
Computational Design of Foldable

Robots via Composition

by

Cynthia Rueyi Sung

B.S., Rice University (2011)
S.M., Massachusetts Institute of Technology (2013)

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2016

© Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of

Electrical Engineering and Computer Science
August 31, 2016

Certified by. .
Daniela Rus

Andrew (1956) and Erna Viterbi Professor
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

Computational Design of Foldable Robots via Composition

by

Cynthia Rueyi Sung

Submitted to the Department of
Electrical Engineering and Computer Science
on August 31, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Recent advances in rapid fabrication technologies have given designers the ability to
manufacture increasingly complex geometries with little increase in cost, making it
easier than ever to build a robot. However, the process of designing a functional robot
remains challenging. Robots are complex systems that tightly integrate mechanical,
electrical, and software subsystems. As a result, traditional robot development often
requires iterations of design and testing to ensure that the result is both functional
and manufacturable.

This thesis explores intuitive design tools for robot design and proposes composi-
tion as a design approach. We leverage a print-and-fold paradigm of manufacturing,
which has been shown to enable functional robots to be created within a day. The
main challenge in using composition is that in general, even if two modules func-
tion correctly individually, the combination of the two may not be a valid design.
We therefore develop algorithms and systems for robot composition that guarantee
validity of the design geometry and that check the resulting kinematics.

Our main contributions include a database containing parameterized designs for
printable joints and mechanisms, algorithms for composition of fold patterns and
motion sequences that guarantee no self-intersection, automated generation of fab-
rication plans for multiple modes of print-and-fold fabrication, an interactive user
interface in which users can compose custom robots and receive real-time feedback
about their designs, and experimental verification in the form of functional mecha-
nisms and robots. The results provide designers with a framework for rapid design
exploration and bring us closer to a future of easy robot design and customization.

Thesis Supervisor: Daniela Rus
Title: Andrew (1956) and Erna Viterbi Professor

3

4

To my family,

with love.

5

6

Acknowledgments

This thesis would never have been completed without the help and support of many

people.

First and foremost, I would like to thank my research advisor, Daniela Rus, who

has been an awesome mentor throughout the course of my Ph.D. Daniela has always

been available to answer any of my many questions, and she has taken a genuine

interest in not only my research progress but also my motivation and general happi-

ness. Her enthusiasm for robotics and its potential to change the world is infectious,

and her drive to always “Keep the gradient!” has made her one of my greatest role

models. Daniela, thank you so much for your guidance and support!

I would also like to thank my thesis committee members: Erik Demaine, Wojciech

Matusik, and Vijay Kumar. Even before joining this committee, all three of them

have provided insightful comments and advice on the research. Erik is primarily

responsible for bringing me into the world of folding theory, while Wojciech introduced

me to data-driven techniques, and Vijay has kept me grounded in practical application

considerations. Their feedback has raised the level of this research considerably.

To all the members of the Distributed Robotics Lab extended family, I would

like to express the greatest appreciation. On the technical side, I would particularly

like to recognize Cagdas Onal and Michael Tolley, who introduced me to the idea

of printable robots; Joseph DelPreto, who has let me “borrow” his electronics parts

countless times; Brian Julian and Mehmet Dogar, who helped me to take motion cap-

ture measurements; and Ankur Mehta, Shuhei Miyashita, John Romanishin, Adriana

Schulz, and Andrew Spielberg, who have all been valuable collaborators. I have been

fortunate to have had the support of amazing technicians such as Ron Wiken, lab as-

sistants Kathy Bates and Mieke Moran, and undergraduate researchers James Bern,

Elizabeth Hadley, and Rhea Lin, whose high skills are only matched by their enthu-

siasm. Personally, I would also like to thank Andrew Marchese, who was the first to

welcome me to the lab and who was always willing to answer any questions I had

7

about the Ph.D., as well as Nora Ayanian and Ross Knepper for their continuous

motivational support.

Last but not least, I would like to thank my family: my mother, Chin Fong Pau,

who has been there for all my successes and failures and who probably knows as

much about this thesis as I do; my father, Chung Shin Sung, who is always willing to

speculate about its potential impact on the world; and my siblings, Angela and Eric,

who are always interested in talking about the latest in science and engineering. I

dedicate this thesis to you.

This work was done in the Distributed Robotics Laboratory at MIT with support

from NSF Grant Numbers 1240383 and 1138967, and from the Department of De-

fense (DoD) through the National Defense Science & Engineering Graduate (NDSEG)

Fellowship Program. I am grateful for their support.

8

Contents

List of Figures 13

List of Tables 17

List of Algorithms 19

1 Introduction 21

1.1 New Capabilities . 22

1.2 Challenges . 23

1.3 Design by Composition . 25

1.3.1 Scope and Limitations . 25

1.4 Thesis Contributions . 26

1.5 Thesis Organization . 28

2 Related Work 29

2.1 Rapid Fabrication . 29

2.1.1 Origami-Inspired Fabrication 30

2.2 Computational Design of Robots and Functional Mechanisms 32

2.2.1 Fully Automated Design . 32

2.2.2 Interactive Design . 33

2.3 Design by Composition . 35

2.4 Origami-Inspired Engineering . 36

2.4.1 Static Structures . 36

2.4.2 Transformable Structures . 38

9

3 Notation 39

4 Transformable Foldable Modules 43

4.1 Parametric Designs . 44

4.1.1 Definitions . 44

4.1.2 Hinge Joint . 45

4.1.3 Prismatic Joint . 46

4.1.4 Pivot Joint . 47

4.2 Pseudo-Rigid Body Analysis . 49

4.2.1 Hinge Joint . 50

4.2.2 Prismatic Joints . 51

4.2.3 Pivot Joint . 53

4.3 Experimental Comparisons . 55

4.3.1 Electronics Integration . 56

4.3.2 Force and Torque Measurements 58

4.4 Summary . 64

5 Composition of Foldable Mechanisms 65

5.1 Problem Statement . 66

5.1.1 Representation . 68

5.2 Composition Algorithm . 68

5.2.1 Main Insight: Edges on the Convex Hull Boundary 68

5.2.2 Constructing the Bridge . 70

5.2.3 Optimizations . 77

5.2.4 Face-Composition . 77

5.3 Correctness and Material Usage Guarantees 77

5.3.1 Pleat Creation . 78

5.3.2 Bridging Exterior Edges . 81

5.3.3 Bridging Interior Edges . 83

5.3.4 Full Composition Algorithm 84

5.4 Experimental Results . 85

10

5.4.1 Compositions of Rigid Bodies 85

5.4.2 Joints with Multiple Degrees of Freedom 88

5.4.3 Mechanisms . 89

5.4.4 Foldable Robots . 91

5.5 Summary . 93

6 Composition of Foldable Ground Robots 95

6.1 Gait and Trajectory Design . 96

6.1.1 Joint Controllers . 97

6.1.2 Gait Design . 98

6.1.3 Trajectory Design . 98

6.2 Performance Metrics . 99

6.2.1 Simulation . 99

6.2.2 Metrics . 101

6.3 Fabrication and Assembly . 103

6.3.1 Electronics . 103

6.3.2 Software . 104

6.3.3 Robot Body . 104

6.3.4 Assembly . 106

6.4 Experimental Results . 106

6.4.1 Fabricated Robots . 106

6.4.2 Extensions Beyond the Database 109

6.4.3 Optimization . 109

6.4.4 Fabrication Comparison . 110

6.5 Summary . 111

7 Interactive Design 113

7.1 User Interface and Workflow Overview 114

7.1.1 Geometry Composition . 116

7.1.2 Motion Composition . 120

7.1.3 Feedback and Guidance . 122

11

7.2 User Study . 124

7.2.1 Geometry Design . 124

7.2.2 Combined Geometry and Gait Design 125

7.2.3 Interactive Feedback and Optimization 127

7.3 Summary . 128

8 Extensions to Other Fabrication Methods 131

8.1 Medium Scale Fabrication and Design 131

8.1.1 Fabrication Process . 132

8.1.2 Pattern Generation . 133

8.1.3 Fabricated Results . 137

8.2 Large Scale Fabrication and Design 141

8.2.1 Fabricated Results . 142

8.3 Summary . 144

9 Conclusion 145

9.1 Lessons Learned . 146

9.2 Limitations . 148

9.3 Future Work . 149

A Sample Output Fabrication Plan 151

A.1 Generated Print . 152

A.2 Electronics Plan . 152

A.3 Generated Code . 153

B User Study Questionnaire Responses 163

B.1 Pre-study Questionnaire . 163

B.2 Task 1 Questionnaire . 164

B.3 Task 2 Questionnaire . 167

B.4 Task 3 Questionnaire . 171

Bibliography 175

12

List of Figures

2-1 Previous foldable robots . 31

4-1 Folding definitions . 44

4-2 Summary of fold patterns and folded states for three basic joint types

with input parameters indicated . 45

4-3 Prismatic joint construction . 47

4-4 Motion of 1 layer of a pivot joint with all black lines having unit length 48

4-5 Elongation of folds in a pivot joint over the course of rotation for num-

ber of sides between 5 and 10 . 48

4-6 Pivot joint construction . 49

4-7 Cross-sectional view of hinge joint with active folds labeled 50

4-8 Diagram of 2-layer prismatic joint . 52

4-9 Diagram of a single square linkage on a pivot joint 54

4-10 Joints folded from polyester film in two different positions 56

4-11 Hinge joint with integrated electronics 57

4-12 Experimental setup used to measure holding torque of hinge joints . . 58

4-13 Holding torque vs. joint position for hinge joints folded from 0.051 mm

thick polyester film, with joint ranges 𝑅 = 𝜋
2
, 𝑅 = 𝜋, and 𝑅 = 3𝜋

2
. . . 59

4-14 Holding torque vs. joint position for hinge joints folded from 0.127 mm

thick polyester film, with joint ranges 𝑅 = 𝜋
2
, 𝑅 = 𝜋, and 𝑅 = 3𝜋

2
. . . 59

4-15 Experimental setup used to measure holding force of prismatic joints 60

4-16 Holding force vs. joint position for prismatic joints folded from 0.051 mm

thick polyester film, overlaid with curves fitted from the model 61

13

4-17 Holding force vs. joint position for prismatic joints folded from 0.127 mm

thick polyester film, overlaid with curves fitted from the model 61

4-18 Experimental setup used to measure holding torque of pivot joints . . 62

4-19 Holding torque vs. joint position for pivot joints folded from 0.051 mm

thick polyester film, overlaid with curves fitted from the model 63

4-20 Holding torque vs. joint position for pivot joints folded from 0.127 mm

thick polyester film, overlaid with curves fitted from the model 63

5-1 Fold pattern composition problem illustration 66

5-2 Algorithm 2 step-by-step example . 71

5-3 Algorithm 3 step-by-step example . 73

5-4 Intersection removal in Algorithm 2 73

5-5 Trimming of long pleats for Algorithm 2 74

5-6 Algorithm 4 step-by-step example . 75

5-7 Example edge-adjacency graph . 76

5-8 Two convex polygons placed next to each other are guaranteed not to

intersect . 78

5-9 Edge-compositions of rigid bodies, fold patterns, and physical models 86

5-10 Spherical joint composed from 6-sided pivot and hinge joints 88

5-11 Foldable four-bar linkage . 89

5-12 Foldable rowboat . 90

5-13 Actuated four-bar linkage atop actuated pivot mount 91

5-14 Smartphone mount attached to actuated spherical joint for pan and tilt 92

6-1 Joint controllers for single-link leg, multi-link leg, and wheel joint types 97

6-2 Relevant points along a robot’s trajectory used in metric evaluation . 101

6-3 3-D mesh generation procedure for robot bodies 104

6-4 Printable, snappable connections used in 3-D mesh generation 105

6-5 Six robots designed and fabricated using composition 107

6-6 Comparison of monkey gait in simulation and in physical robot 107

6-7 Trajectories measured for fabricated robots 108

14

6-8 Other robot designs achievable using our design system 109

6-9 Optimization results for a four-legged fish robot when maximizing

speed or minimizing wobbliness . 110

7-1 A robot design that topples while walking. Its gait can be modified

so that it only wobbles slightly, but changing the geometry allows the

robot to move faster and more steadily. 114

7-2 Interactive design tool system diagram 115

7-3 User interface for interactive design tool 115

7-4 Geometry modules in the database, organized by category 116

7-5 Data representation for geometry modules in the database 117

7-6 Dimension scaling in the user interface 118

7-7 Highlighted patch pairs proposed for connection 119

7-8 Gait design interface . 121

7-9 Guidance arrows for local geometry optimizations 123

7-10 Cars designed by 8 different users after a 20 min. training session with

the tool. Users were given 10 min. to design their car. 125

7-11 Gallery of designs created by one of the users in the user study after

a 20 min. training session. Each of the designs took between 3 and

25 min. to design and contains multiple modules from the database. . 126

7-12 Trajectories designed by users during task 2 of the user study 126

8-1 Multi-layer process for fabricating medium-scale rigid robot bodies . . 132

8-2 Layers for an example fold pattern fabricated using our multi-layered

approach . 133

8-3 Side view of two faces of thickness 𝑡 that come together at a fold with

angle 𝜑 between them . 134

8-4 Teeth structure for a pair of edges that form a fold 136

8-5 Wide hexapod cut out of 3.18 mm thick acrylic sheet using our multi-

layer fabrication process. 137

15

8-6 Long hexapod cut out of 4.50 mm thick acrylic sheet using our multi-

layer fabrication process. 137

8-7 Hexapods cut from thick material next to print-and-fold hexapod . . 138

8-8 One cycle in the walking gait of the wide hexapod 140

8-9 Cut pattern for folds on a metal robot 141

8-10 Large metal robot designed in system and folded from aluminum sheet 142

A-1 Fabricated moving house robot, left and right views 151

A-2 Generated print for fold pattern of the moving house 152

B-1 Obstacle course used in task 2 of user study 168

B-2 Robots and metric goals used in task 3 of user study 171

16

List of Tables

3.1 Symbols pertaining to fold patterns 39

3.2 Symbols pertaining to foldable joint designs 40

3.3 Symbols pertaining to robot design 40

3.4 Symbols pertaining to robot performance metrics 41

3.5 Symbols pertaining to fabrication . 41

4.1 Fitted fold stiffness values 𝑘 for prismatic joints made from two thick-

ness of polyester film . 62

6.1 Comparison of measured vs. simulated metric values 108

6.2 Fabrication time and material usage for 3-D printing (3-D) vs. print-

and-fold (2-D) . 111

7.1 Timing data from task 3 of user study where users optimized a design

with and without feedback . 128

8.1 Specifications for medium-scale hexapod robots 138

8.2 Timing per step of fabrication . 139

8.3 Specifications for metal robot and print-and-fold version 143

17

18

List of Algorithms

1 Compose((𝑃1,ℱ1), 𝑒
𝑃
1 , (𝑃2,ℱ2), 𝑒

𝑃
2) 70

2 BridgeFromBoundary((𝑃,ℱ), 𝑒𝑃) 71

3 CreatePleats(𝑒𝑃 ,p) . 72

4 BridgeFromFoldLine((𝑃,ℱ), 𝑒𝑃) 75

5 Simulate(D,∆𝑡) . 100

19

20

Chapter 1

Introduction

A long-held goal in the robotics field has been to see our technologies enter the

hands of the everyman. With the emergence of retailers such as Pololu [138] and

Adafruit® [2], as well as products such as the iRobot® Roomba® [81] vacuum cleaner,

this goal has recently started to become a reality. Despite these advances, customizing

robotic technology to individual needs remains a challenge. Robots are complex

systems that tightly integrate mechanical, electronic, and computational subsystems.

As a result, customization at anything more than a superficial level often requires a

nonnegligible amount of engineering skill. And yet, in order for robots to be able to

address the individual needs of their users, they must allow for personalization.

Traditionally, robot development is a challenging and time-consuming process

involving many iterations of design and testing, even for skilled engineers. Designers

who decide to tackle this challenge must be able not only to devise and integrate

physical and computational subcomponents, but also to evaluate manufacturability,

usability, reliability, and other practical issues. With a required knowledge base this

large, it should be no wonder that such projects often go through multiple prototypes

before converging to a final design.

Given this design paradigm, a natural question is: Is it possible to simplify design

evaluation, cut down on the number of prototyping cycles, or otherwise make the de-

sign process more accessible? The answer from a hardware perspective is a resounding

yes. Recent advances in rapid fabrication [88, 201] have made creating complex 3-D

21

physical objects easier than ever, allowing people to realize their designs in hours or

days instead of weeks or years. Unfortunately, when it comes to evaluation and design

cycles, current design tools still present users with clear limitations, and the learning

curve is steep for anyone who wishes to create a design from scratch.

In this thesis, we explore intuitive design tools that complement current rapid

fabrication methods, with the goal of providing all roboticists, from dabblers to skilled

professionals, with a framework for rapidly exploring, evaluating, and realizing their

robotic designs. The tools incorporate simulations and interactive feedback with

algorithms for design automation to streamline parts of the design cycle and give

users the information they need to make design choices. We focus in particular on

foldable robots, robots whose mechanical parts are fabricated as flat sheets and folded

into their final 3-D form. As we will show, creating robots in this way accelerates

the fabrication process and enables us to construct strong and lightweight structures

well suited for robot designs, but it also presents additional fabrication constraints

that complicate the design process. We tackle this challenge by proposing a design-

by-composition approach to foldable robot design. In this approach, modules are

composed together to form entire mechanisms and robots, and the validity of the

design is maintained at every step. The approach not only finds practical use in an

interactive design tool, but also provides insights into the space of feasible foldable

designs.

1.1 New Capabilities

The results of this thesis will give rise to new capabilities for robot creators.

Exploratory Tools Tools that provide intuitive interfaces for creating and analyz-

ing designs lower the cost of design exploration. In addition, analyzing users’ designs

before prototyping allows them to explore many different choices and find potential

issues early before committing to a particular design. Since the effect of early design

choices on a final product’s performance is large compared to later choices [79], early

22

exploration of the design space is a valuable ability with the potential to significantly

decrease time spent in later parts of the design process.

Rapid Iteration and Prototyping Tools that incorporate manufacturability con-

straints accelerate design iteration by decreasing the time to prototype. While ad-

vances in additive manufacturing have significantly increased prototyping capabilities,

they suffer from a lack of corresponding design and modeling tools. The ability to de-

sign specifically for a fabrication technology will allow designers who otherwise would

have had to wait weeks or months to finish a physical prototype to quickly evaluate

their designs and make important design choices or changes.

Educational Tools Intuitive design interfaces provide valuable learning tools to

novice engineers. Real-time design analysis and interactive feedback provide users

with relevant information necessary to evaluate different design choices and to see how

changes to the design affect its performance. Further, the ability to rapidly fabricate

these designs allows engineering students to quickly receive real-world feedback about

their robots while their design choices are still fresh.

Customized Technology Accessible design tools lower the barrier to entry to

robot design. As a result, aspiring designers who are not trained in engineering will

still be able to make the necessary design decisions and trade-offs to create customized

robotic technologies to use in their own lives.

1.2 Challenges

The main challenge with robot design is that the design space is large, and there is a

great amount of flexibility. Take, for example, the task of designing a robot to perform

the simple locomotion task of moving across an empty room. There are many different

robots that could do this task: cars that roll across the floor, legged robots that walk,

robots that hop from one side of the room to the other, robots that fly, robots that

slither, or robots that engage in myriad other possible types of locomotion. Further,

23

for each of these types of robots, the particular robot could take on any number of

forms. A robot design tool must allow users to make interesting design choices while

presenting the design space in an intuitive and manageable manner. In this thesis,

we address this problem using a design-by-composition framework.

A second challenge is the interdependence of subsystems in a robotic design. Con-

sider again the robot that must move across a room. The robot has a mechanical body

that has a geometry, has a particular kinematic structure, and is made of certain ma-

terials; it has actuators, sensors, and electronics that control the robot’s interactions

with the environment at the low-level; and it has software that provides its high-level

behaviors. Each of these components affects the other. For example, the mechanical

body affects the actuator requirements and the efficiency of the programmed behav-

iors, while the electronics and software induce geometric and control constraints. A

robot design tool must simultaneously consider these subsystems and allow users to

explore how changes to one aspect of a robot design effect changes in another. In this

thesis, we address the subproblem of geometry-motion interdependence.

A third challenge is the transition from a conceptual design to a physical robot.

Any design that a user creates must be manufacturable, that is, each of its pieces

must be able to be fabricated, and the disparate pieces must be able to be assembled.

Therefore, a robot design tool should validate not only a robot’s final form but also its

fabrication plan. In this thesis, we address manufacturability in the context of foldable

robots. In order to create foldable robots, designs must be able to be fabricated as

2-D fold patterns, a constraint that introduces its own set of challenges. In addition,

transformable folded structures (i.e., folded structures that can move), which are the

structures of interest for robot designs, are not well understood. We explore what

kinds of robotic designs can be assembled by folding and, in the context of design by

composition, composed into more complex patterns.

24

1.3 Design by Composition

Our approach to tackling these challenges is to use a design-by-composition frame-

work. In this framework, users create entire robots by composing modules from a

database of parameterized designs. The database focuses the design space to a set

of designs that are manageable for a computational tool, while the parameterization

of individual modules provides users with enough freedom to express themselves cre-

atively [57]. In addition, the designs in the database, which can be augmented by

experienced designers, provide users with proven examples with which they can build

future designs.

Design by composition also tackles the second challenge of concurrent subsystem

design. The main challenge of composition is that even when modules are individually

valid, their combination may not be a valid design. We include both geometric- and

motion-related modules in the database, and we incorporate simulations and opti-

mization methods that evaluate design performance in the context of both geometric

and motion data. As users compose modules from the database, constraints on the

module parameters that result from the composition are automatically associated

with the design. Our evaluation and optimization methods use the module parame-

terizations and composition constraints to allow users to automatically optimize over

multiple aspects of the robot design.

Finally, design by composition addresses the third challenge of manufacturability.

We ensure that every module in the database is independently manufacturable for any

set of parameter values in the feasible set of the design. By developing methods for

module composition and parameter manipulation that maintain manufacturability,

composed designs are automatically manufacturable as well.

1.3.1 Scope and Limitations

As with any data-driven method, a design-by-composition approach restricts the pos-

sible output designs to those that can be composed from the database. Experienced

25

designers are needed to expand the set of building blocks from which users can com-

pose their own designs.

In addition, this thesis addresses composition of only geometry and motion mod-

ules. Expanding this work to include other aspects of robot design requires introduc-

ing new composition algorithms to handle the new types of design constraints, as well

as new simulation and evaluation capabilities.

Our design tool is driven by the user, who chooses modules from the database

to compose. Optimization methods built on top of this tool can provide feedback

about parameter changes, but not about module changes. Users can explore how the

simulations and evaluations change as they add and remove parts manually.

Finally, this thesis focuses on foldable robots, and our database contains only

foldable designs. Although the composition algorithms and data representation de-

scribed are particular to folding, however, the underlying methods can be generalized

to other fabrication methods. Augmenting this work to allow other fabrication meth-

ods requires new analysis of the constraints associated with those methods, as well

as new composition algorithms.

1.4 Thesis Contributions

This thesis makes the following contributions:

� A design-by-composition framework for foldable robots. We present a

framework for robot design by composition, in which modules from a database

of foldable designs are composed into full robots. The approach incorporates

new foldable modules that enable a wide variety of robot kinematics, algorithms

for geometry and motion composition, simulations and optimization methods

for evaluating composed designs, and methods for automatic fabrication of the

results.

� A database of parameterized and foldable modules. We explore the space

of possible motions achievable through foldable designs by creating parameter-

26

ized designs of foldable joints. We have analyzed these joints theoretically and

verified their behavior through experiments on fabricated examples. Together

with fold patterns for rigid bodies, the parts in this database can be composed

to produce a variety of robot geometries and functionalities.

� An algorithm for fold pattern composition. We detail an algorithm for

combining two fold patterns into a new one-piece non-self-intersecting compo-

sition consisting of the two originals attached at an edge. The algorithm is

guaranteed to produce a valid output fold pattern. It runs in time polynomial

in the number of vertices in the original patterns and adds a polynomial amount

of extra waste material. We also show how the algorithm can be augmented to

compose patterns at faces instead of edges.

� Grammar-based gait suggestion for ground robots. We have imposed a

classification of ground robot parts into bodies, legs, wheels, and peripherals,

and we use this classification to propose a grammar-based gait for composed

designs. Individual joint motions for a composed robot are suggested based on

the types of modules connected at that joint. We demonstrate these gaits on a

variety of composed robots.

� Algorithms for automated generation of fabrication plans. We describe

methods for converting user-specified 3-D designs into valid fabrication plans.

We have addressed a variety of origami-inspired methods for fabricating me-

chanical components at a variety of scales. We also describe an approach for

converting designed gaits into electronics and software components.

� An interactive end-to-end system for compositional robot design. We

have created an interactive tool in which users can manipulate and compose

modules from the database to create custom ground robots. The tool incor-

porates the algorithms in this thesis to produce functional designs with valid

fabrication plans. We have conducted a preliminary user study with the tool

27

and determined that users found interacting with the tool to be both intuitive

and enjoyable.

� Robot designs fabricated at multiple scales. We have used the proposed

framework to design and create robots ranging in size from 146 mm long to

620 mm long and fabricated using a variety of techniques. The robots are

all demonstrably functional. Our results show that the design-by-composition

framework has the potential to scale to many different applications.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we compare our

work to previous research in rapid fabrication, design methods, and origami-inspired

robotics. In Chapter 3, we present important notation and symbols used in the thesis.

In Chapter 4, we describe our foldable joint designs and their analysis. In Chapter 5,

we discuss fold pattern composition and describe an algorithm for composing two

fold patterns at an edge. In Chapter 6, we describe our grammar-based approach to

gait suggestion for ground robots, our metrics for evaluating these gaits, and methods

for converting these gaits into electronics and software. In Chapter 7, we describe

an interactive tool that we have developed to aid casual users in composing foldable

robot designs and a user study we conducted with the tool. In Chapter 8, we describe

several results incorporating other fabrication approaches. We conclude and discuss

directions of future research in Chapter 9.

28

Chapter 2

Related Work

This thesis is enabled by technical advances in the fields of rapid fabrication, compu-

tational design, and origami-inspired engineering, as well as by techniques in design

composition. In this chapter, we outline previous results in the literature to set the

context of our work.

2.1 Rapid Fabrication

With the growing interest from hobbyists and makers in creating custom robots and

mechanisms [18, 56], there has been a corresponding boom in rapid fabrication and

prototyping capabilities. Among these, 3-D printing has emerged as a convenient

method for creating general geometries quickly. Unlike traditional manufacturing, in

which complex geometries require in-depth analysis to ensure fabricability [70], 3-D

printing processes are independent of the fabricated object, meaning that designers

are now able to instantiate increasingly complex geometries without corresponding

increases in cost or fabrication time. The most common methods for printing 3-D

geometries are fused deposition modeling, in which spools of thermoplastic filament

are melted and fused into layers of the fabricated solid object, and stereolithography,

in which liquid material is cured using ultraviolet light and merged to form the object

layers. A review of existing 3-D printing technologies can be found in [61,201].

29

As a result of these technologies, multiple groups have started to investigate how

mechanisms and linkages can be fabricated as single prints without requiring post-

fabrication assembly. Work in [9,24] explored a wide variety of printed joint designs,

including universal and spherical joints, that could be used in full mechanisms [180],

manipulators [107], and robots [110, 162]. Fuge et al. [56] expanded on this body of

work by including methods for automated calibration of joint designs to the fabrica-

tion machine. Multi-material printers have further increased the diversity of printed

objects by allowing designers to control properties such as stiffness [78], damping [105],

and texture and transparency [27,189], giving them the ability to print such functional

objects as flexure hinges [41,63], hydraulic drive systems [104], and full robots [72].

2.1.1 Origami-Inspired Fabrication

Although recent advancements in machining practices and 3-D printing technology

have produced significant speedup in manufacturing of mechanical structures, these

methods are still costly and time consuming when compared with planar fabrica-

tion alternatives [132]. Origami-based design methods aim to augment existing 2-D

fabrication techniques with folding algorithms to rapidly fabricate 3-D structures.

Fabricating structures in plane and then folding them into their final shape enables

complex devices to be created more quickly and efficiently, providing engineers with

greater opportunities to prototype, test, and refine their designs.

Folding in engineering design has existed in mechanical designs for decades [179,

184] and more recently is being applied to electromechanical devices and foldable

circuits [71, 131, 157]. The ability to integrate sensors and circuitry directly into

the physical body of a device has enabled the creation of fully functional robots in

less than a day [53, 74, 132]. In addition, folding thin materials can create strong,

lightweight components, which are ideal for robot designs [127, 161]. Folding as a

vehicle for physical change has given rise to sheets with programmable shape [71],

manipulators [46,58,155,167,198,205], sensors [122,156], and support structures that

precisely assemble small devices [197]. The transformation abilities of assembled

folded structures have also been used to control how a robot crawls [44, 52, 54, 89],

30

[74]©2008 IEEE [161]©2013 IEEE

[154] ©2014 IEEE

[114] ©2014 IEEE

[129]©2014 IEEE [52] Reprinted with permission from AAAS [54]©2015 ASME [49]©2016 ASME

Figure 2-1: Previous foldable robots

jumps [50], or navigates obstacles [97]. Figure 2-1 shows some previously developed

foldable robots.

In its most basic form, origami-inspired fabrication consists of cutting thin sheets

of flexible material, such as paper or plastic, and deforming them into a 3-D shape.

This method is often used when creating simple models [203] or paper toys [66, 120,

147, 177]. Stiffer designs can be created by laminating layers of different materials

and cutting away parts of individual layers to create a structure combining both rigid

and flexible parts [73, 74]. The approach has been used with great success to create

folded structures with up to 15 layers [197] that assemble and self-align similarly to

pop-up books, but it requires more complex methods for converting fold patterns into

fabrication plans that take into account the thickness of the materials used [29, 93,

175]. Still more complex models can be created through a combination of additive

manufacturing and folding, as shown in [40], where multi-material printers provided

the designers with a simpler solution to mixing material properties to produce foldable

structures.

The benefits of origami-inspired fabrication are tempered by the complexity of

subsequent assembly steps. Folded structures often present more complex fabrication

plans than the equivalent structure made through traditional 3-D manufacturing. As

a result, many groups have also been searching for ways to automate the assembly

of folded structures. For example, work in [12, 178] used a robotic manipulator to

31

fold origami patterns from a sheet of paper. Later, work in [124] took advantage of

heating and gravitational forces to show how plastic sheets heated along a fold line

could deform into a folded shape naturally. Work in [16, 28] bypassed the folding

problem completely by cutting planar faces individually and assembling them using

custom connectors.

Other approaches to automated folding focus on incorporating folding information

into the structure itself. These “active origami” structures [137] rely on active materi-

als to fold and unfold a pattern. The advantage of these approaches is that the same

infrastructure used for assembly can also be used for actuation during operation [53].

Programmable sheets [4,71] encode generalized crease patterns with the ability to fold

into arbitrary voxelized shapes using shape-memory alloys (SMA). Instance-specific

approaches have also emerged, producing a variety of designs that fold using residual

stress [13, 202], heat [41, 52, 53, 64, 90, 122, 182, 183], exposure to water [69, 154, 155],

air pressure [129], and magnetic fields [84, 103, 204], particularly in the creation of

microscale structures.

In this thesis, we primarily fold mechanical structures out of sheets of a single

material, although we show extensions to other fabrication methods as well.

2.2 Computational Design of Robots and Functional

Mechanisms

The incredible growth of rapid fabrication technology has incited a corresponding

growth in design algorithms and tools. Approaches to design can be categorized into

fully automated methods and interactive methods.

2.2.1 Fully Automated Design

Fully automated methods for robot design aim to create entire designs with min-

imal user intervention. These problems are generally formulated as optimizations

over design and function parameters. In certain cases, the form of the robot is well

32

specified [42, 134, 191], and optimization methods are used to ensure efficiency. In

other branches of work, users specify less about the robot. For example, work in [25]

considered the robot design problem as a set of constraints on inputs, outputs, and

inter-component dependencies, and it chose the components such as motors and chas-

sis that satisfied the problem. It did not consider how the physical components should

be connected. Work in [75,158,159], by comparison, focused on the physical structure

over the actuation and used genetic algorithms to generate virtual linkage designs to

perform various tasks such as locomotion and manipulation. The work was extended

to fabricated robot designs in [30,99].

The difficulty of designing entire robots from scratch has caused many research

efforts to focus on automated design for particular subsystems and goals. For ex-

ample, work in [82] considered modular robot design from a task perspective. A

high-level task was broken down into a sequence of subtasks that were matched to

existing full designs in a database, and transitions between subtasks occurred through

reconfiguration. Motion plans were the subject of [92], which used linear temporal

logic specifications to define high level task requirements and search for valid plans

given a robot model and environment. Motion of a linkage mechanism was consid-

ered in [85, 87]. This work proved that there always exists a linkage able to follow

a bounded subset of an algebraic curve and showed how to construct one. Finally,

there exist systems that focus on fabrication aspects, such as those that automatically

choose materials given desired properties [20, 27, 189] or that optimize geometry to

account for particular fabrication methods [28,100,102].

2.2.2 Interactive Design

Compared to software compilers, or even work on automatic circuit design [126], fully

automated mechatronic design systems have not gained wide acceptance in the en-

gineering community. Progress on this front has been slowed by the high amount of

coupling between different subcomponents of the same system [5,51,193,194]. There-

fore, more recent systems have been turning towards interactive design approaches

that require more user input in the design process.

33

Interactive tools have been useful in designing a variety of physical objects, includ-

ing architectural structures [190, 196], urban spaces [188], furniture [91, 96, 149, 152,

185], statuettes [128,140], clothes [109,186], toys [11,123,160,166,187], pop-ups [6,7],

and general geometries [59,151]. This success has encouraged their use for mechanical

assemblies as well. Previously, systems such as those in [48, 163] used textual inter-

faces to ask users a series of questions and produce linkages based on required inputs,

outputs, and degrees of freedom. These systems used targeted queries to narrow

down the space of designs to present to users. Since Mitra et al. proposed visual cues

for mechanical assembly visualization in [121], multiple graphical tools have emerged

for designing other types of mechanisms, including cam mechanisms [207], gear sys-

tems [34], linkages [10, 180, 206], and walking automata [19]. Reconfigurable objects

such as furniture [62] and fold patterns [67, 80] have also been treated to not only

analyses of their motion, but also checks for stability, collisions, and structural prop-

erties. The designed objects can be fabricated with various rapid fabrication methods

by using complementary interactive tools that allow users to specify the fabrication

method [16,125] or object stiffness [200], and that break down the designs into parts

that can be individually manufactured and assembled [101].

More recently, interactive approaches to design have been applied to robots and

other mechatronic systems. Tools such as those in [17,143] have aimed at addressing

electromechanical constraints and producing user-customized but verifiable electron-

ics plans. Simple programming interfaces integrated into the system allowed users

to check their proposed connections against simulated behavior. Work in [111, 112]

extended these methods to robot designs, allowing users to generate combined me-

chanical and electronic designs. Work in [45,110] further added simulations enabling

users to visualize robot behavior.

These existing tools provide users with the ability to specify designs but provide

little guidance to users during the design process. In this thesis, we leverage a pa-

rameterized database to enable this feedback, allowing users to explore how design

changes affect the simulated performance to produce more effective interactions.

34

2.3 Design by Composition

Simplifying design by composing existing modules is an approach that has been pro-

posed for robot hardware before. Modular robots are systems of identical functional

modules that can be connected together in various ways to form robots with complex

functionalities [165]. Multiple types of modular robot hardware have been devel-

oped [22,37,65,116,144–146,164,195], but these systems have suffered from the idea

that all modules must be the same. While using identical modules for all parts of

a robot increases versatility and robustness, it also vastly increases the complexity

requirements for individual modules.

An alternate approach is to compose modules of different types, each with their

own intended functionality. In engineering practice, complex systems are commonly

designed by breaking them down into smaller components that are matched to build-

ing blocks in a knowledge base [26, 32]. Systems such as Topobo [142], LEGO®

Mindstorms® [68], and Fischertechnik® [55] emulate this process by providing users

with existing hardware pieces that they can snap together to create interesting new

designs. Parameterizing the pieces so that they can also be customized on the fly has

proven to be an effective strategy for computational tools to provide users with cre-

ative freedom while maintaining a simplified design process [57]. As a result, design

by composition has been used for such objects as furniture [91, 152], puppets [26],

clothing [109], and electromechanical systems [17].

In robot control, composition of motion primitives is also an effective strategy

for producing complex high-level behaviors and is often combined with hierarchical

control. Work in [130] applied this approach to a hexapod robot, using a high level

controller to determine the parameters for individual controller modules at each of the

joints. Work in [181] used a similar approach for a manipulator arm, but rather than

controlling individual joints, it used a low-level controller to decrease the effective

dimensionality of the system and a high-level controller to set the values of this

smaller set of parameters.

