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The Allocation of Future Business:  
Dynamic Relational Contracts with Multiple Agents†

By Isaiah Andrews and Daniel Barron*

We consider how a firm dynamically allocates business among several 
suppliers to motivate them in a relational contract. The firm chooses 
one supplier who exerts private effort. Output is non-contractible, 
and each supplier observes only his own relationship with the prin-
cipal. In this setting, allocation decisions constrain the transfers that 
can be promised to suppliers in equilibrium. Consequently, optimal 
allocation decisions condition on payoff-irrelevant past perfor-
mance to make strong incentives credible. We construct a dynamic 
allocation rule that attains first-best whenever any allocation rule 
does. This allocation rule performs strictly better than any rule that 
depends only on payoff-relevant information. (JEL D21, D82, L14, 
L24)

Many firms rely on relational contracts to motivate their suppliers. For exam-
ple, informal promises are an essential feature of the supply chains used by Toyota, 
Honda, Chrysler, and firms with “just-in-time” suppliers. In these relational contracts, 
firms promise monetary compensation to reward or punish their suppliers. They also 
promise to allocate business among suppliers to strengthen their relationships (Dyer 
1996; Krause, Scannell, and Calantone 2000; Liker and Choi 2004). The firm cannot 
formally commit to these promises; instead, they are made credible by the under-
standing that if the firm betrays a supplier, their relationship sours and surplus is lost.

This paper explores how a principal (downstream firm) can dynamically allo-
cate business among her agents (suppliers) to overcome this commitment problem. 
In our framework, the principal repeatedly interacts with a group of agents whose 
productivities vary over time. The principal allocates production to a single agent 

* Andrews: MIT, Department of Economics, Building E52, Office 104, Cambridge, MA 02139 (e-mail: 
iandrews@mit.edu); Barron: Northwestern University, Kellogg School of Management, Leverone Hall 631, 
2001 Sheridan Road, Evanston, IL 60208 (e-mail: d-barron@kellogg.northwestern.edu). We are tremendously 
indebted to Bob Gibbons, Juuso Toikka, and Glenn Ellison for advice, insight, and support. Special thanks to Simon 
Board, Alessandro Bonatti, Gabriel Carroll, Sebastian Di Tella, Sambuddha Ghosh, Marina Halac, Anton Kolotilin, 
Ruitian Lang, Greg Leiserson, Hongyi Li, James Malcomson, Mike Powell, Luis Rayo, Larry Samuelson, Eric Van 
den Steen, Sarah Venables, Xiao Yu Wang, Joel Watson, Nils Wernerfelt, Birger Wernerfelt, Alexander Wolitzky, and 
Luis Zermeno. Thanks to participants in seminars at MIT, LSE, Harvard Business School, Rochester, Northwestern, 
UCSD, Washington University St. Louis, Notre Dame, Boston University, Yale, and Columbia. Andrews grate-
fully acknowledges NSF Graduate Research Fellowship support under Grant No. 1122374. Barron gratefully 
acknowledges support from the Cowles Foundation at Yale University while writing this paper. Remaining errors 
are our own. The authors declare that they have no relevant or material financial interests that relate to the research 
described in this paper.

† Go to http://dx.doi.org/10.1257/aer.20131082 to visit the article page for additional materials and author  
disclosure statement(s).

http://dx.doi.org/10.1257/aer.20131082
mailto:iandrews@mit.edu
mailto:d-barron@kellogg.northwestern.edu
http://dx.doi.org/10.1257/aer.20131082


2743ANDREWS AND BARRON: ALLOCATION OF FUTURE BUSINESSVOL. 106 NO. 9

in each period. The chosen agent exerts a binary effort that determines the proba-
bility that the principal earns a profit. The parties have deep pockets, so the cho-
sen agent could in principle be motivated using large bonuses and fines. Output is 
not contractible, however, so players must have the incentive to follow through on 
these payments. Compounding this commitment problem, agents do not observe the 
details of one another’s relationships with the principal, and so are unable to jointly 
punish the principal if she reneges on one of them.

We show that allocation decisions make payments credible and so play a central 
role in optimal relational contracts. The principal motivates an agent by promising 
him bonuses and high future payments following success and demanding fines and 
low future payments following failure. If the principal or an agent reneges on these 
promises, that player is punished with the breakdown of the corresponding bilateral 
relationship. Consequently, an agent’s payoff is bounded from below by his outside 
option—he would renege on any payments that gave him a lower payoff. His payoff 
is bounded from above by the total surplus he produces in the future—the principal 
would renege on any payment that resulted in a higher payoff. Importantly, this 
upper bound depends on the principal’s future allocation decisions.

The principal would like to promise a large payoff to an agent who performs well, 
so the upper bound on an agent’s payoff binds when he produces high output. To 
relax this binding constraint, an optimal relational contract allocates more produc-
tion to an agent after he performs well. We construct a dynamic allocation rule—
the Favored Supplier Allocation (FSA)—that does this, and prove that it attains 
first-best whenever any allocation rule does if the set of feasible agent productivities 
is not too dispersed. To attain first-best, the FSA must allocate production to one of 
the most productive agents in each period. Among those agents, the FSA chooses 
the one who has produced high output most recently. Therefore, this allocation rule 
depends both on an agent’s current productivity and on his (payoff-irrelevant) past 
performance. We show that conditioning on past performance is important: the FSA 
attains first-best for a strictly wider range of discount factors than any allocation rule 
that depends only on current productivities.

The FSA favors past success in that an agent is allocated production more fre-
quently following good performance. It also tolerates past failures: the most recent 
high performer is allocated business, regardless of how many times he has failed 
since his last success. The probability that an agent is chosen decreases only if 
another agent has higher productivity, is allocated production, and performs well.

These properties of the FSA reflect how payments and allocation decisions inter-
act in a relational contract. We can construct transfers so that the principal is indif-
ferent between allocation decisions and so is willing to implement any allocation 
rule, including the FSA. An optimal allocation rule is therefore only constrained 
by the need to give each agent strong incentives that are credible in equilibrium. 
The FSA tolerates past failure because an agent can be punished by low transfers 
following low output, regardless of the allocation rule. In particular, an agent might 
be “favored” by the FSA but nevertheless earn a low payoff. In contrast, an agent’s 
maximum payoff following high output is constrained by future allocation deci-
sions; the FSA favors past successes to relax this constraint when it binds.

In many real-world supply chains, a supplier’s past performance plays a pivotal 
role in whether it is allocated production. Asanuma (1989) documents that in the 
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1980s, Toyota preferentially allocated business to firms that performed well in the 
past. Farlow et al. (1996) note that Sun Microsystems uses a similar system, and 
Krause, Scannell, and Calantone (2000) survey manufacturing firms and conclude 
that many of them allocate business based on past performance. These relationships 
are also shaped by the possibility of supplier failure. Consistent with our intuition 
that the FSA “tolerates past failures,” Liker and Choi (2004) argue that companies 
like Honda do not immediately withdraw business following poor performance. 
Instead, they impose costs on the supplier—intense scrutiny, extra shifts, and expe-
dited delivery—while maintaining the relationship. Metalcraft, the pseudonymous 
company studied by Kulp, Narayanan, and Verkleeren (2004), is similarly hesitant 
to pull business from a supplier who performs poorly.

The extensive case-study literature on allocation decisions in supply chains has 
spurred a limited theoretical literature. Board (2011) is among the first to formally 
model allocation dynamics. He argues that dynamics can arise in a repeated hold-up 
problem if suppliers are liquidity constrained. In contrast, our model considers a 
fundamentally different contracting friction: limited commitment by the principal 
(due to moral hazard with non-contractible output), rather than liquidity constraints. 
Section III has a detailed comparison. Other contributions include Taylor and 
Wiggins (1997), who compare competitive and relational supply chains but do not 
consider dynamics, and Li, Zhang, and Fine (2013), who focus on formal cost-plus 
contracts.

