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Fundamental Limits of Perfect Privacy
Flavio P. Calmon, Ali Makhdoumi, Muriel Médard

Abstract—“To be considered for an 2015 IEEE Jack Keil
Wolf ISIT Student Paper Award.” We investigate the problem of
intentionally disclosing information about a set of measurement
points X (useful information), while guaranteeing that little or
no information is revealed about a private variable S (private
information). Given that S and X are drawn from a finite set
with joint distribution pS,X , we prove that a non-trivial amount
of useful information can be disclosed while not disclosing any
private information if and only if the smallest principal inertia
component of the joint distribution of S and X is 0. This
fundamental result characterizes when useful information can
be privately disclosed for any privacy metric based on statistical
dependence. We derive sharp bounds for the tradeoff between
disclosure of useful and private information, and provide explicit
constructions of privacy-assuring mappings that achieve these
bounds.

Index Terms—Statistical Privacy; Privacy Funnel; Privacy-
Utility Trade-off; Principal Inertia Components.

I. INTRODUCTION

We adopt the privacy against statistical inference framework

presented in [1] with the mutual information utility function.

This setup, called the Privacy Funnel, was introduced in [2].

Consider two communicating parties, namely Alice and Bob.

Alice’s goal is to disclose to Bob information about a set of

measurement points, represented by the random variable X .

Alice discloses this information in order to receive some utility

from Bob. Simultaneously, Alice wishes to limit the amount of

information revealed about a private random variable S that

is dependent on X . For example, X may represent Alice’s

movie ratings, released to Bob in order to receive movie

recommendations, whereas S may represent Alice’s political

preference or yearly income. Bob is honest but curious, and

will try to extract the maximum amount of information about

S from the data disclosed by Alice.

Instead of revealing X directly to Bob, Alice releases a

new random variable, denoted by Y . This random variable is

produced from X through a random mapping pY |X , called the

privacy-assuring mapping. We assume that pS,X is fixed and

known by both Alice and Bob, and S → X → Y . Alice’s

goal is to find a mapping pY |X that minimizes I(S;Y ), while

guaranteeing that the information disclosed about X is above

a certain threshold t, i.e. I(X;Y ) ≥ t. We refer to the quantity

I(S;Y ) as the disclosed private information, and I(X;Y ) as

the disclosed useful information. When I(S;Y ) = 0, we say

that perfect privacy is achieved, i.e. Y does not reveal any

information about S. We consider here the non-interactive,

one-shot regime, where Alice discloses information once, and

no additional information is released. We also assume that Bob

knows the privacy-assuring mapping pY |X chosen by Alice,

and no side information is available to Bob about S besides

the value Y .

In this paper, we present necessary and sufficient conditions

for achieving perfect privacy while disclosing a non-trivial
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amount of useful information when both S and X have finite

support S and X , respectively. We prove that the smallest

principal inertia component ([3], [4]) of pS,X plays a central

role for achieving perfect privacy: If |X | ≤ |S|, then perfect

privacy is achievable with I(X;Y ) > 0 if and only if the

smallest principal inertia component of pS,X is 0. Since

I(S;Y ) = 0 (perfect privacy) if and only if S ⊥⊥ Y , this

fundamental result holds for any privacy metric where statis-

tical independence implies perfect privacy. We also provide

an explicit lower bound for the amount of useful information

that can be released while guaranteeing perfect privacy, and

demonstrate how to construct pY |X in order to achieve this

bound.

In addition, we derive general bounds for the minimum

amount of disclosed private information I(S;Y ) given that,

on average, at least t bits of useful information is revealed

to Bob, i.e. I(X;Y ) ≥ t. These bounds are sharp, and

delimit the achievable privacy-utility region for the consid-

ered setting. Adopting an analysis related to the information

bottleneck [5] and for characterizing the hypercontractivity

coefficient in [6], [7], we determine the smallest achievable

ratio between disclosed private and useful information, i.e.

infpY |X
I(S;Y )/I(X;Y ). We prove that this value is upper-

bounded by the smallest principal inertia component, and is

zero if and only if the smallest principal inertia component

is zero. In this case, we present an explicit construction of a

privacy-assuring mapping that discloses a non-trivial amount

of useful information while guaranteeing perfect privacy.