35

Systems that leverage a design-by-composition approach not only simplify the

design space but have also been shown to facilitate rapid fabrication. For exam-

ple, in [106], an automated pick-and-place machine was used to assemble a carefully

chosen set of electromechanical building blocks. Similarly, in [111], a composition

approach was proposed for foldable robot design that automatically generated the

fold pattern for the robot body, although no guarantees or analysis of the designs

were provided. In [45], existing hardware was combined with 3-D printed joints and

freeform components to create customized multicopters that achieved stable flight.

At a smaller scale, composition of microstructures in 3-D printing allows digital fab-

rication methods to produce material properties not achievable through solid blocks

of a single material alone [27,189].

In this thesis, we explore design of foldable robots by composition, as well as

algorithms and analysis methods that can be incorporated into the design process to

produce robots of guaranteed validity.

2.4 Origami-Inspired Engineering

Origami-inspired fabrication approaches introduce additional complexity to the design

process. In particular, fabricated objects must have valid fold patterns. For static

objects, this is a well studied problem, while questions about transformable structures

remain largely unanswered.

2.4.1 Static Structures

The problem of edge-unfolding polyhedra involves flattening a polyhedron by cutting

along some of its edges and unfolding the rest (See [39] for a survey of results). The

resulting planar figure should be a simple, non-overlapping polygon. A number of

algorithms have been proposed for approaching this problem (ref. [150]), although

none succeed in the general case. Since the traditional problem statement for edge

unfolding requires that every face be covered exactly once and that no extra material

be added, there exist polyhedra such as that in [15] for which an edge unfolding

36

does not exist. As a result, some heuristics [120,177] have been developed that allow

multiple pieces to be used or minor changes to the 3-D geometry to be made.

In contrast, extra material can be added in origami design problems [94, 95, 173],

where an arbitrary polyhedral surface is folded from a convex 2-D sheet of paper.

Work in [148] characterized these types of fold patterns and provided necessary con-

ditions for the patterns to be foldable, and systems in [67, 80] provided methods

for users to design, simulate, and visualize new fold patterns. Algorithms for auto-

matically constructing designs have been proposed on multiple fronts. In [173, 174],

arbitrary simple polyhedral surfaces were converted into origami designs by position-

ing faces of the surface on the 2-D plane and tucking away excess material to bring

neighboring faces together. Composition of origami designs is an idea that appeared

in [117, 118], in which rotational symmetry allowed the goal surface to be decom-

posed into slices, each of which could be achieved by the same fold pattern. Similarly,

Cheng and Cheong [31] decomposed a surface into horizontal slices and construct its

unfolding one level at a time. Both of these algorithms were limited in the types of

surfaces that they could produce.

In practical design, additional constraints also have to be met. For example,

objects folded from sheet metal have constraints on bend radius or design complex-

ity [35]. To deal with these constraints, work in [23] proposed a multi-stage approach

for generating a sheet metal part that covers all user-specified regions while avoid-

ing user-specified obstacles. In [135, 136], the authors solved a similar problem and

enforced manufacturability of the part by generating only designs that could be pro-

duced using a set of allowed sheet metal operations. In both of these cases, the user

inputted only constraints on what should or should not be covered, but the actual

shape of the part was left to the algorithm, allowing greater flexibility to reduce cost

and manufacturing time. Wang [192] considered the case where the desired shape of

the sheet metal part was entirely known. When the shape was not manufacturable

as a single piece, then it was decomposed into simpler manufacturable components

that could be assembled via welding, riveting, etc.

37

2.4.2 Transformable Structures

For foldable robots, it is desirable that fold patterns produce mechanisms, that is,

structures that move. Unfortunately, the space of transformable folded structures is

not well characterized. Exploration of transformable folded structures seems to have

been limited to single designs that are created by individuals (ref. Section 2.1.1) are

are difficult to generalize. Progress beyond these structures is complicated by a lack of

understanding of what types of motions can result from folding. The most promising

results have come from the study of pop-ups. For example, algorithms proposed

by [1] demonstrated how to design pop-ups for general polygons, and work in [98,119]

tackled automated pop-up design for models of buildings. Pop-up mechanisms were

analyzed and categorized in [199], and the results were used to propose new pop-

up joint types. In contrast, a similar analysis of general folded designs as spherical

mechanisms was performed in [21], but although many models from popular literature

were classified, no new principles were derived or new mechanisms found.

A small set of parameterized transformable designs can be found in the literature.

For example, work in [60] proposed a new rotational joint type that can be composed

into closed loops of arbitrary size. A collapsible wheel was proposed in [97] to enable

robots to shrink in height and roll under obstacles. A continuously foldable cylinder

that could be tessellated to produce cellular structures that expand and contract was

demonstrated in [176], and work in [133] showed a 3-D analog with three degrees

of freedom. Work in [86] demonstrated a pattern based on the Kresling pattern for

controlling not only the shape but also the stiffness of cylindrical structures. Finally,

work in [49, 113] suggested methods for combining designs for parameterized rigid

robot body parts to form entire robot designs.

Although these pieces of work present interesting new degrees of freedom for

robots, none of them systematically explores the foldable mechanism design space. In

this thesis, we propose parameterized joint designs for joints commonly used in robot

designs, as well as methods for them to be combined to create more complex joints

and full mechanisms.

38

Chapter 3

Notation

This chapter provides a brief summary of the notation and symbols used in the thesis.

Chapters 4 and 5 are primarily concerned with fold patterns. Briefly, a fold pattern

(𝑃,ℱ) consists of a non-self-intersection 2-D polygon 𝑃 and a set of folds ℱ . Each

fold 𝑓 ∈ ℱ is a line segment on the interior of 𝑃 and is associated with a fold angle.

The 3-D shape that results from bending the fold pattern at each of the folds is called

the folded state. The following symbols refer to properties of a fold pattern or a

folded state.

Table 3.1: Symbols pertaining to fold patterns

Symbol Definition
(𝑃,ℱ) A fold pattern consisting of a polygon 𝑃 and a set of folds ℱ

𝑒 An edge of an unfolding (𝑃,ℱ)
𝑓 = (𝑒, 𝜑) A fold consisting of a fold line 𝑒 and a fold angle 𝜑
ℰ(𝑃,ℱ) Edge set of the fold pattern (𝑃,ℱ)
𝒱(𝑃,ℱ) Vertex set of the fold pattern (𝑃,ℱ)

𝑁 Number of vertices
𝑀 Number of edges

CH(𝑃) Convex hull of the polygon 𝑃
𝑄 Polyhedral complex, image of a folded state
ℰ(𝑄) Edge set of the polyhedral complex 𝑄
𝒱(𝑄) Vertex set of the polyhedral complex 𝑄
p A path defined by vertices 𝑣1, 𝑣2, . . . 𝑣𝑛

39

Additionally, Chapter 4 presents foldable rotational and translational joint designs

and a model of the mechanics of the proposed designs. The following symbols are

relevant to these joints.

Table 3.2: Symbols pertaining to foldable joint designs

Symbol Definition
𝑅 Joint range of motion
𝑁𝑠 Number of sides of joint
𝑁ℓ Number of layers of joint

𝑟, 𝑟𝑖, 𝑟𝑜 Radius, inner radius, and outer radius of rotational joints
𝑑, 𝑤, ℎ Depth, width, and height of one segment of prismatic joint

𝑘𝑖 Stiffness of fold 𝑖
𝜃 Rotational joint angle
𝜏𝜃 Holding torque required to maintain joint at angle 𝜃
𝑥 Prismatic joint position
𝑅𝑥 Holding force required to maintain joint at position 𝑥

Chapters 6 and 7 discuss designing robots within the composition framework. A

robot design D consists of a hierarchy of connected modules with geometric parame-

ters q and gait parameters 𝜃𝑖 and 𝑔𝑖. The robot designs are evaluated by discretizing

time, iterating through a sequence of rigid body simulations, and repeating the gait

until the robot reaches a steady state behavior. The following symbols refer to a

robot design and the parameters related to its geometry, gait, or simulation.

Table 3.3: Symbols pertaining to robot design

Symbol Definition
D Robot design
q Geometric parameters of a robot design
𝑄 Feasible set for parameters of a robot design
𝑁𝑔 Number of steps in a gait
𝑔𝑖 Step parameter for limb 𝑖 in a gait
𝜃𝑖 Angle parameters for limb 𝑖 in a gait
∆𝑡 Time step used for robot simulation
c𝑖 Contact points of robot with the ground at time 𝑡𝑖
𝑡𝑖0 Start time for robot steady state behavior
𝑡𝑖𝑓 End time for robot steady state behavior

40

Our system evaluates multiple performance metrics during the simulation and

reports these metrics to the designer. The following symbols are the relevant variables

and metrics used.

Table 3.4: Symbols pertaining to robot performance metrics

Symbol Definition
x(𝑡) Position of robot center of mass projected on ground at time 𝑡
x̃(𝑡) Expected position of robot at time 𝑡 given a circular trajectory
𝑆 Stability (mm)
𝑉 Velocity (mm/s)
𝑊 Wobbliness (radians)
∆𝛾 Combined pitch-roll angular change (radians)
𝐸 Slip (mm)
𝜙 Heading (radians)
𝜌 Curvature (1/m)
𝜎2 Variance (mm2)

Finally, Chapter 8 discusses alternate fabrication methods. The following symbols

refer to variables used in the generation of the fabrication plans for these methods.

Table 3.5: Symbols pertaining to fabrication

Symbol Definition
𝑡 Thickness of material used

ℓ𝑖, ℓ𝑜 Inner and outer positions for teeth generation along a fold
𝑤𝑔 Gap width between two faces of a fold pattern

41

42

Chapter 4

Transformable Foldable Modules

In a design-by-composition approach, a key element is the modules that make up

the database. For robots, those modules must consist of both rigid components and

movable joints. However, as discussed in Chapter 2, transformable folded structures

have not been well studied, and the space of transformable foldable designs remains

uncharacterized.

In this chapter, we address the question of what motions are achievable through

folding, and we contribute fold patterns for revolute and prismatic joints that are

parameterized to achieve a user-specified size and range of motion. The designs

provide users with greater flexibility in fold pattern design compared to previous

modules [60, 113]. Since the joints are meant to be used in foldable robots, all of

the designs provide natural attachment points for other modules, as well as space

for actuators. We have fabricated our joints and compared their force-displacement

curves to a pseudo-rigid-body model [77]. Together with rigid shapes, these joints

form a base set of modules from which robots with any desired kinematics can be

created out of a folded sheet.1

1The majority of this chapter was published in [170,172].

43

fold pattern (P, F)
folded state

unfolds into

folds intofold line eP

P

fold angle φ

Figure 4-1: A fold pattern (𝑃,ℱ) consists of a polygon 𝑃 and a set of folds, each of
which has a fold line and a fold angle. The pattern folds into a 3-D folded state.

4.1 Parametric Designs

Our mechanisms and robots are based on three joint types, a hinge joint, a prismatic

joint, and a pivot joint. In this section, we present the parameterized fold patterns

for each.

4.1.1 Definitions

We begin with informal definitions for the terms used in the following descriptions.

A more formal treatment can be found in [39]. Consider a non-self-intersecting 2-D

polygon 𝑃 , possibly with holes. A fold line on 𝑃 is a line segment such that both

endpoints are on the boundary of 𝑃 and the segment itself lies on the interior of 𝑃 .

A fold pattern (𝑃,ℱ) consists of such a polygon 𝑃 and a set of folds ℱ on 𝑃 . Each

fold is a fold line associated with a fold angle in the range [−𝜋, 𝜋]. The folds in a

fold pattern divide the original polygon 𝑃 into faces, smaller polygons that overlap

only at the fold lines. The folded state is the 3-D shape resulting from bending the

fold pattern to the given fold angle at each of the folds and keeping the faces flat

(ref. Figure 4-1). The folded state must be non-crossing and should also be distance

preserving (i.e., not stretch or tear the material).

When all fold angles are single values, then a fold pattern produces a static struc-

ture. Positive fold angles correspond to what we common term valley folds, and

negative fold angles are mountain folds. Since we are interested in patterns for joints,

44

which allow movement, some folds must be able to achieve entire fold angle ranges,

which are connected subsets of [−𝜋, 𝜋]. We call these folds the active folds. In this

thesis, figures depicting fold patterns will use the convention that active folds are

drawn as solid lines, valley folds as dashed lines, mountain folds as dashed-dotted

lines, and cut lines forming the boundary of 𝑃 as solid black lines.

Since the purpose of joints is to connect other structures to each other, our joints

have faces that exist specifically to attach to other bodies. We call these faces the

bases of the joint. All of our joints are designed to connect two structures to each

other and so each have two bases.

4.1.2 Hinge Joint

Hinge joints enable rotation about an axis parallel to a base and can be implemented

as a single active fold on the base itself. This is the approach taken in many previously

designed foldable robots [49,113,161]. However, when hinge joints are created in this

way, the joint itself consists of a single fold and occupies zero volume. As a result,

the joint limits depend on the geometry of the bodies being connected and cannot be

independently specified.

Joint description We have designed a hinge joint of a more general form, shown

in Figure 4-2(a). The base of the joint is a regular polygon with 𝑁𝑠 sides (𝑁𝑠 = 6 in

R

Ns
r

(a) Hinge joint

h

R

w
d

Nc

Nl

(b) Prismatic joint

Ns rori

R

Nl

(c) Pivot joint

Figure 4-2: Summary of fold patterns and folded states for three basic joint types
with input parameters indicated. The base faces are shaded gray.

45

the example), where 𝑁𝑠 is even. From two opposite sides, sloped faces angle to meet

at the axis of rotation. Triangular faces are attached to all other sides of the bases

to provide structural support.

When the joint moves, the top base rotates about the axis of rotation relative to

the bottom base. The limits of the rotational motion are when two rectangular faces

touch. Thus, the angle between a rectangular face and the base it is connected to

is determined by the joint limits as 𝑅
4
, where 𝑅 is the total desired angular range of

motion.

Fold pattern The associated fold pattern is a strip that attaches to the outer edges

of the base polygons and contains the rectangular and triangular faces. Additional

folds that tuck away extra material help form the hinge shape. Input parameters

to the pattern are the number of sides 𝑁𝑠, the radius 𝑟 of the base, and the total

range of motion 𝑅. The basic hinge joint design is always symmetric. If asymmetric

joint limits are desired, users can extend the base by attaching a sloped polyhedron

and tilting the joint. Note that the joint angle is restricted to be between −𝜋 and

𝜋 radians, and that the length of the joint increases with the range of motion.

4.1.3 Prismatic Joint

Joint description A prismatic joint is created by composing parallelogram link-

ages to produce linear motion of a desired distance without increasing the size of the

joint. Each base of the joint is a rectangular face that forms one side of a parallel-

ogram linkage. In a single parallelogram linkage, horizontal and vertical translation

are coupled. By connecting linkages in a grid, these two degrees of freedom can be

decoupled. Figure 4-2(b) shows a two-by-two grid of linkages of height ℎ. By restrict-

ing horizontal motion, the joint enables vertical translation by as much as 2ℎ. By

restricting the vertical distance between the bases to be ℎ, the joint enables horizontal

translation by a distance ℎ
√

3 in either direction.

The resulting structure enables 2 degree-of-freedom motion in a plane. To produce

a true prismatic joint, which allows linear motion in one direction but not in any other,

46

leftmost
unit

add-on
unit

h wd 2wh wh w

Nc

Nl

Figure 4-3: Prismatic joint construction

we impose a height constraint to the joint using additional faces added in a subsequent

stage (ref. mechanism in Figure 5-12). This yields a joint with translational motion

parallel to the base.

Fold pattern The fold pattern for the grid of parallelogram linkages is a grid of

rectangular faces, built by repeating and connecting units as shown in Figure 4-3.

On the leftmost side is a unit consisting of four faces that fold into a parallelogram

linkage. To add columns, three-face add-on units are attached to the right, with

the fold angles of each unit opposite in sign to the one before. For each layer, the

entire row of units is duplicated and attached above the previous layer to the faces

corresponding to the top link of the linkage below. Input parameters are the dimen-

sions ℎ, 𝑤, and 𝑑 of one linkage in the grid, the joint’s horizontal range of motion 𝑅,

and the number of columns 𝑁𝑐 in the grid. Assuming that the height of the linkage

is constrained to be ℎ, the theoretical number of layers 𝑁ℓ can be computed using

the relationship 𝑅 = 2ℎ
√︀

𝑁2
ℓ − 1, although practically we approximate 𝑁ℓ using the

simpler expression 𝑅 = 2ℎ (𝑁ℓ − 1). The joint’s range of motion can be increased by

changing either ℎ or 𝑁ℓ.

4.1.4 Pivot Joint

Joint description Pivot joints allow rotation about an axis perpendicular to the

base. To achieve this twisting motion, we use spherical parallelogram linkages ar-

ranged in a cycle. Figure 4-4 shows an example of 5 folded square linkages in this

configuration. The black outlines indicate the corresponding 3-D linkage, and the

47

− 2𝜋
5 rotation −𝜋

5 rotation 0 rotation 𝜋
5 rotation 2𝜋

5 rotation
height = 0 height = 0.85 height = 1 height = 0.85 height = 0

Figure 4-4: Motion of 1 layer of a pivot joint with all black lines having unit length

−2π −π 0 π 2π
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Rotation Ns

m
ax

im
um

 e
lo

ng
at

io
n

(%
)

Ns = 5
Ns = 6
Ns = 7
Ns = 8
Ns = 9
Ns = 10

−3π/2 −π/2 π/2 3π/2

Figure 4-5: Elongation of folds in a pivot joint over the course of rotation for 𝑁𝑠

between 5 and 10. Maximum elongation decreases as 𝑁𝑠 increases.

gray lines indicate folds, which correspond to the axes of rotation for the joints of the

black linkage. When this arrangement of faces is used, a twist-and-collapse motion

can be performed. Note that this motion is theoretically not rigid since it requires

elongation of some of the fold lines. It is possible to create a rigidly foldable structure

by adding triangular pleats to the corners of each of the square linkages to allow

stretch. Since our simulations show that the amount of elongation is at most 1% (ref.

Figure 4-5) and foldable robots have generally been fabricated from flexible materials,

we use the simpler design shown and accommodate some stretch by replacing one fold

out of the four in each square linkage with a cut. The bases of the pivot joint are

regular polygons, and each side is attached to one square linkage.

In the same way as for the prismatic joint, we stack linkages in series to decouple

vertical translation from twisting motion. Figure 4-2(c) shows an 8-sided 3-layer

stacked linkage structure. When the relative rotation of the two bases is maintained

at 0, the linkage can achieve a vertical translation of up to 2𝑁ℓ𝑟𝑜 sin 𝜋
𝑁𝑠
. Restricting

the distance between the two bases to be the height of one layer using additional

48

repeated
unit

2π/Ns

ro ri
Ns

Nl

Figure 4-6: Pivot joint construction

faces enables pure twisting motion. We add faces for height constraints in subsequent

steps.

Fold pattern The pattern is built similarly to the prismatic joint, by repeating

and connecting identical units. The unit, shown in Figure 4-6, consists of four isosce-

les trapezoids, each with an angle equal to 2𝜋
𝑁𝑠

between the legs of the trapezoid,

connected along the legs. A total of 𝑁𝑠 units are attached to each other at the faces

corresponding to the side links of the linkages in order to produce the 𝑁𝑠 linkages that

form one layer of the joint (shaded gray). The resulting strip of units is duplicated

once for each layer and attached to the adjacent layers using the faces corresponding

to the top and bottom links of the linkages. Input parameters to this design are

the number of sides 𝑁𝑠 > 4 of the base, the range of motion 𝑅, and the inner and

outer radii 𝑟𝑖 and 𝑟𝑜 of the joint. Similarly to the prismatic joint, we approximate

the number of layers 𝑁ℓ using the expression 𝑅 = 4𝜋
𝑁𝑠

(𝑁ℓ − 1). In Figure 4-2(c), the

joint has 8 sides and 3 layers and can twist 𝜋 radians.

4.2 Pseudo-Rigid Body Analysis

Folded structures are compliant mechanisms whose faces and folds all deform with

external forces. However, such compliant mechanisms can be modeled as mechanisms

where rigid faces are joined at hinges with torsion springs [76, 77], a method that

was applied to folded cartons in [36,141]. In this section, we present a model for our

folded joints, which we later compare to experimental measurements.

49

1 2

+ τ
θ

Figure 4-7: Cross-sectional view of hinge joint with active folds labeled

4.2.1 Hinge Joint

A hinge joint is two rigid bodies connected at two active folds. Figure 4-7 shows a

cross-sectional view of the hinge joint. The angle 𝜃 is the joint angle and folds 1 and

2 are the active folds. Let 𝜑1 and 𝜑2 represent the fold angles of the folds 1 and 2

respectively. These fold angles are functions of the joint angle

𝜑1 = 𝑅/2 + 𝜃 (4.1)

𝜑2 = 𝑅/2− 𝜃 (4.2)

where 𝑅 is the range of motion of the joint.

Then the holding torque 𝜏𝜃 necessary to maintain the joint at an angle 𝜃 is

𝜏𝜃 = −𝑘1 (𝜑1 − 𝜑𝑜
1) + 𝑘2 (𝜑2 − 𝜑𝑜

2) (4.3)

where stiffnesses 𝑘1 and 𝑘2 may be functions of 𝜃 and 𝜑𝑜
1 and 𝜑𝑜

2 are the equilibrium

positions of the active folds. When the stiffness 𝑘1 = 𝑘2 = 𝑘 and using Equations (4.1)

and (4.2), this expression simplifies to

𝜏𝜃 = −2𝑘

(︂
𝜃 − 𝜑𝑜

1 − 𝜑𝑜
2

2

)︂
(4.4)

That is to say, the joint as a whole acts as a torsion spring with spring constant equal

to the sum of the spring constants of the active folds.

50

Since each of our joints are constructed from a single sheet of material, the stiffness

𝑘 as a function of 𝜃 can be computed as [76]

𝑘 = 𝐾Θ
𝐸𝐼

ℓ
(4.5)

where 𝐾Θ is the nondimensionalized stiffness, 𝐸 is the Young’s modulus of the mate-

rial, 𝐼 is the area moment of inertia of the section of material involved in the fold, and

ℓ is the length of the pivot. Since the folds are perforated using the laser cutter, it is

difficult to calculate the moment of inertia 𝐼 for a fold exactly. However, we expect

a constant proportion of the material is removed during perforation, so

𝐼 ∝ ℓ𝑓 𝑡
3 (4.6)

where ℓ𝑓 is the length of the fold and 𝑡 is the thickness of the material. That is, for

a given material,

𝑘 ∝ ℓ𝑓 𝑡
3 (4.7)

4.2.2 Prismatic Joints

Prismatic joints are formed by stacking parallelogram units. We first consider a 2-layer

prismatic joint. To formulate the pseudo-rigid-body model, we use the equivalent

linkage shown in Figure 4-8(a), where the fold angles of the active folds are labeled.

Since each unit is a parallelogram, all folds labeled 1 must have the same fold angle.

In addition, it is reasonable to assume for the sake of simplicity that all of these folds

labeled 1 have the same stiffness and equilibrium position since they are all fabricated

identically and they all experience the same motions. This is similarly true for the

folds labeled 1', 2, and 2' respectively.

In that case, it is possible to simplify the prismatic joint to the diagram in

Figure 4-8(b), where the folds in the bottom row of units are reduced to a single

51

x

...
1 1 11 1'

1'
1' 1'

2

2 2 22'
2' 2' 2'

h

h

y

(a) 𝑁ℓ = 2

x

1

2

L1

L2

(b) Simplified diagram

τ

L1 L2
Rx

Ry

Rx

Ry

Fx

Fy

Fx
Fy

τ1 2

(c) Individual links

Figure 4-8: (a) Diagram of 2-layer prismatic joint with active folds labeled. (b) Sim-
plified linkage diagram. (c) Free-body diagram for individual links in (b).

equivalent active fold that produces a torque

𝜏1 = 𝑘1 (𝜑1 − 𝜑𝑜
1) (4.8)

on link 𝐿1, where 𝜑1 is the angle at fold 1, and the top row of units are reduced to a

single active fold that produces a torque

𝜏2 = 𝑘2 (𝜑2 − 𝜑𝑜
2) (4.9)

on link 𝐿2, where 𝜑2 is the angle at fold 2. The distance 𝑥 is the joint position. To

enable horizontal translation, the total height of the linkage is maintained at ℎ, so

the following relations must hold.

ℎ cos𝜑1 + ℎ cos𝜑2 = 𝑥 (4.10)

ℎ sin𝜑1 + ℎ sin𝜑2 = ℎ (4.11)

To compute the holding force 𝑅𝑥 necessary to maintain the joint at a specific

position 𝑥, we use the following force balance equations. For link 𝐿1,

𝐹𝑥 −𝑅𝑥 = 0 (4.12)

𝐹𝑦 −𝑅𝑦 = 0 (4.13)

𝜏1 − ℎ𝑅𝑥 sin𝜑1 − ℎ𝑅𝑦 cos𝜑1 = 0 (4.14)

52

Similarly, for link 𝐿2,

𝜏2 − ℎ𝑅𝑥 sin𝜑2 − ℎ𝑅𝑦 cos𝜑2 = 0 (4.15)

So the holding force 𝑅𝑥 can be found by solving the following matrix equation for 𝐹𝑥.

ℎ

⎡⎣ sin𝜑1 cos𝜑1

sin𝜑2 cos𝜑2

⎤⎦⎡⎣ 𝑅𝑥

𝑅𝑦

⎤⎦ =

⎡⎣ 𝜏1

𝜏2

⎤⎦ (4.16)

It is simple to see that adding more layers to the prismatic joint just adds more rows

to the matrix equation and more variables to the distance constraints. Thus the

relationship between holding force and fold torques is

ℎ

⎡⎢⎢⎢⎢⎢⎢⎣
sin𝜑1 cos𝜑1

sin𝜑2 cos𝜑2

sin𝜑3 cos𝜑3

.

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣ 𝑅𝑥

𝑅𝑦

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜏1

𝜏2

𝜏3

. . .

⎤⎥⎥⎥⎥⎥⎥⎦ (4.17)

subject to

𝑁ℓ∑︁
𝑖=1

ℎ cos𝜑𝑖 = 𝑥 (4.18)

𝑁ℓ∑︁
𝑖=1

ℎ sin𝜑𝑖 = ℎ (4.19)

4.2.3 Pivot Joint

Since the pivot joint consists of layers of parallelogram units similarly to the prismatic

joint, we expect it to follow a similar model. In particular, Figure 4-9(a) shows a single

square linkage on a pivot joint. Since the joint is rotationally symmetric, the analysis

for every link 𝐿𝑖 in a single layer of the joint is the same. Let 𝜑𝑖 be the measure of

fold angle 𝑖 as indicated in the figure, and let 𝜃𝑖(𝜑𝑖) denote the rotation about the

center axis of the pivot joint that is contributed by layer 𝑖. The length ℓ𝑠 = 2𝑟𝑜 sin 𝜋
𝑁𝑠

53

θi

ls

ls
ro

i

i'Li

(a) One square linkage

ls

roLi

xi
yi

zi

θi

θ i /2

ro

2rosin(i/2)θ

(b) Link 𝐿𝑖 geometry

Rzi

Rxi
Ryi

Fzi

Fyi

τxi

FxiLi

(c) Link 𝐿𝑖

Figure 4-9: (a) Diagram of a single square linkage on a pivot joint. (b) Relevant
dimensions for analysis of link 𝐿𝑖. (c) Free-body diagram of link 𝐿𝑖.

is the length of one side of the pivot joint and also the length of each link on the

corresponding linkage.

To construct a pseudo-rigid-body model, we approximate the torque on the link

𝐿𝑖 contributed by the folds at 𝑖 and 𝑖′ as

𝜏𝑖 = 𝑘𝑖 (𝜑𝑖 − 𝜑𝑜
𝑖) (4.20)

and assume all links rigid [76]. The height of layer 𝑖 is

√︂
ℓ2𝑠 −

(︁
2𝑟𝑜 sin 𝜃𝑖(𝜑𝑖)

2

)︁2
=

2𝑟𝑜

√︁
sin2 𝜋

𝑁
− sin2 𝜃𝑖(𝜑𝑖)

2
. When the joint is constrained to a total height of ℓ𝑠, the

following geometrical relations must hold:

𝑁ℓ∑︁
𝑖=1

𝜃𝑖(𝜑𝑖) = 𝜃 (4.21)

2𝑟𝑜

𝑁ℓ∑︁
𝑖=1

√︂
sin2 𝜋

𝑁
− sin2 𝜃𝑖(𝜑𝑖)

2
= ℓ𝑠 (4.22)

To calculate the holding torque, we use the free-body diagram of link 𝐿𝑖 shown in

Figure 4-9(c). The joint produces rotational motion. For a single link, we align the

x̂𝑖 direction radially outward from the center of the joint, according to the bottom

attachment point, the ẑ𝑖 direction parallel to the center axis of the joint, and the ŷ𝑖

direction according to the right-hand convention. Then the force balance equations

54

are as follows:

𝐹𝑥𝑖
−𝑅𝑥𝑖

= 0 (4.23)

𝐹𝑦𝑖 −𝑅𝑦𝑖 = 0 (4.24)

𝐹𝑧𝑖 −𝑅𝑧𝑖 = 0 (4.25)

𝜏𝑥𝑖
− 2𝑟𝑜𝑅𝑦𝑖

√︂
sin2 𝜋

𝑁
− sin2 𝜃𝑖(𝜑𝑖)

2
− 𝑟𝑜𝑅𝑧𝑖 sin 𝜃𝑖(𝜑𝑖) = 0 (4.26)

The total holding torque for that layer is equal to 𝜏𝜃𝑖 = 𝑁𝑠𝑟𝑜𝑅𝑦𝑖 .

Between adjacent layers, the holding torque for those two layers must be equal at

equilibrium

𝜏𝜃𝑖 = 𝜏𝜃𝑖−1
(4.27)

which implies 𝑅𝑦𝑖 = 𝑅𝑦𝑖−1
= 𝑅𝑦.

We can therefore compute the reaction forces by solving the following matrix

equation

𝑟𝑜

⎡⎢⎢⎢⎢⎢⎢⎣
2
√︁

sin2 𝜋
𝑁
− sin2 𝜃1(𝜑1)

2
sin 𝜃1(𝜑1)

2
√︁

sin2 𝜋
𝑁
− sin2 𝜃2(𝜑2)

2
sin 𝜃2(𝜑2)

2
√︁

sin2 𝜋
𝑁
− sin2 𝜃2(𝜑2)

2
sin 𝜃3(𝜑3)

.

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣ 𝑅𝑦

𝑅𝑧

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜏𝑥1

𝜏𝑥2

𝜏𝑥3

. . .

⎤⎥⎥⎥⎥⎥⎥⎦ (4.28)

subject to constraints Equations (4.21) and (4.22). The net holding torque for the

joint is then equal to 𝜏𝜃 = 𝑁𝑠𝑟𝑜𝑅𝑦.

4.3 Experimental Comparisons

We have generated fold patterns for our basic joints using multiple different param-

eters and constructed them out of 0.051 mm and 0.127 mm thick polyester film,

cutting them using a laser cutter and perforating the folds for easier assembly. Before

printing, we added tabs and slots to the pattern to attach edges that should remain

coincident in the folded state.

55

(a) Prismatic joint (b) Pivot joint

Figure 4-10: Joints folded from polyester film in two different positions

Figure 4-10 shows two of our folded joints. Figure 4-10(a) shows the result for

a 𝑁𝑐 = 2, 𝑁ℓ = 4 prismatic joint with every layer 15 mm tall. Without height

constraints, it is capable of 80 mm horizontal motion and 60 mm vertical motion.

Figure 4-10(b) shows a 6-sided pivot joint with 𝑟𝑜 = 44 mm and a 2𝜋 radian (360∘)

range of motion. The faces corresponding to one square linkage are outlined. The

joint has 4 layers and is constrained in height by additional faces subsequently added

to the fold pattern. In particular, we added a tube of the desired height down the

center of the joint; we attached it to the base on one side of the joint and to an added

perpendicular face on the other side (ref. Figure 5-10 for example fold pattern). In

this way, the bases can rotate relative to each other but cannot move farther apart

than the length of the tube. Since plastic film has thickness, adding layers to increase

a joint’s range of motion increases the size of the joint: each layer adds the thickness

of five sheets of plastic in the case of the prismatic joint, and four sheets of plastic for

the pivot joint. For the joint in Figure 4-10(b), the additional thickness corresponds

to almost half the joint length. This is not a concern for the hinge joint, which does

not rely on layers to control the range of motion.

4.3.1 Electronics Integration

Print-and-fold manufacturing enables using a single uniform process to fabricate en-

tire robots. Actuation, sensing, and computation can be simultaneously incorporated

into a robot during the fabrication process by printing circuitry and mounting com-

ponents directly onto the fold pattern before folding. All of our joints provide natural

56

Figure 4-11: Hinge joint with integrated electronics

placement for actuators and circuitry to be integrated into the folded structure, ob-

viating the need for a post-folding stage of attaching circuit boards, actuators, and

additional wires.

We used the following procedure to fabricate an actuated hinge joint. We used the

design for a 4-sided 𝜋 radian (180∘) hinge joint and added a motor and potentiometer,

as well as the control circuitry of a standard servomotor, to produce a hinge joint

with position control. We placed the motor at the center of the hinge joint, with the

output shaft aligned with the axis of rotation and directly connected to the input of

the potentiometer. We manually designed a motor mount to keep the motor in place.

The control circuit was designed by hand and line the faces of the bottom half of the

joint.

Circuit traces were printed on copper tape using a solid-ink printer. The tape

was then affixed to a sheet of 0.127 mm thick polyester film, and the circuit etched

out using a ferric chloride solution. The fold pattern was cut out and fold lines

perforated on the reverse side of the polyester film using a laser cutter. Actuators,

sensors, and other circuit components were soldered directly onto the circuit traces

by hand. Finally, the device was folded into shape.

The final hinge is pictured in Figure 4-11. Despite the motor and potentiometer

leads being on opposite sides of the hinge joint, both components were able to be

soldered directly into the circuit without additional wires. We sent a PWM signal to

57

the microcontroller on the joint to control its angle. The joint was able to achieve

the entire 𝜋 radian (180∘) range for which it was designed. This joint demonstrates

the feasibility of integrating sensors and actuators directly with our fold patterns to

produce foldable robots.

4.3.2 Force and Torque Measurements

To check the spring-based models derived in Section 4.2, we generated and folded

designs for multiple hinge, prismatic, and pivot joints and measured the holding

forces and torques for a range of positions.

Hinge Joint

For the hinge joint, we generated three hinges with 4 sides (𝑟 = 25 mm) and varying

ranges of motion: 𝜋
2
radians, 𝜋 radians, and 3𝜋

2
radians. We folded each design out of

both 0.051 mm and 0.127 mm thick polyester film and measured the holding torque of

each joint over its entire range of motion. Figure 4-12 shows the experimental setup

and the three joint designs tested. A Futek TFF500 torque sensor was attached to

one base of the hinge joint and measured the torque as a stepper motor moved the

other base. A labview program was used to control the stepper motor and to record

torque measurements at 1 kHz. Each hinge was moved one step (200 steps/rev.) every

50 ms, first in a clockwise direction to the positive joint limit, then counterclockwise

(a) Experimental setup

R = π/2 R = π R = 3π/2

(b) Tested hinge joints

Figure 4-12: Experimental setup used to measure holding torque of hinge joints

58

0
5

0

5

joint position (rad)

ho
ld

in
g

to
rq

ue
 (N

−m
m

)

1
2
3
4

1
2
3
4

π/4π/2 π/2π/4

(a) 𝑅 = 𝜋
2

0
5

0

5

joint position (rad)

ho
ld

in
g

to
rq

ue
 (N

−m
m

)

1
2
3
4

1
2
3
4

π/4π/2 π/2π/4

(b) 𝑅 = 𝜋

0
5

0

5

joint position (rad)

ho
ld

in
g

to
rq

ue
 (N

−m
m

)

3π/4 3π/4

1
2
3
4

1
2
3
4

π/4π/2 π/2π/4

(c) 𝑅 = 3𝜋
2

Figure 4-13: Holding torque vs. joint position for hinge joints folded from 0.051 mm
thick polyester film, with joint ranges 𝑅 = 𝜋

2
, 𝑅 = 𝜋, and 𝑅 = 3𝜋

2

0
joint position (rad)

ho
ld

in
g

to
rq

ue
 (N

−m
m

)

π/4π/2 π/2π/4

0

10

20

30

10

20

30

(a) 𝑅 = 𝜋
2

0
joint position (rad)

ho
ld

in
g

to
rq

ue
 (N

−m
m

)

π/4π/2 π/2π/4

0

10

20

30

10

20

30

(b) 𝑅 = 𝜋

0
joint position (rad)

ho
ld

in
g

to
rq

ue
 (N

−m
m

)
3π/4 3π/4π/4π/2 π/2π/4

0

10

20

30

10

20

30

(c) 𝑅 = 3𝜋
2

Figure 4-14: Holding torque vs. joint position for hinge joints folded from 0.127 mm
thick polyester film, with joint ranges 𝑅 = 𝜋

2
, 𝑅 = 𝜋, and 𝑅 = 3𝜋

2

to the negative joint limit, for a total of 4 repetitions. For each step of the motor,

the torque measurements obtained at that step were averaged.

