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DRAG REDUCTION BY POLYMER SOLUTIONS IN RIBLET PIPES

by
EDDIEKOURY

Submitted to the Department of Chemical Engineering on May 24, 1995 in partial
{ulfiilment of the requirements for the Degree of Doctor of Philosophy in Chemical
Engineering

ABSTRACT

Flows of dilute polymer solutions were investigated in four longitudinally grooved pipes,
fabricated from combinations of 10.21 and 7.82 mm ID smooth pipes and geometrically
similar V-groove vinyl riblets of nominal heights 0.15 and 0.11 mm (3M Co.). Five
homologous polyethyleneoxides, of molecular weights, My, from 0.16 to 7.9 x 10% and
two homologous polyacrylamides, My = 2.9 and 7.4 x 10% were used, at concentrations ¢
from 1 to 5000 wppm, to investigate drag reduction in the riblet pipes. Diametral Reynolds
numbers were varied from 300 to 150000. Measurements in each riblet pipe were
accompanied by simultaneous measurements in a smooth pipe of the same nominal
diameter placed in tandem. The chosen conditions provided turbulent drag reductions from
zero to the asymptotic maximum possible.

In the smooth pipes, the polymer solutions followed established patterns of Type A drag

reduction, namely:

(i} An onset of drag reduction at a wall shear stress that was approximately inversely
proportional to the square of the polymer radius of gyration but independent of
polymer concentration and pipe diameter.

(ii) A polymeric regime "fan", in which the extent of drag reduction increased linearly on
Prandtl-Karman (P-K) coordinates, the slope for a polymer solution exceeding that of

the solvent by an amount d (slope increment) that was approximately proportional to
the square root of polymer concentration and independent of pipe diameter; further,

within a homologous series of polymers, the specific slope increment, 8¢, increased
- linearly with My,.
(i) An asymptotic maximum drag reduction that was independent of polymer
concentration, polymer molecular weight, polymer skeletal structure and pipe
diameter.

In the riblet pipes, the onset of polymer-induced drag reduction occurred at the same wall
shear stress as observed in the tandem smooth pipes. In the polymeric regime, following
onset, the polymer solutions initially exhibited linear segments on P-K coordinates, akin to
those seen in the smooth pipes. The maximum drag reduction observed in the riblet pipes
was independent of polymeric properties but depended on the ratio of pipe radius to riblet

height, d/2h. Under conditions of maximum drag reduction, 1/Vf in the riblet pipes
typically followed the smooth pipe friction factors up to Revf =~ 1000, then diverged
upwards, in most cases, for a short range of ReVf, before decreasing, and becoming
appreciably lower than smooth at the highest Revf.



Flow in the riblet pipes relative to the tandem smooth pipes was characterized by a riblet-

induced flow enhancement, R' = [1Vfriplet - 1/Vfsmoothlrest, fluia- Solvent flows

exhibited three regimes, namely:

(i) Hydraulically smooth. The riblets induced no drag reduction for nondimensional riblet
heights h* = ugh/v < 5.

(ii) Riblet drag reduction. It was observed that R’ > 0 for 5 <h* < 22, the maximum R' =
0.5 occurring at h* = 15,

(iii) Riblet drag enhancement. It was found that R’ < 0 for 22 < ht < 110, with R” — -2.2

for h* > 70.

Polymer solution flows in the riblet pipes also exhibited all three of the regimes noted
above, with the following differences:

(i) The hydraulically smooth regime extended to h* = 10 at maximum drag reduction.
(i) In the riblet drag reduction regime, R' was a function of both h* and the polymer-
induced flow enhancement, S' = [1Vfpo1ymer - Vfsolventlred, pipe: At low S/,

the upper limit of the regime lay at higher h* than in solvent, which at high h™ the
opposite was true; also, the maximum R' in polymer solutions was generally higher
than in solvent.

(iii) Riblet drag enhancement was observed in all polymer solutions at high h*, the more so
as S' increased; the greatest drag enhancement in polymer solutions, R’ = -8+1 at h* =
50 and S’ = 20, considerably exceeded that in solvent.

A serrated sublayer model was proposed to decouple the drag reduction inherently induced
by the riblets from the drag enhancement caused by their increased wetted surface area. In
this model, the hydraulic diameter of the riblet pipes was derived from the shape of the
viscous sub-layer as a function of h*. Application of the model to solvent flow suggested

that the inherent riblet-induced drag reduction extended from 5 < h* < 65, over a
considerably wider range than the physically observed regime of riblet drag reduction, 5 <

h* < 22: also, the maximum inherent R' = 1.5 was thrice the observed maximum, R' =
0.5. Application of the model at conditions of maximum polymer-induced drag reduction
suggested a thickening of the viscous sublayer to about twice its Newtonian value. Such
thickening has previously been observed in rough pipes operating at maximum drag
reduction.

