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ABSTRACT

In this thesis a general method for analyzing electron

data from the M.I.T. plasma detector on Imp 8 is formulated.

This approach, which lays the groundwork for any future analy-

sis of electron data, is also applicable for the analysis of

subsonic proton data. The following topics are studied in

detail.

The effects of a positively charged spacecraft upon the

electron measurements is investigated. To bypass the theoret-

ical difficulties in solving this problem, a Yukawa type screen-

ing potential with spherical symmetry is assumed. The screen-

ing distance (the Debye length) for the space charge is treated

as a free parameter; varying this parameter allows us to deter-

mine the range of corrections expected for the electron distri-

bution. Using Boltzmann equation,electron distribution function

at the surface of the spacecraft is determined for a given form

of this distribution far from the spacecraft. The corrections
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are not found to be trivial and highly dependent upon the size

of the screening distance relative to the spacecraft radius.

For example, the corrections to the observed electron tempera-

tures are on the order of 20%. There appear apparent electron

drifts on the order of +50 km/sec for spacecraft potentials on

the order of 5 volts. Similarly, an apparent heat flow on the

order of +3x10 3 ergs/cm2/sec develops.

Semi-empirical radial profiles of the wind velocity, effec-

tive temperature, and effective heat flux vector are derived

for the inner planet region of the solar system. The task is

accomplished by using the basic conservation relations of mass,

momentum, energy, and magnetic flux, along with empirically

determined electron density distribution within the solar corona

and interplanetary medium as well as an empirically determined

magnetic field line topology. The calculations assume a steady

state under MHD approximation.

Observations in the solar corona and solar wind are reviewed

along with the present status of solar wind theory. A review of

the transport theories for interplanetary electrons, more spe-

cifically the convection model by Feldman et al. (1975)9 and

the conduction model by Scudder and Olbert (1978) 4, is given.

Finally, a few samples of M.I.T. Imp 8 electron data are

analyzed, showing the applicability of the analysis program

developed. Core electrons are shown to be Maxwellian, moving

at the same velocity as the proper frame of the plasma, and the

electron temperature can be extracted from the data. The presence

of pickup in the measured currents prevents us from seeing the



suprathermal electrons. Because of this, the heat flux cannot

be determined.

Thesis Supervisor: Stanislaw Olbert, Professor of Physics
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ILLUSTRATIONS

Fig. 1 Observed electron distribution function (data

points) derived from observations made by

the LASL detector on board the Imp 8 spacecraft,

from Feldman et al.9 The angles indicated in

parentheses give the V ( = V - B) angle as

defined in Figure 11, the detector is pointing

relative to B. The curves are fits made by

9
Feldman et al. using a convected bi-Maxwellian

for the core electrons and a truncated convected

bi-Maxwellian for the halo electrons (see text).

Fig. 2 Top left figure is a schematic view of Imp 8

detector mounted perpendicular to spin axis of

the spacecraft pointing in the +Z SE direction

(XSE' YSE' Z SE corresond to the X, Y, Z axis

of the solar ecliptic (SE) coordinate system);

YSE axis points out of the paper; Xc' Yc, Z are

the X, Y, Z axis of the cup coordinate system;

Xc is the azimuthal angle of the detector normal

relative to the XSE axis; acceptance cone of

detector is indicated (200 in the Y c direction,

1200 in the Xcdirection). Top right figure displays

the angular sectors, current measurements are

made; 33 3/40 and 280 are the angular widths of
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angular sectors 1 to 7 and 8, respectively.

Measurements are not made in shaded region

because of photo-effects. The lower figure

is a cross-sectional view of the detector;

the dashed lines indicate grid planes (grids

1, 3, 4, 5, and 6 are shielding grids); I c

is the collector current; A I is the ac

component of Ic that is amplified and re-

corded as the measured current; the voltage

I applied to the modulator and possible

electron path are indicated.

Fig. 3a Cross-sectional View of Two Slats

Fig. 3b Cross-sectional View of Two Grid Wires

Fig. 4 Common Area of Collector Circle and Aperture

Circle

Fig. 5 Normalized Response Function R versus Beta;

Alpha equal to Zero

Fig. 6 Normalized Response Function R versus Alpha for

various vz in the range vz_ to vz+ (step size

2% of Av z used, see text); Beta equal to Zero.

Fig. 7 View of Electron Distribution Function f and

Normalized Response Function R in vy direction;

v = 0; v z = 3100 km/sec and 7000 km/sec

Fig. 8 View of Electron Distribution Function f and

Normalized Response Function R in the v
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direction; vy = 0; vz = 3100 km/sec, 4400 km/

sec, and 6600 km/sec.

Fig. 9 Mean Response Function R versus = v /vz for

Energy Channels 1, 2, and 4.

Fig.10 Mean Response Function IR and the Double-

Gaussian Fit to R versus Alpha for the Fourth

Energy Channel (both were normalized to equal

unity at Alpha = 0).

Fig.ll Top figure defines the electron velocity f in

a coordinate system moving at the same velocity

as the proper frame of the plasma. The z axis

of the coordinate system is aligned along the

magnetic field direction. Bottom figure shows

the relationship between the cup coordinate

system, the solar ecliptic coordinate system,

and the magnetic field vector.

Fig.12 View of a charged perfectly conducting spherical

spacecraft surrounded by a fully ionized plasma..

The inner circle represents the s/c while the

outer circle represents the Debye sphere. The

dashed curve represents a possible electron

trajectory, where r is the radial vector of the

electron, T is the electron velocity, and T"
0

is the electron velocity at ro.

Fig.13 Effective Potential V versus z = r/D for

fixed electron energy )) ; impact parameters
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b D varied.

Fig.14 Effective Potential V versus z = r/ Dor

fixed impact parameter bD; electron energy

varied.

Fig.15 Effective Potential Veff versus z for Special

Critical Trajectory; A) = -) and fixed; impact

parameter b D varied.

Fig.16 Critical Impact Parameter Squared versus the

Critical Point Distance z
c

Fig.17 Critical Electron Energy 3c versus the

Critical Point Distance zc'

Fig.18 Parametrically Drawn Locus of Critical Points

in (1) c, (bD2 )d Space.

Fig.19 Graphic solution for the maximum critical

energy (Uc)max for various spacecraft

radii z0, where the parametric solution given

by Figure 18 is used.

2
Fig.20 Sin 6 versus the Critical Point Distance zC,

where 6c is the maximum angle 6 for allowed

directions.

Fig.21 Parametric Solutions of Sin2 0c versus the

Critical Electron Energy ) c for various

Spacecraft Radii z0 .

Fig.22 Electron Trajectories in Debye Screening

Potential;Curve 1 corresponds to a critical
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trajectory, where U = (Uc)max, b D = (bD)c, while

Curves 2 and 3 are trajectories with smaller

impact parameters.

(a) z = 0.1

(b) z = 1.0

(c) z = 10.0

Fig.23 Electron Trajectories in Debye Screening Potential;

trajectories rotated so they strike the spacecraft

at the same point "P". Angles next to solid

curves indicate the asymptotic directions of the

actual trajectories; angles in parentheses next

to the dashed lines indicate the apparent asymp-

totic direction the electrons appear to be coming

from. The electron energy U = 1.0 is the same

for all trajectories.

(a) z = 0.1

(b) z = 1.0

(c) z0 = 10.0

Fig.24 View Showing Spacial Dependence of fe (r0 , v )

Inner circle represents the spacecraft,which

is rotating; spin axis perpendicular to ecliptic

plane and pointing north; /C indicates angle of

rotation; outer circle represents Debye sphere;

direction of wind velocity indicated at bottom

of figure.
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Fig. 25

Fig. 26

Iso-contours of the ln f (r0, v . Convected

Maxwellian assumed at infinity; electron tem-

perature Tc = 1.2 x 105 o K; spacecraft potential

= 4.5 volts for solid contours; dashed circles

for 0 = 0 volts; wind velocity is pointing in

radial direction away from sun and has a magni-

tude equal to 400 km/sec (arrow in center of

figure indicates wind velocity vector in space-

craft frame); ' c indicates angle at which ln fe

(r , i ) is observed at r = r0; refer to Fig.24;0 0

shaded region indicates forbidden zone; w n normal

velocity of electron (-r direction) in thermal

speeds, wt transverse velocity relative to r

of electron in thermal speeds. Contours num-

bered 1 to 7 correspond to electron velocities

equal to 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6.

(a) =00, z = 0.1

(b) 0c = 450, z = 0.1

(c) c = 9003z 0 0.1

(d) y =1350 z = 0.1
c 0

(e) ~ = 1800 ,z= 0.1(e c 0 '

Same as Fig. 25, except z0 = 10.0

(a) Xc = 00, z = 10.0

(b) $c = 450,z0 = 10.0

(c) Xc = 900, zo = 10.0
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(d) /C = 1350, z = 10.0
C0

(e) 0. = 1800, z = 10.0

Fig. 27 Same as Fig. 25, except normalization correction

factored out (see text)

(a) / = 00Yz=0.1
c ' z0 = .

(b) Xc = 450,z0 = 0.1

(c) VC = 900, z = 0.1

(d) c = 1350, z0 = 0.1
c ' 0

(e) VC = 1800, z = 0.1

Fig. 28 Same as Fig. 26, except normalization correction

factored out (see text)

(a) c = 00, z =10.0

(b) c = 450,z0 = 10.0
= 0~

(c) /C = 900, z=10.0

(d) C = 13509 z0 = 10.0

(e) (C = 1800, z0 = 10.0

Fig. 29 Iso-contours of in fe (r,) seen by detector
e 0 0

with angular response perfectly differential

in angle; wx, w are the X, Y components of

the electron velocity in solar ecliptic

coordinate system; otherwise figure is the

same as Fig. 25 (see text for details).

Fig. 30 Same as Fig. 29, except normalization correction

has been factored out (see text)
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Fig. 31 One-dimensional Analog of Spherical Model;

plot of "spacecraft" potential 0 versus z;

surface of spacecraft for this problem

occurs at z = 0; outer surface of Debye

sphere occurs at lzID = DWind velocity

direction indicated; electric field E from

potential indicated.

Fig. 32 Log-Log Plot of Electron Number Density versus

the Radial Distance r from the Sun (r. = radius

of sun); densities characteristic of equatorial

regions of the sun, curves plotted are model

fits to data (see text);"Spherical Model"

Fig. 33 Log-Log Plot of Wind Velocity versus r;

"Spherical Model"

Fig. 34 Log-Log Plot of Effective Temperature versus r;

"Spherical Model"

Fig. 35 Log-Log Plot of Effective Heat Flux Vector

versus r; "Spherical Model"

Fig. 36 Magnetic Field Line Topology of Model Fit to

Observed Hole Boundary of Polar Coronal Hole

studied by Munroe and Jackson (1977); pluses

are data points from Munroe and Jackson;

angles next to field lines indicate co-latitude

of field line at solar surface, r = re .

Fig. 37 Log-Log Plot of Electron Number Density for

Polar Regions of the Sun versus r; Polar
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Coronal Hole Model

Fig. 38 Log-Log Plot of Wind Velocity versus r;

Polar Coronal Hole Model

Fig. 39 Log-Log Plot of Effective Temperature versus

r; Polar Coronal Hole Model

Fig. 40 Log-Log Plot of Effective Heat Flow Vector

versus r; Polar Coronal Hole Model

Fig. 41 Plot of Polytrope Index versus Radial

Distance r from the Sun; "Spherical Model"

(see text)

Fig. 42 Same as Fig. 41, except this profile is for

Polar Coronal Hole Model

Fig. 43 Plot of the Coulomb Mean Free Path for a Ther-

mal Electron over r versus the Radial Distance

r from the sun; "Spherical Model"

Fig. 44 Same as Fig. 43, except this profile is for

Polar Coronal Hole Model

Fig. 45 Log-Log Plots of various Macroscopic Parameters

versus r (see text for definitions); angles

indicated are the latitudes of the field lines

at 1 AU for solid curves; shaded regions

correspond to field lines with latitudes at

1 AU intermediate to those shown in the figure.

Fig. 46 Log-Log Plot of Wind Velocity versus r showing

Dependence of Profile on Density Model Parameters;



Fig.

Fig.

Fig.
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47

48

49

Polar Coronal Hole Model; wind velocity 500

km/sec at 1 AU; curves number 1, 2, and 3

correspond to density profiles 1, 2, and 3

in Fig. 37.

Same as Fig. 46, except that Effective

Temperature is plotted.

Same as Fig. 46, except that Effective Heat

Flux Vector is plotted

Plot of f* versus Particle Velocity in

Proper Frame of Plasma. Solid curve

corresponds to model by Scudder and Olbert

(1978) where f0* is a kappa distribution

function. Dashed curve corresponds to model

by Feldman et al. (1975)9 using typically

observed parameters at 1 AU (see text).

Plot of F versus vz ("energy" spectrum) forz

spectrum # 1. Numerals on the graph sym-

bolize the angular sector for that data

point (see Fig. 2). Circled numbers along

abscissa indicate energy channels 1 to 8 for

the data points. Lines drawn through data

points are not fits, are only drawn to aid

the eye( = 70.50, B 1190, n =42, V =

346 km/sec, flow coming slightly from the

east at -6 0) (see text)

Fig. 50
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Fig. 51 Same as Fig. 50, except Plot of Data for

Spectrum #2 (eB = 1500, B = 1150, np =273,

V = 338 km/sec, flow coming from the east

at I5 0)

Fig. 52 Same as Fig. 50, except lines drawn are an

actual fit to the data where a convected

Maxwellian is assumed for fe (Result of fit

is Tc = 1.1 x 10 5 oK, = 0 volts)

Fig. 53 Same as Fig. 51, except lines drawn are an

actual fit to the data where a convected Max-

wellian is assumed for fe* (Result of fit

is Tc = 1.12 x 105 oK, 10= 0 volts)

Fig. 54 Angular Plot of Observed F versus /c for

Spectrum # 1. Numerals used for data points

indicate the energy channel number for that

data point (see Chapter I). Circled numbers

along abscissa indicate thenumber of the

angular sector for the data points (see Fig. 2)

Solid curves are a fit to the data using a

convected Maxwellian for fe* Vertical dashed

lines indicate directions along B. Horizontal

dashed line indicates 5 picoamp level.

Fig. 55 Same as Fig. 54, except for Spectrum #2

Fig. 56 Same as Fig. 54, except data plotted corresponds

to spectra more typical of the solar wind



(n = 7 cm 3 , v = 547 km/sec) (Result of
p

fit is T = 1.3 x 105 0K, I = 0 volts

Plot of F versus 7z derived from Preliminary

Electron Measurements on Voyager 2; pluses

are data points; solid curve is a model fit

to the data using two non-convected Max-

wellians for f (n= =4.c, v = 40km/Sec),e p ,,I mV=41

total electron temperature T = 1.06 x

10 So K), see text for details.

Fig. 57

21.
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INTRODUCTION AND SUMMARY

The primary objective of this thesis is to understand the

physics of interplanetary electrons. One of the means of

accomplishing this goal is the analysis of electron measurements

made by the M.I.T. detector on Imp 8. Because of unexpected

difficulties in the detector, not all ofthe original goals

could be achieved. More specifically, the heat flux due to

electrons cannot be acquired from the data. However, we are

able to show that estimates of the electron temperature can be

extracted from the measured currents quite well.

Our effort to carry out the electron analysis is the first

real attempt within the M.I.T. Space Plasma Group in this direc-

tion. Heretofore, the major emphasis at M.I.T. had been confined

to studying the positive ion component. Since I was the first

one to attempt the analysis of electron measurements by M.I.T.

detectors, a new analysis program had to be developed. Methods

of analysis had been developed for proton measurements; since,

in contrast to protons, electrons are highly subsonic, these

methods specifically designed for proton measurements did not

apply. In Chapter I after giving a brief description of the

detector, the general expression relating the measured currents

and the electron distribution function is given. From this

expression,it is apparent that an accurate knowledge of the

transmission (response) function of the detector is required

if any quantitative information about the electron distribution

function is to be acquired from the measured currents. This
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expression is shown to be reducible to a simpler form, taking

advantage of the subsonic character of the electrons. Fitting

the response function by a sum of two Gaussians we are able to

express the measured currents in such a form that analytical

expressions for the current can be derived. These expressions

are a function of both model dependent distribution function

parameters and detector parameters; they can be fitted to the

currents giving us estimates of various model dependent physical

parameters such as the electron temperature.

In Chapter II the effects of spacecraft charging upon

electron measurements is investigated. This detailed study was

9initiated by the controversial paper by Feldman et al. (1975)

In this paper, which contains the results of electron measure-

ments made on Imps 6, 7, and 8, the authors corrected the data

improperly for the effects of spacecraft charging. Thus, there

was a need to re-analyze the problem. Since the actual solution

of the spacecraft charging problem is virtually impossible to

obtain, we make the ad hoc but qualitatively reasonable assump-

tion that the potential is described by a Yukawa type screening

potential (spherical symmetry), where the screening distance

(Debye length) is an adjustable parameter. Since we do not

know the screening distance, we can only estimate the range of

corrections which occur. A form for the electron distribution

function far from the spacecraft is then assumed and, using

Boltzmann's equation, the electron distribution function at the

spacecraft surface is determined.
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As expected, spacecraft charging effects are not trivial

for electron energies on the order of the electron thermal speed

(13 eV). It was discovered that depending upon the detector

design (integral, differential in angle), one will observe

different corrections to the data (electrons seemingly drifting

away from the sun, toward the sun). The corrections are found

to be very sensitive to the size of the screening distance

relative to the spacecraft radius (spherical geometry, plane-

parallel geometry). This study shows that corrections on the

order of 20% to the observed electron temperature must be expected.

A shift in energy experienced by electrons and applicable for

electron energies sufficiently above the spacecraft potential

(electron energies > 10 eV for spacecraft potential < 2 eV) was

derived. Finally, because most of the heat is carried by the

suprathermal electrons, it was concluded that the heat flux

measurements are not affected by spacecraft charge provided the

spacecraft potential is not too large (< 5 eV).

One needs for a proper analysis of the electron data some

theoretical understanding of the physics of interplanetary

electrons. For this reason, in the first half of Chapter III,

a brief review of coronal and solar wind observations is given

along with a review of the present status of solar wind theory.

In Chapter IV, a review of electron observations is given along

with a review of the two present contending models for the energy

transport (convection, conduction) by interplanetary electrons.

First, the model proposed by Feldman et al. (1975)9 is discussed.

This model, where the authors suggest two separate electron
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populations (core, halo) described by bi-Maxwellian distribu-

tions drifting relative to each other in the proper frame, is

difficult to justify from general physical arguments. According

to this model, the thermal energy is transported in the proper

frame (heat flux vector) purely by convection. We felt that

the more conservative point of view, where the heat flux vector

results from a skewness in the electron distribution function

(conduction) must first be considered. In the process of develop-

ing a thoery of energy transport by conduction in the inter-

planetary medium, it became apparent that the macroscopic

parameters (wind velocity, density, temperature, heat flow vector)

of the interplanetary medium as a whole was needed. By using

the basic conservation relation for mass, momentum, energy, and

magnetic flux, along with empirically determined electron density

distributions in the corona and interplanetary medium, and

empirical coronal magnetic field line topologies, we were able

to determine these macroscopic parameters forthe interplanetary

medium as a whole. In the second half of Chapter III, the results

of these calculations are given.

Finally, in Chapter V a few samples of electron data from

the M.I.T. detector on Imp 8 are given and analyzed, showing

the applicability of the method developed in Chapter I, and that

measurementsofthe electron temperature can be derived from the

data. We show the core electrons to be Maxwellian and moving at

about the same velocity as the protons. The presence of pickup

prevents us from seeing the suprathermal electrons so that we

cannot determine by how much the higher energy electrons deviate
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from isotropy; therefore, we cannot acquire estimates of the

heat flow vector from the data. Before concluding, a preliminary

sample of Voyager 2 data is displayed, showing the significantly

improved dynamical range of M.I.T. type detector over that on

Imp 8. Voyager measurements demonstrate the presence of the

suprathermal electrons.
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CHAPTER I

PROPERTIES AND ANALYSIS OF M.I.T. PLASMA DETECTORS

(1.) Introductory Remarks

In this chapter, we discuss the development of an anal-

ysis program for electron measurements made by the M.I.T.

Imp 8 detector in the solar wind. In order to understand

better the approximations made and the motivations behind

the approach used in developing this analysis program, some

of the observational properties of solar wind electrons are

reviewed.

Electron observations in the solar wind have been made

by a number of different spacecrafts: Pioneer, Explorer,

Vela, Ogo 5, Imp 6, 7, and 8, Mariner 10, Helios A and B.

Results of these observations have been given by Wolfe and

McKibben (1968) ,1 Wolfe et al. (1967),2 Montgomery et al.

(1968, 1970),3,4 Ogilvie et al. (1971),5 Montgomery (1972),6

Serbu (1972),7 Feldman et al. (1973, 1975), 8,9 Scudder et al.