Figures 4-13 and 4-14 show the results. Measurements were consistent across runs.

For small angular deflections, folds can be approximated by a linear spring model.

However, for larger angular deflections, folds start to exhibit nonlinear behavior.

Holding torque levels off as the joint angle increases, similarly to the findings in [36],

and even decreases for the thinner 0.051 mm thick material. For the thicker material

(0.127 mm thick) the folds show hysteresis, with the amount of hysteresis increasing

with the joint range. In the context of our model, this means that the equilibrium

position of the joint changes depending on the motion of the joint.

59

Prismatic Joint

To test our model of the prismatic joint, we generated and folded prismatic joints with

𝑁𝑐 ∈ {1, 2, 4}, 𝑁ℓ ∈ {2, 4, 6, 8}, for a total of 12 joints. Each joint had ℎ = 𝑑 = 15 mm

with 𝑁𝑐𝑤 = 60 mm, and we tested a joint range of 2(𝑁ℓ − 1)×15 mm. We used an

Instron 5944 machine to measure the holding force vs. joint displacement for each of

the joints. The height of the joint was maintained at 15 mm using the setup shown in

Figure 4-15. We moved the joint to the negative joint limit at a rate of 10 mm/min.,

then to the positive joint limit, for a total of 3 repetitions.

Figures 4-16 and 4-17 show the resulting curves for three of the joints folded

from 0.051 mm and 0.127 mm thick polyester film respectively. Active folds in a

prismatic joint have fold angles that range from 0 to 𝜋 radians, similar to the hinge

joint with a range of motion of 𝜋 radians, so it is expected that the curves exhibit

hysteresis. The figures also show the model proposed in Section 4.2 fitted to the

data using a least squares fit over the stiffness and equilibrium positions for each row.

For simplicity, we assumed that the stiffness values 𝑘 are constant and the same for

each row of units. The shape of the experimental values matches well with the fitted

(a) Experimental setup (b) Close-up of joint

Figure 4-15: Experimental setup used to measure holding force of prismatic joints

60

0
joint position (mm)

ho
ld

in
g

fo
rc

e
(N

)

0

0.03

0.06

0.03

0.06
1515

experimental
fitted model

(a) 𝑁𝑐 = 1, 𝑁ℓ = 2

0
joint position (mm)

ho
ld

in
g

fo
rc

e
(N

)

0

0.05

0.1

0.05

0.1
1545

experimental
fitted model

30 15 30 45

(b) 𝑁𝑐 = 2, 𝑁ℓ = 4

0
joint position (mm)

ho
ld

in
g

fo
rc

e
(N

)

0

0.1

0.2

0.1

0.2
6060

experimental
fitted model

3030

(c) 𝑁𝑐 = 4, 𝑁ℓ = 6

Figure 4-16: Holding force vs. joint position for prismatic joints folded from 0.051 mm
thick polyester film, overlaid with curves fitted from the model

experimental
fitted model

0
joint position (mm)

ho
ld

in
g

fo
rc

e
(N

)

15 15

0

0.2

0.4

0.2

0.4

(a) 𝑁𝑐 = 1, 𝑁ℓ = 2

experimental
fitted model

0
joint position (mm)

ho
ld

in
g

fo
rc

e
(N

)

45 45

0

0.5

1

0.5

1
30151530

(b) 𝑁𝑐 = 2, 𝑁ℓ = 4

experimental
fitted model

0
joint position (mm)

ho
ld

in
g

fo
rc

e
(N

)

60 60

0

1

2

1

2
30 30

(c) 𝑁𝑐 = 4, 𝑁ℓ = 6

Figure 4-17: Holding force vs. joint position for prismatic joints folded from 0.127 mm
thick polyester film, overlaid with curves fitted from the model

curves. In general, the stiffness value was the same between forward and backward

motion, while the equilibrium positions changed, which is consistent with our findings

for the hinge joint. We suspect most of the approximation error can be attributed to

nonlinearities in the spring torque. Large spikes in force such as those near 𝑥 = 30 mm

in Figure 4-16(b) and near 𝑥 = −60 mm in Figure 4-17(c) occurred when the tabs

that we added to facilitate folding snagged on other parts of the joint.

Table 4.1 shows the average stiffness values 𝑘 for each of the fitted curves. Stiff-

nesses for the thinner material are lower than for the thicker material by a factor of

13.1 in the mean. This is close to the theoretical factor of
(︀
0.127 mm
0.051 mm

)︀3
= 15.4 derived

from Equation (4.7). Finally, the stiffness of a row increases with 𝑁𝑐. This is unsur-

prising since as 𝑁𝑐 increases, the number of active folds that contribute to the overall

force also increases.

61

Table 4.1: Fitted fold stiffness values 𝑘 for prismatic joints made from two thickness
of polyester film

0.051 mm thick 0.127 mm thick
𝑁𝑐 = 1 𝑁𝑐 = 2 𝑁𝑐 = 4 𝑁𝑐 = 1 𝑁𝑐 = 2 𝑁𝑐 = 4

𝑁ℓ = 2 0.008 0.011 0.020 0.13 0.15 0.21
𝑁ℓ = 4 0.013 0.018 0.022 0.20 0.34 0.38
𝑁ℓ = 6 0.023 0.038 0.050 0.24 0.36 0.71
𝑁ℓ = 8 0.017 0.044 0.041 0.22 0.33 0.46

Pivot Joint

We generated and folded three 6-sided pivot joints (𝑟𝑜 = 44 mm) with 2, 4, and 6

layers, and we measured the holding torque for the joints using a similar setup to

the one used for the hinge joint, with slight modifications as shown in Figure 4-18.

The height of the joint was maintained at ℓ𝑠 = 2𝑟𝑜 sin 𝜋
6

= 44 mm throughout the

tests. The joint was rotated clockwise at 1 step (200 steps/rev.) every 50 ms to the

positive joint limit, then counterclockwise to the negative joint limit, for a total of

4 repetitions.

Plots of the results for the joints tested are shown in Figures 4-19 and 4-20. Again,

we fitted our model to the resulting data using a least squares fit over the stiffness and

the equilibrium positions for each layer. We assumed the stiffness was the same for all

layers and constant over the entire run. The model accurately captures the behavior

of a pivot joint with 2 layers. As for 𝑁ℓ = 4 and 𝑁ℓ = 6, the model is able to capture

(a) Experimental setup

N = 2 N = 4 N = 6

(b) Tested pivot joints

Figure 4-18: Experimental setup used to measure holding torque of pivot joints

62

-5
-4

-2

0

2

4
5

joint position (rad)

ho
ld

in
g

to
rq

ue
 (N

−m
m

)

0 π/3 2π/3

experimental
fitted model

3

1

-3

-1

(a) 𝑁ℓ = 2

-6

-4

-2

0

2

4

6

joint position (rad)

ho
ld

in
g

to
rq

ue
 (N

−m
m

)

0 2π/3 4π/3 2π

experimental
fitted model

(b) 𝑁ℓ = 4

-8

-4

0

4

8

joint position (rad)

ho
ld

in
g

to
rq

ue
 (N

−m
m

)

0 5π/3 10π/3

experimental
fitted model

-12

(c) 𝑁ℓ = 6

Figure 4-19: Holding torque vs. joint position for pivot joints folded from 0.051 mm
thick polyester film, overlaid with curves fitted from the model

-40

-20

0

20

40

joint position (rad)

ho
ld

in
g

to
rq

ue
 (N

−m
m

)

0 π/3 2π/3

experimental
fitted model30

10

-30

-10

(a) 𝑁ℓ = 2

-60

-40

-20

0

20

40

60

joint position (rad)

ho
ld

in
g

to
rq

ue
 (N

−m
m

)

0 2π/3 4π/3 2π

experimental
fitted model

(b) 𝑁ℓ = 4

-80

-40

0

40

80

joint position (rad)
ho

ld
in

g
to

rq
ue

 (N
−m

m
)

0 5π/3 10π/3

experimental
fitted model60

20

-60

-20

(c) 𝑁ℓ = 6

Figure 4-20: Holding torque vs. joint position for pivot joints folded from 0.127 mm
thick polyester film, overlaid with curves fitted from the model

the general structure of the model, such as its periodicity. We believe the local errors

to be due to nonlinearities in the spring torque and to deformation of the faces during

motion, which was not included in the model. This is supported by how the pivot

joint appears to exhibit different behavior depending on the direction of rotation.

As discussed in Section 4.1.4, the pivot joint cannot move rigidly, and so we have

added cuts to the fold pattern, which more easily accommodate stretch when rotating

clockwise than counterclockwise (ref. Figure 4-10(b)). For small deviations, the

pseudo-rigid-body model we employed should be able to account for some elongation

of faces [76]. Our results indicate that a deeper understanding of the joint requires

more detailed models.

63

4.4 Summary

We have presented fold patterns for multiple joints common in robot designs. Our

fold patterns are parameterized to deliver the range of motion needed by the robot

application, and they are designed to be composed with other modules to achieve

the full range of joint types. The joints are controllable using electronic components

that can be integrated in the printing process. We have also performed an analysis

of our joints to determine their behavior under driving forces and torques, and we

have shown here that simple spring-based models may not be sufficient since a fold’s

behavior is dependent on the movements it has previously experienced. Future work

includes better characterization of the mechanical properties of folded structures and

the dynamics of folded joints, as well as investigations of other common mechanisms

used in robotic designs.

64

Chapter 5

Composition of Foldable Mechanisms

A necessary part of a design-by-composition approach is ensuring that compositions

are valid. In this chapter, we address composition of foldable modules, and we present

an algorithm for automatically composing multiple foldable designs together so that

the end product has the combined geometry of the originals. Figure 5-1 illustrates

the problem addressed. Given two fold patterns, in this case a walking robot and a

gripper, our algorithm automatically generates a composite fold pattern for a walking

robot with a gripper on one end.

In particular, we address the problem of edge-compositions, compositions involv-

ing two surfaces connected at one edge via a fold. For ease of assembly of the final

product, we require that the fold pattern be one piece. In addition, for structural rea-

sons, we would like for the composite fold pattern to contain the original fold patterns,

rather than for it to be a completely new one. This is because in a folded state, cut

edges, edges corresponding to edges on the boundary of a fold pattern that have been

glued together, are mechanically weaker than folds. Cutting along an edge that will

be subjected to large stresses may drastically weaken the final product. We assume

that the two inputted fold patterns perform their intended functions and therefore

require that the composite folding pattern contain the original fold patterns in their

entirety as subsets.1

Our main result is the following:

1The majority of this chapter was published in [168,169,172].

65

+

Figure 5-1: Left : Walking and gripper robots folded out of the patterns shown. Right :
The composition, a walking-gripping robot, whose fold pattern was designed manually.
Our goal is to generate such a fold pattern automatically. Credit: Robots were designed

by Cagdas Onal and Michael Tolley.

Theorem 5.2.3. Any edge-composition of two folded surfaces has a one-piece non-

self-intersecting fold pattern consisting of 1) the fold patterns of the two original folded

surfaces connected by 2) a bridge of linking material.

This result provides more efficient material usage than previous work in origami

design [31, 117, 173, 174], which requires that all designs be folded from a convex

polygon, and more easily accommodates non-static shapes. By adding linking ma-

terial, it also improves upon previous work in polyhedron unfolding [15, 39] since it

is guaranteed to compose any two valid input designs. We provide a polynomial-

time algorithm for generating the composite fold pattern, and we demonstrate the

algorithm on various input surfaces to create foldable linkage mechanisms.

5.1 Problem Statement

Consider again a fold pattern (𝑃,ℱ) consisting of a non-self-intersecting polygon 𝑃

and a set of folds ℱ (ref. Section 4.1.1). We denote the folds 𝑓𝑖 = (𝑒𝑃𝑖 , 𝜑𝑖), where 𝑒𝑃𝑖

is the fold line and 𝜑𝑖 is the fold angle. The fold line and the line segments forming

the boundary of 𝑃 together are the edges ℰ(𝑃,ℱ) = {𝑒𝑃1 , 𝑒𝑃2 , . . .} of the fold pattern,

and their endpoints are the vertices 𝒱(𝑃,ℱ) = {𝑣𝑃1 , 𝑣𝑃2 , . . .}. We call the space that

is not part of 𝑃 , R2 ∖ 𝑃 , the free space.

66

Now let 𝑄 denote the polyhedral complex that is the image of the folded state

of the fold pattern (𝑃,ℱ). We say that the pattern (𝑃,ℱ) folds into 𝑄 and that 𝑄

can be unfolded into (𝑃,ℱ). Let ℰ(𝑄) denote the edges of 𝑄. Then the problem we

would like to solve is as follows.

Problem 5.1.1. Given two polyhedral complexes 𝑄1 and 𝑄2 with corresponding fold

patterns (𝑃1,ℱ1) and (𝑃2,ℱ2), and two edges 𝑒𝑄1 ∈ ℰ(𝑄1) and 𝑒𝑄2 ∈ ℰ(𝑄2), find a

fold pattern (𝑃3,ℱ3) such that

1. (𝑃3,ℱ3) folds into the union of 𝑄1 and 𝑄2 translated and rotated so that 𝑒𝑄1 is

coincident to 𝑒𝑄2, and

2. (𝑃3,ℱ3) contains translated, rotated, and/or reflected instances of (𝑃1,ℱ1) and

(𝑃2,ℱ2) as subsets.

The selected edges 𝑒𝑄1 and 𝑒𝑄2 act as a hinge in the combined surface. In order

for a solution to Problem 5.1.1 to make sense, the range of fold angle of this hinge

must not cause 𝑄1 and 𝑄2 to collide. We assume that this range is nonempty.

The edges 𝑒𝑄1 and 𝑒𝑄2 can be mapped to edges on the fold patterns (𝑃1,ℱ1) and

(𝑃2,ℱ2). Because the pattern contains cuts and faces can be multiply covered, it is

possible for multiple edges in (𝑃1,ℱ1) to correspond to 𝑒𝑄1 . Let ℰ𝑃1 be the set of

these edges, and similarly for ℰ𝑃2 . By definition, if we are able to guarantee for a

(𝑃3,ℱ3) that one edge in ℰ𝑃1 will coincide with one edge in ℰ𝑃2 in the folded state,

then (𝑃3,ℱ3) will satisfy condition (1) of Problem 5.1.1. We therefore modify the

problem statement slightly to deal with the fold patterns.

Problem 5.1.2. Given two fold patterns (𝑃1,ℱ1) and (𝑃2,ℱ2), an edge 𝑒
𝑃1 in (𝑃1,ℱ1),

and an edge 𝑒𝑃2 in (𝑃2,ℱ2), find a fold pattern (𝑃3,ℱ3) such that

1. (𝑃3,ℱ3) folds into the union of translated and rotated instances of 𝑄1 and 𝑄2,

the images of folded states of (𝑃1,ℱ1) and (𝑃2,ℱ2) respectively,

2. in the folded state, 𝑒𝑃1 and 𝑒𝑃2 coincide, and

67

3. (𝑃3,ℱ3) contains rotated, translated, and/or reflected instances of (𝑃1,ℱ1) and

(𝑃2,ℱ2) as subsets.

Solving this problem for any combination of 𝑒𝑃1 ∈ ℰ𝑃1 and 𝑒𝑃2 ∈ ℰ𝑃2 will satisfy

Problem 5.1.1. The remainder of this paper is concerned with solving Problem 5.1.2.

5.1.1 Representation

For analysis of our algorithms, we assume a random-access machine that can perform

real arithmetic and store real numbers. We store a fold pattern (𝑃,ℱ) on this machine

in four parts:

1. an 𝑁 ×2 array V(𝑃,ℱ), where 𝑁 is the total number of unique vertices in 𝑃 and

ℱ . Row 𝑖 of V(𝑃,ℱ) contains the (𝑥, 𝑦) coordinate values of the 𝑖th vertex.

2. an 𝑀 × 2 array E(𝑃,ℱ), where 𝑀 is the total number of edges in 𝑃 and ℱ . Row

𝑖 of E(𝑃,ℱ) contains the indices from V(𝑃,ℱ) of the endpoints of edge 𝑖.

3. a list B(𝑃,ℱ) of length 𝑀 . Element 𝑖 is an indicator equal to 1 if edge 𝑖 is an

edge on 𝑃 and 0 if edge 𝑖 is a fold line in ℱ .

4. a list Θ(𝑃,ℱ) of length 𝑀 . Element 𝑖 is the fold angle corresponding to edge 𝑖 if

edge 𝑖 is a fold line and 0 otherwise.

Thus storage of (𝑃,ℱ) is 𝒪(𝑁 +𝑀). For the remainder of this paper, we will use the

notation that 𝑁𝑖 is the number of vertices in (𝑃𝑖,ℱ𝑖) and 𝑀𝑖 the number of edges.

Note that for a fold pattern, 𝑀𝑖 ∼ 𝒪(𝑁𝑖) by Euler’s formula for planar graphs.

5.2 Composition Algorithm

5.2.1 Main Insight: Edges on the Convex Hull Boundary

In order to construct (𝑃3,ℱ3), the input fold patterns (𝑃1,ℱ1) and (𝑃2,ℱ2) must be

arranged in the plane without intersection. Extra material can be added so that the

68

fold patterns connect as long as the edges to be joined, 𝑒𝑃1 and 𝑒𝑃2 , are coincident in

the folded state. We use the following insight.

Lemma 5.2.1. If 𝑒𝑃1 and 𝑒𝑃2 are on the boundaries of the convex hulls of their

respective fold patterns, then they may be placed coincident in the plane and will not

cause (𝑃1,ℱ1) and (𝑃2,ℱ2) to intersect.

In this case, the fold pattern (𝑃3,ℱ3) is simply the union of (𝑃1,ℱ1) and the

transformed (𝑃2,ℱ2), with the edge 𝑒𝑃1 (also 𝑒𝑃2) converted from a boundary edge of

𝑃1 (respectively 𝑃2) to a fold in ℱ3.

When 𝑒𝑃1 or 𝑒𝑃2 is not on the boundary of the convex hull of its fold pattern,

then naïvely following the above procedure may lead to self-intersection of (𝑃3,ℱ3).

However, it is possible to modify (𝑃1,ℱ1) and (𝑃2,ℱ2) without changing their cor-

responding folded structures so that the above procedure may be used. Taking the

case of (𝑃1,ℱ1), this modification would consist of constructing an additional fold

pattern (𝑃 𝑏,ℱ 𝑏) and attaching it to (𝑃1,ℱ1) so that in the folded state 𝑒𝑃1 becomes

coincident to an edge on the boundary of the combined fold pattern’s convex hull.

We call (𝑃 𝑏,ℱ 𝑏) a bridge and say that 𝑒𝑃1 has been bridged to the boundary of the

convex hull.

As we will show in Section 5.2.2,

Lemma 5.2.2. Given a fold pattern (𝑃,ℱ) and an edge 𝑒𝑃 , it is always possible

to bridge 𝑒𝑃 to the boundary of the convex hull. The bridge can be constructed in

𝒪 (𝑁2 log(𝑁)) time.

Combining Lemmas 5.2.1 and 5.2.2 yields our algorithm (Algorithm 1) and main

result.

Theorem 5.2.3. For any fold patterns (𝑃1,ℱ1) and (𝑃2,ℱ2), and edges 𝑒
𝑃1 in (𝑃1,ℱ1)

and 𝑒𝑃2 in (𝑃2,ℱ2), there exists a fold pattern (𝑃3,ℱ3) that satisfies Problem 5.1.2.

Furthermore, this fold pattern can be computed using Algorithm 1 in time polynomial

in the number of vertices and edges in the original fold patterns.

69

Algorithm 1: Compose((𝑃1,ℱ1), 𝑒
𝑃
1 , (𝑃2,ℱ2), 𝑒

𝑃
2)

Data: (𝑃1,ℱ1) = first input fold pattern
𝑒𝑃1 = edge on (𝑃1,ℱ1) to connect to (𝑃2,ℱ2)
(𝑃2,ℱ2) = second input fold pattern
𝑒𝑃2 = edge on (𝑃2,ℱ2) to connect to (𝑃1,ℱ1)

Result: (𝑃3,ℱ3) = composite fold pattern satisfying Problem 5.1.2

1

{︀
(𝑃 ′

1,ℱ ′
2), 𝑒

𝑃 ′
1

}︀
← Bridge

(︀
(𝑃1,ℱ1), 𝑒

𝑃1
)︀
; // Algorithm 2 or 4

2

{︀
(𝑃 ′

2,ℱ ′
2), 𝑒

𝑃 ′
2

}︀
← Bridge

(︀
(𝑃2,ℱ2), 𝑒

𝑃2
)︀
; // Algorithm 2 or 4

3 Rotate, translate, and reflect (𝑃 ′
2,ℱ ′

2) so that 𝑒𝑃
′
2 is coincident to 𝑒𝑃

′
1 and

(𝑃 ′
1,ℱ ′

1) and (𝑃 ′
2,ℱ ′

2) do not intersect;

4 𝑃3 ← 𝑃 ′
1 ∪ 𝑃 ′

2; 𝐹3 ← ℱ ′
1 ∪ ℱ ′

2 ∪ {(𝑒𝑃
′
1 , 𝜑)};

5.2.2 Constructing the Bridge

This section describes the algorithms and analysis that establish Lemma 5.2.2. There

are two cases to consider:

1. 𝑒𝑃 is an exterior edge (on the outer boundary of 𝑃)

2. 𝑒𝑃 is an interior edge (on the inner boundary of 𝑃 or a fold line in ℱ)

We show that in either case, it is possible to construct a bridge such that in the

folded state, an edge on the boundary of the convex hull of the modified fold pattern

collapses onto 𝑒𝑃 .

Case 1: Exterior Edges

The bridge constructing algorithm for exterior edges is given in Algorithm 2 and

illustrated in Figure 5-2. Starting with a fold pattern (𝑃,ℱ), the procedure consists

of finding a path through the free space and creating pleats along that path to fold

onto the edge 𝑒𝑃 .

Line 1: Find a Path to the Convex Hull Boundary In the first step, we

search for a path through the free space from 𝑒𝑃 to the boundary of the convex hull.

Theoretically, any such path will suffice. We restrict the path to be a simple polygonal

chain. In so doing, it becomes possible to represent a path p of length 𝑛 as a finite

70

Algorithm 2: BridgeFromBoundary((𝑃,ℱ), 𝑒𝑃)

Data: (𝑃,ℱ) = input fold pattern
𝑒𝑃 = boundary edge to bridge

Result: (𝑃𝑛𝑒𝑤,ℱ𝑛𝑒𝑤) = fold pattern containing (𝑃,ℱ)
𝑒𝑃𝑛𝑒𝑤 = edge on boundary of convex hull of 𝑃𝑛𝑒𝑤 that folds onto 𝑒𝑃

1 p← path from 𝑒𝑃 to CH(𝑃); // Lemma 5.3.4

2 (𝑃 𝑏,ℱ 𝑏)←CreatePleats(𝑒𝑃 ,p); // Algorithm 3

3 𝑃𝑛𝑒𝑤 ← 𝑃 ∪ 𝑃 𝑏; ℱ𝑛𝑒𝑤 ← ℱ ∪ ℱ 𝑏 ∪ {(𝑒𝑃 , 𝜋)};
4 Remove intersections;
5 𝑒𝑃𝑛𝑒𝑤 ← 𝑒𝑛𝑒 created during bridge construction in line 2;

eP

CH(P)

P

(a) Input

PCH
k

(b) Medial axis of 𝑃CH
𝑒

p

(c) Line 1 (d) Line 2 (e) Output

Figure 5-2: Algorithm 2: Bridging an edge on the boundary of the fold pattern to
the boundary of the convex hull. (a) Original fold pattern. The edge to join 𝑒𝑃 is
highlighted in blue and the convex hull is outlined in yellow. (b) The region 𝑃CH

𝑘

(outlined in black) and its straight skeleton (red). (c) The path p from 𝑒𝑃 to the
boundary of the convex hull. (d) Pleats tiled along the path. (e) Output fold pattern
with the bridge added.

list of the vertices p = 𝑣1𝑣2 . . . 𝑣𝑛 in the order they appear in the chain. Since the

goal is to overlay the path with pleats, we choose a path surrounded on both sides by

as much free space as possible. A path along the straight skeleton of the free space

satisfies this criterion.

Take the convex hull of 𝑃 and let 𝑃CH
𝑒 be the region of space in CH ∖ 𝑃 that is

bounded by 𝑒𝑃 . The straight skeleton of 𝑃CH
𝑒 is the union of trajectories of vertices

of 𝑃CH
𝑒 when the boundary of 𝑃CH

𝑒 is shrunk in such a way that all edges retain their

orientation and move towards the interior of 𝑃CH
𝑒 at the same speed. The straight

skeleton was introduced in [3] as an alternative to the medial axis, which can contain

parabolic arcs when 𝑃CH
𝑒 is nonconvex. As its name suggests, the straight skeleton

contains only line segments.

71

The straight skeleton separates 𝑃CH
𝑒 into regions, one containing each edge on the

boundary of 𝑃CH
𝑒 . The path that we use to construct the pleats is the path in the

straight skeleton from the region containing 𝑒𝑃 to the region containing the convex

hull edge (Figure 5-2(c)). Since the straight skeleton is a tree, there will only be one

such path. Let p = 𝑣1𝑣2 . . . 𝑣𝑛𝑒 be this path, with the first vertex 𝑣1 located at the

midpoint of 𝑒𝑃 , intermediate vertices 𝑣2, . . . , 𝑣𝑛𝑒−1 at vertices in the straight skeleton,

and the final vertex 𝑣𝑛𝑒 on the convex hull edge.

Line 2–3: Overlay Pleats Accordion style pleats are overlaid on the path p using

Algorithm 3 (Figure 5-3). These pleats are a fold pattern consisting of a sequence

of non-intersecting folds with fold angles alternating between 𝜋 and −𝜋 so that the

edge at the end of the path (the convex hull edge) collapses exactly onto 𝑒𝑃 in the

folded state. For the last pleat, rather than following the procedure in lines 3–5 of

Algorithm 3, the point of intersection between the line common to edge 𝑒𝑛𝑒−1 and the

line common to the convex hull edge is found. Then, 𝑒𝑛𝑒−1 is rotated about this point

of intersection onto the convex hull edge to create 𝑒𝑛𝑒 . This guarantees that the last

edge added to the pleated structure lies on the boundary of the fold pattern’s convex

Algorithm 3: CreatePleats(𝑒𝑃 ,p)

Data: 𝑒𝑃 = starting edge
p = 𝑣1𝑣2 . . . 𝑣𝑛𝑒 = path to follow

Result: (𝑃 𝑏,ℱ 𝑏) = pleats fold pattern satisfying Lemma 5.3.1

// Beginning with 𝑒𝑃,
1 𝑒1 = 𝑒𝑃 ;
// Compute fold line locations

2 for 𝑖 = 2, . . . , 𝑛𝑒 do
3 ℓ⊥𝑖 ← perpendicular bisector of segment 𝑣𝑖−1𝑣𝑖;
4 𝑒𝑖 ← reflection of 𝑒𝑖−1 over ℓ

⊥
𝑖 ;

5 𝑒⊥𝑖 ←projection of 𝑒𝑖−1 onto ℓ⊥𝑖 ;

6 end
7 Remove intersections;
// Fold pattern of pleated structure

8 𝑃 𝑏 ← polygon strip containing the edges 𝑒1, 𝑒
⊥
2 , 𝑒2 . . . 𝑒

⊥
𝑛𝑒
, 𝑒𝑛𝑒 in order;

9 ℱ 𝑏 ←
{︀

(𝑒⊥𝑛𝑒
,−𝜋)

}︀
∪
⋃︀

𝑖=2,...,𝑛𝑒−1

{︀
(𝑒𝑖, 𝜋), (𝑒⊥𝑖 ,−𝜋)

}︀
;

72

v1

v3
v4

v5 v6
v7

v2

eP

v8

v9

v10v11
v12

(a) Input

e1

e2
e12

e1

e2

(b) Lines 2–6

2

1

3

(c) Self-intersections (d) Line 7 (e) Folded State

Figure 5-3: Algorithm 3: Constructing pleats to follow a path. (a) The edge 𝑒𝑃

and the path p to follow. (b) Reflected edges 𝑒𝑖 (solid) and perpendicular bisectors
𝑒⊥𝑖 (dotted). (c) Resulting pleats. Types 1, 2, and 3 self-intersections are shaded.
(d) Pleats with self-intersections corrected. (e) Folded state of pleats. All 𝑒𝑖 coincide.

hull and that the new pleat is still an isosceles trapezoid. As in Algorithm 3, the edge

𝑒𝑛𝑒 is then assigned a fold angle of 𝜋, and a fold line is added on the new pleat’s axis

of symmetry with a fold angle of −𝜋. The last edge’s exact location on the convex

hull boundary is not prespecified. Since, however, the point 𝑣𝑛𝑒−1 is a vertex on the

straight skeleton bordering the region containing the convex hull edge, the median of

this pleat will lie entirely inside the free space. The result of this step is a bridge that

collapses flat onto the face adjacent to 𝑒𝑃 .

Line 4: Remove Intersections with the Input Fold Pattern Although the

path p lies entirely in the free space, the pleats following p have a width and may

intersect with the input fold pattern (Figure 5-4). In this case, the overlapping regions

can be cut out of the bridge. When this operation causes the bridge to become

disconnected, then pieces that are not connected to 𝑒𝑃 should also be removed. The

bridge will still extend from 𝑒𝑃 to the convex hull boundary since 𝑝 lies entirely in

the free space.

. . .

(a) Before

. . .

(b) After

Figure 5-4: Intersection removal. (a) A bridge (red) that intersects with (𝑃,ℱ) (gray).
(b) The offending region is removed.

73

. . .

. . .

(a) Before

. . .

. . .

(b) Crimped

. . .

. . .

(c) Trimmed

Figure 5-5: A long pleat. Top: The fold pattern with offending pleat in red. Bot-
tom: Folded state. (a) In the folded state, the pleat protrudes outside the adjacent
face. (b) It can be crimped to not interfere with other folds and (c) trimmed to avoid
protrusions.

Finally, if a pleat is so long that it interferes with the folding of 𝑃 , it can be

trimmed or fold lines can be added to crimp the pleat arbitrarily small (Figure 5-5).

Case 2: Interior Edges

When 𝑒𝑃 is not on the outer boundary of 𝑃 , then Algorithm 2 alone cannot be used.

Instead, we must first construct a new boundary edge 𝑒𝑃𝑟𝑒𝑓 that in the folded state

will coincide with 𝑒𝑃 . This can be achieved by taking a path through the interior

of 𝑃 to an edge 𝑒𝑏 on the boundary and reflecting the path out of 𝑃 . Algorithm 4,

illustrated in Figure 5-6, gives the procedure for constructing a bridge for this case.

Line 1: Choose A Boundary Edge Since 𝑒𝑃 is not on the outer boundary of

𝑃 , connecting a bridge at 𝑒𝑃 may cause self-intersection of the final fold pattern.

Therefore, before constructing the bridge, it is necessary to choose where to attach

it to the fold pattern. Any edge 𝑒𝑏 on the outer boundary can be used here. For our

implementation, we chose the 𝑒𝑏 that minimizes the length of the final constructed

bridge. We estimated the length of the bridge by using the fold pattern’s edge-

adjacency graph, which is the dual of the fold pattern where the vertices are located

at the midpoints of the edges in 𝑃 and 𝐹 , and edges connect vertices that lie on the

boundaries of the same face in (𝑃,ℱ). The edge-adjancency graph has the following

properties:

� Every edge corresponds to a single face in (𝑃,ℱ).

74

Algorithm 4: BridgeFromFoldLine((𝑃,ℱ), 𝑒𝑃)

Data: (𝑃,ℱ) = input fold pattern
𝑒𝑃 = fold line edge to bridge

Result: (𝑃𝑛𝑒𝑤,ℱ𝑛𝑒𝑤) = fold pattern containing (𝑃,ℱ)
𝑒𝑃𝑛𝑒𝑤 = edge on boundary of convex hull of 𝑃𝑛𝑒𝑤 that folds onto 𝑒𝑃

1 𝑒𝑏 ← a boundary edge on 𝑃 ;
2 {(𝑃2,ℱ2), 𝑒CH} ← BridgeFromBoundary((𝑃,ℱ), 𝑒𝑏);
3 {(𝑃3,ℱ3), 𝑒

𝑃
𝑟𝑒𝑓} ←ReflectFaces((𝑃2,ℱ2), 𝑒

𝑃 , 𝑒CH);

4 {(𝑃𝑛𝑒𝑤,ℱ𝑛𝑒𝑤), 𝑒𝑃𝑛𝑒𝑤} ← BridgeFromBoundary((𝑃3,ℱ3), 𝑒
𝑃
𝑟𝑒𝑓);

CH(P) eP

P

(a) Input

eb

(b) Line 1

peCH

(c) Line 2

eP
ref

(d) Line 3 (e) Line 4 (f) Output

Figure 5-6: Algorithm 4: Bridging an edge on the interior of the fold pattern to
the boundary of the convex hull. (a) Original fold pattern. The edge to join 𝑒𝑃 is
highlighted in blue, and the convex hull is outlined in yellow. (b) The edge-adjacency
graph with the path from 𝑒𝑃 to 𝑒𝑏 highlighted in red. (c) Pleats attached to 𝑒𝑏 using
Algorithm 2. (d) The accordion path and interior faces reflected over the boundary
of the convex hull. The convex hull is also updated. (e) Pleats attached to 𝑒𝑃𝑟𝑒𝑓 using
Algorithm 2. (f) Output fold pattern with the bridge added.

� A path in the graph corresponds to a connected set of faces in (𝑃,ℱ).

� The graph has 𝑀 vertices and 𝒪(𝑀2) edges.

� The graph can be constructed in 𝒪(𝑀2) time [38].

The length of a bridge can then be approximated as the sum of the lengths of 1) the

path from 𝑒𝑃 to 𝑒𝑏 in the edge-adjacency graph and 2) the path from 𝑒𝑏 to the bound-

ary of the convex hull in the straight skeleton produced when calling Algorithm 2.

Note that to calculate this cost, we generate the straight skeleton of every region of

free space 𝑃CH
𝑒 in the fold pattern’s convex hull. There are 𝒪(𝑁) such regions.

Line 2: Bridge 𝑒𝑏 to the Convex Hull Boundary Unless 𝑒𝑏 is on the boundary

of 𝑃 ’s convex hull, the faces between 𝑒𝑃 and 𝑒𝑏 cannot simply be reflected over 𝑒𝑏

75

(a) Fold Pattern (b) Dual: Edge-Adjacency Graph

Figure 5-7: Example edge-adjacency graph

to make 𝑒𝑃 a boundary edge, since this operation may result in intersection with 𝑃 .

Instead, the edge 𝑒𝑏 must first be bridged to the boundary of the convex hull using

Algorithm 2. Let 𝑒CH be the resulting edge on the convex hull boundary.

Line 3: Reflect Faces between 𝑒𝑃 and 𝑒CH In order to construct an 𝑒𝑃𝑟𝑒𝑓 on the

boundary of the fold pattern, reflect all faces between 𝑒𝑃 and 𝑒CH over 𝑒CH. These

faces can be found by consulting the edge-adjacency graph. A path in the graph from

the vertex corresponding to 𝑒𝑃 to the vertex corresponding to 𝑒CH yields a set of faces

that connect 𝑒𝑃 and 𝑒CH. Since 𝑒CH is on the convex hull boundary, the reflected

faces will not intersect with the rest of the fold pattern.

Note that when 𝑒𝑃 is a boundary edge but not an exterior edge, then it must

be the boundary of a hole. Reflecting the entire face that contains 𝑒𝑃 may not help

the situation if 𝑒𝑃 will remain on the boundary of a hole. Therefore, in this case,

only part of the face containing 𝑒𝑃 is reflected. This part is computed by taking the

shortest path within the face from the edge 𝑒𝑃 to the edge connecting the face to the

bridge being built and then maximizing the width of this path within the face.

Line 4: Bridge 𝑒𝑃𝑟𝑒𝑓 to the Convex Hull Boundary The result of line 3 is that

𝑒𝑃𝑟𝑒𝑓 is now on the boundary of 𝑃 but not necessarily of the convex hull, reducing

the situation to Case 1. In the folded state, the reflected path will fold flat along the

surface of the input folded structure 𝑄 so that the reflected edge is coincident 𝑒𝑃 .

Thus any material attached to 𝑒𝑃𝑟𝑒𝑓 is as if it were added at 𝑒𝑃 .

76

5.2.3 Optimizations

It is not always necessary to perform the full bridging procedure to compose two

fold patterns. For simple fold patterns, it is often the case that two edges can be

connected together to create a valid fold pattern without any extra material. Even

if this is not the case, every other edge of the pleated bridge folds onto the edge 𝑒𝑃

and can be used as the connecting edge. Using any one of these edges that allows a

valid composite fold pattern to be produced will reduce the amount of waste material

used.

