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Abstract 

The technique of angles-only navigation consists of a single surveyor making line-of-sight 
observations of a target to deduce a relative navigation state from a sequence of angle 
measurements. Historically, angles-only navigation has been impeded by a range 
ambiguity problem in its many applications, especially those involving linear dynamical 
models. A classical solution to the problem is for the surveyor to perform precise 
maneuvers to change the nominal angle profile between the surveyor and the target. In 
the space environment, the orbital dynamics are inherently nonlinear and natural orbit 
perturbations have the effect of continuous micro-maneuvers. These advantageous 
conditions present an opportunity to overcome the ambiguity problem and enable 
spacecraft to navigate passively with a lightweight, low-power camera without the 
associated fuel cost of maneuver-assisted angles-only navigation. This technology has 
military and civilian utility for a wide range of missions involving rendezvous and 
proximity operations, most notably with non-cooperative resident space objects (RSOs). 

A novel procedure is developed that constrains the admissible region of the target’s 
natural motion to a set of unit-less parameters. These parameters and an arbitrary scale 
factor combine to describe a single orbit hypothesis that translates into a set of classical 
orbital elements (COEs). A cluster of uniformly sampled hypotheses are propagated and 
rendered into angle vs. angle-rate curves. Although these curves exhibit very similar 
trends for all admissible hypotheses, the angles are slightly different at common angle-
rate waypoints during certain parts of the orbit. The set of angle and range hypotheses 
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at these waypoints form a linear map to transform the observed angle to a range 
approximation. Photometry can complement this procedure with a secondary mapping 
from the timing of virtual eclipse events if a sufficient time differential is manifested across 
the admissible hypotheses.  

A nonlinear least squares (NLS) filter is designed to refine the accuracy of the 
initial orbit solution using a novel application of Kolmogorov-Arnold-Moser (KAM) 
theorem to model the Earth’s geopotential to any degree and order in the filter dynamics. 
The KAM torus conveniently captures the full nonlinear effects that make angles-only 
navigation possible in space and is computationally superior to numerically integrated 
reference trajectories for exact temporal synchronization with angle observations.  

Numerical results are presented that demonstrate the first angles-only navigation 
technique for natural motion circumnavigation trajectories without prior knowledge of the 
Target’s state. An analytical proof is developed to compliment and verify the results. 
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1 Introduction 

 

Chapter 1 

Introduction 

 Motivation 

Under a waning crescent moon1 on the morning of May 23, 2014, a converted Soviet-era 

UR-100N intercontinental ballistic missile (ICBM) roared to life at Plesetsk 

Cosmodrome—a northern launch site in Russia that once threatened the West with 

nuclear-tipped missiles. The repurposed Rokot booster was purportedly carrying three 

military satellites for the Rodnik2 (Strela 3M) constellation internationally designated 

Kosmos-2496, -2497 and -2498. Sensors in the U.S. Space Surveillance Network (SSN) 

obtained observations of the launch and satellites. As is customary for new launches, the 

U.S. Strategic Command’s (USSTRATCOM) Joint Space Operations Center (JSpOC) 

assigned them entries in the U.S. space catalog for routine tracking: 39761, 39762 and 

39763, respectively. The Briz-KM upper stage was also designated 39764, and a 30 cm 

object (internationally designated 2014-028E) that appeared to be debris was given 39765 

[1][2][3][4]. 

The problem with 39765 is that it did things that drifting debris cannot do. 39765 

performed impressive rendezvous and proximity operations (RPOs) with Briz-KM and 

perhaps even an interception or docking. In October 2014, JSpOC changed the designator 

                                      
1 Search for Plesetsk, Russia at https://www.wunderground.com/history/ 
2 For more information on Rodnik, see http://russianspaceweb.com/rodnik.html 



 2 

to Kosmos-2499 and categorized it as an experimental spacecraft without confirmation 

from the Russians. By the end of the year, Colonel General Oleg Ostapenko, the director 

of Roskosmos, acknowledged the satellite as a peaceful joint effort between Roskosmos 

and the Russian Academy of Sciences [4]. 

There are several justifications for the capabilities demonstrated by 39765 and other 

spacecraft like it: to deorbit or deflect dangerous debris; to inspect and/or repair defunct 

satellites; or to make scientific observations of natural objects—all noble endeavors. 

Several U.S. organizations have proposed autonomous inspector satellites for the 

accomplishment of these tasks, including NASA’s Satellite Servicing Capabilities Office 

(SSCO) and the Defense Advanced Research Projects Agency (DARPA), but there are 

also strategic military reasons to mature these capabilities. From a defensive posture, 

there is a desire to covertly observe characteristics, capabilities, and intentions of other 

state actors. From an offensive posture, denying an adversary command and control, 

intelligence, surveillance and reconnaissance (C2ISR) capabilities and position, navigation 

and timing (PNT) networks with anti-satellite (ASAT) technology is the modern form of 

a blockade—an anti-access/area-denial (A2/AD) strategy that is global in nature. An 

attack in space would be a blinding event that could allow the perpetrator to seize the 

initiative and obtain superiority across all domains: air, sea, space, and cyber. 

Top military officials within the People’s Liberation Army (PLA) believe that Western 

technology combined with Eastern wisdom is the key to overcoming a confrontation with 

the U.S.—a concept known as shashoujian—and that a robust A2/AD strategy could 

achieve this [5][6]. According to PLA General Huang Bin, “We can fight a war with them 

[the United States], they will not be able to continue the war after a while. Moreover, we 

also have our shashoujian” [7]. In March 2013, Frank Kendall, the former Undersecretary 
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of Defense for Acquisition, Technology and Logistics [USD(AT&L)], indicated that such 

an A2/AD strategy is possible with the rapid advancement of technology worldwide. From 

sensors and jamming equipment to precision guided munitions, unmanned aerial vehicles 

(UAV) and satellite technology, the U.S. no longer has the luxury of a monopoly on 

technological superiority. To overcome future A2/AD threats, we have to be strategically 

smarter. 

The National Security Space Strategy (NSSS) [8] specifically calls for improved space 

situational awareness (SSA) in response to emerging threats. The United States Air Force 

(USAF) Doctrine on Space Operations divides SSA into four functional capabilities: 

characterization; detect/track/identify; threat warning and assessment; and data 

integration and exploitation [9]. A modest assessment of the detect/track/identify 

capability is to tally the publically available U.S. space catalog, which reveals that the 

SSN tracks approximately 23,000 objects on a daily basis. While this number may seem 

large, it is not large enough. An estimated 500,000 objects larger than 1 cm are not 

presently tracked [10]. While the vast majority of these objects are natural and artificial 

debris, there are operational satellites hidden within this population. NASA describes the 

current threshold for the size of SSN cataloged objects as ~10 cm in low earth orbit (LEO) 

and >1 m in geosynchronous earth orbit (GEO) [11]. Statistical models—developed in 

part by data collected from MIT Lincoln Laboratory’s (MIT/LL) Long-Range Imaging 

Radar (Haystack radar), MIT/LL Haystack Auxiliary Radar (HAX), and the Jet 

Propulsion Laboratory’s (JPL) Goldstone Radar—indicate that there are as many as 2,200 

uncatalogued objects between the size of 1 cm and 1 m at GEO [11]. 

Some of these unknown space objects may already be wreaking havoc. U.S. Department 

of Defense (DoD) officials have expressed concern over anomalies at GEO that cannot be 
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explained or resolved [10][12][13][14]. Are these nefarious acts or natural phenomena such 

as space weather events? An MIT study [15] on cross-correlation between Inmarsat 

anomalies and space weather events shows how natural phenomena can be 

probabilistically eliminated as a cause, but anomaly resolution is hardly the solution. This 

would be akin to preventing a murder by looking for bullet holes at the scene of a crime. 

Space platforms with missions dedicated to SSA such as the Space-Based Space 

Surveillance (SBSS) and Geosynchronous Space Situational Awareness Program (GSSAP) 

are highly prized for the data and deterrence they provide, but there are presently just 

five of these assets that cannot be in all places at once. Therefore, the body of work 

presented in this dissertation enables a new concept that we call deputization. The idea is 

to supplement space-based SSN coverage with any willing and able satellites that can use 

their navigation sensors to perform SSA functions as a secondary mission (background 

tasks). Existing satellites can be deputized for local coverage without any new hardware 

since almost all operational spacecraft have some form of a camera such as star trackers 

for attitude determination. Star tracker algorithms typically ignore objects in the field of 

view that do not match the star field database, but with a software update, the angle 

observations of these objects can be recorded and processed to potentially estimate their 

orbits using angles-only techniques. 

Camera-type sensors have an advantage over other relative navigation sensors in terms 

of availability. Far fewer satellites are equipped with heavier, bulkier, more complicated 

and ultimately costlier radar and LiDAR systems. Communications or global navigation 

receivers could also be repurposed for relative navigation by collecting third-party 

electromagnetic (EM) signals of opportunity reflected off nearby objects from omnipresent 

transmitters such as the Global Positioning System (GPS) or high-powered 
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communications satellites. This is a passive ranging technique known as bistatic radar. 

The signals are typically too weak for far field operations as discussed in Section 2.1.1, 

and for that reason, camera-type sensors are superior for relative navigation. 

Navigating with a camera is not without difficulties. At close distances, generally within 

a few hundred meters (the nearfield), object size and distance can be inferred from pixel 

disparities with stereo cameras or motion parallax, but at larger distances (the far field) 

the pixel disparities approach zero leading to scale ambiguity. Is the object small and near 

or is the object large and distant? The answers to these questions lie at the heart of this 

research and hold the key to enabling a deputization strategy for local space situational 

awareness (LSSA). 

The classical problem of angles-only navigation attempts to disambiguate scale by using 

pure angle measurements to infer distance to the target. Linear systems are impossible to 

solve with angles-only navigation since an infinite number of trajectories can generate an 

identical angle profile. For these systems, range is unobservable. Even nonlinear systems 

with weak observability pose a challenge for state estimation with angles-only techniques. 

A brute force solution to angle-only navigation in its many applications has been to 

maneuver the observer, thereby altering the nominal angle profile. Consumables are a 

limited resource during space operations, so thrusting is not an optimal solution for 

spacecraft. 

Fortunately, the nonlinear nature of space dynamics provides an opportunity to observe 

range without maneuvering, but after nearly six decades of research, the application of 

angles-only navigation for space operations remains unsolved without assistance from a 
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priori data.3 The difficulty in solving the problem is partially a human-made dilemma 

from estimation techniques that use linearized dynamical and measurement models that 

obscure weakly observable conditions from nonlinear and naturally perturbed dynamics. 

No common star tracker, let alone the most powerful eletro-optical payloads, can solve 

the problem with existing methods. If the method is the problem, then new methods are 

the solution. And with the right innovation, angles-only navigation will be a game changer 

for military and civilian spaceflight applications. 

 Problem Statement 

An autonomous own-satellite, hereafter referred to as the Surveyor, is operating in a 

proximal orbit with an unknown, non-cooperative object, hereafter referred to as the 

Target. The Surveyor must passively estimate the relative position and velocity of the 

Target using angles and light intensity measurements from a monocular electro-optical 

camera. No a priori information about the Target is available or assumed. The Surveyor’s 

inertial position, velocity and orientation are estimated onboard in real-time using GPS, 

a star tracker and possible ground updates. An ideal solution will render an estimate of 

the Target distance with an error of <1% for generating follow-on plans such as optimal 

collision avoidance maneuvers or rendezvous for close-up inspection and/or 

grappling/docking. The scenarios of interest are limited to natural motion 

circumnavigation (NMC) and distances in which the Target and Surveyor are separated 

by greater than 200 m, but less than 100 km—boundaries that will be justified in Chapter 

2. 

                                      
3 Some researchers have claimed to solve the problem while still relying on ground-based observations of 
the target to initialize their estimator (e.g. [152]). 
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 Research Objectives 

This work will develop an angles-only navigation solution for passively estimating the 

relative kinematic state of a non-cooperative space object engaged in persistent, 

maneuver-free proximity operations with a Surveyor spacecraft. The specific research 

objectives are to: 

1. Establish a framework for generating admissible orbit hypotheses from angle 

observations in realistic conditions (nonlinear orbital dynamics in the full 

geopotential). 

2. Determine if, how and to what extent angle and angle-rate curves of admissible 

hypotheses can be used to disambiguate range from actual observations for an 

initial orbit determination (IOD). 

3. Determine if, how and to what extent time differentials from an Earth eclipse can 

be used to approximate range as a supplemental technique for scaling an angles-

only navigation solution.  

4. Develop a batch filter process that adapts a nonlinear dynamics model of the IOD 

reference trajectory in the full geopotential. 

 List of Contributions 

A literature review conducted in Chapter 2 reveals a valiant effort to solve angles-only 

navigation for space flight, but the cumulative body of work spanning more than six 

decades includes several less-than-ideal solutions: maneuver-assisted or spin-assisted 

techniques, pseudo-ranging techniques that require prior knowledge of the Target’s shape 

and size, and other methods of augmentation from coarse range knowledge such as two-
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line element sets (TLEs) or radar campaigns (supplants initial orbit determination). This 

author is not aware of any pure angle-only navigation solutions for space rendezvous and 

proximity operations in the open literature. Major contributions developed and claimed 

in this thesis toward the field of angles-only navigation in space include: 

1. Establishing the first-of-its-kind, non-augmented, non-maneuvering angles-only 

navigation technique for initial orbit determination of natural motion 

circumnavigation trajectories. 

a. Parameterizing an admissible region for generating orbit hypotheses in a 

multiple-hypothesis framework. 

b. Discovering and verifying an explicit range relationship with the angle and 

angle-rate curves from a set of admissible hypotheses. 

c. Formulating a concept for using an Earth eclipse to estimate or verify range 

in a multiple hypothesis framework. 

2. Designing, developing and verifying an angles-only batch filter that uses 

Kolmogorov-Arnold-Moser (KAM) theorem to model nonlinear dynamics in the 

Earth’s full geopotential. 

3. Conceiving a qualitative metric for assessing range resolvability and observability 

in a multiple hypothesis framework. 

 Outline of Thesis 

Chapter 1 motivates the need for passive relative navigation technology to conduct RPOs 

with non-cooperative space objects. A special emphasis is given to SSA capability gaps 
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that threaten U.S. national security. The concept of deputization for local SSA is 

articulated as a possible stopgap measure enabled by camera-type sensors and angles-only 

navigation. The problem statement emerges from these needs. The research objectives 

and contributions of this research are also introduced. 

Chapter 2 explores the state of the art for relative navigation technology used in space 

and reviews the literature associated with some of these technologies, particularly angles-

only navigation. 

Chapter 3 contains the fundamentals of angles-only navigation such as descriptions of 

reference frames, measurement models, and transformations that map observations in the 

camera frame to line-of-sight vectors in the local vertical local horizontal frame. This 

material is mostly standard across all space-based angles-only navigation research and is 

isolated from the other Chapters since it does not contain novel contributions to the field. 

Chapter 4 introduces a new perspective on how one may observe range from nonlinear 

orbital dynamics. The derivation of Clohessy-Wiltshire equations is performed, but not 

with an intent to use the equations; we reveal quantitatively how simplifications in their 

derivation lead to a complete lack of range observability. By doing so, we can appreciate 

what we have to gain from the pristine nonlinear dynamics. Chapter 4 introduces a novel 

method of mapping range from the angle and angle-rate profiles with nonlinear dynamics 

and presents an analytical proof for demonstrating range observability. A metric for range 

resolvability and observability in different orbital regimes is a byproduct of the proof. 

Chapter 5 describes a methodology for performing initial orbit determination from angles-

only observations during natural motion circumnavigation (no maneuvering or prior 

knowledge of the Target’s orbit are used). A set of dimensionless parameters are defined 
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that constrain the hypotheses to an admissible region from which range may be 

approximated with a novel range mapping technique. A batch filter is developed that 

employs a KAM torus of the IOD reference orbit to model the global and local motion 

dynamics for an enhanced Target orbit estimate. Verification tests are conducted on the 

hypothesis generation algorithm within the admissible region and on the dynamics models 

in the filter. 

Chapter 6 presents the results of our angles-only navigation pipeline from IOD through 

differential correction. It demonstrates the first pure angles-only navigation solution for 

NMC trajectories. Quantitative results show the accuracy of the solution. 

Chapter 7 culminates the thesis with conclusions and a list of recommendations for future 

work.  
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2 Background and Literature Review 

 

Chapter 2 

Background and Literature Review 

 

We begin our investigation into the problem of angles-only navigation with a historical 

perspective as a backdrop. Throughout most of history, humans have navigated the Earth 

by predominantly passive techniques. The Phoenicians (1500-300 BC) are among the first 

civilizations known to have used the positions of celestial bodies for navigation. Until the 

creation of the chronometer in 1761, pathfinding with stars was limited to latitudinal 

measurements since longitudinal measurements require an accurate timepiece. Navigators 

had to supplement the stars with something else for east-west navigation. Early 

Polynesians—perhaps most famously the Māori people who migrated by canoe from 

eastern Polynesia to New Zealand around 1280 AD—are thought to have navigated the 

South Pacific by observing other natural phenomena such as cloud formations, ocean 

swells and light glistening off waves on the horizon4 [16]. At higher latitudes, Nordic 

explorers could not rely on the stars during summer months, so they took cues from the 

direction that seabirds traveled: birds with a beak-full of food were generally headed 

toward land; hence the term “as the crow flies” [16]. More complicated lunar-distance 

methods appeared in the 18th century to overcome the ambiguity in east-west navigation. 

None of these techniques was very accurate, but the feats of the Phoenicians, Polynesians, 

                                      
4 Light is known to reflect differently from waves crashing against a shoreline in the distance. 



 12 

and others throughout history is a worthy place to start. Their clever tricks to navigate 

our world with so few resources provides a valuable lesson about our modern challenges; 

there is always a way! 

The steady progression of human achievement in position, navigation and timing (PNT) 

from compasses (~300 BC) to sextants (1730) to GPS (1978) have led to unprecedented 

absolute navigational capabilities on Earth. Similarly, the Deep Space Network (1963) 

and other radiometric ground stations around the globe have enabled space probes to 

navigate every planet and several other bodies in our solar system throughout the past 

half-century including America’s Apollo Program that landed six manned vessels on the 

surface of the Moon between 1969 and 1972. Despite these remarkable advancements, 

alternative PNT technologies are still intensely pursued for absolute and relative 

navigation. 

Given the nature of the problem posed in Section 1.2, this chapter unfolds with a cursory 

look at a wide range of relative navigation technologies and algorithms to contextualize 

the state-of-the-art and the current capability gap for passive relative navigation. Given 

the allure of bistatic radar for passive relative navigation with non-cooperative targets, a 

special section will briefly explore its limitations as an alternative to camera-type sensors. 

Finally, an in-depth review of literature is performed on angles-only navigation across all 

physical domains—land, sea, air and space—with particular emphasis given to the latter. 

 Relative Navigation Technology for Space Flight 

In the space domain, a perennial interest in missions to natural small body satellites like 

asteroids and comets, a growing prevalence of resident space objects (RSOs) such as 

orbital debris, and increasing threats from adversarial satellites demand an array of PNT 
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capabilities to perform rendezvous and proximity operations (RPOs) with non-cooperative 

targets. Rendezvousing with an RSO typically requires a range estimate having less than 

1% error [17]. Fehse [17] and Uhlig et al. [18] surveyed existing relative navigation 

technologies to assess which sensors could meet this accuracy requirement at different 

ranges. Their data is replicated in Figure 1. 

 

Figure 1: Typical Sensor Capabilities for Absolute & Relative Navigation. 
Sensors such as RF (green line) and LIDAR (red line) perform very well for 
relative navigation, but they are not passive. Camera-based sensors that can 
use stereopsis (blue line) to estimate depth perform well at close range. 
Beyond ~200 m,5 stereopsis becomes impractical due to loss of accuracy. 
Classical angles-only orbit determination techniques with a camera sensor 

                                      
5 Fehse does not specify the parameters used to determine the stereopsis curve, but the threshold is not 
constant since it depends on the satellite design. If we consider 12 megapixel cameras with a focal length 
of 25 mm and a pixel pitch of 3.1 𝜇m, the baseline length would be approximately 2.5 m for a downrange 
error of 1% at 200 m. Clearly, small spacecraft will have a smaller threshold than that which is depicted. 
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generally produce useful results at distances greater than 100 km6 (shaded 
yellow). If ground-based radar cannot observe the non-cooperative target, the 
gap between 200 m and 100 km (shaded blue-gray) must be filled with 
alternative navigation techniques such as angles-only navigation. 

Radar and LIDAR are suitable for ranging to a non-cooperative Target for RPOs, but 

these are active techniques that may be prohibitive to the size, weight, and power (SWaP) 

budget of the Surveyor. Most satellites are not equipped with radar and LIDAR anyway, 

but those that are equipped, may have a need for backup relative navigation techniques 

or may have mission constraints on electromagnetic emissions. Passive RF tracking—also 

known as electronic support measures (ESM)—is not an option if the Target is silent or 

incapable of transmitting signals. Relative GPS is also eliminated from consideration when 

navigating with a non-cooperative Target. Assuming the Target is unobservable by 

ground-based radar ranging due to a small radar cross-section and weak returns from 

GEO, this technique is eliminated as well. If the Surveyor must navigate autonomously, 

it cannot count on a ground uplink for navigation in any case—not even for a TLE. 

Moreover, a TLE will not exist if the Target cannot be observed by ground-based radar 

and electro-optical systems. The only remaining options in this plot are GPS multipath 

and stereopsis, or more generally, relative optical navigation using camera sensors. These 

sensors are explored in the next two subsections. 

                                      
6 Note that the upper threshold is dependent on the orbit altitude and eccentricity. Generally, at lower 
altitudes, a short arc of the orbit exhibits more curvature (more nonlinear) than higher altitudes, so we 
treat this upper threshold as merely a loose rule of thumb. 
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For a historical review of orbital rendezvous missions spanning the period from 1960 to 

2007 and insight into the relative navigation technologies that were used, see Woffinden* 

and Geller7 [19].  

2.1.1 Spaceborne GPS for Relative Navigation 

In 1984, the Landsat-4 remote sensing satellite became the first to carry a spaceborne 

Global Positioning System (SGPS) receiver. At the time, there were only a handful of 

Block-1 GPS satellites, so position accuracy was limited to about 50 m [20]. Since that 

time, the accuracy of SGPS has improved by as much as four orders of magnitude with 

carrier phase differential GPS (see [21][22][23][24]) thereby opening up new opportunities 

for satellites to exploit GPS for spacecraft operations and Earth monitoring missions 

(receivers can double as distributed sensors). One particular boon for operations is 

precision orbit determination, which enables new tracts for formation flying spacecraft 

and angles-only navigation by providing the Surveyor its absolute position and velocity. 

A major underlying assumption for the objectives of this thesis is that the Surveyor’s 

inertial position and velocity are known. SGPS represents one approach for meeting this 

PNT requirement. Additionally, it may be possible to use GPS as a bistatic radar to 

estimate the relative position of a nearby non-cooperative Target as shown in Figure 2. 

In this section, we investigate the state of SGPS technology to potentially satisfy these 

prospects. 

                                      
7 David Geller has been a preeminent voice in the field of angles-only navigation for the past two decades. 
His work began at Draper Laboratory where he advised students at MIT before becoming part of the 
faculty at Utah State University. Geller’s students will be indicated with an asterisk (*) throughout this 
thesis out of respect for their many contributions. 
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Figure 2: Multiple GPS Bistatic Radar.  The concept of target localization 
with GPS multipath reflections is depicted. As with direct GPS localization, 
at least four GPS satellites must be in view.  

GPS Challenges in Space 

The concept of using GPS for the navigation of space platforms is not entirely unlike 

terrestrial and air-based platforms, but there are some limitations (signal availability), 

restrictions (export control laws) and special considerations (hardware and software). 

Since GPS satellite antennas are nadir-facing from an altitude of ~20,200 km, low earth 

orbits (LEO)8 are fully encompassed by the volume of the main beam (23-26 deg to cover 

the Earth) [25]. SGPS receivers that exceed the GPS orbit altitude, such as highly 

elliptical orbits or geosynchronous orbits (see Figure 3), will experience limited 

performance in accuracy due to GPS signal visibility and strength. The spillover from the 

main beam and the weaker side lobes may still be used for orbit position and timing, but 

a navigation filter is needed for sparse observations [25]. The Block III satellites have been 

                                      
8 LEO is defined as less than 2,000 km altitude. 
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developed to provide improved signals past the Earth’s limb to support spacecraft 

operations at GEO [26]. 

 

Figure 3: GPS Space Service Volume. GPS satellites orbit at an altitude of 
~20,200 km. The main lobe of the L1 signal has a beamwidth of ~47 deg that 
extends beyond the Earth’s limb to cover the entire terrestrial service volume 
up to an altitude of 3,000 km. Satellites that use GPS for navigation above 
LEO require an estimator to handle sparse signals. 

One major distinction between SGPS technology and its terrestrial equivalent is 

commercial availability due to U.S. export control laws. SGPS receivers are regulated by 

the U.S. Commerce Department on the Commerce Control List (CCL) and the State 

Department-controlled U.S. Munitions List (USML) to prevent bad actors from using them 

for military or missile-specific applications [27]. While many U.S. allies are able to obtain 



 18 

approval to equip their satellites with SGPS receivers, the hardware options have been 

scarce until recently and quite costly. 

The scarcity of commercial-off-the-shelf (COTS) SGPS receivers stems from the added 

engineering challenges associated with spaceflight operations to include vibration and 

shock loads from launch and satellite deployment, thermal-vacuum conditions (fluctuation 

of temperature from -30 to 60°C), ionizing radiation and single-event upsets. Several 

terrestrial COTS receivers have demonstrated a tolerance of 5-15 krad total ionization 

dose (TID) [21], which is typically sufficient for short duration LEO, missions. Only a 

handful of COTS receivers has gone through board-level single event latch-up (SEL) tests 

which tend to be a minimum requirement to avoid total failure from the overcurrent 

effects of radiation [21]. Given all of the extra engineering and testing to qualify space-

grade receivers and the relatively small customer base, the price per unit is dramatically 

higher than terrestrial receiver are priced. 

The extra cost and engineering challenges are no barriers for the U.S. defense and civil 

space programs. SGPS was recently used on the U.S. Air Force Research Laboratory’s 

Automated Navigation and Guidance Experiment for Local Space (ANGELS) satellite for 

conducting angles-only navigation experiments with the upper stage of its Delta-IV launch 

vehicle. Launched in July 2014, ANGELS used “advanced algorithms from NASA to 

receive GPS side lobe signals and generate near-continuous navigation solutions” [28]. The 

results of the experiment are classified; nevertheless, the mission is proof that GPS can 

be used for absolute navigation of the Surveyor despite GPS signal challenges at GEO.  

GPS Reflectometry 
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The omnipresence of GPS signals and the inescapable opportunity (or misery) of 

multipath propagation has led to its dual use as a bistatic radar for several innovative 

applications in remote sensing, relative navigation, and object detection. The field of GPS 

reflectometry (GPS-R) seeks to exploit GPS multipath as a passive radar system. Farmers 

and ranchers can now use GPS to measure soil moisture content in their fields for precision 

irrigation and water management [29]. Geophysical surface characteristics, snow pack and 

ocean roughness (correlates with wind speed) can be garnered from Earth monitoring 

missions at LEO [30][31]. Airborne experiments have demonstrated GPS bistatic radar 

for aircraft altimetry [29], ship detection [32], and the detection of land structures in urban 

and rural environments [33]. 

Long before GPS, the idea of “sanctuary” bistatic spaceborne radar (SBR) was envisioned 

to provide global coverage for ground-based or airborne receivers. In the late 1970s, a 

communication satellite was demonstrated as a bistatic illuminator but suffered from 

limited range capabilities against ground and airborne targets (2 nautical miles) [34]. 

The idea of using GPS as a bistatic illuminator for relative navigation or surveillance in 

space is a relatively new one in the literature despite the old idea. The application of 

SGPS for RPOs only emerged in the last two decades, but the original idea applied only 

to cooperative scenarios where both spacecraft were equipped with SGPS receivers and 

multipath was treated as an annoying source of error from complex geometric reflections. 

In 2003, Gaylor and Lightsey studied GPS blockage and multipath in the close vicinity 

of the ISS [35] and modelled the errors in the design of a GPS/INS extended Kalman 

filter (EKF) [36]. Shah et al. also studied multipath signals from GPS receiver data 

collected on the last Hubble servicing mission flown in May 2009 (STS-125) [37]. 
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Cohen [38] performed the first known published work that sought to utilize GPS multipath 

signals for rendezvous in 2007. He designed an EKF for a simulated Space Shuttle 

servicing mission to the Hubble Space Telescope. A very simple cylinder radar cross-

section is used for modelling GPS signal reflections off Hubble. Cohen’s simulated scenario 

initializes the Shuttle and Hubble 574.5 m apart with exact knowledge of their initial state 

in the filter. Clohessy-Wiltshire dynamics are used for the rendezvous, which appear to 

be sufficient even when GPS reflections are sparse. A higher fidelity nonlinear dynamics 

model (including 𝐽  and air drag) was also attempted, but Cohen admits there are 

problems with his implementation. In any case, the results indicate that GPS bistatic 

radar is possible for relative navigation at close range. Based upon these results, GPS 

bistatic radar does not appear to fill the gap identified in Section 2.1. 

Another study in 2009 by Pogemiller [39][40] explored the feasibility of GPS bistatic radar 

for small satellite applications using a commercial-off-the-shelf (COTS) GPS receiver. 

There are no novel contributions from Pogemiller’s work other than to verify the 

underlying link budget analysis for ground-reflected and satellite-reflected GPS signals. 

The latter is marginally interesting because it can be used to show a practical range limit 

for GPS bistatic radar at different orbital regimes using COTS hardware as demonstrated 

next.  

Limitations of GPS Bistatic Radar for Target Localization 

Target localization with GPS bistatic radar is possible with at least four GPS satellite 

signals just like traditional GPS navigation. Within the terrestrial service volume (< 3000 

km altitude) which encompasses LEO, it is anticipated that four or more GPS satellites 

will be in view at all times. Beyond the terrestrial service volume, the number of visible 
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signals becomes sparse. At altitudes higher than 20,183 km (GPS orbit), there may be 

GPS satellites in view, but their direct broadcast signals are not observable since the 

transmit antenna is nadir-pointing. Instead, multipath signals from these signals will be 

detected after reflecting off the surface of the Earth, but are expected to be too weak for 

bistatic radar. Other weak signals will be present from satellites on the opposite side of 

the Earth. The Earth occludes most of the main lobe, but the outer edge of the main lobe 

and even weaker side-lobes are present. The availability of four sufficiently powerful 

signals at GEO and HEO for traditional GPS navigation is non-continuous, but enabling. 

The signal-to-noise ratio (SNR) for bistatic radar limits the operating range for relative 

navigation. Unlike the monostatic radar equation that scales with 1/𝑅  along the same 

uplink and downlink path, the bistatic radar equation must account for separate uplink 

and downlink paths as shown in Equation (2.1)  

𝑃 =
𝑃 𝐺 𝐺 𝐿𝜆 𝜎

(4𝜋) 𝑅 𝑅
 (2.1)

where 𝑃  is the received power, 𝑃  is the transmitted power which is known for GPS 

(𝑃 = 27 W, 14.25 dBW), 𝐺  is the gain of the transmitter antenna which is known for 

GPS (𝐺 = 12.9 dBi), 𝐺  is the gain of the receiver antenna which is a design parameter 

for improving SNR, 𝐿 accounts for all system losses, 𝜆 is the wavelength of the signal 

which is known for GPS (𝜆 = 0.1903 m), 𝜎 is the radar cross section (RCS) of the Target, 

𝑅  is the distance between the transmitter (GPS) and Target, and 𝑅  is the distance 

between the receiver (Surveyor) and Target. 

The broadcast power of GPS is designed to provide a minimum of −160 dBW on the 

Earth’s surface for coarse acquisition (C/A) codes in the L1 band [41]. This threshold 

roughly describes the minimum capability of standard COTS GPS receivers. High 
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sensitivity GPS receivers can use correlation processing over an extended period to extract 

and calculate position from “a weak signal that is 1/1000 the strength of typical outdoor 

signal” [42]. Therefore, a reasonable approximation for the minimum 𝑃  for high 

sensitivity GPS receivers that would be preferred for bistatic radar is −190 dBW. 

A quick, back-of-the-envelope range feasibility study can be performed by rewriting the 

bistatic radar equation to solve for range 

𝑅 =
𝑃 𝐺 𝐺 𝐿𝜆 𝜎

(4𝜋) 𝑅 𝑃
 (2.2)

Consider a simple LEO scenario (𝑅 = 19,800 km) where the Target is a perfect sphere 

(𝜎 = 𝜋𝑟 ). Assume the very best case scenario of a lossless system (𝐿 = 1) and a high gain 

receiver (𝐺 = 14 dBi). The range limit as a function of the Target radius is plotted for 

the cases corresponding to a standard and high-sensitivity receiver: 𝑃 = −160 dBW and 

𝑃 = −190 dBW, respectively.  
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Figure 4: Range Limitation for GPS Bistatic Radar.  The bistatic radar 
equation is used with a lossless system to bound the feasible envelope for 
range estimation. A standard GPS receiver with a received power of 𝑷 =

−𝟏𝟔𝟎 𝐝𝐁𝐖 is represented by the blue line and a high-sensitivity GPS receiver 
with a received power of 𝑷 = −𝟏𝟗𝟎 𝐝𝐁𝐖 is represented by the green line.  

These results clearly demonstrate that even the best-case scenario of a lossless system and 

a high-sensitivity receiver barely exceeds 1 km for a 10 m radius Target. Since the most 

likely Target-class of interest is smaller than 1 m, GPS bistatic radar is not even feasible 

for a small fraction of the 0.2-100 km range capability gap. Relative optical navigation is, 

in fact, the only possible solution given the current cognitive and technological capacities 

of the human race. 

2.1.2 Relative Optical Navigation 

Several methods of relative optical navigation are possible depending on knowledge and 

cooperativeness of the Target, number of cameras on the Surveyor, as well as the distance 
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separating the Target and the Surveyor. Among these approaches is angles-only 

navigation, also known as line-of-sight (LOS) navigation, which uses a single camera to 

generate a unit vector to the Target centroid with the same image processing techniques 

used for star-trackers [43]. This approach works for unresolved and resolved imagery as 

long as the extent of the Target does not exceed the camera frame. Section 2.2 will cover 

the literature on angles-only navigation. The other approaches require resolved imagery 

and are most accurate when the Target extent is much greater than a detector element 

or pixel. These approaches include pseudo-ranging (use knowledge of Target dimensions), 

feature-based triangulation (use knowledge of sparse fiducials or features/landmarks on 

the Target), motion parallax or temporal stereo from a monocular camera system (use 

pixel disparity between dense random features observed at different times), and binocular 

stereopsis from two synchronized cameras (use pixel disparity between dense random 

features observed at the same time from different perspectives).  

Pseudo-ranging 

By knowing the Target’s shape and dimensions, the pixels in the resolved imagery can be 

counted to estimate the Target’s range since the pixel pitch and focal length are known. 

The range is not actually measured, hence the term pseudo-range. Woffinden* [44] used 

knowledge of a spherical spacecraft’s diameter to estimate a pseudo-range at distances 

less than 500 m in simulations, but this approach is almost never an option since one 

cannot presume knowledge of the Target size. Terrain-based navigation uses a similar 

strategy in which crater maps of celestial bodies are used for pseudo-ranging at even 

greater distances [45][46][47]. In 2019, NASA’s Exploration Mission 1 (EM-1) will use the 

diameter of the Moon for ranging in Orion’s distant retrograde orbit (DRO) [48].  
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Triangulation 

For a known or mapped Target, feature points or fiducial markers can be used to 

triangulate the Surveyor’s location. Calhoun and Dabney [49] present algorithms 

developed at Marshall Space Flight Center (MSFC) for estimating the 6 DOF state using 

vector measurements to either a 3-spot or 5-spot reflective target that are illuminated by 

an array of laser diodes on the Surveyor. A similar capability called the Autonomous 

Navigation (AutoNav) System has been developed by the Jet Propulsion Laboratory 

(JPL) for navigating on interplanetary missions with known and unknown targets [50]. 

AutoNav relies entirely on optical images, so it can navigate using natural landmarks on 

the target body as opposed to artificial ones. To learn those landmarks, AutoNav uses 

stereophotoclinometry capabilities such as those of Gaskell [51] to produce landmark maps 

(L-maps). At an astronomical scale, AutoNav can triangulate from known objects 

(“beacons”) in the solar system to estimate absolute position as well. Several 

interplanetary missions have successfully used AutoNav such as Deep Space 1 (flyby of 

Borrelly comet) [52], Stardust (flybys of Wild 2 and Tempel 1 comets and Annefrank 

asteroid), and Deep Impact (flyby of Hartley 2 comet). 

The triangulation approach for navigating interplanetary probes has an interesting 

heritage in ballistic missile technology. MIT’s Instrumentation Laboratory (IL)—the 

precursor to Draper Laboratory—designed the inertial navigation systems for most of the 

United States’ strategic weapons systems (see [53]). A military requirement then and now 

for strategic systems is that the guidance and navigation system shall be self-contained. 

In other words, once launched, the missile shall be able to navigate autonomously without 

external guidance by way of ground or satellite communications. This mentality influenced 

an Air Force funded IL study in the late 1950s on a Mars probe that would navigate by 
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“automatically measuring four angles, between the sun, stars, and planets, to determine 

the spacecraft’s position” [54]. This mode of navigating is reflected in the writing of the 

late Richard Battin in his book Astronautical Guidance [55] and played a major role in 

the development of the Apollo Guidance System (see Chapter 5 in [54]).  

Motion Parallax 

A sequence of images (an image set) from a monocular camera system can estimate 3-

dimensional (3D) structure and motion fields; however, without knowledge of the camera 

location from frame-to-frame (odometry) or a depth sensor, the scale of the scene is 

unknown [56]. Since the mid-1980s, so-called “structure from motion” (SFM) algorithms 

(e.g., [57][58]) and scene flow algorithms (e.g., [59][60][61][62][63]) have saturated the 

computer vision field in support of autonomous robot navigation. SFM tends to be an off-

line, batch process for digitally reconstructing a 3D scene and/or the camera trajectory, 

but with the evolution of computer processing over the past several decades, scenes and 

trajectories can now be generated in real-time with simultaneous localization and mapping 

(SLAM) algorithms (e.g. EKF SLAM [64], MonoSLAM [65], FastSLAM [66], PTAM [67], 

RTAB-Map [68], LSD-SLAM [69]) and Bayesian inference or recursive estimation. This 

approach is useful for generating scalable maps that can be used to characterize a non-

cooperative Target, but it does not provide a range, which is essential for navigating. This 

author has experience implementing Large-Scale Direct SLAM (LSD-SLAM) in parallel 

with a space-based optical navigation simulator to demonstrate the state of the art in the 

presence of solar illumination effects. An example of this work is shown in Figure 5.  
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(a) Simulated view from the Surveyor of the 

ISS docked with the  Space Shuttle 

 
(b) Point cloud map of ISS & Space Shuttle 

as generated from LSD-SLAM 

Figure 5: Demonstration of LSD-SLAM in Yates’ Optical Navigation 
Simulator. A space-based optical navigation simulator generates a sequence of 
images from a realistic relative orbit such as in (a) that are processed in real-
time with LSD-SLAM to create a scalable point cloud map and an estimate 
of the relative trajectory as in (b).   

To overcome range ambiguity with monocular SLAM algorithms, visual data can be fused 

with other data from any number of sensors: IMU, GPS, LIDAR and/or sonar [70]. Multi-

sensor SLAM algorithms have become prevalent and widely utilized on uninhabited aerial 

vehicles (UAVs) (e.g., [71][72]), self-driving automobiles (e.g., [73]) and autonomous 

underwater vehicles (AUVs) (e.g., [74]).  

Binocular Stereopsis 

The perception and estimation of depth/scale are possible with two synchronized cameras 

having a known baseline distance. The ambiguity in scale from SFM and SLAM is 

eliminated allowing a pure optical navigation system to estimate its actual trajectory (e.g., 

[75]). As the baseline increases, so too does the parallax or binocular disparity between 

features in the images allowing greater depths to be measured. JPL’s exploration rovers 

on Mars are famous for using binocular stereopsis [76]. MIT’s Space System’s Laboratory 
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also developed a stereovision appendage for the Synchronized Position Hold Engage and 

Reorient Experimental Satellites (SPHERES) for conducting optical navigation 

experiments onboard the International Space Station (ISS) [77][78]. The SPHERES are  

shown in Figure 6 during an optical navigation experiment designed by this author and 

conducted by astronauts Scott Kelly and Kimiya Yui on Expedition 45 that demonstrated 

trajectory reconstruction of scaled relative orbital dynamics for satellite inspection 

missions. 

(a) Two SPHERES satellites flying inside the Japanese Experiment Module on the ISS  
 

(b) Depth map of stationary target satellite. 
Red indicates closer objects. Blue indicates 

more distant objects.  

 
(c) Point cloud map of target satellite and 

trajectory estimate from LSD-SLAM 

Figure 6: SPHERES Satellite Experiment. In this experiment, a stationary 
SPHERE is imaged by an inspector SPHERE’s binocular camera on a forced 
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trajectory that emulates natural motion circumnavigation. The sequence of 
images were post-processed in real-time with LSD-SLAM to create a point 
cloud map and an estimate of the relative trajectory as in (c).   

The biggest limitation of binocular systems is that the range error grows quadratically 

with range and inversely with the camera baseline. Spacecraft hardware dimensions 

typically prohibit a large camera baseline, so there is a practical limit on range. Fehse [17] 

sets this range limit at 100 − 200 m where range accuracy degrades beyond the 1% range 

error objective for rendezvous. Fehse does not specify the parameters used to determine 

the threshold, but if we consider 12 megapixel cameras with a focal length of 25 mm and 

a pixel pitch of 3.1 𝜇m, the baseline length would be approximately 2.5 m for a downrange 

error of 1% at 200 m. Clearly, small spacecraft will have a smaller threshold, so the Fehse 

boundary is merely illustrative of a particular binocular system in the mini to large class 

of satellites that can accommodate meter-level baselines. 

In summary, for distances less than approximately 200 m where parallax may be 

reasonably observed, stereo cameras are ideal for passive relative navigation. Beyond 

about 200 m, the range error of stereo cameras exceeds 1%. Angles-only navigation with 

a monocular camera is the only remaining approach for performing relative optical 

navigation at these greater distances. 

 Angles-only Navigation 

The terminology of angles-only navigation (AON) has been used synonymously in 

literature with line-of-sight (LOS) navigation and bearing-only tracking (BOT) in which 

the name tends to be a matter of preference. The problem is fundamentally the same in 

all three cases: how to determine the location of an observed Target using direction data 

alone when no range information is explicitly available. This author distinctly delineates 
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the terminology to treat BOT and LOS navigation as subclasses of AON based upon 

methodological and application heritage described below. This delineation helps to 

categorize the literature cleanly.  

2.2.1 Bearing-only Tracking 

BOT terminology tends to be associated with naval, air and terrestrial applications that 

use passive sonar, electronic support measures (ESM) or passive “listening” with seismo-

acoustic sensors, respectively, to track an emitting Target. A sequence of bearing 

measurements can then be used for target motion analysis (TMA) or more specifically to 

determine the Target’s kinematic state. Kolb [79] and Murphy [80] describe the range 

observability challenges that plague this field of study for a single Surveyor; without 

calibrated maneuvers by the Surveyor, the Target’s position and velocity cannot be 

determined from a sequence of bearing-only measurements. Lindgren [81] shows that range 

is unobservable even for a Surveyor moving with a constant velocity in a horizontal plane 

as would be the case for naval surface applications. Several known velocity variations or 

“legs” are required of the Surveyor (one leg is insufficient) to converge on a solution. Not 

all maneuvers assure a unique tracking solution [82]; a maneuver is necessary but not 

sufficient for range observability. Nardone [83] and Fogel [84] establish rigorous 

mathematical requirements for range observability in the constant depth case (horizontal 

plane), whereas Jauffret [85] and Hammel [86] establish range observability requirements 

in 3-dimensions with broader applications to air and space. The literature is expansive on 

optimal observer trajectories that meet the aforementioned requirements (e.g., 

[87][88][89][90][91]). 

Aidala [92] theoretically analyses the performance of an extended Kalman filter (EKF) 

for BOT in the ocean environment using sonar bearings from a radiating Target. Aidala 
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naturally constrains the problem to two dimensions for naval surface operations and elects 

to use Cartesian coordinates for the state dynamics and measurement models. Without 

an explicit range measurement, the Surveyor ship must maneuver, and the Target must 

remain fixed or have a constant velocity. Even with this modus, the EKF exhibits erratic 

and divergent behavior in the estimate due to premature collapsing of the covariance 

matrix. Aidala believes that the covariance matrix is ill-conditioned because of the choice 

of Cartesian coordinates that couple the observable (bearing) and unobservable (range) 

quantities in the state vector. He reformulates the problem in [93] using modified polar 

(MP) coordinates which decouple the observable and unobservable components. The MP 

state vector includes bearing, bearing rate, range rate divided by range, and inverted 

range—all constrained in a horizontal plane. Aidala’s state vector selection is notable 

because the first three quantities can be obtained without maneuvering the Surveyor and 

the reciprocal of range minimizes system nonlinearities.9 The covariance matrix shows 

good stability in the EKF using MP coordinates, but Aidala is careful to note that range 

observability still depends on the Surveyor “tactics [maneuvers], environmental 

disturbances, measurement errors, etc.” 

One apparent weakness in Aidala’s work is the assumption of constant Target motion 

parameters (either position or velocity). Kirubarajan [96] devised a batch-recursive 

method that tracks a maneuvering Target in clutter with a signal-to-noise ratio (SNR) as 

low as 8 dB. Le Cadre [97] applies a hidden Markov model (HMM) methodology that 

maximizes state probabilities conditioned on a sequence of bearing-only observations of a 

maneuvering Target. Since the Target state is only partially observable from bearing 

                                      
9 Similarly, Montiel [94] and Civera [95] use an inverse depth parameter to perform monocular SLAM in 
an EKF framework. This parameterization enables feature points to be tracked at any range from nearby 
to infinity. Targets at “infinity” are held in abeyance until sufficient parallax is observed. 
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measurements, a partially observable Markov decision process (POMDP) was used. The 

POMDP was solved with dynamical programming or specifically the Viterbi algorithm, 

but Le Cadre encountered problems with the number of states and decisions that had to 

be solved. If range and bearing to the Target are known (complete information case), a 

Markov decision process (MDP) with dynamical programming is said to be “feasible and 

efficient” for observer trajectory optimization, but this is generally not the case, nor is it 

the problem. 

The amount of work in the field of BOT seems endless and has become a classical problem 

in nonlinear estimation. Further work can be found pertaining to AUVs (e.g., 

[98][99][100]), UAVs (e.g., [101][102][103][104]) and other applications (e.g., [105][106]), 

but the common thread through all of it is this: the kinematic state of the Target under 

observation by a single Surveyor is unobservable without sufficient calibrated maneuvers 

or range measurements by the Surveyor.  

2.2.2 Line-of-sight Navigation 

LOS navigation—a subclass of AON—shall be associated with applications that use visual 

cues from a sextant, passive electro-optical (EO) camera or infrared (IR) camera to 

determine the direction to the centroid of a Target. The body of research on LOS 

navigation mirrors BOT TMA with the same frustrations over range observability. In the 

space domain, if LOS navigation is used for RPOs under the assumption of linearized 
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relative orbital dynamics, then the Surveyor must maneuver to observe range.10,11,12 One 

significant advantage for LOS navigation in space is that the natural relative orbital 

dynamics for non-maneuvering RSOs are not linear. This is why the orbits of planets and 

satellites can be determined with angles-only observations from Earth.  

Orbit Determination Comparison 

LOS navigation shares a methodological heritage with classical and modern celestial 

mechanics techniques such as Laplace’s method [110], Gauss’ method [111], Escobal 

(double-r) [112] and Gooding [113] that use a series of declination and right ascension 

angles from telescope observations to determine the orbit of a celestial body. Modern 

recursive estimation techniques that are needed for LOS navigation have also been applied 

to these orbit determination (OD) methods. Sabol et al. [114] demonstrated angles-only 

OD with modern sequential filters using high-accuracy angle measurements from a single 

site. 

So why not just apply angles-only orbit determination techniques for navigating during 

RPOs? There appears to be a range limit at which angles-only OD techniques are viable. 

Bingham* and Geller found that Gauss’ method breaks down at ranges less than about 

100 km [115][116][117] due to observations of a short arc length. The arc length appears 

in the denominator of the solution to Gauss’ method, so significant curvature in the orbit 

is needed for preliminary orbit determination. As range decreases, the ability to observe 

                                      
10 “As well known from the literature, the angles-only navigation problem is not fully observable in the 
absence of maneuvers.” [107]  
11 “It is well known that the linearized relative orbital dynamics are not observable with angles-only 
measurements.” [108]  
12 “The relative position/velocity state is not observable during orbital proximity operations when angles-
only measurements and Clohessy-Wiltshire dynamics are employed.” [109] 
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curvature in the orbit gets more challenging. This author has also attempted—without 

success—the methods of Laplace, Gauss and double-r iteration using Vallado’s code [118] 

for coplanar natural motion circumnavigation (NMC) relative orbits within the “Bingham 

threshold” for nearly circular, low-earth orbits. Code tested at MIT Lincoln Laboratory 

has encountered a similar range limit [119]. Therefore, 100 km roughly marks the upper 

range limit for the capability gap that LOS navigation must fill. This author also believes 

the limit must be a function of the orbital regime since LEO has more curvature at a 

specified range than at GEO. Further work is merited in this area. Researchers at the Air 

Force Research Laboratory’s Space Vehicles Directorate (AFRL/RV) have recently 

started pursing this with initial results on the methods of Gauss and Laplace [120]. 

Unfortunately, their current work does not test trajectories within the Bingham threshold. 

Lovell has also expressed interest in studying the viability of Gooding for LOS navigation 

[121]. 

Optical Navigation Capability Gap for Space Operations 

The limitations of angles-only orbit determination techniques within a distance of roughly 

100 km marks the upper boundary for the optical navigation capability gap that LOS 

navigation seeks to fill. We previously found the lower boundary of the gap at 

approximately 200 m based upon the limitations of stereovision systems on SWaP 

constrained space systems. When confronted with a non-cooperative Target and a mission 

that intentionally limits or precludes first party and second party EM emissions, LOS 

navigation represents the best option to fill this need. Subtle nonlinear dynamical effects 

persist at these ranges as well as environmental perturbations that are believed to 

contribute to weakly observable conditions, so not all hope is lost. 
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The Birth of LOS Navigation in Space 

The first application of LOS navigation in space arose during the Gemini program in 

preparation for lunar orbit rendezvous (LOR) on the Apollo missions. The statement of 

work for the Apollo guidance and navigation system stipulated that the tasks of guidance, 

navigation and control had to be performed onboard the spacecraft.13 The Lunar Module 

(LM) was equipped with a rendezvous radar system for tracking a transponder on the 

Command and Service Module (CSM), and the digital data14 would be processed by the 

LM guidance computer. If the radar system failed during the LOR,15 the CSM was 

equipped with a space sextant (primarily used for calibrating the gyroscopes in the inertial 

measurement unit) that could be used for LOS navigation to a sunlit target or high 

intensity flashing lights16 [122][123]. 

Two studies in 1959 and 1960 by Levin et al. [124] and Brissenden et al. [125], respectively, 

showed that astronauts could manually perform rendezvous and docking if provided LOS 

cues, range and closure rate data from onboard instrumentation. Edwin “Buzz” Aldrin 

also famously wrote his MIT dissertation on the topic [126]. 

                                      
13 Additional external data such as a state vector update from Earth could be used “to increase reliability, 
accuracy, and performance,” but the spacecraft had to be able to operate independently with astronauts 
in the loop [54]. The Jet Propulsion Laboratory had been developing command and control capabilities for 
interplanetary probes using ground-based RF systems (e.g., the Deep Space Network), but relying on 
external guidance alone was deemed too risky. The U.S. government was concerned that the Soviet Union 
might attempt to jam ground-based communication to the Apollo Command Module, so the philosophy of 
self-dependence shared by strategic weapons guidance systems was embraced for Apollo [54]. 
14 The radar provided angle, range, range-rate, and LOS angle-rate data (pp. A-20, [122]). 
15 A radar anomaly occurred on both Gemini XI and XII. On Gemini XII, Lovell and Aldrin had to use 
manual sextant navigation techniques (pp. 5-121, [130]). 
16 The LM tracking light or beacon light failed on Apollo IX which prevented the Command Module pilot 
from calculating the backup maneuvers while in darkness (pp. 5-16, [122]). 
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Wolowicz et al. [127] showed that at ranges less than about 800 meters, astronauts could 

simply use the apparent size of the rendezvous target to judge range on the terminal phase 

of the approach. At much greater ranges, where the target appeared as a point of light, 

Lineberry et al. [128] developed the first techniques for determining the range and range-

rate from only LOS measurements with the sextant during a rendezvous maneuver. 

Emphasis is placed on maneuver here since the range was deemed unobservable without 

thrusting. Lineberry made the assumption of a coplanar orbit for the rendezvousing 

vehicles and expressed the equations of relative motion in polar coordinates, which 

conveniently decouple the observable and unobservable coordinates. Analytical 

expressions were developed from the equations of motion to determine the range and range 

rate from three different techniques that utilize a combination of measured angles, 

thrusting and precise timing: 

One technique required measuring two angular increments traversed by the moving 

line of sight while coasting, and a third angular increment while a known level of 

acceleration is applied to arrest the line-of-sight motion. A second technique 

required measuring the two angles while coasting but not the third angle while 

thrusting. A third technique required the same measurements as the first technique 

to be used as inputs to a matrix solution and produced several progressive solutions, 

but dictated the use of additional equipment for rapid, continuous computing [128]. 

The methods of Lineberry and his colleagues were part of the training provided to 

astronauts in the Rendezvous Docking Simulator at NASA Langley Research Center 

[123][129]. 
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As fate would have it, Command Pilot James Lovell and Pilot Buzz Aldrin—a student of 

Battin who had a strong background in LOS navigation from his research at MIT—were 

the only Gemini and Apollo astronauts that would put the theory of LOS navigation into 

practice. During their Gemini XII mission in 1966, a rendezvous test with the Agena 

target vehicle encountered problems when the radar malfunctioned at a range of 120 km 

following a successful coelliptic maneuver. Lovell and Aldrin reported that the radar lock-

on indicator and range and closure rate numbers were “erratic,” so they reverted to 

onboard backup methods where Aldrin took angular measurements with the sextant and 

Lovell performed terminal phase maneuvers with guidance from pre-populated LOS 

rendezvous charts to complete three of four docking attempts [130].  

The methodologies and experience gained from Gemini paved the way for Apollo. 

Following Gemini XII, the next rendezvous conducted by the United States occurred on 

Apollo IX—the first flight of the CSM and LM—to demonstrate a manned lunar-module-

active rendezvous in low Earth orbit. The LM’s primary guidance system was used for 

this demonstration with an active and functioning rendezvous radar, but the manual 

backup techniques for performing the rendezvous (with “mirror image” impulses) from 

sextant sightings onboard the Command Module were calculated simultaneously and 

exhibited “excellent agreement” with the LM rendezvous solution (pp. 10-20 [122]). It is 

unclear if this practice of manually calculating the rendezvous solution became the 

standard for the remaining Apollo missions, but it is clear that the backup LOS navigation 

techniques were never needed. 

Meanwhile, the U.S. Air Force was pursuing research on LOS navigation for its own 

purposes. A memo released by the DoD in December 1963 revealed its pursuit of a manned 

spaceflight program called the Manned Orbital Laboratory (MOL) that would repurpose 
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the Gemini capsule for launch on the Titan III [131]. Relative navigation requirements for 

MOL and Apollo were a significant driver for the Air Force Avionics Laboratory’s 

sponsored work of Schneider and Prussing [132][133][134] who appear to be the first to 

have expanded LOS navigation techniques from the planar assumption of Lineberry et al. 

to include out-of-plane relative motion. Structural differences between Lineberry et al. 

and Schneider and Prussing are that the latter used Cartesian coordinates and the 

linearized Clohessy-Wiltshire dynamics whereas the former used polar coordinates and 

simplified analytical equations from the exact expressions of in-plane radial and normal 

relative acceleration. 

For each set of angular measurements, Schneider and Prussing’s technique leads to an in-

plane (IP)—the 𝑥𝑧-plane (or “𝑠𝑟-plane”)—state vector that is normalized by the radial 

element, 𝑧, in the 𝑆𝑊𝑅17 Cartesian set: [𝑥/𝑧 1 𝑥/̇𝑧 𝑧/̇𝑧] . Once the astronauts 

calculate the normalized state vector with a slide rule (this is how computers worked back 

then!), the normalized velocities are compared to pre-populated Universal Trajectory 

Charts (UTC) to uniquely identify the shape parameter, 𝑟, of the scaled relative trajectory 

and a dimensionless time interval, 𝜏 ̅, that specifies when 𝑧(𝜏) is a maximum. The shape 

parameter is the ratio of the extreme values of 𝑧, i.e. 𝑟 ≡ 𝑧 /𝑧 . Using Clohessy-Wiltshire 

dynamics, the out-of-plane (OOP) motion is a sinusoidal oscillation, so the scaled OOP 

position and velocity is represented on a phase plane plot. In order to determine the scale 

of the full six-element state vector, a calibrated maneuver is required. 

Schneider and Prussing offer three different procedures for collecting the angle 

measurements and thrusting: 

                                      
17 𝑆 represents the along-track direction, 𝑊  represents the orbit-normal direction, and 𝑅 represents the 
radial direction 
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1) the 3-instant OOP method uses three (𝜎, 𝛿)18 pairs and a thrust in the 𝑦 direction 

performed between the first and third measurement instants; 2) the 4-instant IP 

method uses four (𝜎, 𝛿) pairs and a thrust parallel to the 𝑥 − 𝑧 plane performed 

between either the third and fourth or the first and second measurement instants, 

and 3) the 4-instant OOP method differs only in that the thrust is in the 𝑦 direction 

and is performed at a time at which 𝑦 = 0. [132] 

The significance of Schneider and Prussing’s technique for its time cannot be overstated. 

These innovators went to great lengths to simplify the computational burden on the 

astronauts such that a mere 2 × 2 matrix inversion was the worst that would be 

encountered. In 1970, just two years after completing his report for the Avionics Lab 

[132], Schneider adapted his LOS navigation technique into a set of closed-form algorithms 

that could be performed by a digital computer [135]. The digital approach requires 

inversion of a 6 × 6 matrix—a task over which he still fretted. These seem like trivial 

matters 47 years later, but it is an illuminating example of how far we have come.  

In 1971, Schneider (an MIT graduate and alumnus of the Instrumentation Lab) realized 

that if he made a slight modification to his closed-form solution to use curvilinear 

coordinates, a solution was converged upon with an accuracy of 0.001 nautical miles (1.85 

m) for downrange separations from 50-400 nautical miles (92.6-740.8 km) [136]. He 

contends that range need not be initially known at these distances since an iterative 

process can be used to find it (range is needed in a nonlinear geometry block that 

transforms LOS angles in Cartesian coordinates to “curvi-angles” in curvilinear 

coordinates, but it can be initialized with 0). Interestingly, the 92.6 km mark is very near 

                                      
18 𝛿 is the in-plane angle and 𝜎 is the out-of-plane angle 
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the 100 km Bingham threshold for classical orbit determination techniques. He makes no 

statement on the viability of this method to converge at shorter distances—the gap that 

LOS navigation seeks to fill. This is a worthy topic to revisit based on new clues from 

Geller and Lovell that will be discussed shortly. 

Post-Apollo Progress 

Throughout most of the Space Shuttle era, published literature on LOS navigation in 

space is scant, perhaps due to funding opportunities from the DoD19 and NASA. The 

dearth of literature certainly reflects a broader statement about the need or priority at 

that time for passive navigational capabilities with non-cooperative targets. By the turn 

of the century, LOS navigation started picking up interest again, but this time motivated 

by a need for autonomous spacecraft to inspect and/or repair defunct satellites, to deorbit 

or deflect dangerous debris, to make scientific observations of natural objects, or to carry 

out sensitive missions for the DoD and intelligence community. The Acting Director of 

the Defense Advanced Research Projects Agency (DARPA) illuminates these needs at a 

hearing of the Subcommittee on Emerging Threats and Capabilities of the Senate Armed 

Services Committee in June 2001 [137]. 

The trade-space for solving the LOS navigation problem grew considerably in the decades 

following Apollo. Apollo era solutions had to be simple enough for limited computing and 

resource constrained human operators, so maneuvering to observe range was completely 

acceptable. Rendezvous maneuvers had to be performed regardless, but the modern 

resurgence of the problem is considerably less constrained. Computer processing has 

                                      
19 The author is unable to find any relevant reports on the Defense Technical Information Center (DTIC) 
website in the period after the Apollo Program and prior to 2001. 
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drastically improved as have digital cameras and space technologies. Solutions that are 

far more complicated are now possible, so the modern goal of LOS navigation research is 

to solve the problem without maneuvering and without augmentation (no a priori 

knowledge). 

Augmented20 Natural Motion Trajectories with Linear Covariance Analysis 

DARPA’s Orbital Express mission emerged as a driver for autonomous LOS navigation 

before its launch in March 2007. Chari* [138] and Geller designed and analyzed potential 

RPO trajectories that could be used with LOS navigation on the Orbital Express mission, 

but more generally, showed the effect of natural motion trajectories and maneuver-assisted 

trajectories on range observability for nearly circular, low-earth orbits. Chari’s study, 

performed at MIT, used a linear covariance (LINCOV) analysis program modeled after 

Geller’s original work for the NASA/JPL Mars Sample Return project. The LINCOV 

program uses a linearized Kalman filter to propagate the state covariance as opposed to 

the actual state. The state transition matrix that is used for propagating the covariance 

is generated by linearizing about a two-body propagated reference trajectory. The output 

is an estimate of the state uncertainty that, if set up correctly, should match the statistics 

generated from a Monte Carlo simulation. Chari’s instantiation of LINCOV is initialized 

with a priori navigational uncertainties in Target and Surveyor relative position (1% of 

range) and relative velocity (1/10,000 sec−  of position uncertainty, on the order of 

1 cm/sec). This decision sets it apart from an unaugmented angles-only solution in which 

nothing is known of the Target. While studying natural motion trajectories, he limits the 

other system uncertainties to zero-mean noise in the angle measurements (3𝜎 = 1°). For 

                                      
20 The word “augmented” indicates the use of prior knowledge of the Target’s state. 
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maneuver-assisted trajectories, he also includes uncertainties for un-modelled 

accelerations, camera alignment (angular measurement biases), attitude determination, 

and thrust vector. 

Chari’s analysis of natural motion station-keeping orbits considers co-circular and 

“football” orbits. Chari claims that range uncertainty with LOS navigation decreases 

during co-circular station keeping with enough natural cross-track motion. He 

demonstrates graduated improvements at 87 m (5°), 268 m (15°) and 1 km (45°) cross-

track motion of the Surveyor at 1 km downrange from the Target. Due to the oscillatory 

nature of OOP motion, the relative trajectory is similar to a ship zigzagging with multiple 

legs as described by Lindgren [81] and van Huyssteen [82] for naval surface operations. 

Chari shows similar results for station-keeping “football” orbits where the Surveyor 

performs relative elliptical motion at various distances downrange from the Target. He 

states that the variation in the radial motion of the Surveyor imitates the previous cross-

track motion. As the size of the vertical motion in the ellipse grows, the uncertainty in 

range decreases more rapidly. Chari claims, “The best results from the station-keeping 

football tend to occur when the target is enclosed by the football [an NMC trajectory]” 

(pp. 74). 

Chari’s analysis of co-elliptic, “traveling football” (differential semi-major axis and 

eccentricity) and v-bar hops for closure orbits also shows a reduction in range uncertainty 

in all cases with the best results occurring at closest approach to the Target. He finds 

that motion perpendicular to the LOS has no meaningful effect during closure unless the 

degree of perpendicular motion exceeds the already induced angle variants from closure 

motion. 
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The output of Chari’s simulations only includes the covariance matrix as a function of 

time (not actual position estimates), but the qualitative merits of his findings were taken 

as evidence in the present work that an IOD solution and trajectory estimate are possible 

from natural motion alone.  

Augmented, Maneuver-Assisted Trajectories with Linear Covariance Analysis 

Chari incorporates maneuvers into the same categories of relative trajectories he explored 

with purely natural motion in addition to the r-bar hop. He initializes the covariance 

matrix with a 10% error in range to highlight any improvements from maneuvers. As 

expected from [128], he finds “using maneuvers to augment natural orbital motion 

significantly helps navigation filter performance.” It is a bit perplexing that he considers 

cases as close as 10 m where the extent of the Target would be sufficient for SFM and 

SLAM, but his results are consistent at short and long distances. The most useful lessons 

from Chari’s maneuver-assisted trajectory studies are: 1) thrusting perpendicular to the 

line-of-sight is better for reducing downrange uncertainty, 2) maneuvering for range 

observability has diminishing returns, and 3) un-modelled accelerations (process noise) 

increase downrange uncertainty until counteracted by a maneuver. 

As it relates to process noise, Chari and Geller identified IMU accuracy as an important 

consideration for maneuver-assisted trajectories since some maneuvers use a Δv on the 

order of mm/sec. For Chari’s study, he assumed the Δv for maneuvers were perfectly 

known, but Jason Schmidt* later studied the effect of accelerometer errors which will be 

discussed momentarily. 

Finally, Chari found that expending more fuel to obtain range observability does not 

necessarily give a better result over smaller maneuvers (pp. 130). This finding instigated 



 44 

Chari to identify three “hybrid trajectories” that string together a series of previously 

studied maneuvers to improve downrange observability during RPOs. The hybrid 

trajectories are merely qualitative to show that the combination of maneuvers reduces 

range uncertainty; no optimization work was attempted to determine if these trajectories 

are fuel optimal or observability optimal. That work is left to fellow MIT alumnus, David 

Woffinden*21, whose work will be introduced next. 

Augmented, Closed-Loop GN&C Simulations with EKF and Linearized 𝐽  Dynamics 

Subsequent to Chari’s findings, Geller produced a LINCOV program that modeled the 

closed-loop performance of a complete guidance, navigation and control (GN&C) system 

for satellite inspection and orbital rendezvous [139]. The program showed the effects of 

different quality sensors, actuators, and algorithms for relative pose and position 

estimation. An extended Kalman filter is used with a linearized 𝐽  gravity dynamics model 

for state propagation. Geller’s published simulation results were limited to a v-bar 

approach from 25 m behind the Target, but the utility of the LINCOV program for longer-

range LOS navigation scenarios was demonstrated and described by Woffinden [44]. 

Woffinden shows the results of a v-bar approach from 1 km behind the Target, but the 

downrange uncertainty is not reduced until reaching 500 m where the GN&C mode 

switches to allow pseudorange measurements from the apparent size of the Target just as 

Wolowicz [127] during the Apollo era. Without the pseudorange measurements, the range 

is unobservable during v-bar approaches and other rare rendezvous trajectories in which 

                                      
21 Advised by Geller for his Master’s thesis at MIT and then followed Geller to Utah State in 2004 to 
complete his PhD. He now works for Draper Laboratory in Houston and consults NASA on angles-only 
navigation research. 
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the maneuver sequence does not alter the true LOS measurement profile from the 

“nominal” LOS measurement profile22.  

Woffinden created a Monte Carlo counterpart to Geller’s LINCOV program: a high 

fidelity, 6 degrees-of-freedom (DOF), closed-loop, GN&C simulator in MATLAB and 

Simulink for assessing system-level performance during LOS navigation. The sensor, 

actuator, trajectory and disturbance models mirrored the LINCOV program and produced 

comparable results. Woffinden’s GN&C simulator and EKF successfully demonstrated 

that precisely known maneuvers, pseudo-range measurements from apparent size of the 

Target, and triangulation measurements of Target features could be used to determine 

the Target’s relative state [140]. 

Schmidt*23 [117][141] built upon Woffinden’s work with a similar Simulink GN&C 

simulation24 by filling three gaps pertaining to filter stability, thrust accuracy and camera 

errors in the simulation. The instability of the Kalman filter has been known since the 

Mariner II mission (see Wiesel [142] pp. 111 for a discussion). LOS navigation without 

maneuvering will lead to a highly elongated and potentially unbounded covariance 

ellipsoid in the direction of the LOS vector. The covariance matrix will have extremely 

large and extremely small eigenvalues, which mean the Kalman covariance can become 

singular in the presence of highly accurate LOS observations. This crisis is averted with 

maneuvers that prevent the covariance matrix from becoming unstable, but it has also 

been addressed in the past with “square-root” filters. Schmidt implemented five different 

extended Kalman filters to compare their numerical performance for LOS navigation: 

                                      
22 The notion of a nominal trajectory is manifested from the dynamics model used with the filter. 
23 Sponsored, in part, by AFRL. 
24 Includes sensor, actuator, and dynamic models with uncertainty parameters that include noise and bias. 
The simulation can be run open or closed-loop. 



 46 

conventional, Joseph form, two variants of square-root Kalman filters (Potter and 

Carlson) and UD factorization. He does not declare a clear winner but does demonstrate 

the stability of square-root filters over the conventional EKF at ranges less than 500 m. 

An alternative method that Schmidt studied for improving filter performance involved 

thrust accuracy and camera accuracy in the GN&C simulation. By varying error 

parameters associated with the accelerometer and camera sensor package, he could 

perform a system-level trade study to determine range errors related to each potential 

sensor. The accelerometer accuracy was previously ignored by Chari and Woffinden in 

favor of more process noise or no noise to study the structural problem.   

Optimal Observability Maneuvers 

One contribution by Woffinden was his research on optimal observability maneuvers [143]. 

The cost function Woffinden chose for optimal Surveyor maneuvers is a function of the 

relative position deviation, 𝛿𝒓, from the unperturbed, linearized trajectory or nominal 

trajectory of the Surveyor. Woffinden shows geometrically and analytically how this 

deviation relates to the uncertainty in range that he calls the detectability range error 

metric, 𝛿𝜌. The cost function for an optimal maneuver minimizes 𝛿𝜌 which is proportional 

to range and inversely proportional to the sine of an effective observability angle (the 

angular difference between the true LOS and the unperturbed, linearized LOS or nominal 

LOS). An effective observability angle of ±90° is optimal. In essence, the optimal 

maneuver balances the two competing interests of closing on the Target while thrusting 

perpendicular to the nominal LOS as Chari observed. 

Woffinden verifies the optimal maneuver cost function analytically, numerically (with his 

6DOF simulator) and with LINCOV. He selects a case in which the Surveyor is station-
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keeping on the v-bar 100 m in front of the Target and shows with all three methods that 

an impulsive maneuver directed upward in the radial direction is optimal;25 however, he 

also clearly demonstrates with LINCOV that any maneuver perpendicular to the 

Surveyor’s velocity vector (no downrange component) reduces downrange uncertainty 

from 10 m to less than 2.5 cm in this scenario. It should be noted that the LINCOV 

program only accounts for angle measurement errors (𝜎 = 0.3 mrad) and the relative 

position (10% of range) and velocity (orbital rate times initial position uncertainty) errors 

of both the Target and Surveyor. The acceleration magnitude and direction from thrusting 

is assumed to be perfectly known. 

Observability Criteria 

The detectability range error metric identified by Woffinden for optimizing maneuvers is 

a component of analytical observability criteria that Nardone [83] first published for BOT 

TMA. Woffinden generalizes Nardone’s criteria for a 3-dimensional state transition matrix 

so that any linearized dynamics model (e.g. Clohessy-Wiltshire) can be used for orbital 

rendezvous [144]. The closed-form observability criteria are used by Woffinden to 

demonstrate its utility on five relative orbit scenarios26 using Clohessy-Wiltshire dynamics 

and impulsive or continuous thrust maneuvers. Woffinden claims that the criteria may be 

extended to include nonlinear or disturbance terms in the dynamics. 

Relative Orbital Elements with Secular 𝐽  Dynamics (Augmented or Maneuver-Assisted) 

                                      
25 The solution space was constrained by 1) a single impulsive maneuver, 2) restricting changes to the 
Surveyor’s orbital energy or semi-major axis, and 3) the Surveyor cannot intercept the Target or bypass it 
in the downrange direction. 
26 These include r-bar station keeping, v-bar approach, co-planar circumnavigating “football” trajectory 
with an impulsive maneuver, arbitrary in-plane trajectories with OOP impulsive maneuver, and arbitrary 
relative trajectory with an arbitrary impulsive maneuver. 
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Gaias et al. [145] reconfigured the problem using a different set of coordinates that they 

call relative orbital elements (ROEs) given by 

𝛿𝜶 =

⎣

⎢
⎢
⎢
⎢
⎢
⎡

𝛿𝑎
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⎤

 (2.3)

where the classical orbital elements are represented as usual (𝑎, 𝑒, 𝑖, 𝜔, Ω and 𝑀) and the 

mean argument of latitude is 𝑢 = 𝑀 + 𝜔. The phase angles 𝜑 and 𝜃 indicate the 

orientation of the relative trajectory and the magnitude of the 𝛿𝒆 and 𝛿𝒊 indicate the 

magnitude of the in-plane and out-of-plane (OOP) orbital motion, respectively. The 

trajectory offsets from the center of the LVLH frame are easily parameterized in the along-

track direction by the relative mean longitude 𝛿𝜆 = 𝛿𝑢 + 𝛿𝑖 cot 𝑖 and in the radial 

direction by 𝛿𝑎. The superscript 𝑜 designates the Surveyor spacecraft at the origin of the 

LVLH frame. 

In this formulation, the first five elements are claimed to be “mostly” observable since 

they describe the shape and orientation of the relative orbit whereas the last element is 

described as the scaling term which is akin to the unobservable range in the traditional 

sense (“range is well approximated by only one term of the state” [145]). Gaias et al. use 

the case of equal orbital energy (𝛿𝑎 = 0) and no OOP motion (𝛿𝑖 = 0 and 𝛿Ω = 0) to 

support their claim with a linear mapping that shows 𝑎𝛿𝑢 gives the average range during 

one orbit (pp. 442). It is unclear from their publication if the unobservable range acts 

through 𝑎𝛿𝑢 for all relative trajectories, particularly those that circumnavigate the 

Surveyor, or if this is only true for leader-follower configurations (this author believes that 

may be the case). 
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The ROEs are very convenient for generating a simple constant coefficient linear system 

to describe relative motion for circular Keplerian orbits. First-order, secular 𝐽  effects 

were added to the 𝐴 matrix to produce a linear time-varying (LTV) system. The state 

transition matrix is formed in the usual way and implemented in a nonlinear least squares 

(NLS) navigation filter. D’Amico27 claims the original STM and filter in his dissertation 

[146]. 

In 2012, Gaias and D’Amico used their LOS navigation filter to support the Advanced 

Rendezvous demonstration using GPS and Optical Navigation (ARGON) phase of the 

Swedish Prototype Research Instruments and Space Mission technology Advancement 

(PRISMA) formation-flying mission. PRISMA consisted of two 3-axis stabilized 

spacecraft—Mango and Tango—to mature guidance, navigation and control technology 

for autonomous RPOs. ARGON is one of only two experiments to have openly 

demonstrated LOS navigation in the post-Apollo era, but it was not performed 

autonomously, and it was not performed without maneuvers. Mango was equipped with 

a propulsion system so that it could maneuver near Tango [147] and Gaias et al. developed 

a metric for determining the Δv needed to obtain range observability. The images 

collected by Mango were downlinked to the ground-station for processing and maneuver 

commands were sent during up-links to guide Mango from a distance of >30 km to within 

3 km of Tango. The navigation solution during the ARGON phase was generated solely 

from the NLS LOS navigation filter with an accuracy of 1-10% using the GPS solution as 

the truth. 

                                      
27 D’Amico has since moved to Stanford University where he has built a space rendezvous laboratory with 
the experience and data he obtained from PRISMA. 
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PRISMA’s mission ended in late 2014, but the acquired data is still being analyzed and 

used to support future missions. Gaias claims, “Post analysis of the flight data collected 

during ARGON, in fact, presented some minor discrepancies with respect to the expected 

modeled profiles” [148]. Gaias developed a corrected STM for nearly circular orbits (still 

with first-order, secular 𝐽  effects) that fixes the discrepancies uncovered in D’Amico’s 

STM. Gaias also shows how to include the mean differential aerodynamic drag in the 

ROE time profiles. 

The results of ARGON supported the latest LOS navigation experiment called AVANTI 

(Autonomous Vision Navigation and Target Identification) which was conducted by DLR 

late last year. The results and lessons learned are only just beginning to surface at 

conferences and in the literature [149]. AVANTI relied upon good prior knowledge of the 

target and a cold gas thruster to perform an autonomous spiral approach. 

Non-augmented, Maneuver-free LOS Navigation 

This section describes the progress that has been made toward maneuver-free LOS 

navigation by exploiting nonlinear dynamics, natural perturbations, and nonlinear 

measurement models. 

Gaias et al. [145] demonstrated that the simplified 𝐽  effects in their STM improved the 

observability properties of the dynamical system, but not sufficiently to solve the problem 

without maneuvering. The condition number of the observability Gramian (see Section 

3.6) is widely accepted as a metric for observability in which Gaias’ numerical simulations 

demonstrate no better than 𝒪(10 ). Yim, Crassidis and Junkins suggest that a condition 

number of 10  is the limit for practical observability [150]. In theory, the condition 

number for the Clohessy-Wiltshire STM is infinite, so high condition numbers indicate 
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weak range observability at best. Note that Gaias used a linear mapping from ROEs to 

rectilinear coordinates for the observability analysis. Shortly we will see why that matters. 

Nonlinear relative dynamics also have been shown to provide weak range observability. 

Lovell and Lee derived observability criteria for nonlinear dynamics based upon Lie 

derivatives of the line-of-sight [151]. The authors show analytically and numerically for 

certain geometric conditions in nearly circular orbits that nonlinear dynamics should 

render range observable for LOS navigation. This agrees with Chari’s LINCOV analysis. 

The dynamics model selected for LOS navigation can be formulated with several different 

types of coordinates such as rectilinear, curvilinear, action-angle, orbital elements, relative 

orbital elements, etc., but all angle measurements originate from pixel coordinates in a 

Cartesian frame. A mapping is required to convert from angle measurements to the set of 

coordinates used by the dynamical model. This is known as the measurement model. 

Sullivan and D’Amico [152] recently showed the significance of the measurement model 

on range observability. Sullivan, a student of D’Amico, also uses ROEs, so he looked at 

six different measurement models28 that ultimately map the ROEs to rectilinear 

coordinates. Each of the measurement models were used with Gaias’ improved STM (with 

and without 𝐽 ) to calculate the condition number of the Gramian. The best results—

condition number of 𝒪(10 )—are obtained with a nonlinear mapping from ROEs, the 𝐽  

STM, and large batches of data (10 orbits, in this case). The worst results—condition 

                                      
28 (1) linearly map mean ROEs to rectilinear coordinates; (2) linearly map mean ROEs to curvilinear 
coordinates, then nonlinearly map the curvilinear coordinates to rectilinear coordinates; (3) nonlinearly 
map mean ROEs to rectilinear coordinates; (4) map mean ROEs to osculating ROEs, then linearly map 
osculating ROEs to rectilinear coordinates; (5) map mean ROEs to osculating ROEs, then linearly map 
osculating ROEs to curvilinear coordinates, then nonlinearly map the curvilinear coordinates to rectilinear 
coordinates; and (6) map mean ROEs to osculating ROEs, then nonlinearly map osculating ROEs to 
rectilinear coordinates. 
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number of 𝒪(10 )—are obtained with a linear mapping from ROEs, the Keplerian STM, 

and large batches of data (10 orbits). Sullivan validated these results with a high-fidelity 

simulation. He built an EKF and evaluated the errors from each of the different 

measurement models with Gaias’ 𝐽  STM (using ROEs). All six measurement models 

exhibit a trend toward the solution over five orbits, and as before, the nonlinear mapping 

performed the best. 

There is one major caveat with Sullivan’s work; the filter is initialized using a priori 

knowledge about the Target’s state, which Sullivan and D’Amico presume will come from 

a two-line element set (TLE) or radar campaign. This modus may be fine for satellites 

that are trackable, but without it, the Sullivan-D’Amico approach is insufficient especially 

as they conclude, “the navigation filters demonstrate strong sensitivity to the initialization 

error” (see [152] pp. 24). The ultimate objective of maneuver-free LOS navigation must 

be to solve the problem without external guidance. 

 Kolmogorov-Arnold-Moser Theorem 

An Application 

Most of the work we have reviewed for space rendezvous and proximity operations have 

used linear time-varying (LTV) plants to describe the relative orbital dynamics with 

simplifying assumptions that destroy or degrade range observability. Many have even 

augmented the state transition matrix with first-order effects from the Earth’s oblateness. 

In all cases, the two-body orbital dynamics were used as the starting point before even 

considering perturbation theory. An alternative approach is to start from a non-Keplerian 

reference orbit in the full geopotential. This solution is a much better characterization of 

the long-term bulk motion while differential corrections from the equations of variation 
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effectively describe the local motion of the nonlinear trajectory. Of course, this approach 

is only possible if an IOD solution can be found without augmentation or maneuvering. 

Numerical integration is a tricky and costly solution to the proposed non-Keplerian 

reference orbit since LOS navigation is characterized by occasionally sparse observations 

and variable sample rates (reference and actual observations must be perfectly 

synchronized). A better approach is to use Kolmogorov-Arnold-Moser (KAM) theorem. 

William Wiesel has shown that Earth satellites in the full geopotential experience lasting 

quasi-periodic motion on a KAM torus [153][154][155][156]. If constructed correctly, the 

torus persistently describes an Earth satellite’s motion in an Earth rotating reference 

frame without the need for routine and costly numerical integrations. At any instant in 

time, the torus describes the satellite dynamics in the expanded geopotential with 

exquisite accuracy (Wiesel has demonstrated centimeter-level precision for a decade). 

Therefore, the torus becomes the starting point for estimating local motion. 

The Theorem 

In his famous 1954 address to the International Congress of Mathematicians, Andrey 

Kolmogorov first posed the theory that a lightly perturbed, conservative, dynamical 

system will exhibit lasting quasi-periodic motion on an invariant N-torus [157]. 

Kolmogorov’s student, Vladimir Arnold, and German-American mathematician Jürgen 

Moser rigorously proved the theory for Hamiltonian systems [158][159]. The theorem that 

now bears their names provides a method for analyzing the stability of systems and 

providing conditions that restrict chaos. 

In its simplest mathematical representation, KAM theorem is not unlike classical 

perturbation theory with the initial state governed by  
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ℋ (𝐼, 𝜃) = ℎ(𝐼) + 𝜀𝑓(𝐼, 𝜃) (2.4)

where ℋ  is a perturbed Hamiltonian which is 2𝜋-periodic, ℎ and 𝑓 are real-analytic 

functions representing an unperturbed Hamiltonian and a perturbing function, 

respectively, 𝜀 is a small (≪ 1) real valued perturbing parameter, and (𝐼, 𝜃) are symplectic 

action-angle variables on the torus [160]. One distinct difference between classical 

perturbation theory and KAM theory is the speed at which the solution converges. Using 

a sequence of canonical transformations, the solution from classical theory is converged 

upon linearly, if at all. For example, in the first step, the initial Hamiltonian ℋ = ℎ +

𝜀𝑓  can be transformed to ℋ = ℎ + 𝜀 𝑓  in which the order of the perturbation grows 

linearly to 𝜀 . On the 𝑗  iteration, the Hamiltonian is of the form ℋ = ℎ + 𝜀 𝑓  and the 

perturbation has grown to 𝜀  [161]. With every iteration, the denominator of the 

generating function can grow arbitrarily small, causing a divergence from the solution 

with higher orders of 𝜀. This is the well-known small divisor problem that plagued 

mathematicians such as Henri Poincaré [162]. Kolmogorov’s theorem overcomes the small 

divisor problem by converging upon the solution quadratically such that after the 𝑗  

iteration the Hamiltonian is of the form ℋ = ℎ + 𝜀
−

𝑓 . This approach controls the 

small divisor in the sequence of canonical transformations so that infinitely many 

iterations may be used [161]. 

This super-convergent analytical technique was used to prove KAM theorem and show 

that solutions to a non-degenerate Hamiltonian will persist on an invariant torus as long 

as the perturbations remain small—an entirely new approach to perturbation theory. 