This paper is part of the growing literature on relational contracting spurred by 
Bull (1987), MacLeod and Malcomson (1989), and Levin (2003). Malcomson 
(2012) has an extensive survey. Levin (2002) is among the first to consider relational 
contracts with multiple agents. Calzolari and Spagnolo (2010) analyze how the 
number of bidders in a procurement auction affects relational incentives, but do not 
consider allocation dynamics. In related research, Barron and Powell (2016) expand 
the tools developed here to consider inefficient policies in relational contracts.

Our model has private monitoring because each agent observes only his own 
relationship with the principal; Segal (1999) makes a similar assumption in his static 
analysis of formal contracts. This assumption implies that agents cannot jointly pun-
ish the principal and so plays an essential role in our dynamics. Games with pri-
vate monitoring are difficult to analyze because players condition their actions on 
different variables (see Kandori 2002 for an overview). Nevertheless, a number of 
applied papers have investigated settings with private monitoring (e.g., Fuchs 2007; 
Harrington and Skrzypacz 2011; Ali and Miller 2013; Wolitzky 2013). In principle, 
optimal equilibria in our game could be non-recursive and hence very complicated. 
However, we prove that a relatively simple, recursive allocation rule—the FSA—
attains first-best whenever any equilibrium does. To prove this result, we develop 
tools to handle the complexities of private monitoring in our setting.

I.  Model and Assumptions

A. Timing

Consider a repeated game with ​N + 1​ players denoted ​{0, 1, … , N  }​. Player ​0​ is 
the principal (“she”), while players ​i ∈ {1, … , N}​ are agents (“he”). In each period 
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the principal requires a single good that can be supplied by any one of the agents. 
Each agent’s productivity is drawn from a finite set and publicly observed. After 
observing productivities, the principal allocates production to one agent, who either 
accepts or rejects. If he accepts, that agent exerts binary effort that determines the 
probability of high output, the value of which depends on his productivity. Utility 
is transferable between the principal and each agent. At the beginning of the game, 
the principal and each agent can “settle up” by transferring money to one another. 
Payments are observed only by the two parties involved.

Formally, we consider the infinite repetition ​t  =  1, 2, …​ of the following stage 
game with common discount factor ​δ​:

	 (i)	 Productivities ​​v​t​​  =  (​v​ 1, t​​, … , ​v​ N, t​​)​ for agents ​i ∈ ​{1, … , N}​​ are publicly 
drawn from distribution ​F (v)​ , with each ​​v​ i, t​​ ∈ ​{0, ​v​​ 1​, .… , ​v​​ K​}​  ⊂ ​핉​+​​​ for ​
K  <  ∞​.

	 (ii)	 The principal publicly chooses agent ​​x​ t​​ ∈ {1, … , N  }​ as the supplier.

	 (iii)	 The principal pays each agent ​i​ ​∈ {1, … , N  }​ , who simultaneously pays the 
principal. Define ​​w​ i, t​​ ∈ 핉​ as the resulting net up-front payment to agent ​i​. 
Only the principal and agent ​i​ observe ​​w​ i, t​​​.

	 (iv)	 Agent ​​x​ t​​​ rejects or accepts production, ​​d​ t​​ ∈ {0, 1}​. ​​d​ t​​​ is observed only by the 
principal and ​​x​ t​​​. If ​​d​ t​​  =  0​ , then ​​e​ t​​  = ​ y​ t​​  =  0​.

	 (v)	 If ​​d​ t​​  =  1​ , agent ​​x​ t​​​ privately chooses effort ​​e​ t​​ ∈ {0, 1}​ at cost ​c​e​ t​​​ , ​c  >  0​.

	 (vi)	 Output ​​y​ t​​ ∈ {0, ​v​ ​x​t​​ , t​​}​ is realized and observed only by agent ​​x​ t​​​ and the princi-
pal. ​Pr {​y​ t​​  = ​ v​ ​x​t​​ , t​​ | ​e​ t​​}  = ​ p​ ​e​t​​​​​ with ​1  ≥ ​ p​ 1​​  > ​ p​ 0​​  ≥  0​.

	 (vii)	 The principal pays each agent ​i ∈ {1, … , N  }​ , who simultaneously pays the 
principal. Define ​​τ​i, t​​ ∈ 핉​ as the resulting net bonus to agent ​i​. Only the prin-
cipal and agent ​i​ observe ​​τ​i, t​​​.

Let ​​1​i, t​​​ be the indicator function for the event that agent ​i​ is allocated produc-
tion, ​​1​i, t​​  =  1 {​x​ t​​  =  i}​. Then stage-game payoffs in period ​t​ are

	​ ​u​ 0​ t ​  = ​ y​ t​​ − ​∑ i=1​ N  ​​(​w​ i, t​​ + ​τ​i, t​​)

	​ u​ i​ t​  = ​ w​ i, t​​ + ​τ​i, t​​ − ​1​i, t​​ c​e​ t​​​

for the principal and agent ​i ∈ {1, … , N  }​ , respectively.1

1 Requiring ​​w​i, t​​  = ​ τ​i, t​​  =  0​ for all ​i  ≠ ​ x​t​​​ would not change any of our results, though it would alter our 
discussion of transfers in Section III. 
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Two features of this model warrant further discussion. First, each agent observes 
only his own output and pay and cannot communicate with other agents.2 As a 
result, the principal can renege on one agent without facing punishment from the 
other agents. This assumption drives equilibrium dynamics. We explore it further 
and compare our results to a game with public monitoring in Section III. Second, 
the principal pays ​​w​ i, t​​​ before the chosen agent accepts or rejects production. This 
assumption simplifies punishment payoffs by ensuring that an agent can punish the 
principal if he receives an out-of-equilibrium up-front payment. Adding a further 
round of transfers after the agent accepts production but before he exerts effort 
would not change any of our results.

B. Histories, Strategies, and Continuation Payoffs

The set of histories at the start of period ​T​ is ​​​ 0​ T​  = ​​ {​v​t​​ , ​x​ t​​ , {​w​ i, t​​} , ​d​ t​​ , ​e​ t​​ ,  
​y​ t​​ , {​τ​i, t​​}}​​ 

t=1
​ T−1​.​ Define ​​ as the set of all variables observed in a period, and for ​

a ∈ ​ define ​​​ a​ T​​ as the set of histories immediately following the realization 
of ​a​. For example, ​​(​h​ 0​ T​, ​v​T​​ , ​x​ T​​ , ​{​w​ i, T​​}​i​​ , ​d​ T​​, ​e​ T​​, ​y​ T​​)​ ∈ ​​ y​ T​​. The set of histories is ​
  = ​ ∪ T=1​ ∞ ​​ ​ ∪ a∈∪{0}​ ​​ ​​ a​ T​ .​

For each agent ​i ∈ {1, … , N  }​ , let ​​I​ i​​ :  → ​2​​ ​​ be agent ​i​ ’s information partition 
over histories. That is, ​​I​ i​​ (​h​ a​ t ​)​ equals the set of histories that agent ​i​ cannot distin-
guish from ​​h​ a​ t ​ ∈ ​​ a​ t ​​.3 A strategy is a mapping from each player’s beliefs at each 
history to feasible actions at that history, and is denoted ​σ  =   (​σ​0​​, …. , ​σ​N​​) ∈ Σ  
= ​ Σ​0​​ × … × ​Σ​N​​​ .