5.2.4 Face-Composition

This chapter focuses on composing fold patterns along an edge, which is the minimum

attachment necessary for two surfaces to be joined. This leads to a folded state where

the two input surfaces can move relative to each other. Another type of joining

is a face-composition, where the two input surfaces would be attached along one or

multiple faces and would be fixed relative to each other. An extension of the proposed

algorithm to face-compositions is straightforward: remove the faces to join from the

fold patterns if desired, possibly breaking the fold pattern into multiple parts, and

repeat the algorithm for every pair of edges along the boundaries of those faces,

ensuring that the fold angles at each of the edges joining the two fold patterns are

consistent. If the resulting pattern is multiple pieces, information about the gluings

(i.e., how cuts on the boundary of the fold pattern are joined in the folded state) can

be used to further merge the fold patterns into a single piece.

5.3 Correctness and Material Usage Guarantees

To prove that these algorithms are correct, we must show that they will always

produce a valid non-self-intersecting fold pattern. We start with the main insight.

77

Figure 5-8: Two convex polygons placed next to each other are guaranteed not to
intersect

Lemma 5.2.1. If 𝑒𝑃1 and 𝑒𝑃2 are edges on the boundaries of the convex hulls of

fold patterns (𝑃1,ℱ1) and (𝑃2,ℱ2), respectively, then the fold patterns may be rigidly

transformed such that the edges are coincident in the plane and they will not intersect.

Proof: Let CH(𝑃1) be the convex hull of 𝑃1. By definition, 𝑃1 ⊆ CH(𝑃1). Because

CH(𝑃1) is convex and 𝑒𝑃1 is an edge on its boundary, CH(𝑃1) must lie entirely on one

side of the line common to 𝑒𝑃1 (see Figure 5-8). Similarly, CH(𝑃2) must lie entirely

on one side of the line common to 𝑒𝑃2 .

Rotate, translate, and reflect (𝑃2,ℱ2) so that 𝑒𝑃2 is coincident to 𝑒𝑃1 and CH(𝑃2)

is on the opposite side of 𝑒𝑃2 as CH(𝑃1). Since CH(𝑃1) and CH(𝑃2) are on opposite

sides of the line now collinear to both 𝑒𝑃1 and 𝑒𝑃2 , they cannot intersect. Likewise,

𝑃1 and 𝑃2 cannot intersect.

5.3.1 Pleat Creation

In order to bridge 𝑒𝑃 to the boundary of the convex hull, our algorithm computes a

path and overlays it with accordion-style pleats. This is always possible by virtue of

the following lemma.

Lemma 5.3.1. Given a starting edge 𝑒𝑃 and any simple path p = 𝑣1𝑣2 . . . 𝑣𝑛𝑒 such

that the first vertex 𝑣1 is on 𝑒𝑃 , Algorithm 3 constructs a series of pleats such that

every 𝑣𝑖 lies on a fold 𝑓𝑖, and in the folded state, all 𝑓𝑖 are coincident to 𝑒𝑃 .

Proof: The pleat structure produced by Algorithm 3 is based on an isosceles trapezoid.

If an isosceles trapezoid is folded with a fold angle of ±𝜋 down its axis of symmetry,

then its two legs will coincide in the folded state. In a chain of isosceles trapezoids,

where every trapezoid shares only its legs with its neighbors, folding every trapezoid

78

down its axis symmetry will cause the legs of all the trapezoids to coincide. Therefore,

a chain of folded isosceles trapezoids where every path vertex 𝑣𝑖 lies on a leg of a

trapezoid and 𝑒𝑃 is also the leg of a trapezoid is a pleat structure that satisfies the

conditions of this lemma.

Line 3 of the algorithm uses the perpendicular bisectors of the segments in p to

ensure that the median of every trapezoidal pleat is exactly one segment of p, and

that each newly created edge has as its midpoint the next vertex of p. The resulting

pleats have a width of at most ‖𝑒𝑃‖.

Line 7 makes the pleats non-self-intersecting. During the pleat construction in

lines 2-8, three types of self-intersection can occur (see Figure 5-3(c)):

1. When an edge to reflect 𝑒𝑖 intersects with the perpendicular bisector, the re-

sulting pleat must be trimmed to a triangle. Note that the triangle will still

contain the path vertex.

2. When a pleat overlaps with the subsequent segment of p, it results in an in-

tersection between adjacent pleats. Let 𝑒𝑖 be the edge shared between the two

intersecting pleats, and 𝑣𝑖 be its midpoint. The two pleats are both trimmed

to non-isosceles trapezoids that meet at 𝑣𝑖. This operation alone would cut the

pleats into two pieces. Therefore, a second set of right triangular pleats must be

added in the free space next to 𝑒𝑖 to maintain connectivity. The addition of the

triangular pleats causes a change in orientation of the pleats. If such a change

in undesirable, the fold down the middle of the triangles can also be omitted.

3. When nonadjacent segments of p are close together, their corresponding pleats

may overlap. The overlap may be resolved by dividing the overlapping region

along the bisectors of the two conflicting segments of p. Since the path p is

simple, the pleats will remain connected and the fold lines will still contain the

path vertices.

In all cases, the modifications do not disconnect the pleats, so the pleats will be

a valid fold pattern. In addition, the fold lines remain in the same locations, so the

pleat structure will satisfy the conditions of the lemma.

79

It is also of interest to check the storage size required by the resulting pleat

structure and the complexity of Algorithm 3.

Lemma 5.3.2. Algorithm 3 outputs a fold pattern with 𝒪(𝑛𝑒) vertices and 𝒪(𝑛𝑒)

edges.

Proof: Each of the 𝑛𝑒 iterations of the for loop in lines 2–6 adds a constant number of

vertices and edges to the pleat structure. In line 7, type 1 intersections cause removal

of two vertices and one edge for each intersection, of which there can be at most 𝑛𝑒.

Type 2 intersections cause addition of two vertices and four edges each, and again

there can be at most 𝑛𝑒. In type 3 intersections, the number of vertices added to the

pleats is equal to twice the number of vertices involved in the intersection, plus four.

We say that a vertex is involved in an intersection if it lies on the boundary of the

intersecting region. It is clear that a vertex can only ever participate in at most one

type 3 intersection. Therefore, the total number of vertices added to correct type 3

intersections is at most 𝒪(𝑛𝑒). Since the edges only form chains to connect the new

vertices, the number of edges added is also 𝒪(𝑛𝑒). Thus the output fold pattern of

Algorithm 3 has 𝒪(𝑛𝑒) vertices and 𝒪(𝑛𝑒) edges.

Lemma 5.3.3. Algorithm 3 takes 𝒪 ((𝑛𝑒 + 𝑛𝑖) log 𝑛𝑒) time, where 𝑛𝑖 is the number

of self-intersections detected in line 7.

Proof: The for loop in lines 2–6 is executed 𝑛𝑒 − 1 times and contains a body that

is 𝒪(1), so it takes 𝒪(𝑛𝑒) time total. In line 7, the pleats must be checked for each

type of intersection. Type 1 and 2 intersections can only occur between neighboring

pleats. They can be found and corrected simply by iterating through the pleats in

order, an operation that takes 𝒪(𝑛𝑒) time. Detecting type 3 intersections, on the

other hand, requires a check for self-intersection of 𝑃 𝑏. Naïvely checking every pair of

edges on the boundary of 𝑃 𝑏 for intersection would take 𝒪(𝑛2
𝑒). It is usually faster to

use the Bentley-Ottman sweep line algorithm [14], which is 𝒪 ((𝑛𝑒 + 𝑛𝑖) log 𝑛𝑒) time,

where 𝑛𝑖 is the number of intersections.

80

Summing over all the lines yields an overall complexity of 𝒪 ((𝑛𝑒 + 𝑛𝑖) log 𝑛𝑒).

Note that in the worst case, when 𝑛𝑖 is 𝒪(𝑛2
𝑒), the complexity can be reduced to

𝒪(𝑛2
𝑒) if the naïve collision checking method is used.

5.3.2 Bridging Exterior Edges

Our bridging algorithm for exterior edges is based on the following lemma:

Lemma 5.3.4. If 𝑒𝑃 is on the outer boundary, then there exists a path through the

free space beginning at a point on 𝑒𝑃 and ending on the boundary of the convex hull

of 𝑃 .

Proof: Because 𝑃 is a polygon, its convex hull CH(𝑃) is also a polygon. The ver-

tices of CH(𝑃) are a subset of the vertices of 𝑃 . If the vertices on the boundary

𝑉 (𝑃) = {𝑣𝑃1 , 𝑣𝑃2 , . . . , 𝑣𝑃𝑛 } are numbered in clockwise direction, CH(𝑃) can be repre-

sented as an increasing sequence (𝑖1, 𝑖2, . . . , 𝑖𝑚) such that {𝑣𝑃𝑖1 , 𝑣
𝑃
𝑖2
, . . . , 𝑣𝑃𝑖𝑚} are the

𝑚 vertices of CH(𝑃) in clockwise order. If 𝑒𝑃 = (𝑣𝑃𝑗 , 𝑣
𝑃
𝑗+1), let 𝑃CH

𝑒 be a polygon

bounded by the path p𝑘 = 𝑣𝑃𝑖𝑘𝑣
𝑃
𝑖𝑘+1 . . . 𝑣

𝑃
𝑖𝑘+1

𝑣𝑃𝑖𝑘 where 𝑖𝑘 ≤ 𝑗 < 𝑖𝑘+1. Since 𝑒𝑃 is an

edge of 𝑃 , it is a boundary edge of 𝑃CH
𝑒 . The convex hull edge (𝑣𝑃𝑖𝑘 , 𝑣

𝑃
𝑖𝑘+1

) is also

on the boundary of 𝑃CH
𝑒 . Finally, 𝑃CH

𝑒 is not self-intersecting, or else 𝑃 would be

self-intersecting or the convex hull would not completely contain 𝑃 . Given these

characteristics, a path from 𝑒𝑃 to CH(𝑃) that does not intersect with 𝑃 or CH(𝑃)

except at the terminal vertices must exist inside 𝑃CH
𝑒 .

Combining this result with Lemma 5.3.1 yields the following result:

Lemma 5.3.5. For a given fold pattern (𝑃,ℱ) and exterior edge 𝑒𝑃 in (𝑃,ℱ), Al-

gorithm 2 outputs a valid fold pattern that bridges an edge 𝑒𝑃 to the boundary of the

convex hull.

Proof: Lemma 5.3.1 indicates that a set of pleats can always be created along a

path such that the edges at the beginning and end of the path coincide in the folded

state. Inputting a path where the beginning of the path lies on 𝑒𝑃 and the end is

on the boundary of the convex hull of (𝑃,ℱ), a path that must exist according to

81

Lemma 5.3.4, therefore bridges 𝑒𝑃 to the boundary of the convex hull. Since this path

lies entirely in the free space, the midline of the pleat structure will never intersect

the original fold pattern, so removing portions of the bridge that collide with the the

fold pattern will never disconnect the bridge.

Lemma 5.3.6. Algorithm 2 outputs a fold pattern with 𝒪(𝑁) vertices and 𝒪(𝑁)

edges.

Proof: We use the straight skeleton to generate the path p along which pleats are

constructed. When 𝑃CH
𝑒 is an 𝑛CH-gon, the straight skeleton is a tree with (𝑛CH − 2)

vertices and (2𝑛CH− 3) edges that partitions the polygon into 𝑛CH regions [3]. Thus,

the length of the path p is at most 𝑛CH ∼ 𝒪(𝑁). According to Lemma 5.3.2, this

means that the bridge will have 𝒪(𝑁) vertices and 𝒪(𝑁) edges. Merging the bridge

into the fold pattern in line 3 decreases the number of total vertices by two and the

number of edges by one. Finally, removing intersections and trimming pleats in line 4

can add at most 𝑁 vertices and 𝑀 edges to the fold pattern. Taking into account

that 𝑀 ∼ 𝒪(𝑁), the output fold pattern must have 𝒪(𝑁) vertices and 𝒪(𝑁) edges.

Lemma 5.3.7. Algorithm 2 computes a bridge in 𝒪 (𝑁2 log(𝑁)) time.

Proof: Line 1 of the algorithm finds a path to the boundary of the convex hull.

This requires first computing the convex hull CH(𝑃), which can be done in 𝒪(𝑁)

time [108,115]. The region 𝑃CH
𝑒 can be found by following the boundary of 𝑃 starting

at 𝑒𝑃 until a vertex that is also a vertex of the convex hull is reached. Tracing this

path will also take 𝒪(𝑁) time and will result in a region 𝑃CH
𝑒 bordered by a path

of length 𝒪(𝑁). The straight skeleton of 𝑃CH
𝑒 will thus contain 𝒪(𝑁) vertices and

𝒪(𝑁) edges [3], and it can be computed in 𝒪(𝑁17/11+𝜖) time [47]. Finally, the path

p is found via a search over the straight skeleton tree that will, in the worst case,

require traversal over all the edges in the tree, taking 𝒪(𝑁) time. The length of path

p is also 𝒪(𝑁).

Line 2 calls Algorithm 3, which takes 𝒪(𝑁2) time for a path of length 𝒪(𝑁)

and produces a pleat structure with 𝒪(𝑁) vertices and 𝒪(𝑁) edges. Line 4 requires

82

another check for intersections, this time between the boundary of the pleats and the

the boundary of 𝑃 . Since the only intersections will occur between the pleats and

the fold pattern (𝑃,ℱ), the number of intersections is 𝒪(𝑁𝑀), and line 4 will take

at worst 𝒪((𝑁 + 𝑀 + 𝑁𝑀) log(𝑁 + 𝑀)) ∼ 𝒪(𝑁𝑀 log(𝑁 + 𝑀)) time [14], which is

𝒪(𝑁2 log(𝑁)) since 𝑀 ∼ 𝒪(𝑁). Lines 3 and 5 are 𝒪(1) operations.

Summing over the entire algorithm yields an overall complexity of 𝒪(𝑁2 log(𝑁))

for Algorithm 2.

5.3.3 Bridging Interior Edges

Similarly, we provide correctness guarantees for interior edges.

Lemma 5.3.8. For a given fold pattern (𝑃,ℱ) and interior edge 𝑒𝑃 in (𝑃,ℱ), Al-

gorithm 4 outputs a valid fold pattern that bridges an edge 𝑒𝑃 to the boundary of the

convex hull.

Proof: Bridging any boundary edge 𝑒𝑏 to the boundary of the convex hull as in line 1

of the algorithm is valid as shown in Lemma 5.3.5. Moreover, since the new edge 𝑒CH

created through this process is on the boundary of the convex hull of the resulting fold

pattern, reflecting edges of the pattern over 𝑒CH will not result in any self-intersection

for the same reasons as Lemma 5.2.1, and it creates an exterior edge 𝑒𝑃𝑟𝑒𝑓 that in

the folded state coincides with 𝑒𝑃 . Bridging 𝑒𝑃𝑟𝑒𝑓 to the boundary of the convex hull

results in a valid fold pattern (ref. Lemma 5.3.5) with an edge 𝑒𝑃𝑛𝑒𝑤 that folds onto

𝑒𝑃𝑟𝑒𝑓 and therefore onto 𝑒𝑃 .

Lemma 5.3.9. Algorithm 4 outputs a fold pattern with 𝒪(𝑁) vertices and 𝒪(𝑁)

edges.

Proof: According to Lemma 5.3.6, line 2 will increase the size of the fold pattern to

have 𝒪(𝑁) vertices and 𝒪(𝑁) edges. Since line 3 reflects only faces that already exist,

it can at most double the size of the fold pattern. A final application of Algorithm 2

in line 4 yields an output fold pattern with 𝒪(𝑁) vertices and 𝒪(𝑁) edges.

Lemma 5.3.10. Algorithm 4 computes a bridge in 𝒪 (𝑁2 log(𝑁)) time.

83

Proof: Line 1 of the algorithm chooses a boundary edge 𝑒𝑏. This requires constructing

the edge-adjacency graph of the fold pattern in 𝒪(𝑀2) time, as well as straight

skeletons in 𝒪(𝑁17/11+𝜖) time. The closest boundary edge to 𝑒𝑃 can be found on

the resulting 𝒪(𝑀 + 𝑁)-vertex, 𝒪(𝑀2 + 𝑁)-edge graph in 𝒪((𝑀 + 𝑁)2) time using

Dijkstra’s algorithm [43]. Since 𝑀 ∼ 𝒪(𝑁) for a non-self-intersecting fold pattern,

this whole procedure takes 𝒪(𝑁2) time.

Line 2 calls Algorithm 2, which by Lemmas 5.3.6 and 5.3.7 produces a fold pattern

with 𝒪(𝑁) vertices and 𝒪(𝑁) edges in 𝒪 (𝑁2 log(𝑁)) time. Since the path from 𝑒𝑃

to 𝑒𝑏 was already calculated in line 1, line 3 incurs only the cost of reflecting 𝒪(𝑁)

faces in 𝒪(𝑁) time. Finally, line 4 takes 𝒪 (𝑁2 log(𝑁)), according to Lemma 5.3.7.

Summing over all the lines yields an overall complexity of 𝒪 (𝑁2 log(𝑁)) for Al-

gorithm 4.

5.3.4 Full Composition Algorithm

We have now provided enough detail to support Theorem 5.2.3:

Lemma 5.2.2. Given a fold pattern (𝑃,ℱ) and an edge 𝑒𝑃 , it is always possible

to bridge 𝑒𝑃 to the boundary of the convex hull. The bridge can be constructed in

𝒪 (𝑁2 log(𝑁)) time.

Proof: The previous sections detail how to construct a bridge when 𝑒𝑃 is a an exterior

or interior edge. The edge to join 𝑒𝑃 must fall into one of these cases. It is therefore

always possible to bridge 𝑒𝑃 to the convex hull.

Complexity: The algorithm for interior edges (Algorithm 4) subsumes that for

exterior edges (Algorithm 2). Since the complexity of the two algorithms is the same,

it is not unreasonable to use Algorithm 4 all the time. The overall complexity of

constructing a bridge for arbitrary 𝑒𝑃 is 𝒪 (𝑁2 log(𝑁)).

Theorem 5.2.3. For any fold patterns (𝑃1,ℱ1) and (𝑃2,ℱ2), and edges 𝑒
𝑃1 in (𝑃1,ℱ1)

and 𝑒𝑃2 in (𝑃2,ℱ2), Algorithm 1 produces a fold pattern (𝑃3,ℱ3) that satisfies Prob-

lem 5.1.2. Furthermore, this fold pattern has 𝒪(𝑁1 + 𝑁2) vertices and 𝒪(𝑁1 + 𝑁2)

edges, and it can be computed in 𝒪(𝑁2
1 log(𝑁1) + 𝑁2

2 log(𝑁2)) time.

84

Proof: According to Lemma 5.2.2, edges 𝑒𝑃1 and 𝑒𝑃2 can always be bridged to the

boundaries of the convex hulls of 𝑃1 and 𝑃2 respectively. Let 𝑒
𝑃1
𝑛𝑒𝑤 be the bridge edge

on the boundary of the convex hull that coincides with 𝑒𝑃1 in the folded state, and

similarly with 𝑒𝑃2
𝑛𝑒𝑤. Applying Lemma 5.2.1 to the modified (𝑃1,ℱ1) and (𝑃2,ℱ2)

using 𝑒𝑃1
𝑛𝑒𝑤 and 𝑒𝑃2

𝑛𝑒𝑤 as the edges to join yields a fold pattern (𝑃3,ℱ3) that satisfies

the conditions of Problem 5.1.2.

Complexity: According to Lemma 5.2.2, bridging takes 𝒪 (𝑁2
𝑖 log(𝑁𝑖)) time

for each fold pattern. Rotating and translating the modified fold patterns so that

the new edges to join are coincident takes 𝒪(min(𝑁1, 𝑁2)) time (we only have to

transform one fold pattern). Thus the entire composition algorithm has complexity

𝒪 (𝑁2
1 log(𝑁1) + 𝑁2

2 log(𝑁2)).

5.4 Experimental Results

We have implemented a system in MATLAB in which users can explore compositions

of folded structures. In addition to generating joints, users can input custom patterns

for folded structures as a vector file. They can then specify the edges or faces on

individual folded structures that they wish to connect, and the system will combine

the fold patterns of both into a single-sheet pattern for the composed structure. The

system provides views of both the flat fold pattern and its folded state in 3-D so that

users can visually verify that the composition is correct. We have tested this system

for various modules, joint combinations, and linkage mechanisms.

5.4.1 Compositions of Rigid Bodies

We have tested the composition algorithm on a variety of rigid bodies. Figure 5-9

shows the input fold patterns and the composition for each test. Cut lines on the

boundary of the fold patterns are shown as solid, and folds are shown as dotted lines.

The edges to join are highlighted in bold on the input fold patterns. The expected

folded states of each generated fold pattern are simulated and verified via physical

models folded from poster board.

85

... ...

(a) Two cubes (b) Cube and (c) Walking and (d) Two truncated (e) Face joining,
square pyramid gripping robots cuboctohedra two cubes

Figure 5-9: Fold patterns generated by this algorithm. Top: Input fold patterns for
the rigid bodies to join. The bold edges are the edges to join. Second row : The
generated composite fold patterns. Bridges constructed by our algorithm are shaded.
Third row : The folded states of the composite fold patterns. Fourth row : Physical
model of the composition with just the bridge folded. Bottom: Physical models of
the input surfaces and the composition folded from poster board.

All final folded structures are, as expected, the two inputted surfaces connected

along the specified edge. The constructed bridges (second row, shaded) are a series

of pleats connecting the edges to join to the boundaries of the convex hulls of their

respective fold patterns. The fourth row of Figure 5-9 shows the compositions with

only the bridges folded. The edges to join coincide in the folded state.

Figure 5-9(a) joining two cubes is an example of Algorithm 2. Both edges to join

are on the boundaries of their fold patterns. Pleats are added to the fold pattern on

the right since the edge to join is not already on the boundary of the convex hull. In

the folded state, these pleats are flattened between the two cubes. Figures 5-9(b)–(c)

demonstrate Algorithm 4, when an edge to join is on the interior of the fold pattern.

86

The square pyramid in Figure 5-9(b) is the same one considered in Figure 5-6. Not

only are pleats added but a face of the fold pattern is reflected in the bridge construc-

tion. In the folded state, this face lies flat against the surface of the square pyramid

so that one side is doubly covered. The cube in this composition is an example of

an interior boundary edge. This time, when Algorithm 4 is used, only part of the

face containing the hole is reflected to place the new edge on the boundary of the fold

pattern. The result is that a trapezoidal section of the original face is doubly covered.

Faces are also reflected in the bridge for the insect and gripper in Figure 5-9(c).

Compared to Figure 5-1, the outputted pattern is similar. Human designers creating

the composed pattern made optimizations based on rearranging faces on the original

fold patterns, which our algorithm did not consider.

Practically, additional factors other than connectivity between the two input fold

patterns must be taken into account when generating bridges. Sometimes, even if 𝑒𝑃

is on the boundary, taking a longer path through the interior of the fold pattern to

an area with a greater amount of free space may yield wider pleats or fewer added

layers, so we may want to use Algorithm 4 even if Algorithm 2 is applicable. This

was the approach used for the right fold pattern in Figure 5-9(d).

Figure 5-9(d) also demonstrates how pleats in the bridge can be removed to min-

imize added material. The box in the lower left of the composite fold pattern shows

the bridge as would be constructed by the full algorithm. Some of these pleats can be

removed without causing self intersection of the fold pattern while still producing a

valid 3-D structure. Note that reflected faces can never be removed unless the bridge

is connected to a different boundary edge.

Since the joined edges act as a hinge joint, the angles of the input structures

relative to each other in the folded state are not fixed. This effect can be clearly seen

in the physical models, where the stiffness of the material used prevented faces from

resting coincident as they do in the simulated folded states. Composing fold patterns

at faces instead of edges can be used to restrict the positions of the two structures.

Figure 5-9(e) shows the result of composing the two cubes from Figure 5-9(a) along

a face to create a rectangular prism. The composition was optimized to minimize

87

bridge length. In this case, the two fold patterns were able to be connected without

adding any extra material.

5.4.2 Joints with Multiple Degrees of Freedom

Complex joints with higher degrees of freedom can be created by composing our basic

joints from Chapter 4. In some cases, extra degrees of freedom come for free. For

example, the designs for the prismatic and pivot joints each allow vertical translation

in addition to the intended motion when the height of the joint is not constrained.

Thus we can produce a cylindrical joint simply by not including a distance constraint

between the outer faces of the pivot joint. When joints with higher degrees of freedom

are created in this way, the joint limits for one degree of freedom will often depend

on the position along the others.

For more independent ranges of motion, joints can be combined. For example,

a universal joint is two hinge joints with orthogonal axes of rotation connected in

series. A spherical joint is a pivot joint combined with a hinge. Since our designs are

parameterized, basic joints can be adjusted for simpler joining (e.g., by having the

same base) without restricting the joint limits.

We tested joint composition by generating a spherical joint, shown in Figure 5-10.

The composed 6-sided joint consists of a pivot joint with a 10
3
𝜋 radian (600∘) range

of motion attached to a 6-sided hinge joint with a 𝜋 radian (180∘) range of motion.

Since the joint designs are already quite complex, we used the optimization that if the

pivot jointhinge joint

height
constraint

(a) Composed fold pattern (with tabs and slots) (b) Folded joint in two positions

Figure 5-10: Spherical joint composed from 6-sided pivot and hinge joints

88

fold patterns do not intersect without the addition of bridges, then they are simply

attached together at the chosen edges. Tabs were added manually after composition

to simplify assembly. The fold patterns for the individual subcomponents are readily

visible in the combined fold pattern for the entire joint, shown in Figure 5-10(a).

Since the axes of rotation of the pivot and hinge joints intersect at the center of the

hinge joint, the resulting joint approximates well the behavior of a spherical joint,

despite the pivot and hinge joint being two separate entities.

5.4.3 Mechanisms

Rigid bodies can be composed with joints to produce entire foldable linkages. We

used our system to compose a four-bar linkage (Figure 5-11(a)). This linkage consists

of four rectangular prisms connected in a cycle using four pivot joints. A tubular

pivot joint

rectangular prism

motor mount

height
constraint

(a) Composed fold pattern

(b) Movement of four-bar

Figure 5-11: Foldable four-bar linkage

89

prismatic joint
hinge joint

height constraint

rigid
body

joint offset

(a) Composed fold pattern

(b) Folded rowboat

(c) Section cut

Figure 5-12: Foldable rowboat

structure similar to that in Figures 4-10(b) and 5-10 was used to constrain the height

of the pivot joints. We also manually designed a motor mount (also used in the hinge

in Figure 4-11) to actuate one joint and the linkage. The linkage was folded from

0.127 mm thick polyester film perforated at the fold lines. Frames of the resulting

motion are shown in Figure 5-11(b). Since the joint angles are limited, the joint

positions must be initialized carefully when folding to allow movement for the entire

linkage.

In a second test, we composed two prismatic joints, two hinge joints, and a rect-

angular body to form a rowboat, shown in Figure 5-12. The prismatic joints lie inside

the rectangular body (Figure 5-12(c)) and attach along the left and right edges. The

top of the rectangular body forms the height constraint for the prismatic joint and

enforces purely horizontal motion. On the other base of each prismatic joint is a

paddle. Paddles are hinges joints with a 𝜋
2
radian (90∘) range of motion mounted at

a 𝜋
4
radian (45∘) angle relative to the body of the boat to produce asymmetric joint

limits. Thus, the paddles can lie horizontally over the water or can extend vertically

down into the water to provide thrust.

90

Figure 5-13: Actuated four-bar linkage atop actuated pivot mount

5.4.4 Foldable Robots

Crane When our system composes folded structures, the original fold patterns are

preserved in their entirety. This feature enables us to reuse circuit layouts. Starting

from the actuated hinge from Section 4.3.1, we added square bars and three more

4-sided 𝜋 radian (180∘) hinge joints to produce a four-bar linkage, and we composed

the entire linkage with a 6-sided 2𝜋 radian (360∘) pivot mount to produce a machine

with kinematics similar to those of a manufacturing crane. To the hinge circuitry,

we added the additional control circuitry for a DC motor mounted at the center of

the pivot joint. Finally, we added circuitry for serial communication via a Digi XBee

radio module so that the robot could be controlled wirelessly. Commands were sent

from a laptop, which controlled the direction of rotation of the pivot mount and the

position of the hinge joint.

The robot was constructed from 0.127 mm thick polyester film. It had a base

radius of 36 mm and a height of 213 mm. During testing, the hinge joint on the robot

performed exactly as the original hinge joint did, although its range of motion was

constrained due to the additional hinges and links attached to it. The pivot joint was

able to achieve its full 2𝜋 radian (360∘) range of motion.

Camera Mount As a final test, we composed a mount for a smartphone using the

spherical joint shown in Figure 5-10, yielding a camera with pan-tilt capabilities, and

we actuated both degrees of freedom independently using off-the shelf servos. Again

91

Figure 5-14: Smartphone mount attached to actuated spherical joint for pan and tilt

circuitry was designed by hand and etched directly onto the robot body, except for

the servos, which were plugged into headers in the circuit. A laptop sent commands

to tilt forward or backward or to pan left or right via serial communication through a

Digi XBee radio module. The camera mount had a base radius of 43 mm and a total

height of 253 mm.

The spherical joint in the camera mount was designed for 3
2
𝜋 radians (270∘) of

pan and 2
3
𝜋 radians (120∘) of tilt. During testing, the camera was able to achieve the

full 3
2
𝜋 radians (270∘) of pan. However, since small servos are typically not designed

to sustain large loads such as the weight of a smartphone, tilt had to be limited to

±𝜋
4
radians (±45∘) in order to maintain controllability when a smartphone was in

place. In addition, since over half of the weight of the device lay above the hinge joint

(camera mount: 91 g, smartphone: 116 g), the mount would bend or topple when

large tilt angles were attempted.

92

5.5 Summary

We have described an algorithm for automatic composition of fold patterns for 3-D

surfaces. We show that given the fold patterns of two 3-D surfaces, it is always

possible to construct a bridge between them such that the resulting structure is the

two originals connected along a fold, and we provide a polynomial-time algorithm

to generate the composite fold pattern. The algorithm was tested on a variety of

geometries, demonstrating that it can indeed be used to generate complex one-piece

fold patterns for robot designs.

Although we have shown that composite fold patterns can be constructed, our

algorithm does not address the folding sequence for these structures. While the two

original fold patterns can be assumed to be foldable, it is entirely possible that the

addition of a bridge renders the result unfoldable. Practically, we have never encoun-

tered this difficulty with folding sequences. Future work includes further investigation

on this issue.

Finally, the results of this algorithm are restricted in that the generated fold

pattern must contain (𝑃1,ℱ1) and (𝑃2,ℱ2) in their entirety. When humans compose

origami designs, they often rearrange the fold patterns and change the shape of the

free space to achieve more efficient composite fold patterns (ref. Figure 5-1). However,

with robots folded from thin materials, strength, stiffness, and an actual ability to

transfer and withstand high forces and torques becomes a concern, so depending on

the application, certain folds in a pattern should not be cut. Still, a 3-D surface often

has several equivalent fold patterns that yield the same mechanical strength. We

would like to incorporate models such as those in Section 4.2 to explore equivalent

fold patterns to be used in composition.

93

94

Chapter 6

Composition of Foldable Ground

Robots

In order to address concurrent design of robot geometry and motion, our database

must support motion information in addition to the mechanical modules presented

in Chapter 4. We choose to focus on ground locomotion and the design of walking

gaits. In this chapter, we describe our grammar-based approach to gait suggestion

for ground robots. The grammar is based upon a classification of robot parts, and

the gaits are parameterized to accommodate different geometries. Since the joint

controllers used are modules, they enable us to automatically generate the electron-

ics and software required for assembly. The system outputs a full fabrication plan,

including the parts for assembling the robot’s body, the required electronics, and the

control software. Since the modules are parameterized, the designs can be optimized

for desired performance metrics. We provide virtual optimization results, as well as

full fabricated robots composed using these methods.1

1This work was done in collaboration with Adriana Schulz, Andrew Spielberg, Wei Zhao, Robin
Cheng, Eitan Grinspun, Wojciech Matusik, and Daniela Rus.

95

6.1 Gait and Trajectory Design

For ground locomotion, we use a grammar-based approach to define the motion at

each joint. We have classified geometric modules into three categories: robot bodies,

limbs (wheels and legs), and peripherals. Each of these modules is associated with

a kinematic chain that defines the degrees of freedom of the module. Composing

the modules yields a full kinematic chain equivalent to the robot design. Under our

classification scheme, connections between limbs and other modules are dynamic and

associated with a particular joint controller, while all other connections are static.

In order to reduce the complexity of gait design, we have chosen a gait that consists

of two phases: a step phase and a reset phase. During the step phase, limbs take turns

lifting off and re-situating. During the reset phase, all limbs move simultaneously to

shift the robot’s joint angles back to their pre-step configuration. When the robot

is stable and does not rely on body contact with the ground to move, these phases

correspond to the swing and stance gait phases commonly used in the literature [8,33],

the main difference being that in our robots, the stance phases for all limbs occur

simultaneously.

Our grammar differentiates between single-link legs that are attached to robot

bodies, multi-link legs, and wheel connections. The joint motions that occur under

each controller are shown in Figure 6-1, along with the equivalent kinematic chain.

Green arrows indicate the joint trajectory during the step phase. Red arrows indicate

the trajectory during the reset phase.

Unlike previous systems that allow users to specify full trajectories for limbs [10,

110], we have chosen to design joint controllers that each have only one free parameter.

Each joint controller has a single parameter 𝜃𝑖, which controls the magnitude of the

angle swept out during the reset phase. Negative values for 𝜃𝑖 indicate that the joint

moves in the opposite direction. For a stable robot, the value of 𝜃𝑖 controls the

distance the robot moves forward during one gait cycle.

96

�iθi

body

leg

(a) Single-link leg

θi

body

leg
leg

(b) Multi-link leg

θi

body

wheel

(c) Wheel

Figure 6-1: Joint controllers for single-link leg, multi-link leg, and wheel joint types.
The diagram on top shows the equivalent kinematic chain. Controllers for every joint
are separated into a step phase (green) and a reset phase (red). Gaits are changed
by modifying the 𝜃𝑖 values for each joint and defining the step sequence.

6.1.1 Joint Controllers

Single-link Leg Controller When single-link legs are connected directly to bodies,

they follow a circular joint motion. The leg starts out at an angle of 𝜃𝑖
2
from vertical.

It sweeps out an angle of (2𝜋 − 𝜃𝑖) during the step phase and an angle of 𝜃𝑖 during

the reset phase to complete one full rotation every gait cycle.

Multi-link Leg Controller In multi-link legs, the links attached to the robot body

are differentiated from links attached to other links. We call the joints that attach

leg links to the body “shoulder joints” and all other joints “elbow joints.” The joint

controllers for each of the joints on the leg are related and perform synchronized

movements.

The leg starts out with the shoulder joint at an angle of 𝜃𝑖
2
from vertical and all

other joints at an angle of 0 so that the leg points straight out from the body at

an angle of 𝜃𝑖
2
. During the step phase, the shoulder joint first rotates to an angle of

0.6𝜋 radians (108∘) while the elbow joints rotate to an angle of −𝜃𝑖 to lift the leg off

the ground. Following, the shoulder joint swings forward to an angle of − 𝜃𝑖
2
while

the elbow joints return to an angle of 0 to bring the leg back into contact with the

ground in a new location. During the reset phase, the shoulder joint sweeps an angle

of 𝜃𝑖 to bring the leg back to its starting position while the elbow joints remain still.

97

Wheel Controller The wheel controller is the simplest of all joint controllers.

Since wheels cannot lift off the ground unless other parts of the robot move, they do

not experience a step phase. Instead, during the reset phase, the wheels simply sweep

out an angle of 𝜃𝑖 to shift the robot forward.

6.1.2 Gait Design

Gaits are compositions of joint controllers. In particular, gaits can be defined using

two types of parameters. For each of the limbs 𝑖 on the robot, modifying the 𝜃𝑖 value

for the controllers corresponding to that limb will affect the robot’s local motions.

In addition, the step sequence of limbs can be changed to affect the robot’s global

motions.

The step sequence for a gait indicates the order of limb movement. During the

step phase, limbs can move in groups or separately. The number of groups of limbs

is equal to the total number of steps per gait cycle 𝑁𝑔. Each limb is given a step

assignment 𝑔𝑖, an integer between 0 and 𝑁𝑔 that indicates at what time during gait

the joints should execute the part of the motion corresponding to the step phase. A

step assignment of 0 indicates that the limb does not execute a step phase and is

reserved for wheels. Furthermore, steps that are not associated with any limbs take

zero time and are effectively ignored.

6.1.3 Trajectory Design

For a particular robot geometry, multiple gaits can be defined, each with different 𝜃𝑖

parameters or different step sequences. The gaits can be composed into a sequence to

define entire trajectories. Since consecutive gaits in the sequence may have different

𝜃𝑖 parameters and therefore different starting configurations, short transitions are

added automatically between gaits to take joints from the post-reset configuration

of the previous gait to the pre-step configuration of the subsequent gait as fast as

possible.