The rest of the paper is organized as follows. Section II

introduces the privacy funnel and ancillary results. Section III

relates the smallest achievable ratio between disclosed private

and useful information with the principal inertia components.

Section IV presents a necessary and sufficient condition for

achieving perfect privacy in terms of the smallest principal

inertia component and the cardinality of X . Finally, Section

V presents an explicit threshold for the amount of useful

information that can be disclosed with perfect privacy, and

investigates the case where S and X are vectors of i.i.d.

random variables.

A. Related Work

Information-theoretic formulations for privacy have ap-

peared in [8]–[12]. For an overview, we refer the reader to [1],

[9] and the references therein. The privacy against statistical

inference framework considered here was further studied in

[13], [14]. The results presented in this paper are closely

connected to the study of hypercontractivity coefficients and

strong data processing results, such as in [6], [7], [15]–

[17]. The principal inertia components were studied in [3],

[4], [18]–[20], and we refer the readers to the references

therein for additional related work. In particular, principal

inertia component-based analysis were used in the context of

security in [21], [22]. Extremal properties of privacy were also

investigated in [23].
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B. Notation

We denote matrices by bold capitalized letters (e.g. A)

and vectors by bold lower-case letters (e.g. x). The i-th
component of a vector x is denoted by xi, and for x ∈ R

m,

x = [x1, x2, . . . , xm]. Random variables are denoted by upper-

case letters (e.g. X and Y ). We define [n] , {1, . . . , n}. Sets

are represented by calligraphic upper-case letters (e.g. A).

Throughout the text we assume that S, X and Y are

discrete random variables with finite support sets S , X and Y ,

respectively. We assume, without loss of generality, S = [|S|],
and equivalently for X and Y . For random variable S and X ,

the joint distribution matrix of PS,X is an |S| × |X | matrix

with (i, j)-th entry equal to pS,X(i, j). For a random variable

X with distribution pX , we denote by pX the vector with i-th
entry equal to pX(i), i ∈ X . In addition, DX = diag (pX)
is a matrix with diagonal entries equal to pX , and all other

entries equal to 0. The matrix PX|S ∈ R
|S|×|X| denotes

the matrix with (i, j)-th entry equal to pX|S(j|i). Note that

PS,X = DSPX|S .

II. THE PRIVACY FUNNEL

We define next the privacy funnel function, which captures

the smallest amount of disclosed private information for a

given threshold on the amount of disclosed useful information.

We then characterize properties of the privacy funnel function

in the rest of this section.

Definition 1. For 0 ≤ t ≤ H(X) and a joint distribution pS,X
over S×X , we define the privacy funnel function GI(t, pS,X)
as

GI(t, pS,X) , inf {I(S;Y )|I(X;Y ) ≥ t, S → X → Y } ,
(1)

where the infimum is over all mappings pY |X such that Y
is finite. For a fixed pS,X and t ≥ 0, the set of pairs

{(t, GI(t, pS,X))} is called the privacy region of pS,X .

A. Properties of the Privacy Funnel Function

We now enunciate a few useful properties of GI(t, pS,X)
and the privacy region.

Lemma 1.

GI(t, pS,X) = min
pY |X

{I(S;Y )|I(X;Y ) ≥ t, S → X → Y,

|Y| ≤ |X |+ 2} . (2)

Proof: The proof is presented in the appendix.

Lemma 2. For a fixed pS,X , the mapping t → GI(t,pS,X)
t is

non-decreasing.

Proof: The prove is presented in the appendix.