(1973),10 and Rosenbauer et al. (1976). Most of these ob-

servations have been made near the vicinity of the earth,

and thus confined to the ecliptic plane and one astronomical

unit (AU) from the sun. Exceptions to this are Mariner 10

and the Helios A and B spacecrafts, which, respectively, came

as close as 0.46 AU and 0.3 AU to the sun, though still con-

fined to the ecliptic plane.
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Solar wind electrons with energies less than 60 ev,

commonly called "core" electrons, are observed to be approx-

imately isotropic and Maxwellian. In contrast, the distri-

bution of electrons with energies greater than 60 ev deviates

from that Maxwellian, exhibiting a high-energy tail in excess

of a Maxwellian profile.3 This comDonent is commonly re-

ferred to as "suprathermal" or "halo" electrons. As an ex-

ample, refer to Figure 1, which is a plot of the electron

distribution function determined from electron measurements

made by the Los Alamos Scientific Laboratory (LASL) plasma

detector on Imp 8 and published by Feldman et al. 9

The bulk velocity of the electrons is found to be about

the same as the bulk velocity of the positive ions (wind

velocity). Bulk speeds for electrons and ions during quiet

times vary over the range from 300 km/sec to 500 km/sec with

an average of 425 km/sec or equivalently energies of 930 ev

for protons and 0.5 ev for electrons. The average electron

density, ne, is about 10 electrons - cm-3, and within exper-

imental error, is found to be equal to the positive ion den-

9 so0
sity. A typical electron temperature T is 1.5 x 10 K

13 ev.6,9,10 For that temperature, the rms electron thermal

speed w is about 2600 km/sec, and since wind speeds V are

about 400 km/sec, the electrons are "subsonic." In most in-

stances, the electrons are found to be two to three times

hotter than protons T r' 6 x 104 oK [Feldman et al. (1976)12

Exceptions to this rule are found in high speed streams,
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V > 650 km/sec, where proton temperatures have been observed

to be two to three times greater than electron temperatures.12

The distribution function for electrons, though nearly iso-

tropic for low energies, is skewed at higher energies along

the magnetic field direction such that a non-zero third moment

in the proper plasma frame, i.e., heat flow vector q results.

-a -3 -2 -2 -l
The q varies in the range 10 to 10 ergs -cm - sec

and generally has been observed to point in a direction away

from the sun along the magnetic field. 3,5,6,8,9 The q eis

observed to be about 40 to 100 times greater than that for

protons, as expected on theoretical grounds. 3,8,9 Since the

electrons dominate the transport of thermal energy in the

solar wind, detailed study of the third moment of the elec-

tron distribution function f e deserves special attention.

To obtain a reliable estimate of one needs to know the

shape of f in quite some detail. The empirical knowledge

of f e depends strongly on the quantitative understanding of

the response of the detector and the method of data analysis.

Therefore, we begin our discussion with the description of

the M.I.T. electron detector.
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(2.) A Description of the M.I.T. Detector on Imp 8

As shown in Figure 2, the detector is cylindrical in

shape with an aperture at one end and a collector plate at

the other. It contains numerous plane grids.13 Any charged

particles striking the collector plate will contribute to the

current Ic shown leaving the collector plate. Since the col-

lector plate is ac coupled to the amplifier network, only the

alternating component of Ic will contribute to the current

AI shown entering the amplifier network. A modulated

voltage is applied to grid 2; it is composed of a dc potential

with a superposed 1 khz square wave of amplitudei =1+

- I as shown. The sign of the dc potential relative to

ground imposed on grid 2j

the spacecraft), is the s

being detected (positiveI

the peak-to-peak value of

"window," and the average

energy "level." Grids 1,

cup are at ground potenti

potential barrier between

and 6 are shielding grids

modulator grid from induc

("?ground" stands for the surface of

ame as that of the charged particle

for protons, negative for electrons),

the square wave defines the energy

value or dc component defines the

3, 4, 5, and 6 and the walls of the

al. Grid 1 allows for a well-defined

grids 1 and 2, while grids 3, 4, 5,

preventing the ac voltage on the

ing currents on the collector by

direct capacitive coupling. Grid 7, the suppressor grid, is

biased to a negative potential in order to prevent the escape

of the photoelectrons and secondary electrons from the
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collector plate. The suppressor voltage is -200 volts for

proton measurements and -20 volts for electron measurements.

The operation of the instrument can be described in the

following way: Let L and _ represent, respectively, the

upper and lower levels of the square wave potential applied

to the modulator grid. Due to geometry, only the normal

component of the electron velocity vz will be affected by

the potential barrier between grids 1 and 2. The correspond-

ing upper and lower vz limits are given by

When the modulator is at potential only electrons with

v > vz+ will penetrate the potential barrier, while particles

of opposite charge are virtually unaffected by the potential

barrier and thus contribute only a dc current to the collector.

Furthermore, there is a contribution to this dc current for

electrons with vz z > v+, for the modulator potential m

Since more electrons pass through this potential barrier for

vz v_ than for vz > vz+, the collector receives an ac cur-

rent from electrons 1800 out of phase with the modulator po-

tential for electrons satisfying the condition

\ 1 (1.2)

If the collector is ac coupled to the amplifier network of

the instrument, then only those electrons within the range

indicated by expression (1.2) are measured.

Briefly, the electronics is, in part, composed of a high
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gain preamplifier ac coupled to the collector whose output

is connected to a series of intermediate amplifiers. The

instrument is designed to measure currents over a four decade

range with a minimum sensitivity approximately equal to two

picoamps. The size of the input signal determines at what

point along the amplifier string the output signal is sampled

(intermediate amplifiers are connected in series such that

the total gain GT + NS G, where Ns is the number of amplifiers

the signal passes through, and G is the gain of each ampli-

fier). The output of these amplifiers then passes through a

synchroneous detector which only selects signals of the proper

phase (1800 out of phase with modulator potential). Those

signals are rectified and provide a current which charges an

integrating capacitor. The total charge accumulated (voltage)

is proportional to the initial signal strength, total ampli-

fier gain, and integration time. Then a logarithmic analog-

to-digital (A/D) converter converts this output voltage to

an 8-bit word, which is temporarily stored in a memory until

asked for by the spacecraft and sent back to Earth in the

spacecraft telemetry stream. Due to the logarithmic conver-

sion, a constant quantization error relative to the current

I on the order of 1.6% results.
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(3.) Operational Modes of the Detector on Imp 8

The M.I.T. detector is mounted perpendicular to the

spin axis of the Imp 8 spacecraft (s/c) as shown in Figure

2, such that the detector normal sweeps through a 3600

circle in the ecliptic plane.

The angular response of the detector is directionally

differential in the ecliptic plar along the azimuthal direc-

tion of rotation (y-axis of cup) and integral perpendicular

to the ecliptic plane along the spin axis (x-axis of cup).

The corresponding acceptance angles are, respectively, +100

and +600 wide with respect to the cup normal.

The energy range is from 50 ev to 7 key for ions, and

for electrons the energy range can either be 22 ev to 140 ev

or 22 ev to 2 kev depending upon the instrument mode. In all,

there are 26 energy levels or channels which are displayed in

Table 1 along with the corresponding velocity range for protons

and electrons. The energy levels are contiguous and logarith-

mically spaced and except for the first few energy levels,

which are used only for electrons, the ratio of the width of

the energy channel to the mean channel energy is constant and

on the order of 21%. Note, that when we use the word "energy"

in this context (energy level, energy channel), we more pre-

cisely mean the energy of an electron with velocity normal

to the modulator grid plane. The corresponding resolution

for the normal velocity, vz, into the sensor/Nv zV is 10.5%
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where

(1.33)

and

+4

(1.4)

Each s/c rotation is subdivided into a number of angular

sectors. The size of each angular sector and their number

are determined by the instrumen

tron measurements, the angular

shown in Figure 2 are the same

mode (TMS), non-tracking mode (

(AMS). Referring to Figure 2,

ments are made in the forward 9

sunward direction because of a

remainder of the angular sweep

and one 25.310 angular sector.

t mode. In the case of elec-

sector size and sequence as

for all modes, i.e., tracking

NTMS), and acquisition mode

one can see that no measure-

00 sector centered on the

photoelectric effect. The

is subdivided into seven 33.750,

The 25.310 angular sector is

always the last one measured in an angular sweep where the

remaining 8.440 is used to perform various logic operations

by the instrument, such as stepping the modulator voltage

to the next energy level.

The energy coverage for electrons in NTMS and AMS are

identical and ranges between 22 ev and 2 key, using 21 energy

levels in all. As for TMS, the energy range occurs between

22 ev and 140 ev, using only 8 energy levels. In this mode,

for every proton spectrum, two electron energy levels are

sampled, so that 4 proton spectra are taken for each 8-level
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electron spectrum (25 seconds and 2 minutes, respectively,

for each proton and electron spectrum). In doing this, a

25 second gap exists between each subsequent pair of energy

levels so that time fluctuations on the order of this interval

will tend to make one unable to distinguish time and energy

variations between data point pairs. Therefore, one must

compare subsequent spectra to be sure time variations are

not affecting the measurements. Note, even though the time

to take an NTMS or AMS spectrum is about 2 minutes, the energy

sweep for electrons is carried out continuously with no time

gaps, such that only about 20 seconds is required to cover

the first 8 energy channels. (In most cases the electron

current is at the noise level beyond the eighth energy channel.)

A complete angular-energy scan of a spectrum is performed

by integrating the sensor signal while the instrument sweeps

through a selected angular sector and then sampling the inte-

grated current at the end of the angular sector sweep. This

is done for all angular sectors of an angular sweep at a

fixed energy level. The instrument then steps to the next

higher energy level before another angular sweep is done, etc.,

until the desired energy range is covered.

The characteristic feature of TMS is to track the proton

peak, using only 8 energy channels centered around the proton

peak determined in the previous spectrum. This is done in

order to reduce the time interval between spectra to 25 seconds

and to allow one to see structure on a shorter time scale.
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For example, the thickness of a shock is about equal to one

proton gyroradius RP 'u 80km and since the spacecraft velocity

is "- 2 km/sec, the time for the spacecraft to pass through

the bow shock is on the order of 40 seconds or two TMS spectra.

The instrument operates in TMS when high flux conditions

prevail (integrated flux in any angular sector greater than

some threshhold T will keep the instrument locked in TMS),

while in low flux conditions the instrument is in NTMS.

Because of this, the instrument operates in TMS for typical

solar wind and magnetosheath conditions, and in NTMS when

the spacecraft is in the outer magnetosphere and magnetotail.

The main function of the AMS mode is to perform a general

survey of the plasma conditions to avoid the instrument being

locked in the wrong mode.

Since the angular distribution is narrow for ions in the

solar wind, the 900 sector centered around the sunward direc-

tion is subdivided into eight 11.250 sectors, while the re-

maining sectors are 450 wide. In NTMS these eight 11.250

sectors are replaced by two coarser 450 sectors because of

the lower particle fluxes. The AMS mode has the same angular

sweep as TMS, while having the same energy sweep as NTMS.

For this instrument the cup has a split collector allowing

for determination of the north/south angle of the wind velocity.

However, for NTMS and electron measurements, only the full

collector (signals from both halves) is used because of low

current conditions.
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(4.) Transmission Function of the Detector

(a.) Relation between the collector current and the electron
distribution function

The mathematical relation between the measured current

and the electron distribution function fe must be known if

one is to extract detailed quantitative information on fe.

This relation is analyzed in terms of the so-called "trans-

mission function" defined as the fraction of a monoenergetic,

broad, parallel uniform electron beam incident at a given

direction upon the entrance aperture and detected by the

collector. Thus the current produced by a beam of electrons

is equal to the product of the flux density of the electron

beam, area of the entrance aperture A, electric charge e,

and the transmission function T(V; vz+), where vz+ is dis-

played because T is a function of the modulator grid potential

(energy dependent response).

In reality, we do not deal with a monoenergetic beam of

electrons, but rather with an unknown distribution of elec-

trons in velocity space. One can imagine an infinite number

of such monoenergetic beams, which are composed of an infini-

tesimal number of electrons, coming from all directions and

with different energies. The expression

represents the incident flux density of electrons upon the
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cup aperture from one of these infinitesimal beams, where

e 
V

represents the number density of particles with velocity V

in the range from v to v + dv, and vz is the normal component

of the velocity into the cup.

The ac component of the current received by the collector

will then be given by the following integral expression:
00

where each integral represents the integrated flux received

by the collector when the potential on the modulator grid is

equal to N. Note that the arguments for T(V; v ) in the

two integrals are different, indicating the energy dependence

of the transmission function. Thcrefore we are unable to

combine the two integral expressions. Also note that the

positive values for the electric charge e and the potential

+ will be assumed throughout this chapter. One can see from

(1.5) that a prerequisite for the determination of f is know-

ledge of the transmission function for the detector. The

actual details for the inversion of this equation in solving

for f e shall be reserved for the next section.

(b.) The structure of the transmission function

The transmission function of the M.I.T. Imp 8 Faraday
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cup is determined by (1) the "effective transparency" of

the slats Ts, (2) the grid transparency TG, and (3) the

"geometrical intercept area coefficient," T0 . The coeffi-

cient T0 represents that fraction of the electron beam cross-

section, parallel to the aperture plane, that is intercepted

by the collector. The energy dependence is implied by vz+

in the arguments for TG, T, and T0 . We thus have

ID, rV +)(1.6)

Brief discussion concerning TG, Ts, and T0 will now be given

along with pertinent derivations.

(1) "Effective transparency" of slats

In Figure 3a we have a drawing of two slats. The purpose

of the slats is to produce an angular response which is dif-

ferential in the y-direction but broad in the x-direction,

giving the detector a capability of determining f as a func-e

tion of angle as the spacecraft rotates. It follows from the

definition for T(vi, vz+) that one needs only to consider

monoenergetic broad parallel uniform beams coming from an

arbitrary direction in deriving Ts' T' or T . The principle

behind the slats is identical to that of blinders letting

only the light at normal incidence upon the slats get through

(shadow effect). Thus, by referring to Fig. 3a we have

Ts s=a/b

where a represents the fraction of the beam getting through
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the slats, and b represents the total beam incident upon

the slats. Then from Figure 3a it is easy to see that

D = a + H tans

and b = D + W, where D is the distance between slats, H and

W are, respectively, the height and the width of the slats,

and

= tan
z

is the incident angle of the beam upon the slats.

using the above relations we have

Thus,

T, ( I -

0

where'

#v Y-/9<
(1.7)

TSN = D/ (D + W)

is the normal transparency of the slats and 4 max is the maxi-

mum acceptance angle. From Table 2, which gives all pertinent

physical parameters of the Imp 8 detector, D/H = 0.1735

0
gives us, & ~ +10 , and TSN = 0.8675. Note, the energymax -S

dependence in the argument for Ts has been dropped since the

slats are at ground potential.

(2) Grid transparency

The grids are a mesh of finely woven tungsten wire

which can be approximated by two sets of parallel wires

aligned perpendicular to each other in the x,y plane of the

cup. Thus, the transparency for one grid plane is

Vv
VL2
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T G.~~ G T G i( . )
1 x y

where the index i specifies the grid plane, and TG , TG

are, respectively, the transparency of the 1th i i

grid plane in the x and y directions. Then if one assumes

no correlations of wires in one grid plane with those in

another grid plane (very good approximation when one rotates

the grid wires in different grid planes at different angles

relative to one another) one gets

T G -jTT G.(1.9)

i=l 1

where n specifies the total number of grid planes. Figure

3b is a cross-sectional view of two grid wires representing

a single layer of parallel wires of a grid plane. The quan-

tities b and a have the same meaning as those for the slats;

thus the grid transparency along the x-axis, for example, is

T ~~a/b
x

It is easy to see from Fig. 3b that

b = a + d secE G

where d is the diameter of the grid wires and sec0 =

2 2
v 2/vz. Using the definition of TG along with the

X
expression for sec G one gets the following

TG- FI+x2/vz2 (1.10)

1

and for the transverse velocity vt = 0, the normal trans-

parency is
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T =d 2
GN. . 2

1 1

To get the total transparency of the grids TG(V7, vz+), one

needs to substitute expressions of the type (1.10) for TGx.'
1

TGy' into (1.8) for each grid plane, and then substitute

these expressions into (1.9). Table 2 shows d/b equal to

0.07 for the modulator grid and 0.02647 for the remaining

grids. Using the above expressions for TGN. and equation
1

(1.9), one obtains for the normal transparency of the grids

TGN = 0.627. Thus, the total normal transparency

TN = TSNTGN = 0.544

The angular width of the grid transparency TG is much

broader than T . For example, the maximum angle of accept-

ance for the modulator grid, which has a larger d/b ratio

compared to the other grid planes and thus the narrower

angular width, is about 840, which is much larger than the

angular width for the slats /9max +100.
max-

(3) Geometrical intercept area coefficient, T0

The transmission coefficient T0 is equal to the fraction

of a broad parallel beam passing through the aperture at a

particular angle &0 that is intercepted by the collector

plate. In other words, refer to Figure 4, the common area

of the collector circle and the aperture circle, which is

projected down upon the collector at the angle & . Then this

common area divided by the area of the aperture circle is
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equal to T0. The distance 6x shown in Figure 4 is the total

transverse displacement of an electron between the aperture

and collector. The common area of the two circles A is
com

equal to twice the sum of A1 , the area of the triangle LMN,

and the areas A2, A3 of the arc segments 2, 3 defined, re-

spectively, by the area between chords MN, ML and their

corresponding arc segments. Thus

To = Acom A2 (1. 11)

where Acom = 2(A1 + A2 +A3), and rA is the radius of the

aperture circle (rAK< rC). Now A1 = 2 (M) (LN), and A2,

A3 are equal, respectively, to the difference between the

areas of the arcs KMN, QML and the triangles KMN, QML. In

order to determine the areas of these triangles, one must

know the height OM and thus x. The distance x is given by

the simultaneous solution of the equations rc2 = x2 + y2

and rA2 = , + y -where rC is the radius of the collector

Solving for x and substituting into (1.11), one gets the

following expression for T0:

'L X: - y - (0 20

r

%Y< 4& < r +rA 0 z~
0 for A)< 2YT 0 cTE&O

(1.12)
C

(~f
0('4

One can see from looking at (1.12) that the angular response

for T0 is much wider than that for TS,
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(c.) Plots of the transmission function

Now we are ready to discuss the behavior of the total

T(v; vz+) as a function of the electron velocity. It is

apparent that we may look upon T as a function of the fol-

lowing variables, the two angles

= tan-I vy/vz (1.13)

ck = tan-1 v/vz 4

and the normal velocity vz and vz+'

Figure 5 is a plot of the normalized response R E T/TN

versus 4, for 0 =0 and for fixed normal velocity vz set

equal to vz. One sees that the $ dependence

of T is mainly determined by the transparency of the slats,

which accounts for the cut off shown at 6 +100. Though

not previously mentioned, there is an intermediate ring be-

tween the aperture and collector having a diameter slightly

less than the aperture. The shadow effect due to this inter-

mediate ring accounts for the narrower shape in T near =

0 , instead of the that implied by (1.7).

Figure 6 is a plot of R versus CC for / = 00, and for

various values of the normal velocity vz ranging from vZ-

to vz+ with a step size equal to 2% of the velocity window

width. As one can see, a family of curves results, explicitly

showing the dependence of T upon the normal velocity vz

(energy dependence in T) for fixed qA and/8. This energy

dependence stems from the refraction of the electron
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trajectories as they pass through regions of non-zero elec-

tric field. One can see from Fig. 2 that an electron ex-

periences a repulsive force as it enters the potential bar-

rier between grids 1 and 2 (trajectory is concave upward),

and an acceleration between grids 2 and 3 (trajectory concave

down). The same will hold for the suppressor grid.

To show further how this comes about, consider the

transmission coefficient T . It is apparent from looking

at Figure 2 that the electrons experience a transverse dis-

placement relative to the point they would normally strike

the collector plane if their trajectories were rectilinear.

This is equivalent to an increase in nx, the distance be-

tween, respectively, the projected aperture circle and the

collector circle. For example, the relative displacement

SL due to refraction can be shown to be1 3

411L L onL + (1.15)

where Vz, L is the distance between grids 1

and 3, and c(is the angle of incidence at grid 1. For

vz vZ'I/U O, there is no deflection (AL 0), while in

the other extreme vz z = v-'/4 = 1, the deflection is twice

that for rectilinear motion (AL = L tant). For instance,

one can show from using E. (1.15) that for 0(= 450 there

will be an effective increase in O6due to refraction, from

450 to 47.50 and 510 for v equal to, respectively, v and

vZ-. This gives rise to a small decrease in T0 from 0.47 to
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0.42 for vz =z+ but a significant reduction from 0.47 to

0.27 for =vz=Z-

The refraction of electrons between the grid planes

partially accounts for the reduction in T shown in Figure 6.