98

6.2 Performance Metrics

We provide simulations and metrics that enable users to evaluate their combined

geometry and gait designs during composition.

6.2.1 Simulation

The robot models are evaluated using a sequence of rigid body simulations. In par-

ticular, we discretize time into time steps. The procedure is given in Algorithm 5. At

each time 𝑡𝑖, the configuration of the robot is first computed by updating the joint

angles at each of the robot’s joints (line 5). Next, the robot’s orientation is found

by placing the lowest points of the robot on the ground and iteratively pivoting the

robot about its contact points until it is statically stable (lines 9–13). The direction

of rotation is determined by computing the effect of a downward gravitational force

applied at the robot’s center of mass. The robot is statically stable when the pro-

jection of its center of mass onto the ground plane lies within its support polygon

(i.e., the convex hull of the contact points with the ground). Timing information for

the gait is computed based on the parameter values and the servomotor’s maximum

angular speed (3.3𝜋 radians/s, or 600∘/s).

We approximate friction by assuming that the robot has slipped as little as pos-

sible. Let c𝑡𝑖 be the set of contact points at time 𝑡𝑖 and c𝑡𝑖−1
be the contact points

in the previous time step. Our system computes the new pose of the robot by find-

ing a least-squares rigid transformation between the locations of the contact points

common to both time steps and applies the transformation to the robot geometry

(lines 14–15). Let c′𝑡𝑖 and c′𝑡𝑖−1
be the contact points at times 𝑡𝑖 and 𝑡𝑖−1, respec-

tively, that are common to both time steps. The applied rigid transformation 𝑇 is

the one that minimizes the objective ‖c′𝑡𝑖 − 𝑇c′𝑡𝑖−1
‖22. When multiple solutions ex-

ist with equivalent objective values, the system chooses the one that minimizes the

magnitude of the applied rotation.

Since the robot may exhibit different behaviors over multiple gait cycles (e.g.,

toppling), we iterate over the process until the robot has reached a steady state

99

Algorithm 5: Simulate(D,∆𝑡)

Data: D = robot geometric design
∆𝑡 = time step for simulation

Result: 𝑡𝑖0 = start time for steady state robot motion
𝑡𝑖𝑓 = end time for steady state robot motion
{D𝑡} = sequence of states of robot from 𝑡 = 0 to 𝑡 = 𝑡𝑖𝑓

1 𝑖 = 0; 𝑡0 = 0;
2 c0 = {}; // contact points

3 while NOT steady state do
4 𝑖 = 𝑖 + 1; 𝑡𝑖 = 𝑡𝑖−1 + ∆𝑡;
5 D𝑡𝑖 ←UpdateJointAngles(D, 𝑡𝑖);

// Stabilize

6 Place lowest points of D𝑡𝑖 on the ground plane;
7 c𝑡𝑖 ← current contact points;
8 𝐶𝑂𝑀𝑡𝑖 ← center of mass;
9 while D𝑡𝑖 not statically stable do
10 Apply gravitational torque to D𝑡𝑖 until there is a new contact point;
11 c𝑡𝑖 ← current contact points;
12 𝐶𝑂𝑀𝑡𝑖 ← center of mass;

13 end
// Minimize slip

14 𝑇 ←rigid transform that minimizes sum of squared distances between
points repeated in c𝑡𝑖 and c𝑡𝑖−1

;
15 Apply 𝑇 to D𝑡𝑖 ;

16 end
17 𝑡𝑖𝑓 ← 𝑡𝑖;

18 𝑡𝑖0 ← maximum 𝑡𝑖 such that D𝑡𝑖 is equivalent to D𝑡𝑖𝑓
up to translation and

rotation about ẑ

behavior. This can be detected by comparing the pose of the robot at the beginning

of a gait cycle to its pose at the beginning of every previous gait cycle. If its pose

differs by only a translation and a rotation about the vertical axis ẑ, then the robot

has reached a steady state.

Our system stores information about the start time 𝑡𝑖0 and end time 𝑡𝑖𝑓 for one

iteration of the robot’s steady state behavior for metric evaluation. The pose of the

robot at any time after 𝑡𝑖𝑓 can be calculated as a rigid transformation of a pose during

this time period.

100

∆ϕ x(tif)

x(ti0)

1/ρ

x(ti)

x(ti)~

∆ϕ

Figure 6-2: Metrics are calculated on the trajectory (black) of the robot over one
steady state gait cycle using the indicated values. The point x(𝑡𝑖) is the projection
of the robot’s center of mass onto the ground plane at time 𝑡𝑖. We can approximate
the trajectory with a circular arc (gray).

6.2.2 Metrics

The simulations allow us to report relevant metrics about a design and compute

information about the robot’s expected performance for optimization. All metrics on

the designed gaits are computed for the robot’s steady state behavior for that gait.

Figure 6-2 shows an example trajectory of a robot over one steady state gait cycle

in black and indicates relevant values. The point x(𝑡𝑖) is the position of the robot’s

center of mass projected onto the ground plane at time 𝑡𝑖. The robot starts at x(𝑡𝑖0)

with the heading indicated by the black arrow and ends at x(𝑡𝑖𝑓) with the indicated

heading. We can approximate the robot’s trajectory as a circular arc.

The system evaluates the following metrics about the robot’s overall performance.

1. Stability: The stability 𝑆 of the robot during its trajectory is evaluated as the

minimum distance from the projection of the robot’s center of mass onto the

ground plane to the boundary of the robot’s support polygon at any time step.

This measure gives designers an idea of how much fabrication and assembly

error their design can handle before the behavior changes drastically. Stability

is reported in mm.

101

2. Speed: The average speed 𝑉 of the robot in steady state is computed as the

distance traveled during one iteration of steady state behavior, divided by the

amount of time required to traverse that distance:

𝑉 =
1

𝑡𝑖𝑓 − 𝑡𝑖0

𝑖𝑓∑︁
𝑖=𝑖0+1

‖x(𝑡𝑖)− x(𝑡𝑖−1)‖2

Speed is reported in mm/s.

3. Wobbliness: The average wobbliness 𝑊 of the robot is computed as the amount

of orientation variation the robot experiences over one iteration of steady state

behavior:

𝑊 =
1

𝑖𝑓 − 𝑖0

𝑖𝑓∑︁
𝑖=𝑖0+1

|∆𝛾 (𝑡𝑖−1, 𝑡𝑖)|

where ∆𝛾 (𝑡𝑖−1, 𝑡𝑖) is the combined pitch and roll angular change between time

𝑡𝑖−1 and time 𝑡𝑖. Wobbliness is reported in radians.

4. Slip: The average slip of the robot is the root mean square of errors between

contact points during the reorientation step of the simulation.

𝐸 =
1

𝑖𝑓 − 𝑖0

𝑖𝑓∑︁
𝑖=𝑖0+1

√︃
1

𝑛𝑖

∑︁
𝑗

‖c𝑗𝑖 − c𝑗𝑖−𝑖‖22

where 𝑛𝑖 is the total number of contact points that remain in contact between

times 𝑡𝑖−1 and time 𝑡𝑖, and c𝑗𝑖 is the location of one of those contact points 𝑗 at

time 𝑡𝑖. Slip is reported in mm.

The following metrics are also computed for individual gaits.

1. Angle of Rotation: The robot’s change in heading is computed over one gait

cycle.

∆𝜙 =
1

𝑖𝑓 − 𝑖0

(︀
𝜙(𝑡𝑖𝑓)− 𝜙(𝑡𝑖0)

)︀
where 𝜙(𝑡𝑖) is the heading of the robot at time 𝑡𝑖. Angle of rotation is reported

in radians.

102

2. Curvature: The average curvature of a gait is the reciprocal of the robot tra-

jectory’s radius of curvature and is computed as

𝜌 =
2 sin(∆𝜙/2)

‖x(𝑡𝑖𝑓)− x(𝑡𝑖0)‖2

Curvature is reported in 1/m.

3. Variance: The variance of a trajectory is calculated assuming that the robot

ideally follows a circular path with curvature 𝜌 and uses the perpendicular error

from that path.

𝜎2 =
1

𝑖𝑓 − 𝑖0

𝑖𝑓∑︁
𝑖=𝑖0

‖x(𝑡𝑖)− x̃(𝑡𝑖)‖22

where x̃(𝑡𝑖) is the closest point to x(𝑡𝑖) on the circular trajectory. Variance is

reported in mm2.

6.3 Fabrication and Assembly

Because robot designs are composed from existing modules, we can automatically

generate fabrication plans for physical prototyping. These plans include a list of elec-

tronics and port connections, software to load onto the microcontroller, and fabrica-

tion instructions for the robot’s body. Appendix A shows an example of an outputted

fabrication plan. The designer is responsible for assembling the robot model.

6.3.1 Electronics

In order to implement a designed trajectory, a robot requires actuators and control

circuitry. The electronics plan is generated based on the kinematic tree of the robot

design. Our control circuitry uses an Arduino Pro Mini and is based on a standardized

electronics module described previously in [112]. First, one servomotor is assigned to

each degree of freedom. For these robots, we use the Turnigy TGY-1370A servomo-

tors, modified to also output a position signal. The robots are powered by a 3.7 V

lithium ion battery. Connections between the servos, batteries, and the Arduino are

103

assigned using a greedy approach that matches pin types. Connections such as those

for power and ground can connect multiple components, while connections sending

control signals to servomotors must be one-to-one. Depending on the number of

servos and the available ports, more microcontrollers may be added.

6.3.2 Software

Because our gaits are based on joint controller modules, the software for the robot

can be generated easily using a software template. The parameters 𝜃𝑖, the step

sequences that define the gaits, and the gait sequence that forms the desired trajectory

are written to a gait definition file. The rest of the software is general code that

implements the trajectory given the parameters.

6.3.3 Robot Body

Robot bodies could be cut out of thin plastic film as in Chapters 4 and 5. In this

chapter, to make sturdier robots, we leverage the versatility and rigidity of 3-D print-

ing to fabricate fold patterns. All the modules in our database are foldable and are

associated with fold patterns, which are combined during geometry composition. We

convert this pattern into a 3-D printable mesh (Figure 6-3). Faces are first shrunk

along the normals of folds and cut lines to make room for printed connections. Holes

(a) Input design (b) Process connections (c) Final print

Figure 6-3: We automatically generate a 3-D mesh for a foldable design. (a) The
original design, with blue edges indicating folds and gluings and green dots indicating
joint connections. (b) Connections are processed by shrinking faces to make room for
hinges and adding holes for servo mounts. (c) Hinges are added and the result is a
complete mesh that is 3D printed.

104

Figure 6-4: Printable, snappable connections used in 3-D mesh generation

for mounting servomotors and servo horns are also added to each of the part pairs

forming a joint connection. The faces are then extruded to 1 mm, which we chose

as the thickness that produces rigid faces while still allowing almost 𝜋 radian (180∘)

fold angles.

Using 3-D printing instead of traditional planar manufacturing techniques gives

us greater flexibility in the types of articulated structures that can be fabricated. Our

folds are implemented as printed hinges. The hinge design is parameterized according

to its location in the overall model, its length, and its angle. It is also snappable so

that faces that are not adjacent in the 2-D pattern can still be connected in the folded

state without having to add extra tabs and slots as we did in Section 5.4. The hinges

snap to the correct fold angle during assembly. If the desired fold angle between two

adjacent faces is zero, the two faces are simply merged without hinge.

In addition to hinges, we have designed three other printable, snappable joints,

shown in Figure 6-4. Meshing teeth provide an alternative to hinges when faces that

are not adjacent in the fold pattern must be connected in 3-D. Teeth generally provide

a more rigid connection and take less volume than hinges. We have also provided

designs for prismatic joints and ball and socket joints for other types of motion. The

geometry of all joints are parameterized to fit in the fold pattern and provide the

necessary range of motion.

Finally, 3-D printing enables certain parts to be printed as solid objects instead of

folded ones. Elements such as feet and wheels are printed as solid objects with larger

thickness in order to provide more rigidity. This information is incorporated into the

description of the module design.

105

6.3.4 Assembly

During assembly, the servomotors and servo horns are first screwed to their mounting

holes. The electronic components are connected together, and the software is loaded

onto the microcontroller. Each of the individual pieces of the robot body is then

folded and snapped together. The final step is to snap the servo horns onto the

output shafts of the servomotors to complete the design.

6.4 Experimental Results

6.4.1 Fabricated Robots

We tested the full design pipeline by composing and fabricating 6 robot models. The

robots demonstrate a range of geometries and gaits, as shown in Figure 6-5. They

each took 10–15 min. to design, 3–7 hr. to print, and 30–90 min. to assemble (ref.

Table 6.2). The circled numbers in the figure indicate the step sequence. The mouse,

dragon, and ant are each robots that use multiple single legs to walk. The mouse uses

a gait that steps with one leg at a time, while the dragon and ant move their legs

in groups. The ant uses a standard tripod gait commonly seen in robotic hexapods.

The wheeled car robot is an example of locomotion with a rigid body and wheels that

rotate continuously to move it forward. Two of the robots demonstrate combinations

of limb types. The house has two front legs and two back wheels. It moves each of its

two legs forward individually but rotates its wheels simultaneously to shift forward.

The monkey has double-link front legs and single back legs, and it uses a similar step

sequence to the mouse but with a different ordering of legs.

The motions performed by the robots were similar to those simulated by the

system. Figure 6-6 shows frames from the simulation of the monkey compared with

the physical robot. Each of the legs moves at the expected times and in the correct

order. In addition, the robot dips forward when the third leg moves (𝑡 = 3.0 s) in

both the simulation and in the physical model. Both models have turned slightly to

the right by the end of one gait cycle.

106

(a) Ant (b) Dragon (c) Mouse
281 mm× 138 mm× 124 mm 210 mm× 162 mm× 88 mm 146 mm× 147 mm× 94 mm

(d) Monkey (e) House (f) Car
207 mm× 250 mm× 112 mm 127 mm× 82 mm× 140 mm 200 mm× 117 mm× 98 mm

Figure 6-5: Six robots designed and fabricated using composition. Numbers over the
limbs indicate the step sequence.

𝑡 = 0.0 s 𝑡 = 1.0 s 𝑡 = 2.0 s 𝑡 = 3.0 s 𝑡 = 4.0 s 𝑡 = 5.0 s 𝑡 = 6.0 s

Figure 6-6: Comparison of monkey gait in simulation and in physical robot. The
robot motion matches those from the simulations.

To test the degree of similarity, we tracked the movement of each of the robots in

a VICON motion capture system. The measured trajectories of the robot’s geometric

center over 10 gait cycles for 5 trial runs are shown in Figure 6-7, along with the circle

of best fit. We calculated the speed, mean curvature, and turning angle for each of

these trajectories. The mean metric values for each robot are given in Table 6.1.

The car is the fastest robot, with a speed of 357.02 mm/s, since it does not require

any step phase, while the monkey is the slowest of the robots, moving at a speed

of 6.99 mm/s. Most of the measured metrics match well with the simulated values.

107

−100 0 100 200 300 400 500 600
−100

0

100

200

300

mm

m
m

experimental
fitted circle

(a) Ant

−100 0 100 200 300 400 500 600
−200
−100

0

100

200

mm

m
m

experimental
fitted circle

(b) Dragon

−100 0 100 200 300 400 500 600
−200
−100

0

100

200

mm

m
m

experimental
fitted circle

(c) Mouse

−100 0 100 200 300 400 500 600
−200
−100

0

100

200

mm

m
m

experimental
fitted circle

(d) Monkey

−100 0 100 200 300 400 500 600
−200
−100

0

100

200

mm

m
m

experimental
fitted circle

(e) House

−100 0 100 200 300 400 500 600
−200
−100

0

100

200

mm

m
m

experimental
fitted circle

(f) Car

Figure 6-7: Trajectories measured for fabricated robots (gray) overlaid with circle of
best fit (black). The robots start at the point (0 mm, 0 mm).

Table 6.1: Comparison of measured vs. simulated metric values

Speed (mm/s) Curvature (1/m) Turning Angle (rad)
measured simulated measured simulated measured simulated

Ant 20.60 27.63 2.63 0.02 0.129 0.001
Dragon 14.39 14.31 1.95 1.79 −0.073 −0.047
Mouse 10.63 12.40 1.19 3.97 −0.045 −0.115
Monkey 6.99 9.17 6.05 4.43 −0.182 −0.106
House 14.56 14.01 1.60 0.21 −0.042 −0.004
Car 357.02 419.40 0.97 0.00 −0.051 0.000

All the experimental speed values are within 26% of the expected value, and turning

angles are within 0.13 radians (7.35∘) of the expected turning angle. Larger errors

in speed were correlated with larger errors in turning angle. During experiments,

those robots experienced greater amounts of slip because their limbs were not moving

completely synchronously and so dragged on the floor. Alignment errors that occurred

during assembly also created some differences between the fabricated and simulated

designs and accounted for much of the error.

108

(a) Gripper (b) Biped

Figure 6-8: Other robot designs achievable using our design system. (a) Robot with
gripper composed by attaching 2-link legs to the top of the robot body. (b) Biped
robot that uses prismatic joints instead of rotational joints on the legs.

6.4.2 Extensions Beyond the Database

Although our database was designed for the purpose of creating ground robots, many

of the modules can also be used for other tasks. For example, legs and fingers on

robots are essentially equivalent in all but intended functionality. Our system is

flexible enough to accommodate manipulation tasks by users connecting multi-link

legs to the tops or sides of robot bodies (ref. Figure 6-8(a)). In addition, because

of the joint library, other types of locomotion can be explored as well. Figure 6-8(b)

shows an example of a walking robot that uses prismatic joints and linear servomotors

instead of the rotational joints and servomotors used on the other robot examples.

This robot was programmed manually, but its joint controllers follow the same step

and reset phase structure.

6.4.3 Optimization

The design parameterization and performance metrics allow designs to be automat-

ically optimized for particular metric improvements. We use NLopt’s COBLYA im-

plementation [83, 139] to search for parameter changes that achieve a local optimum

of a metric. Different metrics produce different results. We optimized the geometry

of the four-legged fish design in Figure 6-9. The model has 460 parameters. It moves

109

(a) Original (b) Maximize speed (c) Minimize wobbliness
𝑉 = 25.59 mm/s 𝑉 = 52.28 mm/s 𝑉 = 15.25 mm/s
𝑊 = 0.46 rad 𝑊 = 0.75 rad 𝑊 = 0.06 rad

Figure 6-9: Optimization results for a four-legged fish robot when maximizing speed
or minimizing wobbliness. Numbers indicate the step sequence. Maximizing speed
increases the overall size of the robot. Minimizing wobbliness makes the robot shorter.

one leg at a time in the order indicated by the numbers to walk forward. When the

design is optimized for speed, the overall size of the robot increases and two of the

legs are lengthened (Figure 6-9(b)), yielding a robot that is just over twice as fast.

For physical validity, legs on the same side of the robot must be far enough apart

that they will not collide during walking. Since robot speed is most affected by the

maximum leg length, having one long leg and one shorter leg on each side yields the

highest speed. The same model can also be optimized for minimum wobbliness, in

which case the model becomes flatter and the back legs become shorter than the front

ones to account for the heavy tail (Figure 6-9(c)). In both cases, the optimization

took approximately 2 min.

6.4.4 Fabrication Comparison

Finally, we compare our print-and-fold method to directly 3-D printing the robot

bodies. Table 6.2 compares the printing time and material usage for each of the six

robots in Figure 6-5 for each process. Our print-and-fold technique yields a 73.2%

reduction in 3-D printing time and a 69.9% reduction in material usage on average

over all the robot geometries. The difference in material usage is due to the support

material that is necessary to print the robots in their 3-D form. In addition to the

fabrication efficiency, printing fold patterns enables fabrication of closed shapes that

110

Table 6.2: Fabrication time and material usage for 3-D printing (3-D) vs. print-and-
fold (2-D)

Material Usage Print Time
Assembly

3-D 2-D 3-D 2-D
Ant 2176 g 614 g 24.4 hr. 5.9 hr. 55 min.
Dragon 1795 g 517 g 24.2 hr. 6.9 hr. 45 min.
Mouse 1154 g 358 g 21.2 hr. 3.4 hr. 35 min.
Monkey 2779 g 499 g 33.7 hr. 5.2 hr. 45 min.
House 0841 g 342 g 10.8 hr. 4.4 hr. 40 min.
Car 1955 g 661 g 18.1 hr. 6.5 hr. 90 min.

are empty on the inside. Most of our printed models would have been impossible to

assemble as 3-D models since there is no way to remove the support material from

inside the body and to add the electronics.

6.5 Summary

We have described a method for designing ground robots and demonstrated it by

designing and fabricating robots with a variety of geometries and gaits. We have

presented joint controller modules that can be composed into gaits and trajectories,

and we have demonstrated how such a composition approach can be used to auto-

matically generate full fabrication plans that include the software, electronics, and

mechanical body of the robot. Further, we have outlined a variety of metrics to

evaluate composed designs, and we have shown that parameterizing modules in the

database allows us to automatically optimize parameters for those metrics.

Future work includes expanding these techniques to address real world robotic

applications. In order for a robot to interact with a physical environment, it would

be useful to also be able to estimate metrics such as robustness, agility, and battery

life. The database and grammar can be expanded to address a larger variety of

tasks and environments. We have already shown how simple changes to our grammar

allow us to incorporate other modes of locomotion and possibly manipulation tasks.

However, the simulation and metrics described here target the geometry and static

stability of the robot design. As a result, the dynamics or required actuation of the

111

robot is not considered. Generating the electronics plan is therefore straightforward:

all joints are assigned the same servomotor. We would like to incorporate information

about material properties, load requirements, and other practical considerations to

enhance design optimization.

112

Chapter 7

Interactive Design

Designers who want to create a robot must simultaneously consider multiple aspects

of the robot design. In previous chapters, we have shown how design choices can be

simplified by using a design-by-composition approach. However, the exact parameter

values for the modules that are composed can have a large effect on the robot’s

performance, even parameters from different aspects of the design. Take for example

the robot in Figure 7-1. The designer in this case had the goal of building a fast

robot. With the initial design (Figure 7-1(a)), this robot attempts to propel itself

forward by moving all legs simultaneously. Because of the tall back section, it topples

backwards and then scoots forward slowly (as evidenced by the different wobbliness

values 𝑊 before and during steady state). Changing the gait so that the left and

right pairs of legs step sequentially speeds up the robot by preventing it from toppling

(Figure 7-1(b)). On the other hand, changing the geometry slightly by increasing the

width of the back portion allows the robot to walk with the original gait without

falling over (Figure 7-1(c)) and results in a robot that is almost 50% faster.

It is not always obvious what design changes will lead to the better performance.

It is possible to use automatic optimization approaches to determine the best param-

eters for particular metrics (ref. Section 6.4.3), but often what improves one metric

will worsen another. When designers would like to satisfy multiple objectives, they

require the ability to explore these trade offs in an intuitive manner. Therefore, in

this chapter, we present an interactive tool that allows designers to explore how ge-

113

(a) Original (b) Modified gait (c) Modified geometry
𝑉 = 34.66 mm/s 𝑉 = 66.62 mm/s 𝑉 = 93.47 mm/s
𝑊 = 0.12 rad 𝑊 = 1.37 rad 𝑊 = 0.00 rad
𝑊0 = 2.37 rad 𝑊0 = 1.37 rad 𝑊0 = 0.00 rad

Figure 7-1: A robot design that topples while walking (a). Its gait can be modified
so that it only wobbles slightly (b), but changing the geometry (c) allows the robot
to move faster and more steadily. Reported 𝑉 and 𝑊 values are for steady state
behavior. 𝑊0 is the robot’s average wobble before 𝑡𝑖0 .

ometry and motion changes affect robot performance, enabling them to make relevant

design choices. The tool uses our previously described design-by-composition frame-

work, as well as our geometry and gait modules and evaluation metrics. We test the

tool through a small user study and demonstrate that users with no previous design

experience are able to use the tool to create functional robots after about 20 min. of

training.1

7.1 User Interface and Workflow Overview

Our tool contains methods for geometry and gait design, as well simulations for evalu-

ating the design. Figure 7-2 shows a system diagram for our tool. Users interact with

the tool through a graphical user interface (Figure 7-3) in which they can visualize

the design they create and receive real time feedback as to how changes to the design

affect the robot’s real-world performance. In the typical workflow, users first spec-

ify the robot’s geometry by dragging modules into the workspace from the database

shown in the left panel and connecting them together. As they compose the design,

the tool automatically adds constraints and determines valid parameter values. Once

1Parts of this chapter were published in [153].

114

Geometry Design Fabrication
and

Assembly

SYSTEM

Gait Design

User
Interface

Simulation

Figure 7-2: Interactive design tool system diagram. Users interact with geometry and
gait design tools. The designs are simulated to provide feedback to the user. The
user may iterate over the design before fabricating and assembling the robot.

Figure 7-3: User interface. The database of geometry modules is displayed on the left
and the gait design tool is on the bottom. Users design robots by dragging modules
into the center canvas and editing them. Performance metrics for the design are
shown on the right.

the users are satisfied with the geometry, they can design a variety of gaits using a

gait design tab at the bottom of the screen. The gaits they design and their corre-

sponding metrics appear in the panel to the right. Once users have a general design,

optimization tools guide users to realize their desired robot. Users can explore the

geometry and gait design parameters and track the metric changes. The tool can also

provide guidance on which parameters have the greatest effect on particular metrics.

115

The tool keeps track of the geometry and motion in order to output a full fabrication

plan once the user is ready to build the design.

7.1.1 Geometry Composition

Our tool allows users to create new designs by composing modules from the database

and manipulating their shape parameters.

Geometry Modules

Our database of rigid body modules is shown in Figure 7-4. The database contains

a total of 45 modules, including 12 bodies, 23 limbs, and 10 peripherals. All the

modules in the database are parameterized to allow structure-preserving variations,

and they were created using a system similar to that in [113]. Each module contains a

set of shape parameters q and a corresponding feasible set 𝑄, which together describe

the viable module geometries (see Figure 7-5). Each vertex on the geometry is stored

as a linear function of the shape parameters q. The module representation includes

information about both the 3-D geometry and the 2-D fold pattern. It also includes

connection information between the edges where folds and joints are located in the

Figure 7-4: Geometry modules by category. Our database contains 45 modules:
12 bodies, 23 limbs, and 10 peripherals.

116

qw

qd

qw

qd

Figure 7-5: One of the geometry modules in the database, with both its 3-D shape
and 2-D fold pattern. The module has parameter values of diameter 𝑞𝑑 and width 𝑞𝑤.
The green line indicates a functional patch, and the blue lines are static patches.

design. The 3-D and 2-D representations are coupled so that they are simultaneously

updated as parameters are changed.

For more intuitive composition, modules are annotated with connecting patches

that indicate where they are allowed to be connected together. Patch representations

are also a function of the shape parameters q. We define two types of patches:

static patches for rigid attachments and functional patches for articulated connections.

Patches can be points or lines.

Geometry Manipulation

Modules can be modified using the parametric representation. Allowable manipula-

tions include translation, rotation, and dimension scaling. To manipulate a module,

users click on the rotate, translate, or scale buttons at the top of the screen. When

they next click on a face on the design, orthogonal control axes appear to indicate the

possible manipulations (Figure 7-6(a)). Users click and drag on the axes to change

the design. The current state and magnitude of the change are displayed to the user

in the top left corner of the screen.

In order to maintain a linear representation for the geometric modules, rotation

is restricted to a global rotation of the model. When users rotate a part, the linear

functions that represent the vertex locations and connections are all updated in the

part’s representation.

117

(a) UI control axes

dy

dx

v0(q)

v3(q)

v2(q)

v1(q)

dx(q)=v1x(q)−v3x(q)
dy(q)=v0y(q)−v2y(q)

(b) Relevant face dimensions

Figure 7-6: Dimension scaling in the UI. (a) When users click on a face, orthogonal
control axes appear that they can use to manipulate the part. (b) The dimension
of the part in each direction is written as a function of q by using the parametric
representation of the extreme vertices. The distance 𝑑(q) between these vertices is
used to update the parameter values.

Translation and scaling correspond to an optimization of the parameter values.

When users select a face and drag one of the control axes, the tool solves an opti-

mization problem to perform the indicated change. For scaling, the dimension in the

selected direction is expressed as a function 𝑑(q) of the design parameters q, which is

the distance between the extreme vertices in this direction (see Figure 7-6(b)). Resiz-

ing involves finding a feasible solution, q ∈ 𝑄, such that ‖𝑑(q)− (𝑑(q𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝐾) ‖2
is minimized, where q𝑐𝑢𝑟𝑟𝑒𝑛𝑡 are the parameter values at the current configuration

and 𝐾 is the resizing amount defined by the user’s dragging. Since there might be

many feasible solutions to this problem, the system finds the one that that keeps the

design as close as possible to its original state. We express the distance to the current

configuration as ‖𝐷(q)−𝐷(q𝑐𝑢𝑟𝑟𝑒𝑛𝑡)‖2, where 𝐷 is a matrix created by stacking the

directional dimensions of all faces and represents the current dimensions of the design.

The closest design satisfying the user’s input can be found by solving for

q* := argmin ‖𝑑(q)− (𝑑(q𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝐾) ‖2+

𝛼‖𝐷(q)−𝐷(q𝑐𝑢𝑟𝑟𝑒𝑛𝑡)‖2 𝑠.𝑡 q ∈ 𝒬
(7.1)

118

Figure 7-7: As the user drags in modules, the UI highlights the patch pairs that will
be connected. Limbs are attached to other parts along functional patches. All other
modules attach via static patches.

where 𝛼 is a weighting parameter. Translation of parts is performed in an analogous

manner.

Geometry Composition

As users drag new modules onto the screen, the tool searches for the closest pair

of either static or functional patches and proposes to connect them by highlighting

them in real time (ref. Figure 7-7). When the users are satisfied with a matching

pair, they finalize the connection. This operation first rotates the added module

so that the patches are properly aligned, then defines constraints on the parametric

representation that snap the modules into place and adds connection information.

The information added depends on the patch type. For static patches between

body parts or peripherals, constraints ensure that the pairs of patch edges remain co-

incident. The tool also adds folds to connect the 2-D fold pattern. Because folds are

snappable hinges, if two fold patterns cannot be directly connected together with-

out intersecting, they are printed as separate components. For functional patches

connecting limbs to other parts, the constraints enforce that patch regions intersect.

The fold patterns are not composed. Joint information indicating that a servomotor

lies between these two modules is also added. Joint types are assigned based on the

grammar described in Section 6.1. The connections define a kinematic chain that is

used for gait design and simulation.

119

Constraints on point and edge locations can be defined as linear constraints on

the shape parameters q. When connecting a limb to a body, a new parameter q𝑐

indicating the position of the leg along the side of the body is added. Linear con-

straints are then defined to enforce that the point patch on the limb is attached at

this location. In addition, when multiple limbs are attached to the same functional

patch, inequality constraints on q𝑐 are added to enforce that limbs do not collide

during locomotion. We use a conservative approximation that ensures limbs will not

collide in any gait.

Once constraints are defined, the tool finds the valid parameters that keep the

design as close as possible to the current configuration by solving for

q* := argmin ‖𝐷(q)−𝐷(q𝑐𝑢𝑟𝑟𝑒𝑛𝑡)‖2 𝑠.𝑡 q ∈ 𝒬 (7.2)

The solution of this optimization snaps the modules into place.

Since composed designs preserve the parametric representation, users can continue

to manipulate the design after composition. When one part is manipulated, the

different parts of the composed design will update to satisfy the constraints imposed

by the composition algorithm.

Finally, our tool also allows users to define additional constraints on composed

designs. The user interface exposes a list of symmetry constraints that can be enforced

or relaxed at any design stage. These include equalizing the length of all limbs,

uniformly spacing all limbs along the sides of the body, equalizing thickness of all

legs, and equalizing the lengths of links on multi-linked legs.

7.1.2 Motion Composition

Similar to the geometry design process, gait design is done by manipulating parame-

ters of gait modules and composing them into a gait sequence.

120

Gait Modules

Our gait modules are as described in Section 6.1. Each joint is assigned a controller

based on its joint type.

To simplify gait design, the tool provides users with a list of gait suggestions

using a heuristic based on the stability and speed for a given topology. Stability is

approximated by considering the distance between the projection of the robot’s center

of mass on the ground plane and its support polygon at its initial configuration, and

speed is approximated by counting the number of steps 𝑁𝑔. The tool performs a

combinatorial search of all step sequences that keep at least 3 limbs on the ground

at all times and suggests step sequences that maximize stability, then speed. These

suggestions are presented to the user as an ordered list (Figure 7-8(a)). The numbers

indicate the step sequence and arrows show the rotation direction.

(a) Gait suggestions

(b) Gait manipulation

(c) Gait composition

Figure 7-8: Gait design interface. Users can (a) choose among gait suggestions,
(b) edit the gait parameters, and (c) compose gaits into a gait sequence by dragging
them into a timeline.

121

The tool also suggests three standard gaits in which all limbs step simultaneously

(𝑁𝑔 = 1). The three variations consist of all positive values for 𝜃𝑖’s (forward gait),

negative values for 𝜃𝑖’s along the left side of the body and positive values for 𝜃𝑖’s on

the right (rotation to the left), and positive values for 𝜃𝑖’s on the left side and negative

values for 𝜃𝑖’s on the right (rotation to the right). These suggestions are placed first

in the list.

Gait Manipulation

After choosing a suggested gait, users can modify the gait in an Edit panel. Our

user interface exposes the parameters of the gait, allowing users to vary both step

ordering and the 𝜃𝑖 angle values (see Figure 7-8(b)). The panel shows an overhead

view of the robot design and indicates the locations of the attached limbs. The limbs

are numbered according to the step sequence. Users can change the step sequence

by clicking on up and down arrows next to the displayed numbers. The tool ensures

that there are no empty steps in the gait. Users can also use the slider bars to change

the 𝜃𝑖 values for particular legs up to a magnitude of 𝜋
3
radians (60∘). An Animate

button on the tab allows users to visualize the gait after editing it.

Gait Composition

After designing several gaits, users can compose a gait sequence by dragging gaits

onto a timeline (Figure 7-8(c)). Colored boxes on the timeline indicate the ordering

of gaits in the sequence.

7.1.3 Feedback and Guidance

Our tool computes the performance metrics described in Section 6.2 at interactive

rates and exposes them to the user as feedback during the design process. A tab on

the right side of the UI displays each gait design’s metric values, colored according to

gait. It also shows an overhead view of the trajectory of the robot’s center of mass for

each gait. An arrow at the end of the trajectory indicates the robot’s final heading.

122

As the user manipulates the design and composes parts, the metrics and trajectories

update automatically to reflect the changes. Users can also visualize an animation

of any of the designed gaits in order to have a more comprehensive understanding of

the robot’s motion.

In addition to these performance metrics, the tool computes fabrication metrics

related to the robot geometry and kinematics. These include:

1. Fabrication Cost: The fabrication cost is computed as the mass in grams of

nonsupport material required to print the robot body.

2. Electronics Cost: The cost of electronics is the combined cost of the servomotors,

the microcontroller, and the battery.

3. Total Mass: The total mass of the robot in grams is calculated as the combined

mass of the printed body and the electronics.

Our tool also provides guidance to the user on how to manipulate design dimen-

sions to optimize these metrics. To activate this feature, users select a metric value

to improve (i.e., increasing speed, decreasing wobbliness, decreasing slip, etc.) and

turn guidance on. When they next choose a face on the design to scale or translate,

the tool displays arrows on the control axes indicating which direction to change the

dimensions to improve that value. The system uses finite differences to determine

how much the metric improves for each control axis and draws an arrow if the im-

provement is above a given threshold. Figure 7-9 shows an example of these arrows

Figure 7-9: The tool provides guidance arrows for users who want to make local
geometry optimizations. The up and down arrows indicate that the user should
lengthen and shorten the leg respectively. No arrow indicates that the part dimension
is already at a local optimum.

123

for reducing wobbliness on a four-legged robot. The size of an arrow indicates the size

of the change in metric value and helps users to decide which geometry changes will

have the greatest impact. The guidance can be performed for metrics on individual

designed gaits or for the composed gait sequence, and it helps the user to find optimal

part dimensions for that metric.

7.2 User Study

To test the usability of the tool and the effectiveness of the design-by-composition

approach, we introduced our system to 8 users with no previous experience in robot

design. The users were all engineering graduate students (3 female, 5 male) between

the ages of 22 and 31. Four of the users had previous experience with CAD and

modeling tools (SolidWorks, Blender, Maya, etc.). The users were given 20 min. of

training in the tool’s features and were then asked to perform 3 tasks designed to

evaluate the expressiveness of the geometry and gait design frameworks. The users

were asked to fill out questionnaires on their experiences at the end of each task. We

present a summary of the results here. Full questionnaire responses can be found in

Appendix B.

7.2.1 Geometry Design

In the first task, users were given 10 min. to interact with the geometry composition

tool. They were asked to create a visually interesting car for a parade. Figure 7-10

shows the designs that the users created. All of the designs were functional vehicles

that rolled forward without toppling. The results demonstrate a wide range of ge-

ometries. Interestingly, when body geometries that users wanted were not available

as single modules in the database, they were able to create new shapes by composing

and rescaling individual bodies together.