Lemma 3. For 0 ≤ t ≤ H(X),

min{t−H(X|S), 0} ≤ GI(t, pS,X) ≤ tI(X;S)

H(X)
. (3)

Proof: The proof is presented in the appendix.

Figure 1 illustrates the bounds from Lemma 3. The privacy

region is contained withing the shaded area. The next two

examples illustrate that both the upper bound (red line) and the

I(S;X)

H(X|S) H(X)t

G
I
(t
,p

S
,X
)

Fig. 1. For a fixed pS,X , the privacy region is contained within the shaded
area. The red and the blue lines correspond, respectively, to the upper and
lower bounds presented in Lemma 3.

lower bound (blue line) of the privacy region can be achieved

for particular instances of pS,X .

Example 1. Let X = (S,W ), where W ⊥⊥ S. Then by

setting Y = W , we have I(S;Y ) = 0 and I(X;Y ) =
H(W ) = H(X|S). Consequently, from Lemmas 2 and 3,

GI(t, pS,X) = 0 for t ∈ [0, H(X|S)]. By letting Y = W
w.p. λ and Y = (S,W ) w.p. 1 − λ for λ ∈ [0, 1], the

lower-bound GI(t, pS,X) = t−H(X|S) can be achieved for

H(X|S) = H(W ) ≤ t ≤ H(X). Consequently, the lower

bound in (3) is sharp.

Example 2. Now let X = f(S). Then I(X;S) = H(X) and

I(S;Y ) = I(X;Y )− I(X;Y |S) = I(X;Y ).

Consequently, GI(t, pS,X) = t, and the upper bound in (3) is

sharp.

III. THE OPTIMAL PRIVACY-UTILITY COEFFICIENT AND

THE PRINCIPAL INERTIA COMPONENTS

We now study the smallest possible ratio between disclosed

private and useful information, defined next.

Definition 2. The optimal privacy-utility coefficient for a given

distribution pS,X is given by

v∗(pS,X) , inf
pY |X

I(S;Y )

I(X;Y )
. (4)

It follows directly from Lemma 2 that

v∗(pS,X) = lim
t→0

GI(t, pS,X)

t
. (5)

We show in Section IV that the value of v∗(pS,X) is

related to the smallest principal inertia component of pS,X
(i.e. the smallest eigenvalue of the spectrum of the conditional

expectation operator, defined below). We also prove that

v∗(pS,X) = 0 is a necessary and sufficient condition for

achieving perfect privacy while disclosing a non-trivial amount

of useful information. Before introducing these results, we

present an alternative characterization of v∗(pS,X) (Lemma

4), and introduce the principal inertia components (Definition

3) and an auxiliary result (Lemma 5).
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Remark 1. The proof of Lemma 4 and Theorem 1 in this

paper are closely related to [7]. We acknowledge that their

proof techniques inspired some of the results presented here.

A. Divergence characterization of v∗

Lemma 4. Let qS denote the distribution of S when pS|X is

fixed and X ∼ qX . Then

v∗(pS,X) = inf
qX 6=pX

D(qS ||pS)
D(qX ||pX)

. (6)

Proof: The proof is presented in the appendix.

B. The Smallest Principal Inertia Component

The principal inertia components, defined below, provide a

fine-grained decomposition of the dependency between two

random variables. As shown in the next section, the smallest

principal inertia component is of particular interest for privacy,

and upper bounds the value of v∗(pS,X). For an overview of

the topic, we refer the reader to [3], [4]. We also encourage the

reader to review briefly the notation section before perusing

the next definition.

Definition 3. Let Q , D
−1/2
S PS,XD

−1/2
X , and m ,

min{|S|, |X |}. The largest singular value of Q is 1, and let

σ1(Q) ≥ σ2(Q) ≥ · · · ≥ σm−1(Q) denote the remaining

m−1 singular values of Q. Then σ2
1(Q), . . . , σ2

m−1(Q) are the

principal inertia components of pS,X . In particular, σ2
m−1(Q)

is the smallest principal inertia component of pS,X . We define

δ(pS,X) ,

{
σ2
m−1(Q) if |X | ≤ |S|,

0 otherwise.
(7)

Observe that δ(pS,X) is the smallest eigenvalue of QTQ.