The remaining energy dependence in T resides in TG. The

effect is predominant at the modulator grid where electrons

in passing through the potential barrier between grids 1

and 2 experience a decrease in vZ, while the transverse

velocity is unaffected. This results in an increase in the

angle of incidence at the modulator plane e with respectG

to that at grid 1, 6O and thus a reduction in TG. This

deflection becomes greater as vz (note: by vz we mean the

value of vz at the entrance aperture) approaches v_ from

above. Correspondingly, the transparency TG decreases such

that it vanishes for vz sufficiently close to vZ_. For ex-

ample, TG will decrease by 10% as vz varies from vz+ + vZ-

where UC is fixed and set equal to 300. It is important to

note that this deDendence of the angular response upon v

only becomes important for electrons with

This means that R is only weakly dependent upon vz inside

an energy window, and allows us to replace this R by a mean

normalized response R ~ R(i, /9; vZ).

It is worth mentioning that the bell shapelike behavior

of T for X's less than 1+1001 is due to the presence of the

intermediate ring. If the ring were absent, the response T

1v/10,
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with respect to cXwould be flat for 'X 1+1001.

One should also note that the angular response in the

x-direction, (predominantly determined by T0 ) is much broader

than that in the y-direction, where T has the following

limits in a and,6:

T = 0 for CO 1+62 01 and all,&'s.

T = 0 for 13,>1+1001 and allCO's.

(d.) Secondary and extraneous effects on transmission function

Most of the effects introduced in this section could go

under the heading of pickup, which one normally tries to re-

duce as much as possible in the detector design. This sec-

tion is mentioned for the sake of completeness and follows

the general outline given in the paper by V. M. Vasyliunas.1 3

First, electrons with vz >v+ may have trajectories where

they do reach the collector for Im = , but for Im =

miss the collector because of an increase in the refraction

of their trajectories. The same sort of argument will hold

concerning the transparency of the modulator grid. These

effects produce a current 1800 out of phase with the modu-

lator (increase current) which is on the order of a few

percent for f e decreasing with energy.

Another problem is the extraneous modulated current

produced by photoelectrons from the modulator. The photo-

electrons strike the suppressor grid at different energies
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as Im varies between . Since the yield of secondaries

from the suppressor is a function of primary energy Ep,

and if the yield is greater for larger EP (true for Ep<

1 kev), then an ac current in phase with the modulator is

produced. Due to the high flux of photons from the sun,

photo currents "-10- amp result. Thus, electron measure-

ments cannot be made toward the sun. The presence of slats

insures that one should have no problem for

450 - s/c 3150

where is/c is the scan angle of the spacecraft shown in

Figure 2. Still another problem is the secondary electrons

produced by protons hitting the modulator at different

energies as Im varies between L. Since the yield is pro-

portional to the primary energy (Ep < 10 kev), this current

is in phase with the modulator. But for regions the Imp 8

spacecraft passes through, this effect should be small. 13

Then there is the secondary emission of electrons at the

modulator and suppressor from electrons striking them, and

since the yield is proportional to the primary flux Fp
where Fp is greater for Im = _, a current 1800 out of phase

from the modulator results. This effect may be sufficiently

large to require corrections. 13

Among the remaining effects, the following one should

be mentioned: For the modulator grid wires, the equipotential

assumption at the grid plane is somewhat violated. For ex-

ample, the potential may drop as much as 9% of the modulator
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potential halfway between adjacent grid wires. Since the

window size is only 21%, the idea of a uniform potential

barrier is not rigorously valid. One tries to reduce such

effects by reducing the wire spacing of the modulator grid

without reducing the sensitivity of the detector or normal

transparency of grids too much. Corrections introduced by

such effects can only be determined experimentally. Experi-

ments seem to show such corrections to be small for reasonable

wire spacings and distances between grid planes.
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(5.) Analytical Evaluation of Equation (1.5)

(a.) Simplification of the expressions for 6I

The main objective of this section is the explicit

evaluation of Equation (1.5). This equation as written is

not in a form amenable for numerical computations. In re-

viewing the observational characteristics of solar wind

electrons and the properties of the detector response (see

Figures 7 and 8), one may conclude that f is broad compared

to the detector's response in the y-direction, while compa-

rable in width with respect to T in the x-direction. Using

this information, one can simplify Eq. (1.5) considerably

without need for explicit knowledge of fe, except that it

be broad in a certain sense to be explained later. If the

distribution function fe is sufficiently steep (Maxwellian,

for instance), the corrections toALI by setting T( v ;)Z+

T (v.; vz) may be ignored. Complete numerical integrations

of Eq. (1.5) were performed without any approximations con-

cerning the transmission function T. Using a Maxwellian

distribution for fe, we found that the error in combining

the two integrals in Eq. (1.5) is less than 1%. We thus

are justified to use instead of (1.5)

V = -to

V,(1.16)



51.

Further simplifications result if f is broad compared

to the angular response. In such situations one may resort

to the mean value theorem. One has:

where the limits of integration in vy are explicitly shown,

and the parameters 7, , lie, respectively, somewhere within

the ranges vz< <Vz+, - vz7<+vz. If the detector

response in/9 and vz is differential with respect to fe, one

can make the approximation that '-o and r ^ v. In order

to estimate the error in making this approximation, let us

write the Taylor series expansion of fe around vy = 0, vz

and substitute it into (1.16). We thus have:

VX -av ovk

+ +

f fI,Thy a (1T.1

e ' VV

[IV. + Ji ~r f11()3 I (

where

RV

Il, 1 2, and 1 3 are similar in form to the above expression

for 1 0. They may be obtained by replacing v z in the integrand
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for 10 by vz v vz z(v - vz) and vz v 2  The second and

fourth terms on the r.h.s. of (1.18) are correction terms

to the integral for-AI, resulting from the detector not

being perfectly differential in vy, while the third term is

a correction due to finiteness of the width of a given energy

window. The response is even in vy, thus the integral I1

vanishes by inspection. In order to get an estimate of the

size of the 13 term relative to unity, we may take into ac-

count the fact that R(Y; vZ-) is not a strong function of

vz in the range from vz- to vz+. Using Eq. (1.7) for R and

a Maxwellian for f one gets:

-(1.319)

2 2

Since electrons are subsonic, the correction term 2V 2/we

is small compared to unity for typical values of vy and we,

and thus can be dropped. In order to obtain an estimate of

(1.19), it is convenient to proceed graphically. For this

purpose, refer to Figure 7, which shows a typical fe in the

solar wind. Superimposed upon f is the normalized response

of the slats R, where the lower refers to vz = 3100 km/sec

D
and the upper to vz = 7000 km/sec. Recalling that vy = Dvz'

we see that vy max= 540 km/sec for the lowest energy chan-

nel and vymax = 1200 km/sec for the eighth energy channel.

Since we is typically 2000 km/sec, Eq. (1.19) varies in the

range between 1.2% and 6%. Thus, we see that we are justified
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in dropping the 13 term in Eq. (1.18).

Using the same approach for the third term in (1.18),

one gets:

iI( -z 

(1.20)

For all energy channels used, vz is always less than

700 km/sec. Thus, even for we as small as 1500 km/sec (i.e.,

T = 7.4 x 10 4K), Eq. (1.20) is less than 4.5%. In order

to show that the detector is differential for all vz and to

obtain more typical estimates of (1.20), it is convenient

to separate the electrons into two separate energy regimes.

Electrons with energies less than 60 ev ("core" electrons)

have thermal speeds we e - 1900 km/sec, while electrons with

energies greater than 60 ev (suprathermal electrons) have

thermal speeds we ~ 4700 km/sec. Thus, for energies less

than 60 ev (first six energy channels), (1.20) is only 1.3%;

while for energies greater than 60 ev, (1.20) is negligable

until one approaches the highest energy channels /"-2 key,

where Avz ~ 2800 km/sec gives a value for (1.20) ~ 8%. One

might then expect we >> 4700 km/sec at these energics. Thus,

the approximation that the detector is differential in vz

is very good. Neglecting the correction terms, which are

no larger than 6%, (1.18) reduces to the following:
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(b.) Evaluation of the integral involving R(V; vZ-)

Shown in Figure 8 is a drawing identical to that in

Figure 7 except that the normalized angular resronse R is

plotted as a function of vy for various values of v in the

range 3100 km/sec vZ 7000 km/sec and vy = 0. One can

see that fe and R have the same width, while at higher

energies R extends out to many thermal speeds and becomes

very broad compared to f . For example, vx = v tan0(

, where mx 620, and for vz in the range noted to

above, vx max varies in the range 5830 km/sec v xmax 13,

165 km/sec, or in thermal speeds 3w e-- vX max 4 6.6 w . This

means that one cannot use the mean value theorem for the

variable vx. Because the vz dependence of R (see Figure 6)

is very complicated, the evaluation of the integral involving

R in an analytical form appears hopeless. However, one

notices that the term in braces in (1.21) does not depend on

vz. One can define the mean response function R as follows:
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Vf+Rva

R/3 v: vv

v~ ~

V -~2-

In Figure 9 is a plot of R (, vI

(1.22)

V,( V d va

) as a function of

5 = vx/Vz

for various values of v (energy channels). Note that R

(f; vz_) is essentially independent of the energy channel

and one is justified in omitting the dependence in v from

the argument for R. Thus, one gets the following expression

for Equation (1.21):
/e

v 3 -V )7 (1.23)

Figure 9 shows that R (S) is even in 1, as one might expect.

It turns out that R may be fitted well by a sum of two Gaus-

sians,

a ~c424

i
(1.24)

where a , c_2 are adjustable parameters. We have determined

O(,and a using the first eight energy channels; the results

are shown in Figure 10. Note an excellent fit, except for

the slight deviation beyond +600, where R ~%0, when one
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2. 2 -3
chooses a1 = 6.69 x 10 2 1.116, a2 = 9.1 x 10

2 = 21.472. Substituting (1.24) into Equation (1.23)., one

obtains

AT~fT/o)7e (1.25)

where we made use of the (excellent) approximation

v 3 -V 1 3AvV

Equation (1.25) represents the basic equation for our anal-

ysis of electron data. Note that the limits of integration

vx = +o may be retained because the Gaussian fit to R de-

viates only by a few percent from zero for angles larger

than 600. (For the lowest energy channel vx = +5400 km/sec

at +600 and thus about three times larger than the thermal

speed. Hence, the contributions to the integral for vx>

5400 km/sec are negligable.)

(c.) Explicit formulas for AI for various models of f

We have reduced the problem in the previous section to

a one-dimensional integral expression for fe (vx, o,vZ).

The most useful approach found thus far is to assume a model

form for f e containing a sufficient number of "free" para-

meters to be determined by best fit procedures. (For example,

nonlinear least-square-fit routines can be employed to



57.

determine the model parameters from the set of currents for

each spectrum.)

For the purpose of demonstration, we quote here two

different models for f . They are as follows:

Maxwellian distribution function fBM (V), and (2) the trans-

port model distribution recently proposed by Scudder and

Olbert (1977).14 (The details of the latter example are

discussed in Chapter 4.)

(1) Bi-Maxwellian distribution function

For this model, f is given by
e

neAVet Ig 4

e. v (1. 26)

where

v' is the electron velocity, V is the bulk velocity of the

solar wind, ne is the electron density,

(B is the magnetic field vector),

where T1 and Ti are, respectively, the temperatures parallel

and perpendicular to the magnetic field, and

(1) bi-
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Using (1.26), one gets the following expression for the cur-

rent 6I (see Appendix A):

/ +)(1.27)

where I T

and 61 .

The angles 6B and /B are, respectively, the polar and azi-

muthal angles of the B vector in the solar ecliptic coordi-

nate system (see Figure 11). If we set 6 = 0, Eq. (1.27)

reduces to the special case where fe is a Maxwellian, i.e.,

3I=C (1. 28)
/~rI 6~)U0

In Eqs. (1.27) and (1.28) the expression preceding the

summation sign is the familiar expression for the current

Al. The summed expression is a new term that displays the
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convolution (mixing) of the detector response and the dis-

tribution function f . To further show this we will make

some simplifying approximation of Eq. (1.28). From looking

at the coefficients a and Q2, i.e., a 2 /a ~ .1 and C 12

#22 '< 1, one finds the second term of Eq. (1.28) to be only

2 2
a 5% correction. Also, the term V /w introduces a 5%

y c

correction in the normalization. Dropping these terms one

gets for AI for directions at 900 to the wind velocity, to

a good approximation:

I +U2(1.29)

2

wherec A2 1 was set equal to one. Thus for U0 ~ - 1, there

is a definite mixing of the response function and f e para-

meters. For the limit U --*0, the response function becomes

narrow compared to f e and one gets the expression normally

expected for a differential detector

A aj6i, UJ - (1.30)

while for U-+00, the response function becomes broad compared

to fe, see Figure 8, and one gets the correspondingly familiar

case

(1.31)

which is an approximation often used for protons. Note: in
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all of the above the term Vx/wc was dropped because the

bulk velocity vector is confined to the ecliptic plane such

that (Vx/wc) 4<1 and results in an error <1%.

(2) Conduction model14

In this model

f = f + f
e 2- 1

where f f

and (see Appendix A):

( ) j()(1.32)

where f, is the kappa distribution function first proposed

15by S. Olbert, ' )(<is an adjustable parameter,-U = (v-V)/wc'

wc is the most probable thermal speed for electrons,

is the effective collision time, and P ,P0 are, respec-

tively, even and odd polynomials in the velocity u. Expres-

sions for ', P , and P0 are given in Chapter 4 and Appendix

A. The distribution function f .has the property that for

v:fywc it is almost identical to a Maxwellian, and for v2>

wc it goes over to a power law in v or in energy. Note

that f2 is isotropic in the frame of reference, moving with

velocity V. For small X the high energy tail is emphasized,



while for large - it approaches a Maxwellian.

easily check that

-U2-.

Substituting the above expression for

(1.25) and integrating

f- Eq. (1.32) in Eq.

(see Appendix A for details), one gets

the following:

Al O~T~L2-

where

(1.35)

(-.c +G4~ +$(x~) a'

q< +12r +c4.~Q(u,>u 2-cos ~

t 2a lCo 5 2s e+c(13S iM a) k J
U,co-S X ~a4

+c~ +$(2c) C4

*1------ I1 b Al IJ

61.

One can

(1.34)

and 6
+ (c(~ -GC,~

i~)

(1. 36)

lir' ( I+

M24j,

cx G

+ X +% o

4t

O.c

41a
ko f-

ce 3t
X- ) 0-t
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Yet~

)

2->U12.Y
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4.

and for higher energy channels >>0 1,

A~i

~loA

and 4 x
U

Also, UOx- 7 / 2C'

2) [is the beta function)

is the Psi-function, and

X>23(2%-) - ,?o for all.Wand approaches zero as ;-C

approaches infinity. In evaluating these integrals, we have

used the saddle point method (see Appendix). The accuracy

of the integration was checked by comparing the integrations

in (1.34) with numerical integrations of the same expressions

where

62.
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for regions of parameter space of interest. The error was

found to be less than 5 percent in general. Errors ' 10%

for special combination of parameters do occur for integrals

h3 L and h4 , at the lowest energy channel when Tc 2.5 x

105 oK (i.e., angular width of fe becomes comparable to the

angular width in R).

One may also want the expression AI for "*0 , which

holds when the electrons are collision dominated and described

by a Maxwellian. For X , the saddle point method

Al ILQ ~F 00j

3
Uoc

F

and /

yields:

(1.37)

(1.38)

~6

+G 2cCos 9&a

where

h0Lt

(1.39)

i1. ~ 3 U3 y~
u4j+

Ua u 4 -3f
) ~ KR~~4U0 )~~4~+ 2Uo(

63.

4
4L

where

- CoSs a)05

-t- D , ', j .2, ) ,x I + ( li ) U,,

kL Itt
15 + C , , +

A.-C k-L

t y



Y~Y~~YiL) ~;j= ~;:~ -~ UO;2~/Oa.) ( <~-
- '~2- -U0~/U~

For large energies U0 >> 1, the following holds

1~3L

L/ *~

For large X this model breaks down at large energies, since

terms like -- and become unbounded for U0>'> 1.

One should note that in the case of finite X, the term

AV V.
proportional to (-7) ( ) in Eq. (1.36) for M.., goes to

zero like 1/U for large U. Thus, at high energies this

term, which describes the pressure anisotropy of the electron

gas, drops out. The second term, which is proportional to

contributes to the third moment or heat flow vector

of electrons in the proper frame of reference, does not go

to zero as U-110, but approaches some non-zero constant.

This term is less than one if (f) is less than some critical

critical'

In the event that there is no transport (all thermo-

dynamic gradients are zero), then M = 1 and Eqs. (1.34),

(1.36) reduce to the special case where fe is described by

the isotropic kappa distribution, i.e.,

(1.40)Al T0 Z1~F~L
p1

where F L is given by Eq. (1.35).

In the limit as X approaches infinity, Eq. (1.40) further

64.

3,c - u an =
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reduces to the special case of a Maxwellian for fe* Under

these conditions, Xc'M, ,= 1, the saddle point method

yields rigorously:

A3JI (1.41)

where F.g is given by Eq. (1.38). Eq. (1.41) is identical

to Eq. (1.28), which was derived using a bi-Maxwellian for

f and setting 6 = 0.

Finally, in order to check the accuracy of Equation

(1.25), numerical integrations for AI (AINM ) were computed

for a Maxwellian using the most general Equation (1.5). A

similar set of currents for AI were computed using Eq.

(1.28). By referring to Table 3, which gives a comparison

between currents computed numerically and those computed

using Eq. (1.28), one can see that for wc > 2000 km/sec the

error is * 3%. Thus, it seems that Eq. (1.25) represents

the currents LI quite well.

(6.) Closing Remarks

In this chapter we have shown that the very complicated

three-dimensional integral relation for AI given by Eq. (1.5)

may be reduced to the relatively simple and easy to handle

one-dimensional integral relation given by Eq. (1.25). This

was possible because of the differential property of the

detector response relative to f e and the fact that the angular
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response for R may be expressed by a mean response R [see

Eq. (1.22)]. As was shown, the essential features of the

response may be characterized by the angular variables OC

and,9. The explicit dependence of R upon vz within the

velocity window of the detector, which is due to refraction,

was shown to be relatively weak. Because of this, we were

able to replace R by R as noted to above. Furthermore, it

was possible to replace R by a sum of two Gaussians which

when fitted to R gave an almost perfect reproduction of it.

It was then shown that Eq. (1.25), within a few percent, gave

an accurate description of the currents when compared with

laborious numerical integrations using Eq. (1.5).

We would like to stress that once we have an expression

like Eq. (1.25) for Al, a tremendous simplification in the

analysis is obtained. For instance, since the precise form

for fe is not a priori known,Eq. (1.25) for LI allows us

simply to substitute any model for f e in this equation (i.e.,

bi-Maxwellian, kappa, kappa plus transport, which can be

evaluated for most cases of interest etc.), by using the

saddle point method, thus giving us analytical expressions

for AI in terms of detector and model dependent parameters.

(Note that the integrations can be evaluated rigorously for

Maxwellian and bi-Maxwellian distributions.) By having such

expressions one may easily develop fitting procedures for

the purposes of doing data analysis along with the ability

for relatively easy comparison with the data. For instance,
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at right angles to B, the transport terms are small, allow-

ing for tremendous simplification in AI [for example, see

Eq. (1.40)]; and thus one can obtain a quick estimate of A

and wc if we are using a kappa distribution for fo.

Finally, it should be pointed out that the current

recorded by the detector is an average current over an

angular sector, i.e.,

(142

where 6t = t - to is the integration time. In our analysis,

we have not done a proper average of the currents over

angle. We have simply set jc for each angular sector equal

to the following:

COS Cos(1.43)

C/

where

Errors introduced by using this averaging procedure in gen-

eral will be small, because electrons are very subsonic and

nearly isotropic in the proper frame (current does not change

appreciably with angle), thus allowing us to avoid further

complications in our analysis program. If need be, once a

final form for fe has been decided upon, and if the accuracy

of the data justifies a more precise analysis, then a more
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appropriate averaging procedure may be built into the anal-

ysis routine.
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CHAPTER II

SPACECRAFT CHARGING

(1.) Qualitative Statement of the Problem

The problem of spacecraft charging is an old one and

has been of considerable interest for many years. It is a

problem that is very difficult to treat quantitatively (as

will become clearer later on in the discussion); one is

forced to make drastic approximations and assumptions in

order to get a rough feeling for what is happening. The ac-

tual charging up of the spacecraft is the result of a com-

plicated interplay between two competing processes. The

first of these processes results from electrons in the plasma

surrounding the spacecraft having thermal speeds many times

greater than protons, so that the average electron flux

striking the spacecraft is about 40 times greater than the

average proton flux striking it (Te 'Tp), thus causing the

spacecraft to charge up to a negative potential relative to

the surrounding plasma. (Note: the potential of the sur-

rounding plasma shall be arbitrarily set equal to zero.)