Definition 1: For ​i ∈ {0, …. , N  }​ , player ​i​’s continuation surplus equals  
​​U​ i, t​​  = ​ ∑ ​t ′ ​=0​ ∞ ​​  (1 − δ)​δ​​ ​t​ ​ ′​​ ​u​ i​ t+​t​ ​ ′​​.​ Define ​i​-dyad surplus as the total surplus produced by 
agent ​i​:

	​ ​S​ i, t​​  = ​  ∑ 
​t​ ​ ′​=0

​ 
∞

 ​​ (1 − δ)​δ​​ ​t​ ​ ′​​ ​1​i, t+​t​ ​ ′​​​ ( ​y​ t+​t​ ​ ′​​​ − c​e​ t+​t​ ​ ′​​​)​.

Intuitively, ​i​-dyad surplus is agent ​i​ ’s contribution to total surplus—the surplus 
from those periods in which agent ​i​ is allocated production. We will show that dyad 
surplus constrains the incentives that can be promised to agent ​i​ , and so plays a crit-
ical role in our analysis. Note that an agent’s beliefs about his continuation surplus 
condition on his information, rather than the true history: ​​E​ σ​​​[​U​ i, t​​ | ​I​ i​​ ​(​h​​ t​)​]​​.

A relational contract is a perfect Bayesian equilibrium (PBE) of this game, with 
equilibrium set ​​Σ​​ ∗​​.4 We focus on optimal relational contracts, which maximize 
ex ante total surplus among all relational contracts: ​​max​ ​σ​​ ∗​∈​Σ​​ ∗​​ ​  ​ ​∑ i=0​ N  ​​ ​E​ ​σ​​ ∗​​​ [​U​ i, 1​​]​. This 

2 If agents could directly pay one another, then they could use these payments to communicate. In that case, 
optimal allocation rules would typically be history-independent (see Andrews and Barron 2013 for a proof). 

3 For example, ​∀​ ​i ∈ {1, … , N  }​ , ​​I​i​​ ​(​h​ 0​ T​    )​  = ​​ {​v​t​​ , ​x​t​​ , ​w​i, t​​ , ​1​i, t​​ ​d​t​​ , ​1​i, t​​ ​e​t​​ , ​1​i, t​​ ​y​t​​ , ​τ​i, t​​}​​ 
t=1

​ T−1​.​ 
4 Adapted from Mailath and Samuelson (2006): a perfect Bayesian equilibrium is an assessment ​(​σ​​ ∗​, ​μ​​ ∗​)​ con-

sisting of strategy profile ​​σ​​ ∗​​ and beliefs about the true history ​​μ​​ ∗​  = ​​ {​μ​ i​ ∗​}​​ i=0​ 
N
  ​​. ​​σ​ i​ ∗​​ is a best response given ​​μ​ i​ ∗​​ , 

which is updated by Bayes Rule whenever possible. Otherwise, ​​μ​ i​ ∗​​ assigns positive weight only to histories that are 
consistent with ​​I​i​​ ​(​h​​ t​)​​. 



2747ANDREWS AND BARRON: ALLOCATION OF FUTURE BUSINESSVOL. 106 NO. 9

is equivalent to maximizing the principal’s surplus because utility is transferable 
between the principal and each agent.5 An allocation rule is a mapping from the 
histories immediately following the realization of ​​{​v​ i, t​​}​ i=1​ N  ​​ , ​​∪​ t=1​ ∞ ​ ​​ v​ t ​​ , to the agent ​​x​ t​​​ 
who is allocated production at that history. Without loss of generality, we restrict 
attention to the set of relational contracts in which players do not condition on past 
effort choices.6

Let ​​v​ max, t​​  =  ma​x​j​​ ​v​ j, t​​​ be the maximum productivity in period ​t​ , and define 
the set of most productive agents as ​​​t​​  =  {i | ​v​ i, t​​  = ​ v​ max, t​​}​. A first-best rela-
tional contract is a relational contract that (i) always allocates production to an 
agent in ​​​t​​​ , who (ii) chooses ​​e​ t​​  =  1​. Define the resulting first-best total sur-
plus ​​V​​ FB​  =  E [​v​ max, t​​ ​p​ 1​​ − c]​. Without loss of generality, assume ​​v​​ 1​<​v​​ 2​  <  …  
< ​ v​​ K​​. We maintain the following three assumptions for the entire analysis.

Assumption 1: ​F​ is exchangeable: for any permutation ​ϕ​ , ​F (v)  =  F (ϕ (v))​.

Assumption 2: If ​​v​ i, t​​  >  0​ then ​​v​ i, t​​ ​p​ 1​​ − c  > ​ v​ i, t​​ ​p​ 0​​​ , with ​Pr {​v​ max, t​​  >  0}  =  1​.

Assumption 3: ​Pr {| ​​t​​ |  >  1}  >  0​ and ​Pr { | ​​t​​ |  =  1}  >  0​.

Assumption 1 implies that agents are symmetric, greatly simplifying our analy-
sis. By Assumption 2, ​​e​ t​​  =  1​ is efficient in each period unless ​​v​ ​x​t​​ , t​​  =  0​ , and it is 
always efficient for an agent in ​​​t​​​ to exert effort. Assumption 3 has two implica-
tions that warrant further discussion: (i) multiple agents sometimes have the same 
productivity in one period, and (ii) each agent is the unique most productive agent 
with positive probability.

Consider implication (i). To attain first-best, an equilibrium must allocate pro-
duction in each period to one of the most productive agents in that period (i.e., one 
of the agents in ​​​t​​​). If ​​​t​​​ is always a singleton, then the first-best allocation rule 
is uniquely determined by exogenous productivity draws. Thus, ties are required for 
nontrivial allocation dynamics to arise in a first-best relational contract. We discuss 
to what extent our intuition applies in settings without ties in Section IV.

The assumption that productivities are sometimes tied seems reasonable in real-
world supply chains. For example, in their study of “Metalcraft,” Kulp, Narayanan, 
and Verkleeren (2004) highlight an allocation decision in which at least three sup-
pliers have “comparable” productivities. Two suppliers have similar costs and qual-
ities, while the third has higher cost but higher quality. The case emphasizes that 
“the costs associated with managing upstream suppliers [are] hard to quantify objec-
tively” (p. 2), implying that it is difficult to strictly rank suppliers. More generally, a 
supplier’s “productivity” includes many components—manufacturing costs, quality, 
and expertise—that are either difficult to measure or naturally discrete (see Lalond 
and Pohlen 1996 for further discussion). Hence, a firm might naturally view several 
of its suppliers as equally efficient when it allocates production.

5 Proof: for ​​σ​​ ∗​ ∈ ​Σ​​ ∗​​ , agent ​i​ pays ​​E​​σ​​ ∗​​​[​U​i, 1​​]​ to the principal at the start of the game, or else is pun-
ished with ​​d​t​​  =  0​ and ​​w​i, t​​  = ​ τ​i, t​​  =  0​ ​∀ t  ≥  1​. The principal’s payoff then equals ex ante total surplus  
​​∑ i=0​ N  ​​ ​E​​σ​​ ∗​​​[​U​i, 1​​]​. 

6 The proof that this is without loss may be found in Andrews and Barron (2013). 
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Implication (ii) of Assumption 3 is also crucial for equilibrium dynamics, since 
otherwise the principal could attain first-best by allocating business among a strict 
subset of agents. In practice, the relative productivities of different suppliers vary 
over time with changes in the downstream firm’s needs and suppliers’ capabilities. 
For example, Metalcraft sometimes chooses “non-preferred” suppliers because pre-
ferred suppliers are unable to efficiently manufacture a given part. Similarly, Toyota 
asks several suppliers to submit proposals for a component, then chooses one based 
on the quality of its proposal (​​v​ i, t​​​) and its past performance. A supplier chosen in 
one model-cycle might be less productive than other suppliers in the next. As a 
result, Toyota’s suppliers have product portfolios that vary substantially over time 
(Asanuma 1989).