Classical perturbation theory seeks to approximate the solutions and then explore its 

evolution/stability from a fixed initial condition, whereas KAM theorem does not concern 

itself with the motion incurred from preassigned initial conditions, but instead explores 
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the dynamic stability in phase space using a set of fixed frequencies that govern quasi-

periodic motion [161]. In the integrable case when 𝜀 = 0, the phase space solution will lie 

on an invariant torus with a set of 𝑁  fundamental frequencies.  When 𝜀 is sufficiently 

small and the frequencies are sufficiently incommensurate (satisfying the diophantine 

inequality), a solution is quickly converged upon that remains on the invariant torus (a 

condition of stability). As 𝜀 grows, the torus is deformed until it ceases to exist [161]. 
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3 Line-of-sight Navigation Fundamentals 

 

Chapter 3 

Line-of-Sight Navigation Fundamentals 

 

In this chapter, we describe the basic process for making angle observations in the camera 

frame and mapping the observations into the LVLH frame using a measurement model. 

This process is not new, but it forms a foundation from which our novel insights and 

machinery in later chapters are formed. A pinhole camera model is assumed for the 

measurements. This is a reasonable assumption if the radial distortion from the star 

tracker or camera lens has been corrected with an optical calibration. 

 Observations in the Camera Frame 

Observations originate from image pixel coordinates to describe the location of the Target 

in the camera frame. The measurements can be expressed with spherical coordinates, 

cylindrical coordinates or Cartesian coordinates in curvilinear or rectilinear form. 

Spherical coordinates are employed in this work. The spherical coordinate terminology of 

azimuth and elevation are generally used in the tradition of ground-based observations, 

but we avoid this language and strictly refer to these angles by the Greek symbols 𝛼 and 

𝛽 as shown in the camera frame of Figure 7. Generally, references to 𝛼 and 𝛽 throughout 

the thesis are referring to angles in Hill’s frame, not the camera frame, so the superscript 

𝑜 has been added for clarity here. 
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Figure 7: Spherical Coordinates in Camera frame. The camera frame is 
defined with the 𝒛-axis perpendicular to the image plane pointing toward the 
worldview. The 𝒙-axis and 𝒚-axis are parallel to the image plane coordinates.   

Equations (3.1) and (3.2) define the angles with respect to the Cartesian coordinates of 

the Target in the camera frame. While the coordinates ( 𝑥 , 𝑦 , 𝑧 ) are unknown, the 

ratios 𝑥 𝑧 ⁄  and 𝑦 𝑥 + 𝑧 ⁄  can be found. 

𝛼 = tan− 𝑥 
𝑧 

 (3.1)

sin 𝛽 =
𝑦 
𝜌

 

cos 𝛽 =
𝑥 + 𝑧 

𝜌
 

𝛽 = tan− 𝑦 
𝑥 + 𝑧 

 (3.2)

The ratios 𝑥 𝑧 ⁄  and 𝑦 𝑥 + 𝑧 ⁄  are found from mapping coordinates on the image 

plane to the camera frame. Start by computing the centroid of the Target in the image 

and then counting pixels to the centroid similar to the image plane mapping depicted in 

Figure 8. At large distances, the image of the target could be a blob or point of light with 

no structure to be discerned, but the same could be true of a smaller object at shorter 
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distances. Whatever the case may be, the Target size and range are ambiguous no matter 

how good the camera resolution is. 

 

Figure 8: Image plane mapping. The 3D scene in the camera frame is 
mapped onto a 2D image with perspective projection and a 𝟏𝟖𝟎° rotation.  

The raw pixel count is then converted to distance units using the known dimension of 

pixels called pixel pitch. The resulting image plane coordinates ( 𝑥 , 𝑦 ) can now be 

mapped to the desired angle measurements in the camera frame. 

In Figure 8, notice that the image plane coordinates ( 𝑥 , 𝑦 ) are rotated 180° from the 

camera frame coordinates ( 𝑥 , 𝑦 ). The pinhole camera model conveys this relationship 

mathematically, which is a first-order mapping from a three-dimensional scene to a two-

dimensional image [56]. 

− 𝑥 
𝑓

=
𝑥 
𝑧 
 (3.3)

− 𝑦 
𝑓

=
𝑦 
𝑧 
 (3.4)
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where 𝑓 is the known focal length of the camera. The size of the objects in the image 

depends entirely on their distance from the focal point in the world since the camera focal 

length remains constant. 

We can solve for the angles 𝛼  and 𝛽  in the camera frame by using the pinhole camera 

model and the measured image plane coordinates. 

𝛼 = tan− − 𝑥 
𝑓

 (3.5)

𝛽 = tan− − 𝑦 

(− 𝑥 ) + 𝑓
 (3.6)

The relative position vector in the camera frame is 

𝝆 / = 𝜌

⎣
⎢
⎡

sin( 𝛼 ) cos( 𝛽 )

sin( 𝛽 )

cos( 𝛼 ) cos( 𝛽 )⎦
⎥
⎤ (3.7)

The LOS unit vector in the camera frame is 

𝝆̂ / =
𝝆 / 

𝜌
=

⎣
⎢
⎡

sin( 𝛼 ) cos( 𝛽 )

sin( 𝛽 )

cos( 𝛼 ) cos( 𝛽 )⎦
⎥
⎤ (3.8)

where the subscript 𝑡/𝑠 indicates the unit vector points from the Surveyor to the Target 

(“Target with respect to Surveyor”). The next step is to transform the LOS unit vector 

into the relative frame of motion.  

 Relative Frame of Motion 

The relative frame that is employed in this work is a local vertical local horizontal (LVLH) 

frame that is always anchored to the Surveyor. No matter where the Surveyor is located 

in the inertial frame, the LVLH frame is exactly centered on the Surveyor with the radial 

vector from the Earth-Centered Inertial (ECI) frame passing through the Surveyor, which 

defines the local vertical direction that we call the r-axis. The r-axis is the first basis 
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vector in the LVLH orthogonal set, so it can be thought of as 𝑥 in Cartesian space. Skip 

the second basis vector for a moment; we will come back to it. The third basis vector or 

the 𝑤-axis is orthogonal to the Surveyor’s orbital plane. Even as the orbit osculates, the 

𝑤-axis direction changes such that it is always perpendicular to the orbital plane and 

therefore perpendicular to the radial vector. Since the 𝑤-axis is the third basis vector, it 

can be thought of as 𝑧 in Cartesian space. That leaves us with the second basis vector or 

the 𝑠-axis which must complete the orthogonal set. In the case of a circular orbit, the 𝑠-

axis is exactly aligned with the velocity vector, but in the case of non-zero eccentricity, 

the 𝑠-axis crudely represents the direction of the velocity vector. For this reason, the 𝑠-

axis is referred to as the along-track direction. Similarly, the 𝑤-axis is referred to as the 

cross-track direction, and the 𝑟-axis is referred to as the radial direction. It is common to 

refer to this system as the RSW frame or Hill’s frame, but we will use the latter throughout 

this work. 

Hill’s frame is depicted in Figure 9 with the Surveyor at the center and the Target 

depicted along a line of site vector 𝝆 ̂

 

Figure 9: Hill’s frame. The Cartesian basis set consists of the 𝐫-axis, 𝒔-axis 
and 𝒘-axis and can be mapped as [𝐫, 𝒔, 𝒘] → [𝒙, 𝒚, 𝒛]; although, it is also common 
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to see [𝒔,𝒘, 𝐫] → [𝒙, 𝒚, 𝒛]. The 𝐫-axis is aligned with the radial direction, which 
passes directly through the Surveyor from the origin of the ECI frame. The 
𝒔-axis is nearly aligned with the velocity vector (exact for circular orbits). The 
𝒘-axis is aligned with the orbit angular momentum vector, which is 
perpendicular to the orbital plane.   

The basis vectors for Hill’s frame are mathematically expressed as 

𝐫̂ =
𝐫 

| 𝐫 |
 (3.9)

𝒘 = 𝑯 =
𝐫 × 𝐯 

| 𝐫 × 𝐯 |
 (3.10)

𝒔̂ = 𝒘 × 𝐫 ̂ (3.11)

where the superscript 𝑖 indicates vectors in the ECI frame. 

The 3 × 3 rotation matrix that transforms coordinates from Hill’s frame to the ECI frame 

is simply 

𝑹 = [𝐫̂ 𝒔̂ 𝒘] (3.12)

where the superscript 𝑖ℎ represents a transformation from Hills’ frame (ℎ) to the inertial 

frame (𝑖). The seemingly reversed order (𝑖ℎ instead of ℎ𝑖) reminds us that the vector in 

Hill’s frame appears to the right of the matrix when applied correctly. 𝑹  is applied to 

an LOS unit vector ( 𝐫̂ / ) in the same way that it is applied to the Target’s position 

vector ( 𝐫 / ) in the moving frame. 

𝐫 / = 𝑹 𝐫 /  (3.13)

𝐫̂ / = 𝑹 𝐫̂ /  (3.14)

Take the transpose of 𝑹  to produce the rotation matrix that converts a vector in the 

inertial frame to Hill’s frame 
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𝑹 = 𝑹  (3.15)

Relative velocities cannot be transformed the same way since the rate of change of the 

relative position is a different quantity when viewed from the inertial frame. The transport 

theorem describes the Target’s relative velocity in the inertial frame: 

𝐯 / = 𝐯 / + 𝝎 / × 𝐫 /  (3.16)

The Target’s inertial velocity in the inertial frame is then 

𝐯 = 𝐯 + 𝐯 /  (3.17)

𝐯 = 𝐯 + 𝐯 / + 𝝎 / × 𝐫 /  (3.18)

Do not be attempted to apply the rotation matrix to the relative velocities unless you 

wish to prove to yourself that 𝐯 / ≠ 𝑹 𝐯 / . 

The methodologies that are proposed require a highly accurate 𝑹  matrix. Range 

observability challenges persist even with perfect knowledge of the Surveyor’s state and 

perfect observations. GPS is likely the best current option for obtaining 𝑹 , especially if 

the Surveyor’s inertial position and velocity must be known in near real-time. Alternatives 

such as laser ranging, Doppler ranging and vision-based triangulation from a catalog of 

known satellites or landmarks may be considered, but the uncertainty in the Surveyor 

state estimate should be kept as small as possible. 

 Transforming Observations to Hill’s Frame 

Observations of the Target with respect to the Surveyor’s camera frame are converted to 

an LOS unit vector in Hill’s frame, 𝝆̂ / , with a string of known rotation matrices. 

𝝆̂ / = [𝑹 ][𝑹 ][𝑹 ] 𝝆̂ /  (3.19)
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where 𝝆̂ /  is the LOS unit vector of the Target with respect to Surveyor in the camera 

frame, 𝑹  is the rotation matrix from the ECI frame to Hill’s frame (as calculated in 

Section 3.2), 𝑹  is the rotation matrix from the Surveyor’s body frame to the ECI frame 

(this can be found with a star tracker that has a known orientation in the body frame), 

and 𝑹  is the rotation matrix from the camera frame to the body frame (also known 

from the engineering design). Throughout this body of work, there is an occasional need 

for the LOS unit vector from the Surveyor to the Target in the inertial frame, 𝝆̂ / . It is 

just as easily found by leaving off [𝑹 ] in Equation (3.19). 

The LOS unit vector from the Surveyor to the Target in Hill’s frame can also be expressed 

as 

𝝆̂ / =

⎣
⎢
⎡

𝑥/𝜌

𝑦/𝜌

𝑧/𝜌⎦
⎥
⎤ (3.20)

Hereafter, we will drop the term “unit” and refer to this vector as the LOS vector. The 

normalized components of Equation (3.20) supply the necessary inputs for calculating the 

angles 𝛼 and 𝛽 in Hill’s frame 

𝛼 = tan− 𝑦/𝜌

𝑥/𝜌
 (3.21)

𝛽 = tan− 𝑧/𝜌

(𝑥/𝜌) + (𝑦/𝜌)
 (3.22)

We can now write the relative position vector in Hill’s frame as a function of 𝛼, 𝛽 and 𝜌 

𝝆 / = 𝜌

⎣
⎢
⎡

cos(𝛼) cos(𝛽)

sin(𝛼) cos(𝛽)

sin(𝛽) ⎦
⎥
⎤ (3.23)

An analytical expression for the relative velocity vector is found from direct differentiation 

of Equation (3.23)  



 64 

𝐯 / =

⎣

⎢
⎡

𝜌 ̇cos(𝛼) cos(𝛽) − 𝜌 cos(𝛼) sin(𝛽) 𝛽 ̇− 𝜌 sin(𝛼) cos(𝛽)𝛼̇

𝜌 ̇sin(𝛼) cos(𝛽) − 𝜌 sin(𝛼) sin(𝛽) 𝛽 ̇+ 𝜌 cos(𝛼) cos(𝛽) 𝛼̇

𝜌 ̇ sin(𝛽) + 𝜌 cos(𝛽) 𝛽 ̇ ⎦

⎥
⎤

 (3.24)

If 𝜌/̇𝜌 is an observable quantity from angles alone, then the range-scaled version of 𝐯 /  

can be found 

𝐯 / 

𝜌
=

⎣

⎢
⎢
⎢
⎢
⎢
⎡
𝜌 ̇

𝜌
cos(𝛼) cos(𝛽) − cos(𝛼) sin(𝛽) 𝛽 ̇− sin(𝛼) cos(𝛽) 𝛼̇

𝜌 ̇

𝜌
sin(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽) 𝛽 ̇+ cos(𝛼) cos(𝛽)𝛼̇

𝜌 ̇

𝜌
sin(𝛽) + cos(𝛽) 𝛽 ̇

⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (3.25)

Using the same logic as the radial expression in the inertial frame 𝐫 ⋅ 𝐫̇ = rr,̇ the relative 

velocity projected onto the LOS vector is the range rate 

𝐫 / 

𝜌
⋅ 𝐯 / = 𝜌 ̇ (3.26)

𝐫 / ⋅ 𝐯 / = 𝜌𝜌 ̇ (3.27)

A little algebra reveals the exact equation for  𝜌/̇𝜌 

𝜌 ̇

𝜌
=

𝐫 / ⋅ 𝐯 / 

𝜌
=

𝑥𝑥̇ + 𝑦𝑦̇ + 𝑧𝑧 ̇

𝜌
=

𝑥𝑥̇ + 𝑦𝑦̇ + 𝑧𝑧 ̇

𝑥 + 𝑦 + 𝑧
=

𝑥
𝑥

𝑥̇
𝑥 +

𝑦
𝑥

𝑦̇
𝑥 + 𝑧

𝑥
𝑧 ̇
𝑥

(𝑥𝑥) +
𝑦
𝑥 + (𝑧𝑥)

 

𝜌 ̇

𝜌
=

𝑥̇
𝑥 +

𝑦
𝑥

𝑦̇
𝑥 + 𝑧

𝑥
𝑧 ̇
𝑥

1 +
𝑦
𝑥 + (𝑧𝑥)

 (3.28)

If OOP motion is negligible (𝑧 ≈ 𝑧 ̇ ≈ 0), the normalized relative state vector is 

approximately 𝑿 / /𝑥 ≈ [1 𝑦/𝑥 0 𝑥/̇𝑥 𝑦/̇𝑥 0]  and can be found using 

Schneider’s method [132] for in-plane normalized state determination. Our methods do 

not require knowledge of 𝜌/̇𝜌, but it is an interesting quantity to note since it can be 

found without maneuvers in this case. 
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 Angle-Rate and Range-Rate 

The angle-rates of relative motion are calculated numerically. We choose to use the five-

point central difference formula given by Equation (3.29) and four-point forward and 

backward differentiation at the beginning and end of the data sets—Equations (3.30) and 

(3.31), respectively [164]. The last term in each equation is the estimation error at time 

𝑐. The equations are shown for 𝛼,̇ but 𝛽 ̇is calculated in the same way. 

𝛼(̇𝑡 ) ≅
𝛼(𝑡 − 2Δ𝑡) − 8𝛼(𝑡 − Δ𝑡) + 8𝛼(𝑡 + Δ𝑡) − 𝛼(𝑡 + 2Δ𝑡)

12Δ𝑡
+

1

30
Δ𝑡 𝛼( )(𝑐) (3.29)

where 𝑐 ∈ [𝑡 − 2Δ𝑡, 𝑡 + 2Δ𝑡]. 

𝛼(̇𝑡 ) ≅
−11𝛼(𝑡 ) + 18𝛼(𝑡 + Δ𝑡) − 9𝛼(𝑡 + 2Δ𝑡) + 2𝛼(𝑡 + 3Δ𝑡)

6Δ𝑡
−

1

4
Δ𝑡 𝛼( )(𝑐) (3.30)

where 𝑐 ∈ [𝑡 , 𝑡 + 3Δ𝑡]. 

𝛼(̇𝑡 ) ≅
11𝛼(𝑡 ) − 18𝛼(𝑡 − Δ𝑡) + 9𝛼(𝑡 − 2Δ𝑡) − 2𝛼(𝑡 − 3Δ𝑡)

6Δ𝑡
−

1

4
Δ𝑡 𝛼( )(𝑐) (3.31)

where 𝑐 ∈ [𝑡 − 3Δ𝑡, 𝑡 ]. 

Little extra effort is required to analytically calculate the range rate, 𝜌,̇ and the angular 

rates, 𝛼 ̇and 𝛽,̇ if the relative state vector is known. This is usually not the case, but it 

can be done for simulated truth data to verify the angular rates calculated from numerical 

methods. 

The scalar range rate and angular rates can be expressed as a function of the relative 

position and velocity Cartesian coordinates in Hill’s frame 

𝜌 ̇ =
𝐫 / ⋅ 𝐯 / 

𝜌
 (3.32)

𝛼̇ =
𝑧�̇� − 𝑥�̇�

−𝑥 − 𝑧
 (3.33)

𝛽 ̇ =
𝑦̇ − 𝜌(̇𝑦 𝜌⁄ )
√

𝑧 + 𝑥
 (3.34)
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In situations where initial knowledge of the Target’s orbit is known, we could analytically 

calculate all of the above with some uncertainty at the instant we initialize LOS 

navigation. The problem then would be to manage and reduce the uncertainty. With such 

information, the problem is less potent since it eliminates the difficult task of IOD. 

 Measurement Model Basics 

A measurement model or measurement equation maps angle measurements from one 

coordinate system to another. For instance, Equation (3.21) and (3.22) are measurement 

models that expresses the exact nonlinear relationship between angle observations in 

spherical coordinates and the Target’s relative state in Cartesian coordinates. 

Linearization of the measurement model for use with some modern estimation techniques 

(e.g. the Kalman filter and nonlinear least squares) degrades the weak range observability 

contributed by the nonlinearities just as with linearized dynamics models. The loss 

incurred from linearization can be managed with observations that are frequent enough 

and accurate enough for the linearization to closely approximate the nonlinear model. 

In this section, we explore the magnitude of the linearization error from spherical 

coordinates to Cartesian coordinates (our choice for this effort). A measurement model in 

the camera frame—Equation (3.8)—is used here for basic intuition since it is devoid of 

any rotation matrices from Equation (3.19). The actual measurement model used in our 

estimator is developed in Section 5.5.2. 

Let the measurement vector be 

𝑴 = [𝛼 𝛽]  (3.35)
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The sensitivity of the relative position due to small changes or residuals in angular 

measurements can be approximated in the neighborhood of an arbitrary point using a 

Taylor series expansion  

𝑴 + 𝛿𝑴 ≈ 𝑴 + 𝛿𝑴𝑇𝒈 𝑴 +
1

2
𝛿𝑴𝑇𝑮 𝑴 𝛿𝑴 + ⋯ (3.36)

where  is a coordinate describing the system state, 𝑔 is the gradient of  and 𝑮 is the 

Hessian or second derivative of . The residuals are defined in the usual sense 

𝛿𝑴 =
𝛿𝛼
𝛿𝛽

=
𝛼 − 𝛼

𝛽 − 𝛽
 (3.37)

where the subscript 𝑜𝑏𝑠 indicates an observed angle and the subscript 𝑟𝑒𝑓 indicates a 

reference angle from the expected trajectory. 

The gradient is 

𝒈 =
𝜕

𝜕𝑴
=

𝜕 𝜕𝑀⁄
⋮

𝜕 𝜕𝑀⁄
 (3.38)

The Hessian is 

𝑮 =

⎣
⎢
⎡

𝜕 𝜕𝑀⁄ ⋯ 𝜕 𝜕𝑀 𝜕𝑀⁄
⋮ ⋱ ⋮

𝜕 𝜕𝑀 𝜕𝑀⁄ ⋯ 𝜕 𝜕𝑀⁄ ⎦
⎥
⎤ (3.39)

The sensitivity of the relative position (to second-order) due to small changes in angular 

measurements is 

∆ ≈ 𝛿𝑴 𝒈(𝑴) +
1

2
𝛿𝑴 𝑮(𝑴)𝛿𝑴 (3.40)

Apply the Taylor series to each element of the relative position vector in the camera frame 

from Equation (3.8). See Appendix A for the derivations. 
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𝛿𝑥 ≈ 𝜌 cos(𝛼) cos(𝛽) 𝛿𝛼 − 𝜌 sin(𝛼) sin(𝛽) 𝛿𝛽

+
1

2
[−𝜌 sin(𝛼) cos(𝛽) 𝛿𝛼 − 2𝜌 cos(𝛼) sin(𝛽) 𝛿𝛼𝛿𝛽

− 𝜌 sin(𝛼) cos(𝛽) 𝛿𝛽 ] 

(3.41)

𝛿𝑦 ≈ 𝜌 cos(𝛽) 𝛿𝛽 −
1

2
𝜌 sin(𝛽) 𝛿𝛽  (3.42)

𝛿𝑧 ≈ −𝜌 sin(𝛼) cos(𝛽) 𝛿𝛼 − 𝜌 cos(𝛼) sin(𝛽) 𝛿𝛽

+
1

2
[−𝜌 cos(𝛼) cos(𝛽) 𝛿𝛼 + 2𝜌 sin(𝛼) sin(𝛽) 𝛿𝛼𝛿𝛽

− 𝜌 cos(𝛼) cos(𝛽) 𝛿𝛽 ] 

(3.43)

As long as 𝛿𝑴 is small, second order terms in the sensitivity equations are negligible and 

the remaining system of linear equations can be written in matrix form where 𝜕𝑿/𝜕𝑴  is 

just the Jacobian of the measurement model 

𝛿𝑿 =
𝜕𝑿

𝜕𝑴
𝛿𝑴 (3.44)

𝜕𝑿

𝜕𝑴
= 𝜌

⎣
⎢
⎡

cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽)

0 cos(𝛽)

− sin(𝛼) cos(𝛽) − cos(𝛼) sin(𝛽)⎦
⎥
⎤ (3.45)

In standard practice, 𝜕𝑴/𝜕𝑿 is called the measurement sensitivity matrix, but we 

have intentionally inverted the matrix here by posing the measurement model 

backwards 𝑿(𝑴) rather than 𝑴(𝑿). 

The second-order terms in Equations (3.41), (3.42) and (3.43) are useful as analytical 

metrics to assess observability degradation when using the linearized measurement 

model. This will occur when the residuals get too large. 
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3.5.1 Sensitivity to Residuals 

Range uncertainty can be manifested in several ways from sensor biases and noise, 

Surveyor absolute navigation errors, dynamics model fidelity, and linearization of the 

measurement and dynamics models in the GN&C system. All sources of error contribute 

to the angle residuals that are mapped with the measurement model. In some sense, the 

𝛼 and 𝛽 residuals are like solid angles subtended from the camera as depicted in Figure 

10 for a case when the Target is located along the optical axis (𝛼 = 𝛽 = 0). The 

measurement model converts the residual angles into residual position coordinates, 𝛿𝑿. 

 

Figure 10: Measurement Sensitivity Geometry. The angle residuals are 
mapped to relative position uncertainty in the region subtended by the solid 
angle 𝜹𝜶 × 𝜹𝜷.    

For the case of 𝛼 ≈ 𝛽 = 𝒪(𝜀) which represents an attempt to keep the Target centroid in 

the center of the image frame, the nonlinear measurement model simplifies substantially 

with small angle assumptions 

𝛿𝑥 ≈ 𝜌𝛿𝛼 + 𝒪(𝜌𝜀 𝛿𝛼, 𝜌𝜀 𝛿𝛽, 𝜌𝜀𝛿𝛼 , 𝜌𝜀𝛿𝛽 , 𝜌𝜀𝛿𝛼𝛿𝛽) (3.46)

𝛿𝑦 ≈ 𝜌𝛿𝛽 + 𝒪(𝜌𝜀 𝛿𝛽, 𝜌𝜀𝛿𝛽 ) (3.47)
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𝛿𝑧 ≈ −𝜌𝜀𝛿𝛼 − 𝜌𝜀𝛿𝛽 + 𝒪(𝜌𝜀 𝛿𝛼, 𝜌𝜀 𝛿𝛽, 𝜌𝛿𝛼 , 𝜌𝛿𝛽 , 𝜌𝜀 𝛿𝛼𝛿𝛽) (3.48)

Notice that most of the sensitivity effects are manifested in the 𝑥 and 𝑦 directions where 

the analytical expressions are similar in nature to the spatial resolution equation of the 

camera described in Appendix B. As long as the residuals remain small, 𝛿𝑧 is 𝒪(𝜌𝜀𝛿𝛼, 𝜌𝜀𝛿𝛽) 

and since the range is effectively along the 𝑧-axis in this centroiding case, the range 

sensitivity to the higher order terms is very low. In other words, the higher order terms 

have very little effect on range observability. 

A corollary from the centroiding case is that the uncertainty in the state estimate is 

inversely related to the measurement sensitivity. This fundamental observation is 

confirmed with the covariance matrix, which is a function of the inverse sensitivity matrix. 

Larger component values in the measurement sensitivity matrix means smaller values in 

the covariance matrix. As we have just seen, the centroiding case is conducive for 

maximizing 𝛿𝑥 and 𝛿𝑦 while minimizing 𝛿𝑧 which leads to range observability problems. 

One immediate question that comes to mind is how the measurement sensitivity changes 

when the Target centroid is not precisely co-located along the optical axis. If minimal 

slewing is desired, the Target must be allowed to move across a significant portion of the 

image plane. There appears to be a gap in the LOS navigation literature pertaining to 

measurement sensitivity from tracking objects that are off-center from the optical axis. 

Our methodologies developed in Chapter 5 assume continuous slewing to keep the Target 

centered in the image plane, but is this a wise choice? The gap in knowledge of 

measurement sensitivity from off-axis tracking is explored here to see if there is a need 

for a change in the concept of operations (CONOPS) to maximize measurement sensitivity 

along the LOS. 
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Let us introduce a measurement model sensitivity metric, 𝛿𝑠 29 

𝛿𝑠 = 𝛿𝑥 + 𝛿𝑦 + 𝛿𝑧  (3.49)

Plugging in the nonlinear analytical expressions for 𝛿𝑥, 𝛿𝑦, and 𝛿𝑧 that were derived in 

Equations (3.41), (3.42) and (3.43), the range normalized value of 𝛿𝑠 is calculated as a 

function of 𝛼 and 𝛽 for off-center tracking 

𝛿𝑠

𝜌
=

𝛿𝛽 (2 cos 𝛽 − 𝛿𝛽 sin 𝛽)

4

+
cos 𝛼 cos 𝛽 𝛿𝛼

2
− sin 𝛼 sin 𝛽 𝛿𝛼𝛿𝛽 + sin 𝛼 cos 𝛽 𝛿𝛼 +

cos 𝛼 cos 𝛽 𝛿𝛽

2

+ cos 𝛼 sin 𝛽 𝛿𝛽

+
sin 𝛼 cos 𝛽 𝛿𝛼

2
+ cos 𝛼 sin 𝛽 𝛿𝛼𝛿𝛽 − cos 𝛼 cos 𝛽 𝛿𝛼 +

sin 𝛼 cos 𝛽 𝛿𝛽

2

+ sin 𝛼 sin 𝛽 𝛿𝛽  

(3.50)

For the sake of greater insight into Equation (3.50), let us consider the sensitivity metric 

near the truth where the angle residuals are approximately the same order of magnitude. 

This allows us to eliminate one of the variables by assuming the two angle residuals are 

roughly equivalent, 𝛿𝛼 ≈ 𝛿𝛽 = 𝒪(𝜀). Substituting into Equation (3.50) and simplifying 

𝒪
𝛿𝑠

𝜌
=

𝜀

8
[12 + 4 cos(2𝛽) − 4𝜀 sin(2𝛽) + (9 − cos(2𝛽))𝜀 ] (3.51)

𝒪(𝛿𝑠) = 𝜌
𝜀

2
6 + 2 cos(2𝛽) − 2𝜀 sin(2𝛽) +

𝜀

2
[9 − cos(2𝛽)] (3.52)

When the angle residuals are small (𝜀 ≪ 1), the sensitivity metric is reasonably 

approximated as 

                                      
29 As the residuals approach the angular resolution, the measurement sensitivity metric approaches the 
optical system’s spatial resolution (the smallest detectable object). 
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𝒪(𝛿𝑠) ≈ 𝜌
𝜀

2
6 + 2 cos(2𝛽) (3.53)

Using the trigonometric identity, cos(2𝛽) = 1 − 2 sin 𝛽, 

𝒪(𝛿𝑠) ≈ 𝜌𝜀 2 − sin 𝛽 (3.54)

Notice that 𝛼 has fallen out! This is an unexpected result, but the math is consistent with 

MATLAB’s Symbolic Math Toolbox. Experimentation with the prior formulation of 

𝛿𝑠 (𝛼, 𝛽, 𝜌, 𝛿𝛼, 𝛿𝛽) in Equation (3.50) indicates that 𝛿𝑠 is invariant to 𝛼. The invariance 

in 𝛿𝑠 seems to be due to 𝛼, 𝛽 coupling in 𝛿𝑥 and 𝛿𝑧 components. For instance, when the 

𝛿𝑥 and 𝛿𝑧 components are squared and combined, 𝛼 is eliminated with a trigonometric 

identity: 𝑦 cos (𝛼) + 𝑦 sin (𝛼) = 𝑦 . The y component is only a function of 𝛽: 𝑦 = 𝜌 sin 𝛽. 

Visualization of the sensitivity metric is helpful for intuition. Arbitrarily selecting 𝜀 =

100 arc sec and setting 𝛼 = 0 since its cumulative effect on 𝛿𝑠 is nullified in 𝛿𝑥 and 𝛿𝑧, 

Figure 11 displays the component sensitivities as 𝛽 and range are varied. Range and 

sensitivity scale identically, so if the distance units for the range are selected as kilometers, 

the colorbar numbers are also given in kilometers. 

As |𝛽| increases, |𝛿𝑥| and |𝛿𝑦| decrease while |𝛿𝑧| increases. The cumulative effect of 𝛿𝑥, 

𝛿𝑦 and 𝛿𝑧 is a decrease in 𝛿𝑠 as |𝛽| increases. Equation (3.54) indicates 𝛿𝑠 is maximized 

as 𝛽 → 0. A mesh grid with variables in 𝜌, 𝜀, and 𝛽 convey the effect on 𝛿𝑠 in Figure 12 

and Figure 13. Table 1 lists the maximum values of 𝛿𝑠 when 𝛽 = 0 for several different 

ranges. 
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Table 1: Sensitivity metric at 𝜷 = 𝟎 and 𝜺 = 𝟏𝟎𝟎 𝐚𝐫𝐜 𝐬𝐞𝐜  

Range 𝜹𝒔 (m) 
300 m 0.21 
600 m 0.41 
1 km 0.69 
10 km 6.86 
100 km 68.56 

 

 
(a) Sensitivity in 𝒙  

 
(b) Sensitivity in 𝒚 

 
(c) Sensitivity in 𝒛 

Figure 11: Component Sensitivity to Angle Residuals. The position 
component sensitivity to residuals are displayed as a function of range and 𝜷. 
The angular resolution is arbitrarily set as 𝜺 = 𝟏𝟎𝟎 𝐚𝐫𝐜 𝐬𝐞𝐜 and 𝜶 = 𝟎 to limit 
complexity.   
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Figure 12: Sensitivity Metric in Wide Angle Field of View. The surfaces of 
3D mesh grid are unfolded to reveal how the sensitivity metric changes in the 
variables 𝝆, 𝜺, and 𝜷.    

 

Figure 13: Slice Graph of Figure 12. Slices through the mesh grid depicted 
in Figure 12 to show the internal structure of the wide-angle field of view.    



 75 

Overall, this quick study and the measurement sensitivity metric tells us that the 

cumulative effect of off-axis tracking is fairly inconsequential for narrow field-of-view 

systems as long as the measurement model is accurate and the residuals are small. Given 

the same angle residuals for optical axis tracking versus off-axis tracking, the measurement 

model maps slightly smaller spatial values for the latter case. It is worth noting that off-

axis tracking does improve the sensitivity in 𝛿𝑧 which may marginally assist in enhancing 

down-range observability (along the boresight) while sacrificing slightly higher 

uncertainty in the 𝑥 and 𝑦 states. 

 Numerical Observability Analysis 

Range observability can be numerically evaluated in a high fidelity simulation 

environment in one of three ways. The first method is to use the trend of the range error 

since the truth is known. The second method is to use the covariance of the estimated 

state. These two methods are quantitative and provide a direct assessment of a particular 

method’s ability to observe range. A qualitative alternative is to calculate the condition 

number of the associated observability matrix. A weakly observable system exhibits large 

condition numbers. Yim et al. studied observability for LOS navigation and found that 

condition numbers greater than 𝒪(10 ) are typically unobservable [150]. Others such as 

Gaias [145] and Sullivan [152] have used this method, so it is useful for comparing 

structural observability between different measurement and dynamics models. The general 

approach for calculating the condition number is described here.  

First, specify a measurement model that maps the dynamic model state representation to 

the angle measurements. One example is Equations (3.21) and (3.22) in Hill’s frame 
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𝑴 𝑿(𝑡) =
𝛼
𝛽 =

⎣

⎢⎢
⎡

tan− 𝑦

𝑥

sin− 𝑧

𝑥 + 𝑦 ⎦

⎥⎥
⎤
 (3.55)

Given an initial state vector, 𝑿(𝑡 ), the nominal reference trajectory can be propagated 

with a dynamics model. In most cases, this involves a state transition matrix, 𝜱(𝑡, 𝑡 ). 

Calculate the measurement sensitivity matrix, 𝜕𝑴 𝑿(𝑡) /𝜕𝑿, along the nominal state 

trajectory on the interval 𝑡  to 𝑡 . The partial derivatives will typically be evaluated 

analytically, but may involve an expansion with several partial derivatives (potentially 

numerical) or rotation matrices as in [145].   

𝜕𝑴

𝜕𝑿 ( )

( )

=

⎣

⎢
⎢
⎢
⎢
⎢
⎡

𝜕𝑴

𝜕𝑿
𝑿(𝑡 )

𝜕𝑴

𝜕𝑿
𝜱(𝑡 , 𝑡 )𝑿(𝑡 )

⋮
𝜕𝑴

𝜕𝑿
𝜱(𝑡 , 𝑡 )𝑿(𝑡 )

⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (3.56)

The observability matrix, 𝑻 , is formed by multiplying the sensitivity matrix and the state 

transition matrix at every time step 

𝑻 |
( )

( )
=

⎣

⎢
⎢
⎢
⎢
⎢
⎡

𝜕𝑴

𝜕𝑿
𝑿(𝑡 )

𝜕𝑴

𝜕𝑿
𝜱(𝑡 , 𝑡 )𝑿(𝑡 ) 𝜱(𝑡 , 𝑡 )

⋮
𝜕𝑴

𝜕𝑿
𝜱(𝑡 , 𝑡 )𝑿(𝑡 ) 𝜱(𝑡 , 𝑡 )

⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

Full rank of 𝑻  is a sufficient condition for local observability, but the qualitative notion 

of levels of observability is possible by taking the condition number of the observability 

Gramian, 𝑻 𝑻 .  
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4 Estimating Range from Nonlinear Dynamics 

 

Chapter 4 

Estimating Range from Nonlinear Dynamics 

 

Nonlinearities in the physical representation of satellite motion are essential for range 

observability. An understandably strong temptation to simplify orbital dynamics must be 

overcome to passively estimate range from LOS navigation without thrusting or 

augmentation from prior information. We begin this chapter by exploring the magnitude 

of simplifications made by Clohessy and Wiltshire [165] to describe relative motion in a 

two-body system. By understanding the order of what is lost, we can better appreciate 

what we have to gain from pristine nonlinear dynamics. 

While most LOS research efforts have been spoiled by simplified relative motion models 

or linearization, we will show analytically and numerically how proximal spacecraft in 

NMC relative orbits can be uniquely identified by minor nonlinearities in the relative 

trajectory. In Chapter 5 we will take this proof a step farther by developing an IOD 

algorithm that exploits non-Keplerian, nonlinear motion and a nonlinear least squares 

estimator that dramatically improves the IOD solution. 

 Clohessy-Wiltshire Dynamics: Tracing the Range Observability 
Breakdown 

Following the well-established path of Clohessy and Wiltshire [165], we transform the 

inertial motion of a Target satellite into a linear closed-form solution for two-body relative 
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motion in the LVLH frame of a nearly circular reference orbit. Along the way, we pause 

to consider the approximations that deviate from the nonlinear motion. The magnitude 

of the error induced from linearization is assessed to determine the practicality of using 

small nonlinear effects for line-of-sight navigation. 

Begin with the two-body vector equation of motion with a forcing term 𝒇(𝑡) to represent 

additional accelerations or perturbations acting on the Target 

𝐫(̈𝑡) = −
𝜇

𝑟 (𝑡)
𝐫(𝑡) + 𝒇(𝑡) (4.1)

In the inertial frame, we can specify the Target’s position relative to the Surveyor 

𝐫 = 𝐫 + 𝐫 /  (4.2)

𝐫 = 𝐫 + 𝜌 𝐫̂ /  (4.3)

where 𝐫  is the Target position vector, 𝐫  is the Surveyor position vector, 𝜌 is the range 

between the two satellites and 𝐫̂ /  is the line of sight vector to the Target from the 

Surveyor. 

Substitute Equation (4.2) into Equation (4.1) for the Target motion and drop the time 

dependence for succinctness 

𝐫̈ + 𝐫̈ / = −
𝜇

𝐫 + 𝐫 / 

𝐫 + 𝐫 / + 𝒇 (4.4)

The approximations that are necessary for the linearized Clohessy-Wiltshire equations 

occur in the power expansion of Equation (4.4) 

𝐫 + 𝐫 / 
− = 𝐫 + 𝐫 / ⋅ 𝐫 + 𝐫 / 

−  

= ( 𝐫 ⋅ 𝐫 ) + 2 𝐫 ⋅ 𝐫 / + 𝐫 / ⋅ 𝐫 / 
− /  

𝐫 + 𝐫 / 
− = (1/ r ) 1 +

2 𝐫 ⋅ 𝐫 / 

r 
+

𝐫 / ⋅ 𝐫 / 

r 

− /

 (4.5)
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The algebraic expansion of powers is performed with Newton’s generalized binomial 

theorem [166] 

(1 + 𝑥) =
𝛼
𝑘

𝑥
=

                 (−1 < 𝑥 < 1) 

= 1 + 𝛼𝑥 +
𝛼(𝛼 − 1)

2!
𝑥 +

𝛼(𝛼 − 1)(𝛼 − 2)

3!
𝑥 + ⋯ 

(4.6)

where 

𝛼
𝑘

=
𝛼(𝛼 − 1)⋯ (𝛼 − 𝑘 + 1)

𝑘!
 (4.7)

Returning to Equation (4.5) 

𝐫 + 𝐫 / 
− =

1

r 
1 −

3

2

2 𝐫 ⋅ 𝐫 / 

r 
+

𝐫 / ⋅ 𝐫 / 

r 
+ ⋯  

 

r−
 ≅ r−

 1 − 3
𝐫 ⋅ 𝐫 / 

r 
 (4.8)

Only a subset of the first two terms of the binomial expansion are preserved in the 

Clohessy-Wiltshire equations as shown in Equation (4.8). This is where LOS navigation 

becomes impossible with linearized orbital dynamics and entire families of ambiguous 

relative trajectories are born. The approximation of r  discards a small portion of the 

Target’s radial distance in the inertial frame which is roughly equivalent to 

Δ r ≅ r 1 −
3

2

2 𝐫 ⋅ 𝐫 / 

r 
+

𝐫 / ⋅ 𝐫 / 

r 
+

15

8

2 𝐫 ⋅ 𝐫 / 

r 
+

𝐫 / ⋅ 𝐫 / 

r 

−
105

48

2 𝐫 ⋅ 𝐫 / 

r 
+

𝐫 / ⋅ 𝐫 / 

r 

−

− r 1 − 3
𝐫 ⋅ 𝐫 / 

r 

−
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≅ r 1 −
3

2
r−
 2 𝐫 ⋅ 𝐫 / + 𝐫 / ⋅ 𝐫 / 

+
15

8
r−
 2 𝐫 ⋅ 𝐫 / + 𝐫 / ⋅ 𝐫 / 

−
105

48
r−
 2 𝐫 ⋅ 𝐫 / + 𝐫 / ⋅ 𝐫 / 

−

− r 1 − 3 r−
 𝐫 ⋅ 𝐫 / 

−  

≅ r−
 −

3

2
r−
 2 𝐫 ⋅ 𝐫 / + 𝐫 / ⋅ 𝐫 / 

+
15

8
r−
 4 𝐫 ⋅ 𝐫 / + 4 𝐫 ⋅ 𝐫 / 𝐫 / ⋅ 𝐫 / + 𝐫 / ⋅ 𝐫 / 

−
105

48
r−
 8 𝐫 ⋅ 𝐫 / + 12 𝐫 ⋅ 𝐫 / 𝐫 / ⋅ 𝐫 / 

+ 6 𝐫 ⋅ 𝐫 / 𝐫 / ⋅ 𝐫 / + 𝐫 / ⋅ 𝐫 / 

−

− r−
 − 3 r−

 𝐫 ⋅ 𝐫 / 
−  

 

Δ r ≅ r−
 −

3

2
r−
 2 r 𝜌 𝐫̂ ⋅ 𝐫̂ / + 𝜌

+
15

8
r−
 4 r 𝜌 𝐫̂ ⋅ 𝐫̂ / + 4 r 𝜌 𝐫̂ ⋅ 𝐫̂ / + 𝜌

−
105

48
r−
 8 r 𝜌 𝐫̂ ⋅ 𝐫̂ / + 12 r 𝜌 𝐫̂ ⋅ 𝐫̂ / 

+ 6 r 𝜌 𝐫̂ ⋅ 𝐫̂ / + 𝜌
−

− r−
 − 3 r−

 𝜌 𝐫̂ ⋅ 𝐫̂ / 
−  

(4.9)

The magnitude of the Target radius error, Δ r , is explored with sample NMC orbits in 

LEO (Case 04 referenced in Chapter 6) and GEO (Case 03 referenced in Chapter 6). The 

trajectories and radius errors are shown in Figure 14. 

 
(a) Example LEO Target NMC trajectory at 

an altitude of ~𝟒𝟎𝟎 𝐤𝐦 

 
(b) LEO Target radius error, Δ r , from 

linearization process 
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(c) Example GEO Target NMC trajectory at 

an altitude of ~𝟑𝟓𝟖𝟎𝟎 𝐤𝐦 
(d) GEO Target radius error, Δ r , from 

linearization process 

Figure 14: NMC Trajectory Linearization Errors. The truncation of binomial 
expansion terms in the Clohessy-Wiltshire equations causes errors in the 
Target’s inertial radius. Example NMC trajectories at  LEO (a) and GEO (c) 
are propagated with nonlinear 2B dynamics and the radius error, 𝚫 𝐫 , is 
calculated for both as in (b) and (d), respectively. The error plots use a 
rainbow colored curve to visually synchronize time in the trajectory plots. 
The trajectory plots show the actual trajectory with the thicker line and 
orthogonal plane projections with the thinner lines for 3D perspective.    

The errors show strong correlation with the range. For an NMC trajectory, the largest 

range occurs when 𝐫̂ ⋅ 𝐫̂ / ≈ 0 which corresponds to 𝛼 ≈ ±  in Hill’s frame. These 

occurrences also happen to be near 𝛼̇ . If we substitute for 𝐫̂ ⋅ 𝐫̂ / = 0, the magnitude 

of the maximum radial error is approximately  

Δ r ≈ r−
 −

3

2
r−
 𝜌 +

15

8
r−
 𝜌 −

105

48
r−
 𝜌

−

− r  (4.10)

The maximum radial error is plotted as a function of range for the LEO and GEO cases 

in Figure 15. Notice that the Δ r  is nearly equivalent at 𝜌 ≈ 100 km for the LEO case 

and 𝜌 ≈ 250 km for the GEO case. At 𝜌 = 100 km in the GEO case, the Δ r  is a fraction 

of the LEO radial error. This is an indictment of the accuracy of the Clohessy-Wiltshire 
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at lower altitudes where the curvature of the orbit is greater than higher-altitude orbits. 

The inversion of r  has this effect in Equations (4.9) and (4.10)  

 
(a) Maximum radial error at 𝐫 = 𝟔𝟕𝟖𝟎 𝐤𝐦 

(LEO case) 

 
(b) Maximum radial error at 𝐫 = 𝟒𝟐𝟏𝟖𝟎 𝐤𝐦 

(GEO case) 

Figure 15: Maximum Radial Errors in Clohessy-Wiltshire Equations. The 
radial errors from a binomial expansion truncation in the Clohessy-Wiltshire 
equations are maximized when 𝐫̂ ⋅ 𝐫̂ / ≈ 𝟎 for NMC trajectories. An 
approximation of the maximum radial errors are plotted for LEO (a) and GEO 
(c) as a function of range.    

For an inspection orbit in LEO at 6780 km and a range of 10 km, Δ r ≈ 7.5 m. This 

seems small, but the radial error translates to ~150 arc sec which is reasonably observed 

with an arc-second-resolution camera. If the process of developing the Clohessy-Wiltshire 

equations ended here, there might be hope that they could still be used with LOS 

navigation, but the loss of accuracy is a cascading phenomenon as we substitute Equation 

(4.8) and help ourselves to more simplifications. 

In Equation (4.4), the inertial acceleration of the Target with respect to the Surveyor, 

𝐫̈ / , is recast as the Target acceleration in Hill’s frame [167] 

𝐫̈ / = 𝐫̈ /  (4.11)

𝐫̈ / = �̈� / + 𝐫̈ / + 2 𝝎 / × 𝐫̇ / + 𝝎 / × 𝝎 / × 𝐫 / + �̇� / × 𝐫 /  (4.12)
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In a circular Keplerian orbit, Hill’s frame is not linearly accelerating, so 𝐫̈ / = 𝟎. This 

assumption introduces errors into the Clohessy-Wiltshire dynamics for any amount of 

eccentricity and non-Keplerian motion. Additionally, the coordinates in Hill’s frame are 

selected such that 𝝎 / = 𝑛 �̂�  and 𝐫 / = r ̂  where 𝑛 is the mean motion of the 

Surveyor at the center of Hill’s frame, 𝑛 = 𝜇/r = 𝜇/r . Had we not assumed a 

constant angular rate in the orbital plane, we would have seen the effect of eccentricity 

creep into the dynamics. This assumption is akin to using a mean anomaly to describe 

the true anomaly. In a nearly circular orbit, the error is small, but as the differential 

eccentricity grows, so too does the error. We will resist the urge to quantify these errors 

here. 

Since �̇� = 0, the angular acceleration of Hill’s frame is �̇� / = 0. Equation (4.12) becomes 

𝐫̈ / = 𝐫̈ / + 2 𝝎 / × 𝐫̇ / + 𝝎 / × 𝝎 / × 𝐫 /  (4.13)

Substitute Equation (4.13) and Equation (4.8) into Equation (4.4) 

𝐫̈ + 𝐫̈ / + 2 𝝎 / × 𝐫̇ / + 𝝎 / × 𝝎 / × 𝐫 / 

= −
𝜇

r 
1 − 3

𝐫 ⋅ 𝐫 / 

𝑟 
𝐫 + 𝐫 / + 𝒇 

𝐫̈ + �̈� / + 2 𝝎 / × 𝐫̇ / + 𝝎 / × 𝝎 / × 𝐫 / 

= −
𝜇

r 
𝐫 + 𝐫 / − 3

𝐫 ⋅ 𝐫 / 

r 
𝐫 − 3

𝐫 ⋅ 𝐫 / 

r 
𝐫 / + 𝒇 

(4.14)

One final approximation is required for the derivation of the Clohessy-Wiltshire equations. 

The fourth term in the bracket of Equation (4.14) is ignored with the assumption that 

r / ≪ r . Assuming a circular orbit, we can substitute 𝑛 r = 𝜇 and, recalling the 

coordinate definitions of Hill’s frame, we can substitute 𝐫 = r 𝐫̂ . Also, notice that 𝐫̈ =

−
 

𝐫  and can be eliminated from both sides of Equation (4.14) 
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𝐫̈ / + 2 𝝎 / × 𝐫̇ / + 𝝎 / × 𝝎 / × 𝐫 / 

= −
𝑛 r

r
𝐫 / − 3

r 𝐫̂ ⋅ 𝐫 / 

r
r 𝐫̂ + 𝒇 

𝐫̈ / + 2 𝝎 / × 𝐫̇ / + 𝝎 / × 𝝎 / × 𝐫 / 

= −𝑛 𝐫 / − 3 𝐫̂ ⋅ 𝐫 / 𝐫̂ + 𝒇 

𝐫̈ / + 2 𝝎 / × 𝐫̇ / + 𝝎 / × 𝝎 / × 𝐫 / = −𝑛 𝐫 / − 3𝑥 / 𝐫̂ + 𝒇 (4.15)

Finally, the resulting vector is shown as a scalar linear system in which the in-plane 

motion is decoupled from the cross-track motion. The frame notation has been dropped 

since the solution is obviously in Hill’s frame 

𝑥̈
𝑦 ̈
𝑧 ̈

+
−2𝑛𝑦̇
2𝑛𝑥̇
0

+
−𝑛 𝑥
−𝑛 𝑦

0

=

⎣
⎢
⎡

−𝑛 𝑥 + 3𝑛 𝑥

−𝑛 𝑦

−𝑛 𝑧 ⎦
⎥
⎤ +

⎣
⎢
⎡
𝑓

𝑓

𝑓 ⎦
⎥
⎤ (4.16)

𝑥̈ − 2𝑛𝑦̇ − 3𝑛 𝑥 = 𝑓  

𝑦 ̈ + 2𝑛𝑥̇ = 𝑓  

𝑧 ̈+ 𝑛 𝑧 = 𝑓  

(4.17)

Equation (4.17) represents the nonhomogeneous form of the Clohessy-Wiltshire equations. 

If the Target satellite is unperturbed and uncontrolled, the forcing term goes to zero, and 

the homogenous equations of motion are  

𝑥̈ − 2𝑛𝑦̇ − 3𝑛 𝑥 = 0 
𝑦̈ + 2𝑛𝑥̇ = 0 
𝑧 ̈+ 𝑛 𝑧 = 0 

(4.18)

The linear differential equations can be written in state space form using the state vector 

𝑿 = [𝑥 𝑦 𝑧 𝑥̇ 𝑦 ̇ 𝑧]̇   

�̇�(𝑡) = 𝑨𝑿(𝑡) (4.19)

�̇�(𝑡) =

⎣

⎢
⎢
⎢
⎢
⎡

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3𝑛 0 0 0 2𝑛 0
0 0 0 −2𝑛 0 0
0 0 −𝑛 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

𝑿(𝑡) 

 

(4.20)
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The solution of �̇�(𝑡) = 𝐴𝑿(𝑡) with 𝑿(𝑡 ) = [𝑥 𝑦 𝑧 𝑥̇ 𝑦 ̇ 𝑧 ̇ ]  is given by 

𝑿(𝑡) = Φ(𝑡, 𝑡 )𝑿(𝑡 ) (4.21)

Φ(𝑡, 𝑡 ) =
𝜕𝑿(𝑡)

𝜕𝑿(𝑡 )
= exp 𝑨(𝜏)𝑑𝜏  (4.22)

For 𝑡 = 0, the state transition matrix, Φ, is 

Φ(𝑡, 0) =

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 4 − 3 cos(𝑛𝑡) 0 0

1

𝑛
sin(𝑛𝑡)

2

𝑛
[1 − cos(𝑛𝑡)] 0

6[sin(𝑛𝑡) − 𝑛𝑡] 1 0
2

𝑛
[cos(𝑛𝑡) − 1]

4

𝑛
sin(𝑛𝑡) − 3𝑡 0

0 0 cos(𝑛𝑡) 0 0
1

𝑛
sin(𝑛𝑡)

3𝑛 sin(𝑛𝑡) 0 0 cos(𝑛𝑡) 2 sin(𝑛𝑡) 0

6𝑛[cos(𝑛𝑡) − 1] 0 0 −2 sin(𝑛𝑡) −3 + 4 cos(𝑛𝑡) 0

0 0 −𝑛 sin(𝑛𝑡) 0 0 cos(𝑛𝑡) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.23)

In addition, the closed-form solution to Equation (4.21) is 

𝑥(𝑡) = 4𝑥 +
2𝑦̇

𝑛
− 3𝑥 +

2𝑦̇

𝑛
cos(𝑛𝑡) +

𝑥̇

𝑛
sin(𝑛𝑡) 

𝑦(𝑡) = −(6𝑛𝑥 + 3𝑦̇ )𝑡 + 𝑦 −
2𝑥̇

𝑛
+

2𝑥̇

𝑛
cos(𝑛𝑡) + 6𝑥 +

4𝑦̇

𝑛
sin(𝑛𝑡) 

𝑧(𝑡) = 𝑧 cos(𝑛𝑡) +
𝑧 ̇

𝑛
sin(𝑛𝑡) 

𝑥(̇𝑡) = 𝑥̇ cos(𝑛𝑡) + (3𝑛𝑥 + 2𝑦̇ ) sin(𝑛𝑡) 

𝑦(̇𝑡) = −6𝑛𝑥 − 3𝑦̇ + (6𝑛𝑥 + 4𝑦̇ ) cos(𝑛𝑡) − 2𝑥̇ sin(𝑛𝑡) 

𝑧(̇𝑡) = 𝑧 ̇ cos(𝑛𝑡) − 𝑛𝑧 sin(𝑛𝑡) 

(4.24)

The Clohessy-Wiltshire solution is a classic that has been widely employed because of its 

simplicity. The most significant two-body dynamics are effectively modelled for nearly 

circular orbits on short intervals, but for any applications demanding accuracy, the 

Clohessy-Wiltshire solution is not trustworthy for more than a quarter of a period [126]. 

Further insight into these equations and analogous equations for elliptic reference orbits 

(e.g. Lawden and Tschauner-Hempel) can be accessed in [168]. 
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4.1.1 𝟐 × 𝟏 Elliptical Motion 

It is well known that the Clohessy-Wiltshire equations generate perfect 2 × 1 ellipses in 

the 𝑟𝑠-plane under certain energy-matching initial conditions. The conditions are 

characteristic of the Surveyor and the Target having the same semi-major axis and 

differential eccentricity, 𝛿𝑒. Since the Clohessy-Wiltshire equations assume a perfectly 

circular orbit for a non-accelerating Hill’s frame, the Target must occupy a slightly 

eccentric orbit to manifest this motion. The idealized 2 × 1 ellipse is merely an artifice of 

linearized dynamics. The true nonlinear form diverges from the resemblance of an 2 × 1 

ellipse as the differential eccentricity grows. This effect is exploitable for LOS navigation 

and masked entirely by the Clohessy-Wiltshire equations.    

From the vantage point of the inertial frame with Keplerian dynamics, a small change in 

the Target’s eccentricity leads to a change in the Target’s radial vector and therefore the 

Target’s distance in the relative orbit. Consider when the differential orbital elements are 

identical with the exception of 𝛿𝑒 such that the effect of the Target’s eccentricity is 

dimensionally manifested as a variation in distance or 𝛿𝜌 

𝜕𝐫 /

𝜕𝑒
=

𝜕

𝜕𝑒
(𝐫 − 𝐫 ) 

𝛿𝜌 𝐫̂ / ≈ 𝛿𝑒
𝜕𝐫

𝜕𝑒
 (4.25)

As we allow the Target’s eccentricity to grow, the Target range scales approximately 

linearly. This relationship is not useful with the Clohessy-Wiltshire dynamics since the 

LOS profile from 2 × 1 elliptical motion is unchanged as 𝛿𝑒  is scaled, but the relationship 

between 𝛿𝑒  and 𝛿𝜌 can be exploited with nonlinear dynamics as we explore next. 
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 Range Maps from Nonlinear Two-Body Relative Motion 

In this section, we numerically demonstrate how range can be mapped from admissible 

𝜌| ̇ vs 𝛼| ̇ curves using the unabridged and unperturbed two-body motion. No maneuvers 

are required. The only requirements for the Surveyor are that it have knowledge of its 

own absolute navigation state and an arc-second-resolution camera for measuring angles 

to the Target. The IOD methodology in Chapter 5 leverages this insight for more 

complicated trajectories in the full geopotential. 

Start by generating a family of relative orbit hypotheses that span a parametrically 

constrained admissible region from which the true orbit is a candidate. Within the 

admissible region, all hypotheses exhibit similar, but not identical LOS profiles. The most 

basic trajectory for demonstrating this notion without our IOD method is the coplanar 

NMC trajectory centered in Hill’s frame. We impose the co-planar condition by forcing 

𝛿𝑖 = 0 and 𝛿Ω = 0. The family of trajectories are made concentric and centered in Hill’s 

frame (the Surveyor is at the origin) by imposing 𝛿𝑎 = 0, 𝛿Ω = 0, 𝛿𝜔 = 0 and 𝛿ν = 0. 

Eccentricity is the only element allowed to vary among hypotheses; all other classical 

orbital elements (COEs) are identical to those of the Surveyor. Table 2 indicates the 

COEs used for this case study, which happen to be from an old two-line elements (TLE) 

set for the ISS. 

AGI’s System Tool Kit (STK) is used to propagate the orbit hypotheses using two-body 

nonlinear dynamics. Figure 16 depicts 21 uniformly distributed hypotheses in the 

admissible region. At first glance, these appear to be the usual 2 × 1 ellipses in the 𝑟𝑠-

plane. Upon closer inspection, one begins to notice that the trajectory sags in the nadir 

direction as the relative motion approaches zero along-track velocity (radial speed is 

maximized) and converges toward the linearized Clohessy-Wiltshire solution at zero radial 
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velocity (along track speed is maximized). The radial sag increases as the differential 

eccentricity, 𝛿𝑒, increases. 

Table 2: Orbital Elements for Centered, Coplanar NMC Family at LEO 

COEs Target Surveyor 
𝑎 (km) 6777.329 6777.329 

𝑒 (nd) [0.002: 0.0009: 0.02] 0.001261 

𝑖 (deg) 51.98716 51.98716 

𝛺 (deg) 75.49392 75.49392 

𝜔 (deg) 102.6472 102.6472 

𝜈 (deg) 0 0 

The ranges of interest for LOS navigation span ~100 km which are well within the family 

of orbits depicted in Figure 16(a). Clearly, the radial sag is not easy to observe at these 

ranges as illustrated in Figure 16(b) which contrasts the hypothesis with the largest 𝛿𝑒 to 

the Clohessy-Wiltshire solution. For the sake of intuition, a much larger eccentricity offset 

is depicted in Figure 16(c) by changing the Target’s eccentricity to 𝑒 = 0.2. The only 

other difference in COEs for Figure 16(c) is the semi-major axis, which is arbitrarily 

increased to 10,000 km to accommodate a higher eccentricity without dipping into the 

atmosphere. 

 
(a) Set of admissible hypotheses for 

concentric, coplanar case 

 
(b) CW solution vs. two-body solution 

for single hypothesis with 𝜹𝒆 = 𝟎. 𝟎𝟏𝟖𝟕 and 𝒂 =

𝟔𝟕𝟕𝟕. 𝟑𝟐𝟗 𝐤𝐦 
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(c) CW solution vs. two-body solution 

for 𝜹𝒆 = 𝟎. 𝟏𝟗 and 𝒂 = 𝟏𝟎𝟎𝟎𝟎 𝐤𝐦 

Figure 16: Nonlinear natural motion circumnavigation. A family of 
concentric coplanar relative trajectories is propagated with nonlinear two-
body dynamics in (a). The trajectories appear to be 2x1 ellipses in the 𝒓𝒔-
plane just as the Clohessy-Wiltshire (CW) equations predict, but a 
comparison of the linear and nonlinear solution indicates subtle differences as 
in (b). As the eccentricity increases, the radial differences grow as in (c).   

The nonlinear effects in the datasets lead to unique LOS profiles for each of the 

hypotheses. In this coplanar scenario, there is no cross-track motion, so 𝛽 = 0 for all cases. 

The profile of 𝛼 holds the key. 

A baseline profile of 𝛼 is selected for 𝑒 = 0.002 since it is the lowest value of the Target’s 

set of eccentricities from Table 2 (closest to a circular orbit). Each of the 𝛼 profiles from 

the Target orbits of varying eccentricity is differenced with the baseline 𝛼 profile at 

identical times throughout one orbit.30 The δ𝛼 results are depicted in Figure 17(a). Notice 

that the variation is largest twice per orbit near 𝛼 = ±90°. This corresponds to the 

farthest points in the along-track direction where the sagging occurs. 

                                      
30 In this case, hypotheses with eccentricities less than the Surveyor’s eccentricity cannot be compared to 
the baseline since their angle profiles are 180° apart. If the Target’s argument of perigee was rotated 180°, 
then the hypotheses would have eccentricities less than the Surveyor’s eccentricity.  
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The angular rates shown in Figure 17(b) are quite similar for the full family of relative 

orbits since the curves appear to be overlapping. The absolute values of the angular rates 

are depicted, but the rates are actually negative. The rate will always be negative in Hill’s 

frame due to the way we have defined +𝛼 (corresponds with the left-hand rule about the 

𝑤-axis). This is independent of prograde or retrograde orbits; one gets the same convention 

in either case. 

Upon closer inspection of the upper peaks in the angle-rate curves (where 𝛼 ̇is minimized 

due to the negative sign), it is apparent that 𝛼 ̇ is roughly equivalent for the family of 

trajectories, but the 𝛼 location of the minimum angular rate differs in the vicinity of ±90 

deg. Figure 17(c) shows this behavior clearly in a zoomed view at 90 deg. The variation 

in 𝛼 is more than a degree for this small family of NMC orbits. When the location of the 

minimum angular rate is plotted atop the full trajectory in the 𝑟𝑠-plane, a pattern emerges 

in Figure 17(d). As the eccentricity increases, the location of the minimum angular rate 

shifts in the negative radial direction. In other words, the sagging behavior correlates with 

the 𝛼 location of 𝛼̇ . The location of 𝛼̇  is virtually indistinguishable for all trajectories 

which is clear evidence that range observability varies throughout the orbit. 

 
(a) 𝜹𝜶 from baseline 𝜶 profile 

 
(b) 𝜶 rate of change 
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(c) Zoomed ziew of 𝜶 rate of change  

 
(d) Location of �̇� extrema. 

Dots along horizontal are minima.  
Squares along vertical are maxima. 

Figure 17: Comparison of 𝜶 and �̇� profiles. A baseline concentric coplanar 
NMC profile from 𝒆 = 𝟎. 𝟎𝟏𝟏 was compared to a family of NMC profiles to 
reveal where the largest differences occur in the orbit as in (a). The angular 
rates from each of the LOS profiles were also compared in (b) and (c). The 
minimum angular rates occur at slightly different locations in the relative 
orbit. These locations are depicted with dots in (d). The rainbow colors 
identify the eccentricity from lowest to highest: blue for 𝒆 = 𝟎. 𝟎𝟎𝟐 and red for 
𝒆 = 𝟎. 𝟎𝟐.  

Figure 18 shows a nearly linear relationship between the 𝛼 location of the minimum 

angular rate (𝛼| ̇ ) and the range at those locations (𝜌| ̇ ). A nearly linear relationship 

between range and eccentricity is also evident here, just as we predicted. Since the 

minimum angular rate for NMC trajectories is always at ±90 + Δ𝛼 deg, our notation 

simply uses Δ𝛼 in seconds of arc. A line is fit through Δ𝛼| ̇  vs 𝜌| ̇  points to give 

range as a function of Δ𝛼. We can also take advantage of the delineations of 𝛼 at different 

𝛼 ̇values near 𝛼̇  as shown in Figure 17(c). These fundamental observations are claimed 

as a major contribution since it enables a mapping from 𝛼| ̇ → 𝜌 within an admissible 

region and breaks the ambiguity problem. The technique for parameterizing the 

admissible region for more complicated trajectories is developed fully in Chapter 5. 
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Figure 18: Relationship between �̇�  and range. The points of minimum 
angular rate, �̇� , along an NMC trajectory are near ±𝟗𝟎 deg or more 
precisely ±𝟗𝟎 + 𝚫𝜶 deg. The value of 𝚫𝜶 is almost linearly related to the 
range. The colored dots represent 𝚫𝜶 for each of the hypotheses using the 
same color scheme as above. The two dashed lines are the curve fits used for 
mapping true observations at �̇�  for this particular case.  

4.2.1 Range Resolution Metric 

Range resolution describes how well range may be resolved at a particular orbital altitude 

or at different parts of an orbit when constrained by an angular resolution (system level). 

We introduce a range resolution metric to quantify the precision (not the accuracy) of 

our mapping techniques. Two orbit hypotheses within a particular admissible region are 

sufficient to calculate the range resolution metric. Use the relative position coordinates at 

the occurrence of a reference 𝛼 ̇to calculate the range for each of the orbits 

𝜌| ̇ = 𝑥 | ̇ + 𝑦 | ̇ + 𝑧 | ̇ (4.26)

The metric is simply the absolute value of the slope of 𝜌| ̇ vs 𝛼| ̇ for the two hypotheses. 

m| ̇ =
𝜌 − 𝜌

𝛼 − 𝛼
̇

 (4.27)
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Since the 𝜌| ̇ vs 𝛼| ̇  curve is approximately linear for a particular orbit altitude as in 

Figure 18, any random pair of hypotheses will suffice for determining the range resolution 

metric. The metric can be used on a global level to compare different orbit altitudes or 

on a local level to assess range resolvability at different parts of the orbit such as at 𝛼̇  

and 𝛼̇ . Note that the resolvability also says something about observability, which will 

be explored analytically and numerically in Section 4.3.4. As the denominator approaches 

zero, the resolvability metric approaches infinity, which physically means the range 

uncertainty is infinite. 

Since the metric is a slope with standard units of km/arc secs, the actual range resolution 

is given by  

𝛿𝜌| ̇ = m| ̇𝛿𝜃 (4.28)

where 𝛿𝜃 is the system-level angle resolution. System-level is designated to account for 

the many sources of uncertainty from data collection to data reduction to admissible 

region construction. We think of angle resolution as the ability to observe a particular 

angle in time. For instance, even a perfect sensor and perfect process is limited by the 

sample rate. Sampling at 10 Hz at a 400 km altitude orbit results in an angle resolution 

of 𝛿𝜃 ≈ 11.7 arc secs near 𝛼̇ . This would introduce system-level uncertainty since the 

discrete measurements could bypass 𝛼̇ .31  

 Analytical Proof of Range Observability 

An analytical proof is developed next to provide a basic check of the numerical evidence 

for range maps (𝛼| ̇ → 𝜌) introduced in Section 4.2. Numerical techniques are far superior 

                                      
31 We address this particular problem by fitting the 𝛼-profile with a sequence of cubic polynomials to 
reduce noise and sampling gaps (if the sensor has zero-mean random noise, then the uncertainty is 
substantially reduced with this process). 
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in terms of accuracy, but are understandably subject to skepticism without a simpler 

means to verify the results with first principles. The analytical solution presented here is 

limited to coplanar motion and uses assumptions and simplifications that make it less 

accurate than the pristine numerical methods, but the results are indisputable about range 

maps from nonlinear admissible hypotheses. 

4.3.1 Assumptions and Geometry 

The assumptions for the analytical solution are: 

1. Two-body dynamics 

2. Low eccentricity orbits 

3. Admissible orbit constraints for simple coplanar, energy matching case (𝛿𝑎 = 𝛿𝑖 =

𝛿Ω = 𝛿𝜔 = 0)  

4. Low differential true anomaly to ensure circumnavigation 

Given these assumptions, we can realistically state Δν and 𝑦  are maximized at 𝛼̇ . 

The geometry of the problem is depicted in Figure 19 with exaggerated scales and highly 

eccentric orbits since it amplifies the angle Δ𝛼| ̇  and the radial distance 𝑥 . 
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Figure 19: Analytical solution geometry. Both satellites’ absolute orbits (blue 
and green curves) are shown with the same argument of perigee and different 
eccentricities in a coplanar case. The Target’s relative motion in the LVLH 
frame is depicted with the rainbow curve.  

The differential true anomaly is given by 

Δ𝜈 = 𝜈 − 𝜈  (4.29)

where 𝜈  is the Target’s true anomaly and 𝜈  is the Surveyor’s true anomaly. 

The Target’s relative position in the radial ( 𝑥 ) and along-track ( 𝑦 ) directions are 

represented as a function of Δ𝜈 and the radial distance from the center of the Earth, r  

and r , for the Target and Surveyor, respectively.  

𝑥 = r cosΔ𝜈 − r  (4.30)

𝑦 = r sin Δ𝜈 (4.31)

Finally, the angle offset, Δ𝛼, from the the 𝒔-̂axis is 
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Δ𝛼| ̇ = tan− 𝑦 
𝑥 

 (4.32)

4.3.2 Expansion of the Radius and True Anomaly 

The first step is to describe the satellites’ radial distances as a function of time in the 

Earth centered inertial frame. This is done by expanding the radius in terms of the mean 

anomaly to second order in eccentricity. Start with the expression for the radius as a 

function of the eccentric anomaly, 𝐸 

r = 𝑎(1 − 𝑒 cos𝐸) (4.33)

Substitute the first approximation for Kepler’s equation 

r ≈ 𝑎(1 − 𝑒 cos(𝑀 + 𝑒 sin 𝑀)) (4.34)

The trigonometric sum identity given by Equation (4.35) can be substituted into Equation 

(4.34) 

cos(𝑀 + 𝑒 sin 𝑀) = cos 𝑀 cos(𝑒 sin 𝑀) − sin 𝑀 sin(𝑒 sin 𝑀) (4.35)

r ≈ 𝑎(1 − 𝑒[cos𝑀 cos(𝑒 sin 𝑀) − sin 𝑀 sin(𝑒 sin 𝑀)]) (4.36)

Using small angle approximations where cos 𝜃 ≈ 1 − 𝜃 /2 and sin 𝜃 ≈ 𝜃, the radius is 

expanded to 𝒪(𝑒 ) 

r ≈ 𝑎 1 − 𝑒 cos 𝑀 1 −
1

2
𝑒 sin 𝑀 + 𝑒 sin 𝑀 (𝑒 sin 𝑀)  

r ≈ 𝑎 1 − 𝑒 cos 𝑀 +
1

2
𝑒 cos𝑀 sin 𝑀 + 𝑒 sin 𝑀  

r ≈ 𝑎 1 − 𝑒 cos𝑀 +
1

2
𝑒 −

1

2
𝑒 cos 2𝑀 + 𝒪(𝑒 )  

r ≈ 𝑎 1 − 𝑒 cos(𝑀 + 𝑛𝑡) +
1

2
𝑒 −

1

2
𝑒 cos(2𝑀 + 2𝑛𝑡)  (4.37)
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From series expansions in elliptic motion we can also get a direct conversion between 

mean and true anomalies. Rather than deriving it here, we refer to [169] 

ν ≈ 𝑀 + 2𝑒 −
1

4
𝑒 +

5

96
𝑒 sin 𝑀 +

5

4
𝑒 −

11

24
𝑒 sin 2𝑀

+
13

12
𝑒 −

43

64
𝑒 sin 3𝑀 +

103

96
𝑒 sin 4𝑀 +

1097

960
𝑒 sin 5𝑀 + 𝒪(𝑒 ) 

(4.38)

Simplifying to 𝒪(𝑒 ) to match the accuracy of the radial expansion 

𝜈 ≈ 𝑀 + 2𝑒 sin 𝑀 +
5

4
𝑒 sin 2𝑀 + 𝒪(𝑒 ) (4.39)

where 𝑀 = 𝑀 + 𝑛𝑡 and 𝑛 = 𝜇/𝑎  

The differential true anomaly can now be written as a function of time. Substitute 

Equation (4.39) into Equation (4.29) 

Δ𝜈(𝑡) ≈ 𝑀 (0) − 𝑀 (0) + 2𝑒 sin(𝑀 (0) + 𝑛𝑡) − 2𝑒 sin(𝑀 (0) + 𝑛𝑡) 

           +
5

4
𝑒 sin(2𝑀 (0) + 2𝑛𝑡) −

5

4
𝑒 sin(2𝑀 (0) + 2𝑛𝑡) 

(4.40)

4.3.3 Time and Radius at Minimum Alpha Rate 

We want to maximize Δ𝜈 for finding Δ𝛼| ̇ , so take the partial derivative of Δ𝜈 to find 

the critical points at 𝜕Δ𝜈/𝜕𝑡 = 0 

𝜕Δ𝜈

𝜕𝑡
≈

5

2
𝑛𝑒 cos(2𝑀 (0) + 2𝑛𝑡) +  2𝑛𝑒 cos(𝑀 (0) + 𝑛𝑡) 

                        −
5

2
𝑛𝑒 cos(2𝑀 (0) + 2𝑛𝑡) − 2𝑛𝑒 cos(𝑀 (0) + 𝑛𝑡) = 0 

(4.41)

A closed form solution is not possible unless 𝑀 (0) = 𝑀 (0) = 𝑀 , in which case 

𝑡| ̇ ≈ −
1

𝑛
𝑀 − acos

50𝑒 + 100𝑒 𝑒 + 50𝑒 + 4 −  2

10(𝑒 + 𝑒 )
 (4.42)

Our assumptions only restricted 𝛿𝑀(0) to be small to create the conditions for 

circumnavigation, so if 𝛿𝑀(0) ≠ 0, Equation (4.41) can be solved numerically.  
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Given 𝑀 (0), 𝑀 (0), 𝑛, 𝑒  and 𝑒 , calculate 𝑡| ̇ . Plug in these quantities into Equation 

(4.37) to get the satellite radii at 𝛼̇   

r | ̇ ≈ 𝑎 1 − 𝑒 cos 𝑀 (0) + 𝑛𝑡 ̇ +
1

2
𝑒 −

1

2
𝑒 cos 2𝑀 (0) + 2𝑛𝑡 ̇  (4.43)

r | ̇ ≈ 𝑎 1 − 𝑒 cos 𝑀 (0) + 𝑛𝑡 ̇ +
1

2
𝑒 −

1

2
𝑒 cos 2𝑀 (0) + 2𝑛𝑡 ̇  (4.44)

The final step is to use the trigonometric relations from Section 4.3.1 to calculate the 

relative position coordinates and then Δ𝛼| ̇ . Multiple orbit hypotheses can be 

generated with the analytical method by repeating the process with different Target 

eccentricities. 

4.3.4 Analytical Solution Case Studies  

Let us revisit the NMC orbit scenario from Section 4.2, but this time we specify the 

Target’s true orbit and reduce the number of hypotheses from 21 to 10 for less dense plots 

(see Table 3). The hypotheses are uniformly distributed at 10 km intervals along the 

radial axis as in Figure 20. 

Table 3: Case 01A: Orbital Elements for Centered, Coplanar NMC at LEO 

COEs Target Truth Target Hypotheses Surveyor Truth 
𝑎 (km) 6777.329 6777.329 6777.329 

𝑒 (nd) 0.005000 * 0.001261 

𝑖 (deg) 51.98716 51.98716 51.98716 

𝛺 (deg) 75.49392 75.49392 75.49392 

𝜔 (deg) 102.6472 102.6472 102.6472 

𝜈 (deg) 0 0 0 

* Approx.: 0.0160, 0.0145, 0.0131, 0.0116, 0.0101, 0.0086, 0.0072, 0.0057, 0.0042, 0.0027 

The Surveyor and Target orbits are numerically propagated with two-body dynamics 

along with the ten hypotheses to find the “true” Δ𝛼| ̇ . The analytical calculation of  
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Δ𝛼| ̇ is performed in parallel and plotted for comparison with the numerical results in 

Figure 21. 

 

Figure 20: Numerically Propagated Truth and Hypotheses. The location of 
the minimum and maximum angle-rates are indicated along the 𝒔- and 𝒓-axis, 
respectively. The angle offset at �̇�  is visibly apparent, but not for �̇� .  

 

Figure 21: Comparison of Analytical and Numerical Calculations of 𝚫𝜶| ̇ . 
The dashed vertical lines represent the analytical values of 𝚫𝜶| ̇  (�̇�  is 
not calculated analytically) and the dots represent the numerical values. The 



 100 

colors are coordinated and the legend shows the associated range at the 
location of �̇� .  

The analytical solution has a positive bias (~0.1 deg), but the overall 𝛼 spread agrees very 

well with the numerical solution. The cause of the analytical bias is due to our assumptions 

about the location of 𝛼̇  at Δ𝜈  and truncations in the radial and true anomaly 

expansions. 

The range resolution metric at 𝛼̇  is also compared by using the smallest and largest 

range hypotheses (20 km and 200 km). The analytical metric is 

m | ̇ =
𝜌 − 𝜌

Δ𝛼 − Δ𝛼
=

200.03 − 20.00

3488.2 − 407.4
= 0.0584

km

arc secs
 

The numerical metric is nearly identical 

m | ̇ =
𝜌 − 𝜌

Δ𝛼 − Δ𝛼
=

200.00 − 20.00

3229.2 − 85.62
= 0.0574

km

arc secs
 

If range resolvability for a particular orbit is optimized at 𝛼̇ , then the resolution metric 

should be smallest in that vicinity of the orbit. Likewise, if range resolvability is poorest 

at 𝛼̇ , then the resolution metric should be largest in that vicinity of the orbit. If range 

is unobservable, then the resolvability approaches infinity with zero variation in the LOS 

profile 

m =
𝜌 − 𝜌

Δ𝛼 − Δ𝛼
=

Δ𝜌

0 − 0
= ∞ (4.45)

Let us apply this thinking to the numerical data at 𝛼̇ . The numerical metric is 

m | ̇ =
𝜌 − 𝜌

Δ𝛼 − Δ𝛼
=

100.00 − 10.00

7.25 − 7.28
= 3000

km

arc secs
 

Dimensionally, the metric is saying that in order to observe just 1 arc sec in variation 

within this particular admissible region, a minimum separation of 3000 km is required. 

Essentially, this is wholly unobservable. Range is completely unobservable when m = ∞, 
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but practical observability conditions could be established in the realm of m ≪ 1. 

Therefore, by applying the metric to different parts of the orbit, we can assess the quality 

of range observability and level of resolvability using our range mapping method. The 

numerical range maps for 𝛼̇  and 𝛼̇  for the scenario above are shown in Figure 22. 

The metric is just the absolute value of the slope of 𝜌| ̇ vs 𝛼| ̇ on these maps. 

 
(a) Admissible region range maps at �̇�  

(LEO case) 

 
(b) Admissible region range maps at �̇�  

near 𝜶 = 𝟎 (LEO case) 

Figure 22: Range maps. The range resolution metric is the slope of the curves 
fit to 𝝆| ̇  vs 𝚫𝜶| ̇  within a particular admissible region. A smaller slope 
indicates better range observability and resolvability. The analytical maps are 
represented in (a) with red and magenta curves under diamonds. The 
numerical maps are represented in (a) and (b) with green and blue curves 
under dots.    

The observed Δ𝛼| ̇  from the truth orbit is -642.2 and 645.9 arc sec off the negative 

and positive 𝑠-axes, respectively. On the positive side, the analytical range map 

approximates that the Target has a range of 33.93 km while the numerical range map 

predicts 50.79 km (truth is 50.69 km). On the negative side, the analytical range map 

approximates 33.72 km and the numerical range map approximates 50.99 km (truth is 

50.69 km). The bias in the analytical maps make the analytical solution unreliable under 

current assumptions, but the agreement in the range resolution metric suggests utility for 

comparing range observability/resolvability at different altitudes. 
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 Effect of Earth’s Oblateness 

Until now, we have focused on the importance of nonlinearities for observing range, but 

the literature has shown that the Earth’s oblateness (the 𝐽  term in the geopotential) also 

contributes to range observability. It is well known that the Earth’s oblateness causes a 

secular drift in the mean anomaly, argument of perigee, and node. The drift rates are 

approximated by substituting the 𝐽  disturbing function into Lagrange’s planetary 

equations [163] 

�̇� = −
3
√

𝜇𝐽 𝑅⨁

2𝑎 ⁄ (1 − 𝑒 ) ⁄

3

2
sin (𝑖) − 1  (4.46)

�̇� = −
3
√

𝜇𝐽 𝑅⨁

2𝑎 ⁄ (1 − 𝑒 )

5

2
sin (𝑖) − 2  (4.47)

𝛺̇ = −
3
√

𝜇𝐽 𝑅⨁

2𝑎 ⁄ (1 − 𝑒 )
cos 𝑖 (4.48)

where �̇�  is the anomalistic frequency correction, �̇� is the apsidal frequency and 𝛺̇ is the 

nodal frequency. 

The mean anomaly, argument of perigee and right ascension of the ascending node 

(RAAN) grow with time as 

𝑀 = 𝑀 + 𝑛 + �̇� 𝑡 (4.49)

𝜔 = 𝜔 + �̇�𝑡 (4.50)

Ω = Ω + 𝛺̇𝑡 (4.51)

Notice that the secular rates are a function of the non-secular elements: semi-major axis, 

eccentricity and inclination. If the Target and Surveyor have slightly different semi-major 

axes, eccentricities, and inclinations, the Lagrangian frequencies will vary between the 

two satellites and the effect should be observed in the LOS vector over multiple orbits.  
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Presently, it is unclear if the secular rates in the orbital plane (�̇�  and �̇�) can be 

distinguished from one another (especially for nearly circular orbits) since both are 

predominantly concealed in 𝛼 and both have a similar effect in the along-track direction. 

Consider the case where the Target and Surveyor have the same semi-major axis and 

inclination but slightly different eccentricities as expected for NMC trajectories. Equations 

(4.46) - (4.48) show that the Target and Surveyor will experience different levels of drift 

from the 𝐽  disturbance. The satellite with the larger eccentricity will experience larger 

secular rates and the differential elements 𝛿𝜔 and 𝛿𝜈 grow in the orbital plane. Both 𝛿𝜔 

and 𝛿𝜈 shift the NMC orbit in the along-track direction. Since �̇� and �̇�  are so small, 

discriminating between their elemental effects over one orbit is an enormous challenge. 

The combined differential argument of latitude, 𝛿𝑢 = 𝛿𝜔 + 𝛿𝜈, would be more easily 

observed over time. Unfortunately, range ambiguity is embedded in 𝛿𝑢 if one cannot 

discriminate its components. Therefore, while 𝐽  does theoretically help alter the two 

orbits over time just as micro-maneuvers do, it requires a dynamics model that can predict 

these effects and it requires care that the anomalistic and apsidal frequencies can be 

properly discriminated. The nonlinear effects are more promising. 
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5 Methodology 

 

Chapter 5 

Methodology 

 

Five major processes are involved in our LOS navigation research and each are described 

fully in this chapter. The first process encompasses orbit propagation of the Target and 

Surveyor’s truth state vectors followed by data reduction to angle observations. Angle 

observations from certain parts of the orbit are recorded in the second process to establish 

a set of nondimensional parameters that constrain the Target’s possible orbits to a so-

called admissible region. A family of uniformly sampled orbit hypotheses within the 

admissible region are created from the nondimensional parameters. The hypotheses are 

propagated as a cluster and the inertial data for each hypothesis is reduced to angle and 

angle-rate data in the third major process. Virtual angle and eclipse observations from 

the hypotheses are analyzed and compared with the actual observations from the first 

process to map range during certain parts of the orbit. The range maps in the fourth 

major process enables an initial orbit determination (IOD). The IOD solution is converted 

into a KAM torus and passed into a nonlinear least squares filter to refine the Target’s 

orbit estimate in the fifth and final process. A block diagram showing the processes and 

the data flow are presented in Figure 23 
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Figure 23: Process Block Diagram & Data Flow. Seven major processes 
characterize our novel approach. Blocks 2-5 are novel contributions.  

 

 Trajectory Simulation 

The code for this effort is a combination of MATLAB and C++. The experimental 

algorithms, named Proteus,32 are written in MATLAB and orbital data is generated from 

a custom build of NASA’s open source General Mission Analysis Tool (GMAT) 2011a 

written in C++. Orbits are propagated with an eighth order Runge-Kutta integrator and 

seventh order error control (Dormand-Prince coefficients) in GMAT. Version 2011a is the 

last release of GMAT with a MATLAB server for executing GMAT scripts from within 

the MATLAB environment. The server enables a fully automated and seamless solution 

across the five major processes. MATLAB R2010a (32-bit version) is used for 

compatibility with the GMAT interface. The choice of GMAT as the orbit propagator is 

strategic. Not only is GMAT faster than numerical integrations in MATLAB since the 

code is compiled ahead of time, but also has undergone significant verification and 

validation work by NASA and its partners. A comparable in-house tool would be suspect 

without considerable effort. 