Since this negative "plasma" current incident upon the space-

craft is proportional to the electron density and thermal

speed, one might expect the spacecraft to acquire a more

negative charge in regions of higher density and temperature

than that in cooler and more rarified regions of space.

Other complicating factors are the scattering of electrons
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and the secondary emission of electrons from the surface of

the spacecraft, which tend to reduce the negative charge

accumulated by the spacecraft. The other process is due to

the photo emission of electrons on the sunward side of the

spacecraft, causing it to charge up to a positive potential.

Some factors important in determining the effectiveness of

this process are: (1) the intensity of the sunlight incident

upon the spacecraft, (2) reflection and absorption pnroperties

of the surface material, (3) work function of the surface

material, and (4) energy spectrum of the sunlight incident

upon the spacecraft (e.g., increasing the ultraviolet spec-

trum produces a greater photo current, since only photons

with energies greater than

material can contribute to

Then, depending on which pr

will either charge up to a

The total current incident

current plus photocurrent)

of the spacecraft. This po

this current so that under

the work function of the surface

the emission of photoelectrons).

ocess dominates, the spacecraft

positive or a negative potential.

upon the spacecraft ("plasma"

initially raises the potential

tential in turn tends to reduce

steady state conditions the current

is zero (zero current condition). As the spacecraft charges,

a non-zero space charge density forms around the spacecraft.

This space charge density tends to shield the surrounding

plasma from the charged spacecraft. (The effectiveness of

this shielding (screening) is qualitatively measured by the

Debye length (AD) of the surrounding plasma near the surface
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of the spacecraft, thus giving rise to a screened potential

around the spacecraft.)

The purpose of this chapter is to investigate in a crude

but quantitative manner the effects of spacecraft charging

on electron measurements. Since the experimentally estimated

s/c potentials compare in magnitude to the kinetic energy of

the bulk of the electrons, there is need for detailed study

of this problem. In the case of positive ions, this problem

does not arise because ions have much larger masses. For

example, the Imp 8 spacecraft appears to have a potential of

about +2 volts9 (photoeffect is dominant); electrons have

convective energies of only 0.5 ev (400 km/sec) and thermal

energy of about 10 ev (105 oK). Thus, a bulk of the electrons

have energies comparable to the spacecraft potential, causing

their trajectories to be appreciably perturbed, resulting in

significant changes in their distribution in velocity space.

Thus, it is necessary to determine the relation between the

desired "unperturbed" f e and the "perturbed" f e measured at

the spacecraft. In contrast, protons have convective ener-

gies of 800 ev and thermal energies of about 10 ev (105 oK).

This means that the spacecraft potential is only a small

fraction of a proton's energy, causing only a negligable

perturbation of their trajectories.

The perturbations experienced by f are expected to

contain three separate effects: (1) an energy shift equal

to the potential energy at the spacecraft surface experienced
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by the electrons as they are accelerated in the Debye sphere

surrounding the positively charged spacecraft, (2) a con-

centration of their trajectories (focusing) as they approach

the spacecraft, and (3) a rarefraction of the electrons as

they are accelerated in the Debye sphere. The actual form

for fe is, in practice, impossible to determine. For example,

if one were to try to solve this problem in a self-consistent

way, even for the simplifying assumption of spherical sym-

metry [Ira B. Bernstein and Irving N. Rabinowitz, (1959)16

one would find himself faced with trying to solve a very

complicated non-linear integro-differential equation. In

actuality, such a simple configuration does not exist for

any given spacecraft. For example, for Imp 8, some of these

complications are: (1) Imp 8 spacecraft is a cylinder with

a radius of about 1 meter and a height comparable to its

diameter (spherical symmetry does not hold); (2) a number of

antennas are protruding from it; (3) the Debye lengths for

the spacecraft potential may have an angular dependence rela-

tive to the sun--s/c line [More specifically, AD should be

a few centimeters on the sunward side (photoelectrons con-

tribute to the formation of a relatively dense cloud of

plasma compared to that in the ambient solar wind, over the

illuminated surface of the spacecraft), and AD about 10 meters

on the backward side (average AD for ambient solar wind is

about 10 meters)]; (4) surface of spacecraft is a poor con-

ductor such that it may become differentially charged,
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thus giving rise to a dipole term to the potential. [On the

sunward side the surface will acquire a positive potential

(photo effect), while on the backward or dark side of the

spacecraft it will acquire a negative potential (negative

"plasma" current). Then, since the surface is a poor con-

ductor, currents in the surface will not flow at a sufficient

rate so as to equalize the potential difference in the surface

material.] Furthermore, aging suffered by the spacecraft

surface material through interactions with the surrounding

plasma and radiation will bring about unknown changes in the

surface properties of this material and make any calculations

questionable no matter how sophisticated they may be.

All of these complications clearly imply that any self-

consistent quantitative solution for this problem is just

about impossible. With these facts in mind, one must resort

to some rough estimate of the size of the effect. The ap-

proach we chose was to assume that a plausible spacecraft

potential is known; this allows us to use the collisionless

Boltzmann equation, and thus to solve for fe in terms of an

assumed fe at infinity. If the potential qualitatively meets

the expected characteristics (proper magnitude, screened

profile, etc.), one expects that the estimates as to the

magnitude of the distortions in f e will not be too far off.

We present the details of our approach in the following sec-

tions.
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(2.) General Quantitative Considerations for a Spherical
Model

Boltzman equation is

it) }(2.1)

where

is the total phase space time derivative, and

(f5) C(2.2)

represents changes in fe due to collisions (i.e., close en-

counters with other particles, strong resonant interactions

with waves, etc.), V is the electron velocity, and

F -e (E + V X 0) + (2.3)

is the force on the electron due to the macroscopic electric,

magnetic, and gravitational fields of the medium; B is the

magnetic field of the surrounding plasma, g is the gravita-

tional acceleration vector, and

-- -VI -VX (2.4)

is the electric field, I is the spacecraft potential, and

V is the wind velocity of the plasma. Referring to Figure

12, which gives a pictorial description of the problem, one

sees that the electrons mainly experience the effects of the

potential inside the Debye sphere. This means that the elec-

tric field due to the spacecraft potential (E ^-I/ D) is

about equal to 0.2 volts/meter for = 2 volts and AD = 10
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meters. The gravitational term in Eq. (2.3) is negligable

compared to the electric fields around the spacecraft, while

-2
the induction term -V x B ~ 0.2 x 10 volts/meter for V =

400 km/sec and B = 5 gammas is only a 1% correction and may

also be dropped. Therefore, we may put to a good approxima-

tion:

E V(2.5)

The collision term in Eq. (2.1) may also be dropped, since

the m.f.p. for collisions involving electrons is on the order

of an AU, so the electrons while traversing the Debye sphere

(AD ^ -10 meters) will experience no collisions. Furthermore,

since Re, the electron gyro-radius, is on the order of kilo-

meters (\D/Re&Al), the electrons will not experience any

significant deflections from the magnetic field while tra-

versing the Debye sphere. Thus, we may also neglect the

effects of the magnetic field in Eq. (2.3). Finally, we

drop the term by assuming steady state.

We shall now impose the ad hoc assumption of spherical

symmetry, 1(-) = I(r) (central force problem) which brings

about considerable simplification to the problem. (As we

shall see later, it reduced the problem to quadratures.)

The form of the potential to be used in describing I shall

be the spherically symmetric screened potential (monopole

term), which may be written the following ways:

(2.6)
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6 (2.7)

where r is the radial distance from the center of the space-

craft, r0 is the radius of the spacecraft, x = r/r0 , z = r/AD,

z = r 0 /AD' and 10 = J(r0 ). Once the form of the potential

S(r) is specified, one can proceed to study the form of e

at the spacecraft's surface (entrance aperture of the de-

tector). To do this we specify the form of the initial

distribution f e at "infinity" (far from the spacecraft), and

then require that fe satisfy the Boltzmann equation, Eq.

(2.1), at r .

It is possible to express the distribution function f

in the following way:

-) (2.8)

where Yis some arbitrary function of the scalar quantity

H(r,v). Note that all the velocity and coordinate dependences

in fe are contained in H. The reason for doing this is that

the same function H can be used for various functional forms

of Thus, the actual solution for H must be its solution

at infinity plus some correction term. Substituting Eq.

(2.8) into Eq. (2.1), we get:

which reduces to:

(2.9)
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One can split the function H(ir,v) into two functions, i.e.,

H( o)j = (r V + G v(2.10)

where h is the expression for H when ( = 0, while G is the

correction term when / 0.

fe cr's

has

For example, the Maxwellian

-Y).2
(2.11)

while the bi-Maxwellian has

(2.12)

where

,6~ '~A

VI ~Vv
and

19 LA. L

)

In order to obtain solutions of Eq. (2.9), we make use of

the fact that the electron energy and angular momentum are

conserved, i.e.,

i V

y v X4-0n

(2.13)

(2. 14)

For a central force, the electric field simplifies to the

following:

(2. 15)

where r = /r. It will be convenient to introduce the

quantity

(?4 -' =

E = -, E l
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(2.16)

which can be rewritten as:

VC co5 (2.17)

where X is the angle between the B vector and v, and T

is the transverse velocity of the electron at r = r . Thus,

according to Eqs. (2.9), (2.10), and (2.12), the correction

term G obeys the equation:

where

Due to the fact that I and U are conserved, one can express

the radial velocity of the electron as a function of r alone:

\- (2.19)

Note that since we are considering trajectories coming from

infinity, we have chosen the negative sign for v . We thus

have for the differential time interval dt:

-- ((2.20)

Substituting Eq. (2.20) into Eq. (2.18) and integrating from

infinity to r , we get

(2.21)
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where En- Lr. .. and Vr SV-r.

(2.14), (2.16), (2.17), and the definition

jtl - rj jr _ ... V
Substituting this expression into Eq. (2.21)

From expressions

for w, we have

(2. 22)

and rearranging

terms, we get

(v,1' t6L4 1)f
(2.23)

00 A ,

IK 1~ - ~ ____ -- __- _

are positive definite integral expressions

once the potential J(r) is specified. The

L~L

to be evaluated

other symbols

above have the following meaning:

a 0

defines the velocity uo for an electron a

ro, which has zero energy at infinity [U

t the spacecraft

= 0, see Eq. (2.13)];

(2.27)

--Alp

where

(2.24)

(2. 2S)

(2.26)

,;I- I69 LI-I +
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and we have introduced the impact parameter b

(2. 28)

We have thus reduced the problem to quadratures, the integral

expressions K1 and K2 . The substitution of Eq. (2.23) into

Eq. (2.10) gives us via Eqs. (2.12) and (2.8) the desired

expression for f ,

f~~A )VA, 4. UE ~(2. 29)

Al

It should be emphasized that now fe is not only a func-

tion of the electron velocity, but also a function of posi-

tion; (the distribution function fe is different for differ-

ent points on the sphere of radius r0 ). For instance, by

referring to Eq. (2.23) one can see that there are terms

proportional to the components of the bulk velocity V along

the radial direction and parallel to the magnetic field

vector B, along with terms proportional to the cosine of the

angle between B and r. Therefore, as one moves along the

surface of the spacecraft r0 at different angles relative

to the directions defined by V and B, the distribution func-

tion fe will have a different velocity dependence. In essence,

the anisotropies introduced by the bulk velocity and magnetic

field removed the spherical symmetry characteristic of the

potential.
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The first term in Eq. (2.23) is the familiar solution

one gets for a dilute gas in the presence of a spherically

symmetric potential. This term, which is present even when

there are no bulk motions and anisotropies in the electrons,

introduces a normalization correction which is more important

at lower electron temperatures (i.e., thermal energy approaches

potential energy of spacecraft 10). The second term which

arises from the temperature anisotropy modifies the cor-

rections of the first term so that the corrections in f e are

largest along directions where the electrons are colder (i.e.,

at right angles to B when T )> T). The third and fourth

terms result merely from the fact that the electron gas as

a whole is moving in the spacecraft frame. By referring to

Figure 24, one can see that the third term in Eq. (2.23) will

cause a reduction in fe for an observer at c = 0 , and an

increase in f for an observer at /= 1800. Therefore,

this term appears to have the tendency for making the elec-

trons have an apparent drift back toward the sun. To see

this better, consider the expression for the differential

work done by the potential upon the electrons in the space-

craft frame along the differential direction dr

Fs/c - (2.30)

which for /c = 00 is

d Ws/c = F, w+V) (2.31)
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while for = 1800 is

do,, - F,(2. 32)

where wr is the electron velocity in the proper frame, while

the work dWs/c is the same in both cases. Thus, when the

electron gas is, respectively, approaching, receding from

the spacecraft along the radial direction, the time interval

dt over which the electrons experience this force is, re-

spectively, smaller, larger than that for V = 0. Therefore,

the work upon the electrons in the electron frame of reference

F7 -LJ+(2.33)

is, respectively, lesser, greater than that for V = 0. Thus,

the electron flux for /c =00 is less than that for

180 0. Furthermore, since Vr = 0 for c = 900, the work per-

formed is the same in both frames of reference, i.e., there

is no effect due to the motion of the plasma in this direc-

tion. The fourth term, as in the case of the second term,

modifies the corrections resulting from the motion of the

plasma so that the corrections are larger along directions

where the electrons are colder (i.e., for T 1 '> T1 electrons

will acquire an apparent drift across the field). The last

term arises purely from the initial anisotropy in f and ise

present even for the case of no convection (V = 0). This

term introduces no corrections along directions parallel or

perpendicular to B where the distribution function f e is

symmetric relative to the radial direction. At all other
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directions this symmetry of f e relative to r no longer holds,

and corrections from this term will result. For these situ-

ations more electrons along B relative to r are available

for convergence toward the spacecraft than there are per-

pendicular to B relative to r. Therefore, this term will

have a tendency to remove the initial anisotropy of the

electrons. The leading term in Eq. (2.23) shows that cor-

rections to f will be important when the spacecraft potential

becomes comparable to the thermal energies of the electrons.

The correction terms in Eq. (2.23) proportional to K1 and K2

are important for electron energies "1 (U--'>O), while un-

important at higher energies Uf>4. To see this better,

consider the special limiting case of plane parallel geometry,

where >D-'O. For this limit, one merely has to replace the

normal component of the electron velocity vn (-yr direction)

by (see Appendix B for proof)

v . V(2.34)

in the expression for H when G = 0. This is simply a state-

ment of conservation of energy; the electrons experience an

energy shift equal to elo. Therefore, for electron energies

large compared to efo, v n>>uo, we have to a very good ap-

proximation

(2. 35)



84.

As can be seen, the correction term drops linearly with

energy and will introduce corrections no larger than 5% for

electron energies an order of magnitude greater than the

spacecraft potential 10 (e.g., for = 2 volts, KE> 20 ev

where KEo = mevj2). Thus, if the suprathermal electrons,

KEO 3> 60 ev, contribute to most of the heat flux q e[say,

q e 10-2 ergs/cm2/sec (see section 2.4)], and if spacecraft

potentials are no larger than 5 ev, one should be able to

measure the heat flow vector to a reasonable degree of ac-

curacy considering present experimental uncertainties '+2

x 10-3 ergs/cm2/sec.

We would now like to consider the relative order of the

corrections in Eq. (2.23) for electron energies on the order

of the electron thermal speed,J.cT ^d 10 ev, and typical

spacecraft potentials 10';Z 2 ev. Furthermore, these energies

correspond to the lower energy channels of the M.I.T. Imp 8

detector and the more recent Voyager detector, whose measure-

ments are confined, respectively, to energies greater than

20 ev and 10 ev. Using the ordering scheme where corrections

due to convection and anisotropy are first order small, i.e.,

convection

(2.36)

and anisotropy

(2. 37)- O, j
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we would like to compare the corrections introduced by space-

craft charging, given by Eq. (2.23). For the energies re-

ferred to above, the integrals K1 , K2 are no larger than 0.3

(first order small). The leading term u "-is ̂' 1/5 or first

order small, while the corresponding second term due to

anistropy is second order small. The third term, which

introduces corrections due to convection is second order

small (first order small relative to convection) [see Eq.

(2.36)], while the corresponding fourth term from anisotropy

is third order small. The last term, when we consider only

those electrons striking the spacecraft at angles no larger

than 450 from the radial direction (approximate angular width

of M.I.T. detectors), will be third order small. We may

thus conclude that the corrections due to anisotropy are no

larger than third order small (second order small relative

to the anisotropies of convective and temperature anisotropy),

except for the second term which is second order small, and

may be dropped. Therefore, keeping terms second order small

or larger we get for G

We will now drop the second order correction due to aniso-

tropy, which only effects the normalization. Then by con-

sidering either the limit whereA -\D--0 or the fact that for

these energies >10 ev and typical detector angular widths

45 , the corrections to the integral K due to the transverse
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velocity of the electrons are small. The appropriate cor-

rection to the data reduces to that given by Eq. (2.34),

where one only needs to account properly for the energy shift

experienced by the electrons.

Finally, if one wishes to measure drift velocities of

the "core" electrons, which as quoted by Feldman et al.9 are

/v5O-100 km/sec and thus second order small, one must con-

sider the fact that the corrections introduced by spacecraft

charging are of the same order [see Eq. (2.38)]. Thus, any

attempt to measure such small effects must be considered

questionable, even if the corrections given by Eq. (2.34)

or the more rigorous expression (2.23) for G are used, since

spherical symmetry is probably violated (e.g., D is a' func-

tion of angle).
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(3.) Analytical Studies of the Formal Solutions--Particle
Trajectories in Debye Potentials

In order to obtain numerical estimates of the effects

due to spacecraft charging, one must evaluate the integral

expressions K1 , K2 .
To do this, the spherically symmetric

screened potential given by Eqs. (2.6) and (2.7) is substi-

tuted into Eqs. (2.24) and (2.25). The integral expressions

for K1 , K2 then become

e

-zox
Z * x __ ~ i

-z

4-6Z z z

where we have introduced the dimensionless energy
ez

e Az
into Eq. (2.40),

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

are the impact parameter in units of, respectively, the

spacecraft radius r , and the Debye length AD, and the index

1 >-

or

Z z

00
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n = 1,2. The integrals K given by Eqs. (2.39) and (2.40)

must be integrated numerically except for the limiting case

of the Coulomb potential (z0 = 0,) D--%C, see Appendix B).

Insection 2.4 we evaluate various velocity moments of

e in order to acquire numerical estimates of the apparent

density, drift velocity, temperature, and heat flow vector

that a detector would observe on a spinning spacecraft which

is positively charged,. One cannot carry out these calcula-

tions until one determines the regions in velocity space

where the Kn's become imaginary, giving rise to "forbidden"

zones in velocity space. These forbidden zones or more

appropriately forbidden zone boundaries determine the limits

of integration in velocity space. In order to take into ac-

count properly the effects of these forbidden zone boundaries,

one must understand the properties of the electron trajec-

tories within the potential given by Eqs. (2.6) and (2.7).

In studying the electron trajectories in a spherically

symmetric potential it is useful to consider the radial mo-

tion in a fictitious or effective potential which is comprised

of the potential _I itself, and the potential due to the

"centrifugal force." Thus, we introduce the dimensionless

effective potential

e fZ(2.44)

and rewrite the radial velocity vr the following way:
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-vCO (2.45)

where 1-mev 2 = U, and the screened potential given by Eq.

(2.7) has been substituted for 1. The potential V eff van-

ishes at infinity and is normalized in such a way that Veff

= 1 at the point vr = 0 (i.e., the turning point for an

electron coming from infinity).

In Fig. 13 we have a plot of Veff versus z for the fixed

parameter V and for various values of the parameter bD. An

interesting feature of these curves is the presence of a

trapping region allowing only bound trajectories. Such trap-

ping regions do not occur in the case of the Coulomb potential.

In our case the shielded potential I goes to zero more rapidly

than the "centrifugal potential" as r approaches infinity

(I decreases exponentially and the centrifugal potential

goes to zero as 1/r2). In Fig. 14 we have an identical set

of curves as those in Fig. 13, except that now the parameter

bD is held fixed and the parameter V is varied. As may be

seen, the curves display the usual dependence expected from

varying the electron's energy. Figure 15 is identical to

Figure 13, except that these curves correspond to a special

limiting case to be discussed later on.

Among the curves in Figures 13, 14, and 15 are special

ones labeled with the number "1". For these curves the

effective potential is equal to one, and its first derivative

with respect to z is equal to zero at a point which we call
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the "critical" point z c'i.e.,

(1) (2.46a)

and

S V =
(2) ~~~Z C(2.46b)

at z = z0 . Equation (2.46) is equivalent to the statement

that the radial velocity of an electron and its acceleration

in the radial direction yr are both equal to zero at z = zc

(i.e., vr = 0, yr = 0 at z = zc, unstable circular orbit).

These special curves correspond to certain trajectories which

define the forbidden zone boundaries. These trajectories

will be referred to as "critical" trajectories, which define

the boundary separating the allowed and forbidden directions

of an electron at fixed energy U for an observer at r = r0

(more precise definition of allowed and forbidden directions

given later on in text).

