there are no
nonface-leaves. I.e., starting with the pair R(ξ1) and R(ξ`), the ends of the spiral
paths are paired up and linked together via connector paths. (Recall that, for each
ξi, the endpoints L(ξi) and R(ξi) are encountered in this order in a clockwise walk
along the back rim of the root band, starting, say, at t or at a rim corner.) The
only difference is that, with t in the middle between ξ1 and ξ`, the last pair of
spiral path endpoints linked together will be R(ξd`/2e) and t when ` is odd, and t
and L(ξd`/2e+1) when ` is even. The remainder of the unfolding is the same. Thus
the resulting spiral ξ starts at L(ξ1) and ends on the back rim of the nonface-leaf.

3.2.2 Root Node Unfolding: Two Nonface-Leaves Case

We now discuss the more complex case when T has two nonface-leaves. In this case,
the final spiral path will have its two ends on the back rims of the two nonface-
leaves. Again let ξ1, ξ2, ..., ξ` be the spiral paths corresponding to the face-leaves,
and let t1 and t2 be the spiral paths corresponding to the two nonface-leaves. We
assume that t1 and t2 are labeled such that the number of spiral paths separating
them counterclockwise from t2 to t1 on the root’s back rim is at most b`/2c. (If
it is more than b`/2c, then we just switch the labels of t1 and t2.) If ` > 1, we
further assume that the spiral paths of the face-leaves are labeled so that t1 is in
the middle between ξd`/2e and ξd`/2e+1. Observe that these labeling rules position
t2 on the portion of the rim counterclockwise between ξ1 and t1. See Figure 11 for
an example with ` = 4, which shows the root band, the spiral path endpoints t1
and t2 marked on the back rim of the root band, and the spiral paths ξ1, . . . , ξ4
depicted as thick dotted arcs above the root band. Note that the counterclockwise
ordering from ξ1 along the rim is: ξ1, . . . , t2, . . . , t1.
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Fig. 11 Root band, with ξ consisting of the thick (black) and thin (red) paths. The thick
(black) path connects ξ1, . . . , ξ4 and t1. The thin (red) path is the extension of ξ that connects
L(ξ1) to t2. For the two ends of each ξi, the dotted paths indicate the spiral path connecting
them, which goes down to the associated leaf node and back.

We begin by linking the spiral paths ξ1, . . . , ξ` and t1 into a single strip ξ as
described in subsubsection 3.2.1 for the case of one nonface-leaf. (See the thick
black/blue path marked on the root band in Figure 11, which shows the portion
of ξ starting at R(ξ1) and connecting ξ1, . . . , ξ4 and t1.) Note that ξ has one end
at L(ξ1) and the other end on the back rim of the nonface-leaf corresponding
to t1. Linking in t2, however, requires some special handling. We will do this by
extending ξ from its endpoint L(ξ1) all the way to t2 by following alongside the
portion of ξ that tracks from R(ξ1) to t1, until t2 is reached. (Refer to the thin
red path in Figure 11.) At all times, this extension is tracing a new path on one
side of the path it is following. Specifically, starting from L(ξ1), the extension first
follows alongside the connector path linking R(ξ1) to R(ξ`). It then follows along-
side the spiral path from R(ξ`) to L(ξ`), going all the way down to the leaf node
corresponding to ξ` and then back up. It next follows alongside the connector path
linking L(ξ`) to L(ξ2), and then alongside the spiral path from L(ξ2) to R(ξ2),
and so on. This continues until the extension reaches the connector path, say K,
that links to the end of the strip piece located immediately counterclockwise from
t2 on the rim. This connector is drawn blue in Figure 11. Because at most b`/2c
spiral paths are located counterclockwise from t2 to t1, the strip piece located im-
mediately counterclockwise of t2 is either t1 or one of {ξd`/2e+1, ξd`/2e+2, . . . , ξ`}.
If it is one strip piece of the latter, say ξi, then the connector K links to R(ξi).
Let e be the end of the spiral path (t1 or ξi) to which the connector K links.