In the post-task questionnaire, users generally expressed satisfaction with the

expressiveness of the system. An enthusiastic user designed an additional 18 robots

with different levels of complexity (Figure 7-11). Each design took 3 to 25 min. to

124

create. Almost all of the users agreed that the scale and connect functionalities were

the most useful in the system. Several users stated that the visualization of the

proposed patch connections while the users were manipulating modules was helpful

but also expressed a desire to be able to directly control how modules were connected.

This could be implemented by displaying all connecting patches on the modules in

the workspace and asking users to select the ones they want to connect. Some users

were also disappointed with the small size of the database used in the study, and a

few suggested that undo functionality would be very useful. These additions could

be incorporated with minor changes to the tool.

7.2.2 Combined Geometry and Gait Design

In the second task, users were given a robot design and asked to design a trajectory

to navigate the robot through an obstacle course in the least amount of travel time.

The users were given 15 min. to complete the task. Half of the users were allowed

both to design gaits and to change the geometry parameters of the design, while the

other half were restricted to gait design. The robot geometry provided was similar

to the one described in Figure 7-1, which topples during forward gaits where all legs

Figure 7-10: Cars designed by 8 different users after a 20 min. training session with
the tool. Users were given 10 min. to design their car.

125

Figure 7-11: Gallery of designs created by one of the users in the user study after a
20 min. training session. Each of the designs took between 3 and 25 min. to design
and contains multiple modules from the database.

User 3: 9.25 s User 4: 8.10 s User 7: 9.30 s User 8: 8.40 s

User 1: 13.30 s User 2: 16.60 s User 5: 13.65 s User 6: 15.30 s

No Geometry

Changes

Geometry

Changes

Figure 7-12: Trajectories designed by users during task 2 of the user study. Users
who were allowed to make changes to the robot geometry were able to make the robot
navigate the course about 40% faster on average.

have equal values for 𝜃𝑖’s. Figure 7-12 shows the trajectories designed by each user

and the duration of each gait sequence.

Users who were not allowed to manipulate the geometry were able to explore the

gait design tool creatively to reach the goal. Solutions included a combination of right

and left rotation gaits (user 1), fixing the back legs and moving forward stably with

only the front legs (users 2 and 6), and performing a 180∘ rotation before moving

with a backwards gait towards the goal (user 5).

126

Users who were not restricted to gait design edited the robot dimensions so that

it would be stable during a forward gait with all legs moving simultaneously. The

resulting gait sequences were significantly faster (40% time reduction on average)

than the ones designed without geometry modification. This result speaks to the

effectiveness of concurrent design of multiple aspects of a robot.

To reach these solutions, users made extensive use of the interactive feedback dur-

ing manipulation of gait parameters and gait sequence composition. Users who could

modify the geometry referenced the metrics tab on the user interface when manipu-

lating the shape to find more stable configurations. One user used the guide arrows

to minimize the wobbliness metric. The users reported that the most useful features

were the animations and the trajectory visualization. Several of them suggested that

the ability to pause the animation and view the configuration at particular points in

time would have been useful for the task since the designed trajectories were quite

long. The users seemed to have no difficulty using the gait design tool to explore the

gait parameters, although one user suggested that guidance on the 𝜃𝑖 parameters in

a similar vein to the geometry guidance would have been helpful.

7.2.3 Interactive Feedback and Optimization

In the third task, users were presented with two four-legged robot designs with a given

step sequence and asked to change the parameters of the design to bring wobbliness

below 0.5 radians while maintaining speed above a threshold value (150 mm/s for

design A, 190 mm/s for design B, ref. Figure B.4) set prior to the study to equalize

task difficulty. The users were given 5 min. for each design, and the design order

was randomized. They were asked to modify the robot using the feedback guidance

arrows and metrics for one task and without them on the other. Users were able to

animate the robot and visually check its performance in both cases.

Table 7.1 shows the results of this task. Most users were able to complete the

task with the feedback and guidance arrows, while only half of the users were able to

complete the task without the feedback. The two users who completed the task in

less time without the feedback reported the highest familiarity with CAD tools and

127

Table 7.1: Timing data from task 3 of user study where users optimized a design with
and without feedback

User ID
Time taken (s)

Which was easier?
with feedback without feedback

1 192 * with feedback
2 108 214 with feedback
3 * 260 with feedback
4 152 * with feedback
5 + * with feedback
6 110 96 with feedback
7 112 70 without feedback
8 138 * with feedback

* did not complete the task + system crashed

robot design out of all the users. Both users reported in the post-task questionnaire

that they were able to use their intuition to optimize the design. Most users reported

that the task was easier when feedback was turned on since it helped them to detect

where the greatest gains could be made. However, some users were unhappy with

how the guidance slowed down the system. Users 3 and 5, who were both unable

to complete the task with the feedback on, experienced significant lags during the

experiment, and the system crashed during the test with user 5. These lags were

caused by the use of finite differences to compute the magnitude and direction of the

guidance arrows. Some users suggested that instead of having the user click faces

and check the guidance arrows, the system should compute all the potential guidance

arrows and indicate which changes would cause the greatest change in the selected

metric. This feature, although potentially helpful, would be even slower than the

existing methods. Future work on making manipulation guidance faster is therefore

required for the feedback to be useful.

7.3 Summary

We have presented an interactive tool that allows designers to create robots using

composition. Users can explore the space of geometries and gaits in their designs in

order to efficiently achieve desired performance metrics. The tool incorporates simu-

128

lation and optimization methods to provide the user with feedback and guidance on

how to modify their designs. It also takes care of the implementation details required

for fabrication, allowing users to focus on the conceptual high-level design. We have

tested the tool in a preliminary user study and shown that novice designers respond

well to the user interface, the flexibility given them to manipulate design parameters,

and the metrics and manipulation guidance. The system is able to provide sufficient

feedback for standard planning tasks.

Our user study provided us with valuable comments for future improvements.

Users generally liked the composition tool but expressed a desire for greater variety

in the database, as well as more feedback as to how modules would be composed. They

were also dissatisfied with the slowness of the system when manipulation guidance

was turned on, although they agreed for the most part that the guidance was useful.

In addition, although users did not comment on this aspect, our user feedback is

restricted to local guidance. The tool is currently unable to accommodate situations

where more global changes are needed (e.g., changing the dimensions of multiple

parts simultaneously) or where additional parts should be added. It is also unable to

determine when a user-designed robot is unable to achieve the desired performance

metrics given the parameter constraints. Future work includes enhancing the system

with such features.

129

130

Chapter 8

Extensions to Other Fabrication

Methods

The fabrication method we have demonstrated so far uses a combination of 3-D

printing, laser cutting, and folding to rapidly fabricate lightweight robots. However,

the resulting designs are limited in size to what can fit in the machine and are intended

to have thin walls that do not interfere with the fold, so they are limited in the types of

tasks that they can accomplish. Our system ensures the validity of a fold pattern and

is not specific to a fabrication method, so the same fold pattern can be implemented

using any method that can generate the necessary folds and joints for the pattern and

that produces a robot that can maintain its shape. In this chapter, we demonstrate

how our methods can be extended to fabricating foldable robots at larger scales, and

we experimentally verify these methods by fabricating three medium-to-large scale

robots.

8.1 Medium Scale Fabrication and Design

Larger robots require bodies made of stiffer material. At the same time, we would

like the robot to remain lightweight and quickly fabricable. For medium-scale robots

on the order of 20–40 cm cube, we introduce a new fabrication option that involves

laser cutting thick materials to produce larger, more rigid robot bodies than those

131

(a) Cut rigid faces (b) Attach adhesive film (c) Cut adhesive film (d) Fold

Figure 8-1: Multi-layer process for fabricating medium-scale rigid robot bodies.
(a) The fold pattern is first cut from a rigid material. (b) Adhesive film is attached to
both sides of the rigid material and (c) then cut into the correct shape. (d) Finally,
the layered structure is folded into its final 3-D form. Tabs cut from the adhesive film
are folded to secure the shape.

in the previous chapters. Rigid faces are layered on top of a flexible film that allows

folding similarly to work in thick origami [175, 183, 208]. Compared to traditional

origami fold patterns, however, which contain many cycles of connected faces that

can help the structure maintain its shape, the fold patterns for foldable robots and

mechanisms are often simpler and more treelike. We therefore use interlocking teeth

along the edges of joined faces to prevent slip.1

8.1.1 Fabrication Process

We fabricate rigid robots by layering a thick, rigid material and a flexible film in

the shape of the fold pattern and then folding the structure into its 3-D form. The

process is illustrated in Figure 8-1. All steps except the final assembly step use planar

fabrication.

The faces of the fold pattern are first cut out of a rigid material using a laser

cutter. We choose to use acrylic sheet for its high surface energy and for ease of laser

cutting. To account for material thickness, the faces are shrunk and separated by

a gap, similarly to [175]. While cutting individual faces, thin strips that bridge the

gaps are kept so that the structure remains a single piece and the correct gap width

is preserved. These strips are later cut during folding. Interlocking teeth along each

1The majority of this section was published in [171].

132

pair of joining edges add structural integrity and keep faces from sliding along the

fold line.

Once the rigid material is cut, a thin, adhesive-backed polyester film is layered

on the top and bottom. The film maintains the geometry of the rigid material even

once the thin strips between faces have been cut. The film is then cut using a laser

cutter. For each fold, either the top or bottom film is cut along the toothed edges

and removed, depending on the sign of the fold angle, to allow folding. Since the two

films are separated by the thickness of the rigid material, they can be cut individually

without affecting the integrity of the other side. For nonadjacent joining edges, we

add a tab to one of the pair of edges so that the two can be secured together during

folding. Finally, the thin strips connecting the rigid faces are also cut and removed.

During assembly, the cutout is folded into its 3-D form. Tabs cut from the adhesive

film are wrapped around the corresponding folds to secure the two fold edges together.

8.1.2 Pattern Generation

Cut patterns for each of the layers can be automatically generated given a fold pattern.

The cut pattern consists of two parts: 1) cuts for the thick rigid layer, and 2) cuts

for the thin adhesive layers.

(a) Original fold pattern (b) Rigid layer (c) Side view of layers

(d) Top layer (e) Bottom layer (f) Folded layers

Figure 8-2: Layers for an example fold pattern fabricated using our multi-layered
approach. (a) Original fold pattern. Red lines correspond to joining edges with
positive angle, and blue lines correspond to negative angle. (b) Cut pattern for
rigid layer. (d,e) Resulting cut patterns for top and bottom adhesive-backed layers.
(c,f) Side view of the resulting layered structure.

133

φ

lilo

wg
t

(a) Acute angle (|𝜑| < 𝜋/2)

φ

lilo

t

(b) Obtuse angle (|𝜑| ≥ 𝜋/2)

Figure 8-3: Side view of two faces of thickness 𝑡 that come together at a fold with
angle 𝜑 between them. The midline of the material, indicated in red, shows the
original length of the faces. The length ℓ𝑜 is the greatest amount that a face can be
lengthened without breaking through the surface of the other face. The length ℓ𝑖 is
the length that the face must be shortened to avoid intersection with the other face.
The gap width 𝑤𝑔 is the amount of space that must be placed between two faces
joined at an acute angle once they have been lengthened by ℓ𝑜.

Rigid Material Three-dimensional bodies with thick walls have faces of different

sizes when viewed from one side compared to the other. This creates a challenge for

laser cutting the faces of the body since cuts are perpendicular to the faces being cut.

As a result, faces cannot always be cut to the same size as they were in the original

fold pattern. Figure 8-3 shows the resulting geometry for two faces of thickness 𝑡 that

are joined with an angle 𝜑 ∈ [−𝜋, 𝜋] between them. Because of the thickness of the

material, when the two faces are joined at an angle, there exists either some overlap

or a gap between the faces. The red line indicates the slice of the material that has

the same dimensions as the original fold pattern. This is equivalent to saying that the

material was folded at that slice. The location of the slice can be designed to occur

at any position within the thickness of the material, or even outside of the material.

We choose for it to be at the midline of the material for symmetry.

Faces joined at an edge must be trimmed so that no intersection occurs during

folding. We also add teeth along a joining edge so that the joined faces interlock

for greater rigidity. We draw rectangular teeth relative to the original location of the

edge of the face and refer to the distances of the outermost and innermost points from

the edge location as ℓ𝑜 and ℓ𝑖 respectively. The value of ℓ𝑜 can be calculated as the

greatest amount that one of the faces can be lengthened without breaking through

the surface of the other face. The value of ℓ𝑖 is the amount that the face must be

134

shrunk in order to avoid intersection with the other face, once lengthened. These two

values vary depending on the angle between the two joined faces as

ℓ𝑖 =

⎧⎪⎨⎪⎩
𝑡

2 tan 𝜑
2

|𝜑| < 𝜋/2

𝑡 sin(𝜑)− 𝑡

2 tan 𝜑
2

|𝜑| ≥ 𝜋/2

(8.1)

ℓ𝑜 =

⎧⎪⎨⎪⎩
𝑡

sin𝜑
− 𝑡

2 tan 𝜑
2

|𝜑| < 𝜋/2

𝑡

2 tan 𝜑
2

|𝜑| ≥ 𝜋/2

(8.2)

The cut pattern for the rigid material is drawn by shrinking and shifting the faces

and adding teeth to the fold edges. The procedure is as follows:

1. Shrink Faces For each pair of joined faces, shrink the face by ℓ𝑖 in the direction

perpendicular to the joining edge. This results in a gap of width 2ℓ𝑖 between

the two faces.

2. Shift Faces When shifting faces, the amount of shift depends on the whether

the angle between the faces is acute or obtuse. For obtuse angles (Figure 8-

3(b)), the faces must be further separated by a distance of 2ℓ𝑜. For acute angles

(Figure 8-3(a)), the faces must be separated by a distance of 2ℓ𝑜 + 𝑤𝑔, where

𝑤𝑔 = 2 sin
𝜑

2

(︃
𝑡

tan 𝜑
2

− 𝑡

𝑠𝑖𝑛𝜑

)︃
(8.3)

is the distance across the shortened corner caused by cutting the faces so that

they do not extend past the angle formed by the outer surfaces.

3. Add Teeth For each pair of joining edges, we add alternating rectangular

teeth to the two edges. The teeth extend a width ℓ𝑖 + ℓ𝑜 past the edges of the

shrunken faces. The number of teeth is chosen such that each tooth is at most

10 mm long and there are at least three teeth. In addition, teeth are cut 0.3 mm

wider than the gap on the opposite edge to account for the beam width of the

laser cutter.

135

li
lo

original
edges

(a) Adjacent joining edges

li
looriginal

edge
(b) Nonadjacent joining edges

Figure 8-4: Teeth structure for a pair of edges that form a fold. (a) Red lines indicate
the pieces that keep the structure connected but are cut prior to assembly.

Finally, in order for the material to remain one piece until assembly, thin strips

of material that bridge the gaps between adjacent joining edges are kept. This

is done by drawing the teeth for a length 2 mm shorter than the actual edge

length. Figure 8-4 shows the resulting teeth structure for both adjacent and

nonadjacent joining edges. Red lines on the teeth for adjacent edges show the

pieces that are cut off prior to assembly.

Adhesive Layers Adhesive layers are placed on both the top and the bottom of

the rigid layer and are cut away to allow folding. We use the convention that when

the angle 𝜑 between two joined faces is positive, then the top layer is cut away (ref.

Figure 8-2(c)); when the angle is negative, then the bottom layer is cut.

To draw the cut pattern of the top layer, we begin with the cut pattern of the

rigid material. Then, for each adjacent joining edge, the cut lines corresponding to

the teeth are removed if 𝜑 is negative and remain unmodified otherwise. For each

nonadjacent edge, the cut lines corresponding to the teeth are similarly modified

only if 𝜑 is negative. In that case, the cut lines corresponding to the teeth are kept

unmodified for one edge, and the other edge is replaced by a rectangular tab. The

process is repeated in the same fashion for the bottom layer, except that cut lines

corresponding to joining edges with positive angle 𝜑 are modified instead. Figure 8-2

shows the resulting top and bottom layers for an example fold pattern.

136

(a) Fold pattern (b) Assembled robot

Figure 8-5: Wide hexapod cut out of 3.18 mm thick acrylic sheet using our multi-layer
fabrication process.

(a) Fold pattern (b) Assembled robot

Figure 8-6: Long hexapod cut out of 4.50 mm thick acrylic sheet using our multi-layer
fabrication process.

8.1.3 Fabricated Results

We have used this fabrication process to create two hexapods of different dimensions

designed using the tool described in Chapter 7. The pattern for the hexapod consists

of a single rectangular body and six rectangular beam legs. Although the legs are

drawn adjacent to the body, they are not connected via any joining edges. To test

the system’s ability to accommodate different thicknesses of material, we cut a short

and wide hexapod (Figure 8-5) out of 3.18 mm thick acrylic sheet and a tall and long

137

Figure 8-7: Hexapods cut from thick material next to print-and-fold hexapod (mid-
dle). The new hexapods are almost twice as large.

Table 8.1: Specifications for medium-scale hexapod robots

Wide Hexapod Long Hexapod
Thickness 3.18 mm 4.50 mm
Length 192 mm 288 mm
Width 260 mm 190 mm
Height 60 mm 95 mm
Mass 0.672 kg 1.058 kg

Speed 27.7 mm/s 35.9 mm/s
Payload Capacity 2.50 kg 0.76 kg

hexapod out of 4.50 mm thick acrylic sheet (Figure 8-6). We layered both robots

with a 0.05 mm thick polyester film backed with acrylic adhesive. The cut patterns

for the hexapods both folded into the correct shapes.

Fabrication Because of the heavier bodies, we were unable to use the same servo-

motors as those used in the 3-D printed robots. However, aside from swapping out

the actuators, the electronics plans remain similar. The robots were each actuated

using six servomotors with stall torques of 2.7 kg-cm and controlled using an Arduino

Uno. They were powered by two 3.7 V, 2600 mAH lithium ion batteries regulated to

6 V to meet the power requirements of the servomotors. Similarly to the servomotors

on the smaller robots, these servomotors were modified to allow continuous rotation

and provide position feedback from the potentiometer connected to the output shaft.

138

Table 8.2: Timing per step of fabrication

Wide Hexapod Long Hexapod
Cut Rigid Layer 10 min. 20 min.
Attach Adhesive Layer 25 min. 50 min.
Cut Adhesive Layer 5 min. 5 min.
Assemble 45 min. 60 min.
Attach Electronics 25 min. 25 min.
Total 1 hr. 50 min. 2 hr. 40 min.

3-D print body 10 hr. 56 min. 14 hr. 26 min.
3-D print faces 9 hr. 28 min. 12 hr 25 min.

Table 8.2 shows the amount of time required to fully fabricate and assemble each

robot. Fabrication of the layered structure took approximately 1 hour for each robot,

and full assembly, including attaching electronics, took an additional 1.5 hours. The

long hexapod, which is the larger and heavier of the two, took more time to fabricate

and assemble than the wide hexapod. Since it is longer, the entire fold pattern did

not fit on one sheet of acrylic, so the robot was fabricated in two parts that were

attached together using the adhesive-backed film. This process doubled the amount

of time required to attach the adhesive layer to the rigid layer for the long hexapod

compared to the wide hexapod. Rubber feet were placed on each of the legs to prevent

slip during the walking gait. The feet were fabricated by 3-D printing a mold, pouring

A15 durometer silicone rubber into the mold, and then allowing the rubber to cure.

The entire process took about 5 hours.

Compared to 3-D printing the hexapods, laser cutting and folding the robots

resulted in substantial time and materials savings. In particular, 3-D printing the

long hexapod takes almost 14.5 hours on a Fortus 400mc printer (Table 8.2), and

one-quarter of the printed material is support for the hollow body. Even separating

the body into individual faces to minimize support material still requires 12.5 hours

of printing, not to mention the additional time for assembly. Similarly, printing the

wide hexapod takes 11 hours, with one-third of the material being support material,

or 9.5 hours for printing just the faces.

139

0.0 s 0.83 s 1.13 s 1.29 s

3.04 s 2.58 s 2.38 s

Figure 8-8: One cycle in the walking gait of the wide hexapod. Three legs make one
full rotation to shift the robot forward while the other three keep the robot stable.
Next the other three legs rotate.

Performance Both hexapods were programmed to follow a tripod gait as suggested

by the design system. The resulting walking gait is shown in Figure 8-8. All the legs

were initialized to an angle of 0.35 radians (20∘) offset from vertical. The legs were

then split into two sets of three, with each set containing the front and back legs

of one side of the robot and the middle leg of the other. One set of legs rotated

one complete revolution in 1.5 s while the other set remained static to maintain the

stability of the robot. The sets of legs alternated between rotating and remaining

static.

Both robots were able to walk forward stably, although lack of synchrony between

the servomotors occasionally caused the robots to shuffle and turn during steps. Dur-

ing experiments, the robots turned at most 0.17 radians (10∘) per step in the direction

of the side whose middle leg was moving. Table 8.1 describes the size and performance

of each robot. Speed was computed by measuring the amount of time required for the

robot to walk forward 3 m and averaging the result over 3 trials. Payload capacity

was measured by incrementally adding weights on top of the robot until its leg sets

were no longer able to complete a full rotation (i.e., the robot could no longer walk

forward).

As might be expected, the long hexapod could move faster than the wide hexa-

pod but was able to carry less payload. While the wide hexapod was able to carry

more than 3.5 times its own body weight, the long hexapod, which uses the same

140

servomotors but is taller and heavier, was able to carry only about 0.72 times its

own weight. In terms of speed, both hexapods used the same motion sequence, but

the long hexapod has longer legs and so moved about 1.30 times as fast as the wide

hexapod.

8.2 Large Scale Fabrication and Design

Layers of plastic material work well at the medium scale, but at larger scales and larger

loads, they begin to crack and delaminate. To produce robots at the meter scale, we

use metal sheets and leverage techniques in sheet metal design. Conventional sheet

metal folding requires large machinery specifically set up to cut and fold a particular

shape. For customizable one-off robots, we require a more flexible fabrication process.

We therefore introduce a fabrication option that involves water jetting metal sheets

using a perforation pattern similar to that used for folding robots out of thin films.

With this pattern, metal robots can be folded and assembled by hand without external

machinery.

The main difficulty with folding metal sheets is in ensuring that folds occur at

the correct locations. We use a semicircular pattern centered about the fold line to

weaken the material enough for a person to fold it (ref. Figure 8-9). The includes

(a) Cut pattern (b) Folded state

Figure 8-9: Cut pattern for folds on a metal robot

141

(a) Robot comparison (b) Robot in obstacle course

Figure 8-10: Large metal robot designed in system and folded from aluminum sheet.
(a) Robot next to print-and-fold version. (b) Robot navigating an obstacle course.

strategically placed cuts so that the material, rather than bending to a sharp corner

and incurring a high stress concentration, twists to produce a larger bending radius.

Parameters to the cut pattern include the arc that is cut and the spacing between

arcs. Changes to the arc control the fold angle by changing at what point during the

fold the two connected faces come into contact, while changes to the spacing between

arcs affect the stiffness of the fold and the strength required to fold the pattern.

8.2.1 Fabricated Results

We have used this fabrication approach to create a 627 mm×602 mm×368 mm robot

designed using the tool in Chapter 7. The robot has two front legs and two back

wheels. The legs and wheels are folded out of 1.59 mm thick 3003 aluminum sheet,

and the body is folded out of 3.18 mm thick 3003 aluminum sheet. Figure 8-10(a)

shows the fabricated result next to a robot of the same design that was fabricated

using our print-and-fold method. The fold pattern of the two designs was the same

but scaled by a factor of about 6. Both robots walk forward by first rotating one leg,

then the other, and then shifting all limbs simultaneously.

Because of its size, we had to make a few changes to the electronics and actuation

of the metal robot. First, rather than using an off-the-shelf servomotor, we created a

142

Table 8.3: Specifications for metal robot and print-and-fold version

Metal Robot Print-and-fold Robot
Length 627 mm 103 mm
Width 602 mm 103 mm
Height 368 mm 63 mm
Mass 9.300 kg 75 g

Speed 18.91 mm/s 31.2 mm/s
Payload Capacity 14.456 kg 188 g

custom servo using a 12 V Pittman® gearmotor and a magnetic non-contacting rotary

position sensor. Similarly to the medium-scale robots, this robot was controlled using

an Arduino Uno and similar software to that outputted from the design tool. The

robot was powered using a 12 V battery pack.

The fabricated large robot was able to walk forward stably using the designed gait.

Rubber sheet was attached to the bottoms of the legs and to the rims of the wheels

to prevent the sharp corners of the metal from snagging on or scratching the floor.

Table 8.3 shows a comparison of the large robot to its print-and-fold counterpart.

The metal robot is able to carry a payload in excess of 14 kg, which is approximately

1.5 times its own body weight. It walks at about half the speed of the print-and-fold

robot due to the gearing in the motors used. In both robots, the battery and motors

accounted for approximately the same proportion of the total robot mass (28% of

metal robot mass, 29% of print-and-fold robot mass).

As a final test, we further instrumented the metal robot with four range sensors

that could detect obstacles up to 30.0 cm away, one on each corner of the robot’s body

facing forward and backward. We programmed the robot with four gaits from the

design tool (straight forward motion, straight backward motion, left turn, and right

turn), and we manually programmed the robot to choose a gait depending on its sensor

input. The robot was able to navigate an obstacle course of cardboard boxes without

colliding with the environment (ref. Figure 8-10(b)). This exercise demonstrates

the ability to program high level behaviors that incorporate sensory information and

build upon the robot gaits designed using the methods in this thesis.

143

8.3 Summary

We have described and demonstrated two methods for rapid fabrication that can be

used to create medium-to-large scale foldable robots. Previous work in designing

foldable robots often assumes that the material is infinitely thin, resulting in physical

implementations that can not sustain much load [170]. Unlike previous work that

uses flexible materials to fold robots, we use thick, rigid material, and we show how

these materials increase the load-bearing capabilities of the resulting devices. We

discuss how to generate the patterns for these fabrication processes given the same fold

patterns that are created using our design-by-composition approach. We have verified

our method by fabricating two medium-scale hexapods and one larger-scale legged-

wheeled robot with different dimensions and using different thicknesses of material.

One limitation of these approaches is that the thickness of the material, unlike thin

films, is non-neglible. The fabrication plan must take this thickness into account. In

this chapter, we trim the material and shift faces into order to avoid self-intersection

during folding. However, this approach is not guaranteed to work in the general case.

Since most of our robot designs are simple trees, we have not yet encountered any

issues. Future work includes further investigating these fabrication approaches and

leveraging theoretical work in rigid origami [93,175] to address these issues.

A main difference between these fabrication approaches and print-and-fold is that

complex 3-D joints could be incorporated into 3-D printed designs without adding

additional complexity to the fabrication process. In the future, we would like to

investigate what other kinds of joints we can achieve starting from rigid materials.

Finally, changing the scale of the robots required making modifications to the

electronics and software for the robots. In particular, stronger servomotors were

used compared to the smaller robots. This resulted in higher voltage and current

requirements, which necessitated more complex circuitry. Future work includes in-

corporating information about actuation and electronics requirements into our design

system and fabrication process.

144

Chapter 9

Conclusion

In this thesis, we have presented a composition approach to foldable robot design

and prototyping. Our approach is based on the idea that robots can be composed

from a base set of design modules. We have described the minimal set of foldable

joints that can be used in general robot designs, as well as composition algorithms

for combining them with each other and with rigid bodies with validity guarantees.

Additionally, we have described joint controller modules that can be used in ground

robot designs and outlined how designs can be simulated to predict performance. All

of our modules are parameterized to provide designers with greater flexibility beyond

mere composition. Finally, we have integrated these technical contributions into an

interactive design tool that provides users with real time feedback on their robot’s

expected performance as they put it together.

Our approach has allowed us to design a collection of folded mechanisms and

robots created using multiple different fabrication methods, each taking less than a

day to fabricate and assemble. The robots span many different geometries, motions,

and scales. A user study also demonstrated that our methods are accessible and

intuitive to designers with no previous robotics experience, and they were able to use

our interactive tool to produce a variety of virtual designs.

Our results show that design by composition simplifies robot specification and can

enhance current rapid prototyping methods by providing roboticists with an intuitive

framework for robot design and exploration. We envision that such methods will

145

lower the barrier to robot design, not only for aspiring robotics engineers, but also

for nontechnical end users, and that similar systems and tools will bring customized

robots into the hands of the general public.

9.1 Lessons Learned

Throughout the course of this thesis and beyond the technical contributions in folding

and design methodology, I have learned a great deal about the process of robot design

and the effect of design tools on designers.

First, the most important lesson I have learned is that physically implementing a

robot design is a must. Simulations and theory are only as good as the assumptions

that are made. At every step of this thesis, I have encountered practical concerns that

have shaped the next steps. Flexibility of material led to the development of methods

for fabricating more rigid robot bodies. Complexity of our joint designs encouraged us

to explore the combination of folding and 3-D printing. Even now at the conclusion,

the robots continue to demonstrate interesting limitations and unexpected behaviors

that motivate our future work.

Second, I have learned that sacrificing some optimality for ease of use is a fair

trade. The direct application here is that designing fold patterns is generally difficult

for people with limited folding experience, but attempts to automate fold pattern

design under the stringent requirements imposed by traditional folding theorists have

made little headway. By allowing for waste material to be added to a folded structure,

or by adding design flexibility by using 3-D printing, we were able to produce foldable

robot designs with guaranteed fold pattern validity. As a result, users interacting

with our design-by-composition framework can focus on high-level 3-D aesthetics and

functionality without concerning themselves with the details of implementation.

Third, I have learned that visualization tools are key, particularly when designing

physical objects. It is entirely possible to create a design tool in which users do not see

the final design until it is fabricated, and this is the approach taken by some previous

systems [48, 113, 163]. However, visualization tools provide quick feedback that have

146

been invaluable for testing and verifying our methods. From simple visualizations,

such as plots of fold patterns and their simulated folded state, to more complex ones,

such as displaying the effect of direct parameter changes on designs both in 2-D and

in 3-D, all the way to our complete interactive design tool for full pipeline testing,

these tools have all played a major role in the success of this work.

Fourth, I have learned that user studies are a necessary part of the development

of any design framework. During the course of this research, many decisions had to

be made about what elements of design are the most important and what features are

key for users. Most of these decisions were resolved by considering what challenges

were most technically interesting and what directions of work would lead to the most

significant affects on the design process. From the point of view of the users who

interacted with our system, however, technical novelty paled in comparison to ease

of use and intuitiveness. Even design decisions made specifically for the interactive

tool showed a gap between our expectations and the desires of users. Metrics that we

thought were important, such as wobbliness or slip, were declared not meaningful by

users in our study. They also requested features such as connecting patch visualization

and undo buttons, which we never considered because we had never needed them

ourselves. The study has provided us with invaluable feedback for future development.

Finally, I have learned that many designers desire low-level control over their

design. While discussing this project with other engineers, I have received pushback

at times that there are particular aspects of a design that they would like to control.

This feedback led us to develop our particular composition implementation, which

allows for varying levels of design specification. Novice users interacting with our

tool can use the drag and drop interface without thinking about the internals of

the system. For more experienced designers, our database is written in a plain text

format accessible to people who would like to create custom modules themselves. Our

methods also provide key points at which designers can impose their will by directly

specifying particular parameter values, indicating which edges in a fold pattern to

join, etc. The design-by-composition framework is especially well suited to tasks

performed by users at a variety of skill levels.

147

9.2 Limitations

Of course our system is subject to a few limitations. First and foremost, as with

any data-driven method, our design space is restricted to the designs that can be

composed from the database using our grammar. Expert designers can expand the

set of building blocks from which users can compose their own designs, but novice

users have little recourse to create fully customized parts. Methods for expanding the

database that are accessible to novice users are needed to overcome this limitation.

With regards to the animation and simulation, our tool currently only considers

the geometry and kinematics of the robot. As a result, the autogenerated electronics

modules in all of our robots are the same. However, actuation is often a large challenge

in robot design. Simulations that incorporate environmental or task constraints such

as load, dynamic forces, and robustness in order to generate more applicable robot

models are needed. Material properties can also be incorporated to check whether

the thin-shell structures produced by folding are appropriate to a task.

For applications, our joint controllers and design tool are currently limited to

ground locomotion of a particular type. As we showed, it is possible to expand

beyond this task to other similar motions using the modules in the database. However,

expanding to other robot applications will require not only expanding the database,

but also designing new simulation techniques and performance metrics.

Finally, our feedback and guidance tools are limited to local design changes. Users

have the ability to change individual parameters, and the system will ensure that the

other parameters change accordingly. Our tools have no ability to suggest module

replacements or additions to achieve particular goals. The classification of robot

parts lends itself to module replacement, but determining when new modules need

to be added in order to achieve certain metrics (e.g., adding another leg to decrease

wobbliness) will require more in-depth reasoning about the design.

148

9.3 Future Work

This thesis has only scratched the surface of robot design tools and design by com-

position. There are many possible future directions to take this work.

One direction is the question of concurrent design. This work considers the in-

terplay between geometry and motion in a design’s functionality. However, there

are many aspects of a robot’s design: not just the geometrical, but also issues of

material properties, fabrication tolerances, actuation requirements, electrical require-

ments, sensory feedback, etc. Each of these subsystems has its own set of required

knowledge and design principles. Many of them already have existing tools to aid

in their design. But it is the interplay of these systems that becomes interesting.

Take our example of a walking robot. The robot is fabricated out of a particular

material. This material has weight, which induces certain actuation requirements.

The motors and computing infrastructure in turn have certain power requirements.

However, motors and batteries are high-mass components that increase the required

stiffness of the robot body and the required actuation. A true robot design tool must

be able to incorporate these types of inter-system relationships.

Specifically, we are interested in expanding design to include robot behaviors.

In our current tools, users are able to design different gaits that they can compose

manually. By contrast, in real-world applications that contain some uncertainty,

robots must have the ability to react to differences between their current environment

and the simulation. Designing for this behavior requires incorporating sensory and

information modules into the system, as well as controller modules that use feedback

from these sensors to make gait and other behavioral decisions.

Verifying that these behaviors achieve the user’s desired goal requires future work

in the realm of functional specifications. Our system currently requires users to

specify the exact modules and parameters for a robot design. We have included

the ability to automatically optimize design parameters, but this is the extent of

the system’s design reasoning. Casual users, by comparison, often will not want

to design a complete robot, but instead will want something that simply served a

149

particular function. For these users, the ability to provide robot functionality and have

the system automatically compose and specify the design will be important. There

exists some previous work on design automation [30,99] and formal methods [82] that

provide clues to how functionality can be described, but these methods still require

a large amount of user expertise.

The particular challenge with functional specification is that it is not always clear

to inexperienced designers what design criteria are most important. For manipula-

tion tasks, payload capacity and position accuracy may be most important, while for

exploration tasks, robustness against environmental disturbances may be the domi-

nating requirement. Therefore, future work in design tools should be able to infer

what design metrics are important for particular tasks and provide users with feed-

back not only on how to change their design to achieve their desired metrics but also

on which metrics they might want to consider.

Solving challenges such as these will lower the barrier to entry for users to have

input into the design of the robots they use.

150

Appendix A

Sample Output Fabrication Plan

This section provides the fabrication plans for the robot in Figure A-1. The plans

include a 3-D mesh to print on a 3-D printer, a list of electronics components and

pin connections, and software to load onto the Arduino. The robot consists of an

L-shaped body, two front legs, two back wheels, and two roof-like peripherals. It is

127 mm×82 mm×140 mm and walks forwards by rotating first the left leg, then the

right leg, and then shifting both legs and wheels forward simultaneously. The robot

walks forward at a speed of 14.56 mm/s. It was printed in 4.4 hr. and assembled in

40 min.