Substituting Eq. (2.44) into Eq. (2.46a) and replacing

z by zc we get

+ e- -L - = ,0QZ Z (2.47)

Similarly Eqs. (2.46b) and (2.44) yield

Z-C Z ( Z L 1(2.48)
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Combining Eqs. (2.47) and (2.48) we get the following re-

lation for the critical impact parameter (bD)c in terms of

zc

~. (2.49)

The quantity (bD2 2c is plotted versus z c in Fig. 16. More-

over, substituting Eq. (2.49) into Eq. (2.48) we get the

following expression for the dimensionless critical energy

-0 in terms of zc

2 (2.50)

which we have plotted versus z c in Fig. 17. Eqs. (2.49) and

(2.50) are a set of parametric equations relating the criti-

cal parameters (bD)c and 1c in terms of the parameter zC'

From these equations one can parametrically draw the locus

of critical points in (Ic,9bD2) 2 space which is shown in

Fig. 18. Referring back to Fig. 15, where we have the

special critical trajectory (curve 1), one can see that not

only are Eqs. (2.46a) and (2.46b) satisfied by this trajec-

tory but also

Z Z (2.51)

where zs is referred to as the "special critical" point.

Because Eq. (2.51) gives us an added constraint, zs is a
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uniquely defined point in space. By doing the above differ-

entiation and substituting Eqs. (2.49) and (2.50) in the re-

sulting expression, we get a quadratic equation for zS'

Taking the positive root we get:

-75 1. 1 e(2.52)2.

The distance zs may also be evaluated by taking the deriva-

tives of Eq. (2.49) or Eq. (2.50) with respect to z c and

setting them equal to zero. Therefore zS corresponds to the

minima and maxima of (bD2 )c and')c shown in Figures 16 and

17. Substituting Eq. (2.52) into Eqs. (2.49) and (2.50) we

get corresponding special parameters for bD and"'d.

3.33 (2. 53a)

s o Q I(2.53b)

It also follows from Figs. 13-15 that since the

0>

at the minima of Veff at z < zs, and

at the maxima of V at z = zc, the point z must correspondeff c1. oitz5 stcrepn

to the trajectory, where the minimum and maximum in V

occur at the same point. Thus, all minima in Veff must re-

side inside zS5, while all maxima in Veff must reside outside

zs. Thus, trapping regions may only occur outside the
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spacecraft for

Z'ZS (2. 54)

This also says that the following condition must hold for

all critical points:

(2.55)

i.e., all critical points not equal to zs must reside outside

zs. Furthermore, it should be pointed out that these criti-

cal points z c are present for all spacecraft radii z0 . It

also follows from the preceding discussion that the upper

branch in Fig. 18 corresponds to "zc

minimum and equal to one (i.e., Veff

where Veff = 1).

zs, where Veff is a

1 except at "z,"'

Thus, the upper branch in Fig. 18 does not

impose any restrictions upon the trajectories. Therefore,

curve one in Fig. 15, which corresponds to the special criti-

cal trajectory, divides the (U,J) space into two regions:

for large U and f the centrifugal term completely dominates

the l/r attraction term of the potential at small r, and

for smaller U, f, the opposite is true.

Referring back to Eq. (2.41) for the original definition

of -'), we can solve for the critical energy Uc from9c', i.e.,

(2.56)

It is apparent from Fig. 17 that for zc z s')c is a de-

creasing function of zc. The same is true for U c [see Eq.

Thus, if we consider spacecraft radii z o ezs'

Ze -- z

(zc- 1) 0 ) c
uc CIO - (2

2 zc_

(2.56)] .
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the maximum energy at which critical trajectories can occur

is determined by setting zc = z0 , i.e.,

(IA>TM ei -for Z0 2(2.57)

Thus, for example, if 1 = 2 volts, and D 0/10, then

(U )max = 9 volts.

We would now like to define more precisely what we mean

by "allowed" and "forbidden" directions referred to previ-

ously. To do this, let us consider an observer at a parti-

cular point on the spacecraft surface r = r . Allowed di-

rections will then be considered to be those directions from

which the observer detects an electron which has come from

infinity and has not passed through the spacecraft. The

contrary is true for the "forbidden" directions. In the

case where the potential I is equal to zero, all allowed

directions will be those directions coming from the upper

hemisphere directly above the observer. Far from the space-

craft the electron trajectory becomes a straight line. We

shall call the direction of this line the "asymptotic" di-

rection of the trajectory. Because of the symmetry of the

problem, allowed directions are degenerate in the sense that

they represent "acceptance" cones whose axis of symmetry is

the line along the zenith direction of the observer. There-

fore, because of this symmetry, only those directions con-

fined to an arbitrary plane need be specified. A particular
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direction is thus given by one angle 0, which is the vertex

angle of the acceptance cones. Therefore, for 10 = 0, all

allowed directions will correspond to those 9 in the angular

interval 00 & 900. When the potential -1' 0, critical

trajectories will occur which will give rise to forbidden

directions other than those below the horizon.

It will now be necessary for us to derive an expression

relating the parameter bD' and the angle 8. To do this, one

has only to take the square of Eq. (2.14) relating Vt and

2 2 2 0
, substitute in place of vt v0 sin 8, along with Eqs.

0

(2.28) and (2.43), which together relate and bD. Doing

this, we get

bgU (2.58)

As can be seen, large impact parameters for fixed U corre-

spond to large angles of incidence 6, such that for bD large

enough, sin2 2 = 1 (i.e., 8 = 900). Therefore, the "maxi-

mum" allowable bD for fixed U is

Z'(6 1+ f)(2.59)

For situations when there are critical trajectories,

the maximum allowable bD = (bD)c will be less than (bD)max'

or equivalently 8c < 900, where 6 c is given by the relation:

Nb'- + 1-0 ) (2.60
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The case where 9c = 900 corresponds to (U) max, the

maximum energy at which critical trajectories will occur,

or put in another way, the minimum energy at which critical

trajectories will not occur. This is evident from Eq. (2.60)

relating (bD)c, Uc, and 9c and Eqs. (2.49) and (2.56) which

show that (bD2 )c increases quadratically while Uc decreases

exponentially with increasing z c for z c zs. One way to

solve for (Uc)max for arbitrary z0 is to combine Eq. (2.59)

relating (bD2)max and U, and Eq. (2.41) relating -) and U,

which gives us an expression for V in terms of (bD2)max

and zo, i.e.,

zo e
2. (2.61)

One can then superimpose curves of ) versus (bD2 )max from

Eq. (2.61) for various z0 upon the parametric solution given

in Fig. 18 relating 1)c and (bD2 c in (), bD2) phase space

(lower curve). From the intersections between these two

curves, which give us a dc that can be substituted into Eq.

(2.41) for (Uc)max, one can solve for (Uc)max. Figure 19

gives an example where this method was used.

By substituting Eqs. (2.49) and (2.56), respectively,

for (bD2 )c and Uc into Eq. (2.60), we get the following

expression for sin2 ec in terms of z c and z :

ZC (Z -~0Zo fcZ ?'' (2.62)
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which has been plotted in Fig. 20 as a function of z c for

various z0 . As already pointed out, all critical points z c

(i.e., sin2 ec ! 1) occur outside zs for all z0 (specific

examples given are z0 = 0.1, 1.0, zs, and 10.0). Since sin2

e c is only a function of z c and zo, one can determine sin2

ec in terms of ~) c for various z0 by solving the corresponding

parametric equations given by Eq. (2.62) and Eq. (2.50) in

terms of the parameter z c. Fig. 21 displays the parametric

solutions for z0 = 0.1, 1.0, zs, and 10.0. As may be seen,

the critical energy Uc increases with increasing z0 . For

example, for z = 0.1, (Uc max is only 0.50 mv, while for

zo = 10, (Uc max = 9.0 volts, where10 = 2 volts for both

cases. Thus, it appears that in the case of small AD rela-

tive to ro, the effects of the forbidden zone boundaries

become important at energies on the order of the thermal

energies of electrons.

We would now like to show a few trajectories of elec-

trons in our screened potential. For this purpose one only

needs the appropriate equation relating the azimuthal angle

. with the radial direction r. From the equation relating

A with!, i.e.,

(2.63)

one can readily derive the following equation for 0 in terms

of z by substituting Eq. (2.20) for dt into Eq. (2.63) and

then integrating. The result is
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00

z:-Z-2> Z(2.64)

where Eq. (2.7) was used for . The angle for I at infinity

was set equal to T/.

In Figures 22a to 22c, we have three sets of trajectories,

where for each set z0 is equal to, respectively, 0.1, 1.0,

and 10.0. For each set there are three trajectories cor-

responding to three different values of the parameter bD or

angle of incidence 8 at fixed energy U. The energy U was

chosen to be approximately equal to the energy (U cmax for

that particular z0 . The outer trajectories correspond to

bD i(bDc (i.e., IY/2, since U = (U ), while theD D~c (cdmax)

other two are for smaller values of the parameter bD. The

angle X ='i corresponds to electrons coming from the upper

righthand quadrant of the figures.

As expected, far from the spacecraft the trajectories

are rectilinear. (Note the change of scale as the Debye

length ' D is varied for fixed r0). Then as the electrons

approach the spacecraft at distances z ^-, z c (even though

zc may be much greater than one), they begin to experience

considerable deflections. For the special case where bD

(bD)c, zo = 0.1, the electrons go into an almost circular

orbit at z c for a number of revolutions before falling into

the spacecraft. For z0 = 10, bD '~-(bD)c, and U = (U) max'
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the critical point z c as previously pointed out will occur

at the spacecraft's surface z0 . This accounts of the elec-

tron skirting the outer edge of the spacecraft before

striking it. These trajectories visibly suggest the pos-

sibility for electrons of sufficiently low energy to be

orbiting around the spacecraft irregardless of whether the

trapping regions occur inside or outside the spacecraft.

In Figs. 23a to 23c we have another set of electron

trajectories for various zo, where the electron energy U =

1.0 (3 ev electrons at z0 for 10 = 2 volts) is fixed and the

same for all trajectories. We have arranged the trajectories

so that they strike the spacecraft at the same point "P"

where an observer could be assumed to reside. The solid

curves in Figs. 23a to 23c (z0 = 0.1, 1.0, and 10.0) cor-

respond to the actual electron trajectories, while the dashed

lines represent the directions an observer at the point "P"

would think the electrons were coming from. To each curve

we assign an asymptotic direction (dashed line) and angle

indicated in parentheses. Figure 23a (z0 = 0.1), which is

representative of the limit AD r shows that the electrons

experience significant deflections only for distances on the

order of the spacecraft radius r0 from the spacecraft; i.e.,

the electric field decreases like 1/r2 so that the spacecraft

radius r0 is the appropriate distance scale. While for the

opposite limit D o, in Fig. 23c (zo = 10.0), most of the

deflections occur for distances on the order of the Debye
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lengthD from the spacecraft. Here we are approaching the

plane parallel geometry, where the screening distance over

which the electric fields are non-zero is the appropriate

distance scale. Another important feature of these trajec-

tories is that electrons which are approaching the detector

from larger angles of incidence experience greater deflec-

tions. Therefore, the effects of trajectory convergence may

be more important for detectors which are integral in angle,

while less important for those differential in angle. In

fact, for a perfectly differential detector, one may expect

"focusing" effects (convergence of trajectories) to disap-

pear completely, so that the only remaining effect to be

corrected for is the energy shift experienced by the elec-

trons. It is also apparent from comparing Figures 23a to

23c that as the screening distance D is reduced (larger

z0), the deflections experienced by the electrons increase.

In fact, referring to Figure 23c (z0 = 10), electrons coming

from behind the spacecraft (e = 1670) enter the detector at

0
8 = 62 . This suggests that detectors which integrate over

large angles of incidence may experience significant cor-

rections at low electron energies for cases where A D4<r
It is interesting to note that for the short Debye

length limit, the geometry for electrons coming in at large

angles (electrons grazing the outer edge of the Debye sphere)

is characteristic of that for curved-plate electrostatic.

analyzers where the inner plate is the surface of the spacecraft
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and the outer one is the Debye sphere.

We are now ready to discuss the velocity moments of

f .* In carrying out the integrations it is convenient to

use the (un, ut) velocity space where

vo
V i 1

(2.65)

un is the electron velocity pointing in the -r direction,

while ut is the transverse velocity relative to r. Using

Eq. (2.62) for sin29c in terms of zc, zo, and Eq. (2.65), we

get the following parametric equations relating (un) c' (utOc

in terms of the parameter z c for fixed z0:

(2. 66a)

and

2Z,
zo , C

(2. 66b)

which define the forbidden zone boundary in (un, ut) velocity

space, the principle objective of this section.

12 z z C

Uia
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(4.) Contours of the Perturbed Electron Distribution Function
e and its "Moments" for a Positively Charged Spacecraft

(a.) Iso-contours of the ln e (r, v)

We would now like to display some iso-contours of the

logarithm of the electron distribution function in f eFT

at various points along the spacecraft surface, r = r .

These contours will allow us to visualize the deformations

of the electron distribution function by the spacecraft po-

tential. In order to see the effects of the bulk velocity

on fe more clearly, we have set the anisotropy parameter

B = 0. Therefore, our contours will correspond to the spe-B

cial case where we have an isotropic convected Maxwellian

at infinity. The form for fe in this case is the following

[see Eqs. (2.29), (2.23)]:

_-# V_( I jj'
(2.67)

where K11 is given by Eq. (2.40). In this problem only the

normal velocity vn (-r direction) and the transverse velocity

vt have to be considered. Therefore, the contours of ln
t0e

had only to be confined to a plane in velocity space, which

for our purposes can be imagined to be coplanar with the

ecliptic plane. In order to see better over what energy re-

gimes spacecraft charging effects are important, we normalized

the velocity components vn , vt in units of the most probable
0 0
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thermal speed for a core electron (i.e., Tc = 1.2 x 10 5 oK,

w = vno /wc ,wto =vto/wc ). Furthermore, since we plot

contours of In f e for all directions in the velocity plane,

we have in essence replaced the spacecraft by a point charge

at the origin. Therefore, we are looking at f at the radial

distance r0 from the point charge at the origin at various

angles /c relative to the earth-sun line (0c = 00) (see Fig.

24 for a pictorial description of the problem). These con-

tours were constructed so as to simulate the conditions seen

by a detector on a spinning spacecraft where the spin axis

is assumed to be normal to the ecliptic plane pointing north.

The bulk speed was set equal to 400 km/sec and is aligned

along the earth-sun line. In Figures 25 and 26 we have plotted

these iso-contours for the two limiting cases z0 = 0.1

(AD rO) and z0 = 10.0 (AD44ro). For each case we have

plotted five views of fe, where c = 00, 450, 900 1350, and

1800. The abscissa is the normal component of the velocity

while the ordinate is the transverse component of the velocity.

The velocity range in both directions is plus or minus two

thermal speeds. Furthermore, the potential at the spacecraft

surface 11 was set equal to 4.5 volts, the dashed circles

correspond to the case where the spacecraft potential is

absent 10 = 0, while the solid curves are the iso-contours

of ln fe when the spacecraft potential is present 10 / 0.

The iso-contours of In f enumbered one to seven, correspond

to the levels that a Maxwellian distribution function would
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have at electron velocities equal to 0.4, 0.6, 0.8, 1.0,

1.2, 1.4, and 1.6 thermal speeds. Therefore, curve number

four is the one thermal speed contour. The darkened circles

at the center of the figures for z0 = 0.1 correspond to the

resulting forbidden zone due to the energy shift experienced

by the electrons (radius equal to uo/wc). The football shaped

darkened regions for z0 = 10 result from extensions of the

forbidden zone boundaries due to critical trajectories out

to higher energies as A decreases relative to fixed r .

[As a reminder to the reader, these boundaries were derived

from Eq. (2.66) given in the preceding section.]

One of the most apparent features of these contours is

that they have spread to larger radii when the potential is

turned on, thus giving the electrons the appearance of being

hotter. This effect is mainly due to the correction term

referred to in section 2.2, which changes the normalization

[see Eq. (2.67)]. Another important feature is that the

deformations are largest near the forbidden zone boundaries

or, equivalently, at lower electron energies. Furthermore,

these distortions are important even out to two thermal

speeds. In the case where /c = 900, the iso-contours of ln

f become circles with larger radii than the dashed circles.

This results from the fact that Vr = 0 in this direction,

as pointed out in section 2.2 (i.e., work done upon the

electrons by the potential is the same in both electron and

spacecraft frames).
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To see better the effects of convection, we have plotted

identical contours to those in Figs. 25 and 26, except that

now we have factored out the correction term effecting the

normalization in Eq. (2.67) for ,e' leaving us the following
/N_'

expression for fe:

(2.68)

The set of iso-contours for this feare given in Figs. 27

and 28 for, respectively, z0 = 0.1 and 10.0. We will now

confine our attention to regions where wn '> 0, which cor-

responds to electrons approaching the spacecraft without

passing through it. Once this is done, one can see by com-

paring contours for /c = 00 (observer at ro looking at the

sun) with those for /c = 180' (observer at r0 looking away

from the sun) that the electrons have an apparent drift back

toward the sun. Another important feature to note is that

at large angles of incidence near the forbidden zone boun-

daries, the deformations in f are the largest. This ise

especially true for the short Debye length limit. For ex-

ample, by referring to Fig. 28a C = 00), the deformations

at one thermal speed are significant for 0 as small as 630.

-J 0
You will also note that Ac = 90 the solid and dashed con-

tours as expected are superimposed upon each other (solid

contours become circles). We would also like to point out
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that in the limit as -+ 0 the forbidden zone boundary,

which is football shaped for z0 = 10, will become two in-

finite planes in the transverse direction at wn = +u/w

These contours, Figs. 25-28, could be used for a variety

of different purposes. One such example is where one could

superimpose upon these contours the acceptance fan character-

istic of the detector in order to get a visual picture of

the effects of spacecraft charging on one's measurements.

As another example, one might want to see how f would

appear to a differential detector which is mounted on a spin-

ning spacecraft (i.e., detector normal points in radial di-

rection and is confined to the spin plane). To do this one

has only to set vt =0 in Eq. (2.67) for fe and change /c
0

continuously from 00 to 3600 for a single contour. In Fig.

29 we have such a contour, where Eq. (2.67) is used for f .

The horizontal and vertical axis in Fig. 29 are, respectively,

the solar ecliptic x and y components of the electron velocity

in units of most probable thermal speeds. Thus, the sun is

to our left (positive x-direction), and downstream is to our

right (negative x-direction). The detector may be imagined

to be rotating around the center of the figure with its normal

pointing in toward the origin. As pointed out in section

2.3, for vot = 0 "focusing" effects (convergence of electron

trajectories) disappear, so that for these contours only the

energy shift effect remains. A similar contour is shown in

Fig. 30, where Eq. (2.68) was used for f (i.e., normalization
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correction term dropped). Referring to both figures, it is

apparent that the electron will appear hotter. Furthermore,

from Fig. 30 we see that the electrons appear to be drifting

back toward the sun.

(b.) Velocity moments of e (r, )

Until now we have not presented any numerical estimates

of the size of the effects introduced by the spacecraft po-

tential upon the integral electron measurements. To do this,

we will perform certain velocity moments (macroscopic aver-

ages) of fe that were first referred. to in section 2.3. These

macroscopic averages are not true moment integrations of f e

over all velocity space, but are more representative of the

way a detector may measure moments of fe. For example, since

one is unable to sample fe over all velocity space by looking

in one direction (electrons subsonic), one must spin the

spacecraft, thus allowing the detector to sample fe in dif-

ferent directions. Then, if one had a detector which had an

angular width much larger than that for f along the plane

parallel to the spin axis and fairly narrow in the spin plane,

such as the M.I.T. detector (see Fig. 2), one could obtain

slices in velocity space of f ein different directions.

Finally, by doing an appropriate sum of all these measurements,

one could obtain, in principle, the various velocity moments

of fe (hypothetical detector we are considering does sample



in the sunward direction). To simulate this, we use a 2/7/

steradian detector which is designed to accept all allowed

directions as defined in section 2.3 and all velocities in

direction. With this model, only two separate inte-
0

grations 1800 apart in angle are needed to produce one com-
-I

plete "moment" integration over f .

We define the following macroscopic averages (moments)

of f

Al( Ro(V,.

VV 3V

3vav

(2.69)

(2. 70)

(2. 71)

(2. 72)

where R represents the response function of the detector,

v is the electron velocity at the entrance aperture of the

detector, and vn is the normal component of the electron

velocity vn at the detector. In the case of our 2V detector,

R is given by (ising cylindrical coordinates):

R:1=
(2. 73)f4~r

Jor VV~O)

Therefore, in one direction the detector integrates over f

in the "forward" half of velocity space as defined by Eq.

the vn

108.
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(2.73), while the "backward" or second half of velocity

space is integrated over by first rotating the spacecraft

1800 and then performing the integrations as specified by

Eq. (2.73) again. Then to get the complete "velocity" moment,

we take the appropriate sum of the two separate integrations.