The following lemma provides a useful characterization of

δ(pS,X), related to the interpretation of the principal inertia

components as the spectrum of the conditional expectation

operator, discussed in [18] and [19]. A similar characterization

can be obtained for the other principal inertia components

by imposing appropriate orthogonality constraints on f(X)
below. For further details, we refer the reader to [3].

Lemma 5. For a given pS,X ,

δ(pS,X) = min
{
‖E [f(X)|S] ‖22

∣∣f : X → R,E [f(X)] = 0,

‖f(X)‖2 = 1} . (8)

Proof: The proof is included in the appendix.

IV. INFORMATION DISCLOSURE WITH PERFECT PRIVACY

If v∗(pS,X) = 0, then it may be possible to disclose some

information about X without revealing any information about

S. However, since GI(0, pX,S) = 0, it is not immediately clear

that v∗(pS,X) = 0 implies that there exists t strictly bounded

away from 0 such GI(t, pX,S) = 0. This would represent the

ideal privacy setting, since, from Lemma 1, there would exist

a privacy-assuring mapping that allows the disclosure of some

non-negligible amount of useful information for I(S;Y ) = 0.

This, in turn, would mean that perfect privacy is achievable

with non-negligible utility regardless of the specific privacy

metric used, since S and Y would be independent.

In this section, we prove that if the optimal privacy-utility

coefficient is 0, then there indeed exists a privacy-assuring

mapping that allows the disclosure of a non-trivial amount

of useful information while guaranteeing perfect privacy. We

also show that the value of δ(pS,X) is closely related to

v∗(pS,X). This relationship is analogous to the one between

the hypercontractivity coefficient s∗, defined in [6] and [24],

and the maximal correlation ρm. In particular, as shown in

the next two theorems, v∗(pS,X) ≤ δ(pS,X) and v∗(pS,X) =
0 ⇐⇒ δ(pS,X) = 0.

Theorem 1. For any pS,X with finite support S × X ,

v∗(pS,X) ≤ δ(pS,X). (9)

Proof: Let pS|X be fixed, and define

gλ(pX) , H(S)− λH(X),

where H(S) and H(X) are the entropy of S and X , respec-

tively, when (S,X) ∼ pS|XpX . For 0 < ǫ ≪ 1, let

pǫ(i) , pX(i)(1 + ǫf(i))

be a perturbed version of pX , where E [f(X)] = 0 and,

w.l.o.g., ‖f(X)‖2 = 1. The second derivative of gλ(pǫ) at

ǫ = 0 is1

∂2gλ(pǫ)

∂ǫ2

∣∣∣∣
ǫ=0

= log2(e)
(
−‖E [f(X)|S] ‖22 + λ‖f(X)‖22

)

= log2(e)
(
−‖E [f(X)|S] ‖22 + λ

)
. (10)

Thus, from Lemma 5, if λ ≤ δ(pS,X) then for any suffi-

ciently small perturbation of pX , (10) will be non-positive.

Conversely, if λ > δ(pS,X), then we can find a perturbation

f(X) such that (10) is positive. Therefore, gλ(pX) has a

negative semi-definite Hessian if and only if 0 ≤ λ ≤ δ(pS,X).

For any S → X → Y , we have I(S;Y )/I(X;Y ) ≥
v∗(pS,X), and, consequently, for 0 ≤ λ† ≤ v∗(pS,X),

gλ†(pX) ≥ H(S|Y )− λ†H(X|Y ),

and gλ†(pX) touches the upper-concave envelope of gλ† at

pX . Consequently, gλ† has a negative semi-definite Hessian at

pX and, from (10), λ† ≤ δ(pS,X). Since this holds for any

0 ≤ λ† ≤ v∗(pS,X), we find v∗(pS,X) ≤ δ(pS,X).