Three-dimensional representations of riblet- and polymer-induced drag reductions versus

turbulent flow parameters revealed a hitherto unknown “dome” region, 8<h* <31,0< S’
< 13,0 <R’ < 1.5, containing a broad maximum. The existence of a dome was physically
interpreted to suggest that riblets and polymers reduce drag by separate mechanisms. In
terms of the turbulent burst cycle comprising (1) lift-up of sublayer streaks, (2) vortex
growth, and (3) vortex breakdown, with axial to transverse energy transfer, it was
suggested that the riblets primarily interfere with stage (2) while the polymer solutions
retard axial to transverse energy transfer in stage (3).
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Chapter 1 - Introduction

Chapter 1
Introduction

This chapter sets forth the motivation behind and the objectives of this thesis. In
particular, the literature for drag reduction by polymer solutions and by riblets is detailed,
followed by a review of the pertineni studies of polymer drag reduction over wall modified

surfaces, and ending with a recapitulation of relevant macromolecular characterization.

1.1 Motivation and Objectives

Turbulent drag reduction remains a topic of turbulence research, on account of the
economic benefits to be deiived from the reduction of frictional resistance, and also for the
insights it provides into the nature of turbulence. Drag reduction can be achieved either by
additives, which alter fluid compositicn and thence its flow, or by passive devices which
directly affect the flow, without altering the fluid. Details and applications of these devices

may be sought cut in Bushnell and Hefner (1990).

The primary aim of this thesis is to investigate the interaction between two
established drag reducing devices, namely, dilute pntymer solutions and small streamwise-
aligned grooves called riblets. It is hoped that this stucy wouid yield insight into the
behavior of each device separately and, even more ambitious, into the features of

turbulence th:at are affected to produce drag reduction.

Chapter 2 reviews the pertinent drag reduction literature; Chapters 3 and 4
respectively detail the experimenial equipment and procedures necessary to carry out the

thesis objectives. Chapter 5 presents the experimental results and in Chapter 6, these results
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are analyzed, correlated, compared with the literature, and, wherever possible, physically

interpreted.

1.2 Turbulent Flow Drag Reduction: Literature Review
1.2.1 Gross Flow

1.2.1.1 Definitions

Skin friction in internal and external flows is characterized by surface stresses (Tty,)
at a corresponding average flow velocity (Ug,). In dimensionless form, these parameters
are represented by a skin-friction coefficient (f) and a Reynolds number (Re) defined, in the

most general terms, by:

f= 20y and Re = -4

(1.2-1)
pUZ,

where | is a characteristic geometric length. For example, in external flows over a flat plate,
1 is typically the length of the plate, L, and for internal pipe flows it corresponds to the
diameter, d. of the pipe. In turbulent channel and pipe flows, it is often convenient to
represent these quantities in terms of turbulent scales, such as the friction velocity, uy =

(-cw/p)” 2, which is the basis for the Prandtl-Karman (PK) coordinate system:

= Us - Y2 du, :
Je=p  ad  Ref=2 (1.2-2)

Physically, the abscissa, ReVf, a turbulence Reynolds number, is a ratio of the

largest to smallest turbulent eddy sizes; while the ordinate, 1M1, is a ratio of the bulk to

turbulent velocities.
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Based on the preceding, drag reduction may be quantified either as a {ractional (or

percentage) change in the skin-friction coefficient at a given Reynolds number:

DR=(1 - L (1.2-3a)
f0 Re
%DR =100(1 - L)
fo/re (1.2-3b)
or as a flow enhancement parameter or ‘slip’, S’, at a given ReVT:
S' = (l L )R
VI Vo Jrevs (1.2-4)

Eq. (1.2-3) is often used in the literature, particularly for passive drag reducing devices
such as riblets, but Eq. (1.2-4) has the advantage that it is directly proportional to shifts in
the velocity profile. Becanse %DR and S' are measured with different variables held
constant, they may be coupled only if the reference friction factor, fg, is known for all Re

or Revf.