The form of the distribution function f used in oure

calculations is the one derived in section 2.2, Eq. (2.29)

[the convected bi-Maxwellian distribution function given by

Eq. (1.26) at infinity]. We thus have the following for f

[see Eqs. (2.23), (2.29)]:

(2. 74)

where

+ V W , r(2.75)

and K1 , K2 are given by either Eqs. (2.39) or (2.40).

Referring to Fig. 24, the following definitions are used

in the determination of the apparent electron density, wind

velocity, temperature, and heat flow vector at various look

directions (P.)

1) Apparent Density
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2) Component of apparent wind velocity along normal

of detector

q) -) k)/ (2.77)

3) Apparent Temperature

T.0(.0T +).N) (2.78)

4) Component of apparent heat flow vector along normal

of detector

(2.79)

where the subscript "o" refers to the, value of that quantity

at the spacecraft r = r .

In doing our numerical integrations of Eqs. (2.69) to

(2.72), the density, temperature, and wind velocity of the

electrons far from the spacecraft were set equal to the

following:

(2.80)

where the wind velocity is confined to the ecliptic plane

and pointing in the anti-solar direction (see Figure 24).

The anisotropy TO /TL was set equal to either 1.5 or 2.0;

the magnetic field was oriented at 450 with respect to V

and confined to the ecliptic plane [see Figures 24 and 11],

(2.81)
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and the spacecraft potential at r0 was set equal to 4.5 volts,

_T l..'- OJS(2. 82)

Because of the lack of symmetry to the problem introduced

by the magnetic field, the integrations over fe are three-

dimensional. Then because the integrand is also an integral

equation (K,, K2 ), Eqs. (2.69) to (2.72) are four-dimensional

integrals. In order to reduce the computation time we con-

structed a two-dimensional array in uz, ut space for K1 and

K2 . The velocities uz, ut are, respectively, the normal,

transverse velocity in units of u0 . Using a four point

interpolation procedure, we were able to obtain values for

K1 , K2 for all uz, ut. The integrations were performed using

an iterative procedure based on Simpson's rule. During the

integration process, because of the presence of forbidden

zones, the integral expressions K1 , K2 were integrated

numerically at the points in u z, ut space when any one of

the four points used in the interpolation procedure fell

inside the forbidden zone boundary. Finally, the forbidden

zone boundary was determined from the parametric equations

relating (un)c and (ut)c given by Eq. (2.66).

The results of our numerical integrations for zo = 0.0

and 10.0 are shown, respectively, in Tables 4 and 5. The

reasons why we did the integrations for zo = 0.0 instead of

z = 0.1 are because, for one, they yield almost identical
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results, as may be expected, and also because the integrals

for the Kn's, where z= 0 (see Appendix B), can be evalu-

ated; thus allowing for simplicity in the numerical integra-

tions, faster computation time, while also allowing us to

check our interpolation routine (i.e., compare numerical

results for zo = 0.0 and 0.1). The results of the integra-

tions for z0 = 0.1 and 1.0, respectively, are given in Tables

6 and 7 and, as may be seen, the differences between the in-

tegrations for zo = 0.0, 0.1, and 1.0 do not differ signifi-

cantly.

We will now discuss the results of our integrations for

the large Debye length limit (i.e., z0 = 0.0,) D-o). For

no anisotropy (T, /T' = 1.0), we find the average density

n 0 12.86 cm-3, which is about the same result one gets with

no convection (V = 0, see Appendix B). Also, the electrons

have an apparent drift velocity relative to the electron

frame of reference back toward the sun, i.e., LV0(0) /1-- -45

km/sec, where

AV ~)EV (9-cS~(2. 83)
is defined to be the apparent drift velocity. Also, the

electrons have an apparent heat flow Z -3.3 x 10-3 ergs/

cm 2/sec, which is comparable to observed heat flow /v8 x 10-3

ergs/cm2/sec. Both these effects are consistent with the

backward drift of electrons suggested by the contours of fe.

The temperature T0;2 1.4 x 105 oK is about 18% higher than
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that for no spacecraft charging. The results of the inte-

grations with anisotropy (T /T1 = 1.5, 2.0) yi'eld quali-

tatively similar distortions in fe that are found for no

anisotropy. Some of the new affects introduced by the

anisotropy are the following:

(1) At right angles to B the density is the largest

with respect to all other directions, while the contrary is

true along B. This is consistent with previous discussions

in section 2.2 concerning the correction term effecting the

normalization in f e which is largest along directions where

the temperature is coldest.

(2) The drift velocity vector is equal to 44 km/sec in

magnitude where / = -170 (azimuthal direction drift velocity

vector is pointing; / has same definition as /c, see Fig.

24), and 47 km/sec in magnitude where = -310 for To /Ti

= 1.5 and 2.0, respectively. The directions indicated are

such that the drift is toward the sun slightly rotated per-

pendicular to the magnetic field. A similar effect occurs

for the apparent heat flow vector which is equal to 3.27 x

10-3 ergs/cm2/sec in magnitude where $ = -8.20, and 3.42 x

10 3 ergs/cm2/sec in magnitude where $ = -12.50 for TI, /Ti

= 1.5 and 2.0, respectively. These results are consistent

with the fact that the distortions introduced by convection

(V# 0) are greatest along those directions where the temper-

ature is the smallest (i.e., transverse to the magnetic

field for TV > TL).
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(3) The increase in temperature in all directions is

about the same, --' 18%, so that the change in anistropy is

small.

The results for z0 = 10.0, or short Debye length limit

( Dz<ro), are markedly different from those for the long

Debye length limit. One important result is that the density

is less than the initial density by about 7%, contrary to

that for the long Debye length limit, where the density is

greater than the initial density by about 29%. This may be

understood by considering the fact that for the short Debye

length limit the geometry of the problem is becoming more

plane parallel. For this geometry, trajectory convergence

is not as important as the rarefraction experienced by the

electrons as they enter the Debye sphere. This rarefraction

comes about from the electrons being accelerated, so that in

order to conserve particles their density becomes less (see

Appendix B for more details). This rarefraction, as far as

the numerical integrations are concerned, may be related to

the extension of the forbidden zone out to higher energies,

thus truncating significant portions of fe in the integra-

tions (electrons coming in from the sides). Another important

change is that the electrons appear to be drifting away from

the sun rather than toward it, i.e., (V 0 = 35 km/sec, , =

1800), (43 km/sec, = 1900) for, respectively, TI /TI = 1.0

and 2.0. Referring to Table 5, it appears that this flip

in sign for 4V 0 may to some degree be explained by the decrease
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in density. Furthermore, the contours of fe suggest that

the electrons are drifting toward the sun for z 0 = 10.0. By

looking at these contours, one can see that an appreciable

part of f e is excluded by the forbidden zone in the backward

direction (see Fig. 26) as is indicated in Table 5. Thus,

it is the design of the detector that determines which way

the electrons appear to be drifting (i.e., drift toward the

sun for detectors differential in angle, drift away from sun

for detectors integral in angle). The apparent heat flow

vector is essentially the same as that for the large Debye

length limit, though somewhat less.

We will now discuss the distortions introduced by

spacecraft charging upon the temperature measurements for

small . At this limit even though the potential is still

4.5 volts, the temperature has increased by as much as 55%

for T1 /Tj = 1.0 and 2.0. Thus, for the short Debye length

limit the effects of spacecraft charging are not trivial.

By referring to the contours of fe for z0 = 10.0, one may

conclude that for this potential (I = 4.5 volts) spacecraft

charging effects will be important even out to a few thermal

speeds. Furthermore, the apparent anisotropy for this limit

~1.90 is somewhat less than the initial anisotropy Tji /Ti

= 2.0. This may in part be due to the fact that for small

D the integral K2 becomes comparable to K1 .

In Table 8 we have tabulated the results of our "moment"

integrations for,\ = 0 (z -'). For this limit, as pointed
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out in section 2.2, the appropriate correction is a simple

energy shift of the normal component of the velocity, (for

details see Appendix B), i.e.,

o- v712 > 1Q(2.84)

As a reminder, these integrations correspond to observations

by detectors integral in angle. Here the density has de-

creased by almost a factor of two. Also, the wind velocity

has almost doubled from 400 km/sec to 713 km/sec, while the

heat flow has flipped in sign, so that it is now flowing

-%'3 2
away from the sun with a magnitude '" 2.95 x 10- ergs/cm/

sec. Furthermore, the temperatures have increased by more

than a factor of 2, while for T, /Tj = 2.0 the apparent

anistropy (T. /Tjj)0 o' 1.5 has become less by about 50%.

In Table 9 we have displayed the results of calculations

similar to the above, except that now they correspond to a

detector differential in angle. This corresponds to the

limit where vt = 0, which is analogous to the plane parallel
0

problem, though it holds for allAD. In this case the results

are similar to those for the long Debye length limit, where

the corrections for the temperature are, for example, only

about 18% compared to 120% for the integral detector (AD = 0).

This difference in results between the differential and in-

tegral detectors in angle may be attributed to the forbidden

zone boundaries. For example, the integral detector must

integrate along the forbidden zone boundary (infinite plane
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in transverse direction at vn = u0), where the distortions

in fe are large (critical trajectories); while for the dif-

ferential detector, the forbidden zone, which only results

from the energy shift experienced by the electrons (circle

with radius uc), only brings about moderate distortions in

f . Thus, if one wishes to make electron measurements down
e

to energies near the potential on the spacecraft, where the

forbidden zone boundaries occur, it appears that only electron

detectors differential in angle may be used, so that the cor-

rections due to spacecraft charging be minimized, and the

simple correction given by Eq. (2.84) be appropriate for all

Debye lengths.
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(5.) Closing Remarks

In order to by-pass the tremendous difficulties in

solving the problem of a charged spacecraft, we assumed a

highly simplified model for the spacecraft potential with

spherical symmetry and simple Debye screening. The three

parameters introduced by this potential are the potential at

the spacecraft surface 10, the radius of the spacecraft r0 ,

and the screening distance ,D. In formulating the problem

it was found that e 10 and z0 = r 0 /)D are the important

parameters in the problem. The potential To determines over

what energy range distortions of fe are important, while the

ratio z0 specifies the type of geometry involved, i.e.,

spherical for largeA-, plane parallel for small AD. As is

apparent throughout the discussion in this chapter, signifi-

cantly different results are obtained depending upon the

size of z0 and the type of detector used (i.e., detector

differential in angle or integral in angle).

In conclusion, it is apparent from our calculations

that the forbidden zone boundaries bring about considerable

distortions to the observations made by detectors which in-

tegrate near these boundaries (27steradian detector, ener-

gies near j). Furthermore, markedly different corrections

result depending upon the size of the Debye length (e.g.,

convergence, rarefractionAV0 = +300 km/sec, -50 km/sec,

Qe = +3 x 10-3 ergs/cm2/sec, (AT/T) = 20%, 120%). Since we
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do not know the Debye length we are unable to know how prop-

erly to correct the data. In contrast, when spherical sym-

metry does hold, the differential detector appears not to

have any of these difficulties, in that distortions do not

get that large and the simple correction to the data given

by Eq. (2.84) applies for all Debye lengths, i.e., simple

energy shift correction for normal velocity into the detector.

In general, spherical symmetry does not hold (e.g., D is

a function of angle around the spacecraft); therefore modi-

fications will result, so that any electron measurements

made near the spacecraft potential (i.e., U = 0) probably

cannot be made. For instance, in the case where spherical

symmetry does not hold, one could imagine cases where the

distortions introduced by spacecraft charging upon measure-

ments made by a detector differential in angle would be

more severe than those for detectors integral in angle.

Thus, in this case, the detectors integral in angle would

be superior to those differential in angle. Therefore, in

order to avoid these ambiguities, one must confine his mea-

surements sufficiently above the spacecraft potential, (e.g.,

greater than 10 ev for 1 = 2 volts, see section 2.2), in

order to ensure that the corrections due to spacecraft charg-

ing are only a small perturbation, so that the simple energy

shift correction given by Eq. (2.84) will hold for all de-

tectors (see section 2.2).
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CHAPTER III

SEMI-EMPIRICAL DERIVATIONS OF THE WIND VELOCITY, EFFECTIVE
TEMPERATURE, AND EFFECTIVE HEAT FLUX PROFILES

(1.) Opening Remarks

After having been acquainted with the experimental

techniques involved in measurements of interplanetary

electrons, we are now ready to turn our attention to the

primary goal of our thesis. That is, the analysis of the

physical processes involving interplanetary electrons. It

is now well understood why most investigators in this field

consider the importance of electrons from the fact that

they are almost totally responsible for the conduction of

heat. Before we embark on the models of the heat transport,

it is essential that we understand the overall global

pictures of the behavior of the macroscopic character of

the solar wind. For example, of prime importance is that

one understands how the heat flow vector due to electrons

behaves as a function of distance from the sun.

At present, self-consistent solutions of the "fluid

equations" describing the solar wind do not yet exist.

Since they are very difficult to obtain, we decided to

utilize a semi-empirical approach. To this end we have

devised a certain systematic procedure of making use of

the empirical knowledge of the interplanetary density and
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phenomenological magnetic field topologies in conjunction

with the three conservation laws for the interplanetary

plasma as a whole. Before going into details of these

calculations, we should like to review some of the observa-

tions pertaining to the solar corona and the interplanetary

medium given in section 3.2 and the theoretical models of

the solar wind given in section 3.3.
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(2.) Review of Observations in the Solar Corona and Solar Wind

The solar corona, the outer envelope of the solar

atmosphere and "source" of the solar wind, displays a complex

structure composed of a number of different coronal forms. Three

of the most prominent coronal features which give a more or

less overall description of the solar corona are "quiet" regions

(QR), coronal holes (CH), and active regions (AR). A brief

description of each will now be given.

1. The quiet corona is defined to be those regions of the

corona which are characteristic of the mean or normal corona.

The magnetic topologies of the "quiet" corona are made up of

a complex structure of closed and open field lines; the latter

lines are believed to open with a more or less /r2 divergence.

For reference, the electron density and coronal temperature

characteristic of the lower "quiet" corona, as determined by

Munroe and Whitbroe (1972)17 from EUV data are, respectively,
18 -3 6 o

5.5 x 10 cm , and 1.66 x 10 K. The large scale field

strengths appear to be on the order of 10 gauss [Gurman et al.

(1974)18.

2. Coronal holes, which appear as dark features on

x-ray photographs of the solar corona display the following

characteristics [see review article by Zirker (1977) 1]

(a) They display lack of emission in soft x-rays

[Vaiana et al. (1973)20], reduced emission in certain EUV

lines [Munroe and Withbroe (1972),17 Neupert and Pizzo

21 22(1974, Fisher and Musman (1975), K-coronometer data
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[Altshuler et al. (1972),23 Munroe and Jackson (1977)24

and reduced emission in metric wavelengths [Dulk and

Sheridan (1974)25]. This implies that they appear to be

regions of low density and temperature relative to those

found in the "quiet" corona. For example, Munroe and

Withbroe (1972),17 using EUV data, concluded that coronal

holes were regions of reduced pressure by a factor of 3

relative to the quiet corona, with coronal temperatures

So0 8 -36o
about 6 x 10 K lower than normal (ne~108 cm-, T~106  K).

(b) Temperature gradients at the transition level

are about a factor of 2 less than that found in "quiet"

regions, such that for coronal holes the conductive flux

from the corona down to the transition layer was reduced

by an order of magnitude. 1 7

(c) Coronal holes coincide with large unipolar regions

(or magnetic cells) [R. H. Levine (1977)26], where the

magnetic field line topology is open with highly divergent

field geometries near their boundaries. 20, 23, 24, 26

(d) Coronal holes are found to be long lasting slowly

27evolving structures in the corona [Timothy et al. (1975),

Bohlin (1977),28 Sheeley (1976)29] which have lifetimes on

the order of many solar rotations (e.g., 3 to 10 solar

rotations).

(e) Coronal holes appear to be less structured than

that found in quiet regions.
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(f) Polar coronal holes (PCH) appear to be present at

all times (at least near solar minimum) and equatorial coronal

holes are in general just extensions of polar coronal holes. 28

(g) During solar minimum the coronal electron density

inside polar coronal holes displays a latitudinal dependence

such that the density is a minimum at the poles, and a

maximum near the equator. 21

(h) Coronal holes appear to rotate rigidly, showing

no differential rotation with latitude as is found for

most photospheric phenomena such as sun spots27 [Wagner

(1975)30.

(i) Outward streaming velocities of plasma in the

range 16-20 km/sec have been observed within coronal holes

from Doppler shifts of Si IX and Mg IX lines [Cushman and

Rense (1976) 31

(j) Polar plumes are found to lie within the boundaries

of polar coronal holes [I. A. Imad and G. L. Withbroe (1976).32

Polar plumes are vertical columns of enhanced brightness

relative to the weakly emitting polar coronal holes. They

are about 3 x 104 km wide at about 1.1R 32 and extend out to

distances on the order of a solar radius above the solar limb.

They also tend to bend over as if to follow the large scale

solar magnetic field which appears characteristically dipolar

in these regions.

3. Active regions extending into the corona are large
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bipolar magnetic features (closed field line topologies)

where the underlying photospheric magnetic field strengths

are very large relative to that found in "quiet" regions.

They appear to form around the outer boundaries of coronal

holes.26 They are regions of enhanced emission in x-rays,

EUV lines [Noyes et al. (1970)33], white light corona

[Newkirk (1967)34], and metric wavelengths [Kundu (1967)35

For typical active regions at the base of the corona

the electron density ne ,10 cm 3 is about a factor of

2-3 greater, coronal temperatures T"-2.S x 106 oK are

slightly greater, and the temperature gradient at the transition

layer is about a factor of 5 greater than that found in the

"quiet" corona.33 Without going into too much detail, active

regions are associated with such features as helmet streamers

(arch-like structures which form over "quiescent" prominences

near the solar limb and extend out to several solar radii

from the sun where they become thin streamers), streamers

(extensions of enhancement which form over sunspot groups),

sun spots (dark regions at the photospheric levels which are

associated with very strong magnetic fields"'103 gauss),

enhancements (regions of enhanced emission which form over

sunspot groups), and condensations (small-104 km, very bright

emitters of radiation). Solar flares [Svestka (1976)36]

which are eruptive phenomena on the sun and usually occur in

sunspot groups, emit radiation in a broad spectral range from
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- rays and hard x-rays all the way down to radio waves.

Furthermore, in flare events some ions are accelerated up

to very high energies on the order of 10Mev or in some

cases 100 Mev.36 Flares will produce hydromagnetic shock

waves in the interplanetary plasma, resulting in considerable

disruptions of the solar corona and the interplanetary

medium for time periods on the order of hours, Also,

there are the recently discovered x-ray bright points which

are intense point-like sources of x-ray emission [Vaiana

et al. (1970)37], and known to be associated with mini-flares.

As can be seen from this descriptive summary of the

solar corona, it is an extremely complex structure spatially

and temporally (Note: lack of structure (uniformity) seen

within coronal holes may in part be due to our inability to

see within them.) Furthermore, if one goes down to lower

levels of the solar atmosphere where the photosphere and

chromosphere reside, the structure gets even more complex

(granulation, sunspots, plagues, spicules, etc.). Therefore,

any attempt to describe the coronal expansion must consider

the inherent complexities of the solar corona, at least in

the interpretation of ones results.

The phenomenon of the coronal expansion and the inter-

planetary medium (solar wind) has been well-established and

may be characterized in a qualitative way by a freely expand-

ing fully ionized plasma which is moving in an approximately
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radial direction away from the sun. Since the magnetic

fields are constrained to move with the plasma which is

moving radially away from the sun and because the sun is

rotating, the photospheric magnetic fields of the sun

become drawn out into interplanetary space with a form

approximately described by an Archimedian spiral. The

positive ion composition of this plasma mainly consists

of protons H+ with about a 5% contribution by # from alpha's

4He++. Observationally the solar wind appears to be com-

posed of two separate and distinct streams: high-speed

streams (HSS), which are moving away from the sun at 1 AU

with velocities V"700 km/sec, and low-speed streams (LSS),

which in general reside between subsequent high-speed

streams and have velocities V/'300-325 km/sec. Superimposed

upon this structure is the presence of shocks resulting

from stream-stream interactions (e.g., high-speed streams

overtake low-speed streams), flare-produced interplanetary

shocks, discontinuities (abrupt changes in the plasma and

field parameters), filaments (regions which reside between

subsequent discontinuities, scale sizes ".Ol AU), and waves,

most notably Alfven waves. Most of this structure may be

attributed to azimuthal variations of the solar wind structure

resulting from longitudinal variations of the solar wind

sources on the sun. Then as the sun rotates (27 day synodic

period) different streams will evolve along the sun-earth line
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as a function of time, in such a way that the observed

structure noted above is reproduced.