Remark 2. For a fixed pS|X , the function gλ(pX) is concave

when λ = 0 and convex when λ = 1. A consequence of

Theorem 1 is that the maximum λ for which gλ(pX) has a

negative Hessian at pX is δ(pS,X). Furthermore, Lemma 4

implies that the value of λ for which gλ1
(pX) touches it’s

lower concave envelope at pX for all λ1 ≥ λ is v∗(pS,X).
Therefore, both infpX

v∗(pS,X) and infpX
δ(pS,X) equal the

maximum value of λ such that the function gλ(pX) is concave

at all values of pX . Therefore, we established that for a given

pS|X ,

inf
pX

v∗(pS,X) = inf
pX

δ(pS,X).

1This was observed in [7] and [24], and follows directly from − ∂2

∂ǫ2
a(1+

bǫ) log
2
a(1 + bǫ) = −b2a log

2
(e).
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The next theorem proves that δ(pS,X) can serve as a proxy

for perfect privacy, since the optimal privacy-utility coefficient

is 0 if and only if δ(pS,X) is also 0.

Theorem 2. Let pS,X be such that H(X) > 0 and S and X
are finite. Then

v∗(pS,X) = 0 ⇐⇒ δ(pS,X) = 0. (11)

Proof: Theorem 1 immediately gives δ(pS,X) = 0 ⇒
v∗(pS,X) = 0. Let v∗(pS,X) = 0. Then, since D(qX ||pX) ≤
−mini∈X log2 pX(i) and X is finite, Lemma 4 implies that for

any ǫ > 0 there exists qX and 0 < δ ≤ −mini∈X log2 pX(i)
such that

D(qX ||pX) ≥ δ > 0

and

D(qS ||pS) < ǫ.

We can then construct a sequence q1X , q2X , q3X , . . . such that

qiX 6= pX , D(qkS ||pS) ≤ ǫk and

lim
k→∞

ǫk = 0.

Let qk
S be a vector whose entries are qkS(·). Then, from

Pinsker’s inequality,

ǫk ≥ 1

2
‖qk

S − pS‖21 ≥ 1

2
‖qk

S − pS‖22. (12)

Defining xk = qk
X − pX , observe that 0 < ‖xk‖22 ≤ 2 and,

from (12), ‖PS|Xxk‖2 ≤
√
2ǫk. Hence,

lim
k→∞

‖PS|Xxk‖22
‖xk‖22

= 0. (13)

In addition, denoting sm , mins∈S pS(s) and xM ,

minx∈X pX(x), for each k we have

‖PS|Xxk‖22
‖xk‖22

≥ min
‖y‖2

2
>0

‖PS|Xy‖22
‖y‖22

= min
‖y‖2

2
>0

‖PS,XD
−1/2
X y‖22

‖D1/2
X y‖22

(14)

≥ min
‖y‖2

2
>0

sm‖D−1/2
S PS,XD

−1/2
X y‖22

xM‖y‖22
(15)

=
sm
xM

min
‖y‖2

2
>0

‖Qy‖22
‖y‖22

(16)

=
smδ(pS,X)

xM
. (17)

In the derivation above, (14) follows from DX being invertible

(by definition), (15) is a direct consequence of ‖D−1/2
S y‖22 ≤

s−1
m ‖y‖22 and ‖D11/2

X y‖22 ≤ xM‖y‖22 for any y, and (16) and

(17) follow from the definition of Q and δ(pS,X), respectively.

Combining (17) with (13), it follows that δ(pS,X) = 0, proving

the desired result.