1.2.1.2 Dilute Polymer Solutions

Early work by Toms (1948) and Mysels (1949) revealed the profound effect
additives have on turbulent Newtonian flow. Toms, while investigating the mechanical
degradation of polymethylmethacrylate in monochlorobenzene, noted that the polymer
offered reduced resistance to flow at a given pressure drop relative to the solvent alone.
Mysels evaluated the enhanced flow of gasoline thickened with an aluminum di-soap
(Napalm) during World War II and noted a reduction in turbulent drag in this solution. The
gross flow of dilute polymer solutions has been subsequently well documented in several
reviews (Lumley,1969; Virk,1975a; White and Hemmings,1976; Berman,1978; Sellin et
al.,1982; Virk,1985; Giesekus & Hibberd,1989).
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Virk (1975a) defined the flow of dilute solutions of random coiling molecules and
collapsed electrolytes (Type A) as being asymptotically bounded by theoretical laws and

empirical relationships:

(i) Laminar Flow (abbr. L): For Re < 2000, the flow of dilute polymer solutions obey

Poiseuille’s Law:
IVf =Revf /16 (1.2-5)

(ii) Newtonian Regime (N): A regime of no drag reduction, the friction factors for polymer
solutions are identical to those for solvent flow, which, for hydraulically smooth pipes,

is:
IWVI = 4.0 logjo(ReVf) - 0.4 (1.2-6)

(iii) Polymeric Regime (P): The onset of drag reduction occurs ata characteristic wall shear

stress, Tw", that depends on the molecular weight of the polymer but is essentially

independent of concentration. After onset, the extent of drag reduction increases as the

flow rate, polymer molecular weight and solution concentration increases:

IVf = 4.0 logo(ReVe) - 0.4 + 8 log)o(Revi/Pevi*) (1.2-7)

where d log;o(ReV{/ReVf*) is equal to the slip, §' = (711?" V‘f_) " The term, 9, is a
p n/Revl

siope increment and * refers to the condition at the onset of drag reduction. The

subscripts p and n refer to polymer solution and Newtonian solvent, respectively.

(iv) Maximum Drag Reduction (M): There is an apparent upper limit to drag reduction.

This polymer independent asymptote is correlated by:

IVF = 19 logg(Revl) - 324 (1.2-8)
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Figure 1.2.1 shows the experimental results used by Virk (1975a) in formulating
the above description. Figure 1.2.1a depicts some aspects of the polymeric regime, namely:
(i) that ReVf at onset increases as the polymer molecular weight decreases, and (ii) as the
molecular weight decreases, higher concentrations are required to achieve the same slope
increments. Figure 1.2.1b depicts typical gross flow trajectories that exhibit maximum drag
reduction. For example, the flow of 450 wppm PEO solution, My = 6.1 x 106, in a 32.1
mm i.d. pipe exhibits three segments in turbulent flow, namely: (i) Newtonian, 250 < ReVf
< 380, wherein the daa obey the Prandtl-Karman law (Eq. 1.2-6); (ii) Polymeric, 380 <
ReV < 900; a well defined onset of drag reduction occurs at Revf* =~ 380, beyond which
the polymer solution data diverge upwards from solvent. The segment is approximately
linear from onset to ReVf = 900, with slope exceeding that of the solvent line (Eq. 1.2-6)
by an amount & = 37, (iii) Maximum Drag Reduction, ReVf > 900, wherein the data obey
Eq. (1.2-8). Figure 1.2.1c depicts the data of several investigators that approximately
follow the maximum drag reduction asymptote. The asymptote is independent of polymer

type, molecular weight, concentration and pipe diameter.

Onset. Virk (1975a) inferred that the onset of drag reduction results from a change
in the conformational state of the polymer molecules in solution, namely from a collapsed
to an extended state. It is not known if, during drag reduction, the polymer molecules are
partially or fully extended. The extension of a polymer molecule in a turbulent flow field
must result from the interaction between some characteristic scale of the flow and the
polymer molecule, so as to overcome the resistance inherent in altering the equilibrium
collapsed state of the polymer molecule. Walsh (1967) examined onset quantitatively by an
energy balance between turbulent fluctuations and the stored internal energy of a polymer
molecule. The stored energy of a polymer molecule is proportional to Mimin/RT, assuming
polymer molecules behave as Hookean springs. The total stored energy per unit volume is

thus the product of the stored energy per molecule and the number of molecules per unit
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volume, ci|. The turbulent kinetic energy per unit volume is scaled by Ty. Equating the

energies:

wifMe o

RT (1.2-9)