                                      
32 Proteus was an elusive Greek god of the sea who had the gift of prophecy and shape shifting to avoid 
capture. The name is fitting since LOS navigation has eluded so many. Equally fitting, the name’s origin 
comes from protos which literally means “the first.” Proteus is believed to be the first solution to LOS 
navigation in NMC trajectories without prior data or thrusting. 
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The only source of perturbations used for the propagations in this work is NASA’s Earth 

Gravity Model 1996 (EGM96) [170] which is generally set to 20 × 20 (degree and order) 

when the “full geopotential” is simulated. The GMAT source code is modified by the 

author to neglect the default long-term effects of precession, nutation and polar motion 

during orbit propagations. Without these effects, a simple z-axis rotation converts between 

the Earth-center Earth-fixed (ECEF) and Earth-centered inertial (ECI) frames. This 

modification is required for constructing KAM tori to model the Earth’s full geopotential 

in the NLS filter. Precession, nutation and polar motion have a negligible effect for single-

period propagations, but over a long 1-year propagation—required for building KAM 

tori—these small perturbations slowly alter the orbit. The torus is only meant to model 

the deterministic geopotential forces in the ECEF frame. It is possible to add precession, 

nutation and polar motion (and even other perturbations) to the torus after construction, 

but it will not be significant over the orbital period timescale of interest and is ignored 

entirely. 

The function gmatOrbitProp (Appendix E.3) automatically generates GMAT scripts 

from our input file and calls the GMAT server to execute the script. GMAT exports the 

simulation data to a .txt file from which gmatOrbitProp loads the data into MATLAB.  

5.1.1 LOS Data Reduction 

Once the trajectories are propagated and loaded into MATLAB, the function losProc 

(Appendix E.4) converts the absolute navigation data to Hill’s frame and generates LOS 

products (angles, angle-rates, etc.) using the same methodologies described in Chapter 3. 

Angle biases and standard deviations are added in losProc as specified in the input file. 

The noisy angle profile from one orbital period is broken into 1000 arcs that are small 
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enough to fit cubic polynomials with high confidence. The resulting polyfit segments are 

pieced together as a crude filtration process in an attempt to limit the angle uncertainty 

to a bias, which is typically very small. Most cameras can calibrate for a bias which results 

in zero mean noise. Figure 24 shows the residuals of the initial noisy 𝛼 data (𝜎 = 10 arc 

sec) and the residuals of filtered 𝛼 data from Case 03C described in Chapter 6. Near 𝛼 ̇

extrema or waypoints, the polynomial fit spans larger data segments to avoid endpoint 

spikes that could interfere with the numerical 𝛼 ̇calculations. 

 
(a) Angle Errors from Unfiltered Angles 

 
(b) Angle Errors from Filtered Angles 

 
(b) Angle-rate Errors from Filtered Angles 

Figure 24: Filtered Angle & Angle-Rate Errors. The measured noisy data (a) 
is filtered with cubic polynomials in small segments to reduce the angle errors 
(b) and the angle-rate errors (c).    

   

Wider Fit Segments 
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 NMC Admissible Region Constraints 

A set of dimensionless parameters defines the shape and orientation constraints from 

which a family of admissible orbit hypotheses exist. The family is characterized by similar, 

but not identical LOS profiles. These parameters are (𝑑, 𝛼 ,Δ𝛼 ,𝝆̂ , 𝝆̂ ) where 𝑑 is the 

skewness factor of the projected trajectory in the 𝑟𝑠-plane, 𝛼  is the angle at epoch in the 

r𝑠-plane, Δ𝛼  is the angle disparity in the 𝑟𝑠-plane after one Kozai period (Surveyor’s 

orbit), 𝝆̂  is a unit LOS vector pointing to the upper relative apsis and 𝝆̂  is a unit LOS 

vector pointing to the 𝑠𝑤-plane crossing in either the positive or negative 𝑠-direction. 

Each of the parameters are indicated in Figure 25. Although the figure depicts Δ𝛼  near 

the lower relative apsis, a disparity may be measured anywhere in the orbit as long as the 

epoch is consistently associated with 𝛼 . The disparity will not be the same at different 

locations, hence the need for consistency during the hypothesis generation process. 

 

Figure 25: Admissible Region Parameterization.  The shape and orientation 
of an NMC trajectory is constrained by the set of parameters 
(𝒅,𝜶 , 𝚫𝜶 ,𝝆̂ , 𝝆̂ ).  
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𝝆̂  and 𝝆̂  are used to determine inclination and right ascension of the ascending node. 

Although other combinations of LOS vectors will suffice, it is preferable to have a quarter 

period separating them as will become apparent when determining the orbital angular 

momentum unit vector. 𝝆̂  is easy to find, but 𝝆̂  is identified after it has been measured 

by splitting the time interval between 𝛼 = 𝜋/2 and 𝛼 = −𝜋/2. This is the location of the 

upper relative apsis. The lower relative apsis could also be used, but it is preferable to 

look out into space rather than at the Earth while taking measurements. This point was 

originally chosen while studying low differentials in argument of perigee. In those cases, 

the inertial position and velocity vector of the satellites are nearly perpendicular at the 

relative apsis, which improves eccentricity approximations. We do not constrain the 

differentials in the argument of perigee, but the practice of selecting this point has 

persisted. 

The admissible region established by these parameters allows for one degree of freedom 

in the solution space for generating scaled hypotheses, but it is presently limited to NMC 

trajectories. In other words, the Target’s projected trajectory in the 𝑟𝑠-plane must include 

𝛼 = 𝜋/2 and 𝛼 = −𝜋/2 within one orbital period to ensure circumnavigation. Other RPO 

trajectories (co-elliptical, co-circular, r-bar station keeping, etc.) cannot meet this 

criterion. 

Context of an Admissible Region 

The concept of an admissible region in astrodynamics comes from efforts to detect and 

track near-Earth objects (NEOs). On a single night, a typical asteroid-hunting telescope 

will collect a small number of digital images in the same region of the celestial sphere. 

NEOs are detected by the line they produce after the images are digitally blinked. The 
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processed astrometric observations consist of angle and angle-rate data, but if the angular 

arc is too short—known as a very short arc (VSA)—an orbit cannot be generated. These 

have also been called an ONS for “One Night Stand” because after the detections33 are 

reported to the Minor Planet Center (MPC), some of them are never found again. This 

leads to issues over discovery rights if the object cannot be followed-up. 

Milani et al. [171] devised a way to use the limited amount of data from a VSA to constrain 

the possible values of 𝑟 and 𝑟 ̇(effectively the range and range rate) in what is called an 

admissible region. The admissible region represents the sampling space for a set of “virtual 

asteroids” or hypotheses to predict ephemerides for a short time into the future with the 

goal of collecting additional observations to perform orbit determination in the usual 

sense. Several spin-offs from Milani et al. have been used in recent years for space 

situational awareness (SSA) of Earth-orbiting satellites (see e.g., [172]).34 

The exact machinery of Milani et al. is not employed here because it is structurally 

different (absolute orbits vice relative orbits), but the concept is translated loosely for 

constraining the relative orbit hypotheses. 

5.2.1 Skewness Factor 

The skewness factor characterizes the along-track shift or offset from the origin of Hill’s 

frame due to differentials in the orbital elements. Several combinations of differential 

elements can induce an along-track shift, so the skewness factor captures the bulk effect 

manifested in disproportionate angles swept out in equal time on opposite sides of the 𝑠-

axis.  

                                      
33 Not discoveries. There is a difference. 
34 The author was the Program Manager at the Air Force Research Laboratory for an effort that 
exploited these techniques in SSA. 
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Consider the perfectly coplanar trajectory with a small differential in eccentricity and zero 

along-track shift as depicted in Figure 26. If observations are made at a constant sample 

rate, the angles swept out between observations will not be equal throughout the orbit. 

In the linear equations of motion, the relative velocity is maximized at 𝑠 = 0 and 

minimized at r = 0 such that v = 2 v ; therefore, the angle swept out along the 𝑟-axis 

is larger than the angle swept out along the 𝑠-axis. A symmetry is apparent across the r-

axis and 𝑠-axis. In this case, we would say the trajectory has zero skewness in the 𝛼-

profile.   

 

Figure 26: Coplanar NMC Centered in Hill’s Frame.  LOS vectors are 
depicted at a constant sample rate to show the symmetry of angles across the 
𝒓-axis in this coplanar NMC having 𝜹𝒆 ≠ 𝟎 and zero along-track offset. Equal 
areas are swept out in equal time, but equal angles are not swept out in equal 
time: 𝚫𝜶 > 𝚫𝜶 . The geometry is exact to show that 𝐯 = 𝟐𝐯  in this case.  

If we introduce an 𝑠-axis offset in the relative trajectory (easily done with a differential 

true anomaly), the accumulation of LOS vectors to the Target is skewed even as the size 

and period of the relative trajectory remain the same (Figure 27). The linearized relative 

velocity at r = 0 on both sides of the s-axis are still equal so the Target physically traverses 

Altitude

Along-track
Slowest 
Relative
Velocity

v 

Hill’s Frame

Depicts LOS vectors at
constant sample rate, 

Surveyor

v 
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equal distance in equal time, but due to the 𝑠-axis offset, the angles swept out along the 

𝑠-axis in the positive and negative direction are not equal. There is no longer a symmetry 

in angles across the 𝑟-axis. In this case, we would say the trajectory has skewness in the 

𝛼-profile. 

 

Figure 27: Coplanar NMC with Along-track Shift.  LOS vectors are depicted 
at a constant sample rate to show how the LOS profile is skewed by an along-
track shift. The angles are not symmetric across the 𝒓-axis and, instead, are 
concentrated in the direction of maximum range. Neither the angles nor the 
areas are swept out in equal time.  

One way to mathematically define the skewness is by just taking the ratio of angles swept 

out in equal time on both sides of the 𝑠-axis 

𝑑 =
|𝛼(𝑡 ) − 𝛼(𝑡 )|+
|𝛼(𝑡 ) − 𝛼(𝑡 )|−

=
Δ𝛼+

Δ𝛼−

 (5.1)

where 𝑡 − 𝑡 = 𝑡 − 𝑡 = 𝜀. 

The preferred alternative is to define the skewness factor, 𝑑, in a way that is bounded on 

the interval (0, 2) and gives greater intuition when dealing with small differentials in the 

orbital elements. Under conditions of small differentials, the relative orbit’s projection in 
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the r𝑠-plane is analogous to the 2 × 1 ellipse generated by the Clohessy-Wiltshire 

equations (see e.g., Figure 16). The approximate geometry of the projected ellipse is 

depicted in Figure 28. 

 

Figure 28: Skewness Factor for NMC Orbits.  A “unit” 𝟐 × 𝟏 ellipse can be 
used to define 𝒅 as a fraction of the unit ellipse length.  

Assume a “unit” 2 × 1 ellipse in which 𝑎 = 1 and 𝑏 = 0.5. The objective is to find the 

value of 𝑑 as a fraction of the unit ellipse length (2𝑎). As was shown in Figure 27, the 

angles swept out in equal time are not necessarily equal, but approximately equal 

distances are carved out on short arcs of the projected trajectory in the 𝑟𝑠-plane along 

the 𝑠-axis (where 𝛼 = ±90). The base triangle distance Δ𝑟 opposite Δ𝛼+  and Δ𝛼−  in 

Figure 28 designates this phenomenon. Δ𝛼+  and Δ𝛼−  must be carefully measured with 

a constant and high sampling rate for accuracy. The relationship between the angles 

Δ𝛼+ , Δ𝛼− , Δ𝑟 and 𝑑 are 

tan(Δ𝛼− /2) =
∆𝑟 /2

𝑑
 (5.2)

tan(Δ𝛼+ /2) =
∆𝑟 /2

2𝑎 − 𝑑
 (5.3)

̂

∆𝑟 ∆𝑟

Δ𝛼−

Δ𝛼

𝑎𝑎

𝑏

𝑏

𝑑 2𝑎 − 𝑑
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Combining Equations (5.2) and (5.3), we can eliminate the unknown ∆𝑟 and solve for the 

skewness factor 

𝑑 tan(Δ𝛼− /2) = ∆𝑟 /2 

(2𝑎 − 𝑑) tan(Δ𝛼+ /2) = ∆𝑟 /2 

𝑑 tan(Δ𝛼− /2) = (2𝑎 − 𝑑) tan(Δ𝛼+ /2) 

𝑑[tan(Δ𝛼− /2) + tan(Δ𝛼+ /2)] = 2𝑎 tan(Δ𝛼+ /2) 

𝑑 =
2 tan(Δ𝛼+ /2)

tan(Δ𝛼− /2) + tan(Δ𝛼+ /2)
 (5.4)

Using the small angle approximation for tangent, the definition is simplified to 

𝑑 =
2Δ𝛼+

Δ𝛼− + Δ𝛼+

 (5.5)

When 𝑑 = 1, there is no skewness. A value on the interval (0, 1) indicates the maximum 

range is in the +𝑠-direction (“skews right”) and a value on the interval (1,2) indicates the 

maximum range is in the −𝑠-direction (“skews left”). 

 Method of Generating Hypotheses 

Hypotheses are generated within an iterative process that approximates the COEs in a 

serial fashion. The process, shown in Figure 29, is improved by having a starting guess 

for the COEs, but it is not needed. Two iteration loops are included. The outer loop is 

initialized with the Surveyor’s COEs and the nondimensional admissible region 

parameters. The inner loop refines the argument of perigee after the semi-major axis has 

been approximated. For small 𝛿𝑎, the inner loop typically does not need iterated. One 

iteration through the outer loop is also typically sufficient for IOD as will be shown in 

Chapter 6, but it may be enhanced by using the previous iteration’s COEs rather than 

the Surveyor’s at initialization. The source code for the function admRegHyp, which 

generates the admissible hypotheses, is included in Appendix E.6. 
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Figure 29: Hypothesis Generation Process.  The COEs are approximated 
serially with an inner loop to refine the argument of perigee and an outer loop 
to iterate the entire process. Variables contained within parentheses with an 
𝒂𝒖𝒙 superscript are used to generate auxiliary orbits and those contained 
within parentheses with a 𝒗𝒔 superscript are used to generate a virtual 
Surveyor.  

Notice the superscript 𝑎𝑢𝑥 in Figure 29. This refers to an “auxiliary orbit” which is not 

necessarily a hypothesis. Auxiliary orbits are intermediary orbits that are used to evaluate 

search parameters against admissible region heuristics or to provide geometrically 

constrained relationships within the admissible region as is the case for calculating the 

unit orbital angular momentum. The superscript 𝑣𝑠 refers to a “virtual Surveyor” which 

modifies the argument of perigee in the Surveyor’s COE set. The propagated virtual 

Surveyor is used to correct for osculation in the hypothesis orbital elements. 

The individual processes for approximating the orbital element hypotheses are described 

in the ensuing subsections. 
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5.3.1 Eccentricity 

Upon finding the admissible region parameters, choose a uniform distribution of range 

hypotheses for specifying the relative position of the target along 𝝆̂  (points toward the 

upper relative apsis) as depicted in Figure 30. 

 

Figure 30: LOS Vector to Upper Relative Apsis.  An array of possible ranges 
along the 𝝆̂  LOS vector pointing to the relative apsis spans the solution 
space for 𝐫 (𝒕 ).  

The Target’s inertial position vector for each discrete hypothesis is 

𝐫 (𝑡 ) = 𝑹 [ 𝐫 (𝑡 ) + 𝜌 𝝆̂ ] (5.6)

Use ‖ 𝐫 ‖ and conservation of energy to find ‖ 𝐯 ‖. On the first iteration, we assume the 

Surveyor’s semi-major axis 

v (𝑡 ) =
2𝜇

r (𝑡 )
−

𝜇

𝑎
 (5.7)

Recall that the eccentricity vector is 

𝒆 =
1

𝜇
𝐯 × (𝐫 × 𝐯) −

𝐫

r
 (5.8)

Using the triple product expansion, 𝒂 × (𝒃 × 𝒄) = 𝒃(𝒂 ⋅ 𝒄) − 𝒄(𝒂 ⋅ 𝒃), this can be rewritten 

as 
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𝒆 =
|𝐯|

𝜇
−
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|𝐫|
𝐫 −
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𝑧 −
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⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (5.9)

where 𝜃 is the angle between 𝐫 and 𝐯. The magnitude of eccentricity is 

𝑒 = 𝑒 + 𝑒 + 𝑒  (5.10)

The square of each element of the eccentricity vector is 

𝑒 =
𝑥

r
−

2𝑥 v

𝜇r
+

𝑥 v

𝜇
+

2𝑥𝑥v̇ cos 𝜃

𝜇
−

2r𝑥𝑥v̇ cos 𝜃

𝜇
+

r 𝑥̇ v cos 𝜃

𝜇
 (5.11)

𝑒 =
𝑦

r
−

2𝑦 v

𝜇r
+

𝑦 v

𝜇
+

2𝑦𝑦v̇ cos 𝜃

𝜇
−

2r𝑦𝑦v̇ cos 𝜃

𝜇
+

r 𝑦̇ v cos 𝜃

𝜇
 (5.12)

𝑒 =
𝑧

r
−

2𝑧 v

𝜇r
+

𝑧 v

𝜇
+

2𝑧𝑧v̇ cos 𝜃

𝜇
−

2r𝑧𝑧v̇ cos 𝜃

𝜇
+

r 𝑧 ̇ v cos 𝜃

𝜇
 (5.13)

Combine terms in Equation (5.10)  

𝑒 = 1 −
2v r

𝜇
+

v r

𝜇
+

2v

𝜇
−

2rv

𝜇
(𝑥𝑥̇ + 𝑦𝑦̇ + 𝑧𝑧)̇ cos 𝜃

+
r v

𝜇
(𝑥̇ + 𝑦̇ + 𝑧 ̇ ) cos 𝜃 

(5.14)

For low eccentricity orbits, cos 𝜃 ≪ 1 and for low differential argument of perigee cos 𝜃 ≈

0 near the relative apsis, so we make a small error by assuming the magnitude of the 

Target’s eccentricity for each of the possible combinations of r (𝑡 ) and v (𝑡 ) 

𝑒 ≅ 1 −
2v r

𝜇
+

v r

𝜇
 (5.15)

Notice that we have added the subscript 1 to indicate the approximation of eccentricity 

at time 𝑡  when 𝝆̂  was obtained. We actually want the eccentricity at epoch, 𝑒 . The full 

geopotential causes eccentricity to osculate throughout the orbit, so 𝑒  needs an osculation 

correction back to 𝑡 . If the Target and Surveyor have identical arguments of perigee, the 
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osculation phase and magnitude will be approximately equal for both Satellites, and 

knowledge of the Surveyor’s eccentricity osculation can be used to correct 𝑒 . If the 

argument of perigee for the two satellites are different, then we can create a modified 

“virtual Surveyor” that uses an approximation of the Target’s argument of perigee 

(determined in the next section) to find a reasonably accurate osculation correction. The 

epoch eccentricity is now possible with 

𝑒 ≅ 𝑒 − ( 𝑒 − 𝑒 ) (5.16)

where the superscript vs has been added to indicate the virtual Surveyor.  

Our assumption about cos 𝜃 to approximate 𝑒  begins to break down when dealing with 

high differential argument of perigee, especially for higher eccentricities. If the IOD process 

succeeds in iterating upon the argument of perigee enough that 𝝆̂  can be redefined near 

perigee or apogee, then the cos 𝜃 assumption is restored and the IOD process has greater 

utility than for low eccentricity orbits. 

5.3.2 Argument of Perigee  

The argument of perigee is very difficult to approximate with so little information at this 

stage, so we crudely approximate it with our knowledge of 𝑑 and 𝛼  at epoch. Differential 

argument of perigee can easily be confused with a combination of differential eccentricity 

and differential true anomaly, especially in low-eccentricity orbits. In that sense, a 

differential argument of perigee influences the relative orbit’s scale and along-track shift. 

By getting close enough to the true argument of perigee, any remaining along-track error 

can be absorbed into the true anomaly to match the skewness. The remaining scale error 

is manifested as a scale bias in the hypotheses. This can be improved upon through 

iteration. 
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Generate a cluster of 36 auxiliary trajectories by using the early approximation for 

eccentricity (𝑒 ) and inheriting the Surveyor’s semi-major axis, inclination and RAAN on 

the first iteration. Vary the Surveyor’s argument of perigee in 10-degree increments from 

zero to 350 degrees. Since the problem is constrained to NMC trajectories, the Target 

must have a similar argument of latitude, 𝑢 = 𝜔 + 𝜈, so a coarse initial estimate of the 

auxiliary true anomaly can be found, but is not sufficient. Perform a convex optimization 

of true anomaly for each auxiliary trajectory by using the skewness factor as the heuristic 

(see Section 5.3.6). Upon matching the skewness, compare 𝛼  from the auxiliary orbit 

with that of the admissible region. Auxiliary orbits with the lowest errors in 𝛼  (the 

criteria |Δ𝛼 | < 15° seems to suffice) are candidates for argument of perigee. 

An additional “sanity check” is performed by comparing the value of 𝜌  from the 

candidate auxiliary orbit with the original 𝜌  hypothesis. The sanity check helps eliminate 

spurious candidates. For very low 𝛿𝑒 cases, an error in eccentricity can inadvertently 

induce a 180° phase shift in argument of perigee and true anomaly in order to sustain the 

correct LOS vector. The sanity check can identify when this happens, so an equal 

weighting may be given to the minimization of |Δ𝛼 | and the ratio 𝜌 − 𝜌 /𝜌 . 

Let us put this into practice to make it clearer. Consider Case 01 from Table 3. In this 

simple case, the Surveyor and Target have identical arguments of perigee (𝜔 = 102.64716 

deg) and arguments of latitude (𝑢 = 102.64716 deg), but we have no way of knowing this 

in practice! All we know is that the skewness factor is 𝑑 = 1 and 𝛼 = 180°. By following 

the process laid out above, we can see how 𝛼  changes across the different auxiliary 

trajectories shown in Figure 31. Each of the colored lines indicates the LOS vector at 

epoch. Clearly, 𝛼  is a function of the Target’s argument of perigee at epoch. Select the 

argument of perigee with the smallest error in 𝛼  from this set. Precision is not important 
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at this stage, but a price is paid for the granularity. Notice how scale is embedded in 

argument of perigee with the different sized ellipses! We inevitably assume a small range 

bias on the first iteration. 

This search is only performed for the first hypothesis. All hypotheses thereafter use the 

same argument of perigee. Once the argument of perigee has been set, return to correct 

the eccentricity for osculation. This technique must be repeated upon estimating the semi-

major axis if 𝛿𝑎 ≠ 0. Two loops through the argument of perigee and semi-major axis 

search algorithm (Section 5.3.3) are typically sufficient to get within 10 degrees of 𝜔 . 

 

Figure 31: Demonstration of 𝜶  Variation from Argument of Perigee Search.  
36 auxiliary trajectories (black curves) are propagated with 𝜹𝝎 intervals of 𝟏𝟎 
deg in argument of perigee at epoch. The true anomaly is also varied in order 
to match the known skewness factor. The colored lines show the LOS vector 
at epoch for each of the trajectories.  
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5.3.3 Semi-Major Axis 

The orbital energy or period of the Target must resemble that of the Surveyor if an NMC 

trajectory is being used to conduct proximity operations. A differential semi-major axis 

(𝛿𝑎 = 𝑎 − 𝑎 ) can be approximated from knowledge of 𝑑 and Δ𝛼   

Δ𝛼 =

⎩

⎨

⎧𝛼 − 𝛼 + 2𝜋
𝛼 − 𝛼        
𝛼 − 𝛼        

𝛼 − 𝛼 − 2𝜋

     

if 𝛼 < 0 ∧ 𝛼 > 0 ∧  count(𝑠 = 0) > 1                

if 𝛼 > 0 ∧ 𝛼 > 0 ∧  count(𝑠 = 0) > 1                

if 𝛼 < 0 ∧ 𝛼 < 0 ∧ 𝛼 > 𝛼  ∧  count(𝑠 = 0) > 1

if 𝛼 > 0 ∧ 𝛼 < 0 ∧  count(𝑠 = 0) = 1                

 (5.17)

where 𝛼  is the angle after one Kozai period of the Surveyor, 𝛼  is the angle at epoch and 

count(𝑠 = 0) indicates the number of times the 𝛼-profile crosses 0 or 180 degrees during 

one Kozai period. 

The Kozai period [163] accounts for the Earth’s oblateness by including the anomalistic 

frequency correction from Equation (4.46) 

𝑇 =
2𝜋

𝑛 + �̇�
 (5.18)

where the mean motion is 𝑛 = 𝜇 𝑎⁄  and 𝑎  is the Surveyor’s semi-major axis.  

In a Keplerian system, Δ𝛼 = 0 when the Target and Surveyor have the same semi-major 

axis because the NMC trajectory returns to the same starting point after one orbit. For 

a non-Keplerian system, secular drift will cause a small Δ𝛼  in the two-body period of 

the orbit even when 𝛿𝑎 = 0. When 𝛿𝑎 ≠ 0, the relative trajectory drifts forward or 

backward along the 𝑠-axis and Δ𝛼  grows as 𝛿𝑎 grows. If the differential semi-major axis 

grows too large (on the order of kilometers), the Target will not be able to circumnavigate 

the Surveyor for very long. 

By convention, the sign of Δ𝛼  is the opposite of the sign of 𝛿𝑎. If Δ𝛼  is positive, the 𝛼 

profile spans more than 360 degrees in one period which means the Target’s bulk along-
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track motion is faster than the Surveyor (Target appears to be moving forward over 

several orbits). Therefore, the Target has a smaller semi-major axis than the Surveyor 

has; 𝛿𝑎 is negative. Figure 32 indicates how Δ𝛼  changes with 𝛿𝑎 = −1 km intervals for 

LEO Case 01 (COEs listed in Table 3). This is referred to as a positive 𝛼 disparity in one 

Kozai period. 

 

Figure 32: Positive Alpha Disparity.  Eleven auxiliary trajectories are 
propagated with 𝜹𝒂 intervals of −𝟏 km at epoch. Notice that 𝜶  is the same 
for all trajectories. The colored lines show the LOS vector after one Kozai 
period for each of the trajectories. The disparity between 𝜶  and 𝜶  is 𝚫𝜶 . 

If Δ𝛼  is negative, the 𝛼 profile spans less than 360 degrees in one period which means 

the Target’s bulk along-track motion is slower than the Surveyor (Target appears to be 

moving backward over several orbits). Therefore, the Target has a larger semi-major axis 

than the Surveyor has; 𝛿𝑎 is positive. Figure 33 indicates how Δ𝛼  changes with 𝛿𝑎 = +1 

km intervals for LEO Case 01 (COEs listed in Table 3). This is referred to as a negative 

𝛼 disparity in one Kozai period. 
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Figure 33: Negative Alpha Disparity.  Eleven auxiliary trajectories are 
propagated with 𝜹𝒂 intervals of +𝟏 km at epoch. Notice that 𝜶  is the same 
for all trajectories. The colored lines show the LOS vector after one Kozai 
period for each of the trajectories. The disparity between 𝜶  and 𝜶  is 𝚫𝜶 . 

The method for approximating the semi-major axis involves another convex optimization 

search of auxiliary trajectories with Δ𝛼  as the heuristic. Each auxiliary trajectory 

inherits the Surveyor’s inclination and RAAN. The semi-major axis is varied and the 

eccentricity is re-calculated for each semi-major axis hypothesis. The argument of perigee 

is fixed from the previous step and the true anomaly is adjusted for each auxiliary 

trajectory to match the skewness factor (function skew2nu). Compare Δ𝛼  from the 

auxiliary orbit with that of the admissible region. 

Rather than propagating a large cluster of auxiliary trajectories at once, there is an 

optimal way to search by first using 1 km intervals in 𝛿𝑎. The sign of the observed Δ𝛼  
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typically indicates the opposite sign on the interval 𝛿𝑎.35 Upon bypassing Δ𝛼 , take one 

step backward and increment by 100 m intervals in 𝛿𝑎 until bypassing Δ𝛼 . If the first 

step of +1 km already exceeds Δ𝛼 , you did not abide by the sign convention of Δ𝛼  

and need to increment in the opposite direction. Presently, we limit the precision of 𝛿𝑎 to 

100 m to speed up the process, although, future iterations may find value in greater 

precision.  

The auxiliary orbit with the lowest error in Δ𝛼  is the candidate semi-major axis and the 

eccentricity is finally fixed for this hypothesis. This process is avoided if Δ𝛼 < 2.5° in 

which case the Surveyor’s semi-major axis is assumed. The effect of Earth’s oblateness 

can be easily confused with small angle disparities, so we presently accept any errors 

associated with this threshold value on Δ𝛼 . 

5.3.4 Inclination 

The Target’s inclination is solved analytically from 𝝆  and 𝝆 . The range hypothesis along 

𝝆̂  has given us half of the solution, but 𝝆̂  must be scaled such that the projection of the 

hypothesis trajectory onto the 𝑟𝑠-plane roughly matches a coplanar auxiliary trajectory 

that uses the same eccentricity, argument of perigee, and semi-major axis previously found 

for 𝝆 . The true anomaly is also temporarily set to match the skewness factor. The 

magnitudes of the projections of 𝝆  and 𝝆  onto the 𝑟𝑠-plane are just 

𝜌 = 𝜌 cos 𝛽  (5.19)

𝜌 = 𝜌 cos 𝛽  (5.20)

                                      
35 The Earth’s oblateness causes some along-track drift, so it is possible to have 𝛿𝑎 = 0 and Δ𝛼 ≠ 0 or 
vice versa. We presently do not try to calibrate for this; although, it could be done if the precision was 
important (it is not at this stage of IOD). Just adjust 𝛿𝑎 to try to match Δ𝛼 . 
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Figure 34 shows the geometry for the projections of 𝝆  and 𝝆 . The projected values 

should be approximately equal to the time synchronized set 𝜌  and 𝜌  from the auxiliary 

trajectory  

𝜌 ≅ 𝜌  (5.21)

𝜌 ≅ 𝜌  (5.22)

 

Figure 34: Range Projections in the 𝒓𝒔-plane.  The actual relative trajectory 
is depicted with the solid rainbow-colored curve (the colorbar indicates time). 
The projected trajectory in the 𝒓𝒔-plane is depicted with the dashed rainbow-
colored curve. The solid black line is 𝝆  and the dashed black line depicts its 
projection into the rs-plane. The solid white line is 𝝆  and the dashed white 
line depicts its projection into the rs-plane.  

The values of 𝝆  and 𝝆 , combine with the Surveyor’s inertial knowledge to give us two 

position vectors in the Target’s hypothesized orbital plane.  

𝐫 = 𝑹 [ 𝐫 (𝑡 ) + 𝝆 ] (5.23)

𝐫 = 𝑹 [ 𝐫 (𝑡 ) + 𝝆 ] (5.24)
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The Target’s orbit inclination is classically defined as 

cos 𝑖 =
�̂� ⋅ 𝑯

|𝑯|
= �̂� ⋅ 𝑯 = �̂� ⋅ ( 𝐫̂ × �̂� ) (5.25)

where �̂� is the unit vector along the 𝑧-axis of the ECI frame and 𝑯 is the Target’s orbit 

angular momentum. 𝐫̂  and �̂�  lie in the orbital plane, but are unknown if the range to 

the Target is unknown. Equivalently, we can find 𝑯 from the cross product of two inertial 

position vectors ( 𝐫  and 𝐫 ) since they both lie in the orbital plane, but since the cross 

product is not commutative, some care is required 

𝑯 / =

⎩

⎨

⎧ 𝐫 × 𝐫 
| 𝐫 × 𝐫 |

if (𝑡 < 𝑡  ∧ |𝛼 | + |𝛼 | < 𝜋) ∨ (𝑡 > 𝑡  ∧ |𝛼 | + |𝛼 | > 𝜋)

𝐫 × 𝐫 
| 𝐫 × 𝐫 |

if (𝑡 > 𝑡  ∧ |𝛼 | + |𝛼 | < 𝜋) ∨ (𝑡 < 𝑡  ∧ |𝛼 | + |𝛼 | > 𝜋)

 (5.26)

Now we can solve for inclination. An osculation correction is needed to find the inclination 

at epoch. Since we use two inertial position vectors at different times to generate 𝑯 / , 

we apply an averaging scheme for the correction  

𝑖 = 𝑖 −
( 𝑖 + 𝑖 − 2 𝑖 )

2
 (5.27)

𝑖 = 𝑖 − 𝑖 
𝑡 + 𝑡

2
− 𝑖  (5.28)

𝑖 =
𝑖 + 𝑖

2
 (5.29)

where 𝑖  is the inclination of our virtual Surveyor described in Section 5.3.1. 

Due to uncertainty in the LOS vectors and non-Keplerian dynamics, other sets of inertial 

position vectors could be used in a least squares framework, but we currently only use 𝐫  

and 𝐫 . 
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5.3.5 Right Ascension of the Ascending Node 

Once the unit angular momentum vector for the hypothesis is found for the inclination, 

the line of nodes can be found and the RAAN can be ascertained. The two-body line of 

nodes is defined as 

�̂� =
𝒌 × 𝑯

|𝒌 × 𝑯|
= �̂� × 𝑯 (5.30)

Since the line of nodes is in the equator plane, it must have the form 

�̂� = cos Ω ̂+ sin Ω  ̂ (5.31)

where Ω is the familiar angle for RAAN. 

An osculation and regression correction is needed to find the RAAN at epoch. As with 

the inclination, we apply an averaging scheme for the correction  

Ω = Ω −
( Ω + Ω − 2 Ω )

2
 (5.32)

Ω = Ω − Ω 
𝑡 + 𝑡

2
− Ω  (5.33)

Ω =
Ω + Ω

2
 (5.34)

where Ω  is the RAAN of our virtual Surveyor described in Section 5.3.1 and Ω  is the 

hypothesis RAAN at epoch. 

5.3.6 True Anomaly 

A differential true anomaly has the effect of shifting the trajectory along the 𝑠-axis and 

skewing the LOS vectors in the direction of the shift as shown in Figure 35. A differential 

argument of perigee and differential RAAN have a similar effect, but they were 

determined in a sequence that allowed errors in 𝛿𝜔 and 𝛿Ω to be absorbed by 𝛿𝜈 such that 

the skewness factor is matched in each previous step with a convex optimization of 𝜈 in 
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the auxiliary orbits. The function skew2nu (Appendix E.7) performs the optimization by 

adjusting 𝛿𝜈 with 𝑑 as the heuristic. 

 

Figure 35: Along-Track Shift from Differential True Anomaly.  Nine 
auxiliary trajectories are propagated with 𝜹𝝂 intervals of 𝟎. 𝟏 deg at epoch. 
Notice how the trajectories are shifted in the along-track direction and the 
LOS profile is skewed in the direction of the shift. 

After all other elements have been set, perform a final convex optimization of true 

anomaly. The search cost can be reduced by starting close to the solution. Since the 

Target will have a similar argument of latitude as that of the Surveyor (the differential 

argument of latitude, 𝛿𝑢 = 𝛿𝜔 + 𝛿𝜈, must be small for an NMC) start with a first guess 

of 

𝜈 = 𝑢 − 𝜔  (5.35)

Then search near 𝜈  with initial intervals of 𝛿𝜈 = 0.1 deg. A coarser interval can be used, 

but the difference in argument of latitude should not be larger than a couple degrees at 

most for NMC trajectories within the ranges of interest for LOS navigation. An auxiliary 
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orbit is propagated for each true anomaly interval to compare its skewness factor with 

the observed skewness factor. If the inequality in Equation (5.36) is met, take one step 

backward and continue the search forward with intervals an order of magnitude smaller 

until the inequality in Equation (5.36) is met again. We repeat this process until achieving 

precision 𝛿𝜈 = 1 × 10− . 

sgn(𝛿𝜈)[𝑑 − 𝑑 ] < 0 (5.36)

where 𝑑 is the skewness factor. If the first coarse step already satisfies the inequality, 

reverse the sign of 𝛿𝜈 and start again. At the end of this process the true anomaly at 

epoch for this hypothesis is 

𝜈 = 𝜈 + 𝛿𝜈 (5.37)

Readers may be tempted to use the true anomaly from the two-body orbit equation, but 

it is too sensitive to errors in 𝑎, 𝑒, and r to approximate the solution. The inverse cosine 

in Equation (5.39) has a habit of rendering imaginary numbers if attempted  

𝑟 =
𝑎(1 − 𝑒 )

1 + 𝑒 cos 𝜈
 (5.38)

𝜈 = cos− 𝑎(1 − 𝑒 )

𝑟𝑒
−

1

𝑒
 (5.39)

Once the full set of COEs are known, a sanity check can be performed to eliminate bad 

hypotheses. Simply propagate the hypothesis to 𝑡  and compare 𝜌(𝑡 ) with the initial 

range hypothesis, 𝜌 . If the error is greater than 10% on the first iteration, the argument 

of perigee is the likely culprit and will need to be refined through iteration. 

5.3.7 Verification 

Two LEO cases are selected to demonstrate the accuracy of the hypothesis generation 

methodology after a single iteration. One uses a low differential argument of perigee and 
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the other uses a high differential argument of perigee since this is the only element that 

is presently coarsely determined. Rather than selecting a random range for 𝜌 , we use the 

true range and the admissible region parameters to see how well the relative trajectory is 

reconstructed. Each case is performed twice: once with just two-body dynamics and a 

second time with EGM96 20 × 20 dynamics. No uncertainty in observations or dynamics 

are assumed during verification.  

LEO, Low Differential Argument of Perigee, Two-Body (Case 06A) 

Table 4: Case 06A: Orbital Elements for Truth and Hypothesis 

COEs Surveyor Target Truth Hypothesis Hypothesis Error 
𝑎 (km) 6789.085640626 6790.085640626 6790.082937106 -0.002703519647 

𝑒 (nd) 0.001601186396 0.006601186396 0.006601330019  0.000000143623 

𝑖 (deg) 51.75241867994 51.95241867994 51.95271797764  0.000299297694 

𝛺 (deg) 72.49304954653 72.59304954653 72.59266029623 -0.000389250305 

𝜔 (deg) 60.69588076088 60.49588076088 60.69588076088  0.200000000000 

𝜈 (deg) 0.000000000000 0.500000000000 0.297505000000 -0.202495000000 

The hypothesis is plotted in Figure 36(a) with the truth. The lines are difficult to 

discriminate because of a relatively small range error shown in Figure 36(b). Notice the 

argument of perigee error in Table 4 from the coarse approximation. Any error in 

argument of perigee manifests in both scale and along-track shift. The true anomaly 

absorbs the along-track shift error in order to match the skewness factor in the admissible 

region. The scale error can be reduced with refinements in the argument of perigee on a 

second iteration if the results are less desirable than these.    
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(a) Trajectories & Projections 

 
(b) Range Error of Hypothesis 

Figure 36: Hypothesis Accuracy for Case 06A. The trajectories are plotted 
in (a) with their projections in all three directions to gain perspective of the 
in-plane and out-of-plane motion. The black curves are the truth and the 
dashed red curves are the hypothesis. The black dots indicate the location of 
the Surveyor for the actual and projected trajectories. The range error is 
plotted in (b) as an absolute error (red curve) and as a percentage of the truth 
(blue curve). 

LEO, Low Differential Argument of Perigee, EGM96 𝟐𝟎 × 𝟐𝟎 (Case 06B) 

Table 5: Case 06B: Orbital Elements for Truth and Hypothesis 

COEs Surveyor Target Truth Hypothesis Hypothesis Error 
𝑎 (km) 6789.085640626 6790.085640626 6790.151484207  0.065843581052 

𝑒 (nd) 0.001601186396 0.006601186396 0.006577644639 -0.000023541757 

𝑖 (deg) 51.75241867994 51.95241867994 51.94994191317 -0.002476766772 

𝛺 (deg) 72.49304954653 72.59304954653 72.60618845410  0.013138907563 

𝜔 (deg) 60.69588076088 60.49588076088 60.69588076088  0.200000000000 

𝜈 (deg) 0.000000000000 0.500000000000 0.290945000000 -0.209055000000 

The hypothesis is plotted in Figure 37(a) with the truth. The lines are difficult to 

discriminate because of a relatively small range error shown in Figure 37(b). Notice the 

argument of perigee error in Table 5 from the coarse approximation. Any error in 

argument of perigee manifests in both scale and along-track shift. The true anomaly 

absorbs the along-track shift error in order to match the skewness factor in the admissible 
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region. The scale error could be reduced with refinements in the argument of perigee on 

a second iteration. The results are only slightly worse than the two-body hypothesis. This 

is because of additional error from osculation and regression in the elements that weren’t 

corrected perfectly from our virtual Surveyor.  

 
(a) Trajectories & Projections 

 
(b) Range Error of Hypothesis 

Figure 37: Hypothesis Accuracy for Case 06B. The trajectories are plotted 
in (a) with their projections in all three directions to gain perspective of the 
in-plane and out-of-plane motion. The black curves are the truth and the 
dashed red curves are the hypothesis. The black dots indicate the location of 
the Surveyor for the actual and projected trajectories. The range error is 
plotted in (b) as an absolute error (red curve) and as a percentage of the truth 
(blue curve). 

LEO, High Differential Argument of Perigee, Two-Body (Case 08A) 

Table 6: Case 08A: Orbital Elements for Truth and Hypothesis 

COEs Surveyor Target Truth Hypothesis Hypothesis Error 
𝑎 (km) 6789.085640626 6790.085640626 6790.082875046 -0.002765579951 

𝑒 (nd) 0.001601186396 0.006601186396 0.006509836360 -0.000091350035 

𝑖 (deg) 51.75241867994 51.95241867994 51.94991380729 -0.002504872648 

𝛺 (deg) 72.49304954653 72.59304954653 72.59176309648 -0.001286450058 

𝜔 (deg) 60.69588076088 191.0958807608 190.6958807608  0.600000000000 

𝜈 (deg) 150.0000000000 20.00000000000 20.39873464991  0.398734649913 
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The hypothesis is plotted in Figure 38(a) with the truth. The range error shown in Figure 

38(b) is higher than the low differential argument of perigee case. This additional error is 

partially due to the eccentricity since the cos 𝜃 ≈ 0 assumption from Equation (5.14) is 

better for low differential argument of perigee near the relative apsis. The argument of 

perigee is also introducing some scale error from the coarse approximation, but the 

argument of perigee routine performed as it should with 10 deg precision despite the 

remaining error. As before, the true anomaly approximation absorbed the along-track 

shift error from the argument of perigee in order to match the skewness factor in the 

admissible region. It is believed that the slightly higher inclination and RAAN error is 

due to a less accurate auxiliary trajectory from the scaling error.    

(a) Trajectories & Projections (b) Range Error of Hypothesis 

Figure 38: Hypothesis Accuracy for Case 08A. The trajectories are plotted 
in (a) with their projections in all three directions to gain perspective of the 
in-plane and out-of-plane motion. The black curves are the truth and the 
dashed red curves are the hypothesis. The black dots indicate the location of 
the Surveyor for the actual and projected trajectories. The range error is 
plotted in (b) as an absolute error (red curve) and as a percentage of the truth 
(blue curve). 
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LEO, High Differential Argument of Perigee, EGM96 𝟐𝟎 × 𝟐𝟎 (Case 08B) 

Table 7: Case 08B: Orbital Elements for Truth and Hypothesis 

COEs Surveyor Target Truth Hypothesis Hypothesis Error 
𝑎 (km) 6789.085640626 6790.085640626 6790.101087731  0.015447105040 

𝑒 (nd) 0.001601186396 0.006601186396 0.006343694000 -0.000257492396 

𝑖 (deg) 51.75241867994 51.95241867994 51.94014533462 -0.012273345318 

𝛺 (deg) 72.49304954653 72.59304954653 72.56994266086 -0.023106885674 

𝜔 (deg) 60.69588076088 191.0958807608 190.6958807608 -0.400000000000 

𝜈 (deg) 150.0000000000 20.00000000000 20.40125093291  0.401250932917 

The hypothesis is plotted in Figure 39(a) with the truth. The range error shown in Figure 

39(b) is higher than the low differential argument of perigee case and higher than the 

two-body version of Case 08. As before, the large differential in argument of perigee 

aggravates eccentricity since the cos 𝜃 ≈ 0 assumption from Equation (5.14) is better for 

low differential argument of perigee near the relative apsis. The coarse estimation of 

argument of perigee is as good as can be expected with 10-degree precision. The true 

anomaly approximation absorbed the along-track shift error from the argument of perigee 

in order to match the skewness factor in the admissible region. The osculation corrections 

to the eccentricity, inclination and RAAN depend on the accuracy of the argument of 

perigee, so the fractional error in argument of perigee is causing some distortion to the 

hypothesis. Another source of error for the inclination and RAAN is due to a less accurate 

auxiliary trajectory since its dimensions constrain 𝜌  and 𝜌 . 
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(a) Trajectories & Projections 

 
(b) Range Error of Hypothesis 

Figure 39: Hypothesis Accuracy for Case 14B. The trajectories are plotted 
in (a) with their projections in all three directions to gain perspective of the 
in-plane and out-of-plane motion. The black curves are the truth and the 
dashed red curves are the hypothesis. The black dots indicate the location of 
the Surveyor for the actual and projected trajectories. The range error is 
plotted in (b) as an absolute error (red curve) and as a percentage of the truth 
(blue curve). 

Verification Insight 

A single iteration demonstrates how the absolute orbital elements can be used to 

reasonably describe the relative motion to within hundreds of meters in some cases and 

several kilometers in others. One way to improve this is to iterate on the argument of 

perigee and the semi-major axis. Once the argument of perigee has been refined, select 𝝆̂  

to point roughly toward the Target’s perigee or apogee so that the eccentricity is more 

accurate. Presently, 𝝆̂  points to the upper relative apsis which is roughly toward the 

Target’s perigee or apogee for low differential argument of perigee. We have not made 

this change, but if the author had more time, this would be the first change in the queue! 

We will see shortly that these single-iteration IOD results are acceptable for initializing 

the nonlinear least squares filter. 
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 Range Mapping 

Once the COEs are found for the set of hypotheses in the admissible region, the 

ephemerides are synchronously propagated forward with identical time steps using a 

geopotential model that matches the truth data. Two options are available for parsing 

the results to find the scale of the relative trajectory. The first option uses angle-to-range 

maps (𝛼| ̇ → 𝜌) introduced in Section 4.2. The second option uses time differentials of 

eclipse events to map range (Δ𝑡| → 𝜌), but it is merely complimentary to the angle-

to-range maps since the time differentials may not be large enough to resolve range in all 

cases or there simply may not be an eclipse. 

5.4.1 Angle-to-Range Maps 

Reduce the numerically integrated data to 𝜌, 𝛼 and 𝛼 ̇using the procedures in Chapter 3.  

Identify local 𝛼̇  for each hypothesis and record 𝛼 and 𝜌 at these locations. Combine 

the (𝛼| ̇ , 𝜌| ̇ ) pairs from each of the hypotheses to reveal a nearly linear relationship 

such as that shown in Figure 40. This particular case has two local minima per orbit and 

has a skewness factor of 𝑑 = 0.376 which means the relative trajectory skews right and 

has better range resolution in the +𝑠-direction. The combination of local minima in the 

+𝑠-direction (𝛼 = 90 deg) forms one curve, whereas the local minima in the −𝑠-direction 

(𝛼 = −90 deg) forms another curve. Recall the range resolution metric is just the slope of 

these curves! While both curves can be used to approximate range, the one with the larger 

Δ𝛼 spread (typically, the one with the global 𝛼̇ ) should be the first choice since it has 

better resolvability. 
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Figure 40: Example Angle-to-Range Map.  The local �̇� minima from several 
hypotheses are used to construct an alpha-to-range map. The colored dots 
represent 𝚫𝜶 at the local minima for each of the hypotheses. The solid black 
line passes through the combination of minima near 𝜶 = 𝟗𝟎 deg and the dashed 
black line passes through the minima near 𝜶 = −𝟗𝟎 deg.  

Before mapping the range, perform a quick check for hypothesis outliers with the Theil-

Sen estimator. This is accomplished by first finding the slope of all possible combinations 

of (𝛼| ̇ , 𝜌| ̇ ) pairs 

𝑚 =
𝜌| ̇ − 𝜌| ̇

𝛼| ̇ − 𝛼| ̇

 (5.40)

The median of all slope combinations is used to fit a linear curve to the data, which is 

more robust to outliers than ordinary least squares. Any hypotheses with 𝜌| ̇  deviating 

more than 1𝜎 from the Theil-Sen estimate is rejected. The remaining hypotheses are used 

to approximate range. 

Since the minimum angular rate for NMC trajectories is always at ±90 + Δ𝛼 deg, our 

notation simply uses Δ𝛼 in seconds of arc to represent the minima. A quadratic 
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polynomial is fit through the remaining admissible (Δ𝛼| ̇ , 𝜌| ̇ ) pairs to give range 

as a function of Δ𝛼. The coefficients in Equation (5.41) are found using MATLAB’s 

polyfit function 

𝜌| ̇ = 𝑐 Δ𝛼 | ̇ + 𝑐 Δ𝛼| ̇ + 𝑐  (5.41)

The second order coefficient is small, but the result is slightly better than a linear map. 

The observed Δ𝛼| ̇  can by substituted into Equation (5.41) to approximate 𝜌| ̇ .  

The location of the minimum angular rate has been discussed heavily for mapping range, 

but it is merely a starting point. Notice in Figure 41 that the 𝛼 vs 𝛼 ̇curves near 𝛼̇  

also have an ordered structure. These particular curves are associated with the example 

angle-to-range maps above, so the global minima near 𝛼 = 90 deg is the most skewed, 

providing the best resolvable structure in the arcs leading to and from 𝛼̇ . We choose 

𝛼 ̇waypoints along “straight” parts of these arcs to extract (𝛼| ̇ , 𝜌| ̇ ) pairs. At each 

waypoint, fit a quadratic polynomial through the hypothesis pairs for the range map, 

𝛼| ̇ → 𝜌| ̇ . Since the range varies at each of the waypoints, we need a common element 

to tie them all together in a least squares sense. The COEs in the admissible region scale 

almost linearly with range, but rather than mapping to each of them at each waypoint, 

we only map to eccentricity. Fit a quadratic polynomial through each of the (𝜌| ̇ , 𝑒 ) 

pairs for the eccentricity map, 𝜌| ̇ → 𝑒 . Finally, average the waypoint values for 𝑒 . 
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(a) 𝜶 vs �̇� Curves Near 𝜶 = 𝟗𝟎 deg 

(Global Minimum) 

 
(b) 𝜶 vs �̇� Curves Near 𝜶 = −𝟗𝟎 deg 

(Local Minimum) 

 
(c) Arcs Departing Global �̇�  

 
(d) Arcs Approaching Global �̇�  

Figure 41: Characteristics of 𝜶 vs �̇� Curves Near the Minima. The 𝜶 vs �̇� 
curves of admissible hypotheses exhibit an ordered structure near the local 
minima. �̇� waypoints along the arcs leading to and from the global minima 
can be used for range maps as in (c) and (d) where waypoints are indicated 
by dashed horizontal lines. The true arc is the solid black line in (c) and (d). 
The eccentricities are listed in the legend.     

The final step is to map the epoch eccentricity approximation to the other orbital 

elements. Fit a quadratic polynomial to each element and the eccentricity of the form 

COE (𝑒) = 𝑏 𝑒 + 𝑏 e + 𝑏  (5.42)
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The epoch eccentricity is used to solve Equation (5.42) for each of the elements at epoch. 

A finishing touch is applied to the epoch true anomaly with the function skew2nu to 

make sure the skewness factor is matched in the final set. 

Uncertainties are expected since this methodology is not exact, but the Target’s range 

should be reasonably bounded and typically better than hundreds of meters. This 

knowledge can be used to warm-start the navigation filter near the truth. 

5.4.2 Eclipse-to-Range Maps 

Another unorthodox approach for determining the range of a Target within a multiple 

hypothesis framework is to use eclipse times. The differential time between both satellites 

becoming fully darkened upon entry into the Earth’s shadow or fully illuminated upon 

exit from the Earth’s shadow, can be simulated from multiple admissible orbit hypotheses 

and compared to the observed differential time. If the differential times are large enough 

across the set of hypotheses, threshold visual magnitudes can be used to approximate the 

scale of the Target’s trajectory, or more likely, to prune improbable hypotheses with the 

map Δ𝑡| → 𝜌| . This procedure can potentially be applied to any RPO trajectory 

as long as an admissible set of orbit hypotheses can be generated.  

Eclipse Model 

The shadow cast by the Earth includes three main regions: (1) a dark inner cone where 

the Sun’s rays are completely occluded by the Earth called the umbra, (2) an outer hollow 

cone surrounding the umbra where a fraction of the Sun’s light is blocked called the 

penumbra and (3) another partially eclipsed inner cone (annular eclipse) called the 

antumbra that extends from the umbra’s vertex where the occulting Earth appears smaller 
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than the Sun. The geometry is depicted in Figure 42; although, the antumbra is ignored 

since the umbra extends over 1.3 million km36—well beyond our region of interest. 

Conical models of the umbra and penumbra are implemented for this feasibility study and 

the boundaries are binary. See Appendix C for analysis on the merits of a cylindrical 

model assumption at LEO and GEO. In reality, the photometric data will not be binary; 

the light curve will exhibit a gradual occlusion as the Target passes through the terminator 

into an eclipse. Operationally, a standard threshold visual magnitude for when the satellite 

enters or exits an eclipse is needed, but the principle of differential entry and exit times 

is the same for a simpler binary approach. Other lighting effects due to the Target’s size, 

shape, orientation and material properties are also important considerations that have 

been neglected here. Determining these physical characteristics from photometry and 

angle data is an enormous challenge of its own [173].37 The simulation to estimate these 

properties requires 3D spacecraft models with different facet materials and accurate 

lighting. The author has developed just such a simulation that ties together SketchUp 

and GMAT in Ubuntu, but the estimation routines are far beyond the scope of this 

research. Thus, we settle for binary light curve data in this simple feasibility study.  

                                      
36 See https://commons.wikimedia.org/wiki/File:Earth_umbral_cone_(partial).png 
37 The author supervised similar work by Andrew Dianetti (graduate student from the University at 
Buffalo) at the Air Force Research Laboratory’s Space Vehicles Directorate in 2014. 
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Figure 42: Earth Eclipse Geometry.  The umbra is a conical region that is 
fully eclipsed by the planet, whereas the penumbra is a partially eclipsed 
region surrounding the umbral core.  

At each time step in the numerical integration of our hypotheses, apply Vallado’s 

geometrical SHADOW algorithm [118], which is a set of conditional statements to 

determine whether the satellite is in the penumbra or umbra. 

First, check for a negative value in the Sun’s position vector and the satellite’s position 

vector 

𝒓 ⨀ ⋅ 𝐫 < 𝟎 (5.43)

If the dot product is positive, the satellite is being radiated by the Sun. If it is negative, 

there is a possibility of an eclipse, so determine the angle between the negative Sun 

vector and the satellite’s position vector 

𝜍 =
− 𝒓 ⨀ ⋅ 𝐫 

𝒓 ⨀ | 𝐫 |
 (5.44)

Calculate the satellite’s horizontal distance along the Earth-Sun line and the vertical 

distance perpendicular to the Earth-Sun line 
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𝑠 = 𝑟 cos 𝜍 (5.45)

𝑠 = 𝑟 sin 𝜍 (5.46)

Find the Earth primary/secondary point, 𝑥, and the Earth-vertex distance, 𝑦, shown in 

Figure 42 along the Earth-Sun line 

𝑥 =
𝑅⊕

sin 𝛼
 (5.47)

𝑦 =
𝑅⊕

sin(𝛼 )
 (5.48)

where 𝑅⊕ is the Earth radius and the penumbra and umbra angles are 𝛼 =

0.269007205° and 𝛼 = 0.264121687°, respectively. 

Substitute the above quantities to calculate the penumbra and umbra distances 

𝑝 = tan 𝛼 (𝑥 + 𝑠 ) (5.49)

𝑢 = tan(𝛼 ) (𝑦 − 𝑠 ) (5.50)

If 𝑠 ≤ 𝑝 , then the satellite is at least in the penumbra, but if 𝑠 ≤ 𝑢 , then the satellite 

is in the umbra. Due to discrete time steps in the numerical integration, the entry and 

exit points for the penumbra and umbra have uncertainty no greater than the sample 

rate in this binary model. 

Generating Maps 

Upon generating and propagating a cluster of admissible hypotheses, the umbra entry and 

exit times for the Surveyor and all Target hypotheses are recorded and differenced to 

generate the eclipse Δ𝑡  and Δ𝑡 .  

Δ𝑡 = 𝑡 | − 𝑡 |  (5.51)
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Δ𝑡 = 𝑡 | − 𝑡 |  (5.52)

Since the range for each of the admissible hypotheses are known at 𝑡 |  and 𝑡 | , a 

range map can be generated as in Figure 43. Depending on the amount of uncertainty 

associated with the observed Δ𝑡, the eclipse map can either be used to approximate the 

range or prune hypotheses from the admissible region, thereby bounding the range. 

 

Figure 43: Example Eclipse-to-Range Map from Notional Admissible Region. 
The range for each of 10 admissible hypotheses are plotted with 𝚫𝒕 from an 
eclipse event. A curve fit can be used to map range with the observed 𝚫𝒕. 
This particular map is from Case 06C. 

Eclipse maps are not guaranteed to be available since they depend on the orbit 

geometry with respect to the Sun. Throughout the year the Sun appears to drift 23 

degrees above and below the Earth’s equatorial plane since the Earth’s equator is not 

aligned with the ecliptic plane. This becomes particularly important for GEO since the 

amount and type of eclipsing can vary dramatically throughout the year. GEO satellites 

only experience Earth eclipse during the March or September equinox when the sun is 

aligned with the equatorial plane. 
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Figure 44: GEO Satellites at Solstice.  All geostationary satellites experience 
constant sunlight except during the equinox periods.  

 

 Batch Filter Design 

To improve upon the IOD solution in a navigation filter, a technique is needed that retains 

the nonlinear dynamics in the motion model or as much as possible. We also know from 

D’Amico’s work at DLR that the inclusion of 𝐽  dynamics improves range observability 

with nonlinear least squares (NLS) batch processing. 𝐽  is the most dominant term among 

the zonal harmonics, indeed the entire gravitational field, contributing the equivalent of 

about 10−  of the Newtonian point mass coefficient. All other zonal, sectoral and tesseral 

coefficients combined are two orders of magnitude smaller than 𝐽 , so is there any good 

reason to include the smaller coefficients given the added complexity? There may be some 

value at GEO. 

The precession of orbits at GEO (North-South drift) are caused in part by 𝐽 , but mostly 

by the tug of the Moon and the Sun, which is corrected at a cost of ~50 m/s each year. 

Shadow at
Summer
Solstice

Shadow at
Winter
Solstice

Equator
Earth

GEO Satellite

*Exaggerated Scale



 146 

East-West drift is caused by the ellipticity of the Earth or the high landmass potentials 

over the Americas and Eurasia and the low potentials over the Atlantic and the Pacific. 

This longitudinal asymmetry is modelled by the sectoral harmonics and costs satellites 

approximately 2 m/s each year to counteract the East-West drift. Since one full NMC 

trajectory takes approximately 1/365 of a year at GEO, then the East-West drift is having 

the effect of ~5.5 mm/s per orbit. If a case can be made for micro-thrusters aiding 

observability, then maybe a higher fidelity geopotential model is warranted, particularly 

at GEO. 

Our dynamics model for the filter uses a non-Keplerian reference orbit with an expansion 

of the geopotential to any order and degree. The state transition matrix (STM) is 

generated from the equations of variation about a reference orbit so that the linearization 

of the dynamics at every time step closely tracks the reference orbit. In this way, the STM 

only describes the local motion and not the global motion. The estimated trajectory is a 

combination of the global reference orbit dynamics and the local dynamics from small 

offsets described mathematically as 

𝑿 (𝑡) = 𝑿 (𝑡) + Φ(𝑡, 𝑡 ) 𝛿𝑿 (𝑡 ) (5.53)

where 𝑿  is the estimated state vector in the ECEF frame, 𝑿  is the reference orbit in 

the ECEF frame, Φ(𝑡, 𝑡 ) is the STM, and 𝛿𝑿(𝑡 )  is the estimated correction to the 

reference trajectory at epoch. This technique for LOS navigation is only possible with a 

sensible IOD solution so that the corrections and, therefore, the linearization errors are 

small as shown in Figure 45. 
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Figure 45: Global and Local Motion Representation.  The reference orbit 
models the global nonlinear motion in the expanded geopotential. The local 
motion dynamics are formulated from the global motion state to estimate the 
correction, 𝜹𝑿, to the reference orbit.  

The reference orbit can be numerically integrated or modelled as a KAM torus in the full 

geopotential. One major advantage of the torus over numerical integration is that the 

satellite’s dynamics are precisely time synchronized with observations regardless of 

sampling rate or observation gaps. While our simulated observations can be perfectly 

synchronized with a numerical integration, this is likely not the case operationally. A 

fraction of a second difference between the reference orbit propagation and a true 

observation corrupts the residuals. This never happens with a torus since its only input 

is the precise observation time. 

5.5.1 Nonlinear Weighted Least Squares 

Differential correction through batch nonlinear least squares is a centerpiece of modern 

astrodynamics and has been routinely applied to LOS navigation. The difference between 

this work and others is the use of a reference orbit and the equations of variations in the 

expanded geopotential for the dynamics model. This subsection describes the custom 

implementation of the NLS algorithm to use a reference orbit; the dynamics model and 

measurement model is developed in later subsections. 
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The reference orbit state vector in the Earth-centered Earth-fixed frame is specified as  

𝑿 = [𝑥 𝑦 𝑧 𝑥̇ 𝑦 ̇ 𝑧]̇  (5.54)

𝑥̇ = 𝑥̇ − 𝜔⊕𝑦 (5.55)

𝑦̇ = 𝑦̇ + 𝜔⊕𝑥 (5.56)

𝑧 ̇ = 𝑧 ̇  (5.57)

where the velocity components are the inertial velocities resolved in the ECEF frame and 

the rotation rate of the Earth is given by 𝜔⊕. 

An observation of the Target at time, 𝑡, is specified in Hill’s frame by the measurement 

vector 

𝑴 (𝑡) =

𝛼
𝛽
𝜌

 (5.58)

where the range, 𝜌, is purposefully set to zero. For independent measurements, the 

observation variance-covariance matrix or weight matrix is  

𝑸 =

⎣

⎢
⎡

𝜎 0 0

0 𝜎 0

0 0 𝜎 ⎦

⎥
⎤

 (5.59)

where 𝜎  is the variance or expectation of the squared deviation of a measurement variable 

from its mean, 𝐸[(𝑀 − 𝜇) ]. Based upon a survey of state-of-the-art star trackers, we 

specify 𝜎 = 10 arc sec and 𝜎 = 10 arc sec. The range uncertainty is arbitrarily set to 

𝜎 = 1 × 10  km to send a strong vote of no confidence in the range measurement since 

it does not exist! 

For each observation, 𝑴 (𝑡), extract 𝑿 (𝑡) from the KAM torus or numerically 

integrated reference orbit at the observation time, 𝑡, and obtain the state transition matrix 
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(STM), 𝚽(𝑡, 𝑡 ). In our case, the STM is only being used to propagate small deviations 

near the reference orbit and not the actual orbit itself. It is the torus’ job to propagate 

the bulk of the satellite’s motion. Two versions of the 𝑨 matrix are formulated: a 

numerical version from a geopotential expansion to any degree and order and an 

analytical, osculating two-body version (osculating with the reference orbit). These are 

developed in Section 5.5.3. 

The correction to the reference orbit at the time of the observation is brought forward in 

time with 

𝛿𝑿 (𝑡) = 𝚽(𝑡, 𝑡 ) 𝛿𝑿 (𝑡 ) (5.60)

And the corrected reference orbit is 

𝑿 (𝑡) = 𝑿 (𝑡) + 𝛿𝑿 (𝑡) (5.61)

Subtract the earth’s rotation rate contribution from the velocity to get the ECEF velocity 

and transform the corrected reference orbit to Hill’s frame 

𝑿 (𝑡) = [𝑅 ][𝑅 ] 𝑿 (𝑡) (5.62)

Use the corrected reference orbit in Hill’s frame to generate the expected angle and range 

observations 

𝑴 (𝑡) =

𝛼

𝛽
𝜌

 (5.63)

Obtain the residual vector, 𝑟(𝑡), and reject true outliers, generally when the angle residuals 

exceed 3𝜎 . 

𝑟(𝑡) = 𝑴 (𝑡) − 𝑴 (𝑡) (5.64)
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Next, calculate the measurement sensitivity matrix or the Jacobian of the measurement 

model for the data point. The Jacobian is derived in Section 5.5.2. In this case, 𝑯 is a 

3 × 6 matrix 

𝑯(𝑡) =
𝜕𝑴(𝑡)

𝜕𝑿(𝑡)
 (5.65)

Form the 3 × 6 observation matrix 

𝑻 (𝑡) = 𝑯(𝑡)𝚽(𝑡, 𝑡 ) (5.66)

Add new terms to the running sum of the inverted 6 × 6 covariance matrix 

𝑷 − = 𝑻 𝑸− 𝑻  (5.67)

Also, add new terms to the 6 × 1 vector sum 

𝑻 𝑸− 𝒓 (5.68)

When all data has been processed, calculate the covariance of the correction and the state 

correction vector at epoch 

𝑷 = 𝑻 𝑸− 𝑻
−

 (5.69)

𝛿𝑿 = 𝑷 𝑻 𝑸− 𝒓 (5.70)

Update the reference orbit correction by summing the state correction vectors from each 

iteration, 𝑖. Note that 𝛿𝑿 = 𝟎 ×  at the onset of the iterative process 

𝛿𝑿 (𝑡 ) = 𝛿𝑿  (5.71)

Determine if the process has converged. If not, begin again with 𝛿𝑿 (𝑡 ), else claim 

victory. We use the convergence criteria 

𝛿𝑥 + 𝛿𝑦 + 𝛿𝑧 < 0.1 m (5.72)
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5.5.2 Jacobian of the Measurement Model 

The usual LOS measurement model is the analytical expression for the measurements in 

terms of the Cartesian coordinates in Hill’s frame as posed in Equation (3.21) and (3.22). 

The Jacobian describes how the measurements change with a small change in the reference 

state. Since our reference state is in the ECEF frame and not Hill’s frame, our Jacobian 

is slightly more complicated than normal since it involves rotation matrices. First, write 

the relative position in Hill’s frame in terms of ECEF coordinates (𝑥, 𝑦, 𝑧) 

r
𝑠
𝑤

 

=

⎣

⎢
⎡

𝑅 𝑧 − r  + 𝑅 (𝑥 cos 𝜃  −  𝑦 sin 𝜃) + 𝑅 (𝑦 cos 𝜃 + 𝑥 sin 𝜃)

𝑅 𝑧 + 𝑅 (𝑥 cos 𝜃  −  𝑦 sin 𝜃) + 𝑅 (𝑦 cos 𝜃 + 𝑥 sin 𝜃)

𝑅 𝑧 + 𝑅 (𝑥 cos 𝜃  −  𝑦 sin 𝜃) + 𝑅 (𝑦 cos 𝜃 + 𝑥 sin 𝜃) ⎦

⎥
⎤ (5.73)

where 𝑹  is the rotation matrix from ECI to Hill’s frame as previously derived in 

Equation (3.15), r  is the Surveyor’s radial distance, and 𝜃 is the Greenwich mean sidereal 

time. 

The partials of the Jacobian in Equation (5.74) can now be developed individually. Half 

of the matrix is trivial since the measurements are not a function of the reference velocity. 

𝜕𝑴(𝑡)

𝜕𝑿(𝑡)
=

⎣

⎢
⎢
⎢
⎢
⎢
⎡

𝜕𝛼

𝜕𝑥

𝜕𝛼

𝜕𝑦

𝜕𝛼

𝜕𝑧

𝜕𝛼

𝜕𝑥̇

𝜕𝛼

𝜕𝑦̇

𝜕𝛼

𝜕𝑧 ̇

𝜕𝛽

𝜕𝑥

𝜕𝛽

𝜕𝑦

𝜕𝛽

𝜕𝑧

𝜕𝛽

𝜕𝑥̇

𝜕𝛽

𝜕𝑦̇

𝜕𝛽

𝜕𝑧 ̇

𝜕𝜌

𝜕𝑥

𝜕𝜌

𝜕𝑦

𝜕𝜌

𝜕𝑧

𝜕𝜌

𝜕𝑥̇

𝜕𝜌

𝜕𝑦̇

𝜕𝜌

𝜕𝑧⎦̇

⎥
⎥
⎥
⎥
⎥
⎤

 (5.74)

𝜕𝑴(𝑡)

𝜕𝑿(𝑡)
=

⎣

⎢
⎢
⎢
⎢
⎢
⎡

𝜕𝛼

𝜕𝑥

𝜕𝛼

𝜕𝑦

𝜕𝛼

𝜕𝑧
0 0 0

𝜕𝛽

𝜕𝑥

𝜕𝛽

𝜕𝑦

𝜕𝛽

𝜕𝑧
0 0 0

𝜕𝜌

𝜕𝑥

𝜕𝜌

𝜕𝑦

𝜕𝜌

𝜕𝑧
0 0 0

⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (5.75)
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𝜕𝛼

𝜕𝑥
=

𝑎(𝑅 cos 𝜃 + 𝑅 sin 𝜃) − 𝑏(𝑅 cos 𝜃 + 𝑅 sin 𝜃)

𝑏 + 𝑎
 (5.76)

𝜕𝛼

𝜕𝑦
=

𝑎(𝑅 cos 𝜃 + 𝑅 sin 𝜃) − 𝑏(𝑅 cos 𝜃 + 𝑅 sin 𝜃)

𝑏 + 𝑎
 (5.77)

𝜕𝛼

𝜕𝑧
=

(𝑎𝑅 − 𝑏𝑅 )

𝑏 + 𝑎
 (5.78)

where 

𝑎 = 𝑅 𝑧 − 𝑟 + 𝑅 (𝑥 cos 𝜃 − 𝑦 sin 𝜃) + 𝑅 (𝑦 cos 𝜃 + 𝑥 sin 𝜃) 

𝑏 = 𝑅 𝑧 + 𝑅 (𝑥 cos 𝜃 − 𝑦 sin 𝜃) + 𝑅 (𝑦 cos 𝜃 + 𝑥 sin 𝜃) 

 

𝜕𝛽

𝜕𝑥
=

√
𝑎 + 𝑏 (𝑅 cos 𝜃 + 𝑅 sin 𝜃) − 𝑑

𝑎 + 𝑏 + 𝑐
 (5.79)

𝜕𝛽

𝜕𝑦
=

√
𝑎 + 𝑏 (𝑅 cos 𝜃 + 𝑅 sin 𝜃) − 𝑒

𝑎 + 𝑏 + 𝑐
 (5.80)

𝜕𝛽

𝜕𝑧
=

√
𝑎 + 𝑏 𝑅 −

𝑎𝑐𝑅 + 𝑏𝑐𝑅√
𝑎 + 𝑏

𝑎 + 𝑏 + 𝑐
 

(5.81)

where 
𝑐 = 𝑅 𝑧 + 𝑅 (𝑥 cos 𝜃 − 𝑦 sin 𝜃) + 𝑅 (𝑦 cos 𝜃 + 𝑥 sin 𝜃) 

𝑑 =
𝑎𝑐(𝑅 cos 𝜃 + 𝑅 sin 𝜃) + 𝑏𝑐(𝑅 cos 𝜃 + 𝑅 sin 𝜃)

√
𝑎 + 𝑏

 

𝑒 =
𝑎𝑐(𝑅 cos 𝜃 − 𝑅 sin 𝜃) + 𝑏𝑐(𝑅 cos 𝜃 − 𝑅 sin 𝜃)

√
𝑎 + 𝑏

 

 

𝜕𝜌

𝜕𝑥
=

𝑎(𝑅 cos 𝜃 + 𝑅 sin 𝜃) + 𝑏(𝑅 cos 𝜃 + 𝑅 sin 𝜃) + 𝑐(𝑅 cos 𝜃 + 𝑅 sin 𝜃)
√

𝑎 + 𝑏 + 𝑐
 (5.82)

𝜕𝜌

𝜕𝑦
=

𝑎(𝑅 cos 𝜃 − 𝑅 sin 𝜃) + 𝑏(𝑅 cos 𝜃 − 𝑅 sin 𝜃) + 𝑐(𝑅 cos 𝜃 − 𝑅 sin 𝜃)
√

𝑎 + 𝑏 + 𝑐
 (5.83)

𝜕𝜌

𝜕𝑧
=

𝑎𝑅 + 𝑏𝑅 + 𝑐𝑅
√

𝑎 + 𝑏 + 𝑐
 (5.84)



 153 

5.5.3 State Transition Matrix 

Using Hamiltonian dynamics, formulate the satellite’s equations of motion in an Earth-

centered Earth-fixed (ECEF) frame. This reduces the satellite’s motion to one constant 

of integration. We will note shortly that the Hamiltonian is independent of time in the 

stationary gravity field. 

The generalized coordinates for a satellite in a rotating reference frame and the inertial 

velocity resolved along the axes of the rotating frame are 

𝒒
𝒒 ̇ =

⎣

⎢
⎢
⎢
⎢
⎡

𝑥
𝑦
𝑧

𝑥̇ − 𝜔⊕𝑦

𝑦̇ + 𝜔⊕𝑥

𝑧 ̇ ⎦

⎥
⎥
⎥
⎥
⎤

 (5.85)

where 𝜔⊕ is the Earth rotation rate. In a rotating reference frame, the kinetic energy of 

the satellite per unit mass is 

𝑇 =
1

2
((𝑥̇ − 𝜔⊕𝑦) + (𝑦̇ + 𝜔⊕𝑥) + (𝑧)̇ ) (5.86)

The Lagrangian is defined as 

ℒ = 𝑇(𝑞, 𝑞)̇ − 𝑉 (𝑞) (5.87)

where 𝑉  is potential energy; for our application, it is the truncated expansion of the 

geopotential in spherical harmonics 

𝑉 (𝑟, 𝜓, 𝜆) = −
𝜇

r

𝑅⊕

r
𝐶 ̅ cos𝑚𝜆 + 𝑆 ̅ sin 𝑚𝜆 𝑃̅ (sin 𝜓)

==

 (5.88)

where 𝑅⊕ is Earth’s equatorial radius, 𝜇 is Earth’s gravitational parameter, 𝑛 and 𝑚 are 

the degree and order of the geopotential expansion, respectively, 𝑃̅  are the fully 

normalized Legendre polynomials, 𝐶 ̅  and 𝑆 ̅  are full normalized dimensionless 
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coefficients from the gravity model (we use NASA EGM96), r is the geocentric radius of 

the Target defined as r = 𝑥 + 𝑦 + 𝑧 , 𝜓 is the geocentric latitude38 defined as 𝜓 =

sin− (𝑧 𝑟⁄ ) and 𝜆 is east longitude defined as 𝜆 = tan− (𝑦 𝑥⁄ ) where the 𝑥-axis is referenced 

to Greenwich in the ECEF frame. 

For two-body motion, the gravitational potential is just  

𝑉 (r) = −
𝜇

𝑟
 (5.89)

The generalized momenta are39 

𝑝 =
𝜕ℒ(𝑞, 𝑞)̇

𝜕𝑞 ̇
 (5.90)

𝒑 =
𝑥̇ − 𝜔𝑦
𝑦̇ + 𝜔𝑥

𝑧 ̇

 (5.91)

The Hamiltonian function with the full geopotential expansion is 

ℋ = 𝑝 𝑞 ̇ − ℒ (5.92)

ℋ =
1

2
𝑝 + 𝑝 + 𝑝 + 𝜔⊕ 𝑦𝑝 − 𝑥𝑝

−
𝜇

r

𝑅⊕

r
𝐶 ̅ cos 𝑚𝜆 + 𝑆 ̅ sin 𝑚𝜆 𝑃̅ (sin 𝜓)

==

 
(5.93)

The two-body Hamiltonian function is 

ℋ =
1

2
𝑝 + 𝑝 + 𝑝 + 𝜔⊕ 𝑦𝑝 − 𝑥𝑝 −

𝜇

r
 (5.94)

Notice that the Hamiltonian is independent of time and is therefore a constant of motion. 

The equations of motion (EOM) or Hamilton’s equations are found from the partials 

                                      
38 Can also be replaced with the colatitude 𝜃 = cos− (𝑧 𝑟⁄ ) = − 𝜓 
39 The momenta are not with respect to the rotating frame as the generalized coordinates are. The 
momenta are the satellite’s inertial velocity components. This is the case for all rotating reference frames. 



 155 

𝑑𝑞

𝑑𝑡
=

𝜕ℋ(𝑞, 𝑝)

𝜕𝑝
 (5.95)

𝑑𝑝

𝑑𝑡
= −

𝜕ℋ(𝑞, 𝑝)

𝜕𝑞
 (5.96)

�̇� =
𝒒 ̇
�̇�

=

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑝 + 𝜔⊕𝑞
𝑝 − 𝜔⊕𝑞

𝑝

𝜔𝑝 −
𝜕𝑉 (𝑞)

𝜕𝑞

−𝜔𝑝 −
𝜕𝑉 (𝑞)

𝜕𝑞

−
𝜕𝑉

𝜕𝑞 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5.97)

The EOM can also be expressed more conveniently with a symplectic matrix 

𝒁 =
𝟎 𝑰

−𝑰 𝟎
 (5.98)

�̇� = 𝑍
𝜕ℋ

𝜕𝑿
 (5.99)

where 𝑰  is a 3 × 3 identity matrix and 𝟎  is a 3 × 3 matrix of zeros. 

The time variant linear differential equations or the equations of variation that describe 

displacements to the reference orbit are 

𝛿�̇� = 𝑨(𝑡)𝛿𝑿 (5.100)

𝑨 = 𝒁
𝜕 ℋ(𝑞, 𝑝)

𝜕𝑿
 (5.101)

The STM is the matrix exponential function 

𝚽(𝑡, 𝑡 ) = 𝑒 = 𝐼 + 𝑨𝑡 + 𝑨
𝑡

2!
+ ⋯+ 𝑨

𝑡

𝑛!
 (5.102)

For a constant coefficient linear system, the state transition matrix has the form 

𝜱(𝑡, 0) = 𝑭𝑒 𝑭 −  (5.103)
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where 𝑭  is a constant matrix of eigenvectors of 𝑨 and 𝓙 is (usually) a diagonal matrix 

of eigenvalues of 𝐴. However, we are not dealing with a constant coefficient linear system! 

The 𝑨 matrix is constantly changing around the nonlinear reference orbit, so we elect to 

solve 𝑒  using Equation (5.102) to 𝒪(𝑨 ) at each observation for a small interval of time 

𝚽(𝑡 − + 𝑑𝑡, 𝑡 − ) ≈ 𝑒 = 𝐼 + 𝑨𝑑𝑡 + 𝑨
𝑑𝑡

2!
+ ⋯ + 𝑨

𝑑𝑡

6!
 (5.104)

In order to propagate a small change in the reference orbit from epoch to an arbitrary 

time of observations, the STM must be accumulated such that 

𝚽(𝑡 , 𝑡 ) ≈ 𝚽(𝑡 − + 𝑑𝑡, 𝑡 − ) 𝚽(𝑡 − , 𝑡 − )
=

 (5.105)

It is computationally efficient to accumulate the past STMs as a single matrix rather than 

storing them or recalculating them at each observation. 

One can elect to use the 𝑨 matrix from the equations of variation for the full geopotential 

expansion or the osculating two-body form. We describe it as osculating because the 

instantaneous two-body dynamics are calculated from the reference orbit position and 

velocity, which are osculating in the full geopotential. 

Osculating Two-Body 𝑨 Matrix 

Start by writing the partials of the Hamiltonian to aid with taking the second-order partial 

derivatives in the Hessian 

𝜕ℋ

𝜕𝑿
=

𝜕ℋ

𝜕𝑞

𝜕ℋ

𝜕𝑞

𝜕ℋ

𝜕𝑞

𝜕ℋ

𝜕𝑝

𝜕ℋ

𝜕𝑝

𝜕ℋ

𝜕𝑝
 (5.106)
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𝜕ℋ

𝜕𝑿
=

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−𝜔⊕𝑝 +

𝜕𝑉 (𝑞)

𝜕𝑞

𝜔⊕𝑝 +
𝜕𝑉 (𝑞)

𝜕𝑞

𝜕𝑉 (𝑞)

𝜕𝑞
𝑝 + 𝜔⊕𝑞
𝑝 − 𝜔⊕𝑞

𝑝 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The Hessian in Leibniz notation is 

𝜕 ℋ

𝜕𝑿
=

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜕 ℋ

𝜕𝑞

𝜕 ℋ

𝜕𝑞 𝜕𝑞

𝜕 ℋ

𝜕𝑞 𝜕𝑞

𝜕 ℋ

𝜕𝑞 𝜕𝑝

𝜕 ℋ

𝜕𝑞 𝜕𝑝

𝜕 ℋ

𝜕𝑞 𝜕𝑝

𝜕 ℋ

𝜕𝑞 𝜕𝑞

𝜕 ℋ

𝜕𝑞

𝜕 ℋ

𝜕𝑞 𝜕𝑞

𝜕 ℋ

𝜕𝑞 𝜕𝑝

𝜕 ℋ

𝜕𝑞 𝜕𝑝

𝜕 ℋ

𝜕𝑞 𝜕𝑝

𝜕 ℋ

𝜕𝑞 𝜕𝑞

𝜕 ℋ

𝜕𝑞 𝜕𝑞

𝜕 ℋ

𝜕𝑞

𝜕 ℋ

𝜕𝑞 𝜕𝑝

𝜕 ℋ

𝜕𝑞 𝜕𝑝

𝜕 ℋ

𝜕𝑞 𝜕𝑝

𝜕 ℋ

𝜕𝑝 𝜕𝑞

𝜕 ℋ

𝜕𝑝 𝜕𝑞

𝜕 ℋ

𝜕𝑝 𝜕𝑞

𝜕 ℋ

𝜕𝑝

𝜕 ℋ

𝜕𝑝 𝜕𝑝

𝜕 ℋ

𝜕𝑝 𝜕𝑝

𝜕 ℋ

𝜕𝑝 𝜕𝑞

𝜕 ℋ

𝜕𝑝 𝜕𝑞

𝜕 ℋ

𝜕𝑝 𝜕𝑞

𝜕 ℋ

𝜕𝑝 𝜕𝑝

𝜕 ℋ

𝜕𝑝

𝜕 ℋ

𝜕𝑝 𝜕𝑝

𝜕 ℋ

𝜕𝑝 𝜕𝑞

𝜕 ℋ

𝜕𝑝 𝜕𝑞

𝜕 ℋ

𝜕𝑝 𝜕𝑞

𝜕 ℋ

𝜕𝑝 𝜕𝑝

𝜕 ℋ

𝜕𝑝 𝜕𝑝

𝜕 ℋ

𝜕𝑝 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5.107)

𝜕 ℋ

𝜕𝑿
=

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜕 𝑉

𝜕𝑞

𝜕 𝑉

𝜕𝑞 𝜕𝑞

𝜕 𝑉

𝜕𝑞 𝜕𝑞
0 −𝜔⊕ 0

𝜕 𝑉

𝜕𝑞 𝜕𝑞

𝜕 𝑉

𝜕𝑞

𝜕 𝑉

𝜕𝑞 𝜕𝑞
𝜔⊕ 0 0

𝜕 𝑉

𝜕𝑞 𝜕𝑞

𝜕 𝑉

𝜕𝑞 𝜕𝑞

𝜕 𝑉

𝜕𝑞
0 0 0

0 𝜔⊕ 0 1 0 0

−𝜔⊕ 0 0 0 1 0

0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5.108)

After multiplying the Hessian by the symplectic matrix, the 𝑨 matrix is 
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𝑨 =

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 𝜔⊕ 0 1 0 0

−𝜔⊕ 0 0 0 1 0

0 0 0 0 0 1

−
𝜕 𝑉

𝜕𝑞
−

𝜕 𝑉

𝜕𝑞 𝜕𝑞
−

𝜕 𝑉

𝜕𝑞 𝜕𝑞
0 𝜔⊕ 0

−
𝜕 𝑉

𝜕𝑞 𝜕𝑞
−

𝜕 𝑉

𝜕𝑞
−

𝜕 𝑉

𝜕𝑞 𝜕𝑞
−𝜔⊕ 0 0

−
𝜕 𝑉

𝜕𝑞 𝜕𝑞
−

𝜕 𝑉

𝜕𝑞 𝜕𝑞
−

𝜕 𝑉

𝜕𝑞
0 0 0

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5.109)

Solve the double partial derivatives in 𝑨 with the gravitational potential for the two-

body problem in Equation (5.89) 

𝑨 =

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 𝜔⊕ 0 1 0 0

−𝜔⊕ 0 0 0 1 0

0 0 0 0 0 1

−
𝜇

r
+

3𝜇𝑥

r

3𝜇𝑥𝑦

r

3𝜇𝑥𝑧

r
0 𝜔⊕ 0

3𝜇𝑥𝑦

r
−

𝜇

r
+

3𝜇𝑦

r

3𝜇𝑦𝑧

r
−𝜔⊕ 0 0

3𝜇𝑥𝑧

r

3𝜇𝑦𝑧

r
−

𝜇

r
+

3𝜇𝑧

r
0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5.110)

where r = 𝑥 + 𝑦 + 𝑧  and 𝜔⊕ is the Earth rotation rate. 