We are now ready to prove that a non-trivial amount of

useful information can be disclosed without revealing any pri-

vate information if and only if v∗(pS,X) = 0 (or equivalently,

δ(pS,X) = 0). This result follows naturally from Theorem

2, since v∗(pS,X) = 0 implies that δ(pS,X) = 0, which

means that the matrix Q and, consequently, PS|X , is either

not full rank or has more columns than rows (i.e. |X | > |S|).
This, in turn, can be exploited in order to find a mapping

pY |X such that Y reveals some information about X , but no

information about S. This argument is made precise in the

following theorem.

Theorem 3. For a given pS,X , there exists a privacy-assuring

mapping pY |X such that S → X → Y , I(X;Y ) > 0
and I(S;Y ) = 0 if and only if δ(pS,X) = 0 (equivalently

v∗(pS,X) = 0). In particular,

∃t0 > 0 : GI(t0, pS,X) = 0 ⇐⇒ δ(pS,X) = 0. (18)

Proof: The direct part of the theorem follows directly

from the definition of v∗(pS,X) and Theorem 2. Assume that

δ(pS,X) = 0. Then, from Lemma 5, there exists f : X → R

such that ‖f(X)‖2 = 1, E [f(X) = 0], and ‖E [f(X)|S] ‖2 =
0. Consequently, E [f(X)|S = s] = 0 for all s ∈ S .

Fix Y = [2], and, for ǫ > 0 and ǫ appropriately small,

pY |X(y|x) =
{

1
2 − ǫf(x), y = 1,
1
2 + ǫf(x), y = 2.

Note that it is sufficient to choose ǫ = (2maxx∈X |f(X)|)−1,

so ǫ is strictly bounded away from 0. In addition, pY (1) = 1/2.

Therefore,

I(X;Y ) = 1−
∑

x∈X

pX(x)hb

(
1

2
+ ǫf(x)

)
> 0 (19)

where hb(x) , −x log2 x− (1− x) log2(1− x) is the binary

entropy function. Since S → X → Y ,

pY |S(y|s) =
∑

x∈X

pY |X(y|x)pX|S(x|s)

=
∑

x∈X

(
1

2
+ (−1)yǫf(x)

)
pX|S(x|s)

=
1

2
+ (−1)yǫE [f(X)|S = s]

= 1/2,

and, consequently, S and Y are independent. Then I(S;Y ) =
0, and the result follows.

The previous result proves that if either |X | > |S| or

the smallest principal inertia component of pS,X is 0 (i.e.

δ(pS,X) = 0), then it is possible to achieve perfect privacy

while disclosing some useful information. In particular, the

value of t0 in (10) is lower-bounded by the expression in (19).

We note that this result would not necessarily hold if S and

X are not finite sets.

The proof of Theorem 3 holds for any measure of informa-

tion J that satisfies J(X;Y ) = 0 if and only if X and Y are

independent, since it depends solely on the properties of pS,X .

Examples of J are maximal correlation or information metrics

based on f -divergences [25]. This leads to the following result.

Corollary 1. Let pS,X be given, and J be a non-negative

measure of information (e.g. total variation or maximal cor-

relation) such that for any two random variable A and B
J(A;B) = 0 ⇐⇒ A ⊥⊥ B. Then there exists pY |X such that

S → X → Y , I(X;Y ) > 0 and I(S;Y ) = 0 if and only if

δ(pS,X) = 0 .
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Proof: This is a direct consequence of Theorem 3, since,

by assumption, J(X;Y ) = 0 ⇐⇒ I(X;Y ) = 0 and

J(S;Y ) = 0 ⇐⇒ I(S;Y ) = 0.

Remark 3. As long as privacy is measured in terms of

statistical dependence (with perfect privacy implying statistical

independence) and some utility can be derived when Y is

not independent of X , then δ(pS,X) fully characterizes when

perfect privacy is achievable with non-trivial utility.