II.  The Favored Supplier Allocation

This section gives conditions under which a simple dynamic allocation rule—the 
Favored Supplier Allocation (FSA)—is part of a first-best relational contract when-
ever any relational contract attains first-best. The definition of the FSA, statement of 
the result, and intuition are given in Section IIA, with a formal proof in Section IIB. 
Section IIC explores the incentives of the FSA in more detail. We focus on strategies 
yielding first-best total surplus, so our discussion assumes ​​e​ t​​  =  1​ in each period 
unless otherwise noted.

A. Statement of the Main Result

Suppose the principal could commit to a transfer scheme as a function of output. 
Then regardless of future allocation decisions, the principal could write a short-term 
formal contract to hold an agent’s payoff at ​0​ and motivate him to work hard.7 As a 
result, an allocation rule that depends only on current productivities and ignores past 
performance would be optimal.

In contrast, allocation dynamics play an important role in the game without com-
mitment. Our main result concerns what we call the FSA, which allocates produc-
tion among agents according to a simple history-dependent rule.

Definition 2: For each ​t  ≥  1​ , history ​​h​ 0​ t ​​ , and agent ​i​ , define ​​T​ i​​ (​h​ 0​ t ​)  
=  max {t′  <  t | ​x​ ​t​ ​ ′​​​  =  i, ​y​ ​t​ ​ ′​​​  >  0}​ as the most recent time agent ​i​ produced high  
output. The FSA allocates production in each period to the efficient agent who has 
most recently produced high output: ​​x​ t​​ ∈ arg ma​x​i∈​​t​​​​ ​T​ i​​ (​h​ 0​ t ​)​. If ​​T​ i​​ (​h​ 0​ t ​)  =  −∞​ for 
all agents in ​​​t​​​ , then ​​x​ t​​ ∈ ​​t​​​ is chosen at random.

The FSA chooses the agent who has produced high output most recently among 
those agents in ​​​t​​​. If no agent in ​​​t​​​ has produced high output, then the supplier is 
chosen at random from that set. This allocation rule favors past successes by choos-
ing agents who have performed well over those who have not, and choosing more 
recent high performers over those who performed well in the distant past. It tolerates 

7 For instance, the principal could set ​​w​​x​t​​ , t​​  =  c − ​p​ 1​​ ​  c ______ ​p​ 1​​ − ​p​ 0​​ ​​  , pay a bonus of ​​  c ______ ​p​ 1​​ − ​p​ 0​​ ​​ if ​​y​t​​  = ​ v​​x​t​​ , t​​​ , and pay 
no bonus if ​​y​t​​  =  0​. 
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past failures by not tracking past low output: the most recent high performer is cho-
sen regardless of his performance in other periods.

Consider a first-best relational contract that uses the FSA. Because ​​e​ t​​  =  1​ in 
each period of this relational contract, an agent’s dyad-surplus at the start of a period 
depends only on the number of agents who have produced high output more recently 
than him. Define ​​S​ ( j)​ FSA​​ as the expected dyad-surplus of the ​j​ th most recently produc-
tive agent—that is, an agent for whom ​​( j − 1)​​ other agents have produced high out-
put more recently. Define ​​F​ ​( j)​​ 

k ​​ as the probability that both ​​v​ max, t​​  = ​ v​​ k​​ and the ​j − 1​ 
most recently productive agents are unable to produce at time ​t​ , ​​F​ ( j)​​  = ​ ∑ k=1​ K  ​​ ​F​ ( j)​ k ​,​ 
and ​​F​ ​(N+1)​​​  =  0​. Then it is straightforward to show that

  ​  ​S​ ​( j)​​ 
FSA​  = ​ (1 − ​F​ ​( j)​​​)​δ ​S​ ​( j)​​ 

FSA​

	 + ​∑ k=1​ N  ​​ ​(​F​ ​( j)​​ 
k  ​ − ​F​ ​( j+1)​​ 

k  ​)​(1 − δ)(​v​​ k​ ​p​ 1​​ − c)

	 + ​(​F​ ​( j)​​​ − ​F​ ​( j+1)​​​)​δ​(​p​ 1​​ ​S​ ​(1)​​ 
FSA​ + ​(1 − ​p​ 1​​)​​S​ ( j)​ FSA​)​

	 + ​F​ ​( j+1)​​​ δ​(​p​ 1​​ ​S​ ​( j+1)​​ 
FSA  ​ + ​(1 − ​p​ 1​​)​​S​ ​( j)​​ 

FSA​)​.​

There is one such equation for each ​j  = ​ {1, … , N}​​ , leading to a linear system of ​N​ 
equations in the ​N​ unknowns ​​(​S​ (1)​ FSA​, … , ​S​ (N)​ FSA​)​​. Details for how to solve this system 
may be found online in the technical Appendix.

Our main result finds the lowest discount factor such that a relational contract 
using the FSA attains first-best. If a further parameter condition is satisfied, then no 
relational contract attains first-best for smaller discount factors, so the FSA attains 
first-best whenever any allocation rule does.

PROPOSITION 1: Let ​​δ​​ FSA​ ∈ (0, 1)​ be the smallest ​δ​ such that ​​  δ _ 
1 − δ ​ ​S​ (1)​ FSA​  

≥ ​   c _ ​p​ 1​​ − ​p​ 0​​ ​​ .
8 Then:

	 (i)	 The FSA is part of a relational contract that attains first-best if and only if ​
δ  ≥ ​ δ​​ FSA​​.

	 (ii)	 If ​​δ​​ FSA​ ​v​​ K​ − ​v​​ 1​  ≤ ​ (1 − ​δ​​ FSA​)​c ​  ​p​ 0​​/​p​ 1​​ _ ​p​ 1​​ − ​p​ 0​​ ​​  , then no relational contract attains 
first-best if ​δ  < ​ δ​​ FSA​​. So a relational contract using the FSA attains first-best 
whenever any relational contract does.

PROOF: 
See Section IIB.

The threshold ​​δ​​ FSA​​ solves ​​  ​δ​​ FSA​ _ 
1 − ​δ​​ FSA​

 ​ ​S​ (1)​ FSA​  = ​   c _ ​p​ 1​​ − ​p​ 0​​ ​​ . A unique solution always 

exists because ​​  δ _ 
1 − δ ​ ​S​ (1)​ FSA​​ is continuous and strictly increasing in ​δ ∈ ​(0, 1)​​ , tends to 

8 Note that ​​  1 _____ 
1 − δ ​ ​S​ (1)​ 

FSA​​ is strictly increasing in ​δ​. 
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infinity as ​δ​ tends to one, and tends to zero as ​δ​ tends to zero. Note that the parameter 
constraint in part (ii) of the proposition is always satisfied if ​K  =  1​ , since in this 

case ​​v​​ K​  = ​ v​​ 1​​ and so ​​δ​​ FSA​ ​v​​ K​ − ​v​​ 1​  <  0  < ​ (1 − ​δ​​ FSA​)​ c ​  ​p​ 0​​/​p​ 1​​ _ ​p​ 1​​ − ​p​ 0​​ ​​ .
We focus on developing intuition for Proposition 1 here, deferring the proof to 

the next subsection. First, we consider how future allocation decisions constrain 
an agent’s equilibrium incentives. As in Levin (2003) an agent’s payoff after he 
produces output is constrained by his expected future production. Agent ​i​ ’s payoff 
can be no worse than his outside option, ​0​ , since he can always deviate by rejecting 
future production. Agent ​i​ cannot earn more than his expected ​i​-dyad surplus, since 
the principal would renege on any larger payoff, forfeit that agent’s future output, 
and continue trading with the other agents. Private monitoring leads to this upper 
bound: following a deviation observed only by agent ​i​ , the principal stands to lose 
only the future surplus produced by that agent. Therefore, the upper bound on an 
agent’s reward for high output—and hence his incentive to work hard—depends on 
his expected dyad surplus following that output.