Plug the osculating reference orbit position coordinates into Equation (5.110) and then 

calculate the local motion STM using Equation (5.104). 

Numerical 𝑨 Matrix from Geopotential Expansion 

The only difference between the 𝑨 matrix here and two-body matrix above are the second-

order partial derivatives of the potential, 𝜕 𝑉 /𝜕𝒒 . Since the expansion of the geopotential 

is in terms of the spherical coordinates, 𝑟, 𝜓 and 𝜆, we can use multivariable calculus to 

solve for the second-order partials in terms of the generalized coordinates, 𝑞 , 𝑞  and 𝑞 . 
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We work through the derivation of 𝜕 𝑉 /𝜕𝑞  and 𝜕 𝑉 /𝜕𝑞 𝜕𝑞  in Appendix D. The other 

elements are derived in a similar form. The results are given here 

𝜕 𝑉

𝜕𝑞
=

𝜕 𝑉

𝜕r

𝜕r

𝜕𝑥
+

𝜕 𝑉

𝜕𝜆

𝜕𝜆

𝜕𝑥
+

𝜕 𝑉

𝜕𝜓

𝜕𝜓

𝜕𝑥
+ 2

𝜕 𝑉

𝜕𝜆𝜕r

𝜕𝜆

𝜕𝑥

𝜕r

𝜕𝑥
+ 2

𝜕 𝑉

𝜕𝜓𝜕r

𝜕𝜓

𝜕𝑥

𝜕r

𝜕𝑥

+ 2
𝜕 𝑉

𝜕𝜓𝜕𝜆

𝜕𝜓

𝜕𝑥

𝜕𝜆

𝜕𝑥
+

𝜕𝑉

𝜕r

𝜕 r

𝜕𝑥
+

𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑥
+

𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑥
 

(5.111)

𝜕 𝑉

𝜕𝑞
=

𝜕 𝑉

𝜕r

𝜕r

𝜕𝑦
+

𝜕 𝑉

𝜕𝜆

𝜕𝜆

𝜕𝑦
+

𝜕 𝑉

𝜕𝜓

𝜕𝜓

𝜕𝑦
+ 2

𝜕 𝑉

𝜕𝜆𝜕r

𝜕𝜆

𝜕𝑦

𝜕r

𝜕𝑦
+ 2

𝜕 𝑉

𝜕𝜓𝜕r

𝜕𝜓

𝜕𝑦

𝜕r

𝜕𝑦

+ 2
𝜕 𝑉

𝜕𝜓𝜕𝜆

𝜕𝜓

𝜕𝑦

𝜕𝜆

𝜕𝑦
+

𝜕𝑉

𝜕r

𝜕 r

𝜕𝑦
+

𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑦
+

𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑦
 

(5.112)

𝜕 𝑉

𝜕𝑞
=

𝜕 𝑉

𝜕r

𝜕r

𝜕𝑧
+

𝜕 𝑉

𝜕𝜆

𝜕𝜆

𝜕𝑧
+

𝜕 𝑉

𝜕𝜓

𝜕𝜓

𝜕𝑧
+ 2

𝜕 𝑉

𝜕𝜆𝜕r

𝜕𝜆

𝜕𝑧

𝜕r

𝜕𝑧
+ 2

𝜕 𝑉

𝜕𝜓𝜕r

𝜕𝜓

𝜕𝑧

𝜕r

𝜕𝑧

+ 2
𝜕 𝑉

𝜕𝜓𝜕𝜆

𝜕𝜓

𝜕𝑧

𝜕𝜆

𝜕𝑧
+

𝜕𝑉

𝜕r

𝜕 r

𝜕𝑧
+

𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑧
+

𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑧
 

(5.113)

𝜕 𝑉

𝜕𝑞 𝜕𝑞
=

𝜕 𝑉

𝜕r

𝜕r

𝜕𝑥

𝜕r

𝜕𝑦
+

𝜕 𝑉

𝜕𝜆𝜕r

𝜕𝜆

𝜕𝑥

𝜕r

𝜕𝑦
+

𝜕 𝑉

𝜕𝜓𝜕r

𝜕𝜓

𝜕𝑥

𝜕r

𝜕𝑦
+

𝜕 𝑉

𝜕r𝜕𝜆

𝜕r

𝜕𝑥

𝜕𝜆

𝜕𝑦
+

𝜕 𝑉

𝜕𝜆

𝜕𝜆

𝜕𝑥

𝜕𝜆

𝜕𝑦

+
𝜕 𝑉

𝜕𝜓𝜕𝜆

𝜕𝜓

𝜕𝑥

𝜕𝜆

𝜕𝑦
+

𝜕 𝑉

𝜕r𝜕𝜓

𝜕r

𝜕𝑥

𝜕𝜓

𝜕𝑦
+

𝜕 𝑉

𝜕𝜆𝜕𝜓

𝜕𝜆

𝜕𝑥

𝜕𝜓

𝜕𝑦
+

𝜕 𝑉

𝜕𝜓

𝜕𝜓

𝜕𝑥

𝜕𝜓

𝜕𝑦
+

𝜕𝑉

𝜕r

𝜕 r

𝜕𝑥𝜕𝑦

+
𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑥𝜕𝑦
+

𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑥𝜕𝑦
 

(5.114)

𝜕 𝑉

𝜕𝑞 𝜕𝑞
=

𝜕 𝑉

𝜕r

𝜕r

𝜕𝑥

𝜕r

𝜕𝑧
+

𝜕 𝑉

𝜕𝜆𝜕r

𝜕𝜆

𝜕𝑥

𝜕r

𝜕𝑧
+

𝜕 𝑉

𝜕𝜓𝜕r

𝜕𝜓

𝜕𝑥

𝜕r

𝜕𝑧
+

𝜕 𝑉

𝜕r𝜕𝜆

𝜕r

𝜕𝑥

𝜕𝜆

𝜕𝑧
+

𝜕 𝑉

𝜕𝜆

𝜕𝜆

𝜕𝑥

𝜕𝜆

𝜕𝑧

+
𝜕 𝑉

𝜕𝜓𝜕𝜆

𝜕𝜓

𝜕𝑥

𝜕𝜆

𝜕𝑧
+

𝜕 𝑉

𝜕r𝜕𝜓

𝜕r

𝜕𝑥

𝜕𝜓

𝜕𝑧
+

𝜕 𝑉

𝜕𝜆𝜕𝜓

𝜕𝜆

𝜕𝑥

𝜕𝜓

𝜕𝑧
+

𝜕 𝑉

𝜕𝜓

𝜕𝜓

𝜕𝑥

𝜕𝜓

𝜕𝑧
+

𝜕𝑉

𝜕r

𝜕 r

𝜕𝑥𝜕𝑧

+
𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑥𝜕𝑧
+

𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑥𝜕𝑧
 

(5.115)
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𝜕 𝑉

𝜕𝑞 𝜕𝑞
=

𝜕 𝑉

𝜕r

𝜕r

𝜕𝑦

𝜕r

𝜕𝑧
+

𝜕 𝑉

𝜕𝜆𝜕r

𝜕𝜆

𝜕𝑦

𝜕r

𝜕𝑧
+

𝜕 𝑉

𝜕𝜓𝜕r

𝜕𝜓

𝜕𝑦

𝜕r

𝜕𝑧
+

𝜕 𝑉

𝜕r𝜕𝜆

𝜕r

𝜕𝑦

𝜕𝜆

𝜕𝑧
+

𝜕 𝑉

𝜕𝜆

𝜕𝜆

𝜕𝑦

𝜕𝜆

𝜕𝑧

+
𝜕 𝑉

𝜕𝜓𝜕𝜆

𝜕𝜓

𝜕𝑦

𝜕𝜆

𝜕𝑧
+

𝜕 𝑉

𝜕r𝜕𝜓

𝜕r

𝜕𝑦

𝜕𝜓

𝜕𝑧
+

𝜕 𝑉

𝜕𝜆𝜕𝜓

𝜕𝜆

𝜕𝑦

𝜕𝜓

𝜕𝑧
+

𝜕 𝑉

𝜕𝜓

𝜕𝜓

𝜕𝑦

𝜕𝜓

𝜕𝑧
+

𝜕𝑉

𝜕r

𝜕 r

𝜕𝑦𝜕𝑧

+
𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑦𝜕𝑧
+

𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑦𝜕𝑧
 

(5.116)

where 𝜕 𝑉 /𝜕r , 𝜕 𝑉 /𝜕𝜓 , 𝜕 𝑉 /𝜕𝜆 , 𝜕 𝑉 /𝜕𝜓𝜕r, 𝜕 𝑉 /𝜕𝜆𝜕r, and 𝜕 𝑉 /𝜕𝜓𝜕𝜆 are the 

second-order partials and mixed partials in spherical coordinates, 𝜕𝑉 /𝜕r, 𝜕𝑉 /𝜕𝜓, and 

𝜕𝑉 /𝜕𝜆 are the gravity gradients in spherical coordinates.  

The geopotential gradients are found with Legendre polynomial recursions described in 

[174][175][176] 

𝜕𝑉

𝜕r
= −

𝜇

r

𝑅⊕

r
(𝑛 + 1) 𝐶 ̅ cos 𝑚𝜆 + 𝑆 ̅ sin 𝑚𝜆 𝑃̅ (sin 𝜓)

==

 (5.117)

𝜕𝑉

𝜕𝜓
=

𝜇

r

𝑅⊕

r
𝐶 ̅ cos 𝑚𝜆 + 𝑆 ̅ sin 𝑚𝜆

d𝑃̅ (sin 𝜓)

d𝜓
==

 (5.118)

𝜕𝑉

𝜕𝜆
=

𝜇

r

𝑅⊕

r
𝑆 ̅ cos 𝑚𝜆 − 𝐶 ̅ sin 𝑚𝜆 𝑚𝑃̅ (sin 𝜓)

==

 (5.119)

where 𝜇 is the gravitational constant, r is the spherical radius, 𝑅⊕ is the Earth equatorial 

radius, 𝜆 is the longitude, 𝜓 is the geocentric latitude, 𝐶 ̅  and 𝑆 ̅  are the fully 

normalized harmonics coefficients of order 𝑛 and degree 𝑚, and 𝑃̅  are the fully 

normalized Legendre polynomials of order 𝑛 and degree 𝑚. 

The second-order partial derivatives in spherical coordinates are 
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𝜕 𝑉

𝜕r
=

𝜇

r

𝑅⊕

r
(𝑛 + 1)(𝑛

=

+ 2) 𝐶 ̅ cos 𝑚𝜆 + 𝑆 ̅ sin 𝑚𝜆 𝑃̅ (sin 𝜓)
=

 

(5.120)

𝜕 𝑉

𝜕r𝜕𝜓
= −

𝜇

r

𝑅⊕

r
(𝑛 + 1) 𝐶 ̅ cos 𝑚𝜆 + 𝑆 ̅ sin 𝑚𝜆

d𝑃̅ (sin 𝜓)

d𝜓
==

 (5.121)

𝜕 𝑉

𝜕r𝜕𝜆
= −

𝜇

r

𝑅⊕

r
(𝑛 + 1) 𝑆 ̅ cos 𝑚𝜆 − 𝐶 ̅ sin 𝑚𝜆 𝑚𝑃̅ (sin 𝜓)

==

 (5.122)

𝜕 𝑉

𝜕𝜓
=

𝜇

r

𝑅⊕

r
𝐶 ̅ cos 𝑚𝜆 + 𝑆 ̅ sin 𝑚𝜆

d 𝑃̅ (sin 𝜓)

d𝜓
==

 (5.123)

𝜕 𝑉

𝜕𝜓𝜕𝜆
=

𝜇

r

𝑅⊕

r
𝑆 ̅ cos 𝑚𝜆 − 𝐶 ̅ sin 𝑚𝜆 𝑚

d𝑃̅ (sin 𝜓)

d𝜓
==

 (5.124)

𝜕 𝑉

𝜕𝜆
= −

𝜇

r

𝑅⊕

r
𝐶 ̅ cos𝑚𝜆 + 𝑆 ̅ sin 𝑚𝜆 𝑚 𝑃̅ (sin 𝜓)

==

 (5.125)

The first- and second-order partials of the spherical radius are 

r = 𝑥 + 𝑦 + 𝑧  (5.126)

𝜕r

𝜕𝑥
=

𝑥

r
 (5.127)

𝜕r

𝜕𝑦
=

𝑦

r
 (5.128)

𝜕r

𝜕𝑧
=

𝑧

r
 (5.129)

𝜕 r

𝜕𝑥
=

𝑦 + 𝑧

r
 (5.130)
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𝜕 r

𝜕𝑥𝜕𝑦
=

−𝑥𝑦

r
 (5.131)

𝜕 r

𝜕𝑥𝜕𝑧
=

−𝑥𝑧

r
 (5.132)

𝜕 r

𝜕𝑦
=

𝑥 + 𝑧

r
 (5.133)

𝜕 r

𝜕𝑦𝜕𝑧
=

−𝑦𝑧

r
 (5.134)

𝜕 r

𝜕𝑧
=

𝑥 + 𝑦

r
 (5.135)

The first- and second-order partials of the longitude are 

𝜆 = tan− (𝑦 𝑥⁄ ) (5.136)

𝜕𝜆

𝜕𝑥
=

−𝑦

𝑥 + 𝑦
 (5.137)

𝜕𝜆

𝜕𝑦
=

𝑥

𝑥 + 𝑦
 (5.138)

𝜕𝜆

𝜕𝑧
= 0 (5.139)

𝜕 𝜆

𝜕𝑥
=

2𝑥𝑦

(𝑥 + 𝑦 )
 (5.140)

𝜕 𝜆

𝜕𝑥𝜕𝑦
=

𝑦 − 𝑥

(𝑥 + 𝑦 )
 (5.141)

𝜕 𝜆

𝜕𝑥𝜕𝑧
= 0 (5.142)
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𝜕 𝜆

𝜕𝑦
=

−2𝑥𝑦

(𝑥 + 𝑦 )
 (5.143)

𝜕 𝜆

𝜕𝑦𝜕𝑧
= 0 (5.144)

𝜕 𝜆

𝜕𝑧
= 0 (5.145)

The first- and second-order partials of the geocentric latitude are 

𝜓 = sin− (𝑧 r⁄ ) (5.146)

𝜕𝜓

𝜕𝑥
= −

𝑥𝑧

r3 1 − 𝑧2

r2

 
(5.147)

𝜕𝜓

𝜕𝑦
= −

𝑦𝑧

r3 1 − 𝑧2

r2

 (5.148)

𝜕𝜓

𝜕𝑧
=

1
r 1 − 𝑧2

r2

1 − 𝑧2

r2

 (5.149)

𝜕 𝜓

𝜕𝑥
=

𝑥2𝑧3

r7 1 − 𝑧2

r2

3
2

+
3𝑥2𝑧

r5 1 − 𝑧2

r2

 −
𝑧

r3 1 − 𝑧2

r2

 

 

(5.150)

𝜕 𝜓

𝜕𝑥𝜕𝑦
=

𝑥𝑦𝑧3

r7 1 − 𝑧2

r2

3
2

+
3𝑥𝑦𝑧

r5 1 − 𝑧2

r2

 (5.151)

𝜕 𝜓

𝜕𝑥𝜕𝑧
=

𝑥𝑧 2𝑧3

r4 − 2𝑧
r2

2r3 1 − 𝑧2

r2

3
2

+
3𝑥𝑧2

r5 1 − 𝑧2

r2

−
𝑥

r3 1 − 𝑧2

r2

 (5.152)

𝜕 𝜓

𝜕𝑦
=

𝑦2𝑧3

r7 1 − 𝑧2

r2

3
2

+
3𝑦2𝑧

r5 1 − 𝑧2

r2

 −
𝑧

r3 1 − 𝑧2

r2

 (5.153)
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𝜕 𝜓

𝜕𝑦𝜕𝑧
=

𝑦𝑧 2𝑧3

r4 − 2𝑧
r2

2r3 1 − 𝑧2

r2

3
2

+
3𝑦𝑧2

r5 1 − 𝑧2

r2

−
𝑦

r3 1 − 𝑧2

r2

 (5.154)

𝜕 𝜓

𝜕𝑧
=

3𝑧3

r5 − 3𝑧
r3

1 − 𝑧2

r2

−
2𝑧3

r4 − 2𝑧
r2

1
r − 𝑧2

r3

2 1 − 𝑧2

r2

3
2

 (5.155)

Evaluate each of the partials using the IOD reference orbit position coordinates in the 

ECEF frame at the observation times. Substitute the partial derivatives into Equation 

(5.109) to generate the 𝑨 matrix at each time step. 

5.5.4 Verification 

The same four hypothesis verification cases from Section 5.3.7 are used to demonstrate 

the accuracy of the filter dynamics model. Recall that this included: 1) Case 06A - low 

differential argument of perigee and two-body dynamics; 2) Case 06B - low differential 

argument of perigee and EGM96 20 × 20 dynamics; 3) Case 08A - high differential 

argument of perigee and two-body dynamics; and 4) Case 08B - high differential argument 

of perigee and EGM96 20 × 20 dynamics. The low 𝛿𝜔 case had a smaller error than the 

high 𝛿𝜔 case, so this represents a reasonable error spread for testing the filter post-IOD. 

The hypotheses are used as the reference orbit and are numerically propagated in sequence 

with the true observations rather than using a torus. Doing so restricts errors generated 

by the torus. For Case 06A and Case 08A, the analytical two-body 𝑨 matrix is used in 

the filter and for Case 06B and Case 08B, the numerical 𝑨 matrix from the geopotential 

expansion is used. Since the true orbits are known, we can assess how well the filter 

corrects the hypotheses. No uncertainty in observations or dynamics are assumed during 

verification. 
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LEO, Low Differential Argument of Perigee, Two-Body (Case 06A) 

The true error in the initial state vector of the hypothesis is listed in Table 8. The reference 

correction, 𝛿𝑿 (𝑡 ), should converge toward these values if implemented correctly.  

Table 8: Case 06A: IOD Hypothesis Error at Epoch & NLS Correction 

ECEF IOD Error NLS Correction 
𝑥 (m) -292.5480051180 -292.3002844542 

𝑦 (m)  105.5353403398  105.6427801884 

𝑧 (m)  96.43949928977  96.42259807531 

𝑥 ̇(m/s) -0.075237535075 -0.075021411164 

𝑦 ̇(m/s) -0.125235554641 -0.125048483922 

𝑧 ̇(m/s) -0.121723634505 -0.121678923869 

Using a convergence criterion of |𝛿𝝆 | < 0.1 m, the filter converges after three iterations. 

The angle residuals are plotted in Figure 46(a). The absolute error in each of the LVLH 

coordinates and the range are shown in Figure 46(b). The results indicate that the two-

body 𝑨 matrix and NLS filter have been implemented correctly. 

 
(a) Angle Residuals 

 
(b) Position Error of Hypothesis 

Figure 46: Filter Accuracy for Case 06A. The angle residuals are plotted in 
(a). The black curve is for 𝜶 and the red curve is for 𝜷. The range error and 
coordinate errors (Hill’s frame) are plotted in (b). The red curve is the radial 
error, the green curve is the along-track error, the blue curve is the cross-
track error and the black curve is the range error. 
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LEO, Low Differential Argument of Perigee, EGM96 𝟐𝟎 × 𝟐𝟎 (Case 06B) 

The true error in the initial state vector of the hypothesis is listed in Table 9. The reference 

correction, 𝛿𝑿 (𝑡 ), should converge toward these values if implemented correctly.  

Table 9: Case 06B: IOD Hypothesis Error at Epoch & NLS Correction 

ECEF IOD Error NLS Correction 
𝑥 (m) -123.7280280561 -137.4531728045 

𝑦 (m) -771.2614865881 -777.5015124360 

𝑧 (m)  409.9048193729  410.8923916120 

𝑥 ̇(m/s) -0.263253394749 -0.277545506660 

𝑦 ̇(m/s)  0.904065222081  0.893730633613 

𝑧 ̇(m/s) -0.528897602688 -0.530271102794 

Using a convergence criterion of |𝛿𝝆 | < 0.1 m, the filter converges after four iterations. 

The angle residuals are plotted in Figure 47(a). The absolute error in each of the LVLH 

coordinates and the range are shown in Figure 47(b). The results are not quite as good as 

Case 06A. A larger initial error in reference orbit may explain the estimate error, but this 

is a completely acceptable result that suggests the numerical 𝑨 matrix and geopotential 

functionals have been implemented correctly. For some perspective, the range error 

throughout the estimated orbit is ~0.027%—well below the 1% objective.  

 
(a) Angle Residuals (b) Position Error of Hypothesis 
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Figure 47: Filter Accuracy for Case 06B. The angle residuals are plotted in 
(a). The black curve is for 𝜶 and the red curve is for 𝜷. The range error and 
coordinate errors (Hill’s frame) are plotted in (b). The red curve is the radial 
error, the green curve is the along-track error, the blue curve is the cross-
track error and the black curve is the range error. 

LEO, High Differential Argument of Perigee, Two-Body (Case 08A) 

The true error in the initial state vector of the hypothesis is listed in Table 10. The 

reference correction, 𝛿𝑿 (𝑡 ), should converge toward these values if implemented 

correctly.  

Table 10: Case 08A: IOD Hypothesis Error at Epoch & NLS Correction 

ECEF IOD Error NLS Correction 
𝑥 (m)  724.3579646337  740.3764464078 

𝑦 (m) -3.641745192908 -9.017772746998 

𝑧 (m)  84.58829722076  80.11643084178 

𝑥 ̇(m/s)  0.699779014041  0.717037668591 

𝑦 ̇(m/s) -0.145345612043 -0.146639616719 

𝑧 ̇(m/s) -0.600395421750 -0.608796418315 

Using a convergence criterion of |𝛿𝝆 | < 0.1 m, the filter converges after three iterations. 

The angle residuals are plotted in Figure 48(a). The absolute error in each of the LVLH 

coordinates and the range are shown in Figure 48(b). The residuals are larger than in 

Case 06, but this is expected due to the larger IOD errors. Any divergence of the reference 

orbit from the truth limits the accuracy of the final estimate since the dynamics are based 

upon the global and local motion of the reference orbit. Even still, it is quite remarkable 

to see the filter reduce the position error from the the kilometer-level to meter-level 

(~0.023% range error on average) in this case. 
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(a) Angle Residuals (b) Position Error of Hypothesis 

Figure 48: Filter Accuracy for Case 08A. The angle residuals are plotted in 
(a). The black curve is for 𝜶 and the red curve is for 𝜷. The range error and 
coordinate errors (Hill’s frame) are plotted in (b). The red curve is the radial 
error, the green curve is the along-track error, the blue curve is the cross-
track error and the black curve is the range error. 

LEO, High Differential Argument of Perigee, EGM96 𝟐𝟎 × 𝟐𝟎 (Case 08B) 

The true error in the initial state vector of the hypothesis is listed in Table 11. The 

reference correction, 𝛿𝑿 (𝑡 ), should converge toward these values if implemented 

correctly.  

Table 11: Case 08B: IOD Hypothesis Error at Epoch & NLS Correction 

ECEF IOD Error NLS Correction 
𝑥 (m)  2057.679842367  2168.609454297 

𝑦 (m) -1508.958988079 -1545.961906750 

𝑧 (m)  356.4651072556  326.2869915419 

𝑥 ̇(m/s)  2.461728478731  2.581121488380 

𝑦 ̇(m/s)  1.060053006694  1.049435567522 

𝑧 ̇(m/s) -2.429334581434 -2.487631514490 

Using a convergence criterion of |𝛿𝝆 | < 0.1 m, the filter converges after four iterations. 

The angle residuals are plotted in Figure 49(a). The absolute error in each of the LVLH 
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coordinates and the range are shown in Figure 49(b). The residuals are the largest of the 

four tests, but this result is expected since the reference orbit has a 2.2 km range error at 

epoch. The final estimate of the Target’s orbit has a maximum error of 228 m in range—

just 0.16% of the true range. The methodology appears to be fairly robust to IOD errors 

from large differentials in argument of perigee. 

 
(a) Angle Residuals 

 
(b) Position Error of Hypothesis 

Figure 49: Filter Accuracy for Case 08B. The angle residuals are plotted in 
(a). The black curve is for 𝜶 and the red curve is for 𝜷. The range error and 
coordinate errors (Hill’s frame) are plotted in (b). The red curve is the radial 
error, the green curve is the along-track error, the blue curve is the cross-
track error and the black curve is the range error. 

Verification Insight 

In a controlled experiment where the numerically integrated IOD reference orbit was the 

only source of error, the batch filter performed remarkably well. In all cases, errors after 

differential correction were no worse than 0.16% of the true range. This is excellent 

compared to the 1% rule of thumb for conducting RPOs. Case 08 represents one of the 

most stressing cases for our eccentricity assumption with a high differential argument of 

perigee, yet the filter performed well with both 𝑨 matrix formulations. We have high 
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confidence that the dynamics model, measurement model and filter are implemented 

correctly. 

 Reference KAM Torus 

The Hamiltonian for Earth-orbiting satellites in the expanded geopotential was previously 

given by Equation (5.93) as a function of the generalized coordinates, 𝒒 = (𝑞 , 𝑞 , 𝑞 ), and 

their conjugate momenta, 𝒑 = (𝑝 , 𝑝 , 𝑝 ). KAM theorem seeks to map this lightly 

perturbed Hamiltonian to one represented by new coordinates, 𝑸 = (𝑄 ,𝑄 ,𝑄 ), and 

momenta, 𝑷 = (𝑃 ,𝑃 , 𝑃 ), in which only the momenta appear in the new Hamiltonian, 

𝒦(𝑷). See [155] for further discussion of the new Hamiltonian and generating function as 

approximated with the Delaunay variables. The absence of the new coordinates merely 

implies from Hamilton-Jacobi theory that the coordinates have constant frequencies. 

Indeed, Earth orbiting satellites exhibit three fundamental frequencies in the ECEF frame: 

an anomalistic frequency, 𝜔 , which is just the Keplerian frequency with a correction for 

the nonspherical Earth; a nodal frequency, 𝜔 , which is a combination of the Earth’s 

rotation rate and the regression rate of the line of nodes; and an apsidal frequency, 𝜔 , 

which is the rotation rate of the line of apsides due to Earth’s oblateness. 

The three new momenta are integrals of motion which mandates that the solution lie on 

a three-dimensional manifold which is topologically equivalent to a 3-torus [177]. In other 

words, the new momenta resemble the actions from three sets of action-angle pairs and 

the new coordinates are the angles describing the position on each of the three action 

circuits. 

An easy homeomorphism from the native Cartesian space to the phase space of a torus 

does not currently exist, but the common quasi-periodic nature of the native coordinates 



 171 

and the torus angles makes an N-tuple Fourier series a possible solution for mapping 

between both spaces. There are generally two approaches used for constructing the torus 

Fourier series: 1) trajectory-following techniques that perform a Fourier decomposition of 

data from long numerically integrated orbits, and 2) iterative techniques that find 

successively better approximations of the series using Hamilton’s equations [178]. Binney 

and Spergel [179][180] pioneered the first approach for non-integrable galactic dynamics 

and Wiesel spearheaded the first known efforts for earth orbits [153][154]. Wiesel’s two-

pass trajectory-following approach is applied here; fundamental frequencies are identified 

on the first pass and the series coefficients are extracted on the second pass. 

The aim is to construct the native coordinates in the time domain from a finite Fourier 

series 

𝒒(𝑡) = 𝑫 (𝑰)exp(𝑖(𝑙 𝜔 + 𝑚 𝜔 + 𝑛 𝜔 )𝑡)
 

 (5.156)

where 𝑫  are the complex series coefficients associated with the discrete frequencies 𝜔 =

(𝑙 𝜔 + 𝑚 𝜔 + 𝑛 𝜔 ), and (𝑙 ,𝑚 ,𝑛 ) are integers for combining the fundamental 

frequencies. The more conventional real form gives the Fourier series as: 

𝒒(𝑡) = 𝑪 + 𝑪 cos(𝑙 𝑄 + 𝑚 𝑄 + 𝑛 𝑄 ) + 𝑺 cos(𝑙 𝑄 + 𝑚 𝑄 + 𝑛 𝑄 )
 

 (5.157)

𝑸(𝑡) = 𝝎(𝑡 − 𝑡 ) + 𝑸(𝑡 ) (5.158)

where 𝑸 are the torus angle variables incremented linearly in time, 𝝎 is the set of 

fundamental frequencies found through the first pass through the power spectrum, 𝑪  

and 𝑺  are the Fourier coefficients or the amplitudes of the Fourier transform at each 

integer combination of the fundamental frequencies. The combination of (𝑙 ,𝑚 , 𝑛 ) uses 
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an incrementing scheme that avoids repeated frequency combinations in the numerical 

routine. 

A time derivative gives the velocities 

𝒒(̇𝑡) = (𝑙 𝜔 + 𝑚 𝜔 + 𝑛 𝜔 )[𝑺 cos(𝑙 𝑄 + 𝑚 𝑄 + 𝑛 𝑄 )
 

− 𝑪 cos(𝑙 𝑄 + 𝑚 𝑄 + 𝑛 𝑄 )] 

(5.159)

Figure 50 depicts an analog of the torus coordinates in the ECEF reference frame where 

𝑄  and 𝑄  combine to define the satellite’s position in the orbital plane and 𝑄  designates 

the line of nodes.  

 

Figure 50: Torus Angle Analog in the ECEF Frame.  The three torus 
coordinates are loosely contrasted with Keplerian elements since the Fourier 
coefficients can be transformed to coincide with any 𝑸(𝒕 ). 𝑸  and 𝑸  combine 
to define the satellite’s position in the orbital plane and 𝑸  designates the line 
of nodes.  

One may ponder the exact relationship between the Fourier series coefficients and the 

action-angle variables that describe the satellite position on the torus. From classical 

Equator
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mechanics, the constant actions define the shape of invariant tori, while the angles are 

the coordinates on the tori. Mathematically, the canonical angle coordinates are those 

given in Equation (5.158), but their conjugate action momenta do not appear explicitly 

in the Fourier series. The momenta represent the dimensions in phase space that are 

directed away from the torus surface and are only implicitly present through the series 

coefficients. Nevertheless, they can still be calculated explicitly from the Poincaré integral 

invariants [153] 

𝑃 =
1

2𝜋
𝒑 ⋅ d𝒒
 

=
1

2𝜋
𝒑 ⋅

𝜕𝒒

𝜕𝑄
d𝑄  (5.160)

where 𝑄  are the angle coordinates, 𝒒 and 𝒑 are the native coordinates and momenta, 

and Γ  is a fundamental contour about the torus. As the system oscillates around the 

torus, the time derivative of the coordinates is equivalent to the fundamental frequencies. 

Since the action momenta are constant on a torus, their time derivative is simply zero, 

which infers the system’s Hamiltonian function is only a function of action momenta. This 

makes sense because the Hamiltonian is conserved. As such, the Hamiltonian equations 

of motion are resolved as: 

𝑑𝑄

𝑑𝑡
=

𝜕𝒦(𝑷)

𝜕𝑃
= 𝜔 (𝑷) (5.161)

𝑑𝑃

𝑑𝑡
= −

𝜕𝒦(𝑷)

𝜕𝑄
= 0 (5.162)

From Equation (5.161) it is apparent that the frequencies in the orbital motion are a 

function of the action momenta. Thus, the influence of the action momenta on the Fourier 

series is apparent in the Fourier coefficients as amplitudes of the frequencies and their 

combinations in time. 
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5.6.1 Trajectory Following Fourier Analysis 

A spectral analysis of a numerical integration of the reference orbit allows us to identify 

the fundamental frequencies and decompose the orbit into a Fourier series. A variation of 

Jacques Laskar’s Numerical Algorithm of the Fundamental Frequency (NAFF) [181][182] 

is the machinery of choice for finding the fundamental frequencies and coefficients to 

construct the torus Fourier series. The NAFF is a technique that approximates the 

truncated, continuous Fourier transform (TCFT) so that prominent spectral lines are 

identified without the destructive effects of aliasing and leakage that will be discussed 

shortly. 

A one-year numerical integration (6 months forward and 6 months backward from epoch) 

in the full geopotential is generally acceptable. The transformation of the numerically 

integrated coordinate data, 𝑓(𝑡), from the time domain to the frequency domain is done 

using a finite Fourier transform over the symmetric time interval [−𝑇 , 𝑇 ] where T is 6 

months. The typical Fourier transform of a function over an infinite time span is 

performed by 

ℱ(𝜈) = 𝑓(𝑡)𝑒− d𝑡
−

 (5.163)

where 𝜈 is the cycle frequency. The Fourier transform assumes infinite periodicity in the 

signal, but over an arbitrary, finite time interval, it is doubtful that the signal endpoints 

are of the same value. The consequence of this discontinuity is a phenomenon known as 

spectral leakage in the Fourier transform.  To inhibit this, Laskar multiplies the signal by 

a Hanning window function, χ , that forces the signal to start and end at zero amplitude 

χ
𝑡

𝑇
=

2 (𝑝!)

(2𝑝)!
1 + cos 𝜋

𝑡

𝑇
 (5.164)
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where 𝑝 is the order of the cosine function and 𝑇  is the frequency interval. The window 

function is shown graphically for various values of 𝑝 in Figure 51(a) on the normalized 

frequency interval [−1, 1]. 

The finite Fourier transform with the window function over the timespan [−𝑇 , 𝑇 ] is 

ℱ(𝜈) =
1

2𝑇
𝑓(𝑡)𝑒− χ

𝑡

𝑇
d𝑡

−

 

=
1

2𝑇
𝑓(𝑡)𝑒− χ

𝑡

𝑇
d𝑡 −

1

2𝑇
𝑓(𝑡)𝑒− χ

𝑡

𝑇
d𝑡

−

 

(5.165)

The domain of the Fourier transform can be expressed as cycle frequency, 𝜈, or angular 

frequency, 𝜔 = 2𝜋𝜈, but the latter will typically be used for the torus. 

Choosing an appropriate window power is essential to dissecting spectral content from 

the transformed data. The effect of increasing the window power is demonstrated by 

applying a Fourier transform on a single spectral line of unit amplitude over the timespan 

[−1, 1] and shown in Figure 51(b)  

ℱ(𝜔) =
1

2
𝑒 χ (𝑡)d𝑡

−

=
(−1) 𝜋 (𝑝!) sin 𝜔

𝜔(𝜔 − 𝜋 )⋯ (𝜔 − 𝑝 𝜋 )
 (5.166)

 
(a) Hanning Window of Order 𝒑 

 
(b) Sidelobe Effects from 𝓕 = (𝝎) to 𝓕 = (𝝎) 
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Figure 51: Hanning Window Characteristics. Laskar’s method uses a 
Hanning window to prevent spectral leakage by forcing the signal to start and 
end at zero amplitude as in (a). The window function has an effect on discrete 
spectral lines causing the main lobe to widen and side lobes to fall off more 
rapidly as 𝒑 increases (b). 

In this example, the signal is a gate function and has a single spectral line at 𝜔 = 0, but 

Figure 51(b) shows side lobe oscillations of 𝜔 = 𝜋/𝑇  which appear from the cosine term 

in Equation (5.164). As 𝑝 increases, the main lobe of the 𝜔  spectral line broadens and 

the side lobes around it fall off more rapidly. The amplitude of the spectral line remains 

the same with increasing 𝑝, so the advantage of higher order window functions is an 

accelerated convergence upon a discrete frequency. One disadvantage occurs in signals 

containing integer combinations of frequency sets in which one frequency is significantly 

smaller than the other frequencies. When this occurs, such as the case of cascading 

harmonics from the small apsidal frequency, the higher order window functions can 

“swallow” nearby spectral content. This is known as spectral shadowing. 

Ultimately, the choice of the Hanning window power is contingent upon the signal 

characteristics, but Laskar shows for KAM solutions that the accuracy of the frequency 

analysis (order 1/𝑇 + ) generally improves by increasing 𝑝. He suggests using the highest 

possible value of 𝑝 until precision begins to decrease. A Hanning window of order 𝑝 = 2 is 

used in this work to avoid spectral shadowing. 

Once the reference orbit has been transformed into the frequency domain, the next step 

is to acquire the fundamental frequencies. The process for finding these frequencies is 

iterative. Begin with an approximate set using Lagrange’s planetary equations 

𝜔 =
𝜇

𝑎
−

3
√

𝜇𝐽 𝑅⊕

2𝑎 ⁄ (1 − 𝑒 ) ⁄

3

2
sin (𝑖) − 1  (5.167)
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𝜔 = 𝜔⊕ −
3
√

𝜇𝐽 𝑅⊕

2𝑎 ⁄ (1 − 𝑒 )
cos 𝑖 (5.168)

𝜔 = −
3
√

𝜇𝐽 𝑅⊕

2𝑎 ⁄ (1 − 𝑒 )

5

2
sin (𝑖) − 2  (5.169)

Recall that discrete peaks in the spectrum appear as integer combinations of the 

fundamental frequencies: 𝜔 = (𝑙 𝜔 + 𝑚 𝜔 + 𝑛 𝜔 ). The approximate frequencies from  

Equations (5.167) - (5.169) are not good enough to precisely identify the spectral peaks 

in each signal (𝑥, 𝑦, 𝑧), but they get close enough to find the real peaks in small segments 

of the frequency spectrum (𝜔 +/−Δ𝜔) using an FFT. Only four discrete peaks are 

targeted in this step 

𝜔( ) = 𝜔 + 𝜔  (5.170)

𝜔( − ) = 𝜔 − 𝜔 + 𝜔  (5.171)

𝜔( ) = 2𝜔 + 2𝜔  (5.172)

𝜔( ) = 2𝜔 + 𝜔  (5.173)

where 𝜔( ) = (𝑙𝜔 + 𝑚𝜔 + 𝑛𝜔 ). 

Since the FFT is coarsely sampled, a Newton-Raphson (NR) algorithm [153] seeks the 

maximum spectral power, 𝑃 = |ℱ(𝜔)| , near the peaks found from the FFT. After NR 

converges, the frequency is recorded and the peak is subtracted from the spectral data in 

each coordinate. The improved frequencies are 

𝜔 = 𝜔 ( ) − 𝜔 ( ) (5.174)

𝜔 = −
𝜔 ( − ) + 𝜔 ( − )

2
− 𝜔 ( )  (5.175)

𝜔 = 𝜔 ( ) − 𝜔 ( ) (5.176)

where the left superscript indicates which extracted signal frequency is used. 
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A similar process is used to refine the frequencies further, but this time using 36 peaks 

and smaller FFT segments prior to NR. To simplify the notation for identifying all 36 

peaks, we simply define the integers (𝑙,𝑚, 𝑛). The peaks are extracted in the following 

order in an attempt to minimize spectral shadowing: (1,0,1); (1,1,1); (1,2,1); (1,3,1); 

(1,4,1); (1,5,1); (1,−1,1); (1,−2,1); (1,−3,1); (1,−4,1); (1,−5,1); (2,0,2); (2,1,2); (2,2,2); 

(2,3,2); (2,4,2); (2,5,2); (2, −1,2); (2, −2,2); (2, −3,2); (2, −4,2); (2, −5,2); (3,0,3); (3,1,3); 

(3,2,3); (3,3,3); (3,4,3); (3,5,3); (3,−1,3); (3,−2,3); (3,−3,3); (3,−4,3); (3,−5,3); (2,0,1); 

(3,0,2); (3,0,1). The frequencies from the three signals are averaged for each peak and a 

least squares fit of the 36 integer combinations provides an improved approximation of 

the fundamental frequencies. 

In one last attempt to refine the frequencies, we use the improved frequencies to extract 

12 peaks in the following order: (1,0,1); (1,1,1); (1, −1,1); (2,0,2)∗; (2,0,1); (2,1,2)∗; (2,1,1); 

(2,−1,2)∗; (2,−1,1). The three integer combinations indicated with an asterisk are only 

extracted in an attempt to reduce spectral shadowing if they have larger peaks than the 

peaks succeeding them. The final fundamental set is rendered from a least squares fit of 

10 selected signal frequencies: 𝜔 ( ), 𝜔 ( ), 𝜔 ( ), 𝜔 ( − ), 𝜔 ( − ), 𝜔 ( ), 

𝜔 ( ), 𝜔 ( ), 𝜔 ( − ), 𝜔 ( − ). 

With the estimated fundamental frequencies, the coefficients of the Fourier series are 

extracted by evaluating the real and imaginary parts of the Fourier transform 

𝐶 = ℜℱ(0) (5.177)

𝐶 = 2ℜℱ(𝜔 ) (5.178)

𝑆 = −2ℑℱ(𝜔 ) (5.179)
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ℱ(𝜔 ) is the complex Fourier transform at the composite frequency 𝜔 , or in the case of 

the constant term, 𝐶 , at 𝜔 = 0. 

Generally, two extraction passes are needed to correct coefficients that experience spectral 

shadowing on the first pass. 
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6 Case Study Results 

 

Chapter 6 

Case Study Results 

 

An infinite number of NMC orbit scenarios could be used to evaluate our IOD and 

estimation process, but a subset are formulated from general characteristics of 

circumnavigation orbits. The existence of an NMC trajectory means 𝛿𝑎 ≪ 𝑎 and station-

keeping operations necessitate that 𝛿𝑎 ≈ 0. Additionally, 𝛿𝑒, 𝛿𝑖, 𝛿Ω and 𝛿𝑢 are quite small 

within the optical navigation capability gap or else the extent of motion will exceed the 

Bingham threshold where classical angles-only methods become tractable. 𝛿𝜔 and 𝛿𝜈 can 

be large, but are traded to keep 𝛿𝑢 small (𝛿Ω can also be traded in 𝛿𝑢 to a lesser extent). 

These expectations merit three basic scenarios: 1) the Target is station-keeping (𝛿𝑎 ≈ 0) 

with an idealized matching argument of perigee (𝛿𝜔 ≈ 0) and low differentials in the other 

orbital elements; 2) low differentials in all orbital elements; and 3) large differentials in 

𝛿𝜔 and 𝛿𝜈 while all other differentials are small. For each of these scenarios, one is 

performed at GEO and another at LEO. None of the scenario parameters is treated as an 

assumption in the research code; there is no prior knowledge of any of this to aid the 

algorithm. 

Table 12 lists the test cases and the associated differential orbital elements. Figure 52 

shows what each of the trajectories looks like with 10 orbits in the full geopotential for 

physical intuition. Only the first orbit is used to estimate the Target’s state, though. A 
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substantial amount of drift occurs in all but the energy matching cases (Case 03C and 

Case 04C), so it is understandable why 𝛿𝑎 must remain small to perform persitent 

proximity operations. 

Table 12: Outline of Case Study Differential Orbital Elements 

Case Orbit 𝜹𝒂 (km) 𝜹𝒆 (nd) 𝜹𝒊 (°) 𝜹𝛀 (°) 𝜹𝝎 (°) 𝜹𝝂 (°) 
03C GEO  0.0  0.00075  0.1 -0.03  0.000  0.060 
04C LEO  0.0  0.00500  0.2  0.10  0.000  0.300 
05C GEO  3.0  0.00075  0.1 -0.03  0.100 -0.120 
06C LEO  1.0  0.00500  0.2  0.10 -0.200  0.500 
07C GEO  3.0  0.00075  0.1 -0.03  295.0  65.00 
08C LEO  1.0  0.00500  0.2  0.10  130.4 -130.0 

 

 
(a) Case 03C – GEO 
(Matching 𝒂 and 𝝎) 

 
(b) Case 04C – LEO 
(Matching 𝒂 and 𝝎) 

(c) Case 05C – GEO 
(Small Differentials) 

(d) Case 06C – LEO 
(Small Differentials) 
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(e) Case 07C – GEO 

(Large 𝜹𝝎) 

 
(f) Case 08C – LEO 

(Large 𝜹𝝎) 

Figure 52: Test Case Depictions. (a) and (b) are idealized station-keeping 
cases at GEO and LEO, respectively. The LEO case exhibits some uncorrected 
natural drift due to the Earth’s oblateness. (c) and (d) are small differential 
element cases at GEO and LEO, respectively. (e) and (f) have large 
differentials in argument of perigee while the other differential elements are 
small. The black curve is the actual trajectory. The red curve is a projection 
in the 𝒓𝒘-plane. The green curve is a projection in the 𝒔𝒘-plane. The blue 
curve is a projection in the 𝒓𝒔-plane. 

Implementation Notes 

Truth data is generated with numerically integrated orbits in the full geopotential (20 ×

20) with a sample rate of 10 Hz at LEO and 1 Hz at GEO. All other perturbations are 

ignored. No prior knowledge of the Target is assumed and zero-mean measurement noise 

is added to the angles with 𝜎 = 10 arc sec; otherwise, perfect knowledge of the Surveyor’s 

inertial state is assumed for generating the 𝑹  rotation matrix. Errors in the reference 

KAM torus (typically less than 10 m RMS in the coordinates) introduce noise in the filter 

dynamics. GEO cases use numerically integrated reference trajectories instead of the KAM 

torus due to challenges fitting a torus to resonant orbits.  
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 Case 03C – GEO, Matching Orbital Energy, Matching Perigee  

This case demonstrates a station-keeping NMC trajectory at GEO, which requires an 

energy matching condition (𝛿𝑎 ≈ 0). Out-of-plane motion is induced from 𝛿𝑖 = 0.1° and 

𝛿Ω = −0.03°. 𝛿𝑖 also causes an along-track drift, albeit very small due to the high altitude. 

The trajectory is offset in the along-track direction by the combination of 𝛿𝜈 = 0.06° and 

𝛿Ω. The argument of perigee is coincident, so it does not contribute to the along-track 

shift in this case. The scale of the relative trajectory is dominated by 𝛿𝑒 = 0.00075 given 

the conditions of 𝛿𝑎 and 𝛿𝜔. Although the differential elements seem quite small, it does 

not take very much at this altitude to distort the relative trajectory within the ranges of 

angles-only navigation. Table 13 indicates the COEs for the Surveyor, Target and 

uniformly sampled admissible hypotheses. It also indicates the magnitude of 𝝆  for a sense 

of the relative trajectory’s scale. Note that the semi-major axis and argument of perigee 

are the same for all hypotheses. This is a result of the logic that forces 𝛿𝑎 = 0 when Δ𝛼 <

2.5° and the argument of perigee search in 𝛿𝜔 = 10° increments about 𝜔 . 

Table 13: Case 03C Orbital Elements for Truth & Hypotheses 

 |𝝆 | (km) 𝒂 (km) 𝒆 (nd) 𝒊 (°) 𝛀 (°) 𝝎 (°) 𝝂 (°) 
Surv      - 42166.15 0.000304 0.1929 87.10659 222.8015 0.000000 
Targ 63.1942 42166.15 0.001054 0.2929 87.07659 222.8015 0.060000 
H1 100.010 42166.15 0.001492 0.351008 87.06457 222.8015 0.089695 
H2 90.0018 42166.15 0.001373 0.335188 87.06087 222.8015 0.088595 
H3 79.9935 42166.15 0.001254 0.31937 87.05824 222.8015 0.086435 
H4 69.9914 42166.15 0.001135 0.303554 87.05682 222.8015 0.083075 
H5 59.9881 42166.15 0.001016 0.287741 87.05682 222.8015 0.078285 
H6 49.9882 42166.15 0.000897 0.271929 87.05850 222.8015 0.071835 
H7 39.9890 42166.15 0.000779 0.256119 87.06217 222.8015 0.063405 
H8 29.9904 42166.15 0.000660 0.240311 87.06820 222.8015 0.052605 
H9 19.9949 42166.15 0.000541 0.224506 87.07712 222.8015 0.038945 
H10   9.9980 42166.15 0.000423 0.208702 87.08957 222.8015 0.021755 
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The IOD results are summarized in a sequence of eight plots shown in Figure 53. The 

hypotheses show good scalability agreement with the truth as indicated by the trajectory 

projections in Figure 53(a) and Figure 53(b). When 𝛿𝑎 ≈ 0, the skewness factor can be 

used to identify the region of the orbit with the best range observability. Since the 

trajectory skews right (skewness factor is 𝑑 = 0.6534), range observability is better in the 

+𝛼 domain surrounding the global 𝛼̇ . The better observability is justified by the larger 

Δ𝛼 spread in this region as shown in the 𝛼| ̇  range map in Figure 53(e). Range 

resolvability in the +𝛼 domain (m = 0.3049) is only slightly worse than in the −𝛼 domain 

(m = 0.2579), so we sacrifice range resolution for better observability. A set of 200 𝛼 ̇

waypoints surrounding the global 𝛼̇  are used to map range and scale the IOD COEs. 

Several of them are shown in Figure 53(d) as indicated by the dashed lines. There is no 

eclipse at GEO during the time of this scenario, so photometry is not used for scaling the 

COEs. The IOD solution is within 2.7% of the true range as shown in Figure 53(h). The 

accuracy of the IOD solution is also conveyed by the differential orbital elements in Table 

14. 

 
(a) RS-plane Hypotheses Projection 

 
(b) SW-plane Hypotheses Projection 
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(c) 𝜶 vs. �̇� Profile (Curves Overlap) 

 
(d) Zoomed View of 𝜶 vs. �̇� Segment 

(e) 𝜶| ̇  Range Map 

 
 
 
 

Intentionally Blank 
No Eclipse 

 
 

 
(f) 𝚫𝒕|  Range Map 

 
(g) Trajectories & Projections (h) Range Error 

Figure 53: Case 03C Initial Orbit Determination Results. A set of 10 
admissible hypothesis trajectories are projected in the rs-plane in (a) and the 
sw-plane in (b) along with the truth (the black curve). The location of 
minimum angular rate is indicated by the dots and the location of the 
maximum angular rate is indicated by the squares. The 𝜶 vs. �̇� curves are 
plotted in (c), but practically overlap. A zoomed view of a small segment is 
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shown in (d) where the dashed lines are �̇� waypoints. The 𝜶| ̇  range map 
is shown in (e) and the eclipse range map is shown in (f). The colored dots 
correspond to the colors used to represent the hypotheses in (a) and (b). The 
IOD solution (dashed red curve) is plotted with the truth (solid black curve) 
in (g) with their projections in all three directions to gain perspective of the 
in-plane and out-of-plane motion. The black dots indicate the location of the 
Surveyor for the actual and projected trajectories. The range error is plotted 
in (h) as an absolute error (red curve) and as a percentage of the truth (blue 
curve). 

Estimation with the Numerical 𝑨 Matrix & Integrated Reference Orbit 

The NLS filter results are shown in Figure 54 using the numerical 𝑨 matrix for local 

motion dynamics and a numerically integrated IOD reference orbit (recall that the torus 

could not be generated for this case). The root mean square (RMS) of the angle residuals 

are 10.02 arc sec in both angles indicating an excellent fit given the uncertainty in the 

angles (𝜎 = 10 arc sec). The accuracy of the estimate in Hill’s frame is shown in Figure 

54(b) where the range error peaks at 74 m. The percent range error holds relatively steady 

at ~0.07% of the true range, which is substantially better than the IOD solution and the 

1% rule of thumb for RPOs. The accuracy of the NLS solution is also conveyed by the 

differential orbital elements in Table 14. 

 
(a) Angle Residuals 

 
(b) Coordinate & Range Errors 
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(c) Percent Range Error 

Figure 54: Case 03C NLS Results (Numerical A Matrix & Integrated Ref. 
Orbit). The angle residuals are shown in (a) where 𝜶 is indicated by the black 
curve (typically obscured by 𝜷) and 𝜷 is indicated by the red curve. The 
relative position coordinate and range errors are shown in (b) where the radial 
direction is indicated in red, the along-track direction is indicated in green, 
the cross-track direction is indicated in blue and the range is indicated in 
black. Finally, the percent range error is presented in (c). The red curve 
designates the IOD solution and the blue curve designates the NLS solution. 

 

Table 14: Case 03C Differential Orbital Elements for Truth, IOD & NLS 

 𝜹𝒂 (km) 𝜹𝒆 (nd) 𝜹𝒊 (°) 𝜹𝛀 (°) 𝜹𝝎 (°) 𝜹𝝂 (°) 
Truth  0.00000  0.00075  0.10000 -0.03000  0.00000  0.06000 
IOD  0.00000  0.00073  0.09731 -0.05154  0.00000  0.08080 
NLS† -0.00235  0.00075  0.10006 -0.09802 -6.75E-2  0.19996 
NLS‡ -0.00188  0.00075  0.09997 -0.03015  6.06E-5  0.06427 

† Numerical 𝑨 matrix & numerically integrated reference orbit 
‡ Two-Body 𝑨 matrix & numerically integrated reference orbit 

Estimation with the Two-Body 𝑨 matrix & Integrated Reference Orbit 

The analytical two-body 𝑨 matrix was also tested against the numerical 𝑨 matrix to 

assess whether the added complexity and computational cost is warranted. The results 
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are shown in Figure 55. The RMS of the angle residuals have not changed—10.02 arc sec 

in both angles. The accuracy of the estimate in Hill’s frame is shown in Figure 55(b) 

where the range error peaks at -36 m. The percent range error holds relatively steady at 

~0.033% of the true range, which is half of the error using the numerical 𝑨 matrix. These 

results suggest that the expanded geopotential is overkill in the 𝑨 matrix. The reference 

orbit already contains the global effects of the full geopotential including 𝐽  and the 

sectoral terms that cause a longitudinal drift at GEO. The local motion seems to be well 

modelled with two-body equations of variation for this GEO case. We should be careful 

not to extrapolate these results. Figure 52(a) shows virtually no along-track drift 

throughout the duration of 10 orbits, so it is no surprise that the Keplerian 𝑨 matrix is 

sufficient. 

 
(a) Angle Residuals 

 
(b) Coordinate & Range Errors 

 
(c) Percent Range Error 
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Figure 55: Case 03C NLS Results (Two-Body A Matrix & Integrated Ref. 
Orbit). The angle residuals are shown in (a) where 𝜶 is indicated by the black 
curve (typically obscured by 𝜷) and 𝜷 is indicated by the red curve. The 
relative position coordinate and range errors are shown in (b) where the radial 
direction is indicated in red, the along-track direction is indicated in green, 
the cross-track direction is indicated in blue and the range is indicated in 
black. Finally, the percent range error is presented in (c). The red curve 
designates the IOD solution and the blue curve designates the NLS solution. 

 

 Case 04C – LEO, Matching Orbital Energy, Matching Perigee 

This case demonstrates a persistent NMC trajectory at LEO, which requires an energy 

matching condition (𝛿𝑎 ≈ 0). Out-of-plane motion is induced from 𝛿𝑖 = 0.2° and 𝛿Ω =

0.1°. 𝛿𝑖 also causes an along-track drift. The trajectory is shifted in the along-track 

direction by 𝛿𝜈 = 0.3° and 𝛿Ω. The argument of perigee is coincident, so it does not 

contribute to the along-track shift in this case. The scale of the relative trajectory is 

dominated by 𝛿𝑒 = 0.005 given the conditions of 𝛿𝑎 and 𝛿𝜔. Table 15 indicates the COEs 

for the Surveyor, Target and uniformly sampled admissible hypotheses. It also indicates 

the magnitude of 𝝆  for a sense of the relative trajectory’s scale. 

Table 15: Case 04C Orbital Elements for Truth & Hypotheses 

 |𝝆 | (km) 𝒂 (km) 𝒆 (nd) 𝒊 (°) 𝛀 (°) 𝝎 (°) 𝝂 (°) 
Surv      - 6789.086 0.001601 51.75242 72.49305 60.69588 0.000000 
Targ 55.77359 6789.086 0.006601 51.95242 72.59305 60.69588 0.300000 
H1 99.97613 6789.086 0.010609 52.10731 72.68847 60.69588 0.536085 
H2 89.86799 6789.086 0.009695 52.07176 72.66943 60.69588 0.480095 
H3 79.76535 6789.086 0.008783 52.03618 72.65059 60.69588 0.424355 
H4 69.66590 6789.086 0.007872 52.00058 72.63194 60.69588 0.368835 
H5 59.57155 6789.086 0.006963 51.96495 72.6135 60.69588 0.313555 
H6 49.48004 6789.086 0.006054 51.92929 72.59526 60.69588 0.258485 
H7 39.39336 6789.086 0.005148 51.89362 72.57722 60.69588 0.203645 
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H8 29.31031 6789.086 0.004242 51.85791 72.55939 60.69588 0.149015 
H9 19.23198 6789.086 0.003338 51.82218 72.54176 60.69588 0.094595 
H10 9.162617 6789.086 0.002435 51.78643 72.52434 60.69588 0.040375 

The IOD results are summarized in a sequence of eight plots shown in Figure 56. The 

hypotheses show good scalability agreement with the truth as indicated by the trajectory 

projections in Figure 56(a) and Figure 56(b). Since the trajectory skews right (skewness 

factor is 𝑑 = 0.3966), range observability is better in the +𝛼 domain surrounding the 

global 𝛼̇ . The selection is justified by the larger Δ𝛼 spread in this region as shown in 

the 𝛼| ̇  range map in Figure 56(e). Range resolvability in the +𝛼 domain (m = 0.0455) 

is comparable to the −𝛼 domain (m = 0.0531). A set of 200 𝛼 ̇waypoints surrounding the 

global 𝛼̇  are used to map range and scale the IOD COEs. This is made possible by the 

good structural coherency in the 𝛼 vs. 𝛼 ̇curves shown in Figure 56(d). The eclipse time 

differential is too short to be of any use for scaling as shown in Figure 56(f), so only the 

𝛼| ̇ range maps are used. The IOD solution is within 1.8% of the true range as shown in 

Figure 56(h). The accuracy of the IOD solution is also conveyed by the differential orbital 

elements in Table 16.    

 
(a) RS-plane Hypotheses Projection 

 
(b) SW-plane Hypotheses Projection 
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(c) 𝜶 vs. �̇� Profile (Curves Overlap) 

 
(d) Zoomed View of 𝜶 vs. �̇� Segment 

 
(e) 𝜶| ̇  Range Map 

 
(f) 𝚫𝒕|  Range Map 

 
(g) Trajectories & Projections 

 
(h) Range Error 

Figure 56: Case 04C Initial Orbit Determination Results. A set of 10 
admissible hypothesis trajectories are projected in the rs-plane in (a) and the 
sw-plane in (b) along with the truth (the black curve). The location of 
minimum angular rate is indicated by the dots and the location of the 
maximum angular rate is indicated by the squares. The 𝜶 vs. �̇� curves are 
plotted in (c), but practically overlap. A zoomed view of a small segment near 
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�̇�  is shown in (d). The 𝜶| ̇  range map is shown in (e) and the eclipse 
range map is shown in (f). The colored dots correspond to the colors used to 
represent the hypotheses in (a) and (b). The IOD solution (dashed red curve) 
is plotted with the truth (solid black curve) in (g) with their projections in all 
three directions to gain perspective of the in-plane and out-of-plane motion. 
The black dots indicate the location of the Surveyor for the actual and 
projected trajectories. The range error is plotted in (h) as an absolute error 
(red curve) and as a percentage of the truth (blue curve). 

Estimation with the Numerical 𝑨 Matrix & Torus Reference Orbit 

The NLS filter results are shown in Figure 57 using the numerical 𝑨 matrix for local 

motion dynamics and an IOD reference torus. The RMS of the angle residuals are 11.25 

and 10.37 arc sec in 𝛼 and 𝛽, respectively. The RMS of the torus native coordinates are 

9.19, 9.19 and 8.37 m in 𝑥, 𝑦 and 𝑧, respectively. This is a decent torus fit, but it does 

affect the accuracy of the estimate as process noise. The accuracy of the estimate in Hill’s 

frame is shown in Figure 57(c) where the range error peaks at 591 m. The percent range 

error holds relatively steady at ~0.53% of the true range, which is better than the IOD 

solution and the 1% rule of thumb for RPOs. The accuracy of the NLS solution is also 

conveyed by the differential orbital elements in Table 16. 

(a) Torus Accuracy 
 

(b) Angle Residuals 
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(c) Coordinate & Range Errors 

 
(d) Percent Range Error 

Figure 57: Case 04C NLS Results (Numerical A Matrix & Torus Ref. Orbit). 
The ECEF coordinate residuals from the torus orbit fitting process are shown 
in (a) where x, y and z are indicated by blue, green and red, respectively. The 
angle residuals are shown in (b) where 𝜶 is indicated by the black curve 
(typically obscured by 𝜷) and 𝜷 is indicated by the red curve. The relative 
position coordinate and range errors are shown in (c) where the radial 
direction is indicated in red, the along-track direction is indicated in green, 
the cross-track direction is indicated in blue and the range is indicated in 
black. Finally, the percent range error is presented in (d). The red curve 
designates the IOD solution and the blue curve designates the NLS solution. 

 

Table 16: Case 04C Differential Orbital Elements for Truth, IOD & NLS 

 𝜹𝒂 (km) 𝜹𝒆 (nd) 𝜹𝒊 (°) 𝜹𝛀 (°) 𝜹𝝎 (°) 𝜹𝝂 (°) 
Truth  0.00000  0.00500  0.20000  0.10000  0.00000  0.30000 
IOD  0.00000  0.00494  0.19604  0.11199  0.00000  0.28804 
NLS* -0.29060  0.00498  0.19603  0.09958 -0.73820  1.05027 
NLS† -0.00081  0.00500  0.20009  0.10004 -0.00057  0.30728 
NLS  0.00917  0.00501  0.20052  0.10031 -0.01370  0.32104 
NLS‡ -0.00232  0.00499  0.19964  0.09985 -0.00665  0.31269 

* Numerical 𝑨 matrix & torus reference orbit 
† Numerical 𝑨 matrix & numerically integrated reference orbit 

 Two-Body 𝑨 matrix & torus reference orbit 
‡ Two-Body 𝑨 matrix & numerically integrated reference orbit 
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Estimation with the Numerical 𝑨 Matrix & Integrated Reference Orbit 

The previous result is not as good as the Case 03C GEO results that used a numerically 

integrated reference orbit, so how much of an improvement can be made with a 

numerically integrated reference orbit in this LEO case? The NLS filter results are shown 

in Figure 58 using the numerical 𝑨 matrix for local motion dynamics and a numerically 

integrated reference orbit. The RMS of the angle residuals are 10.02 and 10.03 arc sec in 

𝛼 and 𝛽, respectively. The accuracy of the estimate in Hill’s frame is shown in Figure 

58(b) where the range error peaks at 55 m. The percent range error holds relatively steady 

at ~0.05% of the true range, which is better than the last trial with the torus by an order 

of magnitude. 

 
(a) Angle Residuals (b) Coordinate & Range Errors 

 
(c) Percent Range Error 
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Figure 58: Case 04C NLS Results (Numerical A Matrix & Integrated Ref. 
Orbit). The angle residuals are shown in (a) where 𝜶 is indicated by the black 
curve (obscured by 𝜷) and 𝜷 is indicated by the red curve. The relative 
position coordinate and range errors are shown in (b) where the radial 
direction is indicated in red, the along-track direction is indicated in green, 
the cross-track direction is indicated in blue and the range is indicated in 
black. Finally, the percent range error is presented in (c). The red curve 
designates the IOD solution and the blue curve designates the NLS solution. 

 

Estimation with the Two-Body 𝑨 matrix & Torus Reference Orbit 

Another variation in the dynamics model uses the analytical two-body 𝑨 matrix for local 

motion dynamics and an IOD reference torus. The results are shown in Figure 59 where 

we have left out the torus construction residual since it has not changed. The RMS of the 

angle residuals are 13.61 and 13.87 arc sec in 𝛼 and 𝛽, respectively. The accuracy of the 

estimate in Hill’s frame is shown in Figure 59(b) where the range error peaks at 320 m. 

The percent range error holds relatively steady at ~0.28% of the true range which is about 

half of the error using the numerical 𝑨 matrix. Once again, these results suggest that the 

local motion is well modelled with the two-body equations of variation. 

 
(a) Angle Residuals (b) Coordinate & Range Errors 
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(c) Percent Range Error 

Figure 59: Case 04C NLS Results (Two-Body A Matrix & Torus Ref. Orbit). 
The angle residuals are shown in (a) where 𝜶 is indicated by the black curve 
and 𝜷 is indicated by the red curve. The relative position coordinate and range 
errors are shown in (b) where the radial direction is indicated in red, the 
along-track direction is indicated in green, the cross-track direction is 
indicated in blue and the range is indicated in black. Finally, the percent 
range error is presented in (c). The red curve designates the IOD solution and 
the blue curve designates the NLS solution. 

 

Estimation with the Two-Body 𝑨 matrix & Integrated Reference Orbit 

One final test is performed using the analytical two-body 𝑨 matrix and a numerically 

integrated reference orbit. The results are shown in Figure 60. The RMS of the angle 

residuals are 11.17 and 12.57 arc sec in 𝛼 and 𝛽, respectively. The accuracy of the estimate 

in Hill’s frame is shown in Figure 59(b) where the range error peaks at -178 m. The 

percent range error holds relatively steady at ~0.16% of the true range, which is not quite 

as good as the numerical 𝑨 matrix with the integrated reference orbit. 
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(a) Angle Residuals (b) Coordinate & Range Errors 

 
(c) Percent Range Error 

Figure 60: Case 04C NLS Results (Two-Body A Matrix & Integrated Ref. 
Orbit). The angle residuals are shown in (a) where 𝜶 is indicated by the black 
curve and 𝜷 is indicated by the red curve. The relative position coordinate 
and range errors are shown in (b) where the radial direction is indicated in 
red, the along-track direction is indicated in green, the cross-track direction 
is indicated in blue and the range is indicated in black. Finally, the percent 
range error is presented in (c). The red curve designates the IOD solution and 
the blue curve designates the NLS solution. 

 

 Case 05C – GEO, Small Differential Elements  

This case demonstrates a drifting NMC trajectory at GEO with small differentials in all 

orbital elements. A moderate amount of drifting is caused by 𝛿𝑎 = 3 km. Out-of-plane 
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motion is induced from 𝛿𝑖 = 0.1° and 𝛿Ω = −0.03° and the trajectory is shifted in the 

negative along-track direction by the combination of 𝛿𝜔 = 0.1°, 𝛿𝜈 = −0.12° and 𝛿Ω. The 

scale of the relative trajectory is dominated by 𝛿𝑒 = 0.00075 with very minor influence 

from 𝛿𝑎 and 𝛿𝜔. Table 17 indicates the COEs for the Surveyor, Target and uniformly 

sampled admissible hypotheses. It also indicates the magnitude of 𝝆  for a sense of the 

relative trajectory’s scale. 

Table 17: Case 05C Orbital Elements for Truth & Hypotheses 

 |𝝆 | (km) 𝒂 (km) 𝒆 (nd) 𝒊 (°) 𝛀 (°) 𝝎 (°) 𝝂 (°) 
Surv      - 42166.15 0.000304 0.192900 87.10659 222.8015  0.000000 
Targ 79.2197 42169.15 0.001054 0.292900 87.07659 222.9015 -0.120000 
H1 100.236 42169.93 0.001251 0.318772 87.00900 222.8015  0.034775 
H2 90.2057 42169.55 0.001157 0.306161 87.01213 222.8015  0.037945 
H3 80.1723 42169.17 0.001062 0.293581 87.02098 222.8015  0.035375 
H4 70.1468 42168.79 0.000967 0.280974 87.02506 222.8015  0.037585 
H5 60.1216 42168.41 0.000872 0.268385 87.03301 222.8015  0.035905 
H6 50.0920 42168.04 0.000777 0.255816 87.04542 222.8015  0.029775 
H7 40.0728 42167.66 0.000683 0.243212 87.05106 222.8015  0.030415 
H8 30.0542 42167.28 0.000588 0.230626 87.06139 222.8015  0.026365 
H9 20.0336 42166.9 0.000493 0.21806 87.0772 222.8015  0.016825 
H10 10.0141 42166.53 0.000399 0.205486 87.09247 222.8015  0.007845 

The IOD results are summarized in a sequence of eight plots shown in Figure 61. The 

hypotheses show good scalability agreement with the truth as indicated by the trajectory 

projections in Figure 61(a) and Figure 61(b). Our instinct from the last two cases is that 

range observability is better in the −𝛼 domain surrounding the global 𝛼̇  since the 

trajectory skews left (skewness factor is 𝑑 = 1.7209), but that is not the case here. The 

differential semi-major axis distorts the angle offsets so that there is better range 

resolvability and observability in the +𝛼 domain in this case. The 𝛼| ̇  range map in 

Figure 61(e) shows a larger Δ𝛼 spread in this region. Range resolvability in the +𝛼 
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domain (m = 0.0937) is three times better than the −𝛼 domain (m = 0.3075). The 

structural coherency of the 𝛼 vs 𝛼 ̇arcs surrounding the local 𝛼̇  in the +𝛼 domain is 

poor due to close proximity to the 𝛼̇  points indicated in Figure 61(a). As a result, only 

the local 𝛼̇  is used to map range and scale the IOD COEs. It was discovered during 

post-processing that there is good structural coherency in other parts of the orbit as shown 

in Figure 61(d). Proteus is presently designed to look for coherency on arcs near 𝛼̇ , so 

future work should explore how differential elements change the coherent structure in the 

𝛼 vs 𝛼 ̇arcs for exploitability. There is no eclipse at GEO during the time of this scenario, 

so photometry is not used for scaling the COEs. The IOD solution is within 2.1% of the 

true range as shown in Figure 61(h). The accuracy of the IOD solution is also conveyed 

by the differential orbital elements in Table 18. 

 
(a) RS-plane Hypotheses Projection 

 
(b) SW-plane Hypotheses Projection 

 
(c) 𝜶 vs. �̇� Profile (Curves Overlap) 

 
(d) Zoomed View of 𝜶 vs. �̇� Segment 



 200 

(e) 𝜶| ̇  Range Map 

 
 
 
 

Intentionally Blank 
No Eclipse 

 
 

 
(f) 𝚫𝒕|  Range Map 

 
(g) Trajectories & Projections (h) Range Error 

Figure 61: Case 05C Initial Orbit Determination Results. A set of 10 
admissible hypothesis trajectories are projected in the rs-plane in (a) and the 
sw-plane in (b) along with the truth (the black curve). The location of 
minimum angular rate is indicated by the dots and the location of the 
maximum angular rate is indicated by the squares. The 𝜶 vs. �̇� curves are 
plotted in (c), but practically overlap. A zoomed view of a small segment 
exhibiting structural coherency is shown in (d). The 𝜶| ̇  range map is shown 
in (e) and the eclipse range map is shown in (f). The colored dots correspond 
to the colors used to represent the hypotheses in (a) and (b). The IOD solution 
(dashed red curve) is plotted with the truth (solid black curve) in (g) with 
their projections in all three directions to gain perspective of the in-plane and 
out-of-plane motion. The black dots indicate the location of the Surveyor for 
the actual and projected trajectories. The range error is plotted in (h) as an 
absolute error (red curve) and as a percentage of the truth (blue curve). 
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Estimation with the Numerical 𝑨 Matrix & Integrated Reference Orbit 

The NLS filter results are shown in Figure 62 using the numerical 𝑨 matrix for local 

motion dynamics and a numerically integrated IOD reference orbit. The RMS of the angle 

residuals are 10.02 arc sec in both angles indicating an excellent fit given the uncertainty 

in the angles (𝜎 = 10 arc sec). The accuracy of the estimate in Hill’s frame is shown in 

Figure 62(b) where the range error peaks at 12 m. The percent range error holds relatively 

steady at ~0.0085% of the true range, which is substantially better than the IOD solution 

and the 1% rule of thumb for RPOs. The accuracy of the NLS solution is also conveyed 

by the differential orbital elements in Table 18. 

 
(a) Angle Residuals (b) Coordinate & Range Errors 

 
(c) Percent Range Error 
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Figure 62: Case 05C NLS Results (Numerical A Matrix & Integrated Ref. 
Orbit). The angle residuals are shown in (a) where 𝜶 is indicated by the black 
curve (typically obscured by 𝜷) and 𝜷 is indicated by the red curve. The 
relative position coordinate and range errors are shown in (b) where the radial 
direction is indicated in red, the along-track direction is indicated in green, 
the cross-track direction is indicated in blue and the range is indicated in 
black. Finally, the percent range error is presented in (c). The red curve 
designates the IOD solution and the blue curve designates the NLS solution. 

 

Table 18: Case 05C Differential Orbital Elements for Truth, IOD & NLS 

 𝜹𝒂 (km) 𝜹𝒆 (nd) 𝜹𝒊 (°) 𝜹𝛀 (°) 𝜹𝝎 (°) 𝜹𝝂 (°) 
Truth  3.00000  0.00075  0.10000 -0.03000  0.10000 -0.12000 
IOD  3.03628  0.00076  0.10111 -0.08787  0.00000  0.03742 
NLS†  2.99854  0.00075  0.10001 -0.03001  0.10015 -0.11596 
NLS‡  2.99860  0.00075  0.10001 -0.02997  0.09994 -0.11578 

† Numerical 𝑨 matrix & numerically integrated reference orbit 
‡ Two-Body 𝑨 matrix & numerically integrated reference orbit 

Estimation with the Two-Body 𝑨 matrix & Integrated Reference Orbit 

The analytical two-body 𝑨 matrix was also tested against the numerical 𝑨 matrix to 

assess whether the added complexity and computational cost is warranted. The results 

are shown in Figure 63. The RMS of the angle residuals have not changed—10.02 arc sec 

in both angles. The accuracy of the estimate in Hill’s frame is shown in Figure 63(b) 

where the range error peaks at 19 m. The percent range error holds relatively steady at 

~0.014% of the true range, which is a little worse than the error using the numerical 𝑨 

matrix. Once again, the local motion is well modelled with two-body equations of variation 

at GEO. 
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(a) Angle Residuals (b) Coordinate & Range Errors 

 
(c) Percent Range Error 

Figure 63: Case 05C NLS Results (Two-Body A Matrix & Integrated Ref. 
Orbit). The angle residuals are shown in (a) where 𝜶 is indicated by the black 
curve (typically obscured by 𝜷) and 𝜷 is indicated by the red curve. The 
relative position coordinate and range errors are shown in (b) where the radial 
direction is indicated in red, the along-track direction is indicated in green, 
the cross-track direction is indicated in blue and the range is indicated in 
black. Finally, the percent range error is presented in (c). The red curve 
designates the IOD solution and the blue curve designates the NLS solution. 

 

 Case 06C – LEO, Small Differential Elements 

This case demonstrates a drifting NMC trajectory at LEO with small differentials in all 

orbital elements. A moderate amount of drifting is caused by 𝛿𝑎 = 1 km. Out-of-plane 
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motion is induced from 𝛿𝑖 = 0.2° and 𝛿Ω = 0.1° and the trajectory is shifted in the along-

track direction by the combination of 𝛿𝜔 = −0.2°, 𝛿𝜈 = 0.5° and 𝛿Ω. The scale of the 

relative trajectory is dominated by 𝛿𝑒 = 0.005 with very minor influence from 𝛿𝑎 and 𝛿𝜔. 

Table 19 indicates the COEs for the Surveyor, Target and uniformly sampled admissible 

hypotheses. It also indicates the magnitude of 𝝆  for a sense of the relative trajectory’s 

scale. 

Table 19: Case 06C Orbital Elements for Truth & Hypotheses 

 |𝝆 | (km) 𝒂 (km) 𝒆 (nd) 𝒊 (°) 𝛀 (°) 𝝎 (°) 𝝂 (°) 
Surv      - 6789.086 0.001601 51.75242 72.49305 60.69588 0.000000 
Targ 52.87975 6790.086 0.006601 51.95242 72.59305 60.49588 0.500000 
H1 100.5349 6791.130 0.011087 52.12857 72.70172 60.69588 0.566485 
H2 90.38421 6790.921 0.010128 52.09082 72.68103 60.69588 0.507515 
H3 80.23687 6790.712 0.009170 52.05306 72.66061 60.69588 0.448775 
H4 70.09503 6790.505 0.008214 52.01530 72.64045 60.69588 0.390295 
H5 59.95854 6790.298 0.007258 51.97753 72.62056 60.69588 0.332065 
H6 49.82531 6790.092 0.006303 51.93977 72.60092 60.69588 0.274055 
H7 39.69639 6789.887 0.005349 51.90200 72.58155 60.69588 0.216275 
H8 29.57244 6789.683 0.004396 51.86423 72.56245 60.69588 0.158725 
H9 19.45288 6789.479 0.003444 51.82646 72.54362 60.69588 0.101385 
H10 9.341857 6789.276 0.002494 51.78869 72.52506 60.69588 0.044245 

The IOD results are summarized in a sequence of eight plots shown in Figure 64. The 

hypotheses seem to have good scalability agreement with the truth as indicated by the 

trajectory projections in Figure 64(a) and Figure 64(b). The trajectory skews right 

(skewness factor is 𝑑 = 0.4877) and offers better range observability in the +𝛼 domain 

surrounding the global 𝛼̇ . The selection is justified by the larger Δ𝛼 spread in this 

region as shown in the 𝛼| ̇  range map in Figure 64(e). Range resolvability in the +𝛼 

domain (m = 0.0453) is comparable to the −𝛼 domain (m = 0.0599). A set of 200 𝛼 ̇

waypoints surrounding the global 𝛼̇  are used to map range and scale the IOD COEs. 
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The eclipse time differential is too short to be of any use for scaling as shown in Figure 

64(f), so only the 𝛼| ̇ range maps are used. The IOD solution is within 9.3% of the true 

range as shown in Figure 64(h). The accuracy of the IOD solution is also conveyed by the 

differential orbital elements in Table 20.   

 
(a) RS-plane Hypotheses Projection 

 
(b) SW-plane Hypotheses Projection 

 
(c) 𝜶 vs. �̇� Profile (Curves Overlap) 

 
(d) Zoomed View of 𝜶 vs. �̇� Segment 

(e) 𝜶| ̇  Range Map 
 

(f) 𝚫𝒕|  Range Map 
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(g) Trajectories & Projections (h) Range Error 

Figure 64: Case 06C Initial Orbit Determination Results. A set of 10 
admissible hypothesis trajectories are projected in the rs-plane in (a) and the 
sw-plane in (b) along with the truth (the black curve). The location of 
minimum angular rate is indicated by the dots and the location of the 
maximum angular rate is indicated by the squares. The 𝜶 vs. �̇� curves are 
plotted in (c), but practically overlap. A zoomed view of a small segment near 
�̇�  is shown in (d). The 𝜶| ̇  range map is shown in (e) and the eclipse 
range map is shown in (f). The colored dots correspond to the colors used to 
represent the hypotheses in (a) and (b). The IOD solution (dashed red curve) 
is plotted with the truth (solid black curve) in (g) with their projections in all 
three directions to gain perspective of the in-plane and out-of-plane motion. 
The black dots indicate the location of the Surveyor for the actual and 
projected trajectories. The range error is plotted in (h) as an absolute error 
(red curve) and as a percentage of the truth (blue curve). 

Estimation with the Numerical 𝑨 Matrix & Torus Reference Orbit 

The NLS filter results are shown in Figure 65 using the numerical 𝑨 matrix for local 

motion dynamics and an IOD reference torus. The RMS of the angle residuals are 10.98 

and 10.43 arc sec in 𝛼 and 𝛽, respectively. The RMS of the torus native coordinates are 

8.59, 8.59 and 7.76 m in 𝑥, 𝑦 and 𝑧, respectively. This is a decent torus fit, but it does 

affect the accuracy of the estimate as process noise. The accuracy of the estimate in Hill’s 

frame is shown in Figure 65(c) where the range error peaks at 1.265 km. The percent 
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range error holds relatively steady at ~1.15% of the true range, which is a marked 

improvement to the IOD solution and close to the 1% rule of thumb for RPOs. The 

accuracy of the NLS solution is also conveyed by the differential orbital elements in Table 

20. 

 
(a) Torus Accuracy 

 
(b) Angle Residuals 

(c) Coordinate & Range Errors 
 

(d) Percent Range Error 

Figure 65: Case 06C NLS Results (Numerical A Matrix & Torus Ref. Orbit). 
The ECEF coordinate residuals from the torus orbit fitting process are shown 
in (a) where x, y and z are indicated by blue, green and red, respectively. The 
angle residuals are shown in (b) where 𝜶 is indicated by the black curve 
(typically obscured by 𝜷) and 𝜷 is indicated by the red curve. The relative 
position coordinate and range errors are shown in (c) where the radial 
direction is indicated in red, the along-track direction is indicated in green, 
the cross-track direction is indicated in blue and the range is indicated in 
black. Finally, the percent range error is presented in (d). The red curve 
designates the IOD solution and the blue curve designates the NLS solution. 
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Table 20: Case 06C Differential Orbital Elements for Truth, IOD & NLS 

 𝜹𝒂 (km) 𝜹𝒆 (nd) 𝜹𝒊 (°) 𝜹𝛀 (°) 𝜹𝝎 (°) 𝜹𝝂 (°) 
Truth  1.00000  0.00500  0.20000  0.10000 -0.20000  0.50000 
IOD  0.99980  0.00467  0.18610  0.10723  0.00000  0.27213 
NLS*  1.02403  0.00506  0.20230  0.10116 -0.20966  0.51967 
NLS†  1.00775  0.00503  0.20121  0.10060 -0.20285  0.51124 
NLS  1.04106  0.00508  0.20306  0.10167 -0.22731  0.53851 
NLS‡  1.02367  0.00505  0.20197  0.10110 -0.21972  0.52931 

* Numerical 𝑨 matrix & torus reference orbit 
† Numerical 𝑨 matrix & numerically integrated reference orbit 

 Two-Body 𝑨 matrix & torus reference orbit 
‡ Two-Body 𝑨 matrix & numerically integrated reference orbit 

Estimation with the Numerical 𝑨 Matrix & Integrated Reference Orbit 

The NLS filter results are shown in Figure 66 using the numerical 𝑨 matrix for local 

motion dynamics and a numerically integrated reference orbit. The RMS of the angle 

residuals are 10.04 and 10.06 arc sec in 𝛼 and 𝛽, respectively. The accuracy of the estimate 

in Hill’s frame is shown in Figure 66(b) where the range error peaks at 665 m. The percent 

range error holds relatively steady at ~0.61% of the true range, which is better than the 

last trial with the torus. 

 
(a) Angle Residuals (b) Coordinate & Range Errors 
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(c) Percent Range Error 

Figure 66: Case 06C NLS Results (Numerical A Matrix & Integrated Ref. 
Orbit). The angle residuals are shown in (a) where 𝜶 is indicated by the black 
curve (obscured by 𝜷) and 𝜷 is indicated by the red curve. The relative 
position coordinate and range errors are shown in (b) where the radial 
direction is indicated in red, the along-track direction is indicated in green, 
the cross-track direction is indicated in blue and the range is indicated in 
black. Finally, the percent range error is presented in (c). The red curve 
designates the IOD solution and the blue curve designates the NLS solution. 

 

Estimation with the Two-Body 𝑨 Matrix & Torus Reference Orbit 

Results for the analytical two-body 𝑨 matrix with the IOD reference torus are shown in 

Figure 67 where we have left out the torus construction residual since it has not changed. 

The RMS of the angle residuals are 15.80 and 21.66 arc sec in 𝛼 and 𝛽, respectively. The 

accuracy of the estimate in Hill’s frame is shown in Figure 67(b) where the range error 

peaks at 1.727 km. The percent range error holds relatively steady at ~1.56% of the true 

range which is about half of the error using the numerical 𝑨 matrix. Not surprisingly, 

this is the worst result of the four dynamics model instantiations since the torus and 

Keplerian 𝑨 matrix represent variations on the true dynamics. 



 210 

 
(a) Angle Residuals (b) Coordinate & Range Errors 

 
(c) Percent Range Error 

Figure 67: Case 06C NLS Results (Two-Body A Matrix & Torus Ref. Orbit). 
The angle residuals are shown in (a) where 𝜶 is indicated by the black curve 
and 𝜷 is indicated by the red curve. The relative position coordinate and range 
errors are shown in (b) where the radial direction is indicated in red, the 
along-track direction is indicated in green, the cross-track direction is 
indicated in blue and the range is indicated in black. Finally, the percent 
range error is presented in (c). The red curve designates the IOD solution and 
the blue curve designates the NLS solution. 