The low speed streams often referred to by the name

"quiet solar wind" are characterized by relatively low

wind velocities "300 km/sec which for a particular low-

speed stream is not too variable, and the presence of

microscale fluctuations (Alfven waves, etc.) are at a

relatively low level [see Tables 11 and 12 from A. J.

Hundhausen (1972)38 for a listing of average properties of

low-speed streams]. Some of the other more important physi-

cal properties of low-speed streams are: (1) proton tempera-

tures Tp' 4 x 10 K, (2) densities " 10 cm 3 , (3) electron

-2 2
heat flow vector qe>>qp and is' ~10 ergs/cm /sec, (4) proton

8 -2 -l
particle fluxes^-l2.4 x 10 cm sec , and (5) magnetic

field strengths Bv5' (Y= 10-5 gauss).

38
As pointed out by Hundhausen (1972), the frequency

distributions for the plasma parameters such as density,

temperature, and magnetic field strength are very broad even

for the narrow range of velocities between 300-325 km/sec.

Thus, low speed streams do not appear to be representative

of a well-defined, distinct state of the solar wind.38

Furthermore, from auto-correlation studies by Gosling and

394Bame (1972), the condition of steady state for low-speed

streams only holds for periods less than 30hours (3 hour

averages of plasma parameters were used). A more complete
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study by Gosling et al. (1976)40 further shows this to

be the case, especially for the year 1967 during solar

maximum, when low-speed streams dominated the stream

structure.

High speed streams which have very high wind velocities

V r4700 km/sec are characteristically very broad (1400 in

solar longitude), magnetic field is predominantly one polarity,

microscale fluctuations are at a relatively high level and

predominantly (,-'80%) composed of outwardly propogating

/ 41
Alfven waves [Belcher (1976) ], plasma parameters such

as density, temperature, and field strength are very stable

(unchanging), and the lifespan of these streams may last

for many solar rotations (refer to Table 13 and 14 from,

respectively, Feldman et al. (1976)12 and Bame et al. (1977)42

for a listing of average properties of high-speed streams).

Some of the other more important physical properties of

high-speed streams other than those noted above are: (1)

proton temperatures T Z2.3 x 105 oK are about a factor of
p

2-3 greater than the electron temperatures T;;105 0K, (2)

densities -4 cm-3 and (3) electron heat flow vector

q"'3 x 10-3 ergs/cm2/sec are smaller than that found in

low-speed streams, (4) proton particle fluxes A'3 x 108

-2 -1
cm - sec are a little higher than that found in low-

speed streams, (5) magnetic field strength 8, 5Y, and

(6) the Alfven energy flux EA-ll x 10 ergs/cm2/sec.
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Gosling et al. (1976)40 also showed from autocorrela-

tion studies of the solar wind that high-speed streams

appear to be more characteristic of the solar wind during

solar minimum, especially the years 1973-1974, and are very

long-lasting (up to 10 solar rotations). Furthermore,

a study done by Bame et al. (1977)42 showed that except for

the wind velocity the plasma and field parameters within

high-speed streams are more steady and more uniform than

that found within low-speed streams. They also showed that

the 4He++ abundance within high-speed streams is very uniform

(not true for low-speed streams) and its abundance relative

to protons within high-speed streams is 4.8% (slightly higher

than that found in low-speed streams 1" 3.8%). Thus it appears

that high-speed streams--and not low-speed streams--fulfill

the requirement of being a well-defined state of the solar

wind along with the conditions of steady state and uniformity.

The correlation studies by Krieger et al. (1973)43

21 44Neupert et al. (1974), Krieger et al. (1974), and Nolte

et al. (1976)45 show that coronal holes are highly correlated

with high-speed streams (i.e., they are the "sources" of

high-speed streams). As noted above, coronal holes and high-

speed streams both satisfy the conditions of steady state

and uniformity, contrary to that found for low-speed streams

and their suspected source "quiet" regions. Thus, they appear

to be more appropriate candidates for purposes of comparison
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with theory. Furthermore, because of the high correlation

between coronal holes and high-speed streams, we have the

situation of cause and effect. This allows one to fix the

boundary conditions, respectively, at the sun from coronal

observations and at 1 AU from spacecraft observations, and

thus allows for a better observational test of theory. Of

course, from observations confined to the ecliptic plane

there is the problem of evolutionary effects from stream-

stream interactions. One could speculate that spacecraft

observations made near the mid-points of very broad high-

speed streams (the time it takes a high-speed stream to

sweep past an observer at 1 AU is much longer than the pro-

pagation time of the stream from the sun to 1 AU) will

closely approximate stream characteristics free from stream-

stream interactions. This problem may also be bypassed by

spacecraft observations out of the ecliptic plane when one

considers the Pioneer 10 and 11 results along with solar mag-

netographic observations which suggest the presence of an

interplanetary neutral sheet confined to the equatorial

plane of the sun [E. J. Smith et al. (1977),46 E. J. Smith

et al. (1977)47]. This means there may only be one sector

boundary which separates fields of opposite polarity in the

northern and southern hemispheres. Thus with the concept

of polar coronal holes one could imagine a single slowly

evolving high-speed stream in each solar hemisphere (no



132.

multiple stream structure) eminating continuously away

from the sun and free from distortions due to stream-stream

interactions. It is rather clear that spacecraft observa-

tions over the poles of the sun near solar minimum would

offer a unique opportunity to test solar wind theories

under nearly ideal conditions.
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(3.) Present Status of the Theory of the Solar Wind

The basic equations governing the coronal expansion

under steady state conditions are:

(3.1)

x(VXB) 0 (3.2)

zQ (3.3)

V. 7 + (P+ h)T B/TO)= 7-T(3.4)

P) + /,0 (3.5)

where is the mass density, V is the wind flow velocity,

P is the scalar pressure, B is the magnetic field vector,

f is the gravitational potential, I is the unit dyadic,

q is the heat flow vector, and S is the Poynting vector.

The approximations made in this formulation are: 1) the

MHD approximation, stating that the electric field E is

given by:

FI VX~ -0= (3.6)C
2) a scalar pressure is used for the tensorial pressure

P (viscosity effects), and 3) contributions due to waves

(e.g., Alfven waves, etc.) are ignored.

It should be pointed out that the MHD approximation

is the zeroth order approximation [given by Eq. (3.6)] of

the generalized Ohm's law [see Rossi and Olbert (1970)48,

where terms proportional to gradients in the plasma divided

by the density are dropped, including a term due to collisions.

In general it can be shown that if the proton gyroradius
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R TP is small compared to scale lengths L characteristic

of the plasma (e.g., L is the distance over which the

density changes appreciably) these higher order terms may

be dropped. Furthermore, the collision term, which is

inversely proportional to the so-called "magnetic Reynolds

number" R >> 1, may also be dropped. Therefore, under
magn

these conditions Eq. (3.6) for the electric field is a

good approximation. Furthermore, observations in the inter-

planetary medium have given strong support to the validity

of this approximation (e.g., presence of Alfven waves, etc.).

In fact it is generally believed that, with the possible

exception of the thin layer of the chromosphere, the MHD

approximation is true throughout the interplanetary medium

of our concern, certainly above the lower corona.

(a.) "Classical" Parker model

We shall review some of the theoretical developments

in solar wind theory. To start with, we present the "classical"

physical picture due to E. N. Parker, used in the initial

development of solar wind theory.

The high temperatures characteristic of the solar

corona T/"-10 6 oK are believed to be the result of convective

motions at photospheric layers where temperatures are only

on the order of 6000 0K. The convective motions generate

MHD waves which propogate up along the sun's magnetic fields
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to the base of the corona where they become strongly damped

and deposit their energy. In doing so they heat up the

lower corona to very high temperatures T~'lO6 o K, causing

the gas to become fully ionized. For a collision-dominated

gas (lower corona is collision dominated) the heat flow

vector q is proportional to the negative gradient of the

temperature, i.e.,

),( C(3.7)

where *is the thermal conductivity. For a fully ionized

two component plasma (protons and electrons) the proportion-

ality coefficientkXis [as determined from the Onsager

relations, see Rossi and Olbert (1970)48

5 _A1._2_<_ S(3.8)

where the lnAis the Coulomb logarithm (see Chapter IV for

details). For conditions typical of the lower corona we

find:

9-1(0X es C SC }(3.9)

As can be seen, the thermal conductivityXkis a strong function

of the temperature and for T = 106 oK is about 20 times the

conductivity of copper at room temperature. Because of

the positive gradient in temperature across the transition

layer from the chromosphere to lower corona, thermal energy

will be conducted back down into the chromosphere. Then as

the coronal temperature continues to rise, the energy con-

ducted back will eventually become comparable to the wave
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energy deposited into the corona, so that no further increase

in temperature occurs. For quiet regions this temperature

rise appears to take place in a very thin layer ^-'103 km

wide and about .04 r. above the photosphere. Just above

this transition layer, somewhere in the range 1 r, r 2ro ,

it was then felt that the temperature reached a maximum Tmax

at some distance r max beyond which the temperature decreases

with increasing r (no more wave deposition). (Note: r is

the radial distance in a heliocentric coordinated system,

* 0= 7 x 10Tocm is the radius of the sun.) Since for

r>r max the temperature gradient is negative and the plasma

has a high thermal conductivity, a significant amount of

4 2thermal energy q-2 x 10 ergs/cm/sec is conducted away from

the sun. The high temperatures characteristic of the lower

corona extend out to many solar radii away from the sun (small

thermal gradient) rendering the heart of the corona almost

isothermal. Because of this the pressure gradients of the

gas, mainly due to the sharp drop in density, remain greater

for all r than the attracting force of gravity, which rapidly

decreases with a 1/r2 dependence ("nozzle" effect). Thus,

the plasma experiences a constant push away from the sun so

that it eventually attains supersonic velocities away from

the sun for r'rc, where rc" 5 r is the sonic critical

point.

With the above picture in mind, Parker solved the

equations (3.1) to (3.5) under the assumption of spherical
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symmetry (monopole magnetic field). Assuming spherical

symmetry, he was able to ignore the effects of the

nonradial magnetic field in order to simplify the mathe-

matics. This lead to the equations:

_ . n T g \/ (3.10)

|~yFn V r _ V + &T - G j+'7Tr 4 (3.11)

where I, which is a constant and equal to the particle flux,

was derived from the conservation of mass equation, Eq.

(3.3), while F, which is also a constant and equal to the

energy flux, was derived from the conservation of energy

equation, Eq. (3.5). We also have from the momentum equa-

tion the following:

V,4v d---j - , -~--- (3.12)

where

72 (3.13)

(3.14)

is the scalar pressure, n is the number density for electrons

or protons, G = 6.67 x 10-8 dyne - cm 2/gm is the gravita-

tional constant, Me= 2 x 1033gm is the mass of the sun,

and mH is the mass of the hydrogen atom. These equations

are not yet closed since a separate equation specifying the

heat flow vector q must be given. One could use the Onsager

relations for q, using Eqs. (3.7) and (3.8), but this expres-

sion will hold only in the lower corona where the plasma is
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collision dominated. Further out 5 r the plasma becomes

collisionless. Realizing this, Parker (1958)49 chose to

approach the problem empirically by assuming a polytrope

relation for the pressure

P = /06 )(3.15)

where d is the polytrope index and P0 ,/0 are, respectively,

the pressure and mass density at the reference level. In

order to avoid the theoretical difficulties related to the

understanding of the heating mechanisms of the lower corona,

the reference level r0 was confined to regions above the

temperature maximum (i.e., r'>rmax). Using Eq. (3.14)

in conjunction with Eq. (3.15), one has

- /( E(3.16)

From Eqs. (3.10) to (3.12) and 3.15), one can show that q

must have the following ad hoc form for this model

(3.17)

Thus the polytrope assumption closes the equations and allows

their explicit solution. Furthermore, from Eqs. (3.16) and

(3.17) it is evident that this replacement of the (unknown)

q by Eq. (3.17) leads to the following consequences:

1) For the range 1 < < 5/3 the heat flow vector is

positive and finite. For large r, where free expansion is

expected to take place (i.e., 0Cx<l/r2), the temperature will



139.

have the following radial dependence:

T < y where <ST< for - (3.18)

and

2) = 5/3 (Adiabatic case)

C< 13for > (3.19)

3) ( = 1 (Isothermal) has to be treated separately

in that one must first take the divergence of Eq. (3.17) for

q, then set Y = 1, and integrate the resulting expression

for q. After doing this one gets

r (3.20)

where V0 is the wind velocity at r , and T = T .

4) Y < 1 Here the temperature increases with radial

distance, q< 0 (heat is being conducted back toward the

sun) and for this solution the pressure is not zero at

infinity. Thus they are not appropriate for wind solutions.

By using a polytrope, Parker in essence was assuming

the form of the temperature profile (radial dependence of

T). For instance, once solutions are obtained foreO and V

as functions of r, one can determine the temperature for

all r by substituting the solutions for 0 into Eq. (3.16)

(i.e., radial dependence of T implicitly given).

In solving Eqs. (3.10), (3.11), and (3.12) along with

Eq. (3.15) for the pressure, one finds that there are four

different classes or topologies of solutions depending

upon the boundary conditions used. Separating these four
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classes of solutions are two critical point solutions

which pass through the sonic critical point r c (coefficients

in the equations becomes singular at rC). Of all of these

solutions only one of the two critical point solutions

satisfies physically accpetable boundary conditions. As

specified by Parker, they are:

1) Velocity V at lower corona r0 should be no more

than a few km/sec since velocities significantly larger

than this are not observed in the solar atmosphere (i.e.,

V<<Cs'150 km/sec in the lower corona, where Cs2

is the sound speed squared).

2) Pressure P at infinity is zero. This follows

from the observation that pressures in the interstellar

medium (outside the solar cavity) are known to be small.

The condition of zero pressure does not necessarily

rule out hydrostatic equilibrium. For example, Y 3/

implies a radial temperature gradient T 1 and zero

pressure at infinity under the condition of hydrostatic

equilibrium (V = 0). But coronal observations at that

time indicated that the coronal temperature profile was

much flatter, in fact (1 - T) > 0 at least out to a few

solar radii. Under these conditions there is no hydrostatic

equilibrium and there must be a free expansion in order to

get zero pressure at infinity. Furthermore from Eq. (3.17),

the condition lim P = 0 implies lim q = 0 if V = constant

for r>>r.
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The isothermal case (Y = 1) gives the highest velocities

at 1 AU but has a density profile steeper than that observed

in the lower corona, and wind velocities which logarithmically

diverge as r-a o(i.e., thermal pressure force pushes on the

gas out to infinity). For case 2, where 1< 'c3/2, the

velocities at infinity are finite and approach a constant

value. Y 1j 1.1 ('T 0.9 at 1.04 r. and fT 0.2 for large r)

gives solutions most characteristic of the observations in

the lower corona and 1 AU [e.g., for r0,r. , n 0 = 3 x 107

cm-3 , T0 - 1.3 x 10 6 oK, one gets n = 12 cm-3, V = 290 km/sec,

and T ~-106 oK (too high) at 1 AU].5s In reality one value

of the polytrope index will not hold for all r. For example,

at 1 AU the observed temperatures TA105 0K are an order

of magnitude lower than coronal temperatures. This indicates

the corona cannot be isothermal for all r. Furthermore,

at 1 AU the observed heat flow vectors q --10- ergs/cm2/sec

are much lower than that predicted by the T5/ 2 law for the

conductivity using observed densities and temperatures at 1 AU.

Thus using these two facts, the flow must be more adiabatic

50at 1 AU than that in the lower corona. Parker (1963),

realizing the possibility for adiabatic flow for large r,

computed solutions where Y = 1 (isothermal) for r 0 r b,

and Y= 5/3 (adiabatic) for r>b where b^-1l0rS>rc. For

7 -3the boundary conditions ro' rQ9n = 3 x 10 cm and T0 =

106 oK he computed solutions more typical of the solar wind
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with wind velocities V = 300 km/sec, densities n - 10 cm-3

and temperatures T~-7 x 105 0K (again too high) at 1 AU.5 0

Thus, except for the high temperatures at 1 AU, which can

easily be corrected for by introducing a more continuous

change in Y with r, the polytrope model by Parker appears

to be able to reproduce the overall characteristic of the

"quiet" solar wind.

(b.) Other variants of thermally driven spherical winds

Single fluid models of the solar wind, where conduction

is the only driving mechanism, have been developed by a

number of different authors. These models assumed spherical

symmetry and the T5/2 law [see Eqs. (3.7) and (3.8)] for the

heat flow vector in the energy equation. There are at

least 3 sets of solutions which are known to exist. Each

one has a different radial dependence for T. Briefly they

are: 1.) T ~1/r2/7 Parker (1964),51 Noble and Scarf (1963)52;

2.) T/vl/r 2/5 Whang and Chang (1965)3; and 3.) T -1/r4/3

Durney (1971),S4 Roberts and Soward (1972)55 As of now

the one most quoted is that by Whang and Chang. Their re-

sults are given in Table 15 from Hundhausen (1972).38

One of the difficulties of these models is their inability

to produce wind velocities greater than 400 km/sec at 1 AU,

while having temperatures and densities characteristic of the

lower corona, (i.e., require higher temperatures, lower densi-
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ties at the coronal base than that observed). But the

major difficulty, as previously mentioned, the expression

for i: is inappropriate in the interplanetary medium where

for r.>5-10 r. it is collisionless. Furthermore, the

thermal coupling between protons and electrons due to

Coulomb collisions is very weak. Thus, a two-fluid picture

should be more appropriate in describing the coronal expan-

sion especially for distances outside 10 r .. Such a calcula-

tion was performed by Sturrock and Hartle (1966)6 where

they used the classical heat conduction formula for a Coulomb

collision dominated plasma appropriate for electrons and

protons in their separate energy equations. Again, as in

the single-fluid models, their solutions tended to have a

need for higher temperatures, lower densities than normally

found within the lower corona, for V>400 km/sec at 1 AU

(i.e., best fit to observations gave V'- 250 km/sec). Another

difficulty was that electron temperatures were a factor

of 2-3 greater, proton temperatures were an order of magni-

tude lower and electron heat flow vector was an order of

magnitude greater than that observed. The low proton, high

electron temperatures can be understood since the thermal

conduction for electrons is "40 times greater than that for

protons, (i.e., electrons retain high coronal temperatures,

protons cool adiabatically). But the observations indicate

a stronger thermal coupling between electrons and protons.
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This plus the overestimate for q e is strong evidence that

the T5/ 2 relation for >tGis inappropriate in the inter-

planetary medium. One attempt to correct this problem of

low proton temperatures while still keeping the T5/ 2 law

for q was to introduce viscosity effects, which are im-

portant for protons but not electrons, into the two-fluid

model. This was done by Wolff, Brandt, and Southwick

(1971)5 where they were able to reproduce the observed

temperatures for protons while retaining the same results

for electrons computed by Sturrock and Hartle. In these

calculations they included the effects of the spiral magnetic

field upon the thermal conduction and viscosity expressions

in the energy equations. Since thermal energy is constrained

to move along the magnetic field, the heat conduction and

viscosity in the radial direction are reduced by the factor:

(3.21)

where lis the angular velocity of the sun. Thus as the

magnetic fields wrap around, the flow becomes more adiabatic

so that more thermal energy is converted into the kinetic

energy of the flow (gets slightly higher wind velocities,

V Z 310 km/sec). Though the problem of low proton tempera-

ture may be accounted for, the high electron temperatures

and heat flow vectors predicted by these models are still

unacceptable.
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(c.) The meridional models

With the recent discovery of coronal holes and their

association with open highly divergent (non-radial) field

lines and their correlation with high-speed streams, the

assumption of spherical symmetry no longer seems appropriate.

Near the sun the tension in the magnetic field lines dominates

the dynamical and thermal pressures of the plasma, so that

the flow is constrained to move along the magnetic field. It

is thus apparent that when considering models of the solar

wind, one must take into account the meridional flow (curvilin-

ear) along the magnetic field lines.

A number of attempts have been made to solve for the

non-spherical MHD solar wind flows where axial symmetry and

a polytrope law for the pressure P are assumed. Examples

are, G. W. Pneuman and R. A. Kopp (1971),58 who developed

numerical solutions for the isothermal case and no rotation

in a dipole field; I. Okamoto (1975),59 who did a more

sophicated analysis compared to that done by Pneuman and

Kopp, but in essence came to similar conclusions concerning

the structure of the equations (elliptic) and therefore the

numerical methods to be used; and Nerney and Suess (1975),60

who did an expansion of the equations within the equatorial

plane, where they solved for the flow far from the sun. M.