V. FURTHER RESULTS

We present next an explicit lower bound for the largest

amount of useful information that can be disclosed while

guaranteeing perfect privacy. The result follows directly from

the construction used in the proof of Theorem 3.

Corollary 2. For fixed pS,X , let

F0 , {f : X → R|E [f(X)] = 0, ‖f(X)‖2 = 1,

‖E [f(X)|S] ‖2 = 0} ∪ f0,

where f0 is the trivial function that maps X to {0}. Then

GI(t, pS,X) = 0 for t ∈ [0, t∗], where

t∗ ≥ 1− max
f∈F0

E

[
hb

(
1

2
+

f(X)

2‖f‖∞

)]
. (20)

Furthermore, the lower bound for t∗ is sharp when δ(pS,X) =
0, i.e. there exists a pS,X such that t∗ > 0 and GI(t, pS,X) = 0
if and only if t ∈ [0, t∗].

Proof: The proof is included in the appendix.

The previous bound for t∗ can be loose, especially if |X |
is large. In addition, the right-hand side of (20) can be made

arbitrarily small by decreasing minx∈X pX(x). Nevertheless,

(20) is an explicit estimate of the amount of useful information

that can be disclosed with perfect privacy.

When Sn = (S1, . . . , Sn) and Xn = (X1, . . . , Xn),
where (Si, Xi) ∼ pS,X are i.i.d. random variables, the next

proposition states that δ(pSn,Xn) = δ(pS,X)n. Consequently,

as long as δ(pS,X) < 1, it is possible to disclose a non-trivial

amount of useful information while disclosing an arbitrarily

small amount of private information by making n sufficiently

large.

Proposition 1. Let Sn = (S1, . . . , Sn) and Xn =
(X1, . . . , Xn), where (Si, Xi) ∼ pS,X are i.i.d. random

variables. Then

v∗(pSn,Xn) ≤ δ(pSn,Xn) = δ(pS,X)n. (21)

Proof: The result is a direct consequence of the tensoriza-

tion property of the principal inertia components, presented in

[3], [16], [20].
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APPENDIX

ADDITIONAL PROOFS

A. Proof of Lemma 1

Let pS,X and pY |X be given, with S → X → Y and |Y| >
|X | + 2. Denote by wi the vector in the |X |-simplex with

entries pX|Y (·|i). Furthermore, let ai , H(X)−H(X|Y = i),

and bi , H(S)−H(S|Y = i). Therefore

Y∑

i=1

pY (i) [wi, ai, bi] = [pX , I(X;Y ), I(S;Y )] .

Since wi belongs to the |X |-simplex, the vector [wi, ai, bi]
is taken from a |X | + 1 dimensional space. Then, from

Carathéodory’s theorem, the point [pX , I(X;Y ), I(S;Y )] can

also be achieved by at most |X |+2 non-zero values of pY (i).
It follows directly that it is sufficient to consider |Y| ≤ |X |+2
for the infimum (1).

The set of all mappings pY |X for |Y| ≤ |X | + 2 is

compact, and both pY |X → I(S;Y ) and pY |X → I(X;Y )
are continuous and bounded when S, X and Y have finite

support. Consequently, the infimum in (1) is attainable. �

B. Proof of Lemma 2

For 0 < t ≤ H(X) and pS,X fixed, let GI(t, pS,X) = α.

From Lemma 1, there exists pY |X that achieves I(W ;Y ) = α

for I(X;Y ) ≥ t. Now consider pỸ |X where Ỹ = [|Y| + 1]
and, for 0 < λ ≤ 1,

pỸ |X(y|x) = (1− λ)1{y=|Y|+1} + λ1{y 6=|Y|+1}pY |X(y|x).

Note that Ỹ is an “erased” version of Y , with the erasure

symbol being |Y| + 1. It follows directly that I(S; Ỹ ) =
λI(S;Y ) = λα, I(X; Ỹ ) = λI(X;Y ) ≥ λt, and

GI(λt, PS,X)

λt
≤ λI(S;Y )

λt
=

GI(t, pS,X)

t
.