We show that these payoff bounds are the key constraints imposed by the rela-
tional contract. In particular, for any allocation rule, we can construct a relational 
contract in which (i) an agent earns the lower or upper bounds after producing low 
or high output, respectively, and (ii) the principal earns payoff ​0​ at the start of each 
period and so is willing to implement the allocation rule.

Next, we consider optimal allocation dynamics. In any first-best relational con-
tract the principal chooses exactly one agent in ​​​t​​​ in each period ​t​. Consider a 
period-​t​ history such that agents 1 and 2 are both in ​​​t​​​ and last produced high 
output in periods ​​T​ 1​​​ and ​​T​ 2​​​ , respectively. Assume agent 1 has produced high output 
more recently: ​​T​ 1​​  > ​ T​ 2​​​. As argued above, agent ​i​ can be provided stronger incen-
tives to work hard in period ​​T​ i​​​ if his expected dyad surplus following high output in 
that period is large. This ​i​-dyad surplus is larger if the principal allocates business to 
him in period ​t​ , but how much it increases depends on two factors.

First, agent ​i​ ’s dyad surplus increases more if ​t − ​T​ i​​​ is small since, from the per-
spective of period ​​T​ i​​​ , surplus in period ​t​ is discounted by ​​δ​​ t−​T​ i​​​​. Agent ​i​ ’s expected 
dyad surplus also increases more if agent ​i​ believes that the period-​t​ history in ques-
tion is probable, given his information in period ​​T​ i​​​ . If this probability is larger for 
agent 1 , then choosing agent 1 increases expected ​1​-dyad surplus in ​​T​ 1​​​ more than 
choosing agent 2 would increase expected ​2​-dyad surplus in ​​T​ 2​​​. In that case, an  
optimal allocation rule should choose the agent in ​​​t​​​ who produced high output 
most recently, which is exactly what the FSA does.9

However, the informal logic outlined above is incomplete. In particular, agent 1 
in period ​​T​ 1​​​ might assign a lower probability to a given period-​t​ history than agent 2 
in ​​T​ 2​​​. Agents have different beliefs about the true history because they observe dif-
ferent variables. For example, agent 2 might believe a history in period ​t​ is proba-
ble given his information in ​​T​ 2​​​ , while agent 1 already knew this same history was 
impossible when he was chosen in period ​​T​ 1​​​. As a result of this difficulty, we do 
not prove Proposition 1 by formalizing the above argument, but instead derive a 

9 We thank an anonymous referee for suggesting an intuition along these lines. 
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condition that must be satisfied by any relational contract which attains first-best. 
This necessary condition is implied by (but weaker than) the combination of two 
constraints. First, the principal and each agent must be willing to pay their equilib-
rium transfers. Second, given these transfers, each agent’s incentive constraint to 
exert high effort must hold at every on-path history. Crucially, the necessary condi-
tion we derive depends only on agents’ beliefs at the beginning of the game and so 
avoids the complications that arise from differences in beliefs. Under the parameter 
restriction in part (ii) of Proposition 1, we show that relational contracts satisfying 
this necessary condition exist only if ​δ  ≥ ​ δ​​ FSA​​ , which proves that the FSA attains 
first-best whenever any relational contract does.

B. Proof of Proposition 1

Let ​​σ​​ FSA​​ be a strategy profile that uses the FSA. Dependence on strategies ​σ​ 
is suppressed wherever possible without loss of clarity. Our proof consists of 
four lemmas. Lemma 1 gives necessary and sufficient conditions for an allo-
cation rule and effort choices to be part of a relational contract. Lemma 2 then 
establishes a necessary condition for strategies to be part of a first-best rela-
tional contract. Under a parameter condition, Lemma 3 shows that this neces-
sary condition holds for any first-best strategy profile ​σ​ only if it holds for ​​σ​​ FSA​​.  
Finally, Lemma 4 shows that the necessary condition established by Lemma 2 holds 
only if a first-best relational contract using the FSA exists. Hence we establish that, 
under a parameter condition, no relational contract may attain first-best unless one 
that uses the FSA does so.

The first step of the proof is to identify necessary and sufficient conditions  
for an allocation rule and sequence of effort choices to be part of a relational 
contract.

Lemma 1: 

	 (i)	 Let ​​σ​​ ∗​​ be a PBE in which ​​e​ t​​  =  0​ whenever ​​v​ ​x​t​​ , t​​  =  0​. Then

(1)	​ (1 − δ) ​  c ______ ​p​ 1​​ − ​p​ 0​​ ​  ≤  δ​E​ ​σ​​ ∗​​​ ​[​S​ ​x​t​​ , t+1​​ | ​I​ ​x​t​​​​ ​(​h  ​ y​ t​)​]​,

	 ∀  on-path  ​h  ​ y​ t​ ∈ ​​ y​ t ​  such that  ​e​ t​​  =  1, ​y​ t​​  >  0.​

	 (ii)	 Let strategy ​σ​ be such that ​​e​ t​​  =  0​ if ​​v​ ​x​t​​ , t​​  =  0​ , total surplus equals ​V​ , and (1) 
holds. There exists a relational contract ​​σ​​ ∗​​ such that (i) total surplus equals ​
V​ , and (ii) the joint distribution over ​​​{​v​t​​, ​x​ t​​, ​y​ t​​}​​ t=1​ T  ​​ is identical to that implied 
by ​σ​ for all ​T  ≥  1​.

PROOF: 
See the online Appendix.

Constraint (1) requires that a chosen agent ​​x​ t​​​ expect at least ​​S ̃ ​  = ​  1 − δ _ δ ​ ​   c _ ​p​ 1​​ − ​p​ 0​​ ​​ 
dyad surplus whenever he exerts effort (​​e​ t​​  =  1​) and produces high output (​​y​ t​​  >  0​). 
The right-hand side of this constraint equals the largest payoff an agent can receive 
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following high output. Since the lowest payoff an agent can receive following low 
output equals ​0​ , (1) is a necessary condition for agent ​​x​ t​​​’s incentive constraint for 
high effort to hold.

Lemma 1 implies that (i) each agent’s equilibrium incentives can be summarized 
by his dyad surplus following high effort and high output, and (ii) we can induce the 
principal to follow any allocation rule in equilibrium. To prove this lemma, we con-
struct transfers so that each agent ​i​ earns ​E​[​S​ i, t​​ | ​h​ 0​ t ​]​​ continuation surplus at the start 
of each period. Then the principal earns ​0​ and so is willing to follow the equilibrium 
allocation rule. Agent ​​x​ t​​​ is willing to pay his expected continuation surplus as a fine 
following low output because he would lose that surplus following a deviation. So 
agent ​​x​ t​​​ earns ​δE [​S​ ​x​ t​​, t+1​​ | ​I​ ​x​ t​​​​(​h​ y​ t​)]​ if ​​y​ t​​  >  0​ and ​0​ if ​​y​ t​​  =  0​ , which can be plugged into 
his effort incentive constraint to yield (1). This construction ensures that the princi-
pal is willing to pay the equilibrium ​​w​ ​x​ t​​ , t​​​ to the agent who is allocated production in 
each period, while that agent is willing to pay a fine if his output is low.

Ceteris paribus, an allocation rule and efforts that satisfy (1) at ​δ​ also satisfy (1) 
for ​δ′  >  δ​. Hence, Lemma 1 implies part (i) of Proposition 1.

Condition (1) depends on agent beliefs and so is challenging to check for an arbi-
trary strategy profile. We handle this complication by finding necessary conditions 
for (1) to be satisfied at each history, which is required in any first-best relational 
contract. To satisfy (1), an allocation rule must ensure that each agent expects at 
least ​δ ​S ̃ ​​ dyad-surplus whenever that agent produces high output.