 

Estimation with the Two-Body 𝑨 Matrix & Integrated Reference Orbit 

One final test is performed using the analytical two-body 𝑨 matrix and a numerically 

integrated reference orbit. The results are shown in Figure 68. The RMS of the angle 



 211 

residuals are 13.08 and 20.07 arc sec in 𝛼 and 𝛽, respectively. The accuracy of the estimate 

in Hill’s frame is shown in Figure 68(b) where the range error peaks at 1.128 km. The 

percent range error holds relatively steady at ~1.03% of the true range. 

 
(a) Angle Residuals (b) Coordinate & Range Errors 

 
(c) Percent Range Error 

Figure 68: Case 06C NLS Results (Two-Body A Matrix & Integrated Ref. 
Orbit). The angle residuals are shown in (a) where 𝜶 is indicated by the black 
curve and 𝜷 is indicated by the red curve. The relative position coordinate 
and range errors are shown in (b) where the radial direction is indicated in 
red, the along-track direction is indicated in green, the cross-track direction 
is indicated in blue and the range is indicated in black. Finally, the percent 
range error is presented in (c). The red curve designates the IOD solution and 
the blue curve designates the NLS solution. 
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 Case 07C – GEO, Large Differential Argument of Perigee  

This case demonstrates a drifting NMC trajectory at GEO with a large differential 

argument of perigee and small differentials in the other orbital elements. We have 

intentionally selected 𝛿𝜔 to ensure that the IOD approximation of argument of perigee 

will be in error by at least 5°. Under ideal circumstances, this is the largest error 

encountered with a coarse 10° increment heuristic search described in Section 5.3.2. 

Without keeping the reader in suspense, the argument of perigee search performs as well 

as it can by settling on 152.8015° which is 5° in error after two iterations, just as planned. 

The question we seek to answer is if the IOD process can handle several degrees error in 

argument of perigee. As a control to this experiment, we seed a parallel run (Case 07D) 

with the exact argument of perigee. The results are presented together for a sharper 

contrast. 

In this case, the Target experiences a moderate amount of drifting caused by 𝛿𝑎 = 3 km. 

Out-of-plane motion is induced from 𝛿𝑖 = 0.1° and 𝛿Ω = −0.03° and the trajectory is 

shifted in the negative along-track direction by the combination of 𝛿𝜔 = 295°, 𝛿𝜈 = 65° 

and 𝛿Ω. The scale of the relative trajectory is dominated by 𝛿𝑒 = 0.00075 and 𝛿𝜔 with 

minor influence from 𝛿𝑎. Table 21 indicates the COEs for the Surveyor, Target and 

uniformly sampled admissible hypotheses for the run with 5° error in argument of perigee 

and Table 22 indicates the COEs for the control run with 0° error in argument of perigee. 

The tables also indicate the magnitude of 𝝆  for a sense of the relative trajectory’s scale. 

 

  



 213 

Table 21: Case 07C Orbital Elements for Truth & Hypotheses 

 |𝝆 | (km) 𝒂 (km) 𝒆 (nd) 𝒊 (°) 𝛀 (°) 𝝎 (°) 𝝂 (°) 
Surv      - 42166.15 0.000304 0.192900 87.10659 222.8015  270.000 
Targ 68.2192 42169.15 0.001054 0.292900 87.07659 157.8015  335.000 
H1 94.8646 42170.17 0.001405 0.331191 87.17212 152.8015 -20.1058 
H2 86.6081 42169.59 0.001266 0.317925 87.39592 152.8015 -20.3237 
H3 78.4926 42169.03 0.001127 0.304764 87.65627 152.8015 -20.5781 
H4 70.5701 42168.49 0.000988 0.291757 87.96020 152.8015 -20.8758 
H5 62.9246 42167.97 0.000848 0.278963 88.32784 152.8015 -21.2371 
H6 55.7029 42167.50 0.000707 0.266498 88.78146 152.8015 -21.6839 
H7 49.1793 42167.11 0.000565 0.254566 89.36442 152.8015 -22.2596 
H8 43.9287 42166.85 0.000419 0.243613 90.16044 152.8015 -23.0476 
H9 41.4851 42166.90 0.000266 0.234992 91.31342 152.8015 -24.1913 
H10 47.8848 42167.92 0.000089 0.236771 92.63464 152.8015 -25.5014 

 

Table 22: Case 07D Orbital Elements for Truth & Hypotheses 

 |𝝆 | (km) 𝒂 (km) 𝒆 (nd) 𝒊 (°) 𝛀 (°) 𝝎 (°) 𝝂 (°) 
Surv      - 42166.15 0.000304 0.192900 87.10659 222.8015  270.000 
Targ 68.2192 42169.15 0.001054 0.292900 87.07659 157.8015  335.000 
H1 90.4899 42171.05 0.001443 0.329743 86.34160 157.8015 -24.2826 
H2 82.5461 42170.37 0.001307 0.316741 86.55616 157.8015 -24.4911 
H3 74.7329 42169.70 0.001171 0.303846 86.80529 157.8015 -24.7341 
H4 67.1031 42169.05 0.001034 0.291101 87.09915 157.8015 -25.0216 
H5 59.7337 42168.43 0.000897 0.278569 87.45260 157.8015 -25.3685 
H6 52.7620 42167.84 0.000759 0.266353 87.89235 157.8015 -25.8013 
H7 46.4161 42167.32 0.000619 0.254636 88.45601 157.8015 -26.3576 
H8 41.1687 42166.92 0.000477 0.243776 89.21905 157.8015 -27.1125 
H9        
H10        

The IOD results are summarized in Figure 69 with Case 07C plots on the left and Case 

07D on the right. The Case 07C hypotheses do not show good scalability agreement with 

the truth as indicated by the misalignment of 𝛼  in Figure 69(a) and discordant OOP 
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motion in Figure 69(c). Conversely, Case 07D hypotheses do show good scalability 

agreement with the truth. The 𝛼| ̇  range maps in Figure 69(i) and (j) show a larger 

Δ𝛼 spread in the −𝛼 domain surrounding the global 𝛼̇  so there is better range 

observability in this region. In this case, the direction of enhanced range observability 

agrees with the leftward skewness (skewness factor is 𝑑 = 1.2811). Range resolvability in 

the −𝛼 domain (m = 0.0560 for Case 07C and m = 0.0588 for Case 07D) is comparable 

to the +𝛼 domain (m = 0.0785 for Case 07C and m = 0.0415 for Case 07D) so there is no 

reason to consider changing sides. Both runs have good structural coherency in the 𝛼 vs 

𝛼 ̇arcs surrounding the global 𝛼̇ , so 200 𝛼 ̇waypoints surrounding the global 𝛼̇  are 

used to map range and scale the IOD COEs. Despite their coherency, the 5° bias in 

argument of perigee causes a shift in the curves for Case 07C compared to Case 07D as 

shown in Figure 69(g) and (h). There is no eclipse at GEO during the time of this scenario, 

so photometry is not used for scaling the COEs. At its worst, the Case 07C IOD solution 

has a range error of 34% and the Case 07D solutions has a range error of 1.7% as shown 

in Figure 69(o) and (p). The accuracy of the IOD solution is also conveyed by the 

differential orbital elements in Table 23.  

 
(a) Case 07C: RS-plane Hypotheses Projection 

 
(b) Case 07D: RS-plane Hypotheses 

Projection 

𝜶  Error 

Case 07C Case 07D 
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(c) Case 07C: SW-plane Hypotheses 

Projection 

 
(d) Case 07D: SW-plane Hypotheses 

Projection 

 
(e) Case 07C: 𝜶 vs. �̇� Profile (Curves 

Overlap) 

 
(f) Case 07D: 𝜶 vs. �̇� Profile (Curves 

Overlap)  

 
(g) Case 07C: Zoomed View of 𝜶 vs. �̇� 

Segment 

 
(h) Case 07D: Zoomed View of 𝜶 vs. �̇� 

Segment 

Case 07D Case 07C 

Case 07D Case 07C 

Case 07C Case 07D 
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(i) Case 07C: 𝜶| ̇  Range Map (j) Case 07D: 𝜶| ̇  Range Map 
 
 

Intentionally Blank 
No Eclipse 

 
 

(k) Case 07C: 𝚫𝒕|  Range Map 

 
 

Intentionally Blank 
No Eclipse 

 
 

(l) Case 07D: 𝚫𝒕|  Range Map 

 
(m) Case 07C: Trajectories & Projections 

 
(n) Case 07D: Trajectories & Projections 

 
(o) Case 07C: Range Error 

 
(p) Case 07D: Range Error 

Case 07C Case 07D

Case 07C

Case 07D Case 07C
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Figure 69: Case 07 Initial Orbit Determination Results. A set of eight 
admissible hypothesis trajectories are projected in the rs-plane in (a) for Case 
07C and in (b) for Case 07D along with the truth (the black curve). The same 
is done for the sw-plane in (c) for Case 07C and (d) for Case 07D. The location 
of minimum angular rate is indicated by the dots and the location of the 
maximum angular rate is indicated by the squares. The 𝜶 vs. �̇� curves are 
plotted in (e) and (f) for Case 07C and Case 07D, respectively. A zoomed 
view of a small segment exhibiting structural coherency is shown in (g) and 
(h). The 𝜶| ̇  range map is shown in (i) and (j). The colored dots correspond 
to the colors used to represent the hypotheses in (a) and (b). The IOD solution 
(dashed red curve) is plotted with the truth (solid black curve) in (m) and 
(n) with their projections in all three directions to gain perspective of the in-
plane and out-of-plane motion. The black dots indicate the location of the 
Surveyor for the actual and projected trajectories. The range error is plotted 
in (o) and (p) as an absolute error (red curve) and as a percentage of the 
truth (blue curve). 

These results are solid evidence that the IOD technique is dependent upon good argument 

of perigee approximation for high differential arguments of perigee. The previous cases 

performed reasonably well with low differentials and errors in the argument of perigee 

that were a fraction of a degree. Our technique can handle higher fidelity searches to 

improve the argument of perigee. Rather than searching in 10° increments, the code should 

be modified to search in 1° increments next, but it comes with 10 × the computational 

cost. 

Estimation with the Two-Body 𝑨 Matrix & Integrated Reference Orbit 

Given the large error in the Case 07C IOD solution, there is little to be gained from highly 

accurate local motion dynamics, so the analytical two-body 𝑨 matrix is used with the 

batch filter. The results are shown in Figure 70. Once again, we show the Case 07D results 

in parallel. The RMS of the angle residuals for Case 07C are 10.33 and 10.21 arc sec in 𝛼 

and 𝛽, respectively, and 10.02 and 10.02 arc sec for Case 07D. The accuracy of the estimate 
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in Hill’s frame is shown in Figure 70(c) and (d) where the range error peaks at 9.56 km 

for Case 07C and 93 m for Case 07D. The percent range error holds relatively steady at 

~7.3% of the true range for Case 07C and ~0.071% for Case 07D.  

 
(a) Case 07C: Angle Residuals 

 
(b) Case 07D: Angle Residuals 

(c) Case 07C: Coordinate & Range Errors 
 

(d) Case 07D: Coordinate & Range Errors 

 
(e) Case 07C: Percent Range Error 

 
(f) Case 07D: Percent Range Error 

Figure 70: Case 07 NLS Results (Two-Body A Matrix & Integrated Ref. 
Orbit). The angle residuals are shown in (a) and (b) for Case 07C and Case 

Case 07C

Case 07C

Case 07C

Case 07D

Case 07D

Case 07D
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07D, respectively, where 𝜶 is indicated by the black curve and 𝜷 is indicated 
by the red curve. The relative position coordinate and range errors are shown 
in (c) and (d) where the radial direction is indicated in red, the along-track 
direction is indicated in green, the cross-track direction is indicated in blue 
and the range is indicated in black. Finally, the percent range error is 
presented in (e) and (f). The red curve designates the IOD solution and the 
blue curve designates the NLS solution. 

 

Table 23: Case 07 Differential Orbital Elements for Truth, IOD & NLS 

 𝜹𝒂 (km) 𝜹𝒆 (nd) 𝜹𝒊 (°) 𝜹𝛀 (°) 𝜹𝝎 (°) 𝜹𝝂 (°) 
Truth  3.00000  0.00075  0.10000 -0.03000 -65.0000  65.0000 
07C IOD  3.85035  0.00104  0.13336  0.24035 -70.0000  69.7220 
07D IOD  3.05911  0.00076  0.10140 -0.10772 -65.0000  65.0769 
07C NLS‡  3.22519  0.00081  0.10730 -0.03037 -66.0260  66.0284 
07D NLS‡  3.00044  0.00075  0.10007 -0.02999 -65.0097  65.0139 

‡ Two-Body 𝑨 matrix & numerically integrated reference orbit 

  

 Case 08C – LEO, Large Differential Argument of Perigee 

This case demonstrates a drifting NMC trajectory at LEO with a large differential 

argument of perigee and small differentials in the other orbital elements. A moderate 

amount of drifting is caused by 𝛿𝑎 = 1 km. Out-of-plane motion is induced from 𝛿𝑖 = 0.2° 

and 𝛿Ω = 0.1° and the trajectory is shifted in the along-track direction by the combination 

of 𝛿𝜔 = 130.4°, 𝛿𝜈 = −130.0° and 𝛿Ω. The scale of the relative trajectory is dominated by 

𝛿𝑒 = 0.005 and 𝛿𝜔 with minor influence from 𝛿𝑎. Table 24 indicates the COEs for the 

Surveyor, Target and uniformly sampled admissible hypotheses. It also indicates the 

magnitude of 𝝆  for a sense of the relative trajectory’s scale. Note that 𝝆  hypotheses 

were initiated with magnitudes of 100, 90,⋯ , 10, so the values listed in Table 24 indicate 
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a scale variation from what was initially stipulated. The Thiel-Sen estimator eliminates 

H1, H5, H6, H9 and H10. 

Table 24: Case 08C Orbital Elements for Truth & Hypotheses 

 |𝝆 | (km) 𝒂 (km) 𝒆 (nd) 𝒊 (°) 𝛀 (°) 𝝎 (°) 𝝂 (°) 
Surv      - 6789.086 0.001601 51.75242 72.49305 60.69588 150.0000 
Targ 61.19090 6790.086 0.006601 51.95242 72.59305 191.0959 20.00000 
H1 92.73028 6790.976 0.011227 52.06603 72.63360 190.6959 20.75806 
H2 84.00525 6790.747 0.009968 52.03357 72.61712 190.6959 20.66533 
H3 75.32311 6790.520 0.008710 52.00113 72.60069 190.6959 20.57314 
H4 66.69677 6790.296 0.007452 51.96869 72.58432 190.6959 20.48146 
H5 58.15519 6790.075 0.006194 51.93629 72.56800 190.6959 20.39041 
H6 49.74044 6789.859 0.004935 51.90393 72.55176 190.6959 20.30005 
H7 41.53517 6789.651 0.003676 51.87165 72.53562 190.6959 20.21059 
H8 33.71309 6789.457 0.002415 51.83957 72.51964 190.6959 20.12254 
H9 26.69981 6789.297 0.001150 51.80801 72.50401 190.6959 20.03742 
H10 28.30968 6789.331 0.001462 51.81570 72.50781 190.6959 20.05795 

The IOD results are summarized in a sequence of eight plots shown in Figure 71. The 

hypotheses have reasonably good scalability agreement with the truth as indicated by the 

trajectory projections in Figure 71(a) and Figure 71(b), but the cross-track motion for the 

shorter ranges seem to diverge as was noted above. The trajectory skews right (skewness 

factor is 𝑑 = 0.7173) and offers better range observability in the +𝛼 domain surrounding 

the global 𝛼̇ . The selection is justified by the larger Δ𝛼 spread in this region as shown 

in the 𝛼| ̇  range map in Figure 71(e). Range resolvability in the +𝛼 domain (m =

0.0414) is comparable to the −𝛼 domain (m = 0.0542). A set of 200 𝛼 ̇ waypoints 

surrounding the global 𝛼̇  are used to map range and scale the IOD COEs. The eclipse 

time differential is too short to be of any use for scaling as shown in Figure 71(f), so only 

the 𝛼| ̇ range maps are used. The IOD solution is within 1.6% of the true range as shown 
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in Figure 71(h). The accuracy of the IOD solution is also conveyed by the differential 

orbital elements in Table 25.   

 
(a) RS-plane Hypotheses Projection 

 
(b) SW-plane Hypotheses Projection 

 
(c) 𝜶 vs. �̇� Profile (Curves Overlap) 

 
(d) Zoomed View of 𝜶 vs. �̇� Segment 

(e) 𝜶| ̇  Range Map 
 

(f) 𝚫𝒕|  Range Map 
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(g) Trajectories & Projections (h) Range Error 

Figure 71: Case 08C Initial Orbit Determination Results. A set of 10 
admissible hypothesis trajectories are projected in the rs-plane in (a) and the 
sw-plane in (b) along with the truth (the black curve). The location of 
minimum angular rate is indicated by the dots and the location of the 
maximum angular rate is indicated by the squares. The 𝜶 vs. �̇� curves are 
plotted in (c), but practically overlap. A zoomed view of a small segment near 
�̇�  is shown in (d). The 𝜶| ̇  range map is shown in (e) and the eclipse 
range map is shown in (f). The colored dots correspond to the colors used to 
represent the hypotheses in (a) and (b). The IOD solution (dashed red curve) 
is plotted with the truth (solid black curve) in (g) with their projections in all 
three directions to gain perspective of the in-plane and out-of-plane motion. 
The black dots indicate the location of the Surveyor for the actual and 
projected trajectories. The range error is plotted in (h) as an absolute error 
(red curve) and as a percentage of the truth (blue curve). 

Estimation with the Numerical 𝑨 Matrix & Torus Reference Orbit 

The NLS filter results are shown in Figure 72 using the numerical 𝑨 matrix for local 

motion dynamics and an IOD reference torus. The RMS of the angle residuals are 10.60 

and 10.16 arc sec in 𝛼 and 𝛽, respectively. The RMS of the torus native coordinates are 

4.77, 4.78 and 3.53 m in 𝑥, 𝑦 and 𝑧, respectively. This is a decent torus fit, but it does 

affect the accuracy of the estimate as process noise. The accuracy of the estimate in Hill’s 

frame is shown in Figure 72(c) where the range error peaks at -715 m. The percent range 
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error holds relatively steady at ~0.51% of the true range, which is a meager improvement 

to the IOD solution, but still better than the 1% rule of thumb for RPOs. The accuracy 

of the NLS solution is also conveyed by the differential orbital elements in Table 25. 

 
(a) Torus Accuracy 

 
(b) Angle Residuals 

(c) Coordinate & Range Errors 
 

(d) Percent Range Error 

Figure 72: Case 08C NLS Results (Numerical A Matrix & Torus Ref. Orbit). 
The ECEF coordinate residuals from the torus orbit fitting process are shown 
in (a) where x, y and z are indicated by blue, green and red, respectively. The 
angle residuals are shown in (b) where 𝜶 is indicated by the black curve 
(typically obscured by 𝜷) and 𝜷 is indicated by the red curve. The relative 
position coordinate and range errors are shown in (c) where the radial 
direction is indicated in red, the along-track direction is indicated in green, 
the cross-track direction is indicated in blue and the range is indicated in 
black. Finally, the percent range error is presented in (d). The red curve 
designates the IOD solution and the blue curve designates the NLS solution. 
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Table 25: Case 08C Differential Orbital Elements for Truth, IOD & NLS 

 𝜹𝒂 (km) 𝜹𝒆 (nd) 𝜹𝒊 (°) 𝜹𝛀 (°) 𝜹𝝎 (°) 𝜹𝝂 (°) 
Truth  1.00000  0.00500  0.20000  0.10000  130.400 -130.000 
IOD  1.04821  0.00495  0.19320  0.07963  130.000 -129.583 
NLS*  0.99402  0.00496  0.19896  0.09948  130.340 -129.936 
NLS†  0.99960  0.00500  0.20006  0.10003  130.404 -129.997 
NLS  1.00494  0.00499  0.19972  0.09985  130.388 -129.982 
NLS‡  1.01202  0.00503  0.20083  0.10041  130.452 -130.044 

* Numerical 𝑨 matrix & torus reference orbit 
† Numerical 𝑨 matrix & numerically integrated reference orbit 

 Two-Body 𝑨 matrix & torus reference orbit 
‡ Two-Body 𝑨 matrix & numerically integrated reference orbit 

Estimation with the Numerical 𝑨 Matrix & Integrated Reference Orbit 

The NLS filter results are shown in Figure 73 using the numerical 𝑨 matrix for local 

motion dynamics and a numerically integrated reference orbit. The RMS of the angle 

residuals are 10.03 and 10.03 arc sec in 𝛼 and 𝛽, respectively. The accuracy of the estimate 

in Hill’s frame is shown in Figure 73(b) where the range error peaks at 47 m. The percent 

range error holds relatively steady at ~0.033% of the true range, which is significantly 

better than the last trial with the torus. 

 
(a) Angle Residuals (b) Coordinate & Range Errors 
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(c) Percent Range Error 

Figure 73: Case 08C NLS Results (Numerical A Matrix & Integrated Ref. 
Orbit). The angle residuals are shown in (a) where 𝜶 is indicated by the black 
curve (obscured by 𝜷) and 𝜷 is indicated by the red curve. The relative 
position coordinate and range errors are shown in (b) where the radial 
direction is indicated in red, the along-track direction is indicated in green, 
the cross-track direction is indicated in blue and the range is indicated in 
black. Finally, the percent range error is presented in (c). The red curve 
designates the IOD solution and the blue curve designates the NLS solution. 

 

Estimation with the Two-Body 𝑨 Matrix & Torus Reference Orbit 

Results for the analytical two-body 𝑨 matrix with the IOD reference torus are shown in 

Figure 74 where we have left out the torus construction residual since it has not changed. 

The RMS of the angle residuals are 10.67 and 11.33 arc sec in 𝛼 and 𝛽, respectively. The 

accuracy of the estimate in Hill’s frame is shown in Figure 74(b) where the range error 

peaks at 200 m. The percent range error holds relatively steady at ~0.14% of the true 

range. 
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(a) Angle Residuals (b) Coordinate & Range Errors 

 
(c) Percent Range Error 

Figure 74: Case 08C NLS Results (Two-Body A Matrix & Torus Ref. Orbit). 
The angle residuals are shown in (a) where 𝜶 is indicated by the black curve 
and 𝜷 is indicated by the red curve. The relative position coordinate and range 
errors are shown in (b) where the radial direction is indicated in red, the 
along-track direction is indicated in green, the cross-track direction is 
indicated in blue and the range is indicated in black. Finally, the percent 
range error is presented in (c). The red curve designates the IOD solution and 
the blue curve designates the NLS solution. 

 

Estimation with the Two-Body 𝑨 Matrix & Integrated Reference Orbit 

One final test is performed using the analytical two-body 𝑨 matrix and a numerically 

integrated reference orbit. The results are shown in Figure 75. The RMS of the angle 
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residuals are 10.31 and 11.13 arc sec in 𝛼 and 𝛽, respectively. The accuracy of the estimate 

in Hill’s frame is shown in Figure 75(b) where the range error peaks at 572 m. The percent 

range error holds relatively steady at ~0.41% of the true range. 

 
(a) Angle Residuals (b) Coordinate & Range Errors 

 
(c) Percent Range Error 

Figure 75: Case 08C NLS Results (Two-Body A Matrix & Integrated Ref. 
Orbit). The angle residuals are shown in (a) where 𝜶 is indicated by the black 
curve and 𝜷 is indicated by the red curve. The relative position coordinate 
and range errors are shown in (b) where the radial direction is indicated in 
red, the along-track direction is indicated in green, the cross-track direction 
is indicated in blue and the range is indicated in black. Finally, the percent 
range error is presented in (c). The red curve designates the IOD solution and 
the blue curve designates the NLS solution. 
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7 Conclusions 

 

Chapter 7 

Conclusions 

 

This thesis has established a solution to angles-only navigation for natural motion 

proximity operations with another space object—a problem that has evaded theoreticians 

and engineers alike since the Gemini and Apollo programs. Natural motion trajectories in 

space have been heavily studied in the context of angles-only navigation, but the weakly 

observable conditions of the range regime between approximately 200 m and 100 km have 

hampered classical angles-only orbit determination techniques and modern estimation 

methods. Prior to this thesis, the solution options in this regime required either Surveyor 

actuation (thrusting or spinning) or some form of prior knowledge of the Target spacecraft 

(i.e., kinematic state or physical characteristics). This thesis has expanded the solution 

frontier to include natural motion circumnavigation without actuation and without prior 

knowledge of the Target—the first of its kind. 

An analytical solution was developed that proves how range can be mapped from angle 

and angle-rate curves of NMC trajectories within a multiple hypothesis framework. In 

particular, this thesis showed that a set of admissible trajectory hypotheses (formulated 

with nonlinear dynamics in the full geopotential) will exhibit variations in 𝛼 (Δ𝛼) at 

common 𝛼 ̇waypoints. The observed 𝛼 at a particular 𝛼 ̇is contrasted with the admissible 

hypotheses where range is known. The observability conditions are optimal when Δ𝛼 is 
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largest in the multiple-hypothesis set. The ability to decipher range from this angle-

mapping technique led to a novel numerical solution for performing IOD without prior 

information about the Target and without the cost of thrusting. The algorithms for the 

numerical solution were tested with simulated data from NASA’s General Mission 

Analysis Tool. 

The test cases demonstrated station-keeping and drifting NMC trajectories at LEO and 

GEO with compelling results. If the argument of perigee is approximated within a fraction 

of one degree, our novel IOD solution tends to be within a few percent of the truth and 

is more than sufficient to seed a nonlinear least squares estimator. Test case 07C showed 

the importance of using fine intervals in our heuristic search for argument of perigee and 

iterations in our IOD process. Coarse approximations of argument of perigee were shown 

to introduce unacceptable scaling errors during IOD. A tainted IOD solution can be 

partially salvaged by batch nonlinear least squares, but the accuracy of the differential 

correction is inextricably linked to the accuracy of the IOD solution and the fidelity of 

the dynamics model. 

Our nonlinear least squares filter incorporated the full geopotential in the dynamics model 

through a novel application of KAM theorem. The literature suggested that the secular 

effects of 𝐽  dynamics improve range observability, so we went further by including the 

full geopotential in a reference KAM torus and the equations of variation that describe 

the local motion. The added fidelity features secular zonal effects, short and long period 

effects, and the sectoral terms that matter at GEO. Perhaps more importantly, the torus 

enables precise time synchronization with Target observations. Operationally, it is 

believed that numerical integration will not perform as well as a torus since the integration 

time steps will have to be perfectly synchronized with the observations. When 
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observations are made at a high enough sample rate, our Hamiltonian-based STM can be 

made to closely follow the nonlinear dynamics exquisitely preserved by the torus. The 

results indicate that there is value in a high fidelity, numerical 𝑨 matrix at LEO, but it 

comes at a computational cost and it does not make sense unless the KAM torus is highly 

accurate. Uncertainty in the torus reference orbit masks any improvements that can be 

gained from the numerical 𝑨 matrix over the analytical two-body 𝑨 matrix. This was 

confirmed by using an exact numerically integrated reference orbit instead of the KAM 

torus. However, the concept of using a torus is still preferable if the torus-fitting algorithm 

can be improved since it synchronizes the reference dynamics with observations. At GEO, 

the analytical two-body 𝑨 matrix is preferred with a reference orbit in the full 

geopotential. The reference orbit already contains the global effects of the full geopotential 

including 𝐽  and the sectoral terms that cause a longitudinal drift at GEO, so any 

additional benefit from the numerical 𝑨 matrix at GEO was indiscernible over the course 

of a single orbit. 

This thesis provided several other important conclusions about angles-only navigation 

during NMC proximity operations. First, range observability varies throughout the orbit, 

as measured by Δ𝛼 at a common 𝛼 ̇waypoint in our multiple hypothesis framework. In 

general, for station-keeping orbits, we have identified the best observability near the global 

𝛼̇  and the worst observability near 𝛼̇ . The observability conditions change with 

drifting NMC trajectories. For instance, in test case 05C at GEO, the best observability 

conditions were found between the upper 𝛼̇  and the global 𝛼̇  and not near the global 

or the local 𝛼̇ . Additionally, our novel range resolvability metric is an important tool 

for being able to identify optimal conditions for mapping range from admissible 

hypotheses. The denominator in the resolvability metric, Δ𝛼, tells us about the 
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observability conditions at a particular 𝛼 ̇ waypoint and allows us to select waypoints 

along large arcs of the trajectory that have good observability and range resolvability for 

a particular sensor. 

Another important conclusion is that eclipse events are not practical for disambiguating 

range under real-world conditions in the cases we have studied. In theory, the admissible 

hypotheses exhibit distinct temporal differences between entering and exiting a conical 

umbra model, but the variations are on the order of seconds. In practice, the visual 

magnitude will change gradually through the terminator and the uncertainty of a Target’s 

physical characteristics and orientation with respect to the Sun make it impossible to infer 

range over these short timescales. For now, our novel angle-to-range maps are the only 

viable solution for determining range without prior knowledge of the Target and without 

Surveyor actuation. 

But what does our solution mean to the world and how can it be utilized? Recall that one 

of the motivations for this research is to enhance local space situational awareness for 

peaceful and sustainable endeavors in space. From a capabilities perspective, our solution 

to angles-only navigation means that an institutional or even national deputization 

strategy for enhanced LSSA may be possible on government and industry satellites. The 

extent of new information gained (what can be seen that we did not see before and, from 

this, what can we know that we did not know before) and the impact on space operations 

has yet to be explored. Strategically, this tactical navigation capability may have a 

deterrent effect on nefarious RPO activities that could be demonstrating, maturing or 

operationalizing anti-satellite technology. At a minimum, our solution gives decision 

makers greater knowledge about the presence, behavior and kinematic state of proximal 

RSOs that may be unobservable from standard SSN coverage. Even more, one can imagine 
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how formation flying missions may be conducted with minimal fuel usage to maintain 

configuration using our angles-only navigation solution. In the case of autonomous or 

manned rendezvous missions, our technique is also a valuable tool for planning fuel-

optimal maneuvers, especially if the Target is unknown and non-cooperative. 

 Future Work 

Several opportunities to improve or expand this work have been identified. Perhaps the 

most significant task is a system-level study on the suitability of using our angles-only 

navigation solution. Operationalizing our technique requires more than just a software 

update on existing satellites that wish to use it for LSSA. What are the impacts to the 

primary mission and the CONOPs? What about system-level resource apportionment or 

hardware capacity? At a minimum, candidate systems must meet two distinct conditions: 

1) have an electro-optical payload or star tracker and 2) have a flight computer with 

sufficient computational and electrical power. Each of these will spawn lower-level 

requirements that are easy to address during the design phase, but may be restrictive for 

existing satellites already on-orbit. As it relates to the first condition, the current work 

assumed zero-mean Gaussian noise in the angle measurements with 𝜎 = 10 arc sec, but 

how does our technique perform with different sensors? Must we impose some observation 

quality lower limit? What about the quantity of observations? We assumed ideal lighting 

conditions in this work, but in practice, the lighting conditions and CONOPs will restrict 

which existing and future satellites could practically employ our methodologies. This also 

links back to the camera in terms of the instantaneous field of view if the CONOPs 

constrain slewing. As it relates to the second condition, what are the limiting factors? 

Even if the computational requirements can be physically met, how does this influence 

the electrical power design? For instance, if using secondary batteries, how much greater 



 233 

is the depth of discharge and how does this affect the lifecycle? Do other subsystems need 

to compensate for the increased demands? How? Understanding the suitability and 

outcomes from our methodology across a diverse set of fielded space systems is the biggest 

barrier to its immediate utility. 

A significantly less involved task is to consider changing 𝝆̂ —a component of the 

nondimensional admissible region parameters—to point toward the approximate 

argument of perigee after it is found. Presently, 𝝆̂  is defined in the direction of the upper 

relative apsis. The original definition was born from case studies with small differentials 

in argument of perigee, but the eccentricity approximation is degraded with large 

differentials in argument of perigee when 𝝆̂  is not pointing to perigee as described in 

Section 5.3.1. If and once 𝝆̂  is changed, work should be done to study larger eccentricities. 

This thesis has focused solely on nearly circular orbits. It is believed that the geometric 

constraints impossed by the admissible region parameters are extendable to modest 

eccentricities, but it is not known where our IOD technique breaks down. 

A third task is to study how range observability changes throughout an orbit with 

variations in differential elements. Our methodology only uses 𝛼 ̇waypoints near the most 

observable 𝛼̇  to scale the IOD solution, but this is thought to be less desirable for some 

drifting NMC configurations. A parametric study of the differential elements should be 

undertaken to identify characteristics of observability and resolvability in different orbit 

configurations. This study should be repeated at several altitudes to show a trend across 

orbital regimes. 

The fourth task pertains to the KAM torus. Our results indicate that the hard-won gains 

in the numerical 𝑨 matrix are lost if the reference orbit is not just as accurate. Wiesel 
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has been actively working on torus orbit fitting approaches for more than a decade and 

has recently developed a low eccentricity theory for satellite orbits that may be able to 

improve the torus for the test cases we considered, particularly resonant orbits at GEO 

[156]. Additionally, one may consider improvements to the reference model and STM with 

third-body effects, and even non-conservative forces such as solar radiation and air drag.  

The fifth task is to consider how the principles and general observations of this body of 

work can be extended to other non-NMC relative orbits. What parameters need to be 

used to specify the admissible region for a multiple hypothesis framework? Once a set of 

admissible hypotheses are formed, the angle vs. angle-rate curves can be studied to look 

for opportunities to disambiguate range with a similar range mapping technique. 

Finally, a little more time (no pun intended) should be given to the study of eclipse-to-

range maps. Although there is no evidence yet that this technique is operationally viable, 

there has been no effort to generate orbit configurations that maximize the differential 

time between eclipse events in a multiple hypothesis framework. There may be greater 

utility from this method with non-NMC trajectories such as the daunting v-bar station-

keeping configuration or a co-elliptical trajectory. Additionally, an optimal configuration 

between the relative trajectory orientation and the sun vector may produce larger 

photometry differences than have currently been observed. If this were the case, then it 

would be helpful to quantify the temporal resolution of range under optimal conditions. 
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List of Symbols 

 

0  Subscript Indicates Epoch 
𝟎   𝑘 × 𝑘 Matrix of Zeros 
⨀  Subscript Indicates Sun 
⊕  Subscript Indicates Earth 
𝑎  Semi-Major Axis 
aux  Subscript Indicates an Auxiliary 

Orbit 
𝑏  Sub/Superscript Indicates the 

Body Frame 
𝑑  Skewness Factor 
𝑒  Eccentricity, Superscript 

Indicates Earth-Fixed Frame 
𝑓  Focal Length, Numerically 

Integrated Coordinate Data 
𝒇  Perturbation Vector 
𝒈  Gradient Vector 
ℎ  Sub/Superscript Indicates Hill’s 

Frame 
ℎ/𝑖  Subscript Indicates Hill’s Frame 

with Respect to Inertial Frame 
𝑖  Inclination, Superscript Indicates 

the Inertial Frame, Subscript 
Indicates Iteration 

 ̂ Basis Vector Along 𝑥-axis 
 ̂ Basis Vector Along 𝑦-axis 

�̂�  Basis Vector Along 𝑧-axis 
m  Range Resolution Metric 
𝑚  Subscript Indicates Order of 

Geopotential Expansion in 
Spherical Harmonics 

𝑛  Mean Motion, Subscript 
Indicates Degree of Geopotential 
Expansion in Spherical 
Harmonics 

�̂�  Line of Nodes 
𝑜  Superscript Indicates the 

Camera Frame 
obs  Subscript Indicates an 

Observation 
𝒑  Generalized Momenta Vector 
𝑝   Penumbra Vertical Distance in 

Eclipse Model 
pen  Subscript Indicates Penumbra 
𝒒  Generalized Coordinates Vector 
𝑟  Schneider’s Shape Parameter, 
𝒓  Residual Vector 
𝐫  Position Vector 
𝐫 ̂ Unit Position Vector, Radial 

Basis Vector in Hill’s Frame 
ref  Subscript Indicates a Reference 
𝑟𝑠  Refers to the Surveyor’s Orbital 

Plane Along the 𝐫-̂ and 𝒔-̂axis 
𝑠  Subscript Indicates Surveyor 
𝒔 ̂ Along-Track Basis Vector in 

Hill’s Frame 
𝑠   Horizontal Distance Along the 

Earth-Sun Line in Eclipse Model 
𝑠   Vertical Distance Perpendicular 

to the Earth-Sun Line in Eclipse 
Model 
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𝑠𝑤  Refers to the Tangential Cross-
Track Plane Along the 𝐬-̂ and 
𝒘-axis 

𝑡  Time, Subscript Indicates 
Target 

𝑡/ℎ  Subscript Indicates Target with 
Respect to Hill’s Frame 

𝑡/𝑠  Subscript Indicates Target with 
Respect to Surveyor 

𝑢  Argument of Latitude 
𝑢   Umbra Vertical Distance in 

Eclipse Model 
umb  Subscript Indicates Umbra 
𝐯  Velocity Vector 
vs  Superscript Indicates Virtual 

Surveyor 
𝒘  Cross-Track Basis Vector in 

Hill’s Frame 
wp  Subscript Indicates Waypoint 
𝑥  Cartesian Coordinate, Earth 

Primary/Secondary Point in 
Eclipse Model 

𝑦  Cartesian Coordinate, Earth-
Vertex Distance in Eclipse 
Model 

𝑧  Cartesian Coordinate 
𝑥 ̇ Cartesian Velocity Component 
𝑦 ̇ Cartesian Velocity Component 
𝑧 ̇ Cartesian Velocity Component 
𝑨  Real-Valued 𝑛 × 𝑛 Coefficient 

Matrix 
𝑪   Fourier Coefficients Vector 
𝐶 ̅   Full Normalized Dimensionless 

Gravity Model Coefficients 
𝑫   Complex Series Coefficients 

𝐸  Eccentric Anomaly, Expectation 
𝑭   Constant Matrix of Eigenvectors 
ℱ  Fourier Transform 
𝑮  Hessian Matrix 
𝐺   Receiver Gain 
𝐺   Transmitter Gain 
𝑯  Orbit Angular Momentum, 

Measurement Sensitivity Matrix 
ℋ  Hamiltonian 
𝐼  Symplectic Action Variable 
𝑰   𝑘 × 𝑘 Identity Matrix 
𝐽   Dominant Zonal Term in 

Earth’s Gravitational Field 
𝓙  Diagonal Matrix of Eigenvalues 
𝒦  Hamiltonian 
𝐿  System Losses 
ℒ  Lagrangian 
𝑀  Mean Anomaly 
𝑴  Measurement Vector 
𝑃   Spectral Power 
𝑷   Variance-Covariance Matrix, 

Torus Momenta Vector 
𝑃̅   Fully Normalized Legendre 

Polynomials 
𝑃   Received Power 
𝑃   Transmitted Power 
𝑸  Observation Variance-

Covariance Matrix, Torus Angle 
Variables Vector 

𝑅⊕  Earth Radius 
𝑹   3 × 3 Rotation Matrix that 

Transforms Coordinates from 
Frame 𝑏 to Frame 𝑎 

𝑅   Distance from Receiver to 
Target 
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𝑅   Distance from Transmitter to 
Target 

𝑺   Fourier Coefficients Vector 
𝑆 ̅   Full Normalized Dimensionless 

Gravity Model Coefficients 
𝑇   Kozai Orbital Period, Specific 

Kinetic Energy, Time Interval 
𝑻   Observation/Observability 

Matrix 
𝑉   Potential Energy 
𝑿  Cartesian State Vector 
𝑿  Estimated Cartesian State 

Vector 
χ   Hanning Window Function of 

Order 𝑝 
𝒁  Symplectic Matrix 
𝛼  IP Angle Observation (Hill’s 

Frame) 
𝛼   IP Angle at Epoch 
𝛼   Penumbra Angle in Eclipse 

Model 
𝛼   Umbra Angle in Eclipse Model 
𝛽  OOP Angle Observation (Hill’s 

Frame) 
𝛿  Schneider’s IP Angle 
𝛿𝑎  Differential Semi-Major Axis 
𝛿𝑒  Differential Eccentricity 
𝛿𝑖  Differential Inclination 
𝛿𝒓  Relative Position Difference 
𝛿𝑠  Measurement Model Sensitivity 

Metric 
𝛿𝑢  Differential Argument of 

Latitude 
𝛿𝑿(𝑡 )  Estimated Correction to the 

Reference State Vector at Epoch 

𝛿𝜃  System-Level Angle Resolution 
𝛿𝜆  ROE Relative Mean Longitude 
𝛿𝜈  Differential True Anomaly 
𝛿𝜌  Woffinden’s Detectability Range 

Error Metric, Small Variation in 
Range, Range Resolution 

𝛿𝜔  Differential Argument of Perigee 
𝛿Ω  Differential RAAN 
𝜀  Small Real-Valued Perturbing 

Parameter 
𝜃  ROE Phase Angle, Symplectic 

Angle Variable, Angle Between 
𝐫  and 𝐯 , Greenwich Mean 
Sideral Time, Colatitude 

𝜆  Wavelength, Longitude 
𝜇  Gravitational Parameter 
𝜈  True Anomaly, Cycle Frequency 
𝜌  Range or Relative Distance 
𝝆 ̂ LOS Vector in Hill’s Frame 
𝜎  RCS, Schneider’s OOP Angle, 

Standard Deviation 
𝜍  Angle Between Negative Sun 

Vector and Satellite’s Position 
Vector 

𝜏 ̅  Dimensionless Time Interval, 
𝜑  ROE phase angle 
𝜓  Geocentric Latitude 
𝜔  Argument of Perigee, Angular 

Frequency 
𝜔   Anomalistic Frequency 
𝜔   Nodal Frequency 
𝜔   Apsidal Frequency 
𝜔⊕  Earth Rotation Rate 
𝝎 /   Angular Velocity of Frame 𝑎 

with Respect to Frame 𝑏 
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Δ𝛼   Angle Disparity in Kozai Period 
Δ𝑡|   Time Differential of Eclipse 

Entry or Exit 
Δv  Delta-Velocity 
𝚽(𝑡, 𝑡 )  State Transition Matrix 
Ω  RAAN 
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List of Acronyms 

 

2B Two-Body 
3D Three-Dimensional 
A2/AD Anti-Access/Area-Denial 
AFRL Air Force Research Laboratory 
AFRL/RV Air Force Research 

Laboratory’s Space Vehicles 
Directorate 

AGI Analytical Graphics, Inc. 
ANGELS Automated Navigation and 

Guidance Experiment for Local 
Space 

AON Angles-Only Navigation 
ARGON Advanced Rendezvous 

Demonstration Using GPS and 
Optical Navigation 

ASAT Anti-Satellite 
AT&L Acquisition, Technology and 

Logistics 
AutoNav Autonomous Navigation 
AUV Autonomous Underwater 

Vehicles 
AVANTI Autonomous Vision Navigation 

and Target Identification 
BOT Bearing-Only Tracking 
BS Bachelor of Science 
C2ISR Command and Control, 

Intelligence, Surveillance and 
Reconnaissance 

C/A Coarse Acquisition 
CCL Commerce Control List 
COE Classical Orbital Element 

CONOPS Concept of Operations 
COTS Commercial-Off-The-Shelf 
CSM Command and Service Module 
CW Clohessy-Wiltshire 
DARPA Defense Advanced Research 

Projects Agency 
DLR Deutsches Zentrum für Luft- 

und Raumfahrt e.V. (German 
Aerospace Center) 

DoD Department of Defense 
DOF Degrees of Freedom 
DRO Distant Retrograde Orbit 
ECEF Earth-Centered Earth-Fixed 
ECI Earth-Centered Inertial 
EGM Earth Gravity Model 
EKF Extended Kalman Filter 
EM Electromagnetic 
EM-1 Exploration Mission 1 
EO Electro-Optical 
ESM Electronic Support Measures 
FOV Field of View 
GEO Geosynchronous Equatorial 

Orbit 
GMAT General Mission Analysis Tool 
GNC Guidance, Navigation and 

Control 
GPS Global Positioning System 
GPS-R GPS Reflectometry 
GSSAP Geosynchronous Space 

Situational Awareness Program 
HAX Haystack Auxiliary Radar 
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HEO Highly Elliptical Orbit 
HMM Hidden Markov Model 
ICBM Intercontinental Ballistic 

Missile 
IL Instrumentation Laboratory 
IMU Inertial Measurement Unit 
INS Inertial Navigation System 
IOD Initial Orbit Determination 
IP In-Plane 
IR Infrared 
ISS International Space Station 
JPL Jet Propulsion Laboratory 
JSpOC Joint Space Operations Center 
KAM Kolmogorov-Arnold-Moser 
L-Maps Landmark Maps 
LEO Low Earth Orbit 
LiDAR Portmanteau of Light and 

Radar 
LINCOV Linear Covariance 
LM Lunar Module 
LOR Lunar Orbit Rendezvous 
LOS Line of Sight 
LSD-SLAM Large-Scale Direct Monocular 

Simultaneous Localization and 
Mapping 

LSSA Local Space Situational 
Awareness 

LTV Linear Time-Varying 
LVLH Local Vertical Local Horizontal 
MDP Markov Decision Process 
MIT/LL Massachusetts Institute of 

Technology Lincoln Laboratory 
MOL Manned Orbital Laboratory 
MP Modified Polar 
MPC Minor Planet Center 

MS Master of Science 
MSFC Marshall Space Flight Center 
NAFF Numerical Algorithm of the 

Fundamental Frequency 
NASA National Aeronautics and 

Space Administration 
NLS Nonlinear Least Squares 
NMC Natural Motion 

Circumnavigation 
NR Newton-Raphson 
NSSS National Security Space 

Strategy 
OD Orbit Determination 
ONS One Night Stand 
OOP Out-of-Plane 
PhD Doctor of Philosophy 
PLA People’s Liberation Army 
PNT Position, Navigation and 

Timing 
POMDP Partially Observable Markov 

Decision Process 
PRISMA Prototype Research 

Instruments and Space Mission 
Technology Advancement 

PTAM Parallel Tracking and Mapping 
RAAN Right Ascension of the 

Ascending Node 
RCS Radar Cross Section 
RF Radio Frequency 
RMS Root Mean Square 
ROE Relative Orbital Elements 
RPO Rendezvous and Proximity 

Operations 
RSO Resident Space Object 
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RTAB-Map Real-Time Appearance-Based 
Mapping 

SBR Spaceborne Radar 
SBSS Space-Based Space Surveillance 
ScD Doctor of Science 
SEL Single Event Latch-up 
SFM Structure from Motion 
SGPS Spaceborne Global Positioning 

System 
SLAM Simultaneous Localization and 

Mapping 
SNR Signal-to-Noise Ratio 
SPHERES Synchronized Position Hold 

Engage Re-orient Experiment 
Satellites 

SSA Space Situational Awareness 
SSCO Satellite Servicing Capabilities 

Office 
SSL Space System’s Laboratory 
SSN Space Surveillance Network 
STK System Tool Kit 
STM State Transition Matrix 
STS Shuttle Transportation System 
SWaP Size, Weight and Power 
TCFT Truncated, Continuous Fourier 

Transform 
TEES Texas A&M Engineering 

Experiment Station 
TID Total Ionization Dose 
TLE Two-Line Elements 
TMA Target Motion Analysis 
UAV Uninhabited Aerial Vehicle 
UD Unit Upper Triangular Matrix 
USAF United States Air Force 
USML United States Munitions List 

UTC Universal Trajectory Charts 
VSA Very Short Arc 
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A Nonlinear Measurement Sensitivity Derivation 

 

Appendix A 

Nonlinear Measurement Sensitivity Derivation 

 

A.1 Sensitivity in the X Direction 

𝑥 = 𝜌 sin(𝛼) cos(𝛽) (A.1)

𝛿𝑥 ≈ [𝛿𝛼 𝛿𝛽]𝒈 +
1

2
[𝛿𝛼 𝛿𝛽]𝑮

𝛿𝛼
𝛿𝛽

 (A.2)

𝒈 =
𝜕𝑥

𝜕𝑴
=

𝜕𝑥 𝜕𝛼⁄

𝜕𝑥 𝜕𝛽⁄
=

𝜌 cos(𝛼) cos(𝛽)

−𝜌 sin(𝛼) sin(𝛽)
 (A.3)

𝑮 =
𝜕 𝑥 𝜕𝛼⁄ 𝜕 𝑥 𝜕𝛼𝜕𝛽⁄

𝜕 𝑥 𝜕𝛽𝜕𝛼⁄ 𝜕 𝑥 𝜕𝛽⁄
=

−𝜌 sin(𝛼) cos(𝛽) −𝜌 cos(𝛼) sin(𝛽)

−𝜌 cos(𝛼) sin(𝛽) −𝜌 sin(𝛼) cos(𝛽)
 (A.4)

𝛿𝑥 ≈ 𝜌 cos(𝛼) cos(𝛽) 𝛿𝛼 − 𝜌 sin(𝛼) sin(𝛽) 𝛿𝛽

+
1

2
[−𝜌 sin(𝛼) cos(𝛽) 𝛿𝛼 − 2𝜌 cos(𝛼) sin(𝛽) 𝛿𝛼𝛿𝛽

− 𝜌 sin(𝛼) cos(𝛽) 𝛿𝛽 ] 

(A.5)

Assuming 𝛿𝛼 ≈ 𝛿𝛽 = 𝒪(𝜀) and 𝜀 ≪ 1, substitute and simplify 𝛿𝑥 for three different 

forms: 

𝒪(𝛿𝑥) ≈ 𝑧𝜀 − 𝑦 sin(𝛼) 𝜀 − 𝑥𝜀 − 𝑦 cos(𝛼) 𝜀  (A.6)

𝒪(𝛿𝑥) ≈ 𝜌[cos(𝛼 + 𝛽) 𝜀 − sin(𝛼 + 𝛽) 𝜀 ] (A.7)

𝒪(𝛿𝑥) ≈ 𝑧𝜀 −
𝑥𝑦

√
𝑥 + 𝑧

𝜀 − 𝑥𝜀 −
𝑦𝑧

√
𝑥 + 𝑧

𝜀  (A.8)

We make a very small error by ignoring the second order terms when 𝜀 ≪ 1 so that 

𝒪(𝛿𝑥) may be approximated as 
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𝒪(𝛿𝑥) ≈ 𝜌 cos(𝛼 + 𝛽) 𝜀 ≈ 𝑧𝜀 −
𝑥𝑦

√
𝑥 + 𝑧

𝜀 (A.9)

 

A.2 Sensitivity in the Y Direction 

𝑦 = 𝜌 sin(𝛽) (A.10)

𝛿𝑦 ≈ [𝛿𝛼 𝛿𝛽]𝒈 +
1

2
[𝛿𝛼 𝛿𝛽]𝑮

𝛿𝛼
𝛿𝛽

 (A.11)

𝒈 =
𝜕𝑦

𝜕𝑴
=

𝜕𝑦 𝜕𝛼⁄

𝜕𝑦 𝜕𝛽⁄
=

0
𝜌 cos(𝛽)

 (A.12)

𝑮 =
𝜕 𝑦 𝜕𝛼⁄ 𝜕 𝑦 𝜕𝛼𝜕𝛽⁄

𝜕 𝑦 𝜕𝛽𝜕𝛼⁄ 𝜕 𝑦 𝜕𝛽⁄
=

0 0
0 −𝜌 sin(𝛽)

 (A.13)
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Assuming 𝛿𝛼 ≈ 𝛿𝛽 = 𝒪(𝜀) and 𝜀 ≪ 1, substitute and simplify 𝛿𝑦 for two different forms: 

𝒪(𝛿𝑦) ≈
𝑥

sin(𝛼)
𝜀 −

1

2
𝑦𝜀  (A.15)

𝒪(𝛿𝑦) ≈ 𝑥 + 𝑧 𝜀 −
𝑦

2
𝜀  (A.16)

We make a very small error by ignoring the second order terms when 𝜀 ≪ 1 so that 

𝒪(𝛿𝑦) may be approximated as 

𝒪(𝛿𝑦) ≈
𝑥

sin(𝛼)
𝜀 ≈ 𝑥 + 𝑧 𝜀 (A.17)

 

A.3 Sensitivity in the Z Direction 

𝑧 = 𝜌 cos(𝛼) cos(𝛽) (A.18)

𝛿𝑧 ≈ [𝛿𝛼 𝛿𝛽]𝒈 +
1

2
[𝛿𝛼 𝛿𝛽]𝑮

𝛿𝛼
𝛿𝛽

 (A.19)

𝒈 =
𝜕𝑧

𝜕𝑴
=

𝜕𝑧 𝜕𝛼⁄

𝜕𝑧 𝜕𝛽⁄
=

−𝜌 sin(𝛼) cos(𝛽)

−𝜌 cos(𝛼) sin(𝛽)
 (A.20)



 260 

𝑮 =
𝜕 𝑧 𝜕𝛼⁄ 𝜕 𝑧 𝜕𝛼𝜕𝛽⁄

𝜕 𝑧 𝜕𝛽𝜕𝛼⁄ 𝜕 𝑧 𝜕𝛽⁄
=

−𝜌 cos(𝛼) cos(𝛽) 𝜌 sin(𝛼) sin(𝛽)

𝜌 sin(𝛼) sin(𝛽) −𝜌 cos(𝛼) cos(𝛽)
 (A.21)

𝛿𝑧 ≈ −𝜌 sin(𝛼) cos(𝛽) 𝛿𝛼 − 𝜌 cos(𝛼) sin(𝛽) 𝛿𝛽

+
1

2
[−𝜌 cos(𝛼) cos(𝛽) 𝛿𝛼 + 2𝜌 sin(𝛼) sin(𝛽) 𝛿𝛼𝛿𝛽

− 𝜌 cos(𝛼) cos(𝛽) 𝛿𝛽 ] 

(A.22)

Assuming 𝛿𝛼 ≈ 𝛿𝛽 = 𝒪(𝜀) and 𝜀 ≪ 1, substitute and simplify 𝛿𝑧 for three different 

forms: 

𝒪(𝛿𝑧) ≈ −𝑥𝜀 − 𝑦 cos(𝛼) 𝜀 − 𝑧𝜀 + 𝑦 sin(𝛼) 𝜀  (A.23)

𝒪(𝛿𝑧) ≈ −𝜌[sin(𝛼 + 𝛽) 𝜀 + cos(𝛼 + 𝛽) 𝛿𝜀 ] (A.24)

𝒪(𝛿𝑧) ≈ −𝑥𝜀 −
𝑦𝑧

√
𝑥 + 𝑧

𝜀 − 𝑧𝜀 +
𝑥𝑦

√
𝑥 + 𝑧

𝜀  (A.25)

We make a very small error by ignoring the second order terms when 𝜀 ≪ 1 so that 

𝒪(𝛿𝑧) may be approximated as 

𝒪(𝛿𝑧) ≈ −𝜌 sin(𝛼 + 𝛽) 𝜀 ≈ −𝑥𝜀 −
𝑦𝑧

√
𝑥 + 𝑧

𝜀 (A.26)
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B Supplementary Camera Topics 

 

Appendix B 

Supplementary Camera Topics 

 

B.1 Angular Resolution 

The smallest resolvable distance in an image spans a characteristic 2D angle known as 

the angular resolution. The 3D world projection onto a 2D image has a spatial resolution 

in the horizontal and vertical directions (𝛿𝑥 and 𝛿𝑦) which corresponds to a horizontal 

and vertical angular resolution—𝛿𝛼 = 𝜀  and 𝛿𝛽 = 𝜀 , respectively. 

A finite number of pixels in the image sensor is the limiting factor for angular 

resolution. Consider a camera with a pixel resolution of 𝑛 × 𝑛  where 𝑛  is the number 

of pixels in the horizontal direction, and 𝑛  is the number of pixels the vertical 

direction. The field of view (FOV) of the camera in the horizontal and vertical 

directions is given by 

𝐹𝑂𝑉 = 2 tan− 𝑝𝑛

2𝑓
 (B.1)

𝐹𝑂𝑉 = 2 tan−
𝑝𝑛

2𝑓
 (B.2)

where 𝑝 is pixel size or pixel pitch of the image sensor, 𝑛 is the number of pixels, i.e. for 

a horizontal resolution of 1024 pixels, 𝑛 = 1024 and 𝑓 is the focal length. The 2-
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dimensional geometry showing the relationship between the FOV, range and focal length 

are shown in Figure 76. 

 

Figure 76: Camera Focal Length & FOV. The extent of the observable space 
spans the field of view (FOV). The view is projected onto the image plane by 
a lens that bends incident light rays proportional to their arrival angle.    

Light is collected on the sensor’s image plane array by a discreet number of solar cells or 

pixels that convert photons into electrons as crudely depicted in Figure 77.40 Each one of 

the pixels represents a fraction of the FOV, which is the angular resolution. If the pixels 

are square, the spatial and angular resolution is the same in both directions. 

𝜀 =
𝐹𝑂𝑉

𝑛
 (B.3)

𝜀 =
𝐹𝑂𝑉

𝑛
 (B.4)

                                      
40 Two common image sensors are the charge coupled device (CCD) and complementary metal oxide 
semiconductor (CMOS). 

Lens

Focal
Length

Range

FOV
Image
Plane
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Figure 77: Image Plane Array. The angular resolution of a camera is a 
function of the FOV and the finite number of pixels on the sensor.    

The angular resolution is physically restricted by the lens aperture size or collection area. 

Larger optics collect more photons and can observe fainter objects faster, but even with 

a large aperture and infinitely small pixels, angular resolution of the sensor is diffraction 

limited. In other words, there is a theoretical minimum resolvable distance (the distance 

between distinguishable objects in the image). The diffraction-limited angular resolution 

is 

𝜀 ≅ 1.220
𝜆

𝐷
 (B.5)

where 𝜆 is the wavelength of light and 𝐷 is the diameter of the lens aperture. The angular 

resolution of visible light at the diffraction limit is depicted as a function of aperture 

diameter in Figure 78. These curves represent the lowest possible angular resolution for a 

given aperture diameter. 
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Figure 78: Diffraction Limited Angular Resolution. The angular resolution of 
visible light as a function of aperture diameter.    

 

  



 265 

C Analysis of Cylindrical Model Assumption for Earth 
Eclipse 

 

Appendix C 

Analysis of Cylindrical Model Assumption for 

Earth Eclipse 

 

C.1 Low Earth Orbit 

 

Figure 79: Conical Model for Planetary Eclipse.     

To make a cylindrical assumption for the umbra, the distance 𝑅  must be much greater 

than the radius of the Sun and the Earth such that the geometric angles 𝛼  and 𝛼  
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approach zero. We can calculate the angle values as Vallado does ([118] pp. 299) for the 

Sun-Earth system as follows 

sin(𝛼 ) =
𝑟 − 𝑟

𝑅
 (C.1)

sin(𝛼 ) =
696000 − 6378

149599870
 

𝛼 = 0.264121687° 

 

sin 𝛼 =
𝑟 + 𝑟

𝑅
 (C.2)

sin 𝛼 =
696000 + 6378

149599870
 

𝛼 = 0.269007205° 

While this bodes well for the cylindrical model assumption, the angles alone are not 

enough to make the assumption. The other essential piece of information is to check 

that the delta between 𝑝  and 𝑢  is small at the satellite’s farthest eclipsed point from 

the sun so that we can ignore the relatively small amount of time in the penumbra. 

Assuming that the satellite is in a circular orbit with an altitude of 500 km, 𝑠 = 𝑟 +

500 km the values of 𝑝  and 𝑢  are 

𝑝 = tan 𝛼 (𝑥 + 𝑠 ) (C.3)

𝑥 =
𝑟

sin 𝛼
 (C.4)

𝑥 =
6378

sin(0.269007205°)
= 1358453.668 km 

𝑝 = tan(0.269007205°) (1358453.668 + 6878) = 6410.363 km 

𝑢 = tan(𝛼 ) (𝑦 − 𝑠 ) (C.5)

𝑦 =
𝑟

sin(𝛼 )
 (C.6)
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𝑦 =
6378

sin(0.264121687°)
= 1383581.107 km 

𝑢 = tan(0.264121687°) (1383581.107 − 6878) = 6346.361 km 

The difference between 𝑝  and 𝑢  is 

𝑝 − 𝑢 = 6410.363 − 6346.361 = 64 km 

Compared to the Earth radius, the quantity (𝑝 − 𝑢 ) is very small—64 km vs 6378 

km—so the amount of time spent traversing the penumbra is on the order of seconds. 

Only now is it safe to make the assumption of a cylindrical umbra for a ballpark 

answer. 

C.2 Geosynchronous Equatorial Orbit 

It should be obvious that the cylindrical Earth shadow model breaks down as orbital 

altitude increases since the penumbral region radius grows and the umbral region radius 

shrinks toward the vertex. The extent to which this occurs at GEO is explored here. To 

evaluate the validity of a cylindrical umbra model for a geostationary satellite, we will 

assume the March or September equinox when the sun is aligned with the equatorial 

plane. 

Assuming the arc of the orbit through the penumbra and umbra is short in duration 

compared to the 24-hr sidereal day, the path lengths through the penumbra and umbra 

for geostationary satellites may be reasonably estimated as a straight line. We can use 

twice the quantity of 𝑝  and 𝑢  as defined previously.  

The satellite’s furthest point from the sun in a geostationary orbit is by definition 𝑠 =

𝑎 = 42164 km.  We can then use this information to calculate 𝑝  and 𝑢 : 
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𝑝 = tan 𝛼 (𝑥 + 𝑠 ) 

𝑝 = tan(0.269007205°) (1358453.668 + 42164) = 6576 km 

𝑢 = tan(𝛼 ) (𝑦 − 𝑠 ) 

𝑢 = tan(0.264121687°) (1383581.107 − 42164) = 6184 km 

The total path length through the penumbra and umbra are estimated as 2𝑝 =

13152 km and 2𝑢 = 12367 km, respectively. Vallado (pp. 299) states that the satellite 

traverse 13098 km in the penumbral region and 12412 km in the umbral region, so the 

straight-line approximation is only off by about 0.4%. 

Since the satellite travels at a constant orbital velocity in a geostationary orbit, we can 

just as easily translate these path lengths into times. The period for a geostationary 

satellite is 24 sidereal hours (a little less than 24 solar hours): 

𝑃 =
86400 solar sec

1 solar day
×

1 solar day

1.002737909350795 sidereal days
 (C.7)

𝑃 = 86164.090518 solar sec 

Equivalent ratios of time and arc length render the duration of the penumbra crossing, 

∆𝜏 − , and the umbra crossing, ∆𝜏 − . 

∆𝜏 −

𝑃
=

𝑑

2𝜋𝑎
 (C.8)

∆𝜏 −

86164
=

13152

2𝜋(42164)
 

∆𝜏 − = 4278 sec = 71.3 min 

∆𝜏 −

𝑃
=

𝑑

2𝜋𝑎
 (C.9)

∆𝜏 −

86164
=

12367

2𝜋(42164)
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∆𝜏 − = 4022 sec = 67.0 min 

Vallado (pp. 299) quantifies the duration in the penumbral and umbral regions for GEO 

as 71 min and 67 min, respectively, so the straight-line approximation is very 

reasonable. 

Not surprisingly, the duration spent in the penumbral region at GEO is greater than the 

duration spent in the umbral region at GEO.  Thus, the cylindrical model breaks down 

somewhere before GEO where it becomes necessary to reintroduce the more detailed 

model of the umbra and penumbra.  The precise altitude at which this occurs is entirely 

dependent on the application and users should beware. A good rule of thumb is to keep 

the modeling error below 1% and the criterion may be written as 

(𝑝 − 𝑢 )

𝑟⨁

> 0.01 (C.10)

We can solve the criterion for 𝑠  algebraically: 

𝑝 − 𝑢 > 0.01𝑟⨁ 

tan 𝛼 (𝑥 + 𝑠 ) − tan(𝛼 ) (𝑦 − 𝑠 ) > 0.01𝑟⨁ 

𝑠 >
0.01𝑟⨁ − tan 𝛼 𝑥 + tan(𝛼 ) 𝑦

tan 𝛼 + tan(𝛼 )
 (C.11)

The geometric parameters for the Earth-Sun system were previously shown to be: 

𝛼 = 0.264121687°         𝑥 = 1358453.668 km 

𝛼 = 0.269007205°          𝑦 = 1383581.107 km 

Thus, 

𝑠 >
0.01(6378.137) − tan(0.269007205°) 1358453.668 + tan(0.264121687°) 1383581.107

tan(0.269007205°) + tan(0.264121687°)
 

𝑠 > 6854.3 km 
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ℎ = 𝑎 − 𝑟⨁ (C.12)

ℎ = 6854.3 − 6378.137 

ℎ = 476 km 

If the altitude of the satellite is greater than 476 km, then the radial distance that the 

penumbra extends beyond the umbra has grown to 1% of the Earth’s radius and a 

cylindrical Earth shadow model may not be advisable.  
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D Gravitational Second-Order Partial Derivatives in 
Cartesian Coordinates 

 

Appendix D 

Gravitational Second-Order Partial Derivatives in 

Cartesian Coordinates 

 

D.1 Diagonal Elements 

𝜕 𝑉

𝜕𝑞
=

𝜕

𝜕𝑥

𝜕𝑉

𝜕𝑟
⋅
𝜕𝑟

𝜕𝑥
+

𝜕

𝜕𝑥

𝜕𝑉

𝜕𝜆
⋅
𝜕𝜆

𝜕𝑥
+

𝜕

𝜕𝑥

𝜕𝑉

𝜕𝜓
⋅
𝜕𝜓

𝜕𝑥
 (D.1)

𝜕 𝑉

𝜕𝑞
=

𝜕

𝜕𝑥

𝜕𝑉

𝜕𝑟
⋅
𝜕𝑟

𝜕𝑥
+

𝜕𝑉

𝜕𝑟
⋅

𝜕

𝜕𝑥

𝜕𝑟

𝜕𝑥
+

𝜕

𝜕𝑥

𝜕𝑉

𝜕𝜆
⋅
𝜕𝜆

𝜕𝑥
+

𝜕𝑉

𝜕𝜆
⋅

𝜕

𝜕𝑥

𝜕𝜆

𝜕𝑥

+
𝜕

𝜕𝑥

𝜕𝑉

𝜕𝜓
⋅
𝜕𝜓

𝜕𝑥
+

𝜕𝑉

𝜕𝜓
⋅

𝜕

𝜕𝑥

𝜕𝜓

𝜕𝑥
 

(D.2)

𝜕 𝑉

𝜕𝑞
=

𝜕

𝜕𝑥

𝜕𝑉

𝜕𝑟
⋅
𝜕𝑟

𝜕𝑥
+

𝜕𝑉

𝜕𝑟

𝜕 𝑟

𝜕𝑥
+

𝜕

𝜕𝑥

𝜕𝑉

𝜕𝜆
⋅
𝜕𝜆

𝜕𝑥
+

𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑥

+
𝜕

𝜕𝑥

𝜕𝑉

𝜕𝜓
⋅
𝜕𝜓

𝜕𝑥
+

𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑥
 

(D.3)
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𝜕 𝑉

𝜕𝑞
=

𝜕

𝜕𝑟

𝜕𝑉

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕

𝜕𝜆

𝜕𝑉

𝜕𝑟

𝜕𝜆

𝜕𝑥
+

𝜕

𝜕𝜓

𝜕𝑉

𝜕𝑟

𝜕𝜓

𝜕𝑥

𝜕𝑟

𝜕𝑥

+
𝜕

𝜕𝑟

𝜕𝑉

𝜕𝜆

𝜕𝑟

𝜕𝑥
+

𝜕

𝜕𝜆

𝜕𝑉

𝜕𝜆

𝜕𝜆

𝜕𝑥
+

𝜕

𝜕𝜓

𝜕𝑉

𝜕𝜆

𝜕𝜓

𝜕𝑥

𝜕𝜆

𝜕𝑥

+
𝜕

𝜕𝑟

𝜕𝑉

𝜕𝜓

𝜕𝑟

𝜕𝑥
+

𝜕

𝜕𝜆

𝜕𝑉

𝜕𝜓

𝜕𝜆

𝜕𝑥
+

𝜕

𝜕𝜓

𝜕𝑉

𝜕𝜓

𝜕𝜓

𝜕𝑥

𝜕𝜓

𝜕𝑥
+

𝜕𝑉

𝜕𝑟

𝜕 𝑟

𝜕𝑥
+

𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑥

+
𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑥
 

(D.4)

𝜕 𝑉

𝜕𝑞
=

𝜕 𝑉

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕 𝑉

𝜕𝜆𝜕𝑟

𝜕𝜆

𝜕𝑥
+

𝜕 𝑉

𝜕𝜓𝜕𝑟

𝜕𝜓

𝜕𝑥

𝜕𝑟

𝜕𝑥
+

𝜕 𝑉

𝜕𝑟𝜕𝜆

𝜕𝑟

𝜕𝑥
+

𝜕 𝑉

𝜕𝜆

𝜕𝜆

𝜕𝑥
+

𝜕 𝑉

𝜕𝜓𝜕𝜆

𝜕𝜓

𝜕𝑥

𝜕𝜆

𝜕𝑥

+
𝜕 𝑉

𝜕𝑟𝜕𝜓

𝜕𝑟

𝜕𝑥
+

𝜕 𝑉

𝜕𝜆𝜕𝜓

𝜕𝜆

𝜕𝑥
+

𝜕 𝑉

𝜕𝜓

𝜕𝜓

𝜕𝑥

𝜕𝜓

𝜕𝑥
+

𝜕𝑉

𝜕𝑟

𝜕 𝑟

𝜕𝑥
+

𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑥
+

𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑥
 

(D.5)

𝜕 𝑉

𝜕𝑞
=

𝜕 𝑉

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕 𝑉

𝜕𝜆𝜕𝑟

𝜕𝜆

𝜕𝑥

𝜕𝑟

𝜕𝑥
+

𝜕 𝑉

𝜕𝜓𝜕𝑟

𝜕𝜓

𝜕𝑥

𝜕𝑟

𝜕𝑥
+

𝜕 𝑉

𝜕𝑟𝜕𝜆

𝜕𝑟

𝜕𝑥

𝜕𝜆

𝜕𝑥
+

𝜕 𝑉

𝜕𝜆

𝜕𝜆

𝜕𝑥

+
𝜕 𝑉

𝜕𝜓𝜕𝜆

𝜕𝜓

𝜕𝑥

𝜕𝜆

𝜕𝑥
+

𝜕 𝑉

𝜕𝑟𝜕𝜓

𝜕𝑟

𝜕𝑥

𝜕𝜓

𝜕𝑥
+

𝜕 𝑉

𝜕𝜆𝜕𝜓

𝜕𝜆

𝜕𝑥

𝜕𝜓

𝜕𝑥
+

𝜕 𝑉

𝜕𝜓

𝜕𝜓

𝜕𝑥
+

𝜕𝑉

𝜕𝑟

𝜕 𝑟

𝜕𝑥

+
𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑥
+

𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑥
 

(D.6)

𝜕 𝑉

𝜕𝑞
=

𝜕 𝑉

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕 𝑉

𝜕𝜆

𝜕𝜆

𝜕𝑥
+

𝜕 𝑉

𝜕𝜓

𝜕𝜓

𝜕𝑥
+ 2

𝜕 𝑉

𝜕𝜆𝜕𝑟

𝜕𝜆

𝜕𝑥

𝜕𝑟

𝜕𝑥
+ 2

𝜕 𝑉

𝜕𝜓𝜕𝑟

𝜕𝜓

𝜕𝑥

𝜕𝑟

𝜕𝑥

+ 2
𝜕 𝑉

𝜕𝜓𝜕𝜆

𝜕𝜓

𝜕𝑥

𝜕𝜆

𝜕𝑥
+

𝜕𝑉

𝜕𝑟

𝜕 𝑟

𝜕𝑥
+

𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑥
+

𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑥
 

(D.7)

𝜕 𝑉 /𝜕𝑞  and 𝜕 𝑉 /𝜕𝑞  have the same form. Just replace 𝑥 with 𝑦 and 𝑧, respectively. 

D.2 Off-diagonal Elements 

𝜕 𝑉

𝜕𝑞 𝜕𝑞
=

𝜕

𝜕𝑥

𝜕𝑉

𝜕𝑟
⋅
𝜕𝑟

𝜕𝑦
+

𝜕

𝜕𝑥

𝜕𝑉

𝜕𝜆
⋅
𝜕𝜆

𝜕𝑦
+

𝜕

𝜕𝑥

𝜕𝑉

𝜕𝜓
⋅
𝜕𝜓

𝜕𝑦
 (D.8)
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𝜕 𝑉

𝜕𝑞 𝜕𝑞
=

𝜕

𝜕𝑥

𝜕𝑉

𝜕𝑟
⋅
𝜕𝑟

𝜕𝑦
+

𝜕𝑉

𝜕𝑟
⋅

𝜕

𝜕𝑥

𝜕𝑟

𝜕𝑦
+

𝜕

𝜕𝑥

𝜕𝑉

𝜕𝜆
⋅
𝜕𝜆

𝜕𝑦
+

𝜕𝑉

𝜕𝜆
⋅

𝜕

𝜕𝑥

𝜕𝜆

𝜕𝑦

+
𝜕

𝜕𝑥

𝜕𝑉

𝜕𝜓
⋅
𝜕𝜓

𝜕𝑦
+

𝜕𝑉

𝜕𝜓
⋅

𝜕

𝜕𝑥

𝜕𝜓

𝜕𝑦
 

(D.9)

𝜕 𝑉

𝜕𝑞 𝜕𝑞
=

𝜕

𝜕𝑥

𝜕𝑉

𝜕𝑟
⋅
𝜕𝑟

𝜕𝑦
+

𝜕𝑉

𝜕𝑟

𝜕 𝑟

𝜕𝑥𝜕𝑦
+

𝜕

𝜕𝑥

𝜕𝑉

𝜕𝜆
⋅
𝜕𝜆

𝜕𝑦
+

𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑥𝜕𝑦

+
𝜕

𝜕𝑥

𝜕𝑉

𝜕𝜓
⋅
𝜕𝜓

𝜕𝑦
+

𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑥𝜕𝑦
 

(D.10)

𝜕 𝑉

𝜕𝑞 𝜕𝑞
=

𝜕

𝜕𝑟

𝜕𝑉

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕

𝜕𝜆

𝜕𝑉

𝜕𝑟

𝜕𝜆

𝜕𝑥
+

𝜕

𝜕𝜓

𝜕𝑉

𝜕𝑟

𝜕𝜓

𝜕𝑥

𝜕𝑟

𝜕𝑦

+
𝜕

𝜕𝑟

𝜕𝑉

𝜕𝜆

𝜕𝑟

𝜕𝑥
+

𝜕

𝜕𝜆

𝜕𝑉

𝜕𝜆

𝜕𝜆

𝜕𝑥
+

𝜕

𝜕𝜓

𝜕𝑉

𝜕𝜆

𝜕𝜓

𝜕𝑥

𝜕𝜆

𝜕𝑦

+
𝜕

𝜕𝑟

𝜕𝑉

𝜕𝜓

𝜕𝑟

𝜕𝑥
+

𝜕

𝜕𝜆

𝜕𝑉

𝜕𝜓

𝜕𝜆

𝜕𝑥
+

𝜕

𝜕𝜓

𝜕𝑉

𝜕𝜓

𝜕𝜓

𝜕𝑥

𝜕𝜓

𝜕𝑦
+

𝜕𝑉

𝜕𝑟

𝜕 𝑟

𝜕𝑥𝜕𝑦

+
𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑥𝜕𝑦
+

𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑥𝜕𝑦
 

(D.11)

𝜕 𝑉

𝜕𝑞
=

𝜕 𝑉

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕 𝑉

𝜕𝜆𝜕𝑟

𝜕𝜆

𝜕𝑥
+

𝜕 𝑉

𝜕𝜓𝜕𝑟

𝜕𝜓

𝜕𝑥

𝜕𝑟

𝜕𝑦
+

𝜕 𝑉

𝜕𝑟𝜕𝜆

𝜕𝑟

𝜕𝑥
+

𝜕 𝑉

𝜕𝜆

𝜕𝜆

𝜕𝑥
+

𝜕 𝑉

𝜕𝜓𝜕𝜆

𝜕𝜓

𝜕𝑥

𝜕𝜆

𝜕𝑦

+
𝜕 𝑉

𝜕𝑟𝜕𝜓

𝜕𝑟

𝜕𝑥
+

𝜕 𝑉

𝜕𝜆𝜕𝜓

𝜕𝜆

𝜕𝑥
+

𝜕 𝑉

𝜕𝜓

𝜕𝜓

𝜕𝑥

𝜕𝜓

𝜕𝑦
+

𝜕𝑉

𝜕𝑟

𝜕 𝑟

𝜕𝑥𝜕𝑦
+

𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑥𝜕𝑦

+
𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑥𝜕𝑦
 

(D.12)

𝜕 𝑉

𝜕𝑞 𝜕𝑞
=

𝜕 𝑉

𝜕𝑟

𝜕𝑟

𝜕𝑥

𝜕𝑟

𝜕𝑦
+

𝜕 𝑉

𝜕𝜆𝜕𝑟

𝜕𝜆

𝜕𝑥

𝜕𝑟

𝜕𝑦
+

𝜕 𝑉

𝜕𝜓𝜕𝑟

𝜕𝜓

𝜕𝑥

𝜕𝑟

𝜕𝑦
+

𝜕 𝑉

𝜕𝑟𝜕𝜆

𝜕𝑟

𝜕𝑥

𝜕𝜆

𝜕𝑦
+

𝜕 𝑉

𝜕𝜆

𝜕𝜆

𝜕𝑥

𝜕𝜆

𝜕𝑦

+
𝜕 𝑉

𝜕𝜓𝜕𝜆

𝜕𝜓

𝜕𝑥

𝜕𝜆

𝜕𝑦
+

𝜕 𝑉

𝜕𝑟𝜕𝜓

𝜕𝑟

𝜕𝑥

𝜕𝜓

𝜕𝑦
+

𝜕 𝑉

𝜕𝜆𝜕𝜓

𝜕𝜆

𝜕𝑥

𝜕𝜓

𝜕𝑦
+

𝜕 𝑉

𝜕𝜓

𝜕𝜓

𝜕𝑥

𝜕𝜓

𝜕𝑦
+

𝜕𝑉

𝜕𝑟

𝜕 𝑟

𝜕𝑥𝜕𝑦

+
𝜕𝑉

𝜕𝜆

𝜕 𝜆

𝜕𝑥𝜕𝑦
+

𝜕𝑉

𝜕𝜓

𝜕 𝜓

𝜕𝑥𝜕𝑦
 

(D.13)

By similarity 



 274 

𝜕 𝑉

𝜕𝑞 𝜕𝑞
=

𝜕 𝑉

𝜕𝑞 𝜕𝑞
 (D.14)

𝜕 𝑉 /𝜕𝑞 𝜕𝑞  has the same form. Just replace 𝑦 with 𝑧 in Equation (D.13). The same is 

true for 𝜕 𝑉 /𝜕𝑞 𝜕𝑞  by replacing 𝑦 with 𝑧 and 𝑥 with 𝑦. 
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E Source Code 

 

Appendix E 

Source Code 

 

E.1 Proteus Front End 

%% CONSTANTS 
global MU mu DU du TU J2 omegae Omegae angumb angpen geo_degree geo_order ... 
    deltaJD dtheta use_skew2nu search_argp 
MU = 398600.4415; % [km^3/sec^2] 
DU = 6378.1363; % Earth radius [km] 
TU = 13.44686457; % [min] 
J2 = 0.0010826269; 
mu = 1.0; 
du = 1.0; 
Omegae = 7.292115e-5; % Earth angular velocity [rad/sec] f/ WGS-84 
omegae = Omegae*60*TU; % Earth angular velocity [rad/TU] 
rs = 696000.0; % Sun radius 
AU = 149597870.0; 
angumb = atan((rs-DU)/AU); 
angpen = atan((rs+DU)/AU); 
% Julian Date correction (difference between ECEF2ECI and GMAT ECI values) 
deltaJD = - 0.0000025444; 
dtheta = -0.00000004005; % [deg] 
 
%% INPUTS 
% Specify geopotential fidelity 
geo_degree = 20; geo_order = 20; 
% Argument of perigee search override 
search_argp = 1; % 1 = Search, 0 = Use Surveyor 
% Specify if using torus 
use_torus = 0; 
% Specify case file for Surveyor and Target orbits 
input.runCase = 'case001'; 
 
%% LOAD CASE FILE 
codeDir = pwd; 
mkdir('Cases',sprintf('%s',input.runCase)) 
caseFile = strcat(codeDir,'\Cases\',sprintf('%s.m',input.runCase)); 
run(caseFile) 
 
% If truth is from a TLE, use Vallado’s code to convert to COEs  
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if strcmp(InputForm,'tle')==1 
    ateme = [0.001;0.002;0.003]; 
    typerun = 'v'; % Verification mode, see twoline2rv 
    typeinput = 'e'; % Epoch, see twoline2rv 
    whichconst = 84; % WGS-84 
    [tumin,mu,radiusearthkm,xke,j2,j3,j4,j3oj2] = getgravc(whichconst); 
  
    longstr1 = TLE1; 
    % Last three are startmfe, stopmfe, deltamin: 
    longstr2 = [TLE2,'     0.00         0.0          0.00  ']; 
  
    % Convert the char string to sgp4 elements 
    [satrec,startmfe,stopmfe,deltamin] = twoline2rv(whichconst,longstr1, ... 
        longstr2, typerun, typeinput); 
    % Call the propagator to get the initial state vector value 
    tsince = stopmfe; 
    [satrec,rteme,vteme] = sgp4(satrec,tsince); 
     
    % Transform teme to ecef vectors 
    jdutc = satrec.jdsatepoch + tsince/1440.0; 
    [year,mon,day,hr,minute,sec] = invjday(jdutc); 
            
    % Assume tle epoch is utc and dut1, xp, etc are zero 
    dut1 = 0.0; 
    dat  = 32; 
    xp   =  0.0;  % " 
    yp   =  0.0; 
    lod  =  0.0; 
    ddpsi = 0.0;  % " 
    ddeps = 0.0; 
  
    % If have values for the date in question 
    % dut1 = 0.2048315; 
    % dat  = 32; 
    % xp   =  0.109600;  % " 
    % yp   =  0.284144; 
    % lod  =  0.0004116; 
    % ddpsi = -0.054055;  % " 
    % ddeps = -0.006183; 
  
    timezone = 0; 
    order = 106; % Number of terms for nutation, see truemean 
    eqeterms = 2; % Use the extra eqeq terms in j2000, see teme2eci 
    opt = 'a'; % Specify the iau00 approach, see teme2eci 
         
    [ut1,tut1,jdut1,utc,tai,tt,ttt,jdtt,tdb,ttdb,jdtdb] = convtime(year, ... 
        mon,day,hr,minute,sec,timezone,dut1,dat); 
  
    [recef,vecef,aecef] = teme2ecef(rteme',vteme',ateme,ttt,jdut1,lod,xp,yp); 
     
    [reci,veci,aeci] = teme2eci  (rteme',vteme',ateme,ttt,order,eqeterms,opt); 
  
    [p,a,ecc,incl,omega,argp,nu,m,arglat,truelon,lonper] = rv2coe(reci,veci); 
     
    % Surveyor Orbital Elements 
    input.coes(1,1) = a; % semi-major axis [km] 
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    input.coes(1,2) = ecc; % eccentricity 
    input.coes(1,3) = incl*180/pi; % inclination [deg] 
    input.coes(1,4) = omega*180/pi; % RAAN [deg] 
    input.coes(1,5) = argp*180/pi; % argument of perigee [deg] 
    input.coes(1,6) = 0; %nu*180/pi; % true anomaly [deg] 
  
    % Target Orbital Elements 
    input.coes(2,1) = input.coes(1,1) + dsma_target; % semi-major axis [km] 
    input.coes(2,2) = input.coes(1,2) + decc_target; % eccentricity 
    input.coes(2,3) = input.coes(1,3) + dinc_target; % inclination [deg] 
    input.coes(2,4) = input.coes(1,4) + dRAAN_target; % RAAN [deg] 
    input.coes(2,5) = input.coes(1,5) + dAOP; % argument of perigee [deg] 
    input.coes(2,6) = input.coes(1,6) + dnu; % true anomaly [deg] 
  
    input.epoch = datestr(datenum([year,mon,day,hr,minute,sec]), ... 
        'dd mmm yyyy HH:MM:SS.FFF'); % UTC 
     
    input.state_type = 'Keplerian'; 
    input.coord_sys = 'EarthMJ2000Eq'; 
    input.elements = input.coes; 
end 
 
%% Propagate satellites for one orbital period 
options = [0,dt,0,1,0]; % [prop_time,dt,torus,output,orbitview] 
SatDat = gmatOrbitProp(input.state_type,input.coord_sys,input.coes,... 
    input.epoch,'UTCGregorian',options); 
 