Since this holds for any 0 < λ ≤ 1, the result follows. �

C. Proof of Lemma 3

Observe that GI(H(X), pS,X) = I(X;S), since

I(X;Y ) = H(X) implies that pY |X is a one-to-one mapping

of X . The upper bound then follows directly from Lemma 2.

Clearly GI(t, pS,X) ≥ 0. In addition, for any pY |X ,

I(S;Y ) = I(X;Y )− I(X;Y |S)
≥ I(X;Y )−H(X|S)
≥ t−H(X|S),

proving the lower bound. �

D. Proof of Lemma 4

For fixed pY |X and pS,X

I(S;Y )

I(X;Y )
=

∑
y∈Y pY (y)D(pS|Y=y||pS)∑
y∈Y pY (y)D(pX|Y=y||pX)

≥ min
y∈Y:

D(pX|Y =y||pX)>0

D(pS|Y=y||pS)
D(pX|Y=y||pX)

≥ inf
qX 6=pX

D(qS ||pS)
D(qX ||pX)

.

Now let d∗ be the infimum in the right-hand side of (6),

and qX satisfy
D(qY ||pY )
D(qX ||pX)

= d∗ + δ,

where δ > 0. For ǫ > 0 and sufficiently small, let pY |X be

such that Y = [2], pY (1) = ǫ, pX|Y (x|1) = qX(x) and

pX|Y (x|2) =
1

1− ǫ
pX(x)− ǫ

1− ǫ
qX(x).

Since for any distribution rX with support X we have

D ((1− ǫ)pX + ǫrX ||pX) = o(ǫ), we find

I(S;Y ) = ǫD(pS|Y=1||pS) + (1− ǫ)D(pS|Y=0||pS)
= ǫD(qS ||pS) + o(ǫ),

and equivalently, I(X;Y ) = ǫD(qX ||pX) + o(ǫ). Conse-

quently,

I(S;Y )

I(X;Y )
=

ǫD(qS ||pS) + o(ǫ)

ǫD(qX ||pX) + o(ǫ)
→ d∗ + δ,

where the limit is taken as ǫ → 0. Since this holds for any

δ > 0, then v∗(pS,X) ≤ d∗, proving the result. �

E. Proof of Lemma 5

Let f : X → R, E [f(X)] = 0 and ‖f(X)‖22=1, and f ∈
R

|X | be a vector with entries fi = f(i) for i ∈ X . Observe

that

‖E [f(X)|S] ‖22 =
∑

s∈S

pS(s)E [f(X)|S = s]
2

= fTPT
X|SDSPX|Sf

T

= fTD
1/2
X QTQD

1/2
X f

≥ δ(pS,X),

where the last inequality follows by noting that x , fTD
1/2
X

satisfies ‖x‖2 = 1 and that δ(pS,X) is the smallest eigenvalue

of the positive semi-definite matrix QTQ, where Q is given

in Definition 3. �

F. Proof of Corollary 2

If δ(pS,X) = 0, then the lower bound for t∗ follows directly

from the proof of Theorem 3 and, in particular, (18). If

δ(pS,X) > 0, then F0 = {f0}, and the lower bound (20)

reduces to the trivial bound t∗ ≥ 0.

In order to prove that the lower bound is sharp, consider S
being an unbiased bit, drawn from {1, 2}, and X the result of

sending S through an erasure channel with erasure probability

1/2 and X = {1, 2, 3}, with 3 playing the role of the erasure

symbol. Let

f(x) ,

{
1, x ∈ {1, 2},
−1 x = 3.

Then f ∈ F0, hb

(
1
2 + f(x)

2‖f‖∞

)
= 0 for x ∈ X and t∗ = 1.

But, from Lemma 3, t∗ ≤ H(X|S) = 1. The result follows. �
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