Let ​H​(​h​​ t​)​  =  {i : there exists s  <  t such that ​x​ s​​  =  i, ​y​ s​​  >  0}​ denote the set 
of agents who have produced high output before period ​t​. For any first-best strat-
egy ​σ​ , define ​​β​ i, s​ L  ​  = ​ Pr​σ​​ ​{​x​ t​​  =  i, i ∉ H (​h​​ t​)}​​ as the probability that agent ​i​ is 
allocated production and has never produced high output in the past, and ​​β​ i, s​ H ​ ​(k)​  
= ​ Pr​σ​​​{​v​ max, t​​  = ​ v​​ k​, ​x​ t​​  =  i, i ∈ H (​h​​ t​)}​​ as the probability that ​​v​ max, t​​  = ​ v​​ k​​ , 
agent ​i​ is allocated production, and ​i​ has produced high output in the past. Let ​​V​ k​ FB​  
= ​ v​​ k​ ​p​ 1​​ − c​.

Definition 3: For any first-best strategy ​σ​ , define the expected obligation owed 
to agent ​i​ at time ​t​ , ​​Ω​i, t​​​ , as ​​Ω​i, 0​​  =  0​ and

(2)	​ ​Ω​i, t​​  ≡ ​ β​ i, t​ L ​ ​p​ 1​​ δ ​S ̃ ​ − (1 − δ) ​ ∑ 
k=1

​ 
K

  ​​ ​β​ i, t​ H ​ ​(k)​​V​ k​ FB​ + ​ 
​Ω​i, t−1​​ _ δ ​ ​ .

For each ​t  ≥  1​ , one can show that ​​E​ σ​​[​S​ i, t​​]  ≥ ​ Ω​i, t​​​ in any first-best relational con-
tract, where the expectation is taken with respect to beliefs at the start of the game. 
The first term in ​​Ω​i, t​​​ is a lower bound on the additional expected ​i​-dyad surplus 
in equilibrium based on agent ​i​ ’s output in period ​t​: he produces high output for 
the first time in that period with probability ​​β​ i, t​ L ​ ​p​ 1​​​ , in which case he must produce  
​δ ​S ̃ ​​ expected dyad surplus in the continuation game by (1). In subsequent periods, 
agent ​i​ produces some of this dyad surplus whenever he is chosen as the supplier. The 
second term captures this fact: the probability that agent ​i​ has both previously pro-
duced high output and is allocated production in period ​t​ with ​​v​ max, t​​  = ​ v​​ k​​ is ​​β​ i, t​ H ​ (k),​ 
and in this case ​i​ produces ​(1 − δ)​V​ k​ FB​​ surplus. The final term, ​​ ​Ω​i, t−1​​ _ δ ​ ​ , captures any 
expected dyad surplus from previous periods that agent ​i​ has not yet supplied.
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If ​​Ω​i, t​​​ diverges to ​∞​ , then (1) does not hold in expectation across histories and 
so must be violated at some history on the equilibrium path. Thus, ​​Ω​i, t​​​ must be 
bounded from above in any first-best relational contract.

Lemma 2: In any first-best relational contract ​σ​ , ​lim ​sup​ t→∞​ ​ ​ ​ Ω​i, t​​  <  ∞​ for all ​
i ∈ {1, … , N  }​.

PROOF: 
Let ​​b​ i​ L​​(​h​​ t​)​  =  1​{​x​ t​​  =  i}​ 1​{i ∉ H​(​h​​ t​)​}​​ indicate the event that ​i​ is allocated pro-

duction in period ​t​ and has never previously produced high output. Define ​​1​i, t​​​(k)​  
=  1​{​x​ t​​  =  i, ​v​ max, t​​  = ​ v​​ k​}​​ , and let ​​b​ i​ H​​(​h​​ t​, k)​  = ​ 1​i, t​​ ​(k)​ 1​{i ∈ H​(​h​​ t​)​}​​ indicate  
the event that ​i​ is allocated production in period ​t​ , has previously produced  
high output, and the maximal productivity is ​​v​​ k​​.

In a first-best relational contract, (1) must hold the first time an agent pro-
duces ​​y​ t​​  >  0​. Multiplying both sides of (1) by ​​b​ i​ L​ ​(​h​​ t​)​1​{​y​ t​​  >  0}​ ​δ​​ t​​ , summing across ​
s  =  1, … , t​ , and taking expectations in ​t  =  0​ yields

(3)   ​ ​ ∑ 
s=1

​ 
t

  ​​ ​δ​​ s​​β​ i, s​ L  ​ ​p​ 1​​ δ ​S ̃ ​ 

	     ≤ ​ E​ σ​​ ​[ ​ ∑ 
s=1

​ 
t

  ​​ ​ ∑ 
​s​ ​ ′​=1

​ 
∞

 ​​ ​ ∑ 
k=1

​ 
K

  ​​ (1 − δ)​δ​​ s+​s​ ​ ′​​ ​b​ i​ L​ ​(​h​​ s​)​1​{ ​y​ s​​  >  0}​ ​b​ i​ H​ ​(​h​​ s+​s​ ​ ′​​, k)​​V​ k​ FB​]​.​

We can isolate expectations that depend on events in periods ​s  >  t​ by rewriting the 
right-hand side

(4)	​ R (i, t) + ​E​ σ​​ ​[ ​ ∑ 
s=1

​ 
t

  ​​ 1​{i ∈ H ​(​h​​ s​)​}​ ​ ∑ 
k=1

​ 
K

  ​​ (1 − δ)​δ​​ s​ ​b​ i​ H​ ​(​h​​ s​, k)​ ​V​ k​ FB​]​, ​

where ​R (i, t)  =  (1 − δ)​E​ σ​​ ​[1​{i ∈ H ​(​h​​ t+1​)​}​ ​∑ s=t+1​ ∞ ​​ ​ ∑ k=1​ K  ​​ ​δ​​ s​ ​V​ k​ FB​ ​b​ i​ H​ ​(​h​​ s​, k)​]​​.
Since ​​E​ σ​​​[​b​ i​ H​​(​h​​ s​, k)​ 1​{i ∈ H​(​h​​ s​)​}​]​=​β​ i, s​ H ​​(k)​​ , we can rearrange (3) to obtain  

​​Ω​i, t​​  ≤ ​ δ​​ −t​R (i, t)​. But ​​δ​​ −t​R (i, t)  ≤  δ​V​ K​ FB​​ , so ​lim ​sup​ t→∞​ ​ ​ ​ Ω​i, t​​  ≤  δ​V​ K​ FB​​ in any  
first-best relational contract. ∎

The FSA treats agents symmetrically ex ante, so its implied obligation is sym-
metric as well, ​​Ω​ i, t​ FSA​  = ​ Ω​ t​ FSA​​. We next show that if ​​Ω​ t​ FSA​​ diverges, then under a 
parameter restriction obligation must diverge for any first-best strategy.

Lemma 3: Suppose ​δ​V​ K​ FB​  ≤ ​ V​ 1​ FB​ + ​p​ 1​​ δ ​S ̃ ​​. If ​lim ​sup​ t→∞​ ​ ​ ​ Ω​ t​ FSA​  =  ∞​ , then for  
any first-best strategy ​σ​ , ​∃ i ∈ {1, … , N  }​ such that ​​lim​ t→∞​ ​ ​ ​ Ω​i, t​​  =  ∞​.

PROOF: 
Given any strategy ​σ​ , define a symmetric strategy profile by randomizing agent 

identities in ​t  =  1​ and then playing as in ​σ​. Obligation diverges in the symmetric 
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strategy profile only if it diverges for at least one agent in ​σ​. So we can restrict atten-
tion to symmetric strategy profiles.