%% Generate LOS observations from truth orbits 
[Surveyor,Target] = losProc(SatDat,input,[bias,stdev,1]); 
 
%% Yates' IOD technique 
[hyp,mapping,eclipse,d,d_truth,delta_d,alpha_disp] = losIOD(input,SatDat,... 
    Surveyor,Target,dt,bias,stdev); 
iod.elements = mapping.coes; 
iod.state_type = 'Keplerian'; 
iod.coord_sys = input.coord_sys; 
iod.epoch = input.epoch; 
 
%% Propagate IOD solution 
options = [0,dt,0,1,0]; % [prop_time,dt,torus,output,orbitview] 
SatDat_iod = gmatOrbitProp('Keplerian',iod.coord_sys,[input.coes(1,:);... 
    iod.elements],iod.epoch,'UTCGregorian',options); 
 
%% Generate LOS observations from IOD solution 
[Surveyor,Target_iod] = losProc(SatDat_iod,input,[bias,stdev,1]); 
 
%% Assess range error from IOD 
range_error_iod = (Target_iod.rho_true(:,1)-Target.rho_true(:,1)); 
range_error_percent_iod = (Target_iod.rho_true(:,1)-
Target.rho_true(:,1))./Target.rho_true(:,1)*100; 
figure(22) 
hold on 
plot(SatDat_iod.time(:,1)/60,range_error_iod,'-r','LineWidth',3) 
plot(SatDat_iod.time(:,1)/60,range_error_percent_iod,'-b','LineWidth',3) 
grid on; grid minor; 
box on 
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xlabel('\textbf{Time (min)}','Interpreter','latex','FontSize',33) 
ylabel('\textbf{Range Error}','Interpreter','latex','FontSize',33) 
h = legend('\textbf{Absolute Range Error (km)}', ... 
    '\textbf{Percent Range Error (\%)}','location','NorthEast'); 
set(h,'Interpreter','latex','FontSize',32); 
set(gca,'FontSize',32,'FontWeight','bold') 
axis normal; 
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig22.fig')) 
  
%% Improve upon the IOD solution with NLS 
if geo_degree > 0 && use_torus == 1 
    % Propagate satellite for one year (6 mos forward & 6 mos backward) 
    options = [16070400,60,1,0,0]; % [prop_time,dt,torus,output,orbitview] 
    SatDat_torus = gmatOrbitProp('Keplerian',iod.coord_sys,... 
        iod.elements,iod.epoch,'UTCGregorian',options); 
    % Spectral decomposition of IOD orbit 
    spec_decomp; % Copyright Max Yates 
end 
% Nonlinear Least Squares 
method = 'direct'; % '2body', 'numerical', or 'direct' 
NLSQ; 
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E.2 Example Case File Forms (COE version & TLE version) 

%% case001.m 
InputForm = 'coes'; 
  
% Surveyor Orbital Elements 
input.coes(1,1) = 6777.329; % semi-major axis [km] 
input.coes(1,2) = 0.0012606; % eccentricity 
input.coes(1,3) = 51.98716; % inclination [deg] 
input.coes(1,4) = 75.49392; % RAAN [deg] 
input.coes(1,5) = 102.64716; % argument of perigee [deg] 
input.coes(1,6) = 0; % true anomaly [deg] 
  
% Target Orbital Elements 
input.coes(2,1) = 6777.329; % semi-major axis [km] 
input.coes(2,2) = 0.005; % eccentricity 
input.coes(2,3) = 51.98716; % inclination [deg] 
input.coes(2,4) = 75.49392; % RAAN [deg] 
input.coes(2,5) = 102.64716; % argument of perigee [deg] 
input.coes(2,6) = 0; % true anomaly [deg] 
  
input.epoch = '14 Jun 2016 12:00:00.000'; 
  
input.state_type = 'Keplerian'; 
input.coord_sys = 'EarthMJ2000Eq'; 
input.elements = input.coes; 
  
% Sensor parameters 
bias = 0; % [arc sec] 
stdev = 0; % [arc sec] 
dt = 0.1; % sample rate [sec] 
 

%% case003.m 
InputForm = 'tle'; 
  
% Surveyor TLE - COSMOS 2513 
% https://www.celestrak.com/NORAD/elements/geo.txt [20170119] 
TLE1='1 41121U 15075A   17017.57363789 -.00000148  00000-0  00000+0 0  9994'; 
TLE2='2 41121   0.0814  90.4206 0003078 212.8794 100.5875  1.00270486  4138'; 
  
% Target Orbital Element Offsets 
dsma_target = 0; % semi-major axis [km] 
decc_target = 0.00075; % eccentricity 
dinc_target = 0.1; % inclination [deg] 
dRAAN_target = -0.03; % RAAN [deg] 
dAOP = 0; % argument of perigee [deg] 
dnu = 0.06; % true anomaly [deg] 
  
% sensor parameters 
bias = 0; % [arc sec] 
stdev = 10; % [arc sec] 
dt = 1; % sample rate [sec] 
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E.3 GMAT Interface for Orbit Propagation 

%  [function]   gmatOrbitProp 
% 
%  [purpose]:   Function calls the GMAT server to propoagate orbits. 
%               Requires GMAT 2011A with MATLAB server capability. 
% 
%  [useage]:    [SatDat] = gmatOrbitProp(state_type,coord_sys,elements,... 
%                             epoch,epoch_format,OPTIONS) 
% 
%  [inputs]:    state_type = use GMAT state string: Keplerian or Cartesian 
% 
%               coord_sys = Coordinate system; use same string as GMAT: 
%                           EarthMJ2000Eq, EarthFixed, etc. 
% 
%               elements  = Matrix (nx6) containing initial conditions 
%                           for the ith of n satellites being propagated. 
%                           State type dictates format. If Cartesian, use 
%                           position and velocity vector. If Keplerian, use 
%                           COEs, i.e. elements(i,1:6) 
%                           where 
%                              elements(i,1) = semi-major axis [km] 
%                              elements(i,2) = eccentricity 
%                              elements(i,3) = inclination [deg] 
%                              elements(i,4) = RAAN [deg] 
%                              elements(i,5) = argument of perigee [deg] 
%                              elements(i,6) = true anomaly [deg] 
% 
%               epoch     = Time associated with initial conditions 
% 
%            epoch_format = Date format from GMAT such as 'UTCGregorian' 
% 
%               OPTIONS   = [prop_time,dt,torus,output,orbitview] where: 
% 
%               prop_time = Duration of propagation [sec]. Use 0 if the 
%                           ith satellite's Keplerian period is desired. 
%                           Use 16070400 for a 1-year torus (6-mos forward 
%                           and backward). 
% 
%               dt        = Sampling frequency for returned data [sec]. Use 
%                           0 for data increments based on a period ratio  
%                           of floor(period/5400) where 5400 sec amounts to 
%                           ~1 sec interval at LEO. 
% 
%               torus     = If set to 1, perform forward & backward 
%                           propagation and construct Fourier series torus 
%                           files, else 0 enables normal forward 
%                           propagation 
% 
%               output    = If set to 0, limited outputs for hypotheses. 
% 
%               orbitview = If set to 1, GMAT will display my custom 
%                           six-view window to inspect the relative orbit. 
% 
%  [outputs]:   SatDat    = Structure containing the GMAT extracted data. 
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%                           The exact content is reconfigurable in the 
%                           code, but uses the form SatDat.time(:,i) 
% 
%  [refs]:       
% 
%  [history]:   9 Dec 2016 - Max Yates 
  
function [SatDat] = gmatOrbitProp(state_type,coord_sys,elements,epoch,... 
    epoch_format,OPTIONS) 
  
global J2 MU DU angumb angpen geo_order geo_degree 
  
prop_time = OPTIONS(1); 
torus = OPTIONS(3); 
output = OPTIONS(4); 
orbitview = OPTIONS(5); 
  
if geo_degree == 0 
    % calculate Keplerian period of Sat1 
    if strcmp(state_type,'Keplerian') == 1 
        period = 2*pi*sqrt(elements(1,1)^3/MU); % [sec] 
    elseif strcmp(state_type,'Cartesian') == 1 
        [p,a,ecc,incl,omega,argp,nu,m,arglat,truelon,lonper ] = rv2coe... 
            (elements(1,1:3),elements(1,4:6)); 
        period = 2*pi*sqrt(a^3/MU); % [sec] 
    end 
elseif geo_degree > 0 
    % calculate Kozai period of Sat1 
    if strcmp(state_type,'Keplerian') == 1 
        Mdot0=sqrt(MU/(elements(1,1)^3))*(-((3*J2*(DU^2)/(2*... 
            (elements(1,1)^2)*(1-elements(1,2)^2)^1.5))*(3/2*... 
            (sin(elements(1,3)*pi/180))^2-1))); 
        n = sqrt(MU/elements(1,1)^3); % [rad/sec] mean motion 
        period = 2*pi/(n+Mdot0); % [sec] 
    elseif strcmp(state_type,'Cartesian') == 1 
        [p,a,ecc,incl,omega,argp,nu,m,arglat,truelon,lonper ] = rv2coe... 
            (elements(1,1:3),elements(1,4:6)); 
        Mdot0=sqrt(MU/(a^3))*(-((3*J2*(DU^2)/(2*(a^2)*(1-ecc^2)^1.5))*... 
            (3/2*(sin(incl))^2-1))); 
        n = sqrt(MU/a^3); % [rad/sec] mean motion 
        period = 2*pi/(n+Mdot0); % [sec] 
    end 
end 
  
% sampling frequency for returned data [sec] 
if torus==0 
    if OPTIONS(2)==0 
        % 5400 selected for ~1 sec interval on 90 min period 
        dt = floor(period/5400); 
    else 
        dt = OPTIONS(2); 
    end 
elseif torus==1 
    dt = 60; 
end 
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n = size(elements,1); % number of satellites 
  
% NOTE: Must manually start MATLAB server from within GMAT before executing 
OpenGMAT % Open connection to GMAT for the sending of commands 
  
for j = 1:(torus+1) % torus loop counts the forward & backward propagation 
  
    ClearGMAT % Clear all objects currently set in GMAT 
  
    %% User-Modified Default Celestial Bodies 
    eval('GMAT Earth.NutationUpdateInterval = 26070400;') 
  
    %% Spacecraft 
    for i = 1:n % satellite loop 
        Sat = ['Sat',num2str(i)]; 
        eval(strcat('Create Spacecraft',sprintf(' %s;',Sat))); 
        if strcmp(epoch_format,'UTCGregorian') == 1 
            % UTCG Format: '15 Dec 2017 14:55:35.017' 
            eval(strcat('GMAT',sprintf(' %s',Sat),... 
                '.DateFormat = UTCGregorian;')); 
            eval(strcat('GMAT',sprintf(' %s',Sat),'.Epoch =',... 
                sprintf(' ''%s'';',epoch))); 
        elseif strcmp(epoch_format,'UTCModJulian') == 1 
            eval(strcat('GMAT',sprintf(' %s',Sat),... 
                '.DateFormat = UTCModJulian;')); 
            eval(strcat('GMAT',sprintf(' %s',Sat),'.Epoch =',... 
                sprintf(' %.16f;',epoch))); 
        end 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.CoordinateSystem =',... 
            sprintf(' %s;',coord_sys))); 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.DisplayStateType =',... 
            sprintf(' %s;',state_type))); 
        if strcmp(state_type,'Keplerian') == 1 
            eval(strcat('GMAT',sprintf(' %s',Sat),'.SMA =',... 
                sprintf(' %.16f;',elements(i,1)))); % [km] 
            eval(strcat('GMAT',sprintf(' %s',Sat),'.ECC =',... 
                sprintf(' %.16f;',elements(i,2)))); % [nd] 
            eval(strcat('GMAT',sprintf(' %s',Sat),'.INC =',... 
                sprintf(' %.16f;',elements(i,3)))); % [deg] 
            eval(strcat('GMAT',sprintf(' %s',Sat),'.RAAN =',... 
                sprintf(' %.16f;',elements(i,4)))); % [deg] 
            eval(strcat('GMAT',sprintf(' %s',Sat),'.AOP =',... 
                sprintf(' %.16f;',elements(i,5)))); % [deg] 
            eval(strcat('GMAT',sprintf(' %s',Sat),'.TA =',... 
                sprintf(' %.16f;',elements(i,6)))); % [deg] 
        elseif strcmp(state_type,'Cartesian') == 1 
            eval(strcat('GMAT',sprintf(' %s',Sat),'.X =',... 
                sprintf(' %.16f;',elements(i,1)))); % [km] 
            eval(strcat('GMAT',sprintf(' %s',Sat),'.Y =',... 
                sprintf(' %.16f;',elements(i,2)))); % [nd] 
            eval(strcat('GMAT',sprintf(' %s',Sat),'.Z =',... 
                sprintf(' %.16f;',elements(i,3)))); % [deg] 
            eval(strcat('GMAT',sprintf(' %s',Sat),'.VX =',... 
                sprintf(' %.16f;',elements(i,4)))); % [deg] 
            eval(strcat('GMAT',sprintf(' %s',Sat),'.VY =',... 
                sprintf(' %.16f;',elements(i,5)))); % [deg] 
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            eval(strcat('GMAT',sprintf(' %s',Sat),'.VZ =',... 
                sprintf(' %.16f;',elements(i,6)))); % [deg] 
        end 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.DryMass = 14;')); % [kg] 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.Cd = 0;')); % [nd] 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.Cr = 0;')); % [nd] 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.DragArea = 0;')); % [m^2] 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.SRPArea = 0;')); % [m^2] 
        % SPICE 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.NAIFId = -123456789;')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),... 
            '.NAIFIdReferenceFrame = -123456789;')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.Id = ''SatId'';')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),... 
            '.Attitude = CoordinateSystemFixed;')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),... 
            '.ModelFile = ''../data/vehicle/models/aura.3ds'';')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.ModelOffsetX = 0;')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.ModelOffsetY = 0;')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.ModelOffsetZ = 0;')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.ModelRotationX = 0;')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.ModelRotationY = 0;')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.ModelRotationZ = 0;')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),'.ModelScale = 0.001;')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),... 
            '.AttitudeDisplayStateType = ''Quaternion'';')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),... 
            '.AttitudeRateDisplayStateType = ''AngularVelocity'';')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),... 
            '.AttitudeCoordinateSystem = EarthMJ2000Eq;')); 
        eval(strcat('GMAT',sprintf(' %s',Sat),... 
            '.EulerAngleSequence = ''321'';')); 
    end 
  
    %% ForceModels 
    eval('Create ForceModel LowEarthProp_ForceModel;'); 
    eval('GMAT LowEarthProp_ForceModel.CentralBody = Earth;'); 
    eval('GMAT LowEarthProp_ForceModel.PrimaryBodies = {Earth};'); 
    eval('GMAT LowEarthProp_ForceModel.Drag = None;'); 
    eval('GMAT LowEarthProp_ForceModel.SRP = Off;'); 
    eval('GMAT LowEarthProp_ForceModel.ErrorControl = RSSStep;'); 
    eval(strcat('GMAT LowEarthProp_ForceModel.GravityField.Earth.Degree =',... 
        sprintf(' %i;',geo_degree))); 
    eval(strcat('GMAT LowEarthProp_ForceModel.GravityField.Earth.Order =',... 
        sprintf(' %i;',geo_order))); 
    % EGM96.cof or JGM3.cof 
    eval('GMAT LowEarthProp_ForceModel.GravityField.Earth.PotentialFile = 
''EGM96.cof'';'); 
  
    %% Propagators 
    eval('Create Propagator LowEarthProp;'); 
    eval('GMAT LowEarthProp.FM = LowEarthProp_ForceModel;'); 
    % PrinceDormand78 or RungeKutta89 
    eval('GMAT LowEarthProp.Type = PrinceDormand78;'); 
    eval(strcat('GMAT LowEarthProp.InitialStepSize =',sprintf(' %i;',dt))); 
    eval('GMAT LowEarthProp.Accuracy = 9.999999999999999e-012;'); 
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    eval(strcat('GMAT LowEarthProp.MinStep =',sprintf(' %i;',dt))); 
    %eval('GMAT LowEarthProp.MinStep = 0.001;'); 
    eval(strcat('GMAT LowEarthProp.MaxStep =',sprintf(' %i;',dt))); 
    eval('GMAT LowEarthProp.MaxStepAttempts = 50;'); 
    eval('GMAT LowEarthProp.StopIfAccuracyIsViolated = true;'); 
  
    %% Coordinate Systems (non-default ones) 
    eval('Create CoordinateSystem SunMJ2000Eq;'); 
    eval('GMAT SunMJ2000Eq.Origin = Sun;'); 
    eval('GMAT SunMJ2000Eq.Axes = MJ2000Eq;'); 
    if orbitview==1 
        eval('Create CoordinateSystem LVLH;'); 
        eval('GMAT LVLH.Origin = Sat1;'); 
        eval('GMAT LVLH.Axes = ObjectReferenced;'); 
        eval('GMAT LVLH.YAxis = N;'); 
        %eval('GMAT LVLH.XAxis = V;'); 
        eval('GMAT LVLH.ZAxis = R;'); 
        eval('GMAT LVLH.Primary = Earth;'); 
        eval('GMAT LVLH.Secondary = Sat1;'); 
    end     
  
    %% Subscribers 
    for i = 1:n % satellite loop 
        Sat = ['Sat',num2str(i)]; 
        Report = ['ReportFile',num2str(i)]; 
        eval(strcat('Create ReportFile',sprintf(' %s;',Report))); 
        eval(strcat('GMAT',sprintf(' %s.',Report),... 
            'SolverIterations = Current;')); 
        if torus==0 
            ReportFileLoc = strcat(... 
                'C:\GmatVS11a\GmatDevelopment\application\output\',... 
                sprintf('%s',Report),'.txt'); 
            eval(strcat('GMAT',sprintf(' %s.',Report),'Filename =',... 
                sprintf(' ''%s'';',ReportFileLoc))); 
        elseif torus==1 
            if j==1 
                eval('GMAT ReportFile1.Filename = 
''C:\GmatVS11a\GmatDevelopment\application\output\forward.txt'';'); 
            elseif j==2 
                eval('GMAT ReportFile1.Filename = 
''C:\GmatVS11a\GmatDevelopment\application\output\backward.txt'';'); 
            end 
        end 
  
        eval(strcat('GMAT',sprintf(' %s.',Report),'Precision = 16;')); 
        EarthFixed = strcat(sprintf('%s.',Sat),'EarthFixed.'); 
        EarthMJ2000Eq = strcat(sprintf('%s.',Sat),'EarthMJ2000Eq.'); 
        SunMJ2000Eq = strcat(sprintf('%s.',Sat),'SunMJ2000Eq.'); 
        Earth = strcat(sprintf('%s.',Sat),'Earth.'); 
        if torus==1 
            eval(strcat('GMAT',sprintf(' %s.',Report),'Add = {',... 
                sprintf('%s.',Sat),'ElapsedSecs,',EarthFixed,'X,',... 
                EarthFixed,'Y,',EarthFixed,'Z,',EarthFixed,'VX,',... 
                EarthFixed,'VY,',EarthFixed,'VZ};')); 
        elseif torus==0 
            if output==0 



 285 

                eval(strcat('GMAT',sprintf(' %s.',Report),'Add = {',... 
                    sprintf('%s.',Sat),'ElapsedSecs,',EarthMJ2000Eq,... 
                    'X,',EarthMJ2000Eq,'Y,',EarthMJ2000Eq,'Z,',... 
                    EarthMJ2000Eq,'VX,',EarthMJ2000Eq,'VY,',EarthMJ2000Eq,... 
                    'VZ,',Earth,'SMA,',Earth,'TA,',Earth,'RMAG,',... 
                    SunMJ2000Eq,'X,',SunMJ2000Eq,'Y,',SunMJ2000Eq,'Z};')); 
            else 
                eval(strcat('GMAT',sprintf(' %s.',Report),'Add = {',... 
                    sprintf('%s.',Sat),'ElapsedSecs,',EarthFixed,'X,',... 
                    EarthFixed,'Y,',EarthFixed,'Z,',EarthFixed,'VX,',... 
                    EarthFixed,'VY,',EarthFixed,'VZ,',sprintf('%s.',Sat),... 
                    'UTCModJulian,',EarthMJ2000Eq,'X,',EarthMJ2000Eq,... 
                    'Y,',EarthMJ2000Eq,'Z,',EarthMJ2000Eq,'VX,',... 
                    EarthMJ2000Eq,'VY,',EarthMJ2000Eq,'VZ,',Earth,'SMA,',... 
                    Earth,'ECC,',EarthMJ2000Eq,'INC,',EarthMJ2000Eq,... 
                    'RAAN,',EarthMJ2000Eq,'AOP,',Earth,'TA,',Earth,'MA,',... 
                    Earth,'RMAG,',SunMJ2000Eq,'X,',SunMJ2000Eq,'Y,',... 
                    SunMJ2000Eq,'Z};')); 
            end 
        end 
        eval(strcat('GMAT',sprintf(' %s.',Report),'WriteHeaders = Off;')); 
        eval(strcat('GMAT',sprintf(' %s.',Report),'LeftJustify = On;')); 
        eval(strcat('GMAT',sprintf(' %s.',Report),'ZeroFill = Off;')); 
        eval(strcat('GMAT',sprintf(' %s.',Report),'ColumnWidth = 24;')); 
        eval(strcat('GMAT',sprintf(' %s.',Report),'WriteReport = true;')); 
    end 
     
    if orbitview==1 
        Sats2Show = 'Sat1'; 
        True = 'true'; 
        if n>1 
            for i = 2:n % satellite loop 
                Sat = ['Sat',num2str(i)]; 
                Sats2Show = strcat(Sats2Show,sprintf(', %s',Sat)); 
                True = strcat(True,sprintf(' %s','true')); 
            end 
        end 
        eval('Create OrbitView OrbitView1;'); 
        eval('GMAT OrbitView1.SolverIterations = Current;'); 
        eval(strcat('GMAT OrbitView1.Add = {',sprintf('%s, Earth};',... 
            Sats2Show))); 
        eval('GMAT OrbitView1.CoordinateSystem = LVLH;'); 
        eval(strcat('GMAT OrbitView1.DrawObject = [',sprintf(... 
            ' %s true ];',True))); 
        eval('GMAT OrbitView1.DataCollectFrequency = 1;'); 
        eval('GMAT OrbitView1.UpdatePlotFrequency = 50;'); 
        eval('GMAT OrbitView1.NumPointsToRedraw = 0;'); 
        eval('GMAT OrbitView1.ShowPlot = true;'); 
        eval('GMAT OrbitView1.ViewPointReference = Sat1;'); 
        eval('GMAT OrbitView1.ViewPointVector = [ 0 0 1 ];'); 
        eval('GMAT OrbitView1.ViewDirection = Sat1;'); 
        % change this to zoom in or out 
        eval('GMAT OrbitView1.ViewScaleFactor = 200;'); 
        eval('GMAT OrbitView1.ViewUpCoordinateSystem = LVLH;'); 
        eval('GMAT OrbitView1.ViewUpAxis = Y;'); 
        eval('GMAT OrbitView1.XYPlane = Off;'); 
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        eval('GMAT OrbitView1.WireFrame = Off;'); 
        eval('GMAT OrbitView1.Axes = On;'); 
        eval('GMAT OrbitView1.Grid = Off;'); 
        eval('GMAT OrbitView1.SunLine = Off;'); 
        eval('GMAT OrbitView1.UseInitialView = On;'); 
        eval('GMAT OrbitView1.StarCount = 7000;'); 
        eval('GMAT OrbitView1.EnableStars = Off;'); 
        eval('GMAT OrbitView1.EnableConstellations = Off;'); 
         
        eval('Create OrbitView OrbitView2;'); 
        eval('GMAT OrbitView2.SolverIterations = Current;'); 
        eval(strcat('GMAT OrbitView2.Add = {',sprintf('%s, Earth};',... 
            Sats2Show))); 
        eval('GMAT OrbitView2.CoordinateSystem = LVLH;'); 
        eval(strcat('GMAT OrbitView2.DrawObject = [',sprintf(... 
            ' %s true ];',True))); 
        eval('GMAT OrbitView2.DataCollectFrequency = 1;'); 
        eval('GMAT OrbitView2.UpdatePlotFrequency = 50;'); 
        eval('GMAT OrbitView2.NumPointsToRedraw = 0;'); 
        eval('GMAT OrbitView2.ShowPlot = true;'); 
        eval('GMAT OrbitView2.ViewPointReference = Sat1;'); 
        eval('GMAT OrbitView2.ViewPointVector = [ 0 -1 0 ];'); 
        eval('GMAT OrbitView2.ViewDirection = Sat1;'); 
        % change this to zoom in or out 
        eval('GMAT OrbitView2.ViewScaleFactor = 200;'); 
        eval('GMAT OrbitView2.ViewUpCoordinateSystem = LVLH;'); 
        eval('GMAT OrbitView2.ViewUpAxis = Z;'); 
        eval('GMAT OrbitView2.XYPlane = Off;'); 
        eval('GMAT OrbitView2.WireFrame = Off;'); 
        eval('GMAT OrbitView2.Axes = On;'); 
        eval('GMAT OrbitView2.Grid = Off;'); 
        eval('GMAT OrbitView2.SunLine = Off;'); 
        eval('GMAT OrbitView2.UseInitialView = On;'); 
        eval('GMAT OrbitView2.StarCount = 7000;'); 
        eval('GMAT OrbitView2.EnableStars = Off;'); 
        eval('GMAT OrbitView2.EnableConstellations = Off;'); 
         
        eval('Create OrbitView OrbitView3;'); 
        eval('GMAT OrbitView3.SolverIterations = Current;'); 
        eval(strcat('GMAT OrbitView3.Add = {',sprintf('%s, Earth};',... 
            Sats2Show))); 
        eval('GMAT OrbitView3.CoordinateSystem = LVLH;'); 
        eval(strcat('GMAT OrbitView3.DrawObject = [',sprintf(... 
            ' %s true ];',True))); 
        eval('GMAT OrbitView3.DataCollectFrequency = 1;'); 
        eval('GMAT OrbitView3.UpdatePlotFrequency = 50;'); 
        eval('GMAT OrbitView3.NumPointsToRedraw = 0;'); 
        eval('GMAT OrbitView3.ShowPlot = true;'); 
        eval('GMAT OrbitView3.ViewPointReference = Sat1;'); 
        eval('GMAT OrbitView3.ViewPointVector = [ 0.5 -0.5 0.5 ];'); 
        eval('GMAT OrbitView3.ViewDirection = Sat1;'); 
        % change this to zoom in or out 
        eval('GMAT OrbitView3.ViewScaleFactor = 200;'); 
        eval('GMAT OrbitView3.ViewUpCoordinateSystem = LVLH;'); 
        eval('GMAT OrbitView3.ViewUpAxis = Z;'); 
        eval('GMAT OrbitView3.XYPlane = Off;'); 
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        eval('GMAT OrbitView3.WireFrame = Off;'); 
        eval('GMAT OrbitView3.Axes = On;'); 
        eval('GMAT OrbitView3.Grid = Off;'); 
        eval('GMAT OrbitView3.SunLine = Off;'); 
        eval('GMAT OrbitView3.UseInitialView = On;'); 
        eval('GMAT OrbitView3.StarCount = 7000;'); 
        eval('GMAT OrbitView3.EnableStars = Off;'); 
        eval('GMAT OrbitView3.EnableConstellations = Off;'); 
         
        eval('Create OrbitView OrbitView4;'); 
        eval('GMAT OrbitView4.SolverIterations = Current;'); 
        eval(strcat('GMAT OrbitView4.Add = {',sprintf('%s, Earth};',... 
            Sats2Show))); 
        eval('GMAT OrbitView4.CoordinateSystem = LVLH;'); 
        eval(strcat('GMAT OrbitView4.DrawObject = [',sprintf(... 
            ' %s true ];',True))); 
        eval('GMAT OrbitView4.DataCollectFrequency = 1;'); 
        eval('GMAT OrbitView4.UpdatePlotFrequency = 50;'); 
        eval('GMAT OrbitView4.NumPointsToRedraw = 0;'); 
        eval('GMAT OrbitView4.ShowPlot = true;'); 
        eval('GMAT OrbitView4.ViewPointReference = Sat1;'); 
        eval('GMAT OrbitView4.ViewPointVector = [ 1 0 0 ];'); 
        eval('GMAT OrbitView4.ViewDirection = Sat1;'); 
        % change this to zoom in or out 
        eval('GMAT OrbitView4.ViewScaleFactor = 200;'); 
        eval('GMAT OrbitView4.ViewUpCoordinateSystem = LVLH;'); 
        eval('GMAT OrbitView4.ViewUpAxis = Z;'); 
        eval('GMAT OrbitView4.XYPlane = Off;'); 
        eval('GMAT OrbitView4.WireFrame = Off;'); 
        eval('GMAT OrbitView4.Axes = On;'); 
        eval('GMAT OrbitView4.Grid = Off;'); 
        eval('GMAT OrbitView4.SunLine = Off;'); 
        eval('GMAT OrbitView4.UseInitialView = On;'); 
        eval('GMAT OrbitView4.StarCount = 7000;'); 
        eval('GMAT OrbitView4.EnableStars = Off;'); 
        eval('GMAT OrbitView4.EnableConstellations = Off;'); 
         
        Create XYPlot XYPlot1; 
        GMAT XYPlot1.SolverIterations = Current; 
        GMAT XYPlot1.XVariable = time_hr; 
        GMAT XYPlot1.YVariables = {s_rel_12, w_rel_12, r_rel_12, rmag_rel}; 
        GMAT XYPlot1.ShowGrid = true; 
        GMAT XYPlot1.ShowPlot = true; 
         
        %% Arrays, Variables, Strings 
        eval('Create Variable i step totalDuration nSteps s_rel_12 r_rel_12 
w_rel_12 rmag_rel time_hr Rmag_surveyor;'); 
        eval('Create Variable R1_surveyor R2_surveyor R3_surveyor 
rxv1_surveyor rxv2_surveyor rxv3_surveyor rxv_mag_surveyor W1_surveyor 
W2_surveyor W3_surveyor;'); 
        eval('Create Variable S1_surveyor S2_surveyor S3_surveyor 
s_lvlh_surveyor r_lvlh_surveyor w_lvlh_surveyor s_lvlh_rso r_lvlh_rso 
w_lvlh_rso;'); 
    end 
  
    %% Mission Sequence 
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    eval('BeginMissionSequence;'); 
    Sats2Prop = 'Sat1'; 
    if n>1 
        for i = 2:n % satellite loop 
            Sat = ['Sat',num2str(i)]; 
            Sats2Prop = strcat(Sats2Prop,sprintf(', %s',Sat)); 
        end 
    end 
    % currently propagates all satellites to same satStopTime 
    if prop_time == 0 
        % Default: 102% of period to catch peaks at the end 
        satStopTime = round(period*1.02); % [sec] 
    elseif prop_time == -0.02; % No extra 2% 
        satStopTime = round(period); % [sec] 
    else 
        satStopTime = round(prop_time); % [sec] 
    end 
    if orbitview==1 
        eval('GMAT step = 100;'); 
        eval(strcat('GMAT nSteps =',sprintf(' %i ',satStopTime),'/ step;')); 
        eval('For i = 1:1:nSteps;'); 
        eval(strcat('Propagate LowEarthProp(',sprintf('%s',Sats2Prop),... 
            ') {Sat1.ElapsedSecs = step};')); 
        eval('GMAT time_hr = Sat1.ElapsedSecs / 3600;'); 
        % Calculate transformation matrix from ECI to Surveyor's LVLH frame 
        % (Vallado pg 164) 
        eval('GMAT Rmag_surveyor = sqrt(Sat1.EarthMJ2000Eq.X^2 + 
Sat1.EarthMJ2000Eq.Y^2 + Sat1.EarthMJ2000Eq.Z^2);'); 
        eval('GMAT R1_surveyor = Sat1.EarthMJ2000Eq.X/Rmag_surveyor;'); 
        eval('GMAT R2_surveyor = Sat1.EarthMJ2000Eq.Y/Rmag_surveyor;'); 
        eval('GMAT R3_surveyor = Sat1.EarthMJ2000Eq.Z/Rmag_surveyor;'); 
        eval('GMAT rxv1_surveyor = Sat1.EarthMJ2000Eq.Y*Sat1.EarthMJ2000Eq.VZ 
- Sat1.EarthMJ2000Eq.Z*Sat1.EarthMJ2000Eq.VY;'); 
        eval('GMAT rxv2_surveyor = Sat1.EarthMJ2000Eq.Z*Sat1.EarthMJ2000Eq.VX 
- Sat1.EarthMJ2000Eq.X*Sat1.EarthMJ2000Eq.VZ;'); 
        eval('GMAT rxv3_surveyor = Sat1.EarthMJ2000Eq.X*Sat1.EarthMJ2000Eq.VY 
- Sat1.EarthMJ2000Eq.Y*Sat1.EarthMJ2000Eq.VX;'); 
        eval('GMAT rxv_mag_surveyor = sqrt(rxv1_surveyor^2 + rxv2_surveyor^2 
+ rxv3_surveyor^2);'); 
        eval('GMAT W1_surveyor = rxv1_surveyor/rxv_mag_surveyor;'); 
        eval('GMAT W2_surveyor = rxv2_surveyor/rxv_mag_surveyor;'); 
        eval('GMAT W3_surveyor = rxv3_surveyor/rxv_mag_surveyor;'); 
        eval('GMAT S1_surveyor = W2_surveyor*R3_surveyor - 
W3_surveyor*R2_surveyor;'); 
        eval('GMAT S2_surveyor = W3_surveyor*R1_surveyor - 
W1_surveyor*R3_surveyor;'); 
        eval('GMAT S3_surveyor = W1_surveyor*R2_surveyor - 
W2_surveyor*R1_surveyor;'); 
        eval('GMAT r_lvlh_surveyor = R1_surveyor*Sat1.EarthMJ2000Eq.X + 
R2_surveyor*Sat1.EarthMJ2000Eq.Y + R3_surveyor*Sat1.EarthMJ2000Eq.Z;'); 
        eval('GMAT s_lvlh_surveyor = S1_surveyor*Sat1.EarthMJ2000Eq.X + 
S2_surveyor*Sat1.EarthMJ2000Eq.Y + S3_surveyor*Sat1.EarthMJ2000Eq.Z;'); 
        eval('GMAT w_lvlh_surveyor = W1_surveyor*Sat1.EarthMJ2000Eq.X + 
W2_surveyor*Sat1.EarthMJ2000Eq.Y + W3_surveyor*Sat1.EarthMJ2000Eq.Z;'); 
        eval('GMAT r_lvlh_rso = R1_surveyor*Sat2.EarthMJ2000Eq.X + 
R2_surveyor*Sat2.EarthMJ2000Eq.Y + R3_surveyor*Sat2.EarthMJ2000Eq.Z;'); 
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        eval('GMAT s_lvlh_rso = S1_surveyor*Sat2.EarthMJ2000Eq.X + 
S2_surveyor*Sat2.EarthMJ2000Eq.Y + S3_surveyor*Sat2.EarthMJ2000Eq.Z;'); 
        eval('GMAT w_lvlh_rso = W1_surveyor*Sat2.EarthMJ2000Eq.X + 
W2_surveyor*Sat2.EarthMJ2000Eq.Y + W3_surveyor*Sat2.EarthMJ2000Eq.Z;'); 
        eval('GMAT r_rel_12 = r_lvlh_rso - r_lvlh_surveyor;'); 
        eval('GMAT s_rel_12 = s_lvlh_rso - s_lvlh_surveyor;'); 
        eval('GMAT w_rel_12 = w_lvlh_rso - w_lvlh_surveyor;'); 
        eval('GMAT rmag_rel = sqrt(r_rel_12^2 + s_rel_12^2 + w_rel_12^2);'); 
        eval('EndFor;');   
    else 
        if j==1 
            eval(strcat('Propagate LowEarthProp(',sprintf('%s) {',... 
                Sats2Prop),'Sat1.ElapsedSecs =',sprintf(' %i};',... 
                satStopTime))); 
        elseif j==2 
            eval(strcat(... 
                'Propagate BackProp LowEarthProp(Sat1) {Sat1.ElapsedSecs 
=',... 
                sprintf(' -%i};',satStopTime))); 
        end 
    end 
  
    BuildRunGMAT % Sends all the GMAT lines into GMAT to Build & Run  
    WaitForGMAT % Wait for GMAT to finish running 
         
    %% Extract Data 
    % Load raw GMAT data 
    if torus==0 
        for i = 1:n % satellite loop 
            Report = ['ReportFile',num2str(i)]; 
            ReportFileLoc = strcat(... 
                'C:\GmatVS11a\GmatDevelopment\application\output\',... 
                sprintf('%s',Report),'.txt'); 
            GMAT_out = load(ReportFileLoc); 
            if output==0 % limited outputs 
                % Preallocation 
                if i==1 
                    rows = size(GMAT_out,1); 
                    SatDat.time = zeros(rows,n); 
                    SatDat.X = zeros(rows,n); % ECI 
                    SatDat.Y = zeros(rows,n); % ECI 
                    SatDat.Z = zeros(rows,n); % ECI 
                    SatDat.r = zeros(rows,n); 
                    SatDat.VX = zeros(rows,n); % ECI 
                    SatDat.VY = zeros(rows,n); % ECI 
                    SatDat.VZ = zeros(rows,n); % ECI 
                    SatDat.a = zeros(rows,n); 
                    SatDat.true_anom = zeros(rows,n); 
                    SatDat.Xsun = zeros(rows,n); % ECI 
                    SatDat.Ysun = zeros(rows,n); % ECI 
                    SatDat.Zsun = zeros(rows,n); % ECI 
                    SatDat.shadow = -1.*ones(rows,n); 
                    SatDat.eclipse_entry_pen_start = zeros(100,n); 
                    SatDat.eclipse_entry_umb_start = zeros(100,n); 
                    SatDat.eclipse_exit_umb_stop = zeros(100,n); 
                    SatDat.eclipse_exit_pen_stop = zeros(100,n); 
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                end 
  
                SatDat.time(:,i) = GMAT_out(:,1); 
                SatDat.X(:,i) = GMAT_out(:,2); % ECI 
                SatDat.Y(:,i) = GMAT_out(:,3); % ECI 
                SatDat.Z(:,i) = GMAT_out(:,4); % ECI 
                SatDat.VX(:,i) = GMAT_out(:,5); % ECI 
                SatDat.VY(:,i) = GMAT_out(:,6); % ECI 
                SatDat.VZ(:,i) = GMAT_out(:,7); % ECI 
                SatDat.a(:,i) = GMAT_out(:,8); 
                SatDat.true_anom(:,i) = GMAT_out(:,9); 
                SatDat.r(:,i) = GMAT_out(:,10); 
                SatDat.Xsun(:,i) = SatDat.X(:,i) - GMAT_out(:,11); % ECI 
                SatDat.Ysun(:,i) = SatDat.Y(:,i) - GMAT_out(:,12); % ECI 
                SatDat.Zsun(:,i) = SatDat.Z(:,i) - GMAT_out(:,13); % ECI 
            else % normal outputs 
                % Preallocation 
                if i==1 
                    rows = size(GMAT_out,1); 
                    SatDat.time = zeros(rows,n); 
                    SatDat.UTCMJ = zeros(rows,n); 
                    SatDat.X = zeros(rows,n); % ECI 
                    SatDat.Y = zeros(rows,n); % ECI 
                    SatDat.Z = zeros(rows,n); % ECI 
                    SatDat.Xef = zeros(rows,n); % ECEF 
                    SatDat.Yef = zeros(rows,n); % ECEF 
                    SatDat.Zef = zeros(rows,n); % ECEF 
                    SatDat.r = zeros(rows,n); 
                    SatDat.VX = zeros(rows,n); % ECI 
                    SatDat.VY = zeros(rows,n); % ECI 
                    SatDat.VZ = zeros(rows,n); % ECI 
                    SatDat.VXef = zeros(rows,n); % ECEF 
                    SatDat.VYef = zeros(rows,n); % ECEF 
                    SatDat.VZef = zeros(rows,n); % ECEF 
                    SatDat.a = zeros(rows,n); 
                    SatDat.e = zeros(rows,n); 
                    SatDat.i = zeros(rows,n); % ECI 
                    SatDat.RAAN = zeros(rows,n); % ECI 
                    SatDat.arg_per = zeros(rows,n); % ECI 
                    SatDat.true_anom = zeros(rows,n); 
                    SatDat.mean_anom = zeros(rows,n); 
                    SatDat.Xsun = zeros(rows,n); % ECI 
                    SatDat.Ysun = zeros(rows,n); % ECI 
                    SatDat.Zsun = zeros(rows,n); % ECI 
                    SatDat.shadow = -1.*ones(rows,n); 
                    SatDat.eclipse_entry_pen_start = zeros(rows,n); 
                    SatDat.eclipse_entry_umb_start = zeros(rows,n); 
                    SatDat.eclipse_exit_umb_stop = zeros(rows,n); 
                    SatDat.eclipse_exit_pen_stop = zeros(rows,n); 
                end 
  
                SatDat.time(:,i) = GMAT_out(:,1); 
                SatDat.Xef(:,i) = GMAT_out(:,2); % ECEF 
                SatDat.Yef(:,i) = GMAT_out(:,3); % ECEF 
                SatDat.Zef(:,i) = GMAT_out(:,4); % ECEF 
                SatDat.VXef(:,i) = GMAT_out(:,5); % ECEF 
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                SatDat.VYef(:,i) = GMAT_out(:,6); % ECEF 
                SatDat.VZef(:,i) = GMAT_out(:,7); % ECEF 
                SatDat.UTCMJ(:,i) = GMAT_out(:,8); 
                SatDat.X(:,i) = GMAT_out(:,9); % ECI 
                SatDat.Y(:,i) = GMAT_out(:,10); % ECI 
                SatDat.Z(:,i) = GMAT_out(:,11); % ECI 
                SatDat.VX(:,i) = GMAT_out(:,12); % ECI 
                SatDat.VY(:,i) = GMAT_out(:,13); % ECI 
                SatDat.VZ(:,i) = GMAT_out(:,14); % ECI 
                SatDat.a(:,i) = GMAT_out(:,15); 
                SatDat.e(:,i) = GMAT_out(:,16); 
                SatDat.i(:,i) = GMAT_out(:,17); % ECI 
                SatDat.RAAN(:,i) = GMAT_out(:,18); % ECI 
                SatDat.arg_per(:,i) = GMAT_out(:,19); % ECI 
                SatDat.true_anom(:,i) = GMAT_out(:,20); 
                SatDat.mean_anom(:,i) = GMAT_out(:,21); 
                SatDat.r(:,i) = GMAT_out(:,22); 
                SatDat.Xsun(:,i) = SatDat.X(:,i) - GMAT_out(:,23); % ECI 
                SatDat.Ysun(:,i) = SatDat.Y(:,i) - GMAT_out(:,24); % ECI 
                SatDat.Zsun(:,i) = SatDat.Z(:,i) - GMAT_out(:,25); % ECI 
            end             
            % Determine eclipse state 
            shadow;             
        end 
    end 
end 
  
% Load raw GMAT data 
if torus==1 
    % clear all 
    forward = load(... 
        'C:\GmatVS11a\GmatDevelopment\application\output\forward.txt'); 
    backward = load(... 
        'C:\GmatVS11a\GmatDevelopment\application\output\backward.txt'); 
    % Combine forward- and backward-propagated data if building torus 
    GMAT_out = [flipud(backward(2:end,:));forward]; 
    SatDat.t = GMAT_out(:,1) / 60 / 13.446852; % sec to TU 
    SatDat.x = GMAT_out(:,2) / 6378.135; % km to DU 
    SatDat.y = GMAT_out(:,3) / 6378.135; % km to DU 
    SatDat.z = GMAT_out(:,4) / 6378.135; % km to DU 
    SatDat.vx = GMAT_out(:,5) / 6378.135 * 60 * 13.446852; % km/sec to DU/TU 
    SatDat.vy = GMAT_out(:,6) / 6378.135 * 60 * 13.446852; % km/sec to DU/TU 
    SatDat.vz = GMAT_out(:,7) / 6378.135 * 60 * 13.446852; % km/sec to DU/TU 
    %clear backward forward GMAT_out 
    
save('C:\GmatVS11a\GmatDevelopment\application\output\propagated_orbit.mat',... 
        'SatDat') 
end 

  



 292 

E.4 Line-of-Sight Data Processing 

%  [function]   losProc 
% 
%  [purpose]:   Function processes the GMAT ECI data to form 
%               line-of-sight (LOS) data products in the local-vertical 
%               local-horizontal (LVLH) frame. 
% 
%  [useage]:    [Surveyor,Target] = losProc(SatDat,input,options) 
% 
%  [inputs]:    SatDat    = Structure containing the GMAT extracted data. 
%                           The exact content is configured in the 
%                           gmatOrbitProp code, but presently includes 
%                           for every ith satellite entries of the form: 
%                           SatDat.X(:,i). 
%                           NOTE: The 1st satellite is the Surveyor! All 
%                           others are Target satellites. 
% 
%               input     = Input structure for the Surveyor and Target 
%                           which includes the true elements and epoch of 
%                           initial conditions. 
% 
%               options   = [bias,stdev,rate_calcs] 
%                           bias = angle measurement bias [arc sec] 
%                           stdev = 1-sigma angle meas uncertainty [arc sec] 
%                           rate_calcs = boolean (1 turns on, 0 turns off) 
%                              for whether to calculate angle rates and 
%                              find min/max angle rates. 
% 
%  [outputs]:   Surveyor  = Structure containing the processed data for 
%                           the Surveyor. 
% 
%               Target    = Structure containing the processed data for 
%                           the Target. 
% 
%  [refs]:       
% 
%  [history]:   25 Oct 2016 - Max Yates 
  
function [Surveyor,Target] = losProc(SatDat,input,options) 
  
global MU 
  
codeDir = pwd; 
  
bias = options(1); 
stdev = options(2); 
rate_calcs = logical(options(3)); 
  
rows = size(SatDat.time,1); 
n = size(SatDat.time,2)-1; % number of Target satellites 
% sampling frequency for returned data rounded to nearest tenth [sec] 
dt = roundn(SatDat.time(2,1)-SatDat.time(1,1),-2); 
  
%% Preallocation 
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Surveyor.Xrsw = zeros(rows,1); 
Surveyor.Yrsw = zeros(rows,1); 
Surveyor.Zrsw = zeros(rows,1); 
Surveyor.rotECI2RSW = zeros(3,3,rows); 
Target.Xrel = zeros(rows,n); 
Target.Yrel = zeros(rows,n); 
Target.Zrel = zeros(rows,n); 
Target.Xrel_Vallado = zeros(rows,n); 
Target.Yrel_Vallado = zeros(rows,n); 
Target.Zrel_Vallado = zeros(rows,n); 
Target.VXrel_num = zeros(rows,n); 
Target.VYrel_num = zeros(rows,n); 
Target.VZrel_num = zeros(rows,n); 
Target.VXrel_Vallado = zeros(rows,n); 
Target.VYrel_Vallado = zeros(rows,n); 
Target.VZrel_Vallado = zeros(rows,n); 
Target.rho_true = zeros(rows,n); 
 
%% ANGLES-ONLY PROCESSING 
% Calculate transformation matrix from ECI to Surveyor's RSW frame 
% (Vallado pg164) 
reci = [SatDat.X(:,1),SatDat.Y(:,1),SatDat.Z(:,1)]; 
veci = [SatDat.VX(:,1),SatDat.VY(:,1),SatDat.VZ(:,1)]; 
% radial component unit vectors 
twoNorm = sqrt(sum(abs(reci).^2,2)); 
rvec = [reci(:,1)./twoNorm,reci(:,2)./twoNorm,reci(:,3)./twoNorm]; 
% cross-track component unit vectors 
wvec = cross(reci,veci); 
twoNorm = sqrt(sum(abs(wvec).^2,2)); 
wvec = [wvec(:,1)./twoNorm,wvec(:,2)./twoNorm,wvec(:,3)./twoNorm]; 
% along-track component 
svec = cross(wvec,rvec); 
  
% Assemble transformation matrix from eci to rsw frame (individual 
% components arranged in row vectors) 
Surveyor.rotECI2RSW(1,1,:) = rvec(:,1); 
Surveyor.rotECI2RSW(1,2,:) = rvec(:,2); 
Surveyor.rotECI2RSW(1,3,:) = rvec(:,3); 
Surveyor.rotECI2RSW(2,1,:) = svec(:,1); 
Surveyor.rotECI2RSW(2,2,:) = svec(:,2); 
Surveyor.rotECI2RSW(2,3,:) = svec(:,3); 
Surveyor.rotECI2RSW(3,1,:) = wvec(:,1); 
Surveyor.rotECI2RSW(3,2,:) = wvec(:,2); 
Surveyor.rotECI2RSW(3,3,:) = wvec(:,3); 
  
% transformation matrix from rsw to eci 
% rotRSW2ECI(:,:,j) = rotECI2RSW(:,:,j)'; 
  
clear rvec svec wvec twoNorm 
  
for i=1:n % loop through Target satellites 
    % true range from inertial coordinates 
    Target.rho_true(:,i) = sqrt((SatDat.X(:,i+1)-SatDat.X(:,1)).^2+... 
        (SatDat.Y(:,i+1)-SatDat.Y(:,1)).^2+(SatDat.Z(:,i+1)-
SatDat.Z(:,1)).^2); 
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    % CALCULATE POSITION & VELOCITY in Surveyor's RSW frame 
    for j=1:rows         
        if i==1 
            surveyor_r_rsw = Surveyor.rotECI2RSW(:,:,j)*reci(j,:)'; 
            Surveyor.Xrsw(j,1) = surveyor_r_rsw(1,1); 
            Surveyor.Yrsw(j,1) = surveyor_r_rsw(2,1); 
            Surveyor.Zrsw(j,1) = surveyor_r_rsw(3,1); 
        end 
        target_r_rsw = Surveyor.rotECI2RSW(:,:,j)*[SatDat.X(j,i+1),... 
            SatDat.Y(j,i+1),SatDat.Z(j,i+1)]'; 
        % The target's relative distance and velocity in the RSW frame 
        % NOTE: not storing Xrsw for Targets, just calculating for each 
        % sat to get Xrel 
        Target.Xrel(j,i) = target_r_rsw(1,1) - Surveyor.Xrsw(j,1); % km 
        Target.Yrel(j,i) = target_r_rsw(2,1) - Surveyor.Yrsw(j,1); % km 
        Target.Zrel(j,i) = target_r_rsw(3,1) - Surveyor.Zrsw(j,1); % km 
    end 
    % MUST use seperate for loop because numerical calculation uses 
    % coordinates forward in time 
    for j=1:rows 
        % Numerically Calculate Target's Relative Velocity - five-point 
        % central difference formula 
        if j>2 && j<(rows-1) 
            Target.VXrel_num(j,i) = (Target.Xrel(j-2,i) - ... 
                8*Target.Xrel(j-1,i) + 8*Target.Xrel(j+1,i) - ... 
                Target.Xrel(j+2,i))/(12*dt); 
            Target.VYrel_num(j,i) = (Target.Yrel(j-2,i) - ... 
                8*Target.Yrel(j-1,i) + 8*Target.Yrel(j+1,i) - ... 
                Target.Yrel(j+2,i))/(12*dt); 
            Target.VZrel_num(j,i) = (Target.Zrel(j-2,i) - ... 
                8*Target.Zrel(j-1,i) + 8*Target.Zrel(j+1,i) - ... 
                Target.Zrel(j+2,i))/(12*dt); 
        elseif j<3 % forward difference formula 
            Target.VXrel_num(j,i) = (-11*Target.Xrel(j,i) + ... 
                18*Target.Xrel(j+1,i) - 9*Target.Xrel(j+2,i) + ... 
                2*Target.Xrel(j+3,i))/(6*dt); 
            Target.VYrel_num(j,i) = (-11*Target.Yrel(j,i) + ... 
                18*Target.Yrel(j+1,i) - 9*Target.Yrel(j+2,i) + ... 
                2*Target.Yrel(j+3,i))/(6*dt); 
            Target.VZrel_num(j,i) = (-11*Target.Zrel(j,i) + ... 
                18*Target.Zrel(j+1,i) - 9*Target.Zrel(j+2,i) + ... 
                2*Target.Zrel(j+3,i))/(6*dt); 
        elseif j>(rows-2) % backward difference formula 
            Target.VXrel_num(j,i) = (11*Target.Xrel(j,i) - ... 
                18*Target.Xrel(j-1,i) + 9*Target.Xrel(j-2,i) - ... 
                2*Target.Xrel(j-3,i))/(6*dt); 
            Target.VYrel_num(j,i) = (11*Target.Yrel(j,i) - ... 
                18*Target.Yrel(j-1,i) + 9*Target.Yrel(j-2,i) - ... 
                2*Target.Yrel(j-3,i))/(6*dt); 
            Target.VZrel_num(j,i) = (11*Target.Zrel(j,i) - ... 
                18*Target.Zrel(j-1,i) + 9*Target.Zrel(j-2,i) - ... 
                2*Target.Zrel(j-3,i))/(6*dt); 
        end 
         
        % Use Vallado to check relative coordinates 
        [rhill,vhill] = eci2hill(... 
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            [SatDat.X(j,1),SatDat.Y(j,1),SatDat.Z(j,1)],... 
            [SatDat.VX(j,1),SatDat.VY(j,1),SatDat.VZ(j,1)],... 
            [SatDat.X(j,i+1),SatDat.Y(j,i+1),SatDat.Z(j,i+1)],... 
            [SatDat.VX(j,i+1),SatDat.VY(j,i+1),SatDat.VZ(j,i+1)]); 
        Target.Xrel_Vallado(j,i) = rhill(1,1); 
        Target.Yrel_Vallado(j,i) = rhill(1,2); 
        Target.Zrel_Vallado(j,i) = rhill(1,3); 
        Target.VXrel_Vallado(j,i) = vhill(1,1); 
        Target.VYrel_Vallado(j,i) = vhill(1,2); 
        Target.VZrel_Vallado(j,i) = vhill(1,3); 
    end 
end 
clear reci veci 
 
%% Preallocation 
Target.alpha = zeros(rows,n); 
Target.beta = zeros(rows,n); 
Target.alpha_true = zeros(rows,n); 
Target.beta_true = zeros(rows,n); 
Target.alpha_dot = zeros(rows,n); 
Target.alpha_dot2 = zeros(rows,n); 
Target.r_dot = zeros(rows,n); 
Target.eclipse_delta_start = zeros(1,n); 
Target.eclipse_range_true = zeros(1,n); 
Target.eclipse_target_idx = zeros(1,n); 
Target.max_alphadot = nan(2,n); 
Target.max_alphadot_idx = nan(2,n); 
Target.alpha_at_max_alphadot = nan(2,n); 
Target.range_at_max_alphadot = nan(2,n); 
Target.min_alphadot = nan(2,n); 
Target.min_alphadot_idx = nan(2,n); 
Target.alpha_at_min_alphadot = nan(2,n); 
Target.range_at_min_alphadot = nan(2,n); 
  
% Had to break up the satellite for loop to guard against memory issues 
for i=1:n % loop through Target satellites 
    %% Calculate angles 
    bias = bias/3600*pi/180; % [rad] 
    stdev = stdev/3600*pi/180; % [rad] 
    Target.alpha_true(:,i) = atan2(Target.Yrel(:,i),Target.Xrel(:,i)); 
    Target.beta_true(:,i) = atan2(Target.Zrel(:,i),... 
        sqrt(Target.Xrel(:,i).^2+Target.Yrel(:,i).^2)); 
    randn('seed',0); % seed for random number generator 
    Target.alpha(:,i) = atan2(Target.Yrel(:,i),Target.Xrel(:,i)) + ... 
        bias + stdev*randn(rows,1); 
    randn('seed',0); % seed for random number generator 
    Target.beta(:,i) = atan2(Target.Zrel(:,i),... 
        sqrt(Target.Xrel(:,i).^2+Target.Yrel(:,i).^2)) + ... 
        bias + stdev*randn(rows,1); 
    % Unwrap angle data (no 360 deg jumps) 
    tol = pi; 
    % uses a jump tolerance tol instead of the default value, pi. 
    Target.alpha(:,i) = unwrap(Target.alpha(:,i),tol); 
    if Target.alpha(end,i) < -2*pi 
        Target.alpha(:,i) = Target.alpha(:,i) + 2*pi; 
    end 
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    Target.beta(:,i) = unwrap(Target.beta(:,i),tol); 
    Target.alpha_meas = Target.alpha; % unwrapped original measurements 
    Target.beta_meas = Target.beta; % unwrapped original measurements 
         
    if stdev > 0 
        %% Fit a curve through alpha and beta profiles 
        % Piece together multiple polyfit segments. Choose break points 
        % that are small enough to fit cubics with high confidence.         
        % How many break points: 
        num_breaks = floor(rows/1000)+1; % add 2 for first and last 
        break_pts = zeros(1,num_breaks); 
        break_pts(1,1) = 1; 
        break_pts(1,end) = rows; 
        ws = warning('off','all');  % Turn off warning 
        for j=1:(num_breaks-1) 
            if j<num_breaks-1 
                break_pts(1,j+1) = j*1000; 
            end 
            % 3rd degree polynomial (cubic) 
            p = polyfit(SatDat.time(break_pts(j):break_pts(j+1),1),... 
                Target.alpha(break_pts(j):break_pts(j+1),i),3); 
            Target.alpha(break_pts(j):break_pts(j+1),i) = polyval(... 
                p,SatDat.time(break_pts(j):break_pts(j+1),1)); 
            p = polyfit(SatDat.time(break_pts(j):break_pts(j+1),1),... 
                Target.beta(break_pts(j):break_pts(j+1),i),3); 
            Target.beta(break_pts(j):break_pts(j+1),i) = polyval(p,... 
                SatDat.time(break_pts(j):break_pts(j+1),1)); 
        end 
        warning(ws)  % Turn it back on. 
  
        % Check how well the polynomials fit the angle data 
        A = unwrap(Target.alpha_true(:,i),tol); 
        if A(end,1) < -2*pi 
            A = A + 2*pi; 
        end 
        B = unwrap(Target.beta_true(:,i),tol); 
        figure(25) 
        plot(SatDat.time(:,1)/60,(Target.alpha(:,1)-A)*180/pi*3600,'-r',... 
            'LineWidth',2) % [arc secs] 
        hold on 
        plot(SatDat.time(:,1)/60,(Target.beta(:,1)-B)*180/pi*3600,'--b',... 
            'LineWidth',2) % [arc secs] 
        grid on; grid minor; 
        xlabel('\boldmath$Time\ (min)$','Interpreter','latex',... 
            'FontSize',33) 
        ylabel('\boldmath$Error\ (arc\ secs)$','Interpreter','latex',... 
            'FontSize',33) 
        set(gca,'FontSize',32,'FontWeight','bold') 
        h = legend('\boldmath$\alpha$','\boldmath$\beta$','Location',... 
            'SouthWest'); 
        set(h,'Interpreter','latex','FontSize',32); 
        axis normal; 
        saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),... 
            '\Fig25.fig')) 
        close 
    end 
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    % The sine of alpha can be searched for zero crossings. No zero 
    % crossings indicates the relative trajectory does not enclose the 
    % Surveyor. 
    signum = sign(sin(Target.alpha(:,i))); % get sign of data 
    % set sign of exact data zeros to positive 
    signum(sin(Target.alpha(:,i))==0) = 1; 
    % get zero crossings by diff ~= 0  
    zero_crossings = find(diff(signum)~=0); 
    if isempty(zero_crossings)==0 && rate_calcs % only enclosed rel orbits 
        %% Calculate alpha rate (as defined, alpha is in the rs-plane) 
        if stdev == 0 
            for j=1:rows 
                % alpha rate from five-point central difference formula 
                if j>2 && j<(rows-1) 
                    if max(Target.alpha(j-2:j+2,i))-min(... 
                            Target.alpha(j-2:j+2,i))>pi 
                        alpha_wrap = check_angle_wrap(... 
                            Target.alpha(j-2:j+2,i)); 
                    else 
                        alpha_wrap = Target.alpha(j-2:j+2,i); 
                    end 
                    Target.alpha_dot(j,i) = (alpha_wrap(1,1) - ... 
                        8*alpha_wrap(2,1) + 8*alpha_wrap(4,1) - ... 
                        alpha_wrap(5,1))/(12*dt); 
                elseif j<3 % forward difference formula 
                    if max(Target.alpha(j:j+3,i))-min(... 
                            Target.alpha(j:j+3,i))>pi 
                        alpha_wrap = check_angle_wrap(... 
                            Target.alpha(j:j+3,i)); 
                    else 
                        alpha_wrap = Target.alpha(j:j+3,i); 
                    end 
                    Target.alpha_dot(j,i) = (-11*alpha_wrap(1,1) + ... 
                        18*alpha_wrap(2,1) - 9*alpha_wrap(3,1) + ... 
                        2*alpha_wrap(4,1))/(6*dt); 
                elseif j>(rows-2) % backward difference formula 
                    if max(Target.alpha(j-3:j,i))-min(... 
                            Target.alpha(j-3:j,i))>pi 
                        alpha_wrap = check_angle_wrap(... 
                            Target.alpha(j-3:j,i)); 
                    else 
                        alpha_wrap = Target.alpha(j-3:j,i); 
                    end 
                    Target.alpha_dot(j,i) = (11*alpha_wrap(4,1) - ... 
                        18*alpha_wrap(3,1) + 9*alpha_wrap(2,1) - ... 
                        2*alpha_wrap(1,1))/(6*dt); 
                    if abs(Target.alpha_dot(j,i)) > ... 
                            1.1*abs(Target.alpha_dot(j-1,i)) 
                        Target.alpha_dot(j,i) = Target.alpha_dot(j-1,i); 
                    end 
                end 
                % alpha_dot calculated from Vallado pg 258 
                Target.alpha_dot2(j,i) = (Target.VXrel_num(j,i)*... 
                    Target.Yrel(j,i) - Target.VYrel_num(j,i)*... 
                    Target.Xrel(j,i))/(-Target.Yrel(j,i)^2 - ... 
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                    Target.Xrel(j,i)^2); 
                Target.r_dot(j,i) = (Target.Xrel(j,i)*... 
                    Target.VXrel_num(j,i) + Target.Yrel(j,i)*... 
                    Target.VYrel_num(j,i) + Target.Zrel(j,i)*... 
                    Target.VZrel_num(j,i))/Target.rho_true(j,i); 
            end 
             
        elseif stdev > 0 
            for k = 1:(size(break_pts,2)-1) 
                for j=break_pts(k):break_pts(k+1) 
                    % alpha rate from five-point central difference formula 
                    if j>(break_pts(k)+1) && j<(break_pts(k+1)-1) 
                        Target.alpha_dot(j,i) = (Target.alpha(j-2,i) - ... 
                            8*Target.alpha(j-1,i) + 8*Target.alpha(j+1,i)... 
                            - Target.alpha(j+2,i))/(12*dt); 
                        if abs(Target.alpha_dot(j,i)) > 1.1*abs(... 
                                Target.alpha_dot(j-1,i)) 
                            Target.alpha_dot(j,i) = Target.alpha_dot(j-1,i); 
                        end 
                    end 
                    if j<(break_pts(k)+2) % forward difference formula 
                        Target.alpha_dot(j,i) = (-11*Target.alpha(j,i) +... 
                            18*Target.alpha(j+1,i)-9*Target.alpha(j+2,i)... 
                            + 2*Target.alpha(j+3,i))/(6*dt); 
                    end 
                    % backward difference formula 
                    % normally -2, but using -5 to catch some typical errors 
                    if j>(break_pts(k+1)-5) 
                        Target.alpha_dot(j,i) = (11*Target.alpha(j,i) - ... 
                            18*Target.alpha(j-1,i)+9*Target.alpha(j-2,i)... 
                            - 2*Target.alpha(j-3,i))/(6*dt); 
                        if abs(Target.alpha_dot(j,i)) > ... 
                                1.1*abs(Target.alpha_dot(j-1,i)) 
                            Target.alpha_dot(j,i) = Target.alpha_dot(j-1,i); 
                        end 
                    end 
                    % alpha_dot calculated from Vallado pg 258 
                    Target.alpha_dot2(j,i) = (Target.VXrel_num(j,i)*... 
                        Target.Yrel(j,i) - Target.VYrel_num(j,i)*... 
                        Target.Xrel(j,i))/(-Target.Yrel(j,i)^2 - ... 
                        Target.Xrel(j,i)^2); 
                    Target.r_dot(j,i) = (Target.Xrel(j,i)*... 
                        Target.VXrel_num(j,i) + Target.Yrel(j,i)*... 
                        Target.VYrel_num(j,i) + Target.Zrel(j,i)*... 
                        Target.VZrel_num(j,i))/Target.rho_true(j,i); 
                end 
            end 
            % Compare the estimated rate data to the truth 
            figure(26) 
            plot(Target.alpha(:,i)*180/pi,... 
                (Target.alpha_dot-Target.alpha_dot2)*180/pi*3600,... 
                'LineWidth',2) % [arc secs/sec] 
            grid on; grid minor; 
            xlabel('\boldmath$\alpha_{true}\ (arc\ secs)$','Interpreter',... 
                'latex','FontSize',33) 
            ylabel('\boldmath$\dot{\alpha}\ Error\ (arc\ secs/sec)$',... 
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                'Interpreter','latex','FontSize',33) 
            set(gca,'FontSize',32,'FontWeight','bold') 
            axis normal; 
            saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',... 
                input.runCase),'\Fig26.fig')) 
            close 
        end 
  
        %% Find where alpha rate is minimum 
        % Find indices where alpha rate is minimum in the unsmoothed data 
        % (Unsmoothed still describes the sequence of curvefits, due to the 
        % breakpoints. A polynomial will be fit to the data in the vicinity 
        % of the minimum.) 
        % https://www.mathworks.com/matlabcentral/fileexchange/25500-pea... 
        % kfinder-x0--sel--thresh--extrema--includeendpoints--interpolate- 
        [min_alphadot_idx, min_alphadot] = peakfinder(... 
            Target.alpha_dot(:,i), 1e-5, -100, 1, false, false); %1e-6 
        if size(min_alphadot,1)>2 
            % just ignore the last one 
            min_alphadot_idx = min_alphadot_idx(1:2,1); 
            min_alphadot = min_alphadot(1:2,1); 
        end 
        if size(min_alphadot,1)>1 && min_alphadot_idx(2,1) > ... 
                (size(Target.alpha_dot(:,i),1)-5) 
            % ignore the last one (garbage) 
            min_alphadot_idx = min_alphadot_idx(1,1); 
            % ignore the last one (garbage) 
            min_alphadot = min_alphadot(1,1); 
        end 
         
        % Peakfinder is unreliable sometimes... need to troubleshoot later, 
        % but for now, use the old method: 
        if size(min_alphadot)==[0,0] 
            % Old Method...: FILTER alpha_dot BEFORE IT CAN BE USED - 
            % temp use of alpha_dot2 since it will give the same result 
            [min_alphadot,min_alphadot_idx] = findpeaks(... 
                Target.alpha_dot2(:,i)); 
            if isempty(min_alphadot)==1 
                continue; 
                % If da is positive & large enough, certain relative orbits 
                % don't have min angular rate peaks. V shapeed, instead. 
                % This occured through the sma_approx where angular rates 
                % weren't needed. May have to revisit this later. 
            end 
        elseif (size(min_alphadot,1)==2 && isequal(min_alphadot_idx(1,1),... 
                min_alphadot_idx(2,1))) 
            % Old Method...: FILTER alpha_dot BEFORE IT CAN BE USED - 
            % temp use of alpha_dot2 since it will give the same result 
            [min_alphadot,min_alphadot_idx] = findpeaks(... 
                Target.alpha_dot2(:,i)); 
            if isempty(min_alphadot)==1 
                continue;  
                % If da is positive & large enough, certain relative orbits 
                % don't have min angular rate peaks. V shapeed, instead. 
                % This occured through the sma_approx where angular rates 
                % weren't needed. May have to revisit this later. 
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            end 
        end 
  
        % Polyfit to smooth data 
        T = 2*pi*sqrt(SatDat.a(1,1)^3/MU); 
        ref = round(0.055*T/dt); 
        % For highly skewed NMC, there is only one min_alphadot! 
        if length(min_alphadot_idx)==1 || abs(min_alphadot(1,1)) < ... 
                abs(min_alphadot(2,1)) 
            idx11 = min_alphadot_idx(1,1) - ref; 
            idx12 = min_alphadot_idx(1,1) + ref; 
            poly_deg = 5; 
        else 
            idx11 = min_alphadot_idx(1,1) - ref; 
            idx12 = min_alphadot_idx(1,1) + ref; 
            poly_deg = 5; 
        end 
        if idx11 < 1 
            idx11 = 1; 
        end 
        if idx12 > size(SatDat.time,1) 
            idx12 = size(SatDat.time,1); 
        end 
        if stdev > 0 
            % Re-fit curve to alpha in this smaller segment -- need to 
            % estimate alphadot better here 
            ws = warning('off','all');  % Turn off warning 
            p = polyfit(SatDat.time(idx11:idx12,1),... 
                Target.alpha_meas(idx11:idx12,i),poly_deg); 
            Target.alpha(idx11:idx12,i) = polyval(... 
                p,SatDat.time(idx11:idx12,1)); 
            warning(ws)  % Turn it back on. 
            % Recalculate alphadot in this smaller segment 
            for j=idx11:idx12 
                % alpha rate from five-point central difference formula 
                if j>(idx11+1) && j<(idx12-1) 
                    Target.alpha_dot(j,i) = (Target.alpha(j-2,i) - ... 
                        8*Target.alpha(j-1,i) + 8*Target.alpha(j+1,i) - ... 
                        Target.alpha(j+2,i))/(12*dt); 
                    if abs(Target.alpha_dot(j,i)) > ... 
                            1.1*abs(Target.alpha_dot(j-1,i)) 
                        Target.alpha_dot(j,i) = Target.alpha_dot(j-1,i); 
                    end 
                end 
                if j<(idx11+2) % forward difference formula 
                    Target.alpha_dot(j,i) = (-11*Target.alpha(j,i) + ... 
                        18*Target.alpha(j+1,i) - 9*Target.alpha(j+2,i) +... 
                        2*Target.alpha(j+3,i))/(6*dt); 
                end 
                % backward difference formula 
                % normally -2, but using -5 to catch some typical errors 
                if j>(idx12-5) 
                    Target.alpha_dot(j,i) = (11*Target.alpha(j,i) - ... 
                        18*Target.alpha(j-1,i) + 9*Target.alpha(j-2,i) -... 
                        2*Target.alpha(j-3,i))/(6*dt); 
                    if abs(Target.alpha_dot(j,i)) > ... 
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                            1.1*abs(Target.alpha_dot(j-1,i)) 
                        Target.alpha_dot(j,i) = Target.alpha_dot(j-1,i); 
                    end 
                end 
            end 
        end 
        ws = warning('off','all');  % Turn off warning 
        p1 = polyfit(SatDat.time(idx11:idx12,1),... 
            Target.alpha_dot(idx11:idx12,i),4); 
        warning(ws)  % Turn it back on. 
        Target.alpha_dot(idx11:idx12,i) = polyval(... 
            p1,SatDat.time(idx11:idx12,1)); 
         
        % Find indices where alpha rate is minimum in the smoothed data 
        [min_alphadot1,min_alphadot_idx1] = findpeaks(... 
            Target.alpha_dot(idx11:idx12,i)); 
         
        % For highly skewed NMC, there is only one min_alphadot! 
        if length(min_alphadot_idx)>1 
            if abs(min_alphadot(2,1)) < abs(min_alphadot(1,1)) 
                idx21 = min_alphadot_idx(2,1) - ref; 
                idx22 = min_alphadot_idx(2,1) + ref; 
                poly_deg = 5; 
            else 
                idx21 = min_alphadot_idx(2,1) - ref; 
                idx22 = min_alphadot_idx(2,1) + ref; 
                poly_deg = 5; 
            end 
            if idx21 < 1 
                idx21 = 1; 
            end 
            if idx22 > size(SatDat.time,1) 
                idx22 = size(SatDat.time,1); 
            end 
            if stdev > 0 
                % Re-fit curve to alpha in this smaller segment -- need to 
                % estimate alphadot better here 
                ws = warning('off','all');  % Turn off warning 
                p = polyfit(SatDat.time(idx21:idx22,1),... 
                    Target.alpha_meas(idx21:idx22,i),poly_deg); 
                Target.alpha(idx21:idx22,i) = polyval(... 
                    p,SatDat.time(idx21:idx22,1)); 
                warning(ws)  % Turn it back on. 
                % Recalculate alphadot in this smaller segment 
                for j=idx21:idx22 
                    % alpha rate from five-point central difference formula 
                    if j>(idx21+1) && j<(idx22-1) 
                        Target.alpha_dot(j,i) = (Target.alpha(j-2,i) - ... 
                            8*Target.alpha(j-1,i) + 8*Target.alpha(j+1,i)... 
                            - Target.alpha(j+2,i))/(12*dt); 
                        if abs(Target.alpha_dot(j,i)) > ... 
                                1.1*abs(Target.alpha_dot(j-1,i)) 
                            Target.alpha_dot(j,i) = Target.alpha_dot(j-1,i); 
                        end 
                    end 
                    if j<(idx21+2) % forward difference formula 
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                        Target.alpha_dot(j,i) = (-11*Target.alpha(j,i) +... 
                            18*Target.alpha(j+1,i) -9*Target.alpha(j+2,i)... 
                            + 2*Target.alpha(j+3,i))/(6*dt); 
                    end 
                    % backward difference formula 
                    % normally -2, but using -5 to catch some typical errors 
                    if j>(idx22-5) 
                        Target.alpha_dot(j,i) = (11*Target.alpha(j,i) - ... 
                            18*Target.alpha(j-1,i) +9*Target.alpha(j-2,i)... 
                            - 2*Target.alpha(j-3,i))/(6*dt); 
                        if abs(Target.alpha_dot(j,i)) > ... 
                                1.1*abs(Target.alpha_dot(j-1,i)) 
                            Target.alpha_dot(j,i) = Target.alpha_dot(j-1,i); 
                        end 
                    end 
                end 
            end 
            ws = warning('off','all');  % Turn off warning 
            p2 = polyfit(SatDat.time(idx21:idx22,1),... 
                Target.alpha_dot(idx21:idx22,i),4); 
            warning(ws)  % Turn it back on. 
            Target.alpha_dot(idx21:idx22,i) = polyval(... 
                p2,SatDat.time(idx21:idx22,1)); 
            [min_alphadot2,min_alphadot_idx2] = findpeaks(... 
                Target.alpha_dot(idx21:idx22,i)); 
            Target.min_alphadot(:,i) = [min_alphadot1;min_alphadot2]*... 
                180/pi*3600; % asecs/sec 
            Target.min_alphadot_idx(:,i) = [idx11+min_alphadot_idx1-1;... 
                idx21+min_alphadot_idx2-1]; 
             
            Target.alpha(:,i) = wrap(Target.alpha(:,i)); 
             
            if Target.alpha(Target.min_alphadot_idx(1,i),i)>0 
                Target.alpha_at_min_alphadot(1,i) = (Target.alpha(... 
                    Target.min_alphadot_idx(1,i),i)*180/pi-90)*3600; % asecs 
                Target.alpha_at_min_alphadot(2,i) = (Target.alpha(... 
                    Target.min_alphadot_idx(2,i),i)*180/pi+90)*3600; % asecs 
            else 
                Target.alpha_at_min_alphadot(1,i) = (Target.alpha(... 
                    Target.min_alphadot_idx(1,i),i)*180/pi+90)*3600; % asecs 
                Target.alpha_at_min_alphadot(2,i) = (Target.alpha(... 
                    Target.min_alphadot_idx(2,i),i)*180/pi-90)*3600; % asecs 
            end 
            Target.range_at_min_alphadot(1,i) = ... 
                Target.rho_true(Target.min_alphadot_idx(1,i),i); 
            Target.range_at_min_alphadot(2,i) = ... 
                Target.rho_true(Target.min_alphadot_idx(2,i),i); 
        else 
            Target.min_alphadot(1,i) = min_alphadot1*180/pi*3600; % asecs/sec 
            Target.min_alphadot_idx(1,i) = idx11+min_alphadot_idx1-1; 
             
            Target.alpha(:,i) = wrap(Target.alpha(:,i)); 
             
            if Target.alpha(Target.min_alphadot_idx(1,i),i)>0 
                Target.alpha_at_min_alphadot(1,i) = (Target.alpha(... 
                    Target.min_alphadot_idx(1,i),i)*180/pi-90)*3600; % asecs 
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            else 
                Target.alpha_at_min_alphadot(1,i) = (Target.alpha(... 
                    Target.min_alphadot_idx(1,i),i)*180/pi+90)*3600; % asecs 
            end 
            Target.range_at_min_alphadot(1,i) = ... 
                Target.rho_true(Target.min_alphadot_idx(1,i),i); 
        end 
         
        %% Find where alpha rate is maximum 
        % uses a jump tolerance tol instead of the default value, pi. 
        Target.alpha(:,i) = unwrap(Target.alpha(:,i),tol); 
        if Target.alpha(end,i) < -2*pi 
            Target.alpha(:,i) = Target.alpha(:,i) + 2*pi; 
        end 
        [max_alphadot_idx, max_alphadot] = peakfinder(... 
            Target.alpha_dot(:,i), 1e-5, 100, -1, false, false); %1e-6 
        if size(max_alphadot,1)>2 
            % use the middle peak and ignore the two outer ones 
            max_alphadot = max_alphadot(2,1); 
            max_alphadot_idx = max_alphadot_idx(2,1); 
        end 
        if size(max_alphadot,1)>1 && max_alphadot_idx(2,1) > ... 
                (size(Target.alpha_dot(:,i),1)-5) 
            % ignore the last one (garbage) 
            max_alphadot_idx = max_alphadot_idx(1,1); 
            % ignore the last one (garbage) 
            max_alphadot = max_alphadot(1,1); 
        end 
         
        % Peakfinder is unreliable sometimes... need to troubleshoot later, 
        % but for now, use the old method: 
        if size(max_alphadot)==[0,0] 
            % Old Method...: FILTER alpha_dot BEFORE IT CAN BE USED - 
            % temp use of alpha_dot2 since it will give the same result 
            [max_alphadot,max_alphadot_idx] = findpeaks(... 
                -Target.alpha_dot2(:,i)); 
        elseif size(max_alphadot,1)==2 && isequal(max_alphadot_idx(1,1),... 
                max_alphadot_idx(2,1)) 
            % Old Method...: FILTER alpha_dot BEFORE IT CAN BE USED - 
            % temp use of alpha_dot2 since it will give the same result 
            [max_alphadot,max_alphadot_idx] = findpeaks(... 
                -Target.alpha_dot2(1:(end-5),i)); 
        end 
  
        % Polyfit to smooth data 
        if size(max_alphadot,1)>1 
            ref = round(ref/2); 
        else 
            ref = round(ref/2); 
        end 
        idx11 = max_alphadot_idx(1,1) - ref; 
        if idx11 < 1 
            idx11 = 1; 
        end 
        idx12 = max_alphadot_idx(1,1) + ref; 
        if idx12 > size(SatDat.time,1) 
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            idx12 = size(SatDat.time,1); 
        end 
        if stdev > 0 
            poly_deg = 5; 
            % Re-fit curve to alpha in this smaller segment -- need to 
            % estimate alphadot better here 
            ws = warning('off','all');  % Turn off warning 
            p = polyfit(SatDat.time(idx11:idx12,1),... 
                Target.alpha_meas(idx11:idx12,i),poly_deg); 
            Target.alpha(idx11:idx12,i) = polyval(... 
                p,SatDat.time(idx11:idx12,1)); 
            warning(ws)  % Turn it back on. 
            % Recalculate alphadot in this smaller segment 
            for j=idx11:idx12 
                % alpha rate from five-point central difference formula 
                if j>(idx11+1) && j<(idx12-1) 
                    Target.alpha_dot(j,i) = (Target.alpha(j-2,i) - ... 
                        8*Target.alpha(j-1,i) + 8*Target.alpha(j+1,i) - ... 
                        Target.alpha(j+2,i))/(12*dt); 
                    if abs(Target.alpha_dot(j,i)) > ... 
                            1.1*abs(Target.alpha_dot(j-1,i)) 
                        Target.alpha_dot(j,i) = Target.alpha_dot(j-1,i); 
                    end 
                end 
                if j<(idx11+2) % forward difference formula 
                    Target.alpha_dot(j,i) = (-11*Target.alpha(j,i) + ... 
                        18*Target.alpha(j+1,i) - 9*Target.alpha(j+2,i)... 
                        + 2*Target.alpha(j+3,i))/(6*dt); 
                end 
                % backward difference formula 
                % normally -2, but using -5 to catch some typical errors 
                if j>(idx12-5) 
                    Target.alpha_dot(j,i) = (11*Target.alpha(j,i) - ... 
                        18*Target.alpha(j-1,i) + 9*Target.alpha(j-2,i)... 
                        - 2*Target.alpha(j-3,i))/(6*dt); 
                    if abs(Target.alpha_dot(j,i)) > ... 
                            1.1*abs(Target.alpha_dot(j-1,i)) 
                        Target.alpha_dot(j,i) = Target.alpha_dot(j-1,i); 
                    end 
                end 
            end 
        end 
        ws = warning('off','all');  % Turn off warning 
        p1 = polyfit(SatDat.time(idx11:idx12,1),... 
            Target.alpha_dot(idx11:idx12,i),4); 
        warning(ws)  % Turn it back on. 
        Target.alpha_dot(idx11:idx12,i) = polyval(... 
            p1,SatDat.time(idx11:idx12,1)); 
         
        % Find indices where alpha rate is maximum in the smoothed data 
        [max_alphadot1,max_alphadot_idx1] = findpeaks(... 
            -Target.alpha_dot(idx11:idx12,i)); 
         
        % For highly skewed NMC, there is only one max_alphadot! 
        if length(max_alphadot_idx)>1 
            idx21 = max_alphadot_idx(2,1) - ref; 
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            if idx21 < 1 
                idx21 = 1; 
            end 
            idx22 = max_alphadot_idx(2,1) + ref; 
            if idx22 > size(SatDat.time,1) 
                idx22 = size(SatDat.time,1); 
            end 
            if stdev > 0 
                poly_deg = 5; 
                % Re-fit curve to alpha in this smaller segment -- need to 
                % estimate alphadot better here 
                ws = warning('off','all');  % Turn off warning 
                p = polyfit(SatDat.time(idx21:idx22,1),... 
                    Target.alpha_meas(idx21:idx22,i),poly_deg); 
                Target.alpha(idx21:idx22,i) = polyval(... 
                    p,SatDat.time(idx21:idx22,1)); 
                warning(ws)  % Turn it back on. 
                % Recalculate alphadot in this smaller segment 
                for j=idx21:idx22 
                    % alpha rate from five-point central difference formula 
                    if j>(idx21+1) && j<(idx22-1) 
                        Target.alpha_dot(j,i) = (Target.alpha(j-2,i) - ... 
                            8*Target.alpha(j-1,i) + 8*Target.alpha(j+1,i)... 
                            - Target.alpha(j+2,i))/(12*dt); 
                        if abs(Target.alpha_dot(j,i)) > ... 
                                1.1*abs(Target.alpha_dot(j-1,i)) 
                            Target.alpha_dot(j,i) = Target.alpha_dot(j-1,i); 
                        end 
                    end 
                    if j<(idx21+2) % forward difference formula 
                        Target.alpha_dot(j,i) = (-11*Target.alpha(j,i) +... 
                            18*Target.alpha(j+1,i) -9*Target.alpha(j+2,i)... 
                            + 2*Target.alpha(j+3,i))/(6*dt); 
                    end 
                    % backward difference formula 
                    % normally -2, but using -5 to catch some typical errors 
                    if j>(idx22-5) 
                        Target.alpha_dot(j,i) = (11*Target.alpha(j,i) -... 
                            18*Target.alpha(j-1,i) +9*Target.alpha(j-2,i)... 
                            - 2*Target.alpha(j-3,i))/(6*dt); 
                        if abs(Target.alpha_dot(j,i)) > ... 
                                1.1*abs(Target.alpha_dot(j-1,i)) 
                            Target.alpha_dot(j,i) = Target.alpha_dot(j-1,i); 
                        end 
                    end 
                end 
            end 
            ws = warning('off','all');  % Turn off warning 
            p2 = polyfit(SatDat.time(idx21:idx22,1),... 
                Target.alpha_dot(idx21:idx22,i),4); 
            warning(ws)  % Turn it back on. 
            Target.alpha_dot(idx21:idx22,i) = polyval(... 
                p2,SatDat.time(idx21:idx22,1)); 
            [max_alphadot2,max_alphadot_idx2] = findpeaks(... 
                -Target.alpha_dot(idx21:idx22,i)); 
            Target.max_alphadot(:,i) = ... 
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                [-max_alphadot1;-max_alphadot2]*180/pi*3600; % asecs/sec 
            Target.max_alphadot_idx(:,i) = ... 
                [idx11+max_alphadot_idx1-1;idx21+max_alphadot_idx2-1]; 
             