This model, however, predicts a strong concentration dependence for onset not noted
experimentally in the literature. Virk and Merrill (1969) proposed a scale of interaction

based upon length. The characteristic macromolecular length scale was chosen to be the

radius of gyration, Ry, while the turbulence length scales as V. The ratio of the

macromolecular to turbulence length scales are assumed to be constant such that:
2 L
RGTW -CL (1.2‘10&)

or RGW = Q (1.2-10b)

where W* is an onset wavenumber, uy*/vs. Fabula et al. (1966) and Lumley (1969) noted
that the microscale of turbulence at onset is several orders of magnitude larger than R,.
They suggested a relation between the shear rate of the flow, T,/m, and the relaxation time
of a polymer molecule, 0.42MInm¢/RT, described by the theory of Reuse (1953) and

Zimm (1956). Moreover, the ratio of the time scales should be ~1, hence:

t:vhlrlsM -~
WRT =Cr (1.2-11)

where Cp ~ 2.4 based on theory. The relaxation time is linked to the product of the
polymer molecuiar weight, M, and the solution intrinsic viscosity, Inl, which is the classical
volumie per unit macromolecule, and thus directly proportional to Rg3 . Consequently, this

hypothesis predicts:

WwRI=Qr (1.2-12)
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Experimental evidence on the variation of t,, with Rg (Virk, 1975a) for solutions of
polyethylene oxide in water, polyacrylamide in water, partially hydrolyzed pol:" ..ylamide
in 0.1m NaCl and polyisobutylene in various solvents do not provide conclusive proof of

either a length or time scale hypothesis.

Slope Increment (8): After the onset of drag reduction, the variation of IVf
with ReVf is approximately linear in Prandtl-Karman coordinates up to the MDR
asymptote. The difference between the slope of this line and the slope of the Newtonian
regime is defined as the slope increment, 8. The value of d is approximately proportional to
the square root of the solution concentration, c, and the molecular weight, M. This led to
the definition of an intrinsic slope increment, I, that is uniquely linked to the number of

backbone chain links, N = M/mg:

r1=(d1\fl‘>)u2 (1.2-13)
and:
I = xN*? (1.2-14)

The quantity x is defined as a slope modulus and has values from 70 x 10 for carbon-

carbon backbones to 1500 x 10-6 for cellulosic backbones.

Virk (1975b) defined a second type of drag reduction (type B) related to the
behavior of extended polyelectrolytes, for which 1/Vf follow a trajectory that is nearly
parallel to the Prandtl-Karman law (Virk and Wagger, 1989 - Figure 1.2.2). The flow of
extended macromolecules does not exhibit an onset as in type A drag reduction but,
instead, a typical gross flow trajectory commences on MDR then deviates into the
polymeric regime after a "retro-onset". Type B drag reduction is also exhibited by fibers of
asbestos (Sharma et al., 1978) and nylon (Vaseleski and Metzner, 1974) though much

larger concentrations are required than polymer solutions to effect the same drag reduction.
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Kane (1990) summarized :hat flexibility and low aspect ratios are necessary to produce

significant drag reduction in dilute fiber suspensions.

1.2.1.3 Riblets

Riblets are small, longitudinally, grooved surfaces that alter the turbulence structure
near the wall resulting in a sraall but significant drag reduction (4-9%) over a range of non-
dimensional riblet height, typically h* < 22. The historical development of riblets stems
from several independent fluid dynamic observations. In a German patent, Kramer (1937)
described the use of suspended streamwise wires to shield the near wall region from the
outer layer. The patent was conceptual and no data were presented to support Kramer's
claim. Kennedy et al. (1973) noted that the shear stress is significantly reduced for
turbulent flows in the corners of rectangular ducts. Working at the Iowa Institute of
Hydraulic Research, they found that small longitudinal fins produced a reduction in the
average shear stress, of order 22%, for h* < 20 . Drag reduction by streamwise grooves is
also thought to occur in fast swimming sharks. Shark scales or dermal denticles have three
dimensional ridges that are aligned with the flow. Reif (1978) estimaied that the ridges
reduced the drag on fast-swimming sharks by stabilizing the boundary layer. The
characteristics of some typical fast swimming sharks are summarized in Table 1.2.1. At top
speeds, the nondimensional primary groove height is typically less than 20 wall units,
where it is believed the scales offer reduced drag. Laboratory attempts to produce drag

reduction by a shark skin have not met with much success (Bechert et al., 1985).