Given a symmetric first-best strategy ​​σ ̃ ​​ with obligation ​​​Ω ̃ ​​t​​​ , Lemma A.2 proves 
that ​​Ω​ t​ FSA​  ≤ ​​ Ω ̃ ​​t​​​ for all ​t​ if ​δ​V​ K​ FB​  ≤ ​ V​ 1​ FB​ + ​p​ 1​​ δ ​S ̃ ​​. The proof constructs a decreasing 
sequence of obligations ​​Ω​ t​ n​​ such that ​​Ω​ t​ 0​  = ​​ Ω ̃ ​​t​​​ and ​li​m​n→∞​​ ​Ω​ t​ 

n​  = ​ Ω​ t​ 
FSA​​. We use  

the restriction ​δ​V​ K​ FB​  ≤ ​ V​ 1​ FB​ + ​p​ 1​​ δ ​S ̃ ​​ to prove that obligation is minimized by an 
allocation rule that chooses agents who have already produced high output when-
ever at least one such agent is in ​​​t​​​ . Then ​​Ω​ t​ FSA​  ≤ ​​ Ω ̃ ​​t​​​ for any symmetric ​​σ ̃ ​​ , imply-
ing Lemma 3. ∎

Lemma 3 shows that, under a parameter condition, divergent FSA obligation 
implies divergent obligation for all first-best strategies. Thus, Lemmas 2 and 3 
together imply that first-best is attainable only if ​​Ω​ t​ FSA​​ is bounded above as ​t → ∞​. 
The final step of our proof shows that ​​Ω​ t​ FSA​​ diverges exactly when the FSA is not 
part of a relational contract that attains first-best.

Lemma 4: If ​δ  < ​ δ​​ FSA​​ , then ​lim ​sup​ t→∞​ ​ ​ ​ Ω​ t​ FSA​  =  ∞​.

PROOF: 
We need only show that ​lim ​sup​ t→∞​ ​ ​ ​ Ω​ t​ FSA​  =  ∞​ if ​​S​ (1)​ FSA​  < ​ S ̃ ​​ , since this condi-

tion is equivalent to ​δ  < ​ δ​​ FSA​​. Using the definition of ​​S​ ​(1)​​ 
FSA​​ and repeating the deri-

vation of (3)–(4) with ​​S​ ​(1)​​ 
FSA​​ in place of ​​S ̃ ​​ yields

(5)	​ ​ ∑ 
s=1

​ 
t

  ​​ ​δ​​ s​ ​β​ s​ L, FSA​ ​p​ 1​​ δ​S​ ​(1)​​ 
FSA​ − ​ ∑ 

s=1
​ 

t

  ​​ ​δ​​ s​ ​ ∑ 
k=1

​ 
K

  ​​ ​β​ s​ H, FSA​ ​(k)​​V​ k​ FB​  = ​ R​​ FSA​​(t)​ ​,

where ​​β​ s​ L, FSA​​ , ​​β​ s​ H, FSA​(k)​ , and ​​R​​ FSA​(t)​ are the analogues for ​​β​ i, s​ L  ​​ , ​​β​ i, s​ H ​​ , and ​R (i, t)​ if ​
σ  = ​ σ​​ FSA​​ , where we drop the ​i​ index because the FSA is symmetric.

The argument in Lemma 2 implies that ​0  ≤ ​ δ​​ −t​ ​R​​ FSA​ (t)  ≤  δ​V​ K​ FB​​ for all ​t​. The 
left-hand side of (5) equals ​​δ​​ t​ ​Ω​ t​ FSA​​ if ​​S ̃ ​  = ​ S​ (1)​ FSA​​. It follows that ​​Ω​ t​ FSA​​ is asymptoti-
cally bounded for ​​S ̃ ​  = ​ S​ (1)​ FSA​​ , from which it is straightforward to see that it diverges 
for ​​S ̃ ​  > ​ S​ (1)​ FSA​​. ∎

Finally, we relax the condition ​δ​V​ K​ FB​  ≤ ​ V​ 1​ FB​ + ​p​ 1​​ δ ​S ̃ ​​ from Lemma 3. If this con-
dition holds at ​​δ​​ FSA​​ , then it holds a fortiori for ​δ  < ​ δ​​ FSA​​. So Lemmas 2–  4 imply 
that no relational contract attains first-best for ​δ  < ​ δ​​ FSA​​. The parameter constraint 

at ​​δ​​ FSA​​ may be written ​​δ​​ FSA​ ​v​​ K​ − ​v​​ 1​  ≤ ​ (1 − ​δ​​ FSA​)​c ​ ​p​ 0​​/​p​ 1​​ _ ​p​ 1​​ − ​p​ 0​​ ​​. ​∎​

C. Implications of Proposition 1

This section presents two corollaries of Proposition 1 that explore the incentives 
provided by the FSA. The first proves that the FSA performs strictly better than a 
natural benchmark: an allocation rule that does not condition on past performance. 
The second considers the role of information in the FSA.
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A relational contract is stationary if on the equilibrium path, actions in one period 
are independent of previous periods and of ​t​. Corollary 1 proves that a relational 
contract using the FSA attains first-best for a strictly wider parameter range than any 
stationary relational contract.

Corollary 1: Let ​​δ​​ Stat​ ∈ (0, 1)​ satisfy ​​ 1 − ​δ​​ Stat​ _ 
​δ​​ Stat​

 ​ ​   c _ ​p​ 1​​ − ​p​ 0​​ ​  = ​  1 _ N ​ ​V​​ FB​​. Then (i) a 

stationary relational contract attains first-best if and only if ​δ  ≥ ​ δ​​ Stat​​ , and 
(ii) ​​δ​​ Stat​  > ​ δ​​ FSA​​.

PROOF: 
See the online Appendix.

A stationary allocation rule does not respond to past performance to make large 
rewards to high performers credible, and so cannot perform as well as a relational 
contract that uses the FSA. To illustrate this point, Figure 1 shows how ​​δ​​ FSA​​ and  
​​δ​​ Stat​​ change with the parameters ​​p​ 1​​​ and ​Pr ​{​| ​​t​​ |​  =  2}​​ in a two-agent example, 
holding the other parameters constant.

Finally, we consider the role of information in the FSA. The constraint (1)  
must hold only with respect to agent ​​x​ t​​​’s information, ​​I​ ​x​t​​​​ ​(​h​ y​ t​)​​. In particu-
lar, the allocation rule might satisfy (1) but “conceal information” by setting  
​δE ​[​S​ ​x​t​​ , t+1​​ | ​h​ y​ t​]​  <  (1 − δ) ​  c _ ​p​ 1​​ − ​p​ 0​​ ​​ for some ​​h​ y​ t​​ , so that agent ​​x​ t​​​ would be unwilling 
to exert effort if he learned the true history. The FSA does not conceal information 
in this way.

Corollary 2: In any first-best relational contract ​​σ​​ FSA​​ that uses the FSA, (1) 
holds with respect to the true history:

(6)	​ (1 − δ) ​  c ______ ​p​ 1​​ − ​p​ 0​​ ​  ≤  δ ​E​ ​σ​​ FSA​​​ ​[​S​ ​x​t​​ , t+1​​ | ​h​ y​ t​]​,

	 ∀  on-path  ​h​ y​ t​ ∈ ​​ y​ t ​  such that  ​e​ t​​  =  1, ​y​ t​​  >  0.​

PROOF:
​​E​ ​σ​​ FSA​​​​[​S​ ​x​t​​ , t+1​​ | ​h​ y​ t​]​  = ​ S​ (1)​ FSA​​ if ​​y​ t​​  >  0​ , so (6) holds for ​δ  ≥ ​ δ​​ FSA​​. ​∎​

It can be shown that (6) is a necessary and sufficient condition (in the sense of 
Lemma 1) for an allocation rule to be part of a belief-free equilibrium.10 Hence, 
Corollary 2 implies that under the conditions of Proposition 1, a belief-free equilib-
rium that uses the FSA attains first-best whenever any perfect Bayesian equilibrium 
does.