Figure A-1: Fabricated moving house robot, left and right views

151

A.1 Generated Print

Figure A-2: Generated print for fold pattern of the moving house

A.2 Electronics Plan

PARTS LIST:

1 x Arduino

1 x Battery

4 x Servo

CONNECTIONS:

Connect Battery0 :+ to Arduino0 :+

Connect Battery0:- to Arduino0:-

Connect Servo0 :+ to Arduino0 :+

Connect Servo0:- to Arduino0:-

Connect Servo0:in to Arduino0:D03

Connect Servo0:out to Arduino0:A0

Connect Servo1 :+ to Arduino0 :+

152

Connect Servo1:- to Arduino0:-

Connect Servo1:in to Arduino0:D05

Connect Servo1:out to Arduino0:A1

Connect Servo2 :+ to Arduino0 :+

Connect Servo2:- to Arduino0:-

Connect Servo2:in to Arduino0:D06

Connect Servo2:out to Arduino0:A2

Connect Servo3 :+ to Arduino0 :+

Connect Servo3:- to Arduino0:-

Connect Servo3:in to Arduino0:D09

Connect Servo3:out to Arduino0:A3

A.3 Generated Code

gaitdef.h (Auto-generated file)

1 // GAIT -SPECIFIC VARS

2 #define numUsedServos 4

3 #define numGait 2

4 #define trajSize 3

5 #define numWheelPose 6

6

7 const int TYPE[numUsedServos] = {WHEEL , SINGLE , SINGLE , WHEEL };

8

9 const int numPhase[numGait] = {2, 1};

10 const int phases[numGait][numUsedServos] = {{2, 0, 1, 2},

11 {1, 0, 0, 1}};

12

13 volatile int STATE[numUsedServos] = {BACKMOVE , BACKMOVE ,

14 BACKMOVE , BACKMOVE };

15 volatile int valback[numUsedServos];

16

17 const int forpos[numGait][numUsedServos] = {{100 , 100, 100, 100},

18 { 90, 90, 90, 90}};

19 const int backpos[numGait][numUsedServos] = {{150, 150, 150, 150},

20 {160, 160, 160, 160}};

21 const int midpos[numGait][numUsedServos] = {{125 , 125, 125, 125},

22 {125, 125, 125, 125}};

23 const int retrpos[numGait][numUsedServos] = {{100, 100, 100, 100},

24 { 90, 90, 90, 90}};

25

26 const int wheelposes[numWheelPose] = {155, 131, 107, 83, 59, 35};

27

28 const int trajectory[trajSize] = {0,1,0};

153

main.ino (Template file)

1 #include "arduino.h"

2 #include "robotLibrary.h"

3

4 // gait and trajectory definitions

5 #include "gaitinfo.h"

6 #include "gaitdef.h"

7

8 int iGAIT; // index in trajectory

9 int GAIT; // id of gait currectly executing

10 int PHASE; // phase of gait

11 int val; // temp variable , value read from analog pin

12 int whichWheelPose; // current position of wheels

13

14 void setup()

15 {

16 Serial.begin (9600);

17

18 // setup servos:

19 // servo0: pin 3

20 // servo1: pin 5

21 // servo2: pin 6

22 // servo3: pin 9

23 // servo4: pin 10

24 // servo5: pin 11

25 robotSetup ();

26

27 //setup servo potentiometer analog input

28 pinMode(A0 , INPUT);

29 pinMode(A1 , INPUT);

30 pinMode(A2 , INPUT);

31 pinMode(A3 , INPUT);

32 pinMode(A4 , INPUT);

33 pinMode(A5 , INPUT);

34

35 // initialize vars tracking gait and trajectory

36 iGAIT = numGait -1;

37 GAIT = trajectory[iGAIT];

38 PHASE = numPhase[GAIT];

39 whichWheelPose = 0;

40

41 // intialize servo positions

42 for (int i = 0; i < numUsedServos; ++i) {

43 if (i == 1 || i == 2) {

44 setPWM(servoPins[i], backpos[GAIT][i]);

45 } else {

46 setPWM(servoPins[i], backpos[GAIT][i]/2);

47 }

48 }

49 }

50

51 // FOLLOW DESIGNED GAIT

154

52 void loop()

53 {

54 boolean done = true;

55

56 if (PHASE == numPhase[GAIT]) {

57 // LAST PHASE , SHIFT ALL LIMBS

58

59 for (int i = 0; i < numUsedServos; ++i) {

60 if (TYPE[i] == SINGLE || TYPE[i] == DOUBLE) {

61 // legs

62 if (STATE[i] == FORWMOVE) {

63 continue;

64 }

65

66 valback[i] = analogRead(servoPot[i]);

67 if (i == 1 || i == 2) {

68 setPWM(servoPins[i], forpos[GAIT][i]);

69 } else {

70 setPWM(servoPins[i], forpos[GAIT][i]/2);

71 }

72 STATE[i] = FORWMOVE;

73 } else {

74 // wheels

75 if (whichWheelPose == numWheelPose - 1) {

76 valback[i] = analogRead(servoPot[i]);

77 }

78

79 val = analogRead(servoPot[i]);

80 if ((whichWheelPose == 0) && (val < valback[i])) {

81 setPWM(servoPins[i], controt);

82 done = false;

83 } else {

84 setPWM(servoPins[i], wheelposes[whichWheelPose]);

85 STATE[i] = FORWMOVE;

86 }

87 }

88 }

89

90 if (done) {

91 whichWheelPose = (whichWheelPose + 1) % numWheelPose;

92 delay (100);

93 iGAIT = (iGAIT + 1) % trajSize;

94 GAIT = trajectory[iGAIT];

95 PHASE = 0;

96 }

97 } else {

98 // MOVE THE LIMBS IN THE STEP

99 for (int i = 0; i < numUsedServos; ++i) {

100 if (phases[GAIT][i] != PHASE) {

101 continue;

102 }

103

104 switch (STATE[i]) {

105 case FORWMOVE: {

155

106 if (TYPE[i] == DOUBLE) {

107 if (i == 1 || i == 2) {

108 setPWM(servoPins[i], retrpos[GAIT][i]);

109 } else {

110 setPWM(servoPins[i], retrpos[GAIT][i]/2);

111 }

112 STATE[i] = PAUSE1;

113 } else {

114 STATE[i] = CONTMOVE;

115 }

116 done = false;

117 } break;

118 case PAUSE1: {

119 STATE[i] = CONTMOVE;

120 done = false;

121 } break;

122 case CONTMOVE: {

123 if (TYPE[i] == SINGLE) {

124 setPWM(servoPins[i], controt);

125 val = analogRead(servoPot[i]);

126 if (val > valback[i]) {

127 STATE[i] = PAUSE2;

128 }

129 } else if (TYPE[i] == DOUBLE) {

130 if (i == 1 || i == 2) {

131 setPWM(servoPins[i], midpos[GAIT][i]);

132 } else {

133 setPWM(servoPins[i], midpos[GAIT][i]/2);

134 }

135 STATE[i] = PAUSE2;

136 } else {

137 STATE[i] = BACKMOVE;

138 }

139 done = false;

140 } break;

141 case PAUSE2: {

142 STATE[i] = BACKMOVE;

143 done = false;

144 } break;

145 case BACKMOVE: {

146 if (TYPE[i] == SINGLE || TYPE[i] == DOUBLE) {

147 if (i==1 || i==2) {

148 setPWM(servoPins[i], backpos[GAIT][i]);

149 } else {

150 setPWM(servoPins[i], backpos[GAIT][i]/2);

151 }

152 }

153 } break;

154 }

155 }

156 delay (150);

157 if (done) {

158 delay (100);

159 PHASE = PHASE + 1;

156

160 }

161 }

162 }

gaitinfo.h (Template file)

1 // GENERAL GAIT VARS

2 #define controt 4

3 #define rconrot 250

4

5 #define SINGLE 0

6 #define DOUBLE 1

7 #define WHEEL 2

8

9 #define BACKMOVE 0

10 #define FORWMOVE 1

11 #define CONTMOVE 2

12 #define PAUSE1 3

13 #define PAUSE2 4

14

15 const int servoPot[numServos] = {A0 , A1 , A2 , A3 , A4 , A5};

robotLibrary.h (Template file)

1 #ifndef INCL_ROBOTLIBRARY_H

2 #define INCL_ROBOTLIBRARY_H

3

4 #define numServos 6

5 #include "string_functions.h"

6 #include "arduino.h"

7 #define DO 0

8 #define DI 1

9 #define AO 2

10 #define AI 3

11 #define PWM 4

12 #define SERVO 5

13 #define numPins 28

14

15 extern int servoPins[numServos];

16

17 int getPinMateType(int pin);

18 int getPinType(int pin);

19 int setPWMFrequency(int pin , long frequency);

20 long getPWMFrequency(int pin);

21 void robotSetup ();

22 void setPinMode(int pin , int mode);

23 void setPWM(int pin , int duty);

24

25 #endif

157

robotLibrary.cpp (Template file)

1 #include "robotLibrary.h"

2

3 int servoPins[numServos];

4 long PWMFrequency [3];

5 int controllerPins [] = {-1, 3,-1,-1,-1,-1,-1,-1, 5,-1,-1,-1,-1,-1,-1,

6 6,-1,-1,-1,-1,-1,-1, 9,10,11,-1,-1,-1};

7 const char* pinTypes [] = {"DataInputPort","ServoInputPort",

8 "PowerInputPort","Ground","DataInputPort",

9 "DataOutputPort","DataOutputPort",

10 "DataInputPort","ServoInputPort",

11 "PowerInputPort","Ground","DataInputPort",

12 "DataOutputPort","DataOutputPort",

13 "DataInputPort", "ServoInputPort",

14 "PowerInputPort","Ground","DataInputPort",

15 "DataOutputPort","DataOutputPort",

16 "DataInputPort","ServoInputPort",

17 "ServoInputPort","ServoInputPort",

18 "DataInputPort","DataOutputPort",

19 "DataOutputPort"};

20

21

22 int getPinMateType(int pin)

23 {

24 if(contains(pinTypes[pin], "DigitalOutput"))

25 return DI;

26 else if(contains(pinTypes[pin], "DigitalInput"))

27 return DO;

28 else if(contains(pinTypes[pin], "PWMOutput"))

29 return DI;

30 else if(contains(pinTypes[pin], "AnalogOutput"))

31 return AI;

32 else if(contains(pinTypes[pin], "AnalogInput"))

33 return PWM;

34 else if(contains(pinTypes[pin], "ServoInput"))

35 return SERVO;

36 return -1;

37 }

38

39 int getPinType(int pin)

40 {

41 if(contains(pinTypes[pin], "DigitalOutput"))

42 return DO;

43 else if(contains(pinTypes[pin], "DigitalInput"))

44 return DI;

45 else if(contains(pinTypes[pin], "PWMOutput"))

46 return PWM;

47 else if(contains(pinTypes[pin], "AnalogOutput"))

48 return AO;

49 else if(contains(pinTypes[pin], "AnalogInput"))

50 return AI;

51 else if(contains(pinTypes[pin], "Servo"))

158

52 return SERVO;

53 return -1;

54 }

55

56 // Set the PWM Frequency for the given pin

57 // Will return the frequency achieved , or -1 if arguments are invalid

58 int setPWMFrequency(int pin , long freq)

59 {

60 byte mode;

61 long baseFrequency;

62 if(pin == 3 || pin == 9 || pin == 10 || pin == 11)

63 baseFrequency = 31250;

64 if(pin == 5 || pin == 6)

65 baseFrequency = 62500;

66 long error = baseFrequency;

67 int divisor = 1;

68 if(pin == 5 || pin == 6 || pin == 9 || pin == 10)

69 {

70 int divisors [] = {1 ,8 ,64 ,256 ,1024};

71 for(int i = 0; i < 5; i++)

72 {

73 long newError = freq - baseFrequency / divisors[i];

74 newError *= newError < 0 ? -1 : 1;

75 if(newError < error)

76 {

77 error = newError;

78 divisor = divisors[i];

79 }

80 }

81 Serial.print("divisor:␣");

82 Serial.println(divisor);

83

84 Serial.print("frequency:␣");

85 Serial.println(baseFrequency / divisor);

86

87 Serial.print("error:␣");

88 Serial.println(error);

89

90 switch(divisor)

91 {

92 case 1: mode = 0x01; break;

93 case 8: mode = 0x02; break;

94 case 64: mode = 0x03; break;

95 case 256: mode = 0x04; break;

96 case 1024: mode = 0x05; break;

97 default: return -1;

98 }

99 if(pin == 5 || pin == 6)

100 TCCR0B = TCCR0B & 0b11111000 | mode;

101 else

102 TCCR1B = TCCR1B & 0b11111000 | mode;

103 }

104 else if(pin == 3 || pin == 11)

105 {

159

106 int divisors [] = {1 ,8 ,32 ,64 ,128 ,256 ,1024};

107 for(int i = 0; i < 7; i++)

108 {

109 long newError = freq - baseFrequency / divisors[i];

110 newError *= newError < 0 ? -1 : 1;

111 if(newError < error)

112 {

113 error = newError;

114 divisor = divisors[i];

115 }

116 }

117 switch(divisor)

118 {

119 case 1: mode = 0x01; break;

120 case 8: mode = 0x02; break;

121 case 32: mode = 0x03; break;

122 case 64: mode = 0x04; break;

123 case 128: mode = 0x05; break;

124 case 256: mode = 0x06; break;

125 case 1024: mode = 0x7; break;

126 default: return -1;

127 }

128 TCCR2B = TCCR2B & 0b11111000 | mode;

129 }

130 return baseFrequency / divisor;

131 }

132

133 long getPWMFrequency(int pin)

134 {

135 switch(controllerPins[pin])

136 {

137 case 5:

138 case 6:

139 return PWMFrequency [0];

140 case 9:

141 case 10:

142 return PWMFrequency [1];

143 case 3:

144 case 11:

145 return PWMFrequency [2];

146 }

147 }

148

149 void robotSetup ()

150 {

151 // Set each pin to the correct mode

152 for(int pinIndex = 0; pinIndex < numPins; pinIndex ++)

153 {

154 if(controllerPins[pinIndex] >= 0 && getPinType(pinIndex) >= 0)

155 setPinMode(controllerPins[pinIndex], getPinMateType(pinIndex));

156 }

157 servoPins [0] = 1;

158 setPWM(servoPins [0], 128);

159 servoPins [1] = 8;

160

160 setPWM(servoPins [1], 128);

161 servoPins [2] = 15;

162 setPWM(servoPins [2], 128);

163 servoPins [3] = 22;

164 setPWM(servoPins [3], 128);

165 servoPins [4] = 23;

166 setPWM(servoPins [4], 128);

167 servoPins [5] = 24;

168 setPWM(servoPins [5], 128);

169 }

170

171 void setPinMode(int pin , int mode)

172 {

173 switch(mode)

174 {

175 case DO: pinMode(pin , OUTPUT); break;

176 case DI: pinMode(pin , INPUT); break;

177 case AO:

178 case PWM: pinMode(pin , OUTPUT); break;

179 case SERVO:

180 pinMode(pin , OUTPUT);

181 switch(pin)

182 {

183 case 5:

184 case 6:

185 PWMFrequency [0] = setPWMFrequency(pin , 980);

186 break;

187 case 9:

188 case 10:

189 PWMFrequency [1] = setPWMFrequency(pin , 480);

190 break;

191 case 3:

192 case 11:

193 PWMFrequency [2] = setPWMFrequency(pin , 480);

194 break;

195 }

196 break;

197 case AI: break;

198 }

199 }

200

201 void setPWM(int pin , int duty)

202 {

203 analogWrite(controllerPins[pin], duty);

204 }

string_functions.h (Template file)

1 #ifndef INCL_STRING_FUNCTIONS

2 #define INCL_STRING_FUNCTIONS

3

4 #include <stdlib.h>

5

161

6 inline int length(const char* source);

7 inline int indexOf(const char* source , const char* target);

8 inline bool contains(const char* source , const char* target);

9

10 // Gets the length of the character array

11 int length(const char* source)

12 {

13 int length = 0;

14 for(; source[length] != ’\0’; length ++);

15 return length;

16 }

17

18 // Gets the index of the given string , or -1 if not found

19 int indexOf(const char* source , const char* target)

20 {

21 int targetLength = length(target);

22 int sourceLength = length(source);

23 int index = -1;

24 for(int i = 0; i <= sourceLength -targetLength && index == -1; i++)

25 {

26 bool foundTarget = true;

27 for(int n = 0; n < targetLength && i+n < sourceLength; n++)

28 {

29 if(source[i+n] != target[n])

30 foundTarget = false;

31 }

32 if(foundTarget)

33 index = i;

34 }

35 return index;

36 }

37

38 // Checks if the source string contains the target string

39 bool contains(const char* source , const char* target)

40 {

41 return indexOf(source , target) >= 0;

42 }

43

44 #endif

162

Appendix B

User Study Questionnaire Responses

The following questionnaire responses taken from the user study described in Chap-

ter 7.2 are organized by question and then subject number.

B.1 Pre-study Questionnaire

Self-reported measures of competency Rating: (1 = None, 5 = Very familiar)

Familiarity with CAD tools Experience with robots

1: 2 1

2: 1 2

3: 1 1

4: 5 3

5: 2 3

6: 3 3

7: 5 3

8: 2 1

163

B.2 Task 1 Questionnaire

Task Description

Users were asked to design “an interesting car for a parade.” They had access to the

entire geometry database. They were given 10 min. to complete the task.

Questionnaire Responses

Describe your strategy in designing the car.

1: Find random parts, try to connect.

2: It was mostly random. I put different pieces together and they fit in some
unexpected way that was interesting. I keep some stability in mind, and try to
make things symmetric, which is not easy to do when you use graphical tools
to specify dimensions of two wheels.

3: start with body, then add parts that will move the car, make sure it’s stable,
then start adding peripherals while checking that it remains stable (motion
sequence is reasonable)

4: Symmetrical with angled pieces for aerodynamics

5: I picked an interesting, not traditionally shaped car body, then picked out in-
teresting wheels and some peripheries and attached them.

6: I started with a simple body template. then added wheels. I resized the body to
be similar to the base of a parade float, with the intention of adding structures
on top of it. I then tried to add another body to the top of the parade float.
Based on the fabrication constraints, this proved somewhat difficult, as you are
required to connect edge to edge for fabrication purposes, so I had to try two
different bodies to find one that worked. I then added a fun peripheral to the
back of the car.

7: I started with the bias that a car has four wheels and a body. Then I chose
an attractive body based on the choices and added peripherals that I thought
added attractiveness to the car. My choice and creativity in designing the car
was heavily influenced by the geometry choices available.

8: I chose a body, and the wheels, then the peripherals. I dragged around parts
to see suggestions of where it could be attached. After attaching the parts, I
adjusted the size and position.

164

How satisfied were you with the design tool?

1: Good. It was inspirational.

2: Moderately. The scaling and translating behave in some unexpected way. For
example, the wheel doesn’t move the same amount that I’m moving my cursor.
Additionally, it may be interesting to preview how each components will be
attached as we move the new piece around.

3: pretty easy to use, easy to connect parts to each other (with the guides), and
I like that changing one part changes the other parts (e.g. rescales or moves
them to accommodate)

4: Fairly. Wish connection points remained highlighted all the time so I know
where they are, then secondary highlight color when ’active’.

5: I was satisfied until I reached the stage where I was adding peripheries. After
attempting to attach peripheries and the tool shrinking my design with no
apparent way to undo what I had done, I was a bit dissatisfied.

6: The design tool was very creative at interpreting what I wanted to do, but it
was sometimes difficult to line up the parts that I wanted to line up.

7: Mildly satisfied

8: The guides (constraints on where parts could be attached) helped me. On the
other hand, sometimes I wanted to do things that the constraints did not allow
me to do (e.g. attach small peripherals as decoration on a place where there was
no "tabs"). Overall, the process was easier than free-form design, especially if
I accept the given constraints.

How satisfied were you with the creative freedom/constraints in the sys-
tem? Was it expressive enough to make the car you wanted?

1: Not really. The variation of parts is rather restricted.

2: Very, I think we were offer diverse components and many parameters to adjust
in a very convenient way. Having graphics input is great when we want to
customize each piece to our liking. It’s definitely expressive enough. However,
there are some unexpected behavior mentioned in the previous question that
makes it challenging to get the specification we want within the limited time of
the study.

3: yeah, i only needed to figure out that the wheels need to touch the ground, so
that meant I had to change the scale of the wheels for the robot shape I chose
because adjusting their position didn’t work

4: Largely yes

165

5: There were many options to choose from in designing the car.

6: It was definitely expressive enough to make the car that I wanted, but there was
certainly some limitations associated with the edge to edge matching. Having to
match edge to edge limits the design space, which I think is actually interesting.

7: The available choices did influence my creativity - I am mildly satisfied with the
system. It would have been hard to design my own design - it constrained my
design to what was feasible with the preexisting geometric shapes. It expanded
some creative front as it provided some shapes that I would have not considered
hadn’t they’ve been available in the system. Even though the system limits
creativity to some extent due to the limited number of geometric shapes, it
does make the design process faster due to the easy scaling, translating, and
snapping features.

8: The constraints hindered me from designing a free-form car, but it did help me
to easily design a car that would work ("be printable" with foldable parts).

What was the most useful feature that you used?

1: CONNECT

2: I like the animating feature. I used it very briefly, but I think it was a good
sanity check tool.

3: connection of parts!

4: Scale

5: scaling.

6: The most useful feature was the rescaling tool. Being able to granularly change
part size was incredibly expressive.

7: The scaling and translating tools were the most useful.

8: Suggestion on where partscould be attached.

List any design tool features that you would have liked to use that were
not present.

1: Redo/Undo. Simultaneous scaling of multiple parts.

2: The ability to preview how each pieces would connect before having to press
connect.

3: adjust scale or position of multiple parts at the same time

166

4: I see there is a symmetry tab but I haven’t used it. Something that does
standard mirroring about a midplane would be nice, if it’s not in there.

5: An undo option.

6: I would have liked a point and click feature that allowed me to connect side A
of object 1 to side B of object 2.

7: The snapping/mating surfaces were limited in some shapes. I would have liked
to have the option to snap to different areas of a shape.

8: Automatic symmetry; making parts attachable.

Additional comments

1:

2:

3: fun! lots of flexibility

4:

5:

6:

7:

8:

B.3 Task 2 Questionnaire

Task Description

Users were given a robot design and asked to make it walk from the start location to

the goal (the cake) without hitting any obstacles (the vegetables). All of the users

were given full access to the gait design tool. Half of the users were allowed to modify

the robot geometry. They were given 15 min. to complete the task.

167

(a) 3-D view (b) 2-D top view

Figure B-1: Obstacle course used in task 2 of user study. Users were asked to make
the robot walk from the starting location to the cake without hitting any vegetables.

Questionnaire Responses

Describe your strategy in getting the robot to the goal.

1: Create two "turning" gaits, use them alternatively.

2: I try to build forward, and turning, and build the trajectory from there.

3: First figure out if robot is stable, then figure out how gaits work, then com-
pose gait sequence, and iterate between sequencing gaits and adjusting robot
dimensions to avoid obstacles.

4: Move fwd, slight turns, stay close to center obstacle

5: Create 2 gaits: 1 that moves the robot in a straight line, another that turns the
robot.

6: Develop a clear left and right turn sequence, find a forward sequence, then move
right to go around the obstacle in my way, then go straight, then turn left to
reach the cake. I did not modify the geometry of the robot because I was told
not to.

7: The strategy was to select the right sequence of forward moves and rotations to
achieve the right composed path towards the cake. I knew that the robot would
have to move forward, then turn right, and then turn left and forward towards
the goal. I just adjusted the number of movements for each type. The strategy
required that each of the movements worked well. So the first task was to check
the 3 basic movements (forward, right and left turns) to make sure that they
worked properly (and modify the robot to make sure that they did).

168

8: First, I reduced the wobbliness of the robot by changing its geometry using the
manipulated guidance. Then, I designed three gaits: (1) straight forward, (2)
turn left, and (3) turn right. Once I had these gaits, it was easy to compose
them into the motion path I wanted. I used the motion path guide to plan my
trajectory and animated to confirm that the robot did not collide.

How satisfied were you with your design?

1: 90

2: Mostly, I hit the corn a little bit, but we get to the cake. I wish I figured out
how to walk faster.

3: robot design worked out, just needed to adjust gait a bit to reduce angle and
avoid collision

4: Very

5: Fairly satisfied.

6: I was very happy with my overall approach, but I suspect that there is a faster
forward gait than the one I used.

7: Very satisfied!

8: I was very satisfied!

Rate your agreement with the following statements.

I completed
the task.

I experimented
with the gait.

I experimented
with the geometry.

1: Neutral Agree strongly Disagree strongly

2: Agree Agree strongly NA

3: Agree Agree strongly Agree strongly

4: Agree strongly Agree Agree

5: Agree Agree strongly NA

6: Agree strongly Agree strongly Disagree strongly

7: Agree strongly Agree strongly Agree strongly

8: Agree strongly Agree strongly Agree strongly

169

What was the most useful feature that you used?

1: Trajectories

2: trajectory planner

3: animation sequence, projected path and watching speed metrics

4: Gait leg angle edit to get desired turn angle

5: The map and arrows that shows the trajectory of the robot.

6: The animation tool.

7: The gait animator

8: The motion path preview.

List any design tool features that you would have liked to use that were
not present.

1: It would be great if the trajectories are associated with a "beam" that takes
the size of the robot into account.

2: reset button to reset the position of the robot after it had toppled while I
experiment with my gait

3: ability to go back to a particular point in time (animate from then on, or adjust
the robot from then on); ability to see stop-frame animation frames to view
whole trajectory (to see where robot would have gotten stuck)

4: Way to drop gaits in between others in the full animation. copy/paste/delete
of animated gaits in right hand list

5: Suggestions or guidance on what thetas to select to move the robot from one
position to another.

6: A way to stop the animation tool.

7:

8: It would be useful to see the "shadow" of the robot on top of the trajectory of
its center of mass, so we can know for sure that it does not collide with objects.

170

Additional comments

1:

2:

3:

4:

5: Experimenting with thetas was a bit slow because I would wait for the map on
the right to update.

6:

7:

8:

B.4 Task 3 Questionnaire

Task Description

Users given two robot designs and asked to change their dimensions to achieve certain

velocity and wobbliness goals. They modified one design with feedback and guidance

and one without. The order of the robots and task conditions was randomized. They

were given 5 min. to complete each task.

Robot A Robot B
𝑉 > 150 mm/s 𝑉 > 190 mm/s
𝑊 < 0.5 rad 𝑊 < 0.5 rad

Figure B-2: Robots and metric goals used in task 3 of user study

171

Questionnaire Responses

Measures of usage Rating: (1 = Did not use, 5 = Used a lot, NA = no answer)

With feedback Without feedback

Guidance Metrics Animate Guidance Metrics Animate

1: NA 5 1 1 1 5

2: 2 3 1 1 1 1

3: 4 5 1 1 5 1

4: 5 5 2 1 5 4

5: 5 5 1 1 2 5

6: 5 5 3 1 3 4

7: 5 4 1 1 4 1

8: 5 4 1 1 1 3

Describe your strategy for stabilizing the robot. (with feedback)

1: Click on “suspecticle parts” and follow the guidance

2: I try to symmetrize the robot as much as possible. Additionally, I observe that
wider-based robots are less likely to wobble, so I try to translate the legs as far
apart as I can.

3:

4: Find the largest suggestion arrows, move as suggested

5: I iterated through the scale and translate features for each leg using the guidance
arrows. Then I focused on scaling the body using the guidance arrows.

6: To stabilize the robot, I equalized leg lengths and widths and made it a symmet-
ric 2x2 pattern (to reduce side to side tipping during motion), then lengthened
the main body (to minimize forward-backward tipping). I really like having
the guidance arrows, because they provided real time feedback to reinforce my
intuition and provided an indicator of when I was getting carried away with
something (thinning the body, for example).

7: I relied heavily on the guidance arrows. I did use intuition to determine the
components that I wanted to modify and the type of modification, but relied on
the guidance arrows to determine the extent and direction of the modification.

8: I was sequentially trying to scale the legs according to the guide’s suggestions

172

Describe your strategy for stabilizing the robot. (without feedback)

1: Find the legs that seem “non-symmetric” to the others, look at the animation
to see what’s wrong.

2: The same as before

3: Starting with legs, first adjusting legs to be the same size then at the same
locations, then playing with width of legs while maintaining speed

4: Tried for symmetry, but didn’t seem to help much given the gait

5: I tried to make the legs even heights. After each change I used the animate
feature to try to observe “wobbliness.”

6: My strategy here was very similar to my strategy for the first case, with the
added ‘cheat’ of collapsing the width of the side panel on the back right to allow
the main body of the robot to be similar to the first robot that I had solved
in the previous exercise. I didn’t use the guidance arrows because they were
turned off for this exercise (but I wanted to use them), and I consulted the
metrics tab quite frequently as I approached the end of the exercise to see if I
was hitting my speed and wobbliness targets. Compared to the first exercise,
this one was slightly more stressful, because I didn’t have feedback to validate
my intuition as I went along.

7: I followed a strategy of modifying two main parameters: the width of the body
of the robot, and the length of the legs. My heuristic for the body was: a wider
body will be more stable than a thin body. My heuristic for the legs was: legs
have to be of equal length.

8: Trying to sequentially scale the legs based on geometric reasoning

Additional comments

1: The UI is a bit laggy in Model #2 (with feedback). I also feel that in Model
#2 I am mostly doing repetitive jobs which can be done automatically.

2: The feedback from the arrow was too slow. I happened to have found the
solution using my initial strategy before having to rely on the arrow. I do
imagine if you give me a highly asymmetric robots, my strategy would have
broken down, and I will have to rely on the arrow much more though.

3: lagged a bit for model 2, so took longer because of this, but at least i wasn’t in
the dark on what changes i had to make

4: Much easier with guidance

173

5: In model 1 (without guidance) I forgot that you could adjust the body, and this
did not occur to me until halfway through model 2. If I had to redo the task
(with or without guidance arrows), I would focus on the body first since the
guidance arrows and observing the metrics indicated that this makes the biggest
change in “wobbliness.” Even after the task, I am still unsure what “wobbliness”
is supposed to measure.

6:

7: The first task’s starting geometry was much more intuitive because the body was
close to symmetric. The second task had a more asymmetric design which led
me to heavily rely on the guidance arrows to determine the right modification.

8: Instead of showing guides as per user’s selection, you can start with showing all
available guides such that the user can know where he should focus his efforts

174

Bibliography

[1] Zachary Abel, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Anna
Lubiw, André Schulz, Diane L. Souvaine, Giovanni Viglietta, and Andrew
Winslow. Algorithms for designing pop-up cards. In Proceedings of the Interna-
tional Symposium on Theoretical Aspects of Computer Science, pages 269–280,
2013.

[2] Adafruit, 2016. http://www.adafruit.com/.

[3] Oswin Aichholzer, Franz Aurenhammer, David Alberta, and Bernd Gärtner. A
novel type of skeleton for polygons. Journal of Universal Computer Science,
1(12):752–761, 1995.

[4] Byoungkwon An and Daniela Rus. Designing and programming self-folding
sheets. Robotics and Autonomous Systems, 62(7):976–1001, 2014.

[5] Erik K. Antonsson. The potential for mechanical design compilation. Research
in Engineering Design, 9(4):191–194, 1997.

[6] Daniel M. Aukes, Benjamin Goldberg, Mark R. Cutkosky, and Robert J. Wood.
An analytic framework for developing inherently-manufacturable pop-up lami-
nate devices. Smart Materials and Structures, 23(9):094013, 2014.

[7] Daniel M. Aukes and Robert J. Wood. PopupCAD: a tool for automated design,
fabrication, and analysis of laminate devices. In Proceedings of SPIE Micro- and
Nanotechnology Sensors, Systems, and Applications VII, page 94671B, 2015.

[8] Ed Ayyappa. Normal human locomotion, part 1: Basic concepts and terminol-
ogy. Journal of Prosthetics and Orthotics, 9(1):10–17, 1997.

[9] Moritz Bächer, Bernd Bickel, Doug L. James, and Hanspeter Pfister. Fab-
ricating articulated characters from skinned meshes. ACM Transactions on
Graphics, 31(4):47, 2012.

[10] Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. LinkEdit: Interac-
tive linkage editing using symbolic kinematics. ACM Transactions on Graphics,
34(4):99, 2015.

175

http://www.adafruit.com/

[11] Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. Spin-
it: Optimizing moment of inertia for spinnable objects. ACM Transactions on
Graphics, 33(4):96, 2014.

[12] Devin J. Balkcom and Matthew T. Mason. Robotic origami folding. Interna-
tional Journal of Robotics Research, 27(5):613–627, 2008.

[13] Noy Bassik, George M. Stern, and David H. Gracias. Microassembly based
on hands free origami with bidirectional curvature. Applied Physics Letters,
95(9):091901, 2009.

[14] Jon L. Bentley and Thomas A. Ottmann. Algorithms for reporting and count-
ing geometric intersections. IEEE Transactions on Computers, 100(9):643–647,
1979.

[15] Marshall Bern, Erik D. Demaine, David Eppstein, Eric Kuo, Andrea Mantler,
and Jack Snoeyink. Ununfoldable polyhedra with convex faces. Computational
Geometry, 24(2):51–62, 2003.

[16] Dustin Beyer, Serafima Gurevich, Stefanie Mueller, Hsiang-Ting Chen, and
Patrick Baudisch. Platener: Low-fidelity fabrication of 3D objects by substi-
tuting 3D print with laser-cut plates. In Proceedings of the ACM Conference
on Human Factors in Computing Systems, 2015.

[17] Nicola Bezzo, Peter Gebhard, Insup Lee, Matthew Piccoli, Vijay Kumar, and
Mark Yim. Rapid co-design of electro-mechanical specifications for robotic
systems. In Proceedings of the ASME International Design Engineering Tech-
nical Conferences and Computers and Information in Engineering Conference
(IDETC/CIE), pages DETC2015–47472, 2015.

[18] Nicola Bezzo, Ankur Mehta, Cagdas Denizel Onal, and Michael Thomas Tolley.
Robot makers: The future of digital rapid design and fabrication of robots.
IEEE Robotics & Automation Magazine, 22(4):27–36, 2015.

[19] Gaurav Bharaj, Stelian Coros, Bernhard Thomaszewski, James Tompkin,
Bernd Bickel, and Hanspeter Pfister. Computational design of walking au-
tomata. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on
Computer Animation, pages 93–100, 2015.

[20] Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee,
Hanspeter Pfister, Markus Gross, and Wojciech Matusik. Design and fabri-
cation of materials with desired deformation behavior. ACM Transactions on
Graphics, 29(4):63, 2010.

[21] Landen A. Bowen, Clayton L. Grames, Spencer P. Magleby, Larry L. Howell,
and Robert J. Lang. A classification of action origami as systems of spherical
mechanisms. Journal of Mechanical Design, 135(11):111008, 2013.

176

[22] David Brandt and David Johan Christensen. A new meta-module for controlling
large sheets of ATRON modules. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2375–2380, 2007.

[23] Roger Bush and Carlo Sèquin. Synthesis of bent sheet metal parts from de-
sign features. In Proceedings of the ACM Symposium on Solid Modeling and
Applications, pages 119–129, 1999.

[24] Jacques Calì, Dan A. Calian, Cristina Amati, Rebecca Kleinberger, Anthony
Steed, Jan Kautz, and Tim Weyrich. 3D-printing of non-assembly, articulated
models. ACM Transactions on Graphics, 31(6):130, 2012.

[25] Andrea Censi. Monotone co-design problems; or, everything is the same. In
Proceedings of the American Control Conference (ACC), pages 1227–1234, 2016.

[26] Duygu Ceylan, Wilmot Li, Niloy J. Mitra, Maneesh Agrawala, and Mark Pauly.
Designing and fabricating mechanical automata from mocap sequences. ACM
Transactions on Graphics, 32(6):186, 2013.

[27] Desai Chen, David I. W. Levin, Piotr Didyk, Pitchaya Sitthi-Amorn, and Wo-
jciech Matusik. Spec2Fab: A reducer-tuner model for translating specifications
to 3D prints. ACM Transactions on Graphics, 32(4):135, 2013.

[28] Desai Chen, Pitchaya Sitthi-amorn, Justin T. Lan, and Wojciech Matusik.
Computing and fabricating multiplanar models. Computer Graphics Forum,
32(2):305–315, 2013.

[29] Yan Chen, Rui Peng, and Zhong You. Origami of thick panels. Science,
349(6246):396–400, 2015.

[30] Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. Unshackling evo-
lution: Evolving soft robots with multiple materials and a powerful generative
encoding. In Proceedings of the Annual Conference on Genetic and Evolutionary
Computation, pages 167–174, 2013.

[31] Herng Yi Cheng and Kang Hao Cheong. Designing crease patterns for polyhedra
by composing right frusta. Computer-Aided Design, 44(4):331–342, 2012.

[32] Shean-Juinn Chiou and Kota Sridhar. Automated conceptual design of mech-
anisms. Mechanism and Machine Theory, 34(3):467–495, 1999.

[33] Stelian Coros, Andrej Karpathy, Ben Jones, Lionel Reveret, and Michiel van de
Panne. Locomotion skills for simulated quadrupeds. ACM Transactions on
Graphics, 30(4):59, 2011.

[34] Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda,
Moira Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. Com-
putational design of mechanical characters. ACM Transactions on Graphics,
32(4):83, 2013.

177

[35] David W. Currier. Automation of sheet metal design and manufacturing. In
Proceedings of the Conference on Design Automation, pages 134–138, 1980.

[36] Jian S. Dai and Ferdinando Cannella. Stiffness characteristics of carton folds
for packaging. Journal of Mechanical Design, 130(2):022305, 2008.

[37] Jay Davey, Ngai Kwok, and Mark Yim. Emulating self-reconfigurable robots-
design of the SMORES system. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4464–4469, 2012.

[38] Mark De Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Com-
putational Geometry: Algorithms and Applications. Springer, Berlin, Germany,
2008.

[39] Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Link-
ages, Origami, Polyhedra. Cambridge University Press, New York, NY, USA,
2008.

[40] Dongping Deng and Yong Chen. Assembled additive manufacturing–a hybrid
fabrication process inspired by origami design. Solid Freeform Fabrication, pages
174–187, 2013.

[41] Dongping Deng and Yong Chen. Origami-based self-folding structure design
and fabrication using projection based stereolithography. ASME Journal of
Mechanical Design, 137(2):021701, 2015.