The development of the commercial riblets stemmed from the work on external
boundary layers conducted at NASA, Langley by M.J. Walsh and his co-workers (Walsh,
1979, 1982, 1983, 1990a, 1990b; Walsh and Weinstein, 1979; Walsh and Lindemann,
1984). The parameters which determine the extent of drag reduction are the riblet height;
width; spacing and geometry. The optimization of these parameters has led to the

commercial manufacture of symmetric V-groove riblets by 3M Co. of nominal heights

35



Chapter 1 - Introduction

0.0013, 0.003, 0.0045 and 0.006 in. Gross flow results have been presented in the
literature either in terms of DR or 1-DR (= f/f5) and a non-dimensional riblet height (or

spacing), h* = g_f}%[ . In order to bring riblet drag reduction data in line with polymer

solutions, an incremental flow enhancement parameter, R’, is defined that is analogous to

S’ in polymer solution flow:
R' = - 1.2-15
(# 7}:s_)Rcs/f ( )

Unfortunately, some literature results do not include the values of fs for the reference
smooth surface. Where necessary, smooth surface friction factors are determined from the
correlations for a turbulent boundary layer over a flat plate (Schlichting, 1979):

f=—045 (1.2-16)
(log Re)?-58

or in equivalent Prandtl-Karman coordinates:

1 ] )
W-3.7log(Re\/D 2.1 (1.2-17)

Table 1.2.2 summarizes the external flow studies conducted on various riblet geometries,
the results of which are presented in Figures 1.2.3-1.2.8 in both (1-DR) - h* and R’-h*

coordinates.

Figures 1.2.3 and 1.2.4 depict the drag characteristics for symmetric V-groove
riblets with equal height and spacing in subsonic and transonic (Mach nos. = 0.3-0.83)
flows respectively. For h*< 25, the friction factors on the riblet surface are lower than
those on the smooth surface, with a maximum drag reduction ~4-10% (R’ = 0.2-0.7) at
h*~ 12-15. For h* > 25, the riblets are drag enhancing with respect to the smooth surface,
with a maximum enhancement ~15% at h* = 45. Figures 1.2.5 and 1.2.6 are, respectively,
the drag characteristics for symmetric V-groove riblets with h/s > 1 and h/s < i. When

plotted against h*, the results for h/s >1 exhibit an analogous behavior to the h/s = 1 data,
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with a maximum drag reduction ~3% at h* = 16. For h/s < 1, as h/s decreases, the region
of drag reduction decreases in bandwidth from h* < 20 for h/s = 0.78 to h* <9 for his =
0.22. A similar trend is observed in the results of U-groove riblets, depicted in Figure
1.2.7 where the drag reduction region decreases from h* < 22 for h/s = 0.79 to h* < 12 for
h/s = 0.33. It also appears that the maximum drag reduction also decreases as h/s
decreases, though it is not possible to make any definitive statement because of the scatter

in the data. It appears that maximum benefit is obtained by riblets for which h/s = 1.

Drag characteristics over rectangular riblets have been investigated by Wilkinson
and Lazos (1987) and Enyutin et al. (1987), depicted in Figure 1.2.8. The maximum drag
reduction decreases from ~10% at h* = 1C for h/s = 1 riblets to ~3% at h* = 10 for h/s =
0.1 riblets. The crossover from drag reduction to drag enhancement occurs between ht* =
10 for h/s = 0.07 and h* = 22 for h/s = 0.83, which is qualitatively similar to the

observations for V- and U-groove riblets.

Other riblet geometries have been tested, including convex semicircular; embedded
V-groove; axysymmetric V-groove (Walsh, 1982) and three dimensional scalloped riblets

(Bechert, 1987), depicted schematically in Table 1.2.2.

Flows of air and water in pipes lined with riblets (henceforth referred to as riblet
pipes) have been investigated by Nitschke (1983); Liu et al. (1989); Nakao (1990) and by
the research group at the Naval Oceans Systems Center in San Diego (Reidy and Anderson,
1988; Rohr et al., 1990; Anderson et al., 1993). The geometries used in internal flow
investigations are summarized in Table 1.2.3. Because riblets alter the cross section of the
pipe, the definition of a pipe diameter is of fundamental importance to any internal flow
study. In the literature, the diameter of a riblet pipe was unanimously taken as the value for

an equivalently smooth pipe, dc, with the same cross-sectional area, A¢:
dc=1/i;:—°- (1.2-18)
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For symmetric, V-groove riblets, Eq. (1.2-18) gives an apparent origin which is midway
between the riblet peak and valley. With the exception of Reidy and Anderson (1988),
flows inside riblet pipes show the same qualitative behavior as flows over external riblets,

as depicted in Figures 1.2.9 and 1.2.10.