If first-best is not attainable, then optimal equilibria do not necessarily satisfy (6). 
Andrews and Barron (2013) considers an example in which first-best is unattainable 
and constructs a relational contract that strictly dominates any relational contract 

10 See Ely, Horner, and Olszewski (2005) for further discussion of belief-free equilibria. 
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satisfying (6). Hence, when first-best is unattainable, the principal can use the fact 
that agents do not observe the true history to induce more effort, but (under the con-
ditions of Proposition 1) concealing information cannot expand the set of discount 
factors for which first-best can be attained.

III.  Discussion

Alternative Transfer Schemes.—In the proof of Lemma 1, transfers ensure that 
each agent’s continuation payoff equals his dyad surplus. Therefore, the principal’s 
continuation payoff equals ​0​ in every period except the very start of the game. This 
section discusses alternative transfers schemes that also implement the FSA, includ-
ing schemes in which the principal earns a strictly positive payoff in each period.

Consider the following equilibrium. Every agent pays a fixed “participation fee” 
to the principal in each period. The principal allocates production as in the FSA, 
pays the chosen agent a bonus if he produces high output, and otherwise demands a 
fine from that agent. Participation fees are bounded below by ​0​ and bounded above 
by the amount an agent currently in the last rank of the FSA would be willing to pay, ​
δ ​S​ (N)​ FSA​​. Hence, the principal’s continuation payoff in each period can be anywhere 
between ​0​ and ​Nδ ​S​ (N)​ FSA​​ in these relational contracts.

In the online Appendix, we show that a relational contract of this form attains 
first-best whenever ​δ  ≥ ​ δ​​ FSA​​. Each agent is induced to exert effort by a combina-
tion of bonuses and fines. The principal’s payoff is independent of the allocation 
decision and so she is willing to follow the FSA. Agent ​i​ stops paying his participa-
tion fee if he observes a deviation, so the principal has an incentive to pay a bonus if 
an agent produces high output. As a result, the principal can earn a strictly positive 

Figure 1. Comparing ​​δ​​ FSA​​ and ​​δ​​ Stat​​

Notes: Both panels assume N  =  2, ​​p​ 0​​​  =  0, c  =  5, K  =  1, and ​​v​​ 1​​  =  10. Panel A holds ​​p​ 1​​​  =  0.9 and var-
ies δ and Pr {​​v​ 1, t​​​  = ​​ v​ 2, t​​​  =  10}  =  Pr {| ​​​t​​​ |  =  2}. Panel B holds Pr {| ​​​t​​​ |  =  2}  =  0.8 and varies δ and ​​p​ 1​​​. In 
region A, both stationary and nonstationary relational contracts can attain first-best. In region B, no stationary rela-
tional contract attains first-best, but one that uses the FSA does. In region C no first-best relational contract exists.
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continuation payoff in a relational contract that implements the FSA. Furthermore, 
if ​δ  > ​ δ​​ FSA​​ , then we can reduce the participation fees paid by non-suppliers with-
out decreasing the surplus earned by the principal. Indeed, for sufficiently patient 
players the principal can earn the entire expected surplus in each period and moti-
vate agents through bonuses.

In practice, agent participation fees might take the form of “pay-to-play” con-
tracts, in which a supplier makes an explicit monetary payment to secure a spot in 
the downstream firm’s supply chain. More generally, suppliers might be “awarded” 
a routine contract that gives them negative economic profit in each period. A sup-
plier accepts this negative-profit contract in the hopes of being allocated more 
lucrative contracts in the future. In that case, the negative-profit contract serves as a 
participation fee paid by all suppliers and entails no non-contractible effort, while 
the allocation decision determines which supplier receives a contract that requires 
non-contractible effort in each period.

The Role of Private Monitoring.—In our model, allocation dynamics arise 
because each agent observes only his own relationship with the principal. Indeed, it 
can be shown that a stationary allocation rule would be optimal under public moni-
toring. Suppose that all variables except effort ​​e​ t​​​ are publicly observed. Agents can 
still earn no less than ​0​ in equilibrium. However, the agents can now jointly pun-
ish the principal if she betrays any one of them. So the principal is willing to pay  
the total continuation surplus produced by every agent, ​δE​[​∑ i=1​ N  ​​ ​S​ i, t+1​​ | ​h​ y​ t​]​​ ,  
following high output. Every agent can be motivated equally well regardless of 
the allocation rule because these bounds are the same for each agent. In particular, 
a stationary allocation rule would be optimal. See Barron and Powell (2016) for 
details.

Relationship to Board (2011).—In Board (2011), the principal chooses to invest 
in a single agent in each period at a cost that varies across agents. The chosen agent 
earns a payoff from which he can choose to repay the principal. In a principal-optimal 
equilibrium, the principal promises future rent to an agent to induce him to repay 
today. These rents serve as “switching costs” that encourage the principal to bias 
trade toward a group of “insider” agents.

Our paper differs from Board’s (2011) analysis in two crucial ways. First, the 
allocation rule matters for fundamentally different reasons in the two papers. In 
Board (2011), suppliers are liquidity-constrained. As a result, the principal must 
promise her agents rents to solve the hold-up problem. The principal then prefers 
to trade with agents who have already been promised rents, since she would have 
to promise additional rents to trade with an agent who has not already been chosen. 
Board (2011) shows that these biases arise if the principal can commit to an allo-
cation scheme, then proves that identical biases are optimal without commitment 
if players are patient. In contrast, our allocation dynamics arise precisely because 
the principal cannot commit. We do not have liquidity constraints, so the principal 
need not promise her agents rents to motivate them; indeed, our equilibrium con-
struction in Proposition 1 requires the agents to pay the principal. In our setting, the 
allocation rule induces the principal not to renege on her promised compensation 
to the agents.
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Second, we consider a setting with moral hazard. As noted in the introduction, 
occasional failures are an inescapable feature of many business relationships. This 
focus leads to new equilibrium dynamics. Our results apply to the setting without 
moral hazard by setting ​​p​ 1​​  =  1​ and ​​p​ 0​​  =  0​. While Proposition 1 applies in this 
case, the FSA would make no distinction between past allocation decisions and past 
performance on the equilibrium path because high output would occur with proba-
bility one. The fact that the FSA tracks the past successes of each agent, but ignores 
the past failures, is a potentially surprising result of allowing moral hazard.

IV.  Conclusion

The FSA entails meaningful dynamics only if the set of most productive 
agents, ​​​t​​​ , contains multiple agents with positive probability in each period. If 
productivities ​​{​v​ i, t​​}​i​​​ were instead drawn from a continuous distribution, then ​​​t​​​ 
would be a singleton in each period and hence every first-best allocation rule would 
be stationary.

However, nonstationary allocation rules can still be optimal if first-best is unat-
tainable. A suitable analogue of Lemma 1 continues to hold in this setting, so non-
stationarity arises from a straightforward generalization of (1). Dynamics might be 
required for the principal to credibly promise sufficiently strong incentives to moti-
vate high effort, even though they would imply that less productive agents are some-
times allocated production. However, constructing optimal equilibria if first-best is 
unattainable is intractable with a continuum of productivities. Andrews and Barron 
(2013) analyze optimal relational contracts if first-best is unattainable using an 
example with two feasible productivities, but a full characterization is difficult even 
in this simple setting.

While we have focused on supplier relationships, allocation rules matter in many 
settings. Managers allocate tasks and promotions among their employees. CEOs 
allocate scarce time and attention among their divisions. Our analysis suggests that 
these policies may be fundamentally shaped by commitment problems in long-term 
relationships.
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