            Target.alpha(:,i) = wrap(Target.alpha(:,i)); 
             
            Target.alpha_at_max_alphadot(1,i) = Target.alpha(... 
                Target.max_alphadot_idx(1,i),i)*180/pi; % deg 
            Target.alpha_at_max_alphadot(2,i) = Target.alpha(... 
                Target.max_alphadot_idx(2,i),i)*180/pi; % deg 
            Target.range_at_max_alphadot(1,i) = ... 
                Target.rho_true(Target.max_alphadot_idx(1,i),i); 
            Target.range_at_max_alphadot(2,i) = ... 
                Target.rho_true(Target.max_alphadot_idx(2,i),i); 
        else 
            Target.max_alphadot(1,i) = max_alphadot1*180/pi*3600; % asecs/sec 
            Target.max_alphadot_idx(1,i) = idx11+max_alphadot_idx1-1; 
             
            Target.alpha(:,i) = wrap(Target.alpha(:,i)); 
             
            Target.alpha_at_max_alphadot(1,i) = ... 
                Target.alpha(Target.max_alphadot_idx(1,i),i)*180/pi; % deg 
            Target.range_at_max_alphadot(1,i) = ... 
                Target.rho_true(Target.max_alphadot_idx(1,i),i); 
        end 
         
        % Is target above or below surveyor at surveyor's perigee? 
        [min_true_anom,min_true_anom_idx] = min(SatDat.true_anom(:,1)); 
        if abs(Target.alpha(min_true_anom_idx,i))>pi/2 
            Target.target_at_perigee(1,i) = -1; % -1 for below 
            if Target.Xrel(min_true_anom_idx,i)>0 % catch flaws in design 
                keyboard 
            end 
        else 
            Target.target_at_perigee(1,i) = 1; % +1 for above 
        end 
        Target.alpha_meas = wrap(Target.alpha_meas); 
        Target.beta_meas = wrap(Target.beta_meas); 
    end 
    if rate_calcs == 0 
        Target.alpha(:,i) = wrap(Target.alpha(:,i)); 
        Target.beta(:,i) = wrap(Target.beta(:,i)); 
        Target.alpha_meas = wrap(Target.alpha_meas); 
        Target.beta_meas = wrap(Target.beta_meas); 
    end 
    %% ECLIPSE RANGING 
    % only if there is an eclipse 
    if SatDat.eclipse_entry_umb_start(1,1) ~= 0 
        Target.eclipse_delta_start(1,i) = ... 
            (SatDat.eclipse_entry_umb_start(1,1) - ... 
            SatDat.eclipse_entry_umb_start(1,i+1))*dt; 
        Target.eclipse_target_idx(1,i) = ... 
            SatDat.eclipse_entry_umb_start(1,i+1); 
        Surveyor.eclipse_surveyor_idx = ... 
            SatDat.eclipse_entry_umb_start(1,1); 
        Target.eclipse_range_true(1,i) = ... 
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            Target.rho_true(Surveyor.eclipse_surveyor_idx,i); 
    end 
end 

  



 308 

E.5 Skewness Factor Determination 

%  [function]   skewFactor 
% 
%  [purpose]:   Function determines the skewness of the line-of-sight (LOS) 
%               profile from the restricted problem of natural motion 
%               circumnavigation (NMC). 
% 
%  [useage]:    [d,delta_split] = skewFactor(alpha,Yrel,nu) 
% 
%  [inputs]:    alpha     = Matrix (m x n) containing the angle alpha in 
%                           the rs-plane for the ith of n satellites. 
%                           This matrix will generally come from 
%                           Target.alpha. 
% 
%               Yrel      = Matrix (m x n) containing the relative position 
%                           along the s-axis for the ith of n satellites. 
%                           This matrix will generally come from 
%                           Target.Yrel. 
% 
%  [outputs]:   d         = Array (1 x n) containing the skewness factor 
%                           for each of n satellites. 
% 
%  [refs]:       
% 
%  [history]:   27 Oct 2016 - Max Yates 
  
function [d] = skewFactor(alpha,Yrel) 
  
m = size(alpha,1); % observations 
n = size(alpha,2); % satellites 
  
for i=1:n 
    % The sine of alpha can be searched for zero crossings. No zero crossings 
    % indicates the relative trajectory does not enclose the Surveyor. 
    signum = sign(sin(alpha(:,i))); % get sign of data  
    signum(sin(alpha(:,i))==0) = 1; % set sign of exact data zeros to positiv  
    zero_crossings = find(diff(signum)~=0); % get zero crossings by diff ~= 0  
    if zero_crossings > 0 % only enclosed relative orbits 
        % Find where alpha is +/- 90 deg 
   % Index of closest entry to +s-axis 
        [posS_value, alpha90_idx1] = min(abs(alpha(:,i)-pi/2)); 
        % Index of closest entry to -s-axis 
        [negS_value, alpha90_idx2] = min(abs(alpha(:,i)+pi/2)); 
        if posS_value > 1 || negS_value > 1 
            disp(['Target ',num2str(i), ... 
                ' is not circumnavigating the Surveyor']) 
            d(1,i) = 0; 
            continue 
        end 
         
        % Calculate arc length at +/- s-axis crossing 
        num_obs = 5; % how many data points to use in calculating arc length 
        % Want alpha90_idx1 on -s-axis and alpha90_idx2 on +s-axis 
        if alpha(alpha90_idx1,i)>0 
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            temp = alpha90_idx1; 
            alpha90_idx1 = alpha90_idx2; 
            alpha90_idx2 = temp; 
        end 
        % End-point protection 
        if alpha90_idx1-num_obs < 0 
            arc_negS = abs(alpha(1,i)-alpha(1+2*num_obs,i)); 
        elseif alpha90_idx1+num_obs > m 
            arc_negS = abs(alpha(m-2*num_obs,i)-alpha(m,i)); 
        else 
            arc_negS = abs(alpha(alpha90_idx1-num_obs,i) - ... 
                alpha(alpha90_idx1+num_obs,i)); 
        end 
        if alpha90_idx2-num_obs < 0 
            arc_posS = abs(alpha(1,i)-alpha(1+2*num_obs,i)); 
        elseif alpha90_idx2+num_obs > m 
            arc_posS = abs(alpha(m-2*num_obs,i)-alpha(m,i)); 
        else 
            arc_posS = abs(alpha(alpha90_idx2-num_obs,i) - ... 
                alpha(alpha90_idx2+num_obs,i)); 
        end 
         
        % Calculate distance ratio d on unit 2x1 ellipse 
        d(1,i) = 2*tan(arc_posS/2)/(tan(arc_negS/2)+tan(arc_posS/2)); 
    else 
        disp(['Target ',num2str(i),' is not circumnavigating the Surveyor']) 
        d(1,i) = 0; 
    end 
end 
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E.6 Admissible Region Hypotheses 

%  [function]   admRegHyp 
% 
%  [purpose]:   Function determines admissible hypotheses for the 
%               restricted problem of natural motion circumnavigation. 
% 
%  [useage]:    [coes,d_hyp,delta_split_hyp,rel_apsis_hyp,alpha_disp_true] 
%                   = admRegHyp(SatDat,input,Surveyor,alpha,beta,d,... 
%                   ranges,bias,stdev) 
% 
%  [inputs]:    SatDat    = Structure containing the GMAT extracted data. 
%                           The exact content is configured in the 
%                           gmatOrbitProp code, but presently includes 
%                           for every ith satellite entries of the form: 
%                           SatDat.X(:,i). 
%                           NOTE: The 1st satellite is the Surveyor! All 
%                           others are Target satellites. 
% 
%               Surveyor  = Structure containing the LOS processed data for 
%                           the Surveyor. 
% 
%               input     = Input structure for the Surveyor and Target 
%                           which includes the true elements and epoch of 
%                           initial conditions. 
% 
%               alpha     = Matrix (m x n) containing the angle alpha in 
%                           the rs-plane for the ith of n satellites. 
%                           This matrix will generally come from 
%                           Target.alpha. 
% 
%               beta      = Matrix (m x n) containing the OOP angle beta 
%                           for the ith of n satellites. This matrix will 
%                           generally come from Target.beta. 
% 
%               d         = Array (1 x n) containing the skewness factor 
%                           for each of n satellites. 
% 
%               ranges    = Array (p x 1) containing the range hypotheses 
%                           along the LOS vector. 
% 
%               bias      = angle measurement bias [arc sec] 
% 
%               stdev     = 1-sigma angle measurement uncertainty [arc sec] 
% 
%  [outputs]:   coes      = Matrix (np x 6) containing initial conditions 
%                           for np satellite hypotheses. 
%                           where 
%                              coes(i,1) = semi-major axis [km] 
%                              coes(i,2) = eccentricity 
%                              coes(i,3) = inclination [deg] 
%                              coes(i,4) = RAAN [deg] 
%                              coes(i,5) = argument of perigee [deg] 
%                              coes(i,6) = true anomaly [deg] 
% 
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%  [refs]:       
% 
%  [history]:   27 Oct 2016 - Max Yates 
  
function [coes,d_hyp,delta_split_hyp,rel_apsis_hyp,alpha_disp_true,u_hyp]... 
    = admRegHyp(SatDat,input,Surveyor,alpha,beta,d,ranges,bias,stdev) 
  
global J2 MU DU geo_degree use_skew2nu search_argp 
  
codeDir = pwd; 
format long g 
  
m = size(SatDat.X,1); % Observations 
n = size(SatDat.X,2)-1; % Target satellites 
p = size(ranges,1); % Number of hypotheses per satellite 
  
% PREALLOCATION 
coes = zeros(n*p,6); 
d_hyp = zeros(1,n*p); 
delta_split_hyp = zeros(1,n*p); 
rel_apsis_hyp = zeros(1,n*p); 
Xrel_inertial_unit = zeros(m,n); 
Yrel_inertial_unit = zeros(m,n); 
Zrel_inertial_unit = zeros(m,n); 
  
% Speed up skewTestBlock by propagating Surveyor at lower sample rate ONCE 
% rather than repeatedly 
options = [0,0,0,0,0]; % [prop_time,dt,torus,output,orbitview] 
SatDat_s = gmatOrbitProp(input.state_type,input.coord_sys,... 
    input.elements(1,:),input.epoch,'UTCGregorian',options); 
  
index = 1; % Column index from 1:np 
for i=1:n 
    if d(1,i) ~= 0 % Restricted to NMC orbits 
        % Form LOS vector in inertial frame 
        Xrel_inertial = SatDat.X(:,i+1)-SatDat.X(:,1); % Target - Surveyor 
        Yrel_inertial = SatDat.Y(:,i+1)-SatDat.Y(:,1); 
        Zrel_inertial = SatDat.Z(:,i+1)-SatDat.Z(:,1); 
        rho = sqrt(Xrel_inertial.^2 + Yrel_inertial.^2 + Zrel_inertial.^2); 
        Xrel_inertial_unit(:,i) = Xrel_inertial./rho; 
        Yrel_inertial_unit(:,i) = Yrel_inertial./rho; 
        Zrel_inertial_unit(:,i) = Zrel_inertial./rho; 
         
        error_ratio = zeros(p,1); 
  
        %% Determine if we have a negative or positive disparity. 
        % Propagate Surveyor and Target satellites for one orbital 
        % period. No bonus time at the end (hence -0.02 in options). 
        options = [-0.02,0,0,0,0]; % [prop_time,dt,torus,output,orbitview] 
        SatDat_aux0 = gmatOrbitProp('Keplerian',input.coord_sys,... 
            input.coes,input.epoch,'UTCGregorian',options); 
        % generate LOS observations 
        [Surveyor_aux0,Target_aux0] = losProc(SatDat_aux0,input,... 
            [bias,stdev,1]); 
  
        % The sine of alpha can be searched for zero crossings. One  
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        % zero crossing indicates positive disparity, whereas two zero 
        % crossing indicates either positive or negative disparity. No 
        % zero crossings indicates the relative trajectory does not 
        % enclose the Surveyor. 
        signum = sign(sin(Target_aux0.alpha(:,i))); % get sign of data 
        % Set sign of exact data zeros to positive 
        signum(sin(Target_aux0.alpha(:,i))==0) = 1; 
        % Get zero crossings by diff ~= 0 
        zero_crossings = find(diff(signum)~=0); 
        % POSITIVE DISPARITY (alpha profile is >360 deg in one period) 
        if length(zero_crossings) > 1 && sign(Target_aux0.alpha(1,1))==-1.... 
                && sign(Target_aux0.alpha(end,1))==1 
            alpha_disp_true = (2*pi-abs(Target_aux0.alpha(1,1))-... 
                abs(Target_aux0.alpha(end,1)))*180/pi; 
        elseif length(zero_crossings) > 1 && ... 
                sign(Target_aux0.alpha(1,1))==1 && ... 
                sign(Target_aux0.alpha(end,1))==1 && ... 
                abs(Target_aux0.alpha(1,1)) > abs(Target_aux0.alpha(end,1)) 
            alpha_disp_true = (Target_aux0.alpha(1,1)-... 
                Target_aux0.alpha(end,1))*180/pi; 
        elseif length(zero_crossings) > 1 && ... 
                sign(Target_aux0.alpha(1,1))==-1 && ... 
                sign(Target_aux0.alpha(end,1))==-1 && ... 
                abs(Target_aux0.alpha(end,1)) > abs(Target_aux0.alpha(1,1)) 
            alpha_disp_true = (Target_aux0.alpha(end,1)-... 
                Target_aux0.alpha(1,1))*180/pi; 
        % NEGATIVE DISPARITY (alpha profile is <360 deg in one period) 
        elseif length(zero_crossings) == 1 && ... 
                sign(Target_aux0.alpha(1,1))==1 && ... 
                sign(Target_aux0.alpha(end,1))==-1 
            alpha_disp_true = -(2*pi-abs(Target_aux0.alpha(1,1))-... 
                abs(Target_aux0.alpha(end,1)))*180/pi; 
        elseif length(zero_crossings) > 1 && ... 
                sign(Target_aux0.alpha(1,1))==1 && ... 
                sign(Target_aux0.alpha(end,1))==1 && ... 
                abs(Target_aux0.alpha(end,1)) > abs(Target_aux0.alpha(1,1)) 
            alpha_disp_true = (Target_aux0.alpha(1,1)-... 
                Target_aux0.alpha(end,1))*180/pi; 
        elseif length(zero_crossings) > 1 && ... 
                sign(Target_aux0.alpha(1,1))==-1 && ... 
                sign(Target_aux0.alpha(end,1))==-1 && ... 
                abs(Target_aux0.alpha(1,1)) > abs(Target_aux0.alpha(end,1)) 
            alpha_disp_true = (Target_aux0.alpha(1,1)-... 
                Target_aux0.alpha(end,1))*180/pi; 
        end 
         
        disparity_threshold = 2.5; % [deg] 
        % Can use 2x1 geometry as approximation when below this value. 
        % Explore this threshold more! Somewhat arbitrary for now. 
  
        %% Find if Target is above or below Surveyor at initialization 
        if abs(alpha(1,1)) > pi/2 
            above_below = -1; % below 
        else 
            above_below = 1; % above 
        end 
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        %% Should rd1 point to apsis above or below Surveyor & should rd2 
        %% point left or right? 
        % If we start above, then we want the full half-period between 
        % s-axis crossings below the Surveyor and vice-versa. 
        if above_below == 1 
            use_above_below = -1; % 1 for above, -1 for below 
        elseif above_below == -1 
            use_above_below = 1; % 1 for above, -1 for below 
        end 
        % Previously, I found that the osculation corrections were better 
        % when rd1_index is greater than rd2_index. Writing with constraint 
        % that rd1_index > rd2_index (the only way I've been able to 
        % consistently solve the osculation problem). 
        if above_below == -1 && use_above_below == 1 % rd2 on +s side 
            use_left_right = 1; % 1 for +s side, -1 for -s side 
        elseif above_below == 1 && use_above_below == -1 % rd2 on -s side 
            use_left_right = -1; % 1 for +s side, -1 for -s side 
        end 
         
        %% COE Hypothesis Loop 
        for j=1:p 
            % Check for past saved runs -- solves the crashing problem 
            if exist(fullfile(strcat(codeDir,'\Cases\',sprintf('%s',... 
                    input.runCase)), sprintf('hyp%i.mat',index)), 'file') 
                load(strcat(codeDir,'\Cases\',sprintf('%s',... 
                    input.runCase),'\',sprintf('hyp%i.mat',index))) 
                continue 
            end 
             
            % Relative apses. Use midway point between +/- s-axis crossings 
            % Index of closest entry to +s-axis 
            [posS_value, posS_index] = min(abs(alpha(:,i)-pi/2)); 
            % Index of closest entry to -s-axis 
            [negS_value, negS_index] = min(abs(alpha(:,i)+pi/2)); 
            rel_apsis_hyp(1,index) = round((posS_index + negS_index)/2); 
            apsis_index = rel_apsis_hyp(1,index); 
             
            % Form Target's inertial position hypothesis at t(apsis_index) 
            X_hyp = SatDat.X(apsis_index,1) + ... 
                ranges(j,1)*Xrel_inertial_unit(apsis_index,i); 
            Y_hyp = SatDat.Y(apsis_index,1) + ... 
                ranges(j,1)*Yrel_inertial_unit(apsis_index,i); 
            Z_hyp = SatDat.Z(apsis_index,1) + ... 
                ranges(j,1)*Zrel_inertial_unit(apsis_index,i); 
            r_hyp = sqrt(X_hyp.^2 + Y_hyp.^2 + Z_hyp.^2); 
            % Check accuracy 
            r_truth = sqrt(SatDat.X(apsis_index,2)^2+... 
                SatDat.Y(apsis_index,2)^2+SatDat.Z(apsis_index,2)^2); 
            r_error = r_hyp - r_truth; 
            range_error = ranges(j,1) - rho(apsis_index,1) 
             
            % Flag to specify if manually iterating; manually add hyp.coes 
            % from first iteration below 
            iterate_run = 0; 
            if iterate_run == 0 
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                % Initially use Surveyor's semi-major axis 
                a_hyp = SatDat.a(1,1); 
                i_hyp = SatDat.i(1,1); 
                RAAN_hyp = SatDat.RAAN(1,1); 
                % Approximate Target speed -- 2Body (non-osculating) 
                v_hyp = sqrt(2*MU/r_hyp-MU/a_hyp); 
                % Check accuracy 
                v_hyp_truth = sqrt(SatDat.VX(apsis_index,2)^2 + ... 
                    SatDat.VY(apsis_index,2)^2 + SatDat.VZ(apsis_index,2)^2); 
                % Approximate Target eccentricity -- 2Body (non-osculating) 
                e_hyp = sqrt(1-(2*(v_hyp^2)*r_hyp)/MU+... 
                    ((v_hyp^4)*(r_hyp^2))/(MU^2)); 
                % Check accuracy 
                e_hyp_truth = SatDat.e(apsis_index,2); 
            else 
                % manually paste hypotheses from first iteration... 
                % not too much of a pain for now since it is rarely needed 
                hyp.coes = []; 
                a_hyp = hyp.coes(j,1); 
                e_hyp = hyp.coes(j,2); 
                i_hyp = hyp.coes(j,3); 
                RAAN_hyp = hyp.coes(j,4); 
            end 
             
            for smai = 1:1 % time consuming -- typically just 1 
                % Approximate Target eccentricity -- 2Body (non-osculating) 
                v_hyp = sqrt(2*MU/r_hyp-MU/a_hyp); 
                e_hyp0 = sqrt(1-(2*(v_hyp^2)*r_hyp)/MU+... 
                    ((v_hyp^4)*(r_hyp^2))/(MU^2)); 
                 

    %% Approximate Argument of Perigee 
                % The Target must have approximately the same argument of 
                % latitude as the Surveyor in order to sustain close 
                % proximity. Search argp until alpha0 hypothesis 
                % approximately matches the relative trajectory. 
                if j == 1 
                    disp(['Approximating argument of perigee']) 
     % Approximate Target argument of latitude at apsis using  
                    % Surveyor's RAAN 
     Node = [cosd(SatDat.RAAN(1,1));sind(SatDat.RAAN(1,1));0]; 
     r1 = [SatDat.X(apsis_index,1);SatDat.Y(apsis_index,1);... 
                        SatDat.Z(apsis_index,1)] + ranges(j,1)*... 
                        Xrel_inertial_unit(apsis_index,i); ... 
                        Yrel_inertial_unit(apsis_index,i); ... 
                        Zrel_inertial_unit(apsis_index,i)]; 
                    u_hyp_apsis = acosd(dot(node,r1)/(mag(node)*mag(r1))); 
                    % Quadrant check for u_hyp 
                    if r1(3,1)<0 
                        u_hyp_apsis = 360 - u_hyp_apsis; 
                    end 
  
                    darglat_s = (SatDat.arg_per(apsis_index,1) + ... 
                        SatDat.true_anom(apsis_index,1)) - ...  
                        (SatDat.arg_per(1,1)+SatDat.true_anom(1,1)); 
                    % Check accuracy: 
                    darglat_t = (SatDat.arg_per(apsis_index,2) + ... 
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                        SatDat.true_anom(apsis_index,2)) - ... 
                        (SatDat.arg_per(1,2)+SatDat.true_anom(1,2)); 
  
                    % Approximate Target argument of latitude at epoch 
                    u_hyp = u_hyp_apsis - darglat_s; 
                    if u_hyp < 0 
                        u_hyp = u_hyp + 360; 
                    end 
                    % Check accuracy: 
                    u_hyp_truth = SatDat.arg_per(1,2)+SatDat.true_anom(1,2); 
  
                    % Search Method - Coarse 10 deg precision on first  
                    % iteration since none of the other COEs have been  
                    % determined yet. 
                    if search_argp == 1 
                        dargp=(0:10:350)'; 
                        argpTestBlock; 
     
                        % Propagate Surveyor with argp_hyp for osculation  
                        % corrections 
                        u_hyp_s = SatDat.arg_per(1,1)+SatDat.true_anom(1,1); 
                        % sampling freq. for returned data rounded to nearest  
                        % hundredth [sec] 
                        dt = roundn(SatDat.time(2,1)-SatDat.time(1,1),-2); 
                        % [prop_time,dt,torus,output,orbitview] 
                        options = [-0.02,dt,0,1,0]; 
                        SatDat2 = gmatOrbitProp(input.state_type, ... 
                            input.coord_sys,[input.coes(1,1), ... 
                            input.coes(1,2),input.coes(1,3), ... 
                            input.coes(1,4),argp_hyp,u_hyp_s-argp_hyp], ... 
                            input.epoch,'UTCGregorian',options); 
                    elseif search_argp == 0 
                        % Use argument of perigee from Surveyor at epoch 
                        argp_hyp = SatDat.arg_per(1,1); % [deg] 
                    end 
 
                    % Check accuracy of method 
                    argp_hyp 
                    argp_error = argp_hyp - SatDat.arg_per(1,i+1) 
                end 
                 
                % Correct epoch eccentricity for osculations 
                if abs(cosd(argp_hyp)-cosd(input.coes(1,5)))<1e-6 
                    e_hyp = e_hyp0-(SatDat.e(apsis_index,1)-SatDat.e(1,1)); 
                else 
                    % Use eccentricity curve from Surveyor with argp_hyp 
                    e_hyp = e_hyp0-(SatDat2.e(apsis_index,1)-SatDat2.e(1,1)); 
                end 
  
                %% Approximate Semi-Major Axis 
                if abs(alpha_disp_true) > disparity_threshold 
                    disp(['Approximating semi-major axis']) 
                    if alpha_disp_true > 0 % positive disparity 
                        da=(0:-1:-20)'; 
                        pos_neg = -1; 
                    else 
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                        da=(0:1:20)'; 
                        pos_neg = 1; 
                    end 
                    smaTestBlock; 
                    if pos_neg == 1 
                        da=(da(k-1,1):0.1:da(k,1))'; 
                    elseif pos_neg == -1 
                        da=(da(k-1,1):-0.1:da(k,1))'; 
                    end    
                    smaTestBlock; 
     if pos_neg == 1 
        da=(da(k-1,1):0.01:da(k,1))'; 
     elseif pos_neg == -1 
        da=(da(k-1,1):-0.01:da(k,1))'; 
     end 
     smaTestBlock; 
 
     % split the difference for da_hyp 
     coeffs = polyfit([disparities(1,k-1), ... 
                        disparities(1,k)],[da(k-1,1),da(k,1)],1); 
                    da_hyp = polyval(coeffs,alpha_disp_true)  
     nu_hyp0(j,:) = nu_hyp; % save to look at during debug 
     % split the difference for nu_hyp and d_hyp 
     coeffs = polyfit([disparities(1,k-1), ... 
                        disparities(1,k)],[nu_hyp(1,k-1),nu_hyp(1,k)],1);  
                    nu_hyp = polyval(coeffs,alpha_disp_true); 
     coeffs = polyfit([disparities(1,k-1), ... 
                        disparities(1,k)],[d_aux(1,k-1),d_aux(1,k)],1); 
     d_hyp(1,index) = polyval(coeffs,alpha_disp_true); 
 
                    a_hyp = a_hyp + da_hyp; 
 
                    % Update Target eccentricity 
                    v_hyp = sqrt(2*MU/r_hyp-MU/a_hyp); 
                    e_hyp0 = sqrt(1-(2*(v_hyp^2)*r_hyp)/MU+... 
                        ((v_hyp^4)*(r_hyp^2))/(MU^2)); 
                    % Correct epoch eccentricity for osculations 
                    if abs(cosd(argp_hyp)-cosd(input.coes(1,5)))<1e-6 
                        e_hyp = e_hyp0 - (SatDat.e(apsis_index,1)-... 
                            SatDat.e(1,1)); 
                    else 
                        % Use eccentricity curve from Surveyor with argp_hyp 
                        e_hyp = e_hyp0 - (SatDat2.e(apsis_index,1)-... 
                            SatDat2.e(1,1)); 
                    end 
                end 
            end 
             
            % Check accuracy of method 
            e_error = e_hyp - SatDat.e(1,i+1) 
  
            %% Calculate Unit Orbit Angular Momentum 
            if use_left_right == 1 
                ref = pi/2; % Reference angle for finding index for D 
            elseif use_left_right == -1 
                ref = -pi/2; % Reference angle for finding index for D 
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            end 
             
            % Can use 2x1 geometry as approximation 
            if abs(alpha_disp_true) < disparity_threshold % [deg] 
                % Robust for all cases: d>1, d<1, above or below 
                theta3 = atan(abs((d(1,i)-1))/0.5); 
                scaled_range_hyp = 0.5/cos(theta3); 
                % Range hypothesis projected into rs-plane 
                projected_range = ranges(j,1)*cos(beta(apsis_index)); 
                if use_left_right == -1 
                    D = projected_range*(d(1,i)/scaled_range_hyp); 
                elseif use_left_right == 1 
                    D = projected_range*((2-d(1,i))/scaled_range_hyp); 
                end 
                rd1_index = apsis_index; 
                % Linear index of closest entry 
                [value, rd2_index] = min(abs(alpha(:)-ref)); 
                rd1 = [SatDat.X(rd1_index,1);SatDat.Y(rd1_index,1);... 
                    SatDat.Z(rd1_index,1)] + ranges(j,1)*... 
                    [Xrel_inertial_unit(rd1_index,i);... 
                    Yrel_inertial_unit(rd1_index,i);... 
                    Zrel_inertial_unit(rd1_index,i)]; 
                rd2 = [SatDat.X(rd2_index,1);SatDat.Y(rd2_index,1);... 
                    SatDat.Z(rd2_index,1)] + (D/cos(beta(rd2_index))).*... 
                    [Xrel_inertial_unit(rd2_index,i);... 
                    Yrel_inertial_unit(rd2_index,i);... 
                    Zrel_inertial_unit(rd2_index,i)]; 
            end 
  
            % Use scaled auxiliary trajectory geometry as default 
            if abs(alpha_disp_true) < disparity_threshold  
                [nu_hyp,d_hyp,~] = skew2nu(SatDat_s,a_hyp,e_hyp,... 
                    input.coes(1,3),input.coes(1,4),argp_hyp,u_hyp,... 
                    input,d(1,i),[0,0,1]); 
            else 
                % nu_hyp comes from sma_approx 
            end 
            % Propagate auxiliary trajectory 
            % Sampling freq for returned data rounded to nearest hundredth 
            dt = roundn(SatDat.time(2,1)-SatDat.time(1,1),-2); % [sec] 
            options = [0,dt,0,1,0]; % [prop_time,dt,torus,output,orbitview] 
            SatDat_aux = gmatOrbitProp('Keplerian',input.coord_sys,... 
                [input.coes(1,:);a_hyp,e_hyp,input.coes(1,3),... 
                input.coes(1,4),argp_hyp,nu_hyp],input.epoch,... 
                'UTCGregorian',options); 
            % Generate LOS observations 
            [Surveyor_aux,Target_aux] = losProc(SatDat_aux,input,[0,0,1]); 
  
            rd1_index = apsis_index; 
            % Linear index of closest entry 
            [value, rd2_index] = min(abs(alpha(:)-ref)); 
            rd1 = [SatDat.X(rd1_index,1);SatDat.Y(rd1_index,1);... 
                SatDat.Z(rd1_index,1)]+Target_aux.rho_true(rd1_index,1)/... 
                cos(beta(rd1_index,1))*[Xrel_inertial_unit(rd1_index,i);... 
                Yrel_inertial_unit(rd1_index,i);... 
                Zrel_inertial_unit(rd1_index,i)]; 
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            rd2 = [SatDat.X(rd2_index,1);SatDat.Y(rd2_index,1);... 
                SatDat.Z(rd2_index,1)]+(Target_aux.rho_true(rd2_index,1)/... 
                cos(beta(rd2_index))).*[Xrel_inertial_unit(rd2_index,i);... 
                Yrel_inertial_unit(rd2_index,i);... 
                Zrel_inertial_unit(rd2_index,i)]; 
             
            if (rd2_index > rd1_index) && (abs(alpha(rd1_index))+... 
                    abs(alpha(rd2_index)) < pi) 
                H_unit = unit(cross(rd1,rd2)); 
            elseif (rd1_index > rd2_index) && (abs(alpha(rd1_index))+... 
                    abs(alpha(rd2_index)) < pi) 
                H_unit = unit(cross(rd2,rd1)); 
            elseif (rd2_index > rd1_index) && (abs(alpha(rd1_index))+... 
                    abs(alpha(rd2_index)) > pi) 
                H_unit = unit(cross(rd2,rd1)); 
            elseif (rd1_index > rd2_index) && (abs(alpha(rd1_index))+... 
                    abs(alpha(rd2_index)) > pi) 
                H_unit = unit(cross(rd1,rd2)); 
            End 
 

%% Calculate Inclination 
            i_hyp = acos(H_unit(3))*180/pi; 
            % Correct inclination for osculation with Surveyor data 
            i_hyp1 = i_hyp-((SatDat2.i(rd1_index,1)-SatDat2.i(1,1))+... 
                (SatDat2.i(rd2_index,1)-SatDat2.i(1,1)))/2; 
            i_hyp2 = i_hyp-(SatDat2.i(round((rd1_index+rd2_index)/2),1)-... 
                SatDat2.i(1,1)); 
            i_hyp = (i_hyp1 + i_hyp2)/2; 
            % Check accuracy of method 
            i_error = i_hyp - SatDat.i(1,i+1) 
             
            %% Calculate RAAN 
            ncap_ish = cross([0,0,1],H_unit); 
            ncap = unit(ncap_ish); 
            RAAN_hyp = acos(ncap(1))*180/pi; 
            % Quadrant check for RAAN_hyp 
            if ncap(2)<0 
                RAAN_hyp = 360 - RAAN_hyp; 
            end 
            % Correct RAAN for osculation & regression with Surveyor data 
            RAAN_hyp1 = RAAN_hyp-((SatDat2.RAAN(rd1_index,1)-... 
                SatDat2.RAAN(1,1))+(SatDat2.RAAN(rd2_index,1)-... 
                SatDat2.RAAN(1,1)))/2; 
            RAAN_hyp2 = RAAN_hyp-(SatDat2.RAAN(round((rd1_index+... 
                rd2_index)/2),1)-SatDat2.RAAN(1,1)); 
            RAAN_hyp = (RAAN_hyp1 + RAAN_hyp2)/2; 
            % Check accuracy of method 
            RAAN_error = RAAN_hyp - SatDat.RAAN(1,i+1) 
             
            %% Approximate Target True Anomaly 
            [nu_hyp,d_hyp(1,index),delta_split_hyp(1,index)] = ... 
                skew2nu(SatDat_s,a_hyp,e_hyp,i_hyp,RAAN_hyp,... 
                argp_hyp,u_hyp,input,d(1,i),[bias,stdev,1]); 
 

%% Hypothesis COEs 
            coes(index,:) = [a_hyp,e_hyp,i_hyp,RAAN_hyp,argp_hyp,nu_hyp] 
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            %% Sanity Check 
            % Propagate Target estimate 
            % Sampling freq for returned data rounded to nearest hundredth 
            dt = roundn(SatDat.time(2,1)-SatDat.time(1,1),-2); % [sec] 
            options = [0,dt,0,0,0]; % [prop_time,dt,torus,output,orbitview] 
            SatDat_hyp = gmatOrbitProp('Keplerian',input.coord_sys,... 
                [input.coes(1,:);coes(index,:)],input.epoch,... 
                'UTCGregorian',options); 
            if abs(alpha_disp_true) < disparity_threshold 
                Xrel_inertial_check = SatDat_hyp.X(apsis_index,i+1)-... 
                    SatDat_hyp.X(apsis_index,1); % Target - Surveyor 
                Yrel_inertial_check = SatDat_hyp.Y(apsis_index,i+1)-... 
                    SatDat_hyp.Y(apsis_index,1); 
                Zrel_inertial_check = SatDat_hyp.Z(apsis_index,i+1)-... 
                    SatDat_hyp.Z(apsis_index,1); 
                rho_check = sqrt(Xrel_inertial_check.^2 + ... 
                    Yrel_inertial_check.^2 + Zrel_inertial_check.^2); 
                % Check accuracy 
                error_ratio(j,1) = abs(rho_check - ranges(j,1))/ranges(j,1) 
            else 
                Xrel_inertial_check = SatDat_hyp.X(apsis_index,i+1)-... 
                    SatDat_hyp.X(apsis_index,1); % Target - Surveyor 
                Yrel_inertial_check = SatDat_hyp.Y(apsis_index,i+1)-... 
                    SatDat_hyp.Y(apsis_index,1); 
                Zrel_inertial_check = SatDat_hyp.Z(apsis_index,i+1)-... 
                    SatDat_hyp.Z(apsis_index,1); 
                rho_check = sqrt(Xrel_inertial_check.^2 + ... 
                    Yrel_inertial_check.^2 + Zrel_inertial_check.^2); 
                % Check accuracy 
                error_ratio(j,1) = abs(rho_check - ranges(j,1))/ranges(j,1) 
            end 
            if error_ratio(j,1)>0.1 % liberal for now 
                %coes(index,:) = []; 
                %continue; 
            end 
            index = index+1; 
            save(strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),... 
                '\',sprintf('hyp%i.mat',index-1))) 
        end 
    end 
end 
end 
  
function F = getTrueAnom(nu_hyp,MU,rp,e_hyp,v_hyp) 
    % Wiesel pg 70, Eqn 2.78 
    % Rewrite the equation in the form F(x) = 0 
    F = sqrt(MU/rp*(sind(nu_hyp)^2) + MU/rp*(e_hyp+cosd(nu_hyp))^2) - v_hyp; 
end 
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E.7 True Anomaly Search with Skewness Factor Heuristic 

%  [function]   skew2nu 
% 
%  [purpose]:   Function optimally searches for the true anomaly of a Target 
%               hypothesis so as to produce a skewness factor that matches 
%               the LOS profile skewness of the observed satellite. 
% 
%  [useage]:    [nu_hyp,d_hyp] = skew2nu(SatDat_s,a_hyp,e_hyp,i_hyp,... 
%                   RAAN_hyp,argp_hyp,u_hyp,input,d,options) 
% 
%  [inputs]:    SatDat_s  = Structure containing the GMAT extracted data 
%                           for the SURVEYOR. 
% 
%               a_hyp     = Target semi-major axis hypothesis. [km] 
% 
%               e_hyp     = Target eccentricity hypothesis. 
% 
%               i_hyp     = Target inclination hypothesis. [deg] 
% 
%               RAAN_hyp  = Target RAAN hypothesis. [deg] 
% 
%               argp_hyp  = Target argument of perigee hypothesis. [deg] 
% 
%               u_hyp     = Target argument of latitude hypothesis. [deg] 
% 
%               input     = Input structure for the Surveyor and Target 
%                           which inclues the true elements and epoch of 
%                           initial conditions. 
% 
%               d         = Skewness factor from Target observations. 
% 
%               options   = [bias,stdev,gran] 
%                           bias = angle measurement bias [arc sec] 
%                           stdev = 1-sigma angle meas. uncertainty [arc sec] 
%                           gran = level of search granularity (1 = high  
%                                  precision, 0 = low precision). 
% 
%  [outputs]:   nu_hyp    = Target true anomaly hypothesis [deg] 
% 
%               d_hyp     = Skewness factor for the Target hypothesis. 
% 
%  [refs]:       
% 
%  [history]:   24 Jan 2017 - Max Yates 
  
function [nu_hyp,d_hyp] = skew2nu(SatDat_s,a_hyp,e_hyp,i_hyp,RAAN_hyp, ... 
    argp_hyp,u_hyp,input,d,options) 
  
bias = options(1); 
stdev = options(2); 
gran = logical(options(3)); 
  
% d>1 skews left, d<1 skews right 
if d>1 
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    sign_nu = -1; 
else 
    sign_nu = 1; 
end 
  
% Even with sign_nu specified correctly, there are known cases where nu 
% goes slightly negative due to the full geopotential 
go_negative = 1; 
found_nu = 0; 
  
while go_negative == 1 && found_nu == 0 
    dnu=sign_nu*(0.1:0.1:2)'; % if u_hyp is close enough, else widen search 
    skewTestBlock 
    if k==1 
        dnu=sign_nu*(0:0.01:0.1)'; 
    else 
        dnu=sign_nu*(sign_nu*dnu(k-1,1):0.01:sign_nu*dnu(k,1))'; 
    end 
    skewTestBlock 
    if go_negative == -1 
        break 
    end 
    if k==1 
        dnu=sign_nu*(0:0.001:0.01)'; 
    else 
        dnu=sign_nu*(sign_nu*dnu(k-1,1):0.001:sign_nu*dnu(k,1))'; 
    end 
    skewTestBlock 
    if gran == 1 
        if k==1 
            dnu=sign_nu*(0:0.0001:0.001)'; 
        else 
            dnu=sign_nu*(sign_nu*dnu(k-1,1):0.0001:sign_nu*dnu(k,1))'; 
        end 
        skewTestBlock 
        if k==1 
            dnu=sign_nu*(0:0.00001:0.0001)'; 
        else 
            dnu=sign_nu*(sign_nu*dnu(k-1,1):0.00001:sign_nu*dnu(k,1))'; 
        end 
        skewTestBlock 
    end 
    found_nu = 1; 
end 
  
if go_negative == -1 
    sign_nu = -sign_nu; 
     
    dnu=sign_nu*(0.1:0.1:5)'; 
    skewTestBlock 
    if k==1 
        dnu=sign_nu*(0:0.01:0.1)'; 
    else 
        dnu=sign_nu*(sign_nu*dnu(k-1,1):0.01:sign_nu*dnu(k,1))'; 
    end 
    skewTestBlock 
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    if k==1 
        dnu=sign_nu*(0:0.001:0.01)'; 
    else 
        dnu=sign_nu*(sign_nu*dnu(k-1,1):0.001:sign_nu*dnu(k,1))'; 
    end 
    skewTestBlock 
    if gran == 1 
        if k==1 
            dnu=sign_nu*(0:0.0001:0.001)'; 
        else 
            dnu=sign_nu*(sign_nu*dnu(k-1,1):0.0001:sign_nu*dnu(k,1))'; 
        end 
        skewTestBlock 
        if k==1 
            dnu=sign_nu*(0:0.00001:0.0001)'; 
        else 
            dnu=sign_nu*(sign_nu*dnu(k-1,1):0.00001:sign_nu*dnu(k,1))'; 
        end 
        skewTestBlock 
    end 
end 
  
if k==1 
    d_hyp = d_hyp_temp(1,k); 
    if abs(cosd(argp_hyp)-cosd(input.coes(1,5)))<1e-6 % same argp as Surveyor 
        % Target true anomaly [deg] 
        nu_hyp = input.coes(1,6) + dnu(k,1); 
    else 
        nu_hyp = wrap((u_hyp - argp_hyp + dnu(k,1))*pi/180)*180/pi; 
    end 
else % split the difference 
    d_hyp = (d_hyp_temp(1,k)+d_hyp_temp(1,k-1))/2; 
    if abs(cosd(argp_hyp)-cosd(input.coes(1,5)))<1e-6 % same argp as Surveyor 
        % Target true anomaly [deg] 
        nu_hyp = input.coes(1,6) + (dnu(k,1)+dnu(k-1,1))/2; 
    else 
        nu_hyp = wrap((u_hyp - argp_hyp + (dnu(k,1) + ... 
            dnu(k-1,1))/2)*pi/180)*180/pi; 
    end 
end 
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E.8 Initial Orbit Determination 

%  [function]   losIOD 
% 
%  [purpose]:   Function determines an initial orbit estimate for the 
%               Target. 
% 
%  [useage]:    [hyp,mapping,eclipse,d,d_truth,delta_d] = losIOD(input,... 
%                  SatDat,Surveyor,Target,dt,bias,stdev) 
  
% 
%  [inputs]:    input     = Structure contains truth coes for Surveyor and 
%                           Target as well as the epoch and runcase string 
% 
%               SatDat    = Structure containing the GMAT extracted data. 
%                           The exact content is configured in the 
%                           gmatOrbitProp code, but presently includes 
%                           for every ith satellite entries of the form: 
%                           SatDat.X(:,i). 
%                           NOTE: The 1st satellite is the Surveyor! All 
%                           others are Target satellites. 
% 
%               Surveyor  = Structure containing the processed inertial 
%                           data for the Surveyor. 
% 
%               Target    = Structure containing the processed inertial 
%                           data for the Target. 
% 
%               dt        = Data sample rate [sec] 
% 
%               bias      = angle measurement bias [arc sec] 
% 
%               stdev     = 1-sigma angle measurement uncertainty [arc sec] 
% 
%  [outputs]:    
% 
%  [refs]:       
% 
%  [history]:   31 Jan 2017 - Max Yates 
  
function [hyp,mapping,eclipse,d,d_truth,delta_d,alpha_disp] = ... 
    losIOD(input,SatDat,Surveyor,Target,dt,bias,stdev) 
  
global MU geo_degree use_skew2nu 
codeDir = pwd; 
  
% Find skewness factor 
[d,delta_split] = skewFactor(Target.alpha,Target.Yrel); 
d_truth = abs(min(Target.Yrel))/(abs(min(Target.Yrel)) + ... 
    abs(max(Target.Yrel)))*2; 
 
% Generate orbit hypotheses in admissible region 
ranges = linspace(100,10,10)'; 
[hyp.coes,hyp.d,hyp.delta_split_hyp,hyp.rel_apses,alpha_disp,hyp.u_hyp] = ... 
    admRegHyp(SatDat,input,Surveyor,Target.alpha,Target.beta,d,ranges,0,0); 
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% Propagate hypotheses for one orbital period 
options = [0,dt,0,0,0]; % [prop_time,dt,torus,output,orbitview] 
SatDat_hyp = gmatOrbitProp('Keplerian',input.coord_sys, ...  
    [input.coes(1,:);hyp.coes],input.epoch,'UTCGregorian',options); 
 
% Generate LOS observations from hypotheses 
[Surveyor,Target_hyp] = losProc(SatDat_hyp,input,[0,0,1]); 
 
% Which side of trajectory has the best range observability? 
hyp.dalpha_span(1,1) = abs(Target_hyp.alpha_at_min_alphadot(1,end) - ... 
    Target_hyp.alpha_at_min_alphadot(1,1)); 
hyp.dalpha_span(1,2) = abs(Target_hyp.alpha_at_min_alphadot(2,end) - ... 
    Target_hyp.alpha_at_min_alphadot(2,1)); 
if hyp.dalpha_span(1,1) > hyp.dalpha_span(1,2) 
    which_side = 1; 
else 
    which_side = 2; 
end 
 
% Find outlier hypotheses using Theil–Sen estimator 
b = Theil_Sen_Regress(Target_hyp.alpha_at_min_alphadot(which_side,:)', ... 
    Target_hyp.range_at_min_alphadot(which_side,:)'); % slope 
% Polynomial coefficients: b is slope, second part is from equation of a line 
% Given a point (farthest point) and a slope 
p0 = [b,(-b*Target_hyp.alpha_at_min_alphadot(which_side,1) + ... 
    Target_hyp.range_at_min_alphadot(which_side,1))]; 
Theil_Sen_ranges = polyval(p0, ... 
    Target_hyp.alpha_at_min_alphadot(which_side,:)); % [km] 
Theil_Sen_difference = Target_hyp.range_at_min_alphadot(which_side,:) - ... 
    Theil_Sen_ranges; 
meann = mean(Theil_Sen_difference); % mean 
stdd = std(Theil_Sen_difference); % standard deviation 
% Flag points that are 1 standard deviations away from the mean 
I = bsxfun(@gt, abs(bsxfun(@minus, Theil_Sen_difference, meann)), 1*stdd); 
% Find the indices of the zero elements in I; these are the "good" hypotheses 
hyp.good = find(~I); 
  
%% Initial Range Estimates from Min Alpha Dot 
% Range estimate from the most observable side 
p1 = polyfit(Target_hyp.alpha_at_min_alphadot(which_side,hyp.good), ... 
    Target_hyp.range_at_min_alphadot(which_side,hyp.good),2); 
mapping.range_true = Target.range_at_min_alphadot(which_side,1); % [km] 
mapping.range_est=polyval(p1,Target.alpha_at_min_alphadot(which_side,1));%[km] 
mapping.range_error = mapping.range_est - ... 
    Target.range_at_min_alphadot(which_side,1); % [km] 
mapping.range_percent_error = ... 
    mapping.range_error/Target.range_at_min_alphadot(which_side,1)*100; 
  
% Use range estimate from most skewed side to estimate eccentricity 
p3 = polyfit(Target_hyp.range_at_min_alphadot(which_side,hyp.good), ... 
    hyp.coes(hyp.good,2)',2); 
mapping.ecc_from_min_alphadot = polyval(p3,mapping.range_est); % [nd] 
  
%% Range estimate from the less observable side 
if which_side==1 
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    which_side = 2; 
elseif which_side==2 
    which_side = 1; 
end 
p2 = polyfit(Target_hyp.alpha_at_min_alphadot(which_side,hyp.good), ... 
    Target_hyp.range_at_min_alphadot(which_side,hyp.good),2); 
mapping.range_true2 = Target.range_at_min_alphadot(which_side,1); % [km] 
mapping.range_est2=polyval(p2,Target.alpha_at_min_alphadot(which_side,1)); 
mapping.range_error2 = mapping.range_est2 - ... 
    Target.range_at_min_alphadot(which_side,1); % [km] 
mapping.range_percent_error2 = ... 
    mapping.range_error2/Target.range_at_min_alphadot(which_side,1)*100; 
  
% Use range estimates from both sides to estimate eccentricity 
if isnan(mapping.range_est2) ~= 1 
    end_2_end = Target_hyp.range_at_min_alphadot(1,hyp.good) + ... 
        Target_hyp.range_at_min_alphadot(2,hyp.good); 
        p4 = polyfit(end_2_end,hyp.coes(hyp.good,2)',2); 
        mapping.ecc_from_min_alphadot2 = ... 
            polyval(p4,mapping.range_est+mapping.range_est2); % [nd] 
end 
  
%% Eclipse Analysis 
eclipse_analysis 
p5 = polyfit(Target_hyp.eclipse_delta_start(1,:), ... 
    Target_hyp.eclipse_range_true(1,:),3); 
eclipse.range_true = Target.eclipse_range_true; % [km] 
eclipse.range_est = polyval(p5,Target.eclipse_delta_start(1,1)); % [km] 
eclipse.range_error = eclipse.range_est - Target.eclipse_range_true; % [km] 
eclipse.range_percent_error = ... 
    eclipse.range_error/Target.eclipse_range_true*100 % [%] 
% Can eclipse help scale eccentricity? 
eclipse_support = 0; 
if abs(Target_hyp.eclipse_delta_start(1,end) - ... 
    Target_hyp.eclipse_delta_start(1,1)) > 10 % 10 sec threshold 
    eclipse_support = 1; 
    p6 = polyfit(Target_hyp.eclipse_delta_start(1,hyp.good), ... 
        hyp.coes(hyp.good,2)',2); 
    mapping.ecc_from_eclipse = polyval(p6,Target.eclipse_delta_start(1,1)); 
end 
 
%% Estimate Target COEs 
mapping.coes = zeros(1,6); 
n = size(hyp.coes,1); % number of hypotheses 
  
% RESET: Pick range estimate from the most observable side 
if hyp.dalpha_span(1,1) > hyp.dalpha_span(1,2) 
    which_side = 1; 
else 
    which_side = 2; 
end 
  
%% Eccentricity from Arcs Approaching Min Alpha Dot 
% Establish upper and lower boundaries on arcs 
A = [10,Target.min_alphadot_idx(1,1),1; % 10 indicates an alpha minimum 
     10,Target.min_alphadot_idx(2,1),2; % 10 indicates an alpha minimum 
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     20,Target.max_alphadot_idx(1,1),1; % 20 indicates an alpha maximum 
     20,Target.max_alphadot_idx(2,1),2];% 20 indicates an alpha maximum 
B = sortrows(A,2); 
if B(1,1)==10 && B(1,3)==which_side 
    index1 = 1; 
    index2 = B(1,2); 
    index3 = B(2,2); 
    peak2peak = abs(Target.alpha_dot(index3,1) - Target.alpha_dot(index2,1)); 
    ref1 = Target.alpha_dot(index2,1)-0.15*peak2peak; 
    ref2 = Target.alpha_dot(index2,1)-0.01*peak2peak; 
    ref3 = Target.alpha_dot(index3,1)+0.85*peak2peak; 
elseif B(2,1)==10 && B(2,3)==which_side 
    index1 = B(1,2); 
    index2 = B(2,2); 
    index3 = B(3,2); 
    peak2peak = abs(Target.alpha_dot(index3,1) - Target.alpha_dot(index2,1)); 
    ref1 = Target.alpha_dot(index2,1)-0.15*peak2peak;  
    ref2 = Target.alpha_dot(index2,1)-0.01*peak2peak;  
    ref3 = Target.alpha_dot(index3,1)+0.85*peak2peak;  
elseif B(3,1)==10 && B(3,3)==which_side 
    index1 = B(2,2); 
    index2 = B(3,2); 
    index3 = B(4,2); 
    peak2peak = abs(Target.alpha_dot(index3,1) - Target.alpha_dot(index2,1)); 
    ref1 = Target.alpha_dot(index2,1)-0.15*peak2peak;  
    ref2 = Target.alpha_dot(index2,1)-0.01*peak2peak;  
    ref3 = Target.alpha_dot(index3,1)+0.85*peak2peak;  
elseif B(4,1)==10 && B(4,3)==which_side 
    index1 = B(3,2); 
    index2 = B(4,2); 
    index3 = size(Target.alpha_dot,1); 
    peak2peak = abs(Target.alpha_dot(index3,1) - Target.alpha_dot(index2,1)); 
    ref1 = Target.alpha_dot(index2,1)-0.15*peak2peak;  
    ref2 = Target.alpha_dot(index2,1)-0.01*peak2peak;  
    ref3 = Target.alpha_dot(index3,1)+0.85*peak2peak;  
end 
  
for i = 1:n+1 
    if i==1 
        clear p8 p9 
        [value, ind] = min(abs(Target.alpha_dot(index1:index2,1)-ref1)); 
        index(1,i) = index1 + ind -1; 
        lower_bound1 = Target.alpha_dot(index(1,i),1); 
        [value, ind] = min(abs(Target.alpha_dot(index1:index2,1)-ref2)); 
        index(2,i) = index1 + ind -1; 
        upper_bound1 = Target.alpha_dot(index(2,i),1); 
        [value, ind] = min(abs(Target.alpha_dot(index2:index3,1)-ref2)); 
        index(3,i) = index2 + ind -1; 
        lower_bound2 = Target.alpha_dot(index(3,i),1); 
        [value, ind] = min(abs(Target.alpha_dot(index2:index3,1)-ref3)); 
        index(4,i) = index2 + ind -1; 
        upper_bound2 = Target.alpha_dot(index(4,i),1); 
         
        % Polyfit for Target arc 
        poly_deg = 5; % linear = 1, quadratic = 2, cubic = 3 
        if stdev > 0 
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            % Re-fit curve to alpha in this smaller segment -- need to 
            % estimate alphadot better here 
            for j=1:2 
                if j==1 
                    idx1 = index(1,i); idx2 = index(2,i); 
                elseif j==2 
                    idx1 = index(3,i); idx2 = index(4,i); 
                end 
                p7 = polyfit(SatDat.time(idx1:idx2,1), ... 
                    Target.alpha_meas(idx1:idx2,i),poly_deg); 
                Target.alpha(idx1:idx2,i) = polyval(p7, ... 
                    SatDat.time(idx1:idx2,1)); 
                % Recalculate alphadot in this smaller segment 
                for j=idx1:idx2 
                    % alpha rate from five-point central difference formula 
                    if j>(idx1+1) && j<(idx2-1) 
                        Target.alpha_dot(j,i) = (Target.alpha(j-2,i) - ... 
                            8*Target.alpha(j-1,i) + 8*Target.alpha(j+1,i)-... 
                            Target.alpha(j+2,i))/(12*dt); 
                        if abs(Target.alpha_dot(j,i)) > ... 
                            1.1*abs(Target.alpha_dot(j-1,i)) 
                            Target.alpha_dot(j,i) = Target.alpha_dot(j-1,i); 
                        end 
                    end 
                    if j<(idx1+2) % forward difference formula 
                        Target.alpha_dot(j,i) = (-11*Target.alpha(j,i) + ... 
                            18*Target.alpha(j+1,i)-9*Target.alpha(j+2,i)+...  
                            2*Target.alpha(j+3,i))/(6*dt); 
                    end 
                    if j>(idx2-5) 
                        Target.alpha_dot(j,i) = (11*Target.alpha(j,i) - ... 
                            18*Target.alpha(j-1,i)+9*Target.alpha(j-2,i)-... 
                            2*Target.alpha(j-3,i))/(6*dt); 
                        if abs(Target.alpha_dot(j,i)) > ... 
                            1.1*abs(Target.alpha_dot(j-1,i)) 
                            Target.alpha_dot(j,i) = Target.alpha_dot(j-1,i); 
                        end 
                    end 
                end 
            end 
        end 
        p8(1,:) = polyfit(Target.alpha_dot(index(1,i):index(2,i),1), ... 
            Target.alpha(index(1,i):index(2,i),1),poly_deg); 
        p9(1,:) = polyfit(Target.alpha_dot(index(3,i):index(4,i),1), ... 
            Target.alpha(index(3,i):index(4,i),1),poly_deg); 
    else 
        [value, ind] = ... 
            min(abs(Target_hyp.alpha_dot(index1:index2,i-1)-ref1)); 
        index(1,i) = index1 + ind -1; 
        [value, ind] = ... 
            min(abs(Target_hyp.alpha_dot(index1:index2,i-1)-ref2)); 
        index(2,i) = index1 + ind -1; 
        [value, ind] = ... 
            min(abs(Target_hyp.alpha_dot(index2:index3,i-1)-ref2)); 
        index(3,i) = index2 + ind -1; 
        [value, ind] = ... 
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            min(abs(Target_hyp.alpha_dot(index2:index3,i-1)-ref3)); 
        index(4,i) = index2 + ind -1; 
  
        % Polyfits for each of the hypothesis arcs 
        p8(i,:) = polyfit(Target_hyp.alpha_dot(index(1,i):index(2,i), ... 
            i-1),Target_hyp.alpha(index(1,i):index(2,i),i-1),poly_deg);         
        p9(i,:) = polyfit(Target_hyp.alpha_dot(index(3,i):index(4,i), ... 
            i-1),Target_hyp.alpha(index(3,i):index(4,i),i-1),poly_deg); 
    end 
end 
  
% Angle rates to use for comparing the polyfits from each hypothesis 
waypoints1 = linspace(lower_bound1,upper_bound1,100); 
  
alpha_at_wp = zeros(n+1,size(waypoints1,2)); 
for j = 1:size(waypoints1,2) 
    for i = 1:n+1 
        alpha_at_wp(i,j) = polyval(p8(i,:),waypoints1(1,j)); 
    end 
    p10(j,:) = polyfit(alpha_at_wp((hyp.good+1),j),hyp.coes(hyp.good,2),2); 
    mapping.ecc_arc(j,1) = polyval(p10(j,:),alpha_at_wp(1,j)); % [nd] 
end         
  
waypoints2 = linspace(lower_bound2,upper_bound2,100); 
  
alpha_at_wp = zeros(n+1,size(waypoints2,2)); 
for j = 1:size(waypoints2,2) 
    for i = 1:n+1 
        alpha_at_wp(i,j) = polyval(p9(i,:),waypoints2(1,j)); 
    end 
    p11(j,:) = polyfit(alpha_at_wp((hyp.good+1),j),hyp.coes(hyp.good,2),2); 
    mapping.ecc_arc(j,2) = polyval(p11(j,:),alpha_at_wp(1,j)); % [nd] 
end 
     
mapping.ecc_from_arc = mean((mapping.ecc_arc(:,1)+mapping.ecc_arc(:,2))/2); 
  
% Plot verifying arc (alpha vs. alpha rate) 
figure(19) 
hold on 
linecolors = jet(n); 
legend_label_common = '\boldmath$e='; 
plot(Target.alpha_true(index(3,1):index(4,1),1)*180/pi, ... 
    abs(Target.alpha_dot2(index(3,1):index(4,1),1))*180/pi*3600,'-k', ... 
    'MarkerSize',16,'LineWidth',3) 
legend_label{1}=strcat(legend_label_common,sprintf('%.4f', ... 
    input.coes(2,2)),'$'); 
for i=1:n 
    plot(Target_hyp.alpha(index(3,i+1):index(4,i+1),i)*180/pi, ... 
        abs(Target_hyp.alpha_dot(index(3,i+1):index(4,i+1),i))*180/pi*3600,... 
        '-k','color',linecolors(i,:),'MarkerSize',16,'LineWidth',3) 
    legend_label{i+1}=strcat(legend_label_common,sprintf('%.4f', ... 
        hyp.coes(i,2)),'$'); 
end 
% Waypoints 
xLimits = get(gca,'XLim'); 
for i=1:size(waypoints1,2) 
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    plot(xLimits,abs([waypoints1(1,i),waypoints1(1,i)])*180/pi*3600, ... 
        '--k','LineWidth',1.5) 
end 
grid off 
box on 
xlabel('\boldmath$\alpha$\textbf{ (deg)}','Interpreter','latex','FontSize',33) 
ylabel('\boldmath$|\dot{\alpha}|$\textbf{ (arc sec/sec)}','Interpreter', ... 
    'latex','FontSize',33) 
ind = 1:1:n; % Indices for legend labels 
h = legend(legend_label{1,ind},'location','NorthEast'); 
set(h,'Interpreter','latex','FontSize',32); %17 
set(gca,'FontSize',32,'FontWeight','bold') %17 
axis normal; 
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig19.fig')) 
  
figure(20) 
hold on 
linecolors = jet(n); 
legend_label_common = '\boldmath$e='; 
plot(Target.alpha(index(1,1):index(2,1),1)*180/pi, ... 
    abs(Target.alpha_dot(index(1,1):index(2,1),1))*180/pi*3600,'-k', ... 
    'MarkerSize',16,'LineWidth',3) 
legend_label{1}=strcat(legend_label_common,sprintf('%.4f', ... 
    input.coes(2,2)),'$'); 
for i=1:n 
    plot(Target_hyp.alpha(index(1,i+1):index(2,i+1),i)*180/pi, ... 
        abs(Target_hyp.alpha_dot(index(1,i+1):index(2,i+1),i))*180/pi*3600,... 
        '-k','color',linecolors(i,:),'MarkerSize',16,'LineWidth',3) 
    legend_label{i+1}=strcat(legend_label_common,sprintf('%.4f', ... 
        hyp.coes(i,2)),'$'); 
end 
% Waypoints 
xLimits = get(gca,'XLim'); 
for i=1:size(waypoints2,2) 
    plot(xLimits,abs([waypoints2(1,i),waypoints2(1,i)])*180/pi*3600, ... 
        '--k','LineWidth',1.5) 
end 
grid off 
box on 
xlabel('\boldmath$\alpha$\textbf{ (deg)}','Interpreter','latex','FontSize',33) 
ylabel('\boldmath$|\dot{\alpha}|$\textbf{ (arc sec/sec)}','Interpreter', ... 
    'latex','FontSize',33) 
ind = 1:1:n; % Indices for legend labels 
h = legend(legend_label{1,ind},'location','NorthWest'); 
set(h,'Interpreter','latex','FontSize',32); 
set(gca,'FontSize',32,'FontWeight','bold') 
axis normal; 
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig20.fig')) 
  
%% Estimate Target Eccentricity 
if eclipse_support == 1 
    if geo_degree == 0 
        mapping.ecc = mapping.ecc_from_arc 
    else 
        mapping.ecc = (mapping.ecc_from_min_alphadot + ... 
            mapping.ecc_from_arc + mapping.ecc_from_eclipse)/3 
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    end 
else 
    if geo_degree == 0 
        mapping.ecc = mapping.ecc_from_arc 
    else 
        mapping.ecc = (mapping.ecc_from_min_alphadot + ... 
            mapping.ecc_from_arc)/2 
    end 
end 
mapping.coes(1,2) = mapping.ecc; 
 
%% Estimate Target Inclination 
p12 = polyfit(hyp.coes(hyp.good,2)',hyp.coes(hyp.good,3)',2); 
mapping.coes(1,3) = polyval(p12,mapping.coes(1,2)); % [deg] 
  
%% Estimate Target RAAN 
p13 = polyfit(hyp.coes(hyp.good,2)',hyp.coes(hyp.good,4)',2); 
mapping.coes(1,4) = polyval(p13,mapping.coes(1,2)); % [deg] 
  
%% Estimate Target Semi-Major Axis 
if abs(alpha_disp) > 2 
    p14 = polyfit(hyp.coes(hyp.good,2)',hyp.coes(hyp.good,1)',2); 
    mapping.coes(1,1) = polyval(p14,mapping.coes(1,2)); % [deg] 
else 
    mapping.coes(1,1) = input.coes(1,1); 
end 
  
% Estimate Target Argument of Perigee 
mapping.coes(1,5) = hyp.coes(1,5); % Constant for all hypotheses 
 
%% Estimate Target True Anomaly 
% If 20x20 gravity model, then find nu from skew 
if geo_degree > 0 && use_skew2nu == 1 
    options = [0,0,0,0,0]; % [prop_time,dt,torus,output,orbitview] 
    SatDat_s = gmatOrbitProp(input.state_type,input.coord_sys, ... 
        input.elements(1,:),input.epoch,'UTCGregorian',options); 
    [mapping.coes(1,6),d_hyp_nu,~] = skew2nu(SatDat_s,... 
        mapping.coes(1,1),mapping.coes(1,2),mapping.coes(1,3),... 
        mapping.coes(1,4),mapping.coes(1,5),hyp.u_hyp,input,d, ...  
        [bias,stdev,1]); 
else 
    p15 = polyfit(hyp.coes(hyp.good,2)',hyp.coes(hyp.good,6)',2); 
    mapping.coes(1,6) = polyval(p15,mapping.coes(1,2)); % [deg] 
end 
 
%% Alpha vs. Alpha-Rate Analysis & Plots 
figOn = [0,  % alpha profile comparison with baseline               FIGURE 02 
         1,  % alpha vs. alpha rate (-180 deg to 180 deg)           FIGURE 03 
         1,  % alpha vs. |alpha rate| @ min peak near 90 deg        FIGURE 04 
         0,  % alpha vs. |alpha rate| @ min peak near -90 deg       FIGURE 05 
         0,  % alpha vs. |alpha rate| @ first max peak              FIGURE 06 
         0,  % alpha vs. |alpha rate| @ second max peak             FIGURE 07 
         1,  % rs-plane motion with location of extrema             FIGURE 08 
         1,  % sw-plane motion with location of extrema             FIGURE 09 
         1,  % delta alpha at min alpha_dot vs. range               FIGURE 10 
         0,  % alpha at max alpha_dot (first peak) vs. range        FIGURE 11 
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         0]; % alpha at max alpha_dot (second peak) vs. range       FIGURE 12 
 
close all; clc; 
  
n = size(hyp.coes,1); % number of hypotheses 
  
%% Analyze alpha profiles with a baseline hypothesis 
%  COMPARE ALPHA PROFILES to a baseline alpha profile to show where range is 
%  observable. The eccentricity of the target, in all cases, must be either 
%  greater than or less than the surveyor (no mixing where some are greater 
%  than or some are less than, otherwise the alpha profiles are 180deg apart. 
 
b = 1; % which hypothesis to use as baseline for comparing alpha profiles 
linecolors = jet(n); 
for i=1:n 
    % The sine of alpha can be searched for zero crossings. No zero crossings 
    % indicates the relative trajectory does not enclose the Surveyor. 
    % Get sign of data 
    signum = sign(sin(Target_hyp.alpha(:,i))); 
    % Set sign of exact data zeros to positive 
    signum(sin(Target_hyp.alpha(:,i))==0) = 1; 
    % Get zero crossings by diff ~= 0 
    zero_crossings = find(diff(signum)~=0); 
    if zero_crossings > 0 % only enclosed relative orbits 
        Target_hyp.delta_alpha(:,i) = Target_hyp.alpha(:,i) - ... 
            Target_hyp.alpha(:,b); 
        if Target_hyp.target_at_perigee(1,i) == ... 
            Target_hyp.target_at_perigee(1,b) 
            figure(2) % delta alpha from some baseline 
            hold on 
            % skip first and last couple points because of spikes 
            plot(Target_hyp.alpha(3:end-2,b)*180/pi, ... 
                Target_hyp.delta_alpha(3:end-2,i)*180/pi*3600,'k.', ... 
                'color',linecolors(i,:),'MarkerSize',16,'LineWidth',1.5) 
            xlim([-180 180]) 
            ylim([-4000 4000]) 
            grid on; grid minor; 
            box on 
            xlabel('\textbf{Baseline }\boldmath$\alpha$\textbf{ (deg)}', ... 
                'Interpreter','latex','FontSize',33) 
            ylabel('\boldmath$\delta\alpha$\textbf{ (arc sec)}', ... 
                'Interpreter','latex','FontSize',33) 
            set(gca,'FontSize',32,'FontWeight','bold') 
            axis normal; 
        end 
    end 
end 
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig02.fig')) 
if figOn(1)==0 
    close 
end 
  
%% Alpha vs. Alpha-Rate 
figure(3) 
hold on 
linecolors = jet(n); 
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legend_label_common = '\boldmath$e='; 
for i=1:n 
    % skip plotting the last three points 
    plot(Target_hyp.alpha(1:end-3,i)*180/pi, ... 
        abs(Target_hyp.alpha_dot(1:end-3,i))*180/pi*3600,'k.','color', ... 
        linecolors(i,:),'MarkerSize',16,'LineWidth',1.5) 
    legend_label{i}=strcat(legend_label_common,sprintf('%.4f', ... 
        hyp.coes(i,2)),'$'); 
end 
xlim([-180 180]) 
grid on; grid minor; 
box on 
xlabel('\boldmath$\alpha$\textbf{ (deg)}','Interpreter','latex', ... 
    'FontSize',33) 
ylabel('\boldmath$|\dot{\alpha}|$\textbf{ (arc sec/sec)}','Interpreter', ... 
    'latex','FontSize',33) 
ind = 1:1:n; % Indices for legend labels 
h = legend(legend_label{1,ind},'location','South'); 
set(h,'Interpreter','latex','FontSize',32); 
set(gca,'FontSize',32,'FontWeight','bold') 
axis normal; 
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig03.fig')) 
if figOn(2)==0 
    close 
end 
     
%% Alpha vs. |Alpha-Rate| @ Min Peak Near 90 deg 
if isnan(Target.min_alphadot(1,1)) ~= 1 
    figure(4) 
    hold on 
    linecolors = jet(n); 
    legend_label_common = ... 
        '\boldmath$\rho\ ($\textbf{at }\boldmath$\dot{\alpha}_{\min})='; 
    for i=1:n 
        plot((Target_hyp.alpha_at_min_alphadot(1,i)/3600+90),... 
            abs(Target_hyp.alpha_dot(Target_hyp.min_alphadot_idx(1,i), ... 
            i))*180/pi*3600, 'o','MarkerSize',25,'MarkerEdgeColor', ... 
            linecolors(i,:),'MarkerFaceColor',linecolors(i,:)) 
    end 
    for i=1:n 
        % Skip plotting the last three points  
        plot(Target_hyp.alpha(1:end-3,i)*180/pi, ... 
            abs(Target_hyp.alpha_dot(1:end-3,i))*180/pi*3600,'color', ... 
            linecolors(i,:),'MarkerSize',2,'LineWidth',3) 
        legend_label{i}=strcat(legend_label_common,sprintf('%.1f', ... 
            Target_hyp.range_at_min_alphadot(1,i)),'$\textbf{ km}'); 
    end 
    xlim([min(Target_hyp.alpha_at_min_alphadot(1,:)/3600+90)-0.1, ...  
        max(Target_hyp.alpha_at_min_alphadot(1,:)/3600+90)+0.1]) 
    rate = abs(Target_hyp.alpha_dot(Target_hyp.min_alphadot_idx(1,i), ... 
        i))*180/pi*3600; 
    ylim([rate-0.5 rate+0.5]) 
    grid on; grid minor; 
    box on 
    xlabel('\boldmath$\alpha$\textbf{ (deg)}','Interpreter','latex', ... 
        'FontSize',33) 
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    ylabel('\boldmath$|\dot{\alpha}|$\textbf{ (arc sec/sec)}', ... 
        'Interpreter','latex','FontSize',33) 
    ind = 1:1:n; % Indices for legend labels 
    h = legend(legend_label{1,ind},'location','EastOutside'); 
    set(h,'Interpreter','latex','FontSize',32); 
    set(gca,'FontSize',32,'FontWeight','bold') 
    axis normal; 
    % Add analytical predictions for low-delta energy cases 
    if abs(alpha_disp) < 2 % disparity_threshold 
        for i=1:n 
            % Mean motion from Surveyor 
            N = sqrt(MU/input.coes(1,1)^3); 
            % Find initial eccentric anomaly 
            Et0 = 2*atan(tand(hyp.coes(i,6)/2)/sqrt((1+hyp.coes(i,2))/(1- ... 
                hyp.coes(i,2)))); % [rad] 
            Es0 = 2*atan(tand(input.coes(1,6)/2)/sqrt((1+ ... 
                input.coes(1,2))/(1-input.coes(1,2)))); % [rad] 
            % Find initial mean anomaly 
            Mt0 = Et0 - hyp.coes(i,2)*sin(Et0); % [rad] 
            Ms0 = Es0 - input.coes(1,2)*sin(Es0); % [rad] 
            syms t et es 
            Dnu = Mt0 + 2*hyp.coes(i,2)*sin(Mt0+N*t) + ... 
                5/4*(hyp.coes(i,2)^2)*sin(2*Mt0+2*N*t) -... 
                Ms0 - 2*input.coes(1,2)*sin(Ms0+N*t) - ... 
                5/4*(input.coes(1,2)^2)*sin(2*Ms0+2*N*t); 
            dDnudt = diff(Dnu,t); 
            f = matlabFunction(dDnudt); 
            if Target_hyp.Xrel(1,i)<0 
                interval = [0 pi/N]; 
            else 
                interval = [pi/N 2*pi/N]; 
            end 
            t = fzero(f, interval); 
            rs = input.coes(1,1)*(1+0.5*(input.coes(1,2)^2)- ... 
                input.coes(1,2)*cos(Ms0+N*t)- ... 
                0.5*(input.coes(1,2)^2)*cos(2*Ms0+2*N*t)); 
            rt = input.coes(1,1)*(1+0.5*(hyp.coes(i,2)^2)- ... 
                hyp.coes(i,2)*cos(Mt0+N*t)- ... 
                0.5*(hyp.coes(i,2)^2)*cos(2*Mt0+2*N*t)); 
            Dnu = eval(Dnu); % [rad] 
            rt_rproj = rt*cos(Dnu); 
            x = -(rs - rt_rproj); 
            y = rt*sin(Dnu); 
            alpha = atan2(y,x)*180/pi; 
            % store alpha 
            Target_hyp.analytical_alpha_at_min_alphadot(1,i) = ... 
                (alpha-90)*3600; % [arc secs] 
            Target_hyp.analytical_range_at_min_alphadot(1,i) = ... 
                sqrt(x^2 + y^2); % [km] 
  
            yLimits = get(gca,'YLim');  % Get the range of the y axis 
            plot([alpha alpha],yLimits,'--k','Color',linecolors(i,:), ... 
                'LineWidth',3) 
        end 
        % Analytical Resolvability - range resolution referenced to rs-plane 
        % (larger ranges if beta was calculated) [km/arc sec] 
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        Target_hyp.analytical_observability(1,1) = ...  
            (max(Target_hyp.analytical_range_at_min_alphadot(1,:)) -... 
            min(Target_hyp.analytical_range_at_min_alphadot(1,:)))/ ... 
            abs(max(Target_hyp.analytical_alpha_at_min_alphadot(1,:)) -... 
            min(Target_hyp.analytical_alpha_at_min_alphadot(1,:))); 
        % Numerical Resolvability - range resolution referenced to rs-plane 
        [max_rho ind] = max(Target_hyp.range_at_min_alphadot(1,:)); 
        beta_at_max_rho = Target_hyp.beta(Target_hyp.min_alphadot_idx(1, ... 
            ind),ind); 
        [min_rho ind] = min(Target_hyp.range_at_min_alphadot(1,:)); 
        beta_at_min_rho = Target_hyp.beta(Target_hyp.min_alphadot_idx(1, ... 
            ind),ind); 
        Target_hyp.numerical_observability(1,1) = (max_rho*... 
            cos(beta_at_max_rho) - min_rho*cos(beta_at_min_rho))/ ... 
            abs(max(Target_hyp.alpha_at_min_alphadot(1,:)) -... 
            min(Target_hyp.alpha_at_min_alphadot(1,:))); % [km/arc sec] 
    end 
    
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig04.fig')) 
    if figOn(3)==0 
        close 
    end 
end 
 
%% Alpha vs. |Alpha-Rate| @ Min Peak Near -90 deg 
if isnan(Target.min_alphadot(2,1)) ~= 1 
    figure(5) 
    hold on 
    linecolors = jet(n); 
    legend_label_common = ... 
        '\boldmath$\rho\ ($\textbf{at }\boldmath$\dot{\alpha}_{\min})='; 
    for i=1:n 
        plot((Target_hyp.alpha_at_min_alphadot(2,i)/3600-90),... 
            abs(Target_hyp.alpha_dot(Target_hyp.min_alphadot_idx(2,i), ... 
            i))*180/pi*3600,'o','MarkerSize',25,'MarkerEdgeColor', ... 
            linecolors(i,:),'MarkerFaceColor',linecolors(i,:)) 
    end 
    for i=1:n 
        % Skip plotting the last three points 
        plot(Target_hyp.alpha(1:end-3,i)*180/pi, ... 
            abs(Target_hyp.alpha_dot(1:end-3,i))*180/pi*3600,'color',... 
            linecolors(i,:),'MarkerSize',2,'LineWidth',3) 
        legend_label{i}=strcat(legend_label_common,sprintf('%.1f', ... 
            Target_hyp.range_at_min_alphadot(2,i)),'$\textbf{ km}'); 
    end 
    xlim([min(Target_hyp.alpha_at_min_alphadot(2,:)/3600-90)-0.1, ... 
        max(Target_hyp.alpha_at_min_alphadot(2,:)/3600-90)+0.1]) 
    rate = abs(Target_hyp.alpha_dot(Target_hyp.min_alphadot_idx(2,i), ... 
        i))*180/pi*3600; 
    ylim([rate-0.5 rate+0.5]) 
    grid on; grid minor; 
    box on 
    xlabel('\boldmath$\alpha$\textbf{ (deg)}','Interpreter','latex', ... 
        'FontSize',33) 
    ylabel('\boldmath$|\dot{\alpha}|$\textbf{ (arc sec/sec)}', ... 
        'Interpreter','latex','FontSize',33) 
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    ind = 1:1:n; % Indices for legend labels 
    h = legend(legend_label{1,ind},'location','EastOutside'); 
    set(h,'Interpreter','latex','FontSize',32); 
    set(gca,'FontSize',32,'FontWeight','bold') 
    axis normal; 
    % Add analytical predictions for low-delta energy cases 
    if abs(alpha_disp) < 2 % disparity_threshold 
        for i=1:n 
            % Mean motion from Surveyor 
            N = sqrt(MU/input.coes(1,1)^3); 
            % Find initial eccentric anomaly 
            Et0 = 2*atan(tand(hyp.coes(i,6)/2)/sqrt((1+hyp.coes(i,2))/(1-... 
                hyp.coes(i,2)))); 
            Es0 = 2*atan(tand(input.coes(1,6)/2)/sqrt((1+input.coes(1,2))/... 
                (1-input.coes(1,2)))); 
            % Find initial mean anomaly 
            Mt0 = Et0 - hyp.coes(i,2)*sin(Et0); 
            Ms0 = Es0 - input.coes(1,2)*sin(Es0); 
            syms t et es 
            Dnu = Mt0 + 2*hyp.coes(i,2)*sin(Mt0+N*t) + ... 
                5/4*(hyp.coes(i,2)^2)*sin(2*Mt0+2*N*t) - ... 
                Ms0 - 2*input.coes(1,2)*sin(Ms0+N*t) - ... 
                5/4*(input.coes(1,2)^2)*sin(2*Ms0+2*N*t); 
            dDnudt = diff(Dnu,t); 
            f = matlabFunction(dDnudt); 
            if Target_hyp.Xrel(1,i)<0 
                interval = [pi/N 2*pi/N]; 
            else 
                interval = [0 pi/N]; 
            end 
            t = fzero(f, interval); 
            rs = input.coes(1,1)*(1+0.5*(input.coes(1,2)^2) - ... 
                input.coes(1,2)*cos(Ms0+N*t) - ... 
                0.5*(input.coes(1,2)^2)*cos(2*Ms0+2*N*t)); 
            rt = input.coes(1,1)*(1+0.5*(hyp.coes(i,2)^2) - ... 
                hyp.coes(i,2)*cos(Mt0+N*t) - ... 
                0.5*(hyp.coes(i,2)^2)*cos(2*Mt0+2*N*t)); 
            Dnu = eval(Dnu); 
            rt_rproj = rt*cos(Dnu); 
            x = -(rs - rt_rproj); 
            y = rt*sin(Dnu); 
            alpha = atan2(y,x)*180/pi; 
            % store alpha 
            Target_hyp.analytical_alpha_at_min_alphadot(2,i) = ...  
                (alpha+90)*3600; % [arc secs] 
            Target_hyp.analytical_range_at_min_alphadot(2,i) = ... 
                sqrt(x^2 + y^2); % [km] 
  
            yLimits = get(gca,'YLim');  % Get the range of the y axis 
            plot([alpha alpha],yLimits,'--k','Color',linecolors(i,:), ... 
               'LineWidth',3) 
        end 
        % Analytical Resolvability - range resolution referenced to rs-plane 
        % (larger ranges if beta was calculated) [km/arc sec] 
        Target_hyp.analytical_observability(2,1) = ...  
            (max(Target_hyp.analytical_range_at_min_alphadot(2,:)) - ... 