In summary, the friction characteristics observed in internal and external flows over

riblets may be decomposed, at this stage, into two regimes:

(i) Riblet Drag Reduction: h* <h{, where h*c is the zero cross-over into regime (ii).
Figure 1.2.11 depicts the variation of maximum drag reduction, R’ max, with h/s for V-
groove, U-groove and rectangular riblets. Amid the scatter, it may be inferred that
R’ max increases from = 0.1 for h/s = 0.2 to = 0.5 at h/s = 1 then decreases to =~ 0.2 at
h/s = 2. This supports the general consensus that riblets with h = s are most effective
drag reducers; however, it is not clear whether one riblet geometry is superior to
another. Figure 1.2.12 depicts the variation of h* at R’max with h/s. Clearly, h* at
R’ max increases as h/s increases, which may be correlated by h*R'max = (14x1) (h/s)
implying that s*R'max = 14x1. This seems to suggest that the mechanism of drag

reduction appears to be related to the spanwise scale of the riblets.

(ii) Riblet Drag Enhancement: h* > hg. Figure 1.2.13 depicts the variation of hg with
h/s. h¢ increases monotonically from =~ 6 at h/s = 0.2 to = 22 at h/s = 1. R' decreases as

h* increases, with a maximum enhancement R' ~ -2.2 at h* ~ 80.

1.2.2 Mean Velocity Profiles
1.2.2.1 Newtonian Flow over Smooth Surfaces

At the comerstone of fluid mechanics are the continuity and momentum equations,

expressed in the most general form by:
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%p_=-pv,v (1.2-19)
p%VTz -Vp+ V.T+pg (1.2-20)

where D/Dt is the material derivative; p is the density, v is the velocity vector, T 1S the
stress tensor; p is the pressure and pg is the gravity force. The former is a statement of
conservation of mass and the latter is a momentum balance on the elements of fluid. The
velocity field is thus obtained from the solution of Egs. (1.2-19) and (1.2-20) and by
invoking a constitutive equation which relates the stress tensor to the velocity field. For
incompressible, Newtonian fluids, Eqs. (1.2-19) and (1.2-20) may be expressed in terms

of the velocity field only:

Vv=0 (1.2-21)

%:--p—-{-vv v+ g (1.2-22)
Furthermore, in turbulent flow, the velocity field is mathematically treated as the
superposition of stationary time-averaged and fluctuating velocity components:

vV=V+V (1.2-23)

Substituting Eq. (1.2-23) into Eqs. (1.2-21) and (1.2-22) yield, after some manipulating,

the turbulent form of the continuity and Navier-Stokes equations:

V.v=0 (1.2-24)

%:-Ypf-+ VW LV.TV) + g (1.2-25)

The ferm, V.(¥v'v'), in Eq. (1.2-25) is an additional stress term called the Reynoids stress
that is responsible for the increased fiction in turbulent flow relative to laminar flow. Two

noteworthy points warrant mention; first, if the fluctuating components are independent,
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the Reynolds stress averages to zero. Second, the turbulent equations cannot be solved
analytically because the three unknowns, v, p and v'v' cannot be obtaired from two
equations, continuity and Navier-Stokes. In 1877, Boussinesq suggested that the Reynolds

stress may be written analogous to the viscous stress term:

-(v'V') =¢eVyv (1.2-26)

where ¢ is calied an eddy diffusivity which must vary with distance from the wall in order
for the fluid to display turbulence characteristics. In turbulent, one-dimensional, Newtonian
flows such as in pipes and channels, the mean velocity profiles in the near wall region are
normally represented in terms of velocities and distances from the wall scaled by the

friction velocity:

y+ = I (1.2-27)

=1
ut = —
Uy v

In the region very close to the wall, y* < 5, viscous stresses dominate because the

fluctuating components, v°, near the wall must vanish, consequently v >> ¢ and the

solution to Eq. (1.2-25) becomes, for steady, horizontal, one- dimensional low:
ut =y+ (1.2-28)

This region is called the viscous sub-layer; earlier works often referred to this regime as a

laminar sublayer because of its laminar-like velocity profile.

For y* > 30, turbulent stresses are much greater than viscous stresses, € >> v.
However, Eq. (1.2-25) cannot be integrated unless the functionality of & with y is known.
Prandtl (1925) proposed a mixing length, £ = xy (i.e. eiv = £ 2 \dut*/dy*l), which
represents the distance over which momentum may be transferred. For one-dimensional

flow, the velocity profile thus becomes:
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