When the extension reaches the connector path K, it follows alongside it, but
instead of following it all the way to e, the extension continues past e until it
reaches t2, at which time it connects with t2 and we are finished. This path is
drawn with a thin red line in Figure 11: it starts at L(ξ1), follows alongside the
thick black path that extends from R(ξ1) to e = R(ξ3), and from there it reaches
t2. The result is the final unfolding spiral ξ with one end on the back face of
the nonface-leaf corresponding to t1, and the other end on the back face of the
nonface-leaf corresponding to t2.

Figure 12 shows the complete spiral path for the genus-2 polyhedron from Fig-
ure 8, with the slabs slightly separated for clarity. In this example ` = 1, ξ1
corresponds to node b′′7 with back face-rim r′7, and the t1 and t2 paths correspond
to b′′2 and b5, with back nonface-rims r2 and r5, respectively. (For clarity, the paths
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Fig. 12 Unfolding the genus-2 polyhedron from Figure 8, with slabs slightly separated for
clarity (a) spiral path corresponding to the unfolding tree T from (d) of this figure; arrows
indicate the direction followed by the unfolding algorithm; (b) rim graph Gr; (c) rim unfolding
tree Tr (one of several possible) extracted from Gr by the RimUnfoldingTree algorithm; (d)
unfolding tree T obtained by compressing b-edges of Tr and splitting internal nodes with no
back children: b1 is the root, b′′2 and b5 are nonface-leaves, b′′7 is a face-leaf.

t1 and t2 are labeled on the bottom face of b3, as they make the transition to the
bottom face of b1.)

3.3 Level of Refinement

Using the Chang-Yen algorithm [CY15], any genus-0 orthogonal polyhedron P can
be unfolded using linear refinement. Specifically, they refine each rectangular face
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of P via grid-unfolding using a (2` × 4`)-grid, where ` is the number of leaves
in T , and cuts are allowed along any of these grid lines. In the worst case, the
algorithm presented here requires at most twice the level of refinement, i.e., (4`×8`)
refinement. This level of refinement is necessary when there are two nonface-leaves
in T . In this case, the first part of the spiral path (from L(ξ1) to the end of t1
located on the back rim of the first nonface-leaf is the same as in the Chang-Yen
algorithm, but with care given to the order in which the spiral paths are connected
and with only one endpoint of t1 at the root. (This is the black and blue portions
of the path illustrated in Figure 11.) Thus no additional refinement is necessary
for this part of the path. The doubling of the refinement is due to the retracing
of this path which is needed to extend it from L(ξ1) to t2, the spiral path of the
second nonface-leaf. (This is the red portion of the path in Figure 11.) Because
the retracing follows alongside the existing path, it requires twice the refinement.
Thus, the overall level of refinement is (4`× 8`), which is linear.

We conclude with this theorem:

Theorem 2 Any n-vertex orthogonal polyhedron of genus g ≤ 2 may be unfolded
to a planar, simple orthogonal polygon of O(n3) edges, by cutting along a linear
grid-refinement.

The O(n3) bound follows from O(`2) grid edges per face, with ` = O(n) and
O(n) faces.

4 Conclusion

It is not evident how to push the techniques common to [DFO07], [DDF14], and
[CY15] to unfold polyhedra of genus g ≥ 3, the next frontier in this line of research.
Both Lemma 1 (existence of a face-node to serve as root of T ) and Theorem 1 (the
RimUnfoldingTree algorithm leads to at most g ≤ 2 nonface-leaves) are crucial
in the unfolding algorithm described in Section 3. The final stitching together of
the spiral paths relies on there being at most two nonface-leaves of the unfolding
tree T .

On the other hand, it is not difficult to unfold the genus-3 polyhedron shown
in Figure 7b in an ad-hoc manner. The challenge is to find a generic algorithm for
genus-3 and beyond.

Acknowledgement. We thank all the participants of the 31st Bellairs Winter
Workshop on Computational Geometry for a fruitful and collaborative environ-
ment. In particular, we thank Sebastian Morr for important discussions related
to Theorem 1, and to the stitching of unfolding strips at the root node.

References

BDD+98. Therese Biedl, Erik Demaine, Martin Demaine, Anna Lubiw, Mark Overmars,
Joseph O’Rourke, Steve Robbins, and Sue Whitesides. Unfolding some classes of
orthogonal polyhedra. In Proceedings of the 10th Canadian Conference on Com-
putational Geometry, Montréal, Canada, August 1998.
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