[42] Krishnamanaswi M. Digumarti, Christian Gehring, Stelian Coros, Je Min
Hwangbo, and Roland Siegwart. Concurrent optimization of mechanical de-
sign and locomotion control of a legged robot. In Climbing and Walking Robots
(CLAWAR), 2014.

[43] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[44] Neel Doshi, Benjamin Goldberg, Ranjana Sahai, Noah Jafferis, Daniel Aukes,
Robert J. Wood, and John A. Paulson. Model driven design for flexure-based
microrobots. In Proceedings of the IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 4119–4126, 2015.

[45] Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. Com-
putational multicopter design. In Proceedings of ACM SIGGRAPH Asia, 2016.
to appear.

[46] Bryce J. Edmondson, Landen A. Bowen, Clayton L. Grames, Spencer P. Ma-
gleby, Larry L. Howell, and Terri C. Bateman. Oriceps: Origami-inspired for-
ceps. In Proceedings of the ASME Conference on Smart Materials, Adaptive
Structures and Intelligent Systems (SMASIS), pages SMASIS2013–3299, 2013.

178

[47] David Eppstein and Jeff Erickson. Raising roofs, crashing cycles, and playing
pool: Applications of a data structure for finding pairwise interactions. Discrete
& Computational Geometry, 22(4):569–592, 1999.

[48] Arthur G. Erdman, Thomas Thompson, and Donald R. Riley. Type selection
of robot and gripper kinematic topology using expert systems. International
Journal of Robotics Research, 5(2):183–189, 1986.

[49] Siamak G. Faal, Fuchen Chen, Weijia Tao, Mahdi Agheli, Shadi Tasdighikalat,
and Cagdas D. Onal. Hierarchical kinematic design of foldable hexapedal loco-
motion platforms. Journal of Mechanisms and Robotics, 8(1):011005, 2016.

[50] Mohsen Falahi, Zhenishbek Zhakypov, Manan Shah, and Jamie Paik. The
design and control of the multi-modal locomotion origami robot, Tribot. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4349–4355, 2015.

[51] Zhun Fan, Xinye Cai, Wenji Li, Huibiao Lin, Shuxiang Xie, and Sheng Wang.
Evolutionary synthesis of dynamical systems: The past, current, and future. In
Genetic and Evolutionary Computation Conference, pages 1169–1174, 2014.

[52] Samuel Felton, Michael Tolley, Erik Demaine, Daniela Rus, and Robert Wood.
A method for building self-folding machines. Science, 345(6197):644–646, 2014.

[53] Samuel M. Felton, Michael T. Tolley, Cagdas D. Onal, Daniela Rus, and
Robert J. Wood. Towards autonomous self-folding: A printed inchworm robot.
In Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), 2013.

[54] Amir Firouzeh and Jamie Paik. Robogami: A fully integrated low-profile robotic
origami. Journal of Mechanisms and Robotics, 7(2):021009, 2015.

[55] fischertechnik GmbH, 2016. http://www.fischertechnik.de.

[56] Mark Fuge, Greg Carmean, Jessica Cornelius, and Ryan Elder. The MechPro-
cessor: Helping novices design printable mechanisms across different printers.
Journal of Mechanical Design, 137(11):111415, 2015.

[57] Thomas A. Funkhouser, Michael M. Kazhdan, Philip Shilane, Patrick Min,
William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David P. Dobkin. Mod-
eling by example. ACM Transactions on Graphics, 23(3):652–663, 2004.

[58] Joshua B. Gafford, Samuel B. Kesner, Robert J. Wood, and Conor J. Walsh.
Microsurgical devices by pop-up book MEMS. In Proceedings of the ASME In-
ternational Design Engineering Technical Conferences and Computers and In-
formation in Engineering Conference (IDETC/CIE), pages DETC2013–13086,
2013.

179

http://www.fischertechnik.de

[59] Ran Gal, Olga Sorkine, Niloy J. Mitra, and Daniel Cohen-Or. iWIRES:
An analyze-and-edit approach to shape manipulation. ACM Transactions on
Graphics, 28(3):33, 2009.

[60] Wei Gao, Karthik Ramani, Raymond J. Cipra, and Thomas Siegmund. Kine-
togami: A reconfigurable, combinatorial, and printable sheet folding. Journal
of Mechanical Design, 135(11):111009, 2013.

[61] Wei Gao, Yunbo Zhang, Devarajan Ramanujan, Karthik Ramani, Yong Chen,
Christopher B. Williams, Charlie C. L. Wang, Yung C. Shin, Song Zhang, and
Pablo D. Zavattier. The status, challenges, and future of additive manufacturing
in engineering. Computer-Aided Design, 69:65–89, 2015.

[62] Akash Garg, Alec Jacobson, and Eitan Grinspun. Computational design of
reconfigurables. ACM Transactions on Graphics, 35(4):90, 2016.

[63] Andrew T. Gaynor, Nicholas A. Meisel, Christopher B. Williams, and James K.
Guest. Multiple-material topology optimization of compliant mechanisms cre-
ated via polyjet three-dimensional printing. ASME Journal of Manufacturing
Science and Engineering, 136(6):061015, 2014.

[64] Qi Ge, Conner K. Dunn, H. Jerry Qi, and Martin L. Dunn. Active origami by
4D printing. Smart Materials and Structures, 23(9):094007, 2014.

[65] Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot pebbles: One centimeter
modules for programmable matter through self-disassembly. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), pages
2485–2492, 2010.

[66] Jiangtao Gong, Jue Wang, and Yingqing Xu. PaperLego: Component-based
papercraft designing tool for children. In Proceedings of ACM SIGGRAPH
Asia, page 3, 2014.

[67] Steven Gray, Nathan Zeichner, Mark Yim, and Vijay Kumar. A simulator for
origami-inspired self-reconfigurable robots. In Origami 5: Proceedings of the
5th International Conference of Origami Science, Mathematics, and Education,
pages 323–333, 2011.

[68] The LEGO Group. Mindstorms, 2016. http://mindstorms.lego.com.

[69] Jingjiao Guan, Hongyan He, Derek J. Hansford, and L. James Lee. Self-folding
of three-dimensional hydrogel microstructures. Journal of Physical Chemistry
B, 109(49):23134–23137, 2005.

[70] Satyandra K. Gupta and Dana S. Nau. Systematic approach to analysing the
manufacturability of machined parts. Computer-Aided Design, 27(5):323–342,
1995.

180

http://mindstorms.lego.com

[71] Elliot Hawkes, Byoungkwon An, Nadia M. Benbernou, H. Tanaka, S. Kim,
Erik D. Demaine, Daniela Rus, and Robert J. Wood. Programmable matter by
folding. Proceedings of the National Academy of Sciences, 107(28):12441–12445,
2010.

[72] Jonathan Hiller and Hod Lipson. Automatic design and manufacture of soft
robots. IEEE Transactions on Robotics, 28(2):457–466, 2012.

[73] Aaron M. Hoover and Ronald S. Fearing. Fast scale prototyping for folded
millirobots. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 1777–1778, 2008.

[74] Aaron M. Hoover, Erik Steltz, and Ronald S. Fearing. RoACH: An autonomous
2.4g crawling hexapod robot. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 26–33, 2008.

[75] Gregory S. Hornby and Jordan B. Pollack. Body-brain co-evolution using L-
systems as a generative encoding. In Proceedings of the Annual Conference on
Genetic and Evolutionary Computation, pages 868–875, 2001.

[76] Larry L. Howell. Compliant mechanisms. John Wiley & Sons, New York, NY,
USA, 2001.

[77] Larry L. Howell, A. Midha, and T. W. Norton. Evaluation of equivalent spring
stiffness for use in a pseudo-rigid-body model of large-deflection compliant
mechanisms. Journal of Mechanical Design, 118(1):126–131, 1996.

[78] Pu Huang, Dongping Deng, and Yong Chen. Modeling and fabrication of het-
erogeneous three-dimensional objects based on additive manufacturing. In Pro-
ceedings of the ASME International Mechanical Engineering Congress and Ex-
position, pages IMECE2013–65724, 2013.

[79] Bart Huthwaite. Designing in quality. Quality, 27(11):34, 1988.

[80] Tetsuo Ida, Hidekazu Takahashi, Mircea Marin, Asem Kasem, and Fadoua
Ghourabi. Computational origami system Eos. Origami 4: Proceedings of the
4th International Meeting of Origami Science, Mathematics, and Education,
pages 285–293, 2009.

[81] iRobot. Roomba, 2016. http://www.irobot.com/For-the-Home/Vacuuming/
Roomba.aspx.

[82] Gangyuan Jing, Tarik Tosun, Mark Yim, and Hadas Kress-Gazit. An end-to-
end system for accomplishing tasks with modular robots. In Proceedings of the
Robotics: Science and Systems Conference, 2016.

[83] Steven G. Johnson. The NLopt nonlinear-optimization package, 2014. http:

//ab-initio.mit.edu/nlopt.

181

http://www.irobot.com/For-the-Home/Vacuuming/Roomba.aspx
http://www.irobot.com/For-the-Home/Vacuuming/Roomba.aspx
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt

[84] Jack W. Judy and Richard S. Muller. Magnetically actuated, addressable mi-
crostructures. Journal of Microelectromechanical Systems, 6(3):249–256, 1997.

[85] Alfred Bray Kempe. On a general method of describing plane curves of the
nth degree by linkwork. Proceedings of the London Mathematical Society, s1-
7(1):213–216, 1875.

[86] Jongwoo Kim, Dae-Young Lee, Sa-Reum Kim, and Kyu-Jin Cho. A self-
deployable origami structure with locking mechanism induced by buckling ef-
fect. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 3166–3171, 2015.

[87] Henry C. King. Planar linkages and algebraic sets. Turkish Journal of Mathe-
matics, 23(1):33–56, 1999.

[88] Hideo Kodama. Automatic method for fabricating a three-dimensional plas-
tic model with photo-hardening polymer. Review of Scientific Instruments,
52(11):1770–1773, 1981.

[89] Je-Sung Koh and Kyu-Jin Cho. Omega-shaped inchworm-inspired crawling
robot with large-index-and-pitch (lip) sma spring actuators. IEEE/ASME
Transactions on Mechatronics, 18(2):419–429, 2013.

[90] Je-Sung Koh, Sa-Reum Kim, and Kyu-Jin Cho. Self-folding origami using tor-
sion shape memory alloy wire actuators. In Proceedings of the ASME Interna-
tional Design Engineering Technical Conferences and Computers and Informa-
tion in Engineering Conference (IDETC/CIE), pages DETC2014–34822, 2014.

[91] Bongjin Koo, Wilmot Li, JiaXian Yao, Maneesh Agrawala, and Niloy J. Mitra.
Creating works-like prototypes of mechanical objects. ACM Transactions on
Graphics, 33(6):217, 2014.

[92] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Temporal-
logic-based reactive mission and motion planning. IEEE Transactions on
Robotics, 25(6):1370–1381, 2009.

[93] Jason S. Ku and Erik D. Demaine. Folding flat crease patterns with thick
materials. Journal of Mechanisms and Robotics, 8(3):031003, 2016.

[94] Robert J. Lang. A computational algorithm for origami design. In Proceedings
of the Annual Symposium on Computational Geometry, pages 98–105, 1996.

[95] Robert J. Lang. Origami Design Secrets: Mathematical Methods for an Ancient
Art. CRC Press, Boca Raton, FL, USA, 2001.

[96] Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo Igarashi. Converting
3D furniture models to fabricatable parts and connectors. ACM Transactions
on Graphics, 30(4):85, 2011.

182

[97] DaeYoung Lee, JiSuk Kim, SaReum Kim, JeSung Koh, and KyuJin Cho. The
deformable wheel robot using magic-ball origami structure. In Proceedings of the
ASME International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference (IDETC/CIE), pages DETC2013–
13016, 2013.

[98] Xian-Ying Li, Chao-Hui Shen, Shi-Sheng Huang, Tao Ju, and Shi-Min Hu.
Popup: Automatic paper architectures from 3D models. ACM Transactions on
Graphics, 29(4):111, 2010.

[99] Hod Lipson and Jordan B. Pollack. Automatic design and manufacture of
robotic lifeforms. Nature, 406(6799):974–978, 2000.

[100] Kui-Yip Lo, Chi-Wing Fu, and Hongwei Li. 3D polyomino puzzle. ACM Trans-
actions on Graphics, 28(5):157, 2009.

[101] Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. Chopper:
Partitioning models into 3D-printable parts. ACM Transactions on Graphics,
31(6):129, 2012.

[102] Sheng-Jie Luo, Yonghao Yue, Chun-Kai Huang, Yu-Huan Chung, Sei Imai,
Tomoyuki Nishita, and Bing-Yu Chen. Legolization: Optimizing lego designs.
ACM Transactions on Graphics, 34(6):222, 2015.

[103] Xiaotian Ma, Dana Vogtmann, and Sarah Bergbreiter. Dynamics and scaling
of magnetically folding multi-material structures. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 1899–
1906, 2016.

[104] Robert MacCurdy, Robert Katzschmann, Youbin Kim, and Daniela Rus. Print-
able hydraulics: A method for fabricating robots by 3D co-printing solids and
liquids. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 3878–3885, 2016.

[105] Robert MacCurdy, Jeffrey Lipton, Shuguang Li, and Daniela Rus. Printable
programmable viscoelastic materials for robots. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2016.

[106] Robert MacCurdy, Anthony McNicoll, and Hod Lipson. Bitblox: Printable dig-
ital materials for electromechanical machines. International Journal of Robotics
Research, 33(10):1342–1360, 2014.

[107] Constantinos Mavroidis, Kathryn J. DeLaurentis, Jey Won, and Munshi Alam.
Fabrication of non-assembly mechanisms and robotic systems using rapid pro-
totyping. Journal of Mechanical Design, pages 516–524, 2000.

[108] Duncan McCallum and David Avis. A linear algorithm for finding the convex
hull of a simple polygon. Information Processing Letters, 9(5):201–206, 1979.

183

[109] James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Ma-
tusik, Jennifer Mankoff, and Jessica Hodgins. A compiler for 3D machine knit-
ting. ACM Transactions on Graphics, 35(4):49, 2016.

[110] Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges,
Markus Gross, and Stelian Coros. Interactive design of 3D-printable robotic
creatures. ACM Transactions on Graphics, 34(6):216, 2015.

[111] Ankur Mehta, Nicola Bezzo, Byoungkwon An, Peter Gebhard, Vijay Kumar,
Insup Lee, and Daniela Rus. A design environment for the rapid specifica-
tion and fabrication of printable robots. In Proceedings of the International
Symposium on Experimental Robotics (ISER), 2014.

[112] Ankur Mehta, Joseph DelPreto, Kai Weng Wong, Scott Hamill, Hadas Kress-
Gazit, and Daniela Rus. Robot creation from functional specifications. In
Proceedings of the International Symposium on Robotics Research (ISRR), 2015.

[113] Ankur Mehta and Daniela Rus. An end-to-end system for designing mechanical
structures for print-and-fold robots. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2014.

[114] Ankur M. Mehta, Joseph DelPreto, Benjamin Shaya, and Daniela Rus. Co-
generation of mechanical, electrical, and software designs for printable robots
from structural specifications. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2892–2897, 2014.

[115] Avraham A. Melkman. On-line construction of the convex hull of a simple
polyline. Information Processing Letters, 25(1):11–12, 1987.

[116] Yan Meng, Yuyang Zhang, Abhay Sampath, Yaochu Jin, and Bernhard Send-
hoff. Cross-Ball: A new morphogenetic self-reconfigurable modular robot. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 267–272, 2011.

[117] Jun Mitani. A design method for 3D origami based on rotational sweep.
Computer-Aided Design and Applications, 6(1):69–79, 2009.

[118] Jun Mitani. A design method for axisymmetric curved origami with triangular
prism protrusions. In Origami 5: Proceedings of the 5th International Meeting
of Origami Science, Mathematics, and Education, 2011.

[119] Jun Mitani and Hiromasa Suzuki. Computer aided design for origamic ar-
chitecture models with polygonal representation. In Proceedings of Computer
Graphics International, pages 93–99, 2004.

[120] Jun Mitani and Hiromasa Suzuki. Making papercraft toys from meshes using
strip-based approximate unfolding. ACM Transactions on Graphics, 23(3):259–
263, 2004.

184

[121] Niloy J. Mitra, Yong-Liang Yang, Dong-Ming Yan, Wilmot Li, and Maneesh
Agrawala. Illustrating how mechanical assemblies work. ACM Transactions on
Graphics, 29(4):58, 2010.

[122] Shuhei Miyashita, Laura Meeker, Michael T. Tolley, Robert J. Wood, and
Daniela Rus. Self-folding miniature elastic electric devices. Smart Materials
and Structures, 23(9):094005, 2014.

[123] Yuki Mori and Takeo Igarashi. Plushie: An interactive design system for plush
toys. ACM Transactions on Graphics, 26(3):45, 2007.

[124] Stefanie Mueller, Bastian Kruck, and Patrick Baudisch. LaserOrigami: laser-
cutting 3D objects. In Proceedings of the ACM Conference on Human Factors
in Computing Systems, pages 2585–2592, 2013.

[125] Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Johannes Frohnhofen, and
Patrick Baudisch. faBrickation: Fast 3D printing of functional objects by inte-
grating construction kit building blocks. In Proceedings of the ACM Conference
on Human Factors in Computing Systems, pages 3827–3834, 2014.

[126] Tamal Mukherjee and Gary K Fedder. Hierarchical mixed-domain circuit simu-
lation, synthesis and extraction methodology for mems. Journal of VLSI Signal
Processing Systems for Signal, Image and Video Technology, 21(3):233–249,
1999.

[127] Yash Mulgaonkar, Brandon Araki, Je-sung Koh, Luis Guerrero-Bonilla,
Daniel M. Aukes, Anurag Makineni, Michael T. Tolley, Daniela Rus, Robert J.
Wood, and Vijay Kumar. The flying monkey: A mesoscale robot that can run,
fly, and grasp. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 4672–4679, 2016.

[128] Przemyslaw Musialski, Thomas Auzinger, Michael Birsak, Michael Wimmer,
and Leif Kobbelt. Reduced-order shape optimization using offset surfaces. ACM
Transactions on Graphics, 34(4):102, 2015.

[129] Ryuma Niiyama, Daniela Rus, and Sangbae Kim. Pouch motors: Printable/in-
flatable soft actuators for robotics. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 6332–6337, 2014.

[130] Tadashi Odashima, Zhiwei Luo, and Shigeyuki Hosoe. Hierarchical control
structure of a multilegged robot for environmental adaptive locomotion. Arti-
ficial Life and Robotics, 6:44–51, 2002.

[131] H. Okuzaki, T. Saido, H. Suzuki, Y. Hara, and H. Yan. A biomorphic origami
actuator fabricated by folding a conducting paper. Journal of Physics: Confer-
ence Series, 127(1):012001, 2008.

185

[132] Cagdas D. Onal, Robert J. Wood, and Daniela Rus. An origami-inspired ap-
proach to worm robots. IEEE/ASME Transactions on Mechatronics, 18(2):430–
438, 2013.

[133] Johannes T. B. Overvelde, Twan A. de Jong, Yanina Shevchenko, Sergio A. Be-
cerra, George M. Whitesides, James C. Weaver, Chuck Hoberman, and Katia
Bertoldi. A three-dimensional actuated origami-inspired transformable meta-
material with multiple degrees of freedom. Nature Communications, 7:10929,
2016.

[134] Jahng-Hyon Park and Haruhiko Asada. Concurrent design optimization of me-
chanical structure and control for high speed robots. Journal of Dynamic Sys-
tems, Measurement, and Control, 116(3):344–356, 1994.

[135] Jay Patel and Matthew I. Campbell. An approach to automate concept gen-
eration of sheet metal parts based on manufacturing operations. In Proceed-
ings of the ASME International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference (IDETC/CIE), pages
DETC2008–49648, 2008.

[136] Jay Patel and Matthew I. Campbell. An approach to automate and optimize
concept generation of sheet metal parts by topological and parametric decou-
pling. Journal of Mechanical Design, 132(5):051001, 2010.

[137] Edwin A. Peraza-Hernandez, Darren J. Hartl, Richard J. Malak Jr., and Dim-
itris C. Lagoudas. Origami-inspired active structures: A synthesis and review.
Smart Materials and Structures, 23(9):094001, 2014.

[138] Pololu Corporation, 2016. http://www.pololu.com/.

[139] Michael J. D. Powell. A direct search optimization method that models the
objective and constraint functions by linear interpolation. Advances in Opti-
mization and Numerical Analysis, pages 51–67, 1994.

[140] Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung.
Make it stand: Balancing shapes for 3D fabrication. ACM Transactions on
Graphics, 32(4):81, 2013.

[141] Chen Qiu, Vahid Aminzadeh, and Jian S. Dai. Kinematic analysis and stiffness
validation of origami cartons. Journal of Mechanical Design, 135(11):111004,
2013.

[142] Hayes Solos Raffle, Amanda J. Parkes, and Hiroshi Ishii. Topobo: A con-
structive assembly system with kinetic memory. In Proceedings of the ACM
Conference on Human Factors in Computing Systems, pages 647–654, 2004.

[143] Raf Ramakers, Kashyap Todi, and Kris Luyten. PaperPulse: An integrated
approach for embedding electronics in paper designs. In Proceedings of the

186

http://www.pololu.com/

ACM Conference on Human Factors in Computing Systems, pages 2457–2466,
2015.

[144] John W. Romanishin, Kyle Gilpin, Sebastian Claici, and Daniela Rus. 3D M-
Blocks: Self-reconfiguring robots capable of locomotion via pivoting in three
dimensions. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 1925–1932, 2015.

[145] John W. Romanishin, Kyle Gilpin, and Daniela Rus. M-blocks: Momentum-
driven, magnetic modular robots. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4288–4295, 2013.

[146] Daniela Rus and Marsette Vona. Crystalline robots: Self-reconfiguration with
compressible unit modules. Autonomous Robots, 10(1):107–124, 2001.

[147] Lindsay Sanneman, Deborah Ajilo, Joseph DelPreto, Ankur Mehta, Shuhei
Miyashita, Negin Abdolrahim Poorheravi, Cami Ramirez, Sehyuk Yim, Sangbae
Kim, and Daniela Rus. A distributed robot garden system. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), pages
6120–6127, 2015.

[148] sarah-marie belcastro and Thomas C. Hull. Modelling the folding of paper into
three dimensions using affine transformations. Linear Algebra and its Applica-
tions, 348(1):273–282, 2002.

[149] Greg Saul, Manfred Lau, Jun Mitani, and Takeo Igarashi. SketchChair: An
all-in-one chair design system for end users. In Proceedings of the International
Conference on Tangible, Embedded, and Embodied Interaction, pages 73–80,
2011.

[150] Wolfram Schlickenrieder. Nets of Polyhedra. PhD thesis, Technische Universität
Berlin, Berlin, Germany, 1997.

[151] Ryan Schmidt, Azam Khan, Karan Singh, and Gord Kurtenbach. Analytic
drawing of 3D scaffolds. ACM Transactions on Graphics, 28(5):149, 2009.

[152] Adriana Schulz, Ariel Shamir, David I. W. Levin, Pitchaya Sitthi-amorn, and
Wojciech Matusik. Design and fabrication by example. ACM Transactions on
Graphics, 33(4):62, 2014.

[153] Adriana Schulz, Cynthia Sung, Andrew Spielberg, Wei Zhao, Yu Cheng, Ankur
Mehta, Eitan Grinspun, Daniela Rus, and Wojciech Matusik. Interactive
robogami: Data-driven design for 3D print-and-fold robots with ground lo-
comotion. In ACM SIGGRAPH Talks, 2015.

[154] Hiroki Shigemune, Shingo Maeda, Yusuke Hara, and Shuji Hashimoto. Design
of paper mechatronics: Towards a fully printed robot. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 536–541, 2014.

187

[155] Hiroki Shigemune, Shingo Maeda, Yusuke Hara, Uori Koike, and Shuji
Hashimoto. Kirigami robot: Making paper robot using desktop cutting plotter
and inkjet printer. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1091–1096, 2015.

[156] ByungHyun Shin, Samuel M. Felton, Michael T. Tolley, and Robert J. Wood.
Self-assembling sensors for printable machines. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 4417–
4422, 2014.

[157] Adam C. Siegel, Scott T. Phillips, Michael D. Dickey, Nanshu Lu, Zhigang Suo,
and George M. Whitesides. Foldable printed circuit boards on paper substrates.
Advanced Functional Materials, 20(1):28–35, 2009.

[158] Karl Sims. Evolving 3D morphology and behavior by competition. Artificial
Life, 1(4):353–372, 1994.

[159] Karl Sims. Evolving virtual creatures. In Proceedings of the Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH), pages 15–22,
1994.

[160] Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd
Bickel, Eitan Grinspun, and Markus Gross. Designing inflatable structures.
ACM Transactions on Graphics, 33(4):63, 2014.

[161] Daniel E. Soltero, Brian J. Julian, Cagdas D. Onal, and Daniela Rus. A
lightweight modular 12-DOF print-and-fold hexapod. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1465–1471, 2013.

[162] Seungmoon Song, Joohyung Kim, and Katsu Yamane. Development of a bipedal
robot that walks like an animation character. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 3596–3602,
2015.

[163] A. H. Soni, Mohammad H. F. Dado, and Yicheng Weng. An automated proce-
dure for intelligent mechanism selection and dimensional synthesis. ASME Jour-
nal of Mechanisms, Transmissions, and Automation in Design, 110(2):130–137,
1988.

[164] Alexander Spröwitz, Rico Moeckel, Massimo Vespignani, Stéphane Bonardi,
and Auke Jan Ijspeert. Roombots: A hardware perspective on 3D self-
reconfiguration and locomotion with a homogeneous modular robot. Robotics
and Autonomous Systems, 62(7):1016–1033, 2014.

[165] Kasper Støy, David Brandt, and David J. Christensen. Self-Reconfigurable
Robots. The MIT Press, Cambridge, MA, USA, 2010.

188

[166] Timothy Sun and Changxi Zheng. Computational design of twisty joints and
puzzles. ACM Transactions on Graphics, 34(4):101, 2015.

[167] Xu Sun, Samuel M. Felton, Robert J. Wood, and Sangbae Kim. Printing an-
gle sensors for foldable robots. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1725–1731, 2015.

[168] Cynthia Sung, Erik D. Demaine, Martin L. Demaine, and Daniela Rus.
Edge-compositions of 3D surfaces. ASME Journal of Mechanical Design,
135(11):111001, 2013.

[169] Cynthia Sung, Erik D. Demaine, Martin L. Demaine, and Daniela Rus. Joining
unfoldings of 3-D surfaces. In Proceedings of the ASME International Design
Engineering Technical Conferences and Computers and Information in Engi-
neering Conference (IDETC/CIE), pages DETC2013–12692, 2013.

[170] Cynthia Sung and Daniela Rus. Foldable joints for foldable robots. In Proceed-
ings of the International Symposium on Experimental Robotics (ISER), 2014.

[171] Cynthia Sung and Daniela Rus. Automated fabrication of foldable robots using
thick materials. In Proceedings of the International Symposium on Robotics
Research (ISRR), 2015.

[172] Cynthia Sung and Daniela Rus. Foldable joints for foldable robots. ASME
Journal of Mechanisms and Robotics, 7(2):021012, 2015.

[173] Tomohiro Tachi. 3D origami design based on tucking molecule. In Origami 4:
Proceedings of the 4th International Meeting of Origami Science, Mathematics,
and Education, 2006.

[174] Tomohiro Tachi. Origamizing polyhedral surfaces. IEEE Transactions on Vi-
sualization and Computer Graphics, 16(2):298–311, 2010.

[175] Tomohiro Tachi. Rigid-foldable thick origami. Origami 5: Proceedings of the
5th International Meeting of Origami Science, Mathematics, and Education,
pages 253–264, 2011.

[176] Tomohiro Tachi and Koryo Miura. Rigid-foldable cylinders and cells. Jour-
nal of the International Association for Shell and Spatial Structures (IASS),
53(4):217–226, 2012.

[177] Tama Software Ltd. Pepakura Designer, 2016. http://www.tamasoft.co.jp/
pepakura-en.

[178] Kenta Tanaka, Yusuke Kamotani, and Yasuyoshi Yokokohji. Origami folding
by a robotic hand. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2540–2547, 2007.

189

http://www.tamasoft.co.jp/pepakura-en
http://www.tamasoft.co.jp/pepakura-en

[179] Henry E. Theis. Handbook of Metalforming Processes. CRC Press, New York,
NY, USA, 1999.

[180] Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan
Grinspun, and Markus Gross. Computational design of linkage-based charac-
ters. ACM Transactions on Graphics, 33(4):64, 2014.

[181] Emanuel Todorov, Weiwei Li, and Xiuchuan Pan. From task parameters to
motor synergies: A hierarchical framework for approximately optimal control
of redundant manipulators. Journal of Robotic Systems, 22(11):691–710, 2005.

[182] Michael T. Tolley, Samuel M. Felton, Shuhei Miyashita, Daniel Aukes, Daniela
Rus, and Robert J. Wood. Self-folding origami: Shape memory composites
activated by uniform heating. Smart Materials and Structures, 23(9):094006,
2014.

[183] Michael T. Tolley, Samuel M. Felton, Shuhei Miyashita, Lily Xu, ByungHyun
Shin, Monica Zhou, Daniela Rus, and Robert J. Wood. Self-folding shape mem-
ory laminates for automated fabrication. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages 4931–
4936, 2013.

[184] Nicholas Turner, Bill Goodwine, and Mihir Sen. A review of origami applica-
tions in mechanical engineering. Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science, 230(14):2345–
2362, 2016.

[185] Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. Guided exploration of
physically valid shapes for furniture design. ACM Transactions on Graphics,
31(4):86, 2012.

[186] Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan Grinspun.
Sensitive couture for interactive garment modeling and editing. ACM Transac-
tions on Graphics, 30(4):90, 2011.

[187] Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi.
Pteromys: Interactive design and optimization of free-formed free-flight model
airplanes. ACM Transactions on Graphics, 33(4):65, 2014.

[188] Carlos A. Vanegas, Daniel G. Aliaga, Bedrich Benes, and Paul A. Waddell.
Interactive design of urban spaces using geometrical and behavioral modeling.
ACM Transactions on Graphics, 28(5):111, 2009.

[189] Kiril Vidimče, Szu-Po Wang, Jonathan Ragan-Kelley, and Wojciech Matusik.
OpenFab: A programmable pipeline for multi-material fabrication. ACM Trans-
actions on Graphics, 32(4):136, 2013.

[190] Etienne Vouga, Mathias Höbinger, Johannes Wallner, and Helmut Pottmann.
Design of self-supporting surfaces. ACM Transactions on Graphics, 31(4), 2012.

190

[191] Kevin Wampler and Zoran Popović. Optimal gait and form for animal locomo-
tion. ACM Transactions on Graphics, 28(3):60, 2009.

[192] Cheng-Hua Wang. Manufacturability-Driven Decomposition of Sheet Metal
Products. PhD thesis, Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA, USA, 1997.

[193] Allen C. Ward. Mechanical design compilers. In Erik K. Antonsson and
Jonathan Cagan, editors, Formal Engineering Design Synthesis. Cambridge
University Press, Cambridge, UK, 2001.

[194] Allen C. Ward and Warren P. Seering. Quantitative inference in a mechanical
design compiler. Journal of Mechanical Design, 115(1):29–35, 1993.

[195] Paul J. White and Mark Yim. Reliable external actuation for full reachabil-
ity in robotic modular self-reconfiguration. International Journal of Robotics
Research, 29(5):598–612, 2010.

[196] Emily Whiting, Hijung Shin, Robert Wang, John Ochsendorf, and Frédo Du-
rand. Structural optimization of 3D masonry buildings. ACM Transactions on
Graphics, 31(6):159, 2012.

[197] John P. Whitney, Pratheev S. Sreetharan, Kevin Y. Ma, and Robert J.
Wood. Pop-up book MEMS. Journal of Micromechanics and Microengineering,
21(11):115021, 2011.

[198] Eric W. Wilcox, Adam Shrager, Landen Bowen, Mary Frecker, Paris Von Lock-
ette, Timothy Simpson, Spencer Magleby, Robert J. Lang, and Larry L. Howell.
Considering mechanical advantage in the design and actuation of an origami-
based mechanism. In Proceedings of the ASME International Design Engi-
neering Technical Conferences and Computers and Information in Engineering
Conference (IDETC/CIE), pages DETC2015–47708, 2015.

[199] Brian G. Winder, Spencer P. Magleby, and Larry L. Howell. Kinematic repre-
sentations of pop-up paper mechanisms. Journal of Mechanisms and Robotics,
1(2):021009, 2009.

[200] Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbič. Interactive material
design using model reduction. ACM Transactions on Graphics, 34(2):18, 2015.

[201] Xue Yan and P. Gu. A review of rapid prototyping technologies and systems.
Computer-Aided Design, 28(4):307–318, 1996.

[202] Zheng Yan, Fan Zhang, Jiechen Wang, Fei Liu, Xuelin Guo, Kewang Nan,
Qing Lin, Mingye Gao, Dongqing Xiao, Yan Shi, Yitao Qiu, Haiwen Luan,
Jung Hwan Kim, Yiqi Wang, Hongying Luo, Mengdi Han, Yonggang Huang,
Yihui Zhang, and John A. Rogers. Controlled mechanical buckling for origami-
inspired construction of 3D microstructures in advanced materials. Advanced
Functional Materials, 26(16):2629–2639, 2016.

191

[203] Kentaro Yasu. MOR4R: Microwave oven recipes for resins. In ACM SIGGRAPH
Talks, 2015.

[204] Yong W. Yi and Chang Liu. Magnetic actuation of hinged microstructures.
Journal of Microelectromechanical Systems, 8(1):10–17, 1999.

[205] Sehyuk Yim and Sangbae Kim. Origami-inspired printable tele-
micromanipulation system. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 2704–2709, 2015.

[206] Yahan Zhou, Shinjiro Sueda, Wojciech Matusik, and Ariel Shamir. Boxelization:
Folding 3D objects into boxes. ACM Transactions on Graphics, 33(4):71, 2014.

[207] Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and Baining
Guo. Motion-guided mechanical toy modeling. ACM Transactions on Graphics,
31(6):127, 2012.

[208] Shannon A. Zirbel, Robert J. Lang, Mark W. Thomson, Deborah A. Sigel,
Phillip E. Walkemeyer, Brian P. Trease, Spencer P. Magleby, and Larry L.
Howell. Accommodating thickness in origami-based deployable arrays. Journal
of Mechanical Design, 135(11):111005, 2013.

192

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	New Capabilities
	Challenges
	Design by Composition
	Scope and Limitations

	Thesis Contributions
	Thesis Organization

	Related Work
	Rapid Fabrication
	Origami-Inspired Fabrication

	Computational Design of Robots and Functional Mechanisms
	Fully Automated Design
	Interactive Design

	Design by Composition
	Origami-Inspired Engineering
	Static Structures
	Transformable Structures

	Notation
	Transformable Foldable Modules
	Parametric Designs
	Definitions
	Hinge Joint
	Prismatic Joint
	Pivot Joint

	Pseudo-Rigid Body Analysis
	Hinge Joint
	Prismatic Joints
	Pivot Joint

	Experimental Comparisons
	Electronics Integration
	Force and Torque Measurements

	Summary

	Composition of Foldable Mechanisms
	Problem Statement
	Representation

	Composition Algorithm
	Main Insight: Edges on the Convex Hull Boundary
	Constructing the Bridge
	Optimizations
	Face-Composition

	Correctness and Material Usage Guarantees
	Pleat Creation
	Bridging Exterior Edges
	Bridging Interior Edges
	Full Composition Algorithm

	Experimental Results
	Compositions of Rigid Bodies
	Joints with Multiple Degrees of Freedom
	Mechanisms
	Foldable Robots

	Summary

	Composition of Foldable Ground Robots
	Gait and Trajectory Design
	Joint Controllers
	Gait Design
	Trajectory Design

	Performance Metrics
	Simulation
	Metrics

	Fabrication and Assembly
	Electronics
	Software
	Robot Body
	Assembly

	Experimental Results
	Fabricated Robots
	Extensions Beyond the Database
	Optimization
	Fabrication Comparison

	Summary

	Interactive Design
	User Interface and Workflow Overview
	Geometry Composition
	Motion Composition
	Feedback and Guidance

	User Study
	Geometry Design
	Combined Geometry and Gait Design
	Interactive Feedback and Optimization

	Summary

	Extensions to Other Fabrication Methods
	Medium Scale Fabrication and Design
	Fabrication Process
	Pattern Generation
	Fabricated Results

	Large Scale Fabrication and Design
	Fabricated Results

	Summary

	Conclusion
	Lessons Learned
	Limitations
	Future Work

	Sample Output Fabrication Plan
	Generated Print
	Electronics Plan
	Generated Code

	User Study Questionnaire Responses
	Pre-study Questionnaire
	Task 1 Questionnaire
	Task 2 Questionnaire
	Task 3 Questionnaire

	Bibliography