 336 

            min(Target_hyp.analytical_range_at_min_alphadot(2,:)))/ ... 
            abs(max(Target_hyp.analytical_alpha_at_min_alphadot(2,:)) - ... 
            min(Target_hyp.analytical_alpha_at_min_alphadot(2,:))); 
        % Numerical Resolvability - range resolution referenced to rs-plane 
        [max_rho ind] = max(Target_hyp.range_at_min_alphadot(2,:)); 
        beta_at_max_rho = ... 
            Target_hyp.beta(Target_hyp.min_alphadot_idx(2,ind),ind); 
        [min_rho ind] = min(Target_hyp.range_at_min_alphadot(2,:)); 
        beta_at_min_rho = ... 
            Target_hyp.beta(Target_hyp.min_alphadot_idx(2,ind),ind); 
        Target_hyp.numerical_observability(2,1) = ...  
            (max_rho*cos(beta_at_max_rho) - min_rho*cos(beta_at_min_rho))/... 
            abs(max(Target_hyp.alpha_at_min_alphadot(2,:)) - ... 
            min(Target_hyp.alpha_at_min_alphadot(2,:))); % [km/arc sec] 
    end 
    
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig05.fig')) 
    if figOn(4)==0 
        close 
    end 
end 
  
%% Alpha vs. |Alpha-Rate| @ First Max Peak 
if isnan(Target.max_alphadot(1,1)) ~= 1 
    figure(6) 
    hold on 
    linecolors = jet(n); 
    legend_label_common = ... 
        '\boldmath$\rho\ ($\textbf{at }\boldmath$\dot{\alpha}_{\max})='; 
    for i=1:n 
        plot(Target_hyp.alpha_at_max_alphadot(1,i),... 
            abs(Target_hyp.alpha_dot(Target_hyp.max_alphadot_idx(1,i), ... 
            i))*180/pi*3600,'o','MarkerSize',25,'MarkerEdgeColor', ... 
            linecolors(i,:),'MarkerFaceColor',linecolors(i,:)) 
    end 
    for i=1:n 
        % Skip plotting the last three points  
        plot(Target_hyp.alpha(1:end-3,i)*180/pi, ... 
            abs(Target_hyp.alpha_dot(1:end-3,i))*180/pi*3600,'color',... 
            linecolors(i,:),'MarkerSize',2,'LineWidth',3) %1 
        legend_label{i}=strcat(legend_label_common,sprintf('%.1f', ... 
            Target_hyp.range_at_max_alphadot(1,i)),'$\textbf{ km}'); 
    end 
    xlim([min(Target_hyp.alpha_at_max_alphadot(1,:))-0.1, ... 
        max(Target_hyp.alpha_at_max_alphadot(1,:))+0.1]) 
    rate = abs(Target_hyp.alpha_dot(Target_hyp.max_alphadot_idx(1,i), ... 
        i))*180/pi*3600; 
    ylim([rate-2 rate+2]) 
    grid on; grid minor; 
    box on 
    xlabel('\boldmath$\alpha$\textbf{ (deg)}','Interpreter','latex', ... 
        'FontSize',33) 
    ylabel('\boldmath$|\dot{\alpha}|$\textbf{ (arc sec/sec)}', ... 
        'Interpreter','latex','FontSize',33) 
    ind = 1:1:n; % Indices for legend labels 
    h = legend(legend_label{1,ind},'location','EastOutside'); 
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    set(h,'Interpreter','latex','FontSize',32); 
    set(gca,'FontSize',32,'FontWeight','bold') 
    axis normal; 
    
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig06.fig')) 
    if figOn(5)==0 
        close 
    end 
end 
  
%% Alpha vs. |Alpha-Rate| @ Second Max Peak 
if isnan(Target.max_alphadot(2,1)) ~= 1 
    figure(7) 
    hold on 
    linecolors = jet(n); 
    legend_label_common = ... 
        '\boldmath$\rho\ ($\textbf{at }\boldmath$\dot{\alpha}_{\max})='; 
    for i=1:n 
        plot(Target_hyp.alpha_at_max_alphadot(2,i),... 
            abs(Target_hyp.alpha_dot(Target_hyp.max_alphadot_idx(2,i), ... 
            i))*180/pi*3600,'o','MarkerSize',25,'MarkerEdgeColor', ... 
            linecolors(i,:),'MarkerFaceColor',linecolors(i,:)) 
    end 
    for i=1:n 
        % Skip plotting the last three points  
        plot(Target_hyp.alpha(1:end-3,i)*180/pi, ... 
            abs(Target_hyp.alpha_dot(1:end-3,i))*180/pi*3600,'color',... 
            linecolors(i,:),'MarkerSize',2,'LineWidth',3) 
        legend_label{i}=strcat(legend_label_common,sprintf('%.1f', ... 
            Target_hyp.range_at_max_alphadot(2,i)),'$\textbf{ km}'); 
    end 
    xlim([min(Target_hyp.alpha_at_max_alphadot(2,:))-0.1, ... 
        max(Target_hyp.alpha_at_max_alphadot(2,:))+0.1]) 
    rate = abs(Target_hyp.alpha_dot(Target_hyp.max_alphadot_idx(2,i), ... 
        i))*180/pi*3600; 
    ylim([rate-2 rate+2]) 
    grid on; grid minor; 
    box on 
    xlabel('\boldmath$\alpha$\textbf{ (deg)}','Interpreter','latex', ... 
        'FontSize',33) 
    ylabel('\boldmath$|\dot{\alpha}|$\textbf{ (arc sec/sec)}', ... 
        'Interpreter','latex','FontSize',33) 
    ind = 1:1:n; % Indices for legend labels 
    h = legend(legend_label{1,ind},'location','EastOutside'); 
    set(h,'Interpreter','latex','FontSize',32); 
    set(gca,'FontSize',32,'FontWeight','bold') 
    axis normal; 
    
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig07.fig')) 
    if figOn(6)==0 
        close 
    end 
end 
 
%% RS-plane Motion with Location of Extrema 
figure(8) 
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hold on 
linecolors = jet(n); 
legend_label_common = ... 
    '\boldmath$\rho\ ($\textbf{at }\boldmath$\dot{\alpha}_{\min})='; 
legend_label{1}=strcat(legend_label_common,sprintf('%.1f', ... 
    Target.range_at_min_alphadot(1,1)),'$\textbf{ km}'); 
% MINIMA 
plot(Target.Yrel(Target.min_alphadot_idx(1,1),1),... 
    Target.Xrel(Target.min_alphadot_idx(1,1),1),'o','MarkerSize',10, ... 
    'MarkerEdgeColor','k','MarkerFaceColor','k') 
for i=1:n 
    plot(Target_hyp.Yrel(Target_hyp.min_alphadot_idx(1,i),i),... 
        Target_hyp.Xrel(Target_hyp.min_alphadot_idx(1,i),i),'o', ... 
        'MarkerSize',10,'MarkerEdgeColor',linecolors(i,:), ... 
        'MarkerFaceColor',linecolors(i,:)) 
    legend_label{i+1} = strcat(legend_label_common,sprintf('%.1f', ... 
        Target_hyp.range_at_min_alphadot(1,i)),'$\textbf{ km}'); 
end 
if isnan(Target.min_alphadot(2,1)) ~= 1 
    plot(Target.Yrel(Target.min_alphadot_idx(2,1),1),... 
        Target.Xrel(Target.min_alphadot_idx(2,1),1),... 
        'o','MarkerSize',10,'MarkerEdgeColor','k','MarkerFaceColor','k') 
    for i=1:n 
        plot(Target_hyp.Yrel(Target_hyp.min_alphadot_idx(2,i),i), ... 
            Target_hyp.Xrel(Target_hyp.min_alphadot_idx(2,i),i),'o', ... 
            'MarkerSize',10,'MarkerEdgeColor',linecolors(i,:), ... 
            'MarkerFaceColor',linecolors(i,:)) 
    end 
end 
% MAXIMA 
plot(Target.Yrel(Target.max_alphadot_idx(1,1),1),... 
        Target.Xrel(Target.max_alphadot_idx(1,1),1),... 
        's','MarkerSize',10,'MarkerEdgeColor','k','MarkerFaceColor','k') 
for i=1:n 
    if isnan(Target_hyp.max_alphadot_idx(1,i))==0 
        plot(Target_hyp.Yrel(Target_hyp.max_alphadot_idx(1,i),i),... 
            Target_hyp.Xrel(Target_hyp.max_alphadot_idx(1,i),i),'s', ... 
            'MarkerSize',10,'MarkerEdgeColor',linecolors(i,:), ... 
            'MarkerFaceColor',linecolors(i,:)) 
    end 
end 
if isnan(Target.max_alphadot(2,1)) ~= 1 
    plot(Target.Yrel(Target.max_alphadot_idx(2,1),1), ... 
        Target.Xrel(Target.max_alphadot_idx(2,1),1), ... 
        's','MarkerSize',10,'MarkerEdgeColor','k','MarkerFaceColor','k') 
    for i=1:n 
        if isnan(Target_hyp.max_alphadot_idx(2,i))==0 
            plot(Target_hyp.Yrel(Target_hyp.max_alphadot_idx(2,i),i), ... 
                Target_hyp.Xrel(Target_hyp.max_alphadot_idx(2,i),i),'s', ... 
                'MarkerSize',10,'MarkerEdgeColor',linecolors(i,:), ... 
                'MarkerFaceColor',linecolors(i,:)) 
        end 
    end 
end 
% TRAJECTORIES 
for i=1:n 
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    plot(Target_hyp.Yrel(:,i),Target_hyp.Xrel(:,i),'-','color', ... 
        linecolors(i,:),'LineWidth',3)         
end 
plot(Target.Yrel(:,1),Target.Xrel(:,1),'-k','LineWidth',3) 
grid on; grid minor; 
box on 
xlabel('\textbf{Along-Track (km)}','Interpreter','latex','FontSize',33) 
ylabel('\textbf{Radial (km)}','Interpreter','latex','FontSize',33) 
set(gca,'FontSize',32,'FontWeight','bold') 
axis normal; axis equal; 
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig08.fig')) 
if figOn(7)==0 
    close 
end 
  
%% SW-plane Motion with Location of Extrema 
figure(9) 
hold on 
linecolors = jet(n); 
legend_label_common = ... 
    '\boldmath$\rho\ ($\textbf{at }\boldmath$\dot{\alpha}_{\min})='; 
legend_label{1} = strcat(legend_label_common,sprintf('%.1f', ... 
    Target.range_at_min_alphadot(1,1)),'$\textbf{ km}'); 
% MINIMA 
plot(Target.Yrel(Target.min_alphadot_idx(1,1),1), ... 
        Target.Zrel(Target.min_alphadot_idx(1,1),1),'o','MarkerSize',10, ... 
        'MarkerEdgeColor','k','MarkerFaceColor','k') 
for i=1:n 
    plot(Target_hyp.Yrel(Target_hyp.min_alphadot_idx(1,i),i), ... 
        Target_hyp.Zrel(Target_hyp.min_alphadot_idx(1,i),i),'o', ... 
        'MarkerSize',10,'MarkerEdgeColor',linecolors(i,:), ... 
        'MarkerFaceColor',linecolors(i,:)) 
    legend_label{i+1} = strcat(legend_label_common,sprintf('%.1f', ... 
        Target_hyp.range_at_min_alphadot(1,i)),'$\textbf{ km}'); 
end 
if isnan(Target_hyp.min_alphadot(2,1)) ~= 1 
    plot(Target.Yrel(Target.min_alphadot_idx(2,1),1), ... 
        Target.Zrel(Target.min_alphadot_idx(2,1),1),'o','MarkerSize',10, ... 
        'MarkerEdgeColor','k','MarkerFaceColor','k') 
    for i=1:n 
        plot(Target_hyp.Yrel(Target_hyp.min_alphadot_idx(2,i),i), ... 
            Target_hyp.Zrel(Target_hyp.min_alphadot_idx(2,i),i),'o', ... 
        'MarkerSize',10,'MarkerEdgeColor',linecolors(i,:), ... 
        'MarkerFaceColor',linecolors(i,:)) 
    end 
end 
% MAXIMA 
plot(Target.Yrel(Target.max_alphadot_idx(1,1),1), ... 
        Target.Zrel(Target.max_alphadot_idx(1,1),1),'s','MarkerSize',10, ... 
        'MarkerEdgeColor','k','MarkerFaceColor','k') 
for i=1:n 
    if isnan(Target_hyp.max_alphadot_idx(1,i))==0 
        plot(Target_hyp.Yrel(Target_hyp.max_alphadot_idx(1,i),i),... 
            Target_hyp.Zrel(Target_hyp.max_alphadot_idx(1,i),i),'s',... 
        'MarkerSize',10,'MarkerEdgeColor',linecolors(i,:), ... 
        'MarkerFaceColor',linecolors(i,:)) 
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    end 
end 
if isnan(Target_hyp.max_alphadot(2,1)) ~= 1 
    plot(Target.Yrel(Target.max_alphadot_idx(2,1),1), ... 
        Target.Zrel(Target.max_alphadot_idx(2,1),1),'s','MarkerSize',10, ... 
        'MarkerEdgeColor','k','MarkerFaceColor','k') 
    for i=1:n 
        if isnan(Target_hyp.max_alphadot_idx(2,i))==0 
            plot(Target_hyp.Yrel(Target_hyp.max_alphadot_idx(2,i),i), ... 
                Target_hyp.Zrel(Target_hyp.max_alphadot_idx(2,i),i),'s', ... 
                'MarkerSize',10,'MarkerEdgeColor',linecolors(i,:), ... 
                'MarkerFaceColor',linecolors(i,:)) 
        end 
    end 
end 
% TRAJECTORIES 
for i=1:n 
    plot(Target_hyp.Yrel(:,i),Target_hyp.Zrel(:,i),'-','color', ... 
        linecolors(i,:),'LineWidth',3)         
end 
plot(Target.Yrel(:,1),Target.Zrel(:,1),'-k','LineWidth',3) 
grid on; grid minor; 
box on 
xlabel('\textbf{Along-Track (km)}','Interpreter','latex','FontSize',33) 
ylabel('\textbf{Cross-Track (km)}','Interpreter','latex','FontSize',33) 
set(gca,'FontSize',32,'FontWeight','bold') 
axis normal; axis equal; 
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig09.fig')) 
if figOn(8)==0 
    close 
end 
  
%% Delta Alpha at Min Alpha-Rate vs. Range 
figure(10) 
hold on 
plot(Target_hyp.alpha_at_min_alphadot(1,:), ... 
    Target_hyp.range_at_min_alphadot(1,:),'-k','LineWidth',5); 
if isnan(Target_hyp.min_alphadot(2,1)) ~= 1 
    plot(Target_hyp.alpha_at_min_alphadot(2,:), ... 
        Target_hyp.range_at_min_alphadot(2,:),'--k','LineWidth',5); 
end 
linecolors = jet(n); 
for i=1:n 
    plot(Target_hyp.alpha_at_min_alphadot(1,i), ... 
        Target_hyp.range_at_min_alphadot(1,i),'o','MarkerSize',20, ... 
        'MarkerEdgeColor',linecolors(i,:),'MarkerFaceColor',linecolors(i,:)) 
end 
if isnan(Target_hyp.min_alphadot(2,1)) ~= 1 
    for i=1:n 
        plot(Target_hyp.alpha_at_min_alphadot(2,i), ... 
        Target_hyp.range_at_min_alphadot(2,i),'o','MarkerSize',20,... 
            'MarkerEdgeColor',linecolors(i,:),'MarkerFaceColor', ... 
            linecolors(i,:)) 
    end 
end 
% Overlay the dots 
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plot(Target_hyp.alpha_at_min_alphadot(1,:), ... 
    Target_hyp.range_at_min_alphadot(1,:),'-k','LineWidth',5); 
if isnan(Target_hyp.min_alphadot(2,1)) ~= 1 
    plot(Target_hyp.alpha_at_min_alphadot(2,:), ... 
        Target_hyp.range_at_min_alphadot(2,:),'--k','LineWidth',5); 
end 
grid on; grid minor; 
box on 
xlabel('\boldmath$\Delta\alpha$\textbf{ (arc sec) at 
}\boldmath$\dot{\alpha}_{\min}$','Interpreter','latex','FontSize',33) 
ylabel('\textbf{Range (km)}','Interpreter','latex','FontSize',33) 
if isnan(Target_hyp.min_alphadot(2,1)) ~= 1 
    h = legend('\boldmath$\Delta\alpha$\textbf{ from 
}\boldmath$\alpha=90$\textbf{ deg}','\boldmath$\Delta\alpha$\textbf{ from 
}\boldmath$\alpha=-90$\textbf{ deg}','location','North'); 
elseif d<1 
    h = legend('\boldmath$\Delta\alpha$\textbf{ from 
}\boldmath$\alpha=90$\textbf{ deg}','location','NorthWest'); 
elseif d>1 
    h = legend('\boldmath$\Delta\alpha$\textbf{ from }\boldmath$\alpha=-
90$\textbf{ deg}','location','NorthEast'); 
end 
set(h,'Interpreter','latex','FontSize',32); 
set(gca,'FontSize',32,'FontWeight','bold') 
axis normal; 
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig10.fig')) 
if figOn(9)==0 
    close 
end 
  
%% Alpha at Max Alpha-Rate (First Peak) vs. Range 
if isnan(Target_hyp.max_alphadot(1,1)) ~= 1 
    figure(11) 
    hold on 
    plot(Target_hyp.alpha_at_max_alphadot(1,:), ... 
        Target_hyp.range_at_max_alphadot(1,:),'--b','LineWidth',5); 
    linecolors = jet(n); 
    for i=1:n 
        plot(Target_hyp.alpha_at_max_alphadot(1,i), ... 
            Target_hyp.range_at_max_alphadot(1,i),'o','MarkerSize',25,... 
            'MarkerEdgeColor',linecolors(i,:),'MarkerFaceColor', ... 
            linecolors(i,:)) 
    end 
    grid on; grid minor; 
    box on 
    xlabel('\boldmath$\alpha$\textbf{ (deg) at 
}\boldmath$\dot{\alpha}_{max}$','Interpreter','latex','FontSize',33) 
    ylabel('\textbf{Range (km)}','Interpreter','latex','FontSize',33) 
    set(gca,'FontSize',32,'FontWeight','bold') 
    axis normal; 
    
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig11.fig')) 
    if figOn(10)==0 
        close 
    end 
end 
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%% Alpha at Max Alpha-Rate (Second Peak) vs. Range 
if isnan(Target_hyp.max_alphadot(2,1)) ~= 1 
    figure(12) 
    hold on 
    plot(Target_hyp.alpha_at_max_alphadot(2,:), ... 
        Target_hyp.range_at_max_alphadot(2,:),'--r','LineWidth',5); 
    linecolors = jet(n); 
    for i=1:n 
        plot(Target_hyp.alpha_at_max_alphadot(2,i), ... 
            Target_hyp.range_at_max_alphadot(2,i),'o','MarkerSize',25, ... 
            'MarkerEdgeColor',linecolors(i,:),'MarkerFaceColor', ... 
            linecolors(i,:)) 
    end 
    grid on; grid minor; 
    box on 
    xlabel('\boldmath$\alpha$\textbf{ (deg) at 
}\boldmath$\dot{\alpha}_{max}$','Interpreter','latex','FontSize',33) 
    ylabel('\textbf{Range (km)}','Interpreter','latex','FontSize',33) 
    set(gca,'FontSize',32,'FontWeight','bold') 
    axis normal; 
    
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig12.fig')) 
    if figOn(11)==0 
        close 
    end 
end 
  
%% Review Hypotheses 
% Propagate hypotheses for one orbital period 
options = [0,0,0,0,0]; % [prop_time,dt,torus,output,orbitview] 
SatDat_review = gmatOrbitProp('Keplerian',input.coord_sys, ...  
    [input.coes(1,:);hyp.coes;input.coes(2,:);mapping.coes],input.epoch, ... 
    'UTCGregorian',options); 
% Generate LOS observations from hypotheses 
[Surveyor,Target_review] = losProc(SatDat_review,input,[0,0,1]); 
  
% Hypotheses 
figure(1) 
clf 
hold on 
for i=1:size(hyp.coes,1) 
    plot(Target_review.Yrel(:,i),Target_review.Xrel(:,i),'-k','LineWidth',3) 
    xlabel('\textbf{Along-Track (km)}','Interpreter','latex','FontSize',33) 
    ylabel('\textbf{Radial (km)}','Interpreter','latex','FontSize',33) 
    set(gca,'FontSize',32,'FontWeight','bold') 
end 
axis normal; axis equal; 
grid on; grid minor; 
box on 
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig01.fig')) 
  
% Shadow Plot of Truth and IOD Estimate 
p = size(SatDat_review.time(:,1),1); 
figure(21) 
clf; 
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hold on 
plot3(Target_review.Yrel(:,end-1),Target_review.Zrel(:,end-1), ... 
    Target_review.Xrel(:,end-1),'-k','LineWidth',3); % truth 
plot3(Target_review.Yrel(:,end),Target_review.Zrel(:,end), ... 
    Target_review.Xrel(:,end),':r','LineWidth',3); % estimate 
% Surveyor location 
plot3(0,0,0,'ko','MarkerSize',8,'MarkerEdgeColor','w','MarkerFaceColor','k'); 
view([45 -45]) 
axis equal fill 
sl = xlim; 
wl = ylim; 
rl = zlim; 
% Projection on rw-plane  (constant s limit) 
plot3(sl(1)*ones(p,1),Target_review.Zrel(:,end-1), ... 
    Target_review.Xrel(:,end-1),'-k','LineWidth',2); % truth 
plot3(sl(1)*ones(p,1),Target_review.Zrel(:,end), ... 
    Target_review.Xrel(:,end),':r','LineWidth',2); % estimate 
plot3(sl(1),0,0,'ko','MarkerSize',8,'MarkerEdgeColor','w', ... 
    'MarkerFaceColor','k'); 
% Projection on rs-plane (constant w limit) 
plot3(Target_review.Yrel(:,end-1),wl(2)*ones(p,1), ... 
    Target_review.Xrel(:,end-1),'-k','LineWidth',2); % truth 
plot3(Target_review.Yrel(:,end),wl(2)*ones(p,1), ... 
    Target_review.Xrel(:,end),':r','LineWidth',2); % estimate 
plot3(0,wl(2),0,'ko','MarkerSize',8,'MarkerEdgeColor','w', ... 
    'MarkerFaceColor','k'); 
% Projection on sw-plane  (constant -r limit) 
plot3(Target_review.Yrel(:,end-1),Target_review.Zrel(:,end-1), ... 
    rl(1)*ones(p,1),'-k','LineWidth',2); % truth 
plot3(Target_review.Yrel(:,end),Target_review.Zrel(:,end),rl(1)*ones(p,1),... 
    ':r','LineWidth',2); % estimate 
plot3(0,0,rl(1),'ko','MarkerSize',8,'MarkerEdgeColor','w', ... 
    'MarkerFaceColor','k'); 
view([30 25]); 
set(gca,'FontSize',32,'FontWeight','bold') 
grid on; grid minor; 
box on;  % standard black box wireframe 
set(gca,'Color',[0.5 0.5 0.5],'GridLineStyle','-','MinorGridLineStyle',... 
    ':','LineWidth',1) 
xlabel('\textbf{S (km)}','Interpreter','latex','FontSize',33) 
ylabel('\textbf{W (km)}','Interpreter','latex','FontSize',33) 
zlabel('\textbf{R (km)}','Interpreter','latex','FontSize',33) 
set(gca,'FontSize',32,'FontWeight','bold') 
pos=get(gca,'Position'); 
h = legend('\textbf{Truth}','\textbf{Hypothesis}','Location','NorthEast'); 
set(h,'Interpreter','latex','FontSize',32); 
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig21.fig')) 
  
save(strcat(codeDir,'\Cases\',sprintf('%s_iod.mat',input.runCase))) 
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E.9 Nonlinear Least Squares 

%% NLSQ.m 
 
format long g 
clear r_RMS alpha_res_mean beta_res_mean 
 
%% INPUTS 
% Specify the number of observations which will determine the number 
% of times through the data processing loop 
num_obs = size(SatDat.time(:,1),1)-1; 
% Set maximum number of least squares iterations 
max_iter = 10; 
% Rejection standard deviations 
rs = 10000; % Set high to keep everything 
% Measurement Uncertainty 
ang_res = (10)/3600*pi/180; % approximate sigma = 10 arc sec 
rho_unc = 1000000000; % set it high! 
 
% Set index limits for time 
t1=1; 
t2=t1+num_obs; 
 
% Set initial correction to reference trajectory 
dX0 = [0;0;0;0;0;0]; 
X0 = [0;0;0;0;0;0]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Output IOD error at epoch to screen 
x0 = (SatDat.Xef(1,2)-SatDat_iod.Xef(1,2))*1000; 
y0 = (SatDat.Yef(1,2)-SatDat_iod.Yef(1,2))*1000; 
z0 = (SatDat.Zef(1,2)-SatDat_iod.Zef(1,2))*1000; 
vx0 = (SatDat.VXef(1,2)-SatDat_iod.VXef(1,2))*1000 - Omegae*y0; 
vy0 = (SatDat.VYef(1,2)-SatDat_iod.VYef(1,2))*1000 + Omegae*x0; 
vz0 = (SatDat.VZef(1,2)-SatDat_iod.VZef(1,2))*1000; 
[x0;y0;z0;vx0;vy0;vz0] 
 
% Instrument covariance matrix. 
Q = [ang_res^2,0,0;0,ang_res^2,0;0,0,rho_unc^2]; 
Q_inv = [1/ang_res^2,0,0;0,1/ang_res^2,0;0,0,1/rho_unc^2]; 
 
% Noise on measurements 
noise = zeros(3,num_obs); 
for i=1:num_obs 
    noise(:,i) = [ang_res;ang_res;0].*randn(3,1); % mean zero, 1 sigma 
end 
 
% Observation times 
t=SatDat.time(t1:t2,1); % secs 
  
% Set up z, the total data (observation) vector % 3xn matrix 
z = [Target.alpha_meas(t1+1:t2,1)';Target.beta_meas(t1+1:t2,1)'; ... 
    zeros(num_obs,1)']; 
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%% Begin iteration loop 
% Initialize iteration so the 'while' loop will begin processing. 
iteration = 1; 
P_inv_prev = zeros(3); 
while iteration <= max_iter 
    % Write iteration to screen for progress monitoring. 
    fprintf('Iteration %d of %d\n',iteration,max_iter) 
    fprintf('\n') % Blank line for spacing on screen. 
 
    %% Initialize buffers for populating vectors/matrices 
    Xref = zeros(6,num_obs+1); % propagated state at obs time, ti 
    Xref_rel = zeros(3,num_obs+1); % ref relative coordinates at obs time, ti 
    rho_est = zeros(num_obs+1,1); % ref range at obs time, ti 
    zref = zeros(3,num_obs); % obs prediction at obs time, ti 
    r = zeros(3,num_obs); % residual 
    rejected = zeros(1,num_obs); % rejection matrix 
    % For product of (T transpose)(Q inverse)(r) 
    % Dimensions: (6 x n) (n x n) (n x 1) = (6 x 1) 
    T_tran_Q_inv_r = zeros(6,1); 
    % Initialize covariance matrix inverse (6 x 6) 
    P_inv = zeros(6); 
  
    %% Epoch 
    X0plus = X0+dX0 
    dX_dX0_cum = eye(6); 
    Xref(:,1) = X0plus; % [m,m/s] 
    % Calculate Xref_rel at epoch 
    Xref_ecef = [SatDat_iod.Xef(t1,2);SatDat_iod.Yef(t1,2); ... 
        SatDat_iod.Zef(t1,2)] + Xref(1:3,1)./1000; % [km] 
    % Convert ECEF to ECI 
    JD = SatDat.UTCMJ(t1,2) + 2430000.0 + deltaJD; % Julian Date 
    dummy = [0;0;0]; % use for v_ECI and a_ECI in ECItoECEF 
    [Xref_eci ~] = ECEFtoECI(JD,Xref_ecef(1:3,1),dummy,dummy,Omegae,dtheta); 
    % Convert ECI to RSW 
    Xref_rsw = Surveyor.rotECI2RSW(:,:,t1)*Xref_eci; % [km] 
    Xref_rel(1,1) = Xref_rsw(1,1) - Surveyor.Xrsw(1,1); % [km] 
    Xref_rel(2,1) = Xref_rsw(2,1) - Surveyor.Yrsw(1,1); % [km] 
    Xref_rel(3,1) = Xref_rsw(3,1) - Surveyor.Zrsw(1,1); % [km] 
    rho_est(1,1)=sqrt(Xref_rel(1,1)^2+Xref_rel(2,1)^2+Xref_rel(3,1)^2); %[km] 
  
    %% Observation processing loop 
    for iob = t1:t2-t1 
        % Propagate the state vector to the observation time, ti, and 
        % obtain the state transition matrix, dX_dX0(ti,t0). Use IOD torus 
        % or IOD integration to get Target's estimated position & velocity 
        % in ECEF frame for generating the A matrix. 
        if use_torus == 1 
            q = zeros(1,3); % preallocate 
            qdot = zeros(1,3); % preallocate 
            Cj = zeros(length(C2)-1,3); % preallocate 
            Sj = zeros(length(C2)-1,3); % preallocate 
            % Sum Fourier Series 
            % start with q 
            Q = Omega*t(iob)/60/13.446852+Q0; 
            JQ=J(2:end,:)*Q'; 
            cJQ=cos(JQ); 
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            sJQ=sin(JQ); 
            Cj(:,1)=C2(2:end,1).*cJQ; 
            Sj(:,1)=S2(2:end,1).*sJQ; 
            Cj(:,2)=C2(2:end,2).*cJQ; 
            Sj(:,2)=S2(2:end,2).*sJQ; 
            Cj(:,3)=C2(2:end,3).*cJQ; 
            Sj(:,3)=S2(2:end,3).*sJQ; 
            q(1,1)=C2(1,1)+sum(Cj(:,1))+sum(Sj(:,1)); 
            q(1,2)=C2(1,2)+sum(Cj(:,2))+sum(Sj(:,2)); 
            q(1,3)=C2(1,3)+sum(Cj(:,3))+sum(Sj(:,3)); 
            % now for qdot 
            Jw=J(2:end,:)*Omega'; 
            Cj(:,1)=C2(2:end,1).*sJQ; 
            Sj(:,1)=S2(2:end,1).*cJQ; 
            Cj(:,2)=C2(2:end,2).*sJQ; 
            Sj(:,2)=S2(2:end,2).*cJQ; 
            Cj(:,3)=C2(2:end,3).*sJQ; 
            Sj(:,3)=S2(2:end,3).*cJQ; 
            qdot(1,1)=sum(Jw.*(-Cj(:,1)+Sj(:,1))); 
            qdot(1,2)=sum(Jw.*(-Cj(:,2)+Sj(:,2))); 
            qdot(1,3)=sum(Jw.*(-Cj(:,3)+Sj(:,3))); 
            r_ECEF = q'*6378135; % [m] 
            v_ECEF = qdot'*6378135/60/13.446852; % [m/sec] 
        elseif use_torus == 0 
            r_ECEF = [SatDat_iod.Xef(iob,2);SatDat_iod.Yef(iob,2); ... 
                SatDat_iod.Zef(iob,2)]*1000; % [m] 
            v_ECEF = [SatDat_iod.VXef(iob,2);SatDat_iod.VYef(iob,2); ... 
                SatDat_iod.VZef(iob,2)]*1000; % [m/sec] 
        end 
        [A,Ham,~] = Amatrix(r_ECEF,v_ECEF,SatDat_iod.UTCMJ(iob,2),method); 
        % state transition matrix 
        dt=t(iob+1)-t(iob); % [sec] 
        dX_dX0 = eye(6) + A*dt + (A^2)*(dt^2)/2 + (A^3)*(dt^3)/(2*3) + ... 
            (A^4)*(dt^4)/(2*3*4) + (A^5)*(dt^5)/(2*3*4*5) + ... 
            (A^6)*(dt^6)/(2*3*4*5*6); 
        dX_dX0 = dX_dX0*dX_dX0_cum; 
        Xref(:,iob+1) = dX_dX0*X0plus; % this is actually delta_ECEF 
        dX_dX0_cum = dX_dX0; 
  
        % Use IOD torus or IOD integration to get Target's estimated 
        % position & velocity in ECEF frame at propagated observation time 
        if use_torus == 1 
            q = zeros(1,3); % preallocate 
            qdot = zeros(1,3); % preallocate 
            Cj = zeros(length(C2)-1,3); % preallocate 
            Sj = zeros(length(C2)-1,3); % preallocate 
            % Sum Fourier Series 
            % start with q 
            Q = Omega*t(iob+1)/60/13.446852+Q0; 
            JQ=J(2:end,:)*Q'; 
            cJQ=cos(JQ); 
            sJQ=sin(JQ); 
            Cj(:,1)=C2(2:end,1).*cJQ; 
            Sj(:,1)=S2(2:end,1).*sJQ; 
            Cj(:,2)=C2(2:end,2).*cJQ; 
            Sj(:,2)=S2(2:end,2).*sJQ; 
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            Cj(:,3)=C2(2:end,3).*cJQ; 
            Sj(:,3)=S2(2:end,3).*sJQ; 
            q(1,1)=C2(1,1)+sum(Cj(:,1))+sum(Sj(:,1)); 
            q(1,2)=C2(1,2)+sum(Cj(:,2))+sum(Sj(:,2)); 
            q(1,3)=C2(1,3)+sum(Cj(:,3))+sum(Sj(:,3)); 
            % now for qdot 
            Jw=J(2:end,:)*Omega'; 
            Cj(:,1)=C2(2:end,1).*sJQ; 
            Sj(:,1)=S2(2:end,1).*cJQ; 
            Cj(:,2)=C2(2:end,2).*sJQ; 
            Sj(:,2)=S2(2:end,2).*cJQ; 
            Cj(:,3)=C2(2:end,3).*sJQ; 
            Sj(:,3)=S2(2:end,3).*cJQ; 
            qdot(1,1)=sum(Jw.*(-Cj(:,1)+Sj(:,1))); 
            qdot(1,2)=sum(Jw.*(-Cj(:,2)+Sj(:,2))); 
            qdot(1,3)=sum(Jw.*(-Cj(:,3)+Sj(:,3))); 
            r_ECEF = q'*6378135; % [m] 
            v_ECEF = qdot'*6378135/60/13.446852; % [m/sec] 
        elseif use_torus == 0 
            r_ECEF = [SatDat_iod.Xef(iob+1,2);SatDat_iod.Yef(iob+1,2); ... 
                SatDat_iod.Zef(iob+1,2)]*1000; % [m] 
            v_ECEF = [SatDat_iod.VXef(iob+1,2);SatDat_iod.VYef(iob+1,2); ... 
                SatDat_iod.VZef(iob+1,2)]*1000; % [m/sec] 
        end             
  
        Xref_ecef = [r_ECEF;v_ECEF] + Xref(:,iob+1); % [m, m/sec] 
        % Subtract rotation rate of earth from velocity (gives ECEF velocity) 
        Xref_ecef(4,1) = Xref_ecef(4,1) + Omegae*Xref(2,iob+1); 
        Xref_ecef(5,1) = Xref_ecef(5,1) - Omegae*Xref(1,iob+1); 
        % Convert ECEF to ECI 
        JD = SatDat.UTCMJ(iob+1,2) + 2430000.0 + deltaJD; % Julian Date 
        [Xref_eci VXref_eci AXref_eci theta] = ECEFtoECI(JD, ... 
            Xref_ecef(1:3,1),Xref_ecef(4:6,1),dummy,Omegae,dtheta); 
        % Convert ECI to RSW 
        Xref_rsw = Surveyor.rotECI2RSW(:,:,iob+1)*(Xref_eci/1000); % [km] 
        Xref_rel(1,iob+1) = Xref_rsw(1,1) - Surveyor.Xrsw(iob+1,1); % [km] 
        Xref_rel(2,iob+1) = Xref_rsw(2,1) - Surveyor.Yrsw(iob+1,1); % [km] 
        Xref_rel(3,iob+1) = Xref_rsw(3,1) - Surveyor.Zrsw(iob+1,1); % [km] 
        rho_est(iob+1,1) = sqrt(Xref_rel(1,iob+1)^2 +Xref_rel(2,iob+1)^2 +... 
            Xref_rel(3,iob+1)^2); % [km] 
        alpha_ref = atan2(Xref_rel(2,iob+1),Xref_rel(1,iob+1)); % rad 
        beta_ref = atan2(Xref_rel(3,iob+1),sqrt(Xref_rel(1,iob+1)^2 + ... 
            Xref_rel(2,iob+1)^2)); % rad 
        zref(:,iob) = [alpha_ref;beta_ref;rho_est(iob+1,1)]; 
  
        % Obtain the residual vector, ri=zi-G(Xpred). Calculate Hi(ti) or 
        % dG_dX(Xref(ti),ti) for this particular data point. The 
        % observation matrix Ti=Hi*dX_dX0 can be calculated. 
        H = dG_dX(Xref_ecef(1:3,1),theta*pi/180, ... 
            Surveyor.rotECI2RSW(:,:,iob+1),[Surveyor.Xrsw(iob+1,1); ... 
            Surveyor.Yrsw(iob+1,1);Surveyor.Zrsw(iob+1,1)]*1000); 
 
        % Form matrix product T = H * dX/dX0 
        % Dimensions: (n x 6) = (n x 6)*(6 x 6), where 
        % n = number of rows in the observation z matrix = 3 
        T = H*dX_dX0; % observation matrix 
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        % Residual 
        r(:,iob) = z(:,iob) - zref(:,iob); 
 
        % Rejection processing 
        % First address the possibility of angles jumping 360 deg 
        for i = 1:2 % First two rows in the observation z matrix 
            if r(i,iob) > pi 
                r(i,iob) = z(i,iob) - zref(i,iob) - 2*pi; 
            elseif r(i,iob) < -pi 
                r(i,iob) = z(i,iob) - zref(i,iob) + 2*pi; 
            end 
 
            % Compare the elements of r(i) with its corresponding 
            % diagonal entry of the Q_inv matrix 
            if abs(r(i,iob)) > rs*ang_res 
                % Set residual rejection flag to sort/omit rejected obs 
                rejected(iob) = 1; 
            end 
        end 
 
        % If the observation is not rejected, add new terms to the running 
        % sums of the matrices: (T transpose)*(Q inverse)*(T) and  
        % (T transpose)*(Q inverse)*(r). 
        if (rejected(iob) ~= 1) % Check if 'rejected' is not equal to 1 
            % Form product P_inv = (T transpose)*(Q inverse)*(T) 
            % This product is the "observability condition." It 
            % must be invertible for an estimate to exist. 
            % Dimensions: (6 x 6)= (6 x n)*(n x n) *(n x 6) 
            P_inv = P_inv + (T' * Q_inv * T); 
            % Form product (T transpose)*(Q inverse)*(r) 
            % Dimensions: (6 x 1) = (6 x 1) + (6 x n)*(n x n)*(n x 1) 
            T_tran_Q_inv_r = T_tran_Q_inv_r + (T' * Q_inv * r(:,iob)); 
        end 
    end 
 
    %% Data is processed; improve estimate of dX0 at EPOCH. 
    % You are NOT calculating dX0 at every time step. 
 
    % Invert matrix T transpose Q inverse T to find covariance P 
    % Dimensions: (6 x 6) = inv((6 x n)*(n x n)*(n x 6)) 
    P = inv(P_inv); % covariance of the correction dX0 
 
    % Multiply P by T transpose Q inverse r to get correction 
    % to the reference state vector at epoch. 
    % Dimensions: (6 x 1) = (6 x 6)*(6 x 1) 
    dX0 = (P_inv\T_tran_Q_inv_r) 
 
    %% Check convergence. 
    % RMS Residual 
    clear tn rn 
    i=1; 
    for iob=1:num_obs 
        if rejected(iob)==0 
            tn(i,1)=t(iob+1,1); 
            rn(:,i)=r(:,iob); %filtered residuals 
            i=i+1; 
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        end 
    end 
    r_RMS(iteration,:)=sqrt(sum(rn.^2,2)/size(rn,2)); % radians 
    % Print final RMS residuals to screen 
    r_RMS(iteration,1:2)*180/pi*3600 
  
    rho_true = Target.rho_true(t1:t2,1); % [km] 
    drho = rho_true - rho_est; 
    drho2 = rho_true - Target_iod.rho_true(t1:t2,1); 
    drho_percent = (drho./rho_true)*100; 
    drho_percent2 = (drho2./rho_true)*100; 
  
    X0 = X0plus; 
    P_inv_prev = P_inv; 
  
    if iteration > 1 && sqrt(dX0(1,1)^2 + dX0(2,1)^2 + dX0(3,1)^2) < 0.1 
        fprintf('Converged on iteration %d of %d\n',iteration,max_iter); 
        break 
    elseif iteration == max_iter 
        fprintf('Did not converge. :('); 
    end 
    % Increment iteration value by 1 
    iteration = iteration + 1; 
end % End statement for the iterations to max_iter loop 
  
%% Generate Final Estimated Trajectory 
Xref(:,1) = X0; % [m,m/s] 
% Calculate Xref_rel at epoch 
Xref_ecef=[SatDat_iod.Xef(t1,2);SatDat_iod.Yef(t1,2);SatDat_iod.Zef(t1,2)]... 
    + Xref(1:3,1)./1000; % [km] 
% Convert ECEF to ECI 
JD = SatDat.UTCMJ(t1,2) + 2430000.0 + deltaJD; % Julian Date 
dummy = [0;0;0]; % use for v_ECI and a_ECI in ECItoECEF 
[Xref_eci ~] = ECEFtoECI(JD,Xref_ecef(1:3,1),dummy,dummy,Omegae,dtheta); 
% Convert ECI to RSW 
Xref_rsw = Surveyor.rotECI2RSW(:,:,t1)*Xref_eci; % [km] 
Xref_rel(1,1) = Xref_rsw(1,1) - Surveyor.Xrsw(1,1); % [km] 
Xref_rel(2,1) = Xref_rsw(2,1) - Surveyor.Yrsw(1,1); % [km] 
Xref_rel(3,1) = Xref_rsw(3,1) - Surveyor.Zrsw(1,1); % [km] 
rho_est(1,1) =sqrt(Xref_rel(1,1)^2 +Xref_rel(2,1)^2 +Xref_rel(3,1)^2); % [km] 
  
dX_dX0_cum = eye(6); 
for iob = t1:t2-t1 
    % Propagate the state vector to the observation time, ti, and obtain the 
    % state transition matrix, dX_dX0(ti,t0). Use IOD torus or IOD 
    % integration to get Target's estimated position & velocity in ECEF frame 
    % for generating the A matrix. 
    if use_torus == 1 
        q = zeros(1,3); % preallocate 
        qdot = zeros(1,3); % preallocate 
        Cj = zeros(length(C2)-1,3); % preallocate 
        Sj = zeros(length(C2)-1,3); % preallocate 
        % Sum Fourier Series 
        % start with q 
        Q = Omega*t(iob)/60/13.446852+Q0; 
        JQ=J(2:end,:)*Q'; 
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        cJQ=cos(JQ); 
        sJQ=sin(JQ); 
        Cj(:,1)=C2(2:end,1).*cJQ; 
        Sj(:,1)=S2(2:end,1).*sJQ; 
        Cj(:,2)=C2(2:end,2).*cJQ; 
        Sj(:,2)=S2(2:end,2).*sJQ; 
        Cj(:,3)=C2(2:end,3).*cJQ; 
        Sj(:,3)=S2(2:end,3).*sJQ; 
        q(1,1)=C2(1,1)+sum(Cj(:,1))+sum(Sj(:,1)); 
        q(1,2)=C2(1,2)+sum(Cj(:,2))+sum(Sj(:,2)); 
        q(1,3)=C2(1,3)+sum(Cj(:,3))+sum(Sj(:,3)); 
        % now for qdot 
        Jw=J(2:end,:)*Omega'; 
        Cj(:,1)=C2(2:end,1).*sJQ; 
        Sj(:,1)=S2(2:end,1).*cJQ; 
        Cj(:,2)=C2(2:end,2).*sJQ; 
        Sj(:,2)=S2(2:end,2).*cJQ; 
        Cj(:,3)=C2(2:end,3).*sJQ; 
        Sj(:,3)=S2(2:end,3).*cJQ; 
        qdot(1,1)=sum(Jw.*(-Cj(:,1)+Sj(:,1))); 
        qdot(1,2)=sum(Jw.*(-Cj(:,2)+Sj(:,2))); 
        qdot(1,3)=sum(Jw.*(-Cj(:,3)+Sj(:,3))); 
        r_ECEF = q'*6378135; % [m] 
        v_ECEF = qdot'*6378135/60/13.446852; % [m/sec] 
    elseif use_torus == 0 
        r_ECEF = [SatDat_iod.Xef(iob,2);SatDat_iod.Yef(iob,2); ... 
            SatDat_iod.Zef(iob,2)]*1000; % [m] 
        v_ECEF = [SatDat_iod.VXef(iob,2);SatDat_iod.VYef(iob,2); ... 
            SatDat_iod.VZef(iob,2)]*1000; % [m/sec] 
    end 
  
    [A,Ham,a_ECI] = Amatrix(r_ECEF,v_ECEF,SatDat_iod.UTCMJ(iob,2),method); 
    % State transition matrix 
    dt=t(iob+1)-t(iob); % [sec] 
    dX_dX0 = eye(6) + A*dt + (A^2)*(dt^2)/2 + (A^3)*(dt^3)/(2*3) + ... 
        (A^4)*(dt^4)/(2*3*4) + (A^5)*(dt^5)/(2*3*4*5) + ...  
        (A^6)*(dt^6)/(2*3*4*5*6); 
    dX_dX0 = dX_dX0*dX_dX0_cum; 
    Xref(:,iob+1) = dX_dX0*X0; % this is actually delta_ECEF 
    dX_dX0_cum = dX_dX0; 
  
    % Use IOD torus or IOD integration to get Target's estimated position 
    % & velocity in ECEF frame at propagated observation time 
    if use_torus == 1 
        q = zeros(1,3); % preallocate 
        qdot = zeros(1,3); % preallocate 
        Cj = zeros(length(C2)-1,3); % preallocate 
        Sj = zeros(length(C2)-1,3); % preallocate 
        % Sum Fourier Series 
        % start with q 
        Q = Omega*t(iob+1)/60/13.446852+Q0; 
        JQ=J(2:end,:)*Q'; 
        cJQ=cos(JQ); 
        sJQ=sin(JQ); 
        Cj(:,1)=C2(2:end,1).*cJQ; 
        Sj(:,1)=S2(2:end,1).*sJQ; 
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        Cj(:,2)=C2(2:end,2).*cJQ; 
        Sj(:,2)=S2(2:end,2).*sJQ; 
        Cj(:,3)=C2(2:end,3).*cJQ; 
        Sj(:,3)=S2(2:end,3).*sJQ; 
        q(1,1)=C2(1,1)+sum(Cj(:,1))+sum(Sj(:,1)); 
        q(1,2)=C2(1,2)+sum(Cj(:,2))+sum(Sj(:,2)); 
        q(1,3)=C2(1,3)+sum(Cj(:,3))+sum(Sj(:,3)); 
        % now for qdot 
        Jw=J(2:end,:)*Omega'; 
        Cj(:,1)=C2(2:end,1).*sJQ; 
        Sj(:,1)=S2(2:end,1).*cJQ; 
        Cj(:,2)=C2(2:end,2).*sJQ; 
        Sj(:,2)=S2(2:end,2).*cJQ; 
        Cj(:,3)=C2(2:end,3).*sJQ; 
        Sj(:,3)=S2(2:end,3).*cJQ; 
        qdot(1,1)=sum(Jw.*(-Cj(:,1)+Sj(:,1))); 
        qdot(1,2)=sum(Jw.*(-Cj(:,2)+Sj(:,2))); 
        qdot(1,3)=sum(Jw.*(-Cj(:,3)+Sj(:,3))); 
        r_ECEF = q'*6378135; % [m] 
        v_ECEF = qdot'*6378135/60/13.446852; % [m/sec] 
    elseif use_torus == 0 
        r_ECEF = [SatDat_iod.Xef(iob+1,2);SatDat_iod.Yef(iob+1,2); ... 
            SatDat_iod.Zef(iob+1,2)]*1000; % [m] 
        v_ECEF = [SatDat_iod.VXef(iob+1,2);SatDat_iod.VYef(iob+1,2); ... 
            SatDat_iod.VZef(iob+1,2)]*1000; % [m/sec] 
    end 
             
    Xref_ecef = [r_ECEF;v_ECEF] + Xref(:,iob+1); % [m, m/sec] 
    % Subtract rotation rate of earth from velocity (gives ECEF velocity) 
    Xref_ecef(4,1) = Xref_ecef(4,1) + Omegae*Xref(2,iob+1); 
    Xref_ecef(5,1) = Xref_ecef(5,1) - Omegae*Xref(1,iob+1); 
    % convert ECEF to ECI 
    JD = SatDat.UTCMJ(iob+1,2) + 2430000.0 + deltaJD; % Julian Date 
    [Xref_eci VXref_eci AXref_eci theta] = ECEFtoECI(JD,Xref_ecef(1:3,1), ... 
        Xref_ecef(4:6,1),dummy,Omegae,dtheta); 
    % Convert ECI to RSW 
    Xref_rsw = Surveyor.rotECI2RSW(:,:,iob+1)*(Xref_eci/1000); % [km] 
    Xref_rel(1,iob+1) = Xref_rsw(1,1) - Surveyor.Xrsw(iob+1,1); % [km] 
    Xref_rel(2,iob+1) = Xref_rsw(2,1) - Surveyor.Yrsw(iob+1,1); % [km] 
    Xref_rel(3,iob+1) = Xref_rsw(3,1) - Surveyor.Zrsw(iob+1,1); % [km] 
    rho_est(iob+1,1) = sqrt(Xref_rel(1,iob+1)^2 + Xref_rel(2,iob+1)^2 + ... 
        Xref_rel(3,iob+1)^2); % [km] 
    alpha_ref = atan2(Xref_rel(2,iob+1),Xref_rel(1,iob+1)); % rad 
    beta_ref = atan2(Xref_rel(3,iob+1),sqrt(Xref_rel(1,iob+1)^2 + ... 
        Xref_rel(2,iob+1)^2)); % rad 
    zref(:,iob) = [alpha_ref;beta_ref;rho_est(iob+1,1)]; 
    r(:,iob) = z(:,iob) - zref(:,iob); 
    % Address the possibility of angles jumping 360 deg 
    for i = 1:2 % First two rows in the observation z matrix. 
        if r(i,iob) > pi 
            r(i,iob) = z(i,iob) - zref(i,iob) - 2*pi; 
        elseif r(i,iob) < -pi 
            r(i,iob) = z(i,iob) - zref(i,iob) + 2*pi; 
        end 
    end 
    if iob==t1 
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        % Estimated COEs 
        [p,a,ecc,incl,omega,argp,nu,~] = rv2coe((Xref_eci')/1000, ...  
            (VXref_eci')/1000); 
        NLS.coes = [a,ecc,incl*180/pi,omega*180/pi,argp*180/pi,nu*180/pi]; 
    end 
end 
  
%% Plot & Save 
% RMS Residual 
clear tn rn 
i=1; 
for iob=1:num_obs 
    if rejected(iob)==0 
        tn(i,1)=t(iob+1,1); 
        rn(:,i)=r(:,iob); %filtered residuals 
        i=i+1; 
    end 
end 
r_RMS_final=sqrt(sum(rn.^2,2)/size(rn,2)); % radians 
         
rho_true = Target.rho_true(t1:t2,1); % [km] 
drho = abs(rho_true - rho_est); 
drho2 = abs(rho_true - Target_iod.rho_true(t1:t2,1)); 
drho_percent = (drho./rho_true)*100; 
drho_percent2 = (drho2./rho_true)*100; 
  
% Plot least squares residuals 
figure(30) 
clf; 
plot(tn/60,rn(1,:)*180/pi*3600,'k','LineWidth',3); 
hold on 
plot(tn/60,rn(2,:)*180/pi*3600,'r','LineWidth',3); 
axis normal; 
grid on; grid minor; 
xlabel('\textbf{Time (min)}','Interpreter','latex','FontSize',33) 
ylabel('\textbf{Residual (arc secs)}','Interpreter','latex','FontSize',33) 
set(gca,'FontSize',32,'FontWeight','bold') 
h = legend('\boldmath$\alpha$','\boldmath$\beta$','Location','SouthWest'); 
set(h,'Interpreter','latex','FontSize',32); 
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig30.fig')) 
  
% Plot true range errors 
figure(31) 
clf; 
semilogy(t(:,1)/60,drho*1000,'-b','LineWidth',3); 
hold on 
semilogy(t(:,1)/60,drho2*1000,'-r','LineWidth',3); 
axis normal; 
grid on; 
xlabel('\textbf{Time (min)}','Interpreter','latex','FontSize',33) 
ylabel('\textbf{Range Error (m)}','Interpreter','latex','FontSize',33) 
set(gca,'FontSize',32,'FontWeight','bold') 
h = legend('\textbf{NLS Estimate}','\textbf{IOD Estimate}','Location', ... 
    'SouthWest'); 
set(h,'Interpreter','latex','FontSize',32); 
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig31.fig')) 
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% Plot true range errors 
figure(32) 
clf; 
semilogy(t(:,1)/60,drho./rho_true*100,'-b','LineWidth',3); 
hold on 
semilogy(t(:,1)/60,drho2./rho_true*100,'-r','LineWidth',3); 
axis normal; 
grid on; 
xlabel('\textbf{Time (min)}','Interpreter','latex','FontSize',33) 
ylabel('\textbf{Range Error (\%)}','Interpreter','latex','FontSize',33) 
set(gca,'FontSize',32,'FontWeight','bold') 
h = legend('\textbf{NLS Estimate}','\textbf{IOD Estimate}','Location', ... 
    'SouthWest'); 
set(h,'Interpreter','latex','FontSize',32); 
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig32.fig')) 
 
% Plot relative coordinate errors 
figure(33) 
clf; 
plot(t(:,1)/60,(Xref_rel(1,:)'-Target.Xrel(:,1))*1000,'-r','LineWidth',3); 
hold on 
plot(t(:,1)/60,(Xref_rel(2,:)'-Target.Yrel(:,1))*1000,'-g','LineWidth',3); 
plot(t(:,1)/60,(Xref_rel(3,:)'-Target.Zrel(:,1))*1000,'-b','LineWidth',3); 
plot(t(:,1)/60,(rho_true - rho_est)*1000,'-k','LineWidth',3); 
axis normal; 
grid on; 
xlabel('\textbf{Time (min)}','Interpreter','latex','FontSize',33) 
ylabel('\textbf{Error (m)}','Interpreter','latex','FontSize',33) 
set(gca,'FontSize',32,'FontWeight','bold') 
h = legend('\textbf{R}','\textbf{S}','\textbf{W}','\boldmath$\rho$', ... 
    'Location','NorthEast'); 
set(h,'Interpreter','latex','FontSize',32); 
saveas(gcf,strcat(codeDir,'\Cases\',sprintf('%s',input.runCase),'\Fig33.fig')) 
  
save(strcat(codeDir,'\Cases\',sprintf('%s_nls.mat',input.runCase))) 
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E.10 Measurement Sensitivity Matrix 

%  [function]   dG_dX 
% 
%  [purpose]:   Function generates the 3x6 "H" matrix 
%               Hi(ti)=dG_dX(Xref(ti),ti) where G is the observation 
%               relationship between the system state at the current time and 
%               the observation geometry. 
% 
%  [useage]:    [H]    = dG_dX(X,theta,R,Xrsw_S) 
% 
%  [inputs]:    X      = Xref_ecef(1:3,1) 
%               theta  = GMST 
%               R      = transformation matrix from ECI to RSW 
%               Xrsw_S = Surveyor's RSW vector 
% 
%  [outputs]:   H      = [da/dx, da/dy, da/dz, da/dvx, da/dvy, da/dvz; 
%                         db/dx, db/dy, db/dz, db/dvx, db/dvy, db/dvz; 
%                         dr/dx, dr/dy, dr/dz, dr/dvx, dr/dvy, dr/dvz]; 
%        
%               where  a = alpha = atan(y/x) 
%                      b = beta = atan(z/sqrt(x^2+y^2)) 
%                      r = rho = sqrt(x^2+y^2+z^2) 
% 
%  Max Yates, February 28, 2017 
  
function [H] = dG_dX(X,theta,R,Xrsw_S) 
  
x = X(1,1); y = X(2,1); z = X(3,1); 
R11 = R(1,1); R12 = R(1,2); R13 = R(1,3); 
R21 = R(2,1); R22 = R(2,2); R23 = R(2,3); 
R31 = R(3,1); R32 = R(3,2); R33 = R(3,3); 
xrsw_S = Xrsw_S(1,1); yrsw_S = Xrsw_S(2,1); zrsw_S = Xrsw_S(3,1); 
  
% Preallocate matrix 
H = zeros(3,6); 
  
% Partial G with respect to Xecef 
% da/dx 
H(1,1) = ((R21*cos(theta) + R22*sin(theta))/(R13*z - xrsw_S + ... 
    R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta))) - ((R11*cos(theta) + R12*sin(theta))*(R23*z - ... 
    yrsw_S + R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta))))/(R13*z - xrsw_S + R11*(x*cos(theta) - ... 
    y*sin(theta)) + R12*(y*cos(theta) + x*sin(theta)))^2)/((R23*z - ... 
    yrsw_S + R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta)))^2/(R13*z - xrsw_S + R11*(x*cos(theta) - ... 
    y*sin(theta)) + R12*(y*cos(theta) + x*sin(theta)))^2 + 1); 
 
%da/dy 
H(1,2) = ((R22*cos(theta) - R21*sin(theta))/(R13*z - xrsw_S + ... 
    R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta))) - ((R12*cos(theta) - R11*sin(theta))*(R23*z - ... 
    yrsw_S + R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta))))/(R13*z - xrsw_S + R11*(x*cos(theta) - ... 
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    y*sin(theta)) + R12*(y*cos(theta) + x*sin(theta)))^2)/((R23*z - ... 
    yrsw_S + R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta)))^2/(R13*z - xrsw_S + R11*(x*cos(theta) - ... 
    y*sin(theta)) + R12*(y*cos(theta) + x*sin(theta)))^2 + 1); 
 
%da/dz 
H(1,3) = (R23/(R13*z - xrsw_S + R11*(x*cos(theta) - y*sin(theta)) + ... 
    R12*(y*cos(theta) + x*sin(theta))) - (R13*(R23*z - yrsw_S + ... 
    R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta))))/(R13*z - xrsw_S + R11*(x*cos(theta) - ... 
    y*sin(theta)) + R12*(y*cos(theta) + x*sin(theta)))^2)/((R23*z - ... 
    yrsw_S + R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta)))^2/(R13*z - xrsw_S + R11*(x*cos(theta) - ... 
    y*sin(theta)) + R12*(y*cos(theta) + x*sin(theta)))^2 + 1); 
 
%db/dx 
H(2,1) = ((R31*cos(theta) + R32*sin(theta))/((R13*z - xrsw_S + ... 
    R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta)))^2 + (R23*z - yrsw_S + R21*(x*cos(theta) - ... 
    y*sin(theta)) + R22*(y*cos(theta) + x*sin(theta)))^2)^(1/2) - ... 
    ((2*(R11*cos(theta) + R12*sin(theta))*(R13*z - xrsw_S + ... 
    R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta))) + 2*(R21*cos(theta) + R22*sin(theta))*(R23*z - ... 
    yrsw_S + R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta))))*(R33*z - zrsw_S + R31*(x*cos(theta) - ... 
    y*sin(theta)) + R32*(y*cos(theta) + x*sin(theta))))/(2*((R13*z - ... 
    xrsw_S + R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta)))^2 + (R23*z - yrsw_S + R21*(x*cos(theta) - ... 
    y*sin(theta)) + R22*(y*cos(theta) + x*sin(theta)))^2)^(3/2)))/... 
    ((R33*z - zrsw_S + R31*(x*cos(theta) - y*sin(theta)) + ... 
    R32*(y*cos(theta) + x*sin(theta)))^2/((R13*z - xrsw_S + ... 
    R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta)))^2 + (R23*z - yrsw_S + R21*(x*cos(theta) - ... 
    y*sin(theta)) + R22*(y*cos(theta) + x*sin(theta)))^2) + 1); 
 
%db/dy 
H(2,2) = ((R32*cos(theta) - R31*sin(theta))/((R13*z - xrsw_S + ... 
    R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta)))^2 + (R23*z - yrsw_S + R21*(x*cos(theta) - ... 
    y*sin(theta)) + R22*(y*cos(theta) + x*sin(theta)))^2)^(1/2) - ... 
    ((2*(R12*cos(theta) - R11*sin(theta))*(R13*z - xrsw_S + ... 
    R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta))) + 2*(R22*cos(theta) - R21*sin(theta))*(R23*z - ... 
    yrsw_S + R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta))))*(R33*z - zrsw_S + R31*(x*cos(theta) - ... 
    y*sin(theta)) + R32*(y*cos(theta) + x*sin(theta))))/(2*((R13*z - ... 
    xrsw_S + R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta)))^2 + (R23*z - yrsw_S + R21*(x*cos(theta) - ... 
    y*sin(theta)) + R22*(y*cos(theta) + x*sin(theta)))^2)^(3/2)))/... 
    ((R33*z - zrsw_S + R31*(x*cos(theta) - y*sin(theta)) + ... 
    R32*(y*cos(theta) + x*sin(theta)))^2/((R13*z - xrsw_S + ... 
    R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta)))^2 + (R23*z - yrsw_S + R21*(x*cos(theta) - ... 
    y*sin(theta)) + R22*(y*cos(theta) + x*sin(theta)))^2) + 1); 
 
%db/dz 
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H(2,3) = (R33/((R13*z - xrsw_S + R11*(x*cos(theta) - y*sin(theta)) + ... 
    R12*(y*cos(theta) + x*sin(theta)))^2 + (R23*z - yrsw_S + ... 
    R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta)))^2)^(1/2) - ((2*R13*(R13*z - xrsw_S + ... 
    R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta))) + 2*R23*(R23*z - yrsw_S + R21*(x*cos(theta) - ... 
    y*sin(theta)) + R22*(y*cos(theta) + x*sin(theta))))*(R33*z - ... 
    zrsw_S + R31*(x*cos(theta) - y*sin(theta)) + R32*(y*cos(theta) + ... 
    x*sin(theta))))/(2*((R13*z - xrsw_S + R11*(x*cos(theta) - ... 
    y*sin(theta)) + R12*(y*cos(theta) + x*sin(theta)))^2 + (R23*z - ... 
    yrsw_S + R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta)))^2)^(3/2)))/((R33*z - zrsw_S + R31*(x*cos(theta) - ... 
    y*sin(theta)) + R32*(y*cos(theta) + x*sin(theta)))^2/((R13*z - ... 
    xrsw_S + R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta)))^2 + (R23*z - yrsw_S + R21*(x*cos(theta) - ... 
    y*sin(theta)) + R22*(y*cos(theta) + x*sin(theta)))^2) + 1); 
 
%dr/dx 
H(3,1) = (2*(R11*cos(theta) + R12*sin(theta))*(R13*z - xrsw_S + ... 
    R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta))) + 2*(R21*cos(theta) + R22*sin(theta))*(R23*z - ... 
    yrsw_S + R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta))) + 2*(R31*cos(theta) + R32*sin(theta))*(R33*z - ... 
    zrsw_S + R31*(x*cos(theta) - y*sin(theta)) + R32*(y*cos(theta) + ... 
    x*sin(theta))))/(2*((R13*z - xrsw_S + R11*(x*cos(theta) - ... 
    y*sin(theta)) + R12*(y*cos(theta) + x*sin(theta)))^2 + (R23*z - ... 
    yrsw_S + R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta)))^2 + (R33*z - zrsw_S + R31*(x*cos(theta) - ... 
    y*sin(theta)) + R32*(y*cos(theta) + x*sin(theta)))^2)^(1/2)); 
 
%dr/dy 
H(3,2) = (2*(R12*cos(theta) - R11*sin(theta))*(R13*z - xrsw_S + ... 
    R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta))) + 2*(R22*cos(theta) - R21*sin(theta))*(R23*z - ... 
    yrsw_S + R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta))) + 2*(R32*cos(theta) - R31*sin(theta))*(R33*z - ... 
    zrsw_S + R31*(x*cos(theta) - y*sin(theta)) + R32*(y*cos(theta) + ... 
    x*sin(theta))))/(2*((R13*z - xrsw_S + R11*(x*cos(theta) - ... 
    y*sin(theta)) + R12*(y*cos(theta) + x*sin(theta)))^2 + (R23*z - ... 
    yrsw_S + R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta)))^2 + (R33*z - zrsw_S + R31*(x*cos(theta) - ... 
    y*sin(theta)) + R32*(y*cos(theta) + x*sin(theta)))^2)^(1/2)); 
 
%dr/dz 
H(3,3) = (2*R13*(R13*z - xrsw_S + R11*(x*cos(theta) - y*sin(theta)) + ... 
    R12*(y*cos(theta) + x*sin(theta))) + 2*R23*(R23*z - yrsw_S + ... 
    R21*(x*cos(theta) - y*sin(theta)) + R22*(y*cos(theta) + ... 
    x*sin(theta))) + 2*R33*(R33*z - zrsw_S + R31*(x*cos(theta) - ... 
    y*sin(theta)) + R32*(y*cos(theta) + x*sin(theta))))/(2*((R13*z - ... 
    xrsw_S + R11*(x*cos(theta) - y*sin(theta)) + R12*(y*cos(theta) + ... 
    x*sin(theta)))^2 + (R23*z - yrsw_S + R21*(x*cos(theta) - ... 
    y*sin(theta)) + R22*(y*cos(theta) + x*sin(theta)))^2 + (R33*z - ... 
    zrsw_S + R31*(x*cos(theta) - y*sin(theta)) + R32*(y*cos(theta) + ... 
    x*sin(theta)))^2)^(1/2)); 
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E.11 Equations of Variation A Matrix 

%  [function]   Amatrix 
% 
%  [purpose]:   Calculates the Hamiltonian and its partials for 
%               constructing the A matrix. 
% 
%  [useage]:    [a_ECI,A,Ham] = Amatrix(r_ECEF,v_ECEF,utcmjd,method) 
% 
%  [inputs]:    r_ECEF = 3x1 array of cartesian coordinates in earth 
%                        centered rotating (ECEF) frame. Currently setup 
%                        to accept units of m. 
% 
%               v_ECEF = 3x1 array of cartesian velocities in earth 
%                        centered rotating (ECEF) frame. Currently setup 
%                        to accept units of m/sec. 
% 
%               utcmjd = UTC Modified Julian date (from GMAT) 
% 
%               method = '2body', 'direct' or 'numerical' 
% 
%  [outputs]:   A      = A matrix 
% 
%               Ham    = Hamiltonian 
% 
%               a_ECI  = 3x1 array of cartesian acceleration in earth 
%                        centered inertial (ECI) frame. m/sec^2. 
% 
%  [reference]:  
% 
%  [notes]:     gravity function is dictating units for r_ECEF & v_ECEF 
% 
%  Max Yates, February 12, 2017 
 
function [A,Ham,a_ECI] = Amatrix(r_ECEF,v_ECEF,utcmjd,method) 
  
global DU TU Omegae omegae geo_degree deltaJD 
  
mu = 3986004.415E+8; % [m^3/s^2] EGM96 
R = 6378136.3; % [m] EGM96 
  
JD = utcmjd + 2430000.0 + deltaJD; % Julian Date 
nm = geo_degree; 
x = r_ECEF(1,1); y = r_ECEF(2,1); z = r_ECEF(3,1); % [m] 
r = sqrt(x^2 + y^2 + z^2); % [m] 
 
a_ECI = NaN; % pre-assign (not output by all methods) 
Ham = NaN; 
  
%% First & Second Order Partial Derivatives of r, lambda (longitude), phi  
%% (geocentric latitude), and theta (colatitude) 
% dr/dx 
drdx = x/r; 
% d2r/dx2 
d2rdx2 = (y^2 + z^2)/(r^3); 
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% d2r/dxdy 
d2rdxdy = -x*y/(r^3); 
% d2r/dxdz 
d2rdxdz = -x*z/(r^3); 
% dr/dy 
drdy = y/r; 
% d2r/dy2 
d2rdy2 = (x^2 + z^2)/(r^3); 
% d2r/dydx 
d2rdydx = d2rdxdy; 
% d2r/dydz 
d2rdydz = -y*z/(r^3); 
% dr/dz 
drdz = z/r; 
% d2r/dz2 
d2rdz2 = (x^2 + y^2)/(r^3); 
% d2r/dzdx 
d2rdzdx = d2rdxdz; 
% d2r/dzdy 
d2rdzdy = d2rdydz; 
 
% dlambda/dx 
dldx = -y/(x^2 + y^2); 
% d2lambda/dx2 
d2ldx2 = 2*x*y/(x^2 + y^2)^2; 
% d2lambda/dxdy 
d2ldxdy = (y^2 - x^2)/(x^2 + y^2)^2; 
% d2lambda/dxdz 
d2ldxdz = 0; 
% dlambda/dy 
dldy = x/(x^2 + y^2); 
% d2lambda/dy2 
d2ldy2 = -2*x*y/(x^2 + y^2)^2; 
% d2lambda/dydx 
d2ldydx = d2ldxdy; 
% d2lambda/dydz 
d2ldydz = 0; 
% dlambda/dz 
dldz = 0; 
% d2lambda/dz2 
d2ldz2 = 0; 
% d2lambda/dzdx 
d2ldzdx = 0; 
% d2lambda/dzdy 
d2ldzdy = 0; 
 
% dphi/dx 
dfdx = -(x*z)/((r^3)*sqrt(1 - (z^2)/(r^2))); 
% d2phi/dx2 
d2fdx2 = (x^2)*(z^3)/((r^7)*(1 - (z^2)/(r^2))^(3/2)) + ... 
    (3*(x^2)*z)/((r^5)*sqrt(1 - (z^2)/(r^2))) - z/((r^3)*sqrt(1 - ...  
    (z^2)/(r^2))); 
% d2phi/dxdy 
d2fdxdy = x*y*(z^3)/((r^7)*(1 - (z^2)/(r^2))^(3/2)) + ... 
    3*x*y*z/((r^5)*sqrt(1 - (z^2)/(r^2))); 
% d2phi/dxdz 
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d2fdxdz = x*z*(2*(z^3)/(r^4) - 2*z/(r^2))/(2*(r^3)*(1 - ...  
    (z^2)/(r^2))^(3/2)) + 3*x*(z^2)/((r^5)*sqrt(1 - (z^2)/(r^2))) - ... 
    x/((r^3)*sqrt(1 - (z^2)/(r^2))); 
% dphi/dy 
dfdy = -(y*z)/((r^3)*sqrt(1 - (z^2)/(r^2))); 
% d2phi/dy2 
d2fdy2 = (y^2)*(z^3)/((r^7)*(1 - (z^2)/(r^2))^(3/2)) + ... 
    (3*(y^2)*z)/((r^5)*sqrt(1 - (z^2)/(r^2))) - z/((r^3)*sqrt(1 - ... 
    (z^2)/(r^2))); 
% d2phi/dydx 
d2fdydx = d2fdxdy; 
% d2phi/dydz 
d2fdydz = y*z*(2*(z^3)/(r^4) - 2*z/(r^2))/(2*(r^3)*(1 - ...  
    (z^2)/(r^2))^(3/2)) + 3*y*(z^2)/((r^5)*sqrt(1 - (z^2)/(r^2))) - ... 
    y/((r^3)*sqrt(1 - (z^2)/(r^2))); 
% dphi/dz 
dfdz = (1/r - (z^2)/(r^3))/sqrt(1 - (z^2)/(r^2)); 
% d2phi/dz2 
d2fdz2 = ((3*z^3)/(r^5) - (3*z)/(r^3))/sqrt(1 - (z^2)/(r^2)) - ... 
    (((2*z^3)/(r^4) - (2*z)/(r^2))*(1/r - (z^2)/(r^3)))/(2*(1 - ...  
    (z^2)/(r^2))^(3/2)); 
  
% dtheta/dx 
dtdx = (x*z)/(sqrt(1 - (z^2)/(r^2))*(r^3)); 
% dtheta/dy 
dtdy = (y*z)/(sqrt(1 - (z^2)/(r^2))*(r^3)); 
% dtheta/dz 
dtdz = -(1/r - (z^2)/(r^3))/sqrt(1 - (z^2)/(r^2)); 
  
if strcmp(method,'2body') 
    H_px_x = 0; 
    H_px_y = Omegae; 
    H_px_z = 0; 
    H_px_px = 1; 
    H_px_py = 0; 
    H_px_pz = 0; 
    H_py_x = -Omegae; 
    H_py_y = 0; 
    H_py_z = 0; 
    H_py_px = 0; 
    H_py_py = 1; 
    H_py_pz = 0; 
    H_pz_x = 0; 
    H_pz_y = 0; 
    H_pz_z = 0; 
    H_pz_px = 0; 
    H_pz_py = 0; 
    H_pz_pz = 1; 
    H_x_x = mu/(x^2 + y^2 + z^2)^(3/2) - (3*mu*x^2)/(x^2 + y^2 + z^2)^(5/2); 
    H_x_y = -(3*mu*x*y)/(x^2 + y^2 + z^2)^(5/2); 
    H_x_z = -(3*mu*x*z)/(x^2 + y^2 + z^2)^(5/2); 
    H_x_px = 0; 
    H_x_py = -Omegae; 
    H_x_pz = 0; 
    H_y_x = -(3*mu*x*y)/(x^2 + y^2 + z^2)^(5/2); 
    H_y_y = mu/(x^2 + y^2 + z^2)^(3/2) - (3*mu*y^2)/(x^2 + y^2 + z^2)^(5/2); 
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    H_y_z = -(3*mu*y*z)/(x^2 + y^2 + z^2)^(5/2); 
    H_y_px = Omegae; 
    H_y_py = 0; 
    H_y_pz = 0; 
    H_z_x = -(3*mu*x*z)/(x^2 + y^2 + z^2)^(5/2); 
    H_z_y = -(3*mu*y*z)/(x^2 + y^2 + z^2)^(5/2); 
    H_z_z = mu/(x^2 + y^2 + z^2)^(3/2) - (3*mu*z^2)/(x^2 + y^2 + z^2)^(5/2); 
    H_z_px = 0; 
    H_z_py = 0; 
    H_z_pz = 0; 
     
    A = [H_px_x, H_px_y, H_px_z, H_px_px, H_px_py, H_px_pz; 
         H_py_x, H_py_y, H_py_z, H_py_px, H_py_py, H_py_pz; 
         H_pz_x, H_pz_y, H_pz_z, H_pz_px, H_pz_py, H_pz_pz; 
         -H_x_x, -H_x_y, -H_x_z, -H_x_px, -H_x_py, -H_x_pz; 
         -H_y_x, -H_y_y, -H_y_z, -H_y_px, -H_y_py, -H_y_pz; 
         -H_z_x, -H_z_y, -H_z_z, -H_z_px, -H_z_py, -H_z_pz]; 
end 
  
if strcmp(method,'direct') 
    %% GrafLab 
    % Latitudes must be entered within the interval <-90°,90°> and longitudes 
    % in the range <0°,360°> or <-180°,180°> 
    lat = asin(z/sqrt(x^2 + y^2 + z^2))*180/pi; % geocentric latitude [deg] 
    lon = atan2(y,x)*180/pi; % [deg] 
    [P]=GrafLab('OK',mu,R,0,geo_degree,2,'EGM96.mat',1,2,[],[],[],[],[], ...  
        [],[],[],lat,lon,r,'my_output',0,[11;12;13;16],1,[],0,0,0,[],[], ...  
        [],[],[],0); 
     
    %% Gravitational Second-Order Partials in Spherical Coordinates 
    V1 = P(1); % gravitational potential 
    V_rr = P(2)*1e-9; 
    V_ff = P(3)*1e-9; 
    V_ll = P(4)*1e-9; 
    V_rf = P(5)*1e-9; V_fr = V_rf; 
    V_rl = P(6)*1e-9; V_lr = V_rl; 
    V_fl = P(7)*1e-9; V_lf = V_fl; 
     
    % Tensor corrections. See page 2 in Bucha's functional definitions  
    % document. 
    V_rf = r*V_rf; V_fr = V_rf; 
    V_rl = r*cosd(lat)*V_rl; V_lr = V_rl; 
    V_ff = r*r*V_ff; 
    V_fl = r*r*cosd(lat)*V_fl; V_lf = V_fl; 
    V_ll = r*r*cosd(lat)*cosd(lat)*V_ll; 
     
    %% Gravity Gradients 
    % Gravity vector in the local north-oriented reference frame 
    gx = P(8); 
    gy = P(9); 
    gz = P(10); 
     
    % Corrections see page 6 in Bucha's functional definitions document. 
    dVcdr = (Omegae^2)*r*(cosd(lat)^2)*1e5; 
    dVcdf = -(Omegae^2)*(r^2)*cosd(lat)*sind(lat)*1e5; 
    dVcdl = 0; 
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    vr = (gz - dVcdr)*1e-5; 
    vl = (gy*(-r*cosd(lat)) - dVcdl)*1e-5; 
    vf = (gx*r - dVcdf)*1e-5; 
     
    %% Calculate Gravitational Second-Order Partials in Cartesian Coordinates  
    %% with Multivariable Calculus 
    d2Vdxdx = V_rr*(drdx^2) + V_ll*(dldx^2) + V_ff*(dfdx^2) + ... 
        2*V_rl*dldx*drdx + 2*V_rf*dfdx*drdx + 2*V_fl*dfdx*dldx + ... 
        vr*d2rdx2 + vl*d2ldx2 + vf*d2fdx2; 
    d2Vdydy = V_rr*(drdy^2) + V_ll*(dldy^2) + V_ff*(dfdy^2) + ... 
        2*V_rl*dldy*drdy + 2*V_rf*dfdy*drdy + 2*V_fl*dfdy*dldy + ... 
        vr*d2rdy2 + vl*d2ldy2 + vf*d2fdy2; 
    d2Vdzdz = V_rr*(drdz^2) + V_ll*(dldz^2) + V_ff*(dfdz^2) + ... 
        2*V_rl*dldz*drdz + 2*V_rf*dfdz*drdz + 2*V_fl*dfdz*dldz + ... 
        vr*d2rdz2 + vl*d2ldz2 + vf*d2fdz2; 
    d2Vdxdy = V_rr*drdx*drdy + V_lr*dldx*drdy + V_fr*dfdx*drdy + ... 
        V_rl*drdx*dldy + V_ll*dldx*dldy + V_fl*dfdx*dldy + ... 
        V_rf*drdx*dfdy + V_lf*dldx*dfdy + V_ff*dfdx*dfdy + ... 
        vr*d2rdxdy + vl*d2ldxdy + vf*d2fdxdy; 
    d2Vdydx = d2Vdxdy; 
    d2Vdxdz = V_rr*drdx*drdz + V_lr*dldx*drdz + V_fr*dfdx*drdz + ... 
        V_rl*drdx*dldz + V_ll*dldx*dldz + V_fl*dfdx*dldz + ... 
        V_rf*drdx*dfdz + V_lf*dldx*dfdz + V_ff*dfdx*dfdz + ... 
        vr*d2rdxdz + vl*d2ldxdz + vf*d2fdxdz; 
    d2Vdzdx = d2Vdxdz; 
    d2Vdydz = V_rr*drdy*drdz + V_lr*dldy*drdz + V_fr*dfdy*drdz + ... 
        V_rl*drdy*dldz + V_ll*dldy*dldz + V_fl*dfdy*dldz + ... 
        V_rf*drdy*dfdz + V_lf*dldy*dfdz + V_ff*dfdy*dfdz + ... 
        vr*d2rdydz + vl*d2ldydz + vf*d2fdydz; 
    d2Vdzdy = d2Vdydz; 
     
    d2HdX2 = [-d2Vdxdx, -d2Vdxdy, -d2Vdxdz,      0, -Omegae, 0; 
              -d2Vdydx, -d2Vdydy, -d2Vdydz, Omegae,       0, 0; 
              -d2Vdzdx, -d2Vdzdy, -d2Vdzdz,      0,       0, 0; 
                     0,   Omegae,        0,      1,       0, 0; 
               -Omegae,        0,        0,      0,       1, 0; 
                     0,        0,        0,      0,       0, 1]; 
    % Symplectic group matrix 
    Z = [zeros(3,3),     eye(3); 
            -eye(3), zeros(3,3)]; 
     
    A = Z*d2HdX2; 
     
    % Check conservation of the Hamiltonian in canonical units 
    x = r_ECEF(1,1)/1000/DU; % [DU] 
    y = r_ECEF(2,1)/1000/DU; % [DU] 
    z = r_ECEF(3,1)/1000/DU; % [DU] 
    vx = v_ECEF(1,1)/1000/DU*60*TU; % [DU/TU] 
    vy = v_ECEF(2,1)/1000/DU*60*TU; % [DU/TU] 
    vz = v_ECEF(3,1)/1000/DU*60*TU; % [DU/TU] 
    % Momenta 
    px = vx-y*omegae; 
    py = vy+x*omegae; 
    pz = vz; 
    % Hamiltonian 
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    Ham = 0.5*(px*px+py*py+pz*pz) + omegae*(y*px-x*py) - ... 
        V1/(3986004.415E+8/6378136.3); 
end 
  
if strcmp(method,'numerical')  
    %% Calculate Gravity Gradients 
    [a_ECI,Vgrav,vl,vt,vr,a_ECEF] = gravity([r_ECEF;v_ECEF],nm,JD); 
  
    % Multivariable Chain Rule 
    dVdx = vr*drdx + vl*dldx + vt*dtdx; 
    dVdy = vr*drdy + vl*dldy + vt*dtdy; 
    dVdz = vr*drdz + vl*dldz + vt*dtdz; 
  
    %% Numerically calculate gravitational second-order partial derivatives  
    %% in Cartesian coordinates 
    % Perturb x by dx 
    dx = 0.00001*DU*1000; % [m] 
    X = [r_ECEF;v_ECEF]+[dx;0;0;0;0;0]; 
    [a_ECI2,Vgrav2,vl2,vt2,vr2,a_ECEF2] = gravity(X,nm,JD); 
    r = sqrt(X(1,1)^2 + X(2,1)^2 + X(3,1)^2); 
    % dr/dx 
    drdx_pert = X(1,1)/r; 
    % dr/dy 
    drdy_pert = X(2,1)/r; 
    % dr/dz 
    drdz_pert = X(3,1)/r; 
    % dlambda/dx 
    dldx_pert = -X(2,1)/(X(1,1)^2 + X(2,1)^2); 
    % dlambda/dy 
    dldy_pert = X(1,1)/(X(1,1)^2 + X(2,1)^2); 
    % dlambda/dz 
    dldz_pert = 0; 
    % dtheta/dx 
    dtdx_pert = (X(1,1)*X(3,1))/(sqrt(1 - (X(3,1)^2)/(r^2))*(r^3)); 
    % dtheta/dy 
    dtdy_pert = (X(2,1)*X(3,1))/(sqrt(1 - (X(3,1)^2)/(r^2))*(r^3)); 
    % dtheta/dz 
    dtdz_pert = -(1/r - (X(3,1)^2)/(r^3))/sqrt(1 - (X(3,1)^2)/(r^2)); 
    % Multivariable Chain Rule 
    dVdx2 = vr2*drdx_pert + vl2*dldx_pert + vt2*dtdx_pert; 
    dVdy2 = vr2*drdy_pert + vl2*dldy_pert + vt2*dtdy_pert; 
    dVdz2 = vr2*drdz_pert + vl2*dldz_pert + vt2*dtdz_pert; 
 
    d2Vdxdx_num = (dVdx2-dVdx)/dx; 
    d2Vdydx_num = (dVdy2-dVdy)/dx; 
    d2Vdzdx_num = (dVdz2-dVdz)/dx; 
  
    % Perturb y by dy 
    dy = 0.00001*DU*1000; % [m] 
    X = [r_ECEF;v_ECEF]+[0;dy;0;0;0;0]; 
    [a_ECI2,Vgrav2,vl2,vt2,vr2,a_ECEF2] = gravity(X,nm,JD); 
    r = sqrt(X(1,1)^2 + X(2,1)^2 + X(3,1)^2); 
    % dr/dx 
    drdx_pert = X(1,1)/r; 
    % dr/dy 
    drdy_pert = X(2,1)/r; 
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    % dr/dz 
    drdz_pert = X(3,1)/r; 
    % dlambda/dx 
    dldx_pert = -X(2,1)/(X(1,1)^2 + X(2,1)^2); 
    % dlambda/dy 
    dldy_pert = X(1,1)/(X(1,1)^2 + X(2,1)^2); 
    % dlambda/dz 
    dldz_pert = 0; 
    % dtheta/dx 
    dtdx_pert = (X(1,1)*X(3,1))/(sqrt(1 - (X(3,1)^2)/(r^2))*(r^3)); 
    % dtheta/dy 
    dtdy_pert = (X(2,1)*X(3,1))/(sqrt(1 - (X(3,1)^2)/(r^2))*(r^3)); 
    % dtheta/dz 
    dtdz_pert = -(1/r - (X(3,1)^2)/(r^3))/sqrt(1 - (X(3,1)^2)/(r^2)); 
    % Multivariable Chain Rule 
    dVdx2 = vr2*drdx_pert + vl2*dldx_pert + vt2*dtdx_pert; 
    dVdy2 = vr2*drdy_pert + vl2*dldy_pert + vt2*dtdy_pert; 
    dVdz2 = vr2*drdz_pert + vl2*dldz_pert + vt2*dtdz_pert; 
 
    d2Vdxdy_num = (dVdx2-dVdx)/dy; 
    d2Vdydy_num = (dVdy2-dVdy)/dy; 
    d2Vdzdy_num = (dVdz2-dVdz)/dy; 
  
    % Perturb z by dz 
    dz = 0.00001*DU*1000; % [m] 
    X = [r_ECEF;v_ECEF]+[0;0;dz;0;0;0]; 
    [a_ECI2,Vgrav2,vl2,vt2,vr2,a_ECEF2] = gravity(X,nm,JD); 
    r = sqrt(X(1,1)^2 + X(2,1)^2 + X(3,1)^2); 
    % dr/dx 
    drdx_pert = X(1,1)/r; 
    % dr/dy 
    drdy_pert = X(2,1)/r; 
    % dr/dz 
    drdz_pert = X(3,1)/r; 
    % dlambda/dx 
    dldx_pert = -X(2,1)/(X(1,1)^2 + X(2,1)^2); 
    % dlambda/dy 
    dldy_pert = X(1,1)/(X(1,1)^2 + X(2,1)^2); 
    % dlambda/dz 
    dldz_pert = 0; 
    % dtheta/dx 
    dtdx_pert = (X(1,1)*X(3,1))/(sqrt(1 - (X(3,1)^2)/(r^2))*(r^3)); 
    % dtheta/dy 
    dtdy_pert = (X(2,1)*X(3,1))/(sqrt(1 - (X(3,1)^2)/(r^2))*(r^3)); 
    % dtheta/dz 
    dtdz_pert = -(1/r - (X(3,1)^2)/(r^3))/sqrt(1 - (X(3,1)^2)/(r^2)); 
    % Multivariable Chain Rule 
    dVdx2 = vr2*drdx_pert + vl2*dldx_pert + vt2*dtdx_pert; 
    dVdy2 = vr2*drdy_pert + vl2*dldy_pert + vt2*dtdy_pert; 
    dVdz2 = vr2*drdz_pert + vl2*dldz_pert + vt2*dtdz_pert; 
 
    d2Vdxdz_num = (dVdx2-dVdx)/dz; 
    d2Vdydz_num = (dVdy2-dVdy)/dz; 
    d2Vdzdz_num = (dVdz2-dVdz)/dz; 
  
    d2HdX2_num = [-d2Vdxdx_num, -d2Vdxdy_num, -d2Vdxdz_num,     0,-Omegae, 0; 
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                  -d2Vdydx_num, -d2Vdydy_num, -d2Vdydz_num,Omegae,      0, 0; 
                  -d2Vdzdx_num, -d2Vdzdy_num, -d2Vdzdz_num,     0,      0, 0; 
                             0,       Omegae,            0,     1,      0, 0; 
                       -Omegae,            0,            0,     0,      1, 0; 
                             0,            0,            0,     0,      0, 1]; 
    % Symplectic group matrix 
    Z = [zeros(3,3),     eye(3); 
            -eye(3), zeros(3,3)]; 
  
    A = Z*d2HdX2_num; 
     
    % Check conservation of the Hamiltonian in canonical units 
    x = r_ECEF(1,1)/1000/DU; % [DU] 
    y = r_ECEF(2,1)/1000/DU; % [DU] 
    z = r_ECEF(3,1)/1000/DU; % [DU] 
    vx = v_ECEF(1,1)/1000/DU*60*TU; % [DU/TU] 
    vy = v_ECEF(2,1)/1000/DU*60*TU; % [DU/TU] 
    vz = v_ECEF(3,1)/1000/DU*60*TU; % [DU/TU] 
    % Momenta 
    px = vx-y*omegae; 
    py = vy+x*omegae; 
    pz = vz; 
    % Hamiltonian 
    Ham = 0.5*(px*px+py*py+pz*pz) + omegae*(y*px-x*py) - ... 
        Vgrav/(3986004.415E+8/6378136.3); 
end 
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