A. Heinemann and S. Olbert (1978)61 were able to show that

none of these solutions were self-consistent.
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Heinemann and Olbert were successful in developing a

proper formulation of the problem by deriving a second

order quasi-linear differential equation, called the

transfield equation, for the magnetic stream function

defined by

B X Y X p(3.22)

where is a unit vector pointing in the azimuthal

direction. It follows from this definition that Y'is a

field line constant, i.e.,

B.73 70 (3.23)

They discovered the existence of four distinct domains

separated by three critical surfaces (cusp, slow, and fast),

where two of these domains were hyperbolic while the other

two were elliptic. The transfield equation for $turned

out to be exceedingly complicated, so much so that it

appears an impossible task for obtaining self-consistent

solutions which must simultaneously satisfy all boundary

conditions, including those at the critical surfaces. When

one realizes how idealized this model is in comparison to

reality, the explicit self-consistent solutions of non-

spherical models appear nearly impossible at present.

Along with the theoretical difficulties for nonspherical

solar wind flow, there are the theoretical barriers in

understanding the transport of energy in a plasma where

Coulomb collisions are virtually absent. As previously
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pointed out, the observations indicate that the TT5/2 law

for the conductivity, or equivalently the Onsager relations,

is inappropriate for the interplanetary medium. This

result is not totally unexpected, and quite possibly

wave-particle interactions are the appropriate mechanisms

for regulating the transport of energy (see Chapter 4).

Furthermore, in the case of coronal holes, where the densi-

ties within them are relatively low, the plasma becomes

practically collisionless beyond one solar radius above

the solar surface (see sections 3.5 and 3.6). Therefore,

before any realistic model of the solar wind may be

constructed, the correct transport coefficients derived

from theory must be determined. As in the case for non-

spherical flow, and probably more so, the theoretical

difficulties in understanding the transport of energy in

a plasma that is not collision dominated are formidable.

Thus, there is a need for some empirical input in developing

theories for the transport of energy in the interplanetary

medium.

Except for the electron density and magnetic field

line topologies (inferred from observed coronal topologies),

all reliable observational information is absent between

a few tenths of a solar radius above the sun's surface out

to 1 AU. Since most of the expansion takes place within

the range from 1 r. to 50 r. , it is important that the



148.

information pertaining to the radial dependence of the

wind velocity, temperature, and heat flow vector of the

expanding plasma within this range be as reliable as

possible. Therefore, in order to fill this observational

gap, we propose a semi-empirical approach based on the

MHD conservation relations and empirically determined

electron density distributions and magnetic field line

topologies. By using the conservation laws one avoids

the many pitfalls in making assumptions about the physical

processes effecting the expansion which at present are

poorly understood.

We would now like to make a few comments concerning

the energy balance problem for the coronal expansion. As

24
determined by Munroe and Jackson (1977), the cross-sectional

area of a polar coronal hole opens up to an area seven times

greater than expected for 1/r2 expansion. Since particle

fluxes for high-speed streams are about the same as those

for low-speed streams, the particle flux eminating from

within coronal holes must be a factor of seven greater

than that for /r2 expansion, in order to conserve particles.

Furthermore, temperatures T ~lO6 oK within coronal holes

are colder than that within quiet regions T"11.6 x 106 oK.

This means the thermal conduction flux is reduced by a

factor of "-5. Thus, there is a net effective reduction

in energy by a factor of'-'40 available to drive the coronal
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expansion (see Figures 39 and 40 from section 3.5). Con-

sidering the problems that the heat conduction models

already have in producing flows with wind velocities greater

than 400 km/sec for coronal conditions characteristic of

the "quiet" sun, the energy balance problem introduced by

coronal holes seems to make the whole picture of a thermally

driven wind questionable. One way to account for this

problem, as pointed out by J. W. Belcher (1971)62 is to

allow for extended heating and momentum transfer via out-

wardly propagating MHD waves (preferably Alfven waves).

As demonstrated by Belcher, by introducing a wave pressure

term due to Alfven waves in the momentum and energy equations

within the framework of a Parker type model for the solar

wind (polytrope), he was able to account for the overall

characteristics of high speed streams consistent with

conditions in the lower corona. Therefore, it does not

seem unreasonable to speculate that this may be the case,

especially in the fact that high speed streams are associated

with a predominant presence of outwardly propagating low

41frequency (periods ,hours) Alfven waves. Moreover, it

is known that within coronal holes the temperature gradients

are not as steep as those found in "quiet" regions.17 This

suggests that within coronal holes, the waves are not strongly

damped in the lower corona, so that a considerable portion

of the wave energy can propagate upward.
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Observations at 1 AU do indicate that the observed

/-2 2
Alfven wave energy fluxes E A-'1- ergs/cm2/sec in high

speed streams can only account for about 7% of the energy

needed to accelerate high speed streams to their observed

energy fluxes.4 Thus, on its face value, it would

seem that

drive the

(SB is the

fluxes at

damped by

from the s

waves at 1

for Alfven

Then since

derived by

Alfven waves alone would be insufficient to

solar wind. One could argue, since SB/B "r'l

wave amplitude) that the low Alfven wave energy

1 AU may be the result of the waves being

non-linear saturation effects during transit

un to 1 AU. Since most of the power in Alfven

AU occurs at time periods ZA ̂ ,hours, wavelengths

waves A are on the order of a solar radius re.

the wave pressure term due to Alfven waves was

Belcher using the WKB approximation (i.e., AA/L

,<1), it will not be applicable near the sun. At present,

there is not a theory for MHD waves which applies in regions

where the wavelengths of the waves are on the order of the

scale size of the medium. It is hoped that progress in

this area will be made in the near future.

I
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(4.) Spherical Model

Let us begin with the calculations for a highly

schematic spherical model of the solar wind. For this

purpose let us use a composite of the radial density

profile shown in Figure 32. In Figure 32 we have a log-

log plot of the electron number density in cgs units

versus the radial distance from the sun in units of solar

radii r in a heliocentric coordinate system. (Note:

all plots given in this chapter are log-log plots unless

otherwise noted, where the abscissa is the same as that

in Figure 32.) This figure represents a survey of the.

electron density measured over a wide variety of time

periods, different periods of the solar cycle (solar minimum,

maximum), while. being predominantly confined

to the equatorial plane. They were measured using various

techniques: (1) white-light K-coronometer measurements

34 63[Newkirk (1967), Van de Hulst (1953) ], radio frequency

dispersion measurements for Pulsar NP 0532 (Crab Pulsar)

[Counselman and Rankine (1972)64], satellite time-delay

measurements [Muhleman et al. (1977)6S], time delay measure-

ments of radar pulses to Venus and back [Campbell and

Muhleman (1969)66], and deep space plasma probe measurements

[Neugebauer (1966),67 Lazarus (1972)681
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The K-coronometer measurements [see review article

by G. Newkirk, Jr., (1967)34] of the electron density ne

are determined from white light photographs of the sun

taken during eclipses or more recently from coronagraph

observations on Skylab. 24  Then from the observed radiances

and polarization determined from these photographs and

the assumption that the K corona is entirely due to

Thomson scattering of the photospheric light by free

electrons, it is possible to reconstruct the density dis-

tribution within the corona. Since the light intensity is

proportional to the integrated electron density along the

line of sight, it is possible to measure reliably ne out

to distances /-10 r,, and for extremely bright streamers

/'-20 r,. The limiting factor results from the K corona

being only a small fraction of the F corona or zodiacal

light which is unpolarized. Under such conditions only

a minute polarization in the F corona will swamp the radiance

from the K corona.34

Radio frequency dispersion measurements are based on

the fact that the group delay of radio pulses propogating

through an ionized plasma is inversely proportional to the

frequency squared, where the proportionality constant is

proportional to the integrated electron density along the

ray path. By making simultaneous time delay measurements

of radio pulses from the crab pulsar at different frequencies
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taken at different impact parameters (different distances

from the sun), while only making assumptions about the

geometry and an empirical model for the density, it is

possible to reconstruct the electron density distribution.

This method gives reliable estimates of the electron

density in the range from 5 reto 20 rewhere the major limiting

factors result from multiple random scattering of the radio

waves due to inhomogeneities in the density distribution

near the sun '~5 r0 and the uncertainty in the interstellar

dispersion baseline far from the sun~''20 r0.64 The

satellite time delay measurements simply measure the residual

time delay resulting from the radio signal propagating

at the group velocity of the medium between the spacecraft

and the earth. In such measurements one must take into

account the fluctuations of n which are on the order of
e

100%, for the purposes of computing the data weights

(measurements must be confined for r>l0 r.).65 Finally,

the plasma probe measurements are direct measurements of

the density with ion detectors on spacecraft (e.g., our

own Imp 7 and 8 M.I.T. plasma detectors). In Figure 32

the X's and crosses "+" were determined via K-coronometer

measurements and correspond, respectively, to the density

distribution for a helmet streamer,34 and regions character-

istic of the "quiet" corona near solar maximum.63 The boxes

" D " were taken near solar maximum (1969, 1970) using radio

dispersion measurements,64 while the diamonds "0" and
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darkened boxes " M" were measured using, respectively,

spacecraft time delay measurements (1970)65 and time delay

measurements of radar pulses to Venus (1969) .66 Finally,

the circles "0" and traingles "A" were determined via

plasma detectors on the spacecraft.
6 7 , 68

In order to compute radial profiles of V, Teff and

q e we must know the radial dependence of the density for

all r. In order to do this we must fit a model to the

empirical density profile displayed in Figure 32. The

density model we chose is a very simple two parameter

model which we find reproduces the data quite well, and

may be written the following way:

()Z ^) (3.24)

where z = r0/r is the inverse distance, r0 = 1.04 r. is the

reference level, the density n0 at the reference level and c-

are adjustable parameters to be determined.

This model is characteristic of solutions for the

density n within a gravitationally bound isothermal atmos-

phere in hydrostatic equilibrium for small r (z = 1) where

the flow is expected to be highly subsonic. Under these

conditions the parameter a is given by the following relation:

G /V 0 m (3.25)

where T0 = T(r ) is the temperature at the reference level.

For large r (z--0) Eq. (3.24) approaches the solution for a

freely expanding gas, where the density drops with a 1/r 2
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dependence. Spacecraft observations made by Mariner 2

2 69
betwcen Venus and the earth suggest a 1/r dependence,

but because of time variation problems this has not yet

been experimentally verified. The results by Muhlemann

et al. (1977)65 are strong evidence that the density does

decrease with a 1/r2 dependence. A quick and simple way

to make a fit to the data is simply to plot the log

( x 2) versus z (z =l/x), which to a very good approxi-

mation is a straight line. Then by either reading off the

slope or the intercept at z = 1, one may determine a reasonably

accurate value for C~~ The three curves shown in Figure 32

correspond to three separate fits to the data and are repre-

sentative of lower, intermediate, and upper bounds of the

density distribution. In Table 16 we have tabulated for the

three profiles the values of the parameters n0 and ~ and the

predicted values of the density n at 1.04 re, 10 r9, 215 r0 =

1 AU, and the density index

_____=-(3.26)

0( ( & Y-)
One should note that the logarithmic slope given at 10 r0

is &r--2.8, which is about that given by Counselman and

Rankine at this distance, i.e., 6 Z2 -2.9, and the inter-

mediate curve was fit so that ne 10 cm-3 at 1 AU.

The conservation relations used for this model are

given by Eqs. (3.10), (3.11), and (3.12) and are rewritten
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here for convenience, i.e.,

(3.27)

@A4Pef, j _. (3.28)

v~f~r +vis v % j+ q (.29

Pe =2---Te f (3.30)

(Note: we added the subscript "effective" since waves may

be important.)

Substituting Eq. (3.24) for n into the conservation

of mass relation Eq. (3.27), it is an easy matter to solve

for the velocity V for all r, i.e.,

V. V (3.31)

where

V V 6(3.32)
and VAU, zAU are the values of V and z at 1 AU. Thus, once

the mass flux "VAU" is specified, the velocity V is given

for all r. From Eqs. (3.27), (3.28), and (3.30) and using

the boundary condition Teff = 0 at infinity (z = 0), it is

possible to derive the following integral equation for T :eff

62 - Ih]VtC[tj, jr&J - (3.33)

where

V0  V 0 e (3.34)

is the value of the velocity at the reference level r0 . Note

that once the density is given as a function of r the temperature

Teff can be determined for all r. Substituting Eq. (3.24) into
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Eq. (3.33), it is found that the integrations can be

evaluated in terms of known functions.

(0-2)
+ -L +

(urz)

( + ( -zI

STt 1 Voo

if
2QOz

The result

-a-z

(oz)f

I

is the escape velocity at the reference

Again, once the mass flux is given,

T is determined for all r. Eq.

Eqs.

(3.35)

level r

(3.36) and (3.37),

for Teff has a

few interesting limits.

values of 0(see Table 1

For small r, z ~ land for typical

6), Eq. (3.35) reduces to the follow-

ing simple form:

T e .-..

where

If we ignore the second and third term in the brackets,

Eq. (3.39) reduces to the form characteristic of a gravita-

tionally bound isothermal static atmosphere where 0 ~is

by Eq. (3.25). One may also note that the first order

correction term -2/(-z) is a cooling factor arising

the expansion of the corona.

where

is

(3.35)

(3.36)

(3.37)

(3.38)

where vesc

2

(a-z)
-I

c0-2ftJ

I Tesr,

(3.39)

es~ (3.40)

given

from

=

V r

esc I/

For large r(z--'*), Eq. (3.35)
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for Teff has the following asymptotic form

%gg 3 1-z)+'7+ --)1+(3. 41)

Thus for large r, T decreases with a radial dependence

slightly less than 1/r and approaches a 1/r dependence as

r-+**. One can see from Eqs. (3.39) and (3.41) that a larger

0-gives colder temperatures for small r, and higher temperatures

for large r and visa versa for smaller a~.

In order to determine an expression for q ff we divided

Eq. (3.29) for F by I and specified the boundary condition

e f'f -= ()(3.42)

By doing this we get the following expression for q ff

(V..-V GO Wh (3. 43)

Thus, by knowing the radial dependence of n (given by

empirical density distribution), V (given once the mass flux

"VAU'' is specified), and T ef [given by Eq. (3.35)], it

is an easy exercise to compute the radial profiles of q ff

from Eq. (3.43). Furthermore, the radial dependence for

q effcan be shown to have the following asymptotic form for

large r:

and since n".1/r2 for large r,

(Note: radial gradient is slightly steeper than a 1/r3 drop

off.) Also, as may be seen from looking at Eq. (3.44), q ff
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is proportional to the convective energy flux at infinity

I r(3.46)

In Figures 33, 34, and 35 we have plotted radial

profiles of the wind velocity, T ,eff and qeff derived,

respectively, from Eqs. (3.31), (3.35), and (3.43) using

the three fits to the empirical density shown in Figure 32

and where the wind velocity at 1 AU was set equal to 425

km/sec (VAU = 425 km/sec). The variation of the wind velocity

with distance appears similar to a Parker type solution,

where / 1 and T0 ^106  K. The sonic critical point rc

determined using the temperature profile in Fig. 34 is

about equal to Sr where

where Cis close to unity.

The temperature profile displays a striking flat portion

inside 10 r0 (isothermal) where T0 Z1.25 x 106 oK, a slight

bulge at 10r, and a nearly 1/r decrease for r > 10 r. Also

note that the temperature profiles are independent of the

magnitude of the density. The temperature at 1 AU for the

intermediate density profile is equal to 1.33 x 105 oK. Using

the empirical relation by Burlaga and Ogilvie (1970)69 for

the proton temperature T, i.e.,

,-3'S-- E- 1 (3.48)
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where V is in km/sec and T in 103 oK, and sets V-= 425 km/sec,

one gets Tp = 9.5 x 10 4K. Then if one uses for the

electron temperature Te the average value quoted by Feldman

et al. (1975), i.e., T = 1.6 x 105 oK and uses the relation

T T (3.49)

one gets for T the following:

which happens to be only 4% different from that determined

by our profiles. This result should not be thought as

being an indication that our profiles can predict temperatures

with such accuracy, but that it is an indication they may

give a reasonable description of the temperature profile

within the interplanetary medium. The temperature T0 at

the reference level is smaller than it should be, since our

simple model for n e does not reproduce the data that well

inside 1.2r0 .

The radial profiles for q ff are monatonic with a

logarithmic slope approximately equal to -3. The slope in-

side 8 r0 is less steep than that outside 8 r., indicating

that the flow is more adiabatic outside 8 r., which is about

the point where the temperature begins to decrease [see

Fig. (34)]. One should also note that these profiles

indicate a density dependence upon q, while the conduction

law given by the Onsager relations is independent of the

density [see Eq. (3.8)]. The values for qeff (see Table 17)
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at, respectively, r0 and 1 AU for the intermediate curve

are equal to 7 x 104 ergs/cm2/sec and 8.66 x 10- ergs/cm2/sec.

The value at r0 is about a factor of two to three greater

than that expected from classical heat conduction [i.e.,

Eqs. (3.7) and (3.8)]. This is not necessarily an indica-

tion that conduction is not the dominant energy source when

one considers the approximations and inaccuracies in our

model. Furthermore, the value at 1 AU is about equal to

the average value for the electron heat flow vector q e =

7.8 x 10-3 ergs/cm2/sec quoted by Feldman et al. (1975).9

Again this result

that our profiles

the interplanetary

We would now

flux "VAU" and rad

duce the greatest

By increasing VAU

the Teff profiles

while the contrary

should only be thought of as an indication

give a reasonable representation of q in

medium.

like to address the issue of the mass

ial gradient of the density, which intro-

uncertainty into our model predictions.

above 425 km/sec, the bump at 10 r0 in

will move out and become more enhanced,

will occur if VAU is reduced. Furthermore,

the temperatures at 1 AU will increase with increasing velocity.

For instance, a 40% increase in VAU results in a factor of

2 increase in Teff* Temperature profiles are insensitive

to VAU inside 1.5 r,, as expected, since the flow is subsonic

in this region. The q ff profiles are also sensitive to

VAU, but this is expected since for larger VAU we need more
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energy to drive the expansion. Thus we may ask the question,

what is the appropriate velocity or mass flux for our

particular density profile. This issue can only be

resolved by making spacecraft observations in a particular

stream from which we know its source, measuring the density

profile at that particular time along the line of sight

between the source and the spacecraft; such problems as

the time evolution of the source (steady state) and propoga-

tion distortions (stream-stream interaction) are minimal.

As of now this has not yet been done. It is hoped that

observational studies in the future will alleviate this

deficiency. Uncertainties in the radial gradient of the

density will also introduce considerable error, though

for reasonable variations of the model parameters (uncertain-

ties in the measured density profile) we find the overall

shape of the T and q profiles to be preserved near the sun

(e.g., bump at 10 r0 in temperature profile will not go

away). Far from the sun, where no<l/r2, the T and q profiles

are very sensitive to the slope of the density. For instance

a change in slope from fS,= 2.04 to E,= 2.07 will produce

an increase in the temperature at 1 AU by a factor of two.

Thus, the observed temperature at 1 AU should be used to

fix the slope in the density at 1 AU and not visa versa.

The same strong dependence on Sat 1 AU is also found for

q. Thus, the observed q at 1 AU may also be used as an

added constraint upon the density profiles.
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Even with the mass flux problem "VAU" and the intrinsic

uncertainties in the data, along with the approximations

made and the simplicity of the model used, the results

appear to be able to reproduce the observations quite well.

Thus, we feel that this model does give a reasonable though

crude description of the average or mean solar wind in the

equatorial plane. Due to the reasonable success of this

procedure we decided to tackle a more specific problem des-

cribed in the next section.
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(5.) MHD Model of a Polar Coronal Hole

(a.) Generalization of spherical model

We have chosen as a specific example the Polar Coronal

Hole (PCH) studied by Munroe and Jackson (M & J).24 As

previously emphasized, empirically the density is by far

the best known physical parameter, and in the case of the

polar coronal hole studied by Monroe and Jackson we not only

have available the three-dimensional distribution of the

density, but the geometry of the hole boundary from which

the magnetic field line topology can be inferred. In order

to obtain numerical solutions we need models of the density

and magnetic field, along with the assumption of axial

symmetry. Since the polar coronal hole is approximately

axisymmetric this will be a good approximation. In contrast

to the spherical model, the topology of the magnetic field

now enters in an important way (see Fig. 36); thus as pre-

viously emphasized one must self-consistantly take into

account the meridional flow in order to obtain unambiguous

estimates of such physical quantities as the wind velocity,

temperature, and heat flow vector. This approach, where

we use the MHD conservation relations along with density

and magnetic field models, allows us to integrate along

differential flux tubes rather than being forced to consider

an integral areal divergence of the coronal hole, as done



165.

by Munroe and Jackson.24 As pointed out by Rosner and

70
Vaiana (1976, curvatures in the magnetic field lines

below 2 r. can bring about considerable errors in calcula-

tions based on the integral areal divergence of the field

lines. Furthermore, the rotation of the sun and its re-

sulting spiral field were also included in the model calcula-

tions, thus allowing us to perform unambiguously our

integrations along the field lines for all r.

Because we take into account the rotation of the sun,

we find it more convenient to write the equations, Eqs. (3.1)

to (3.5), in the rotating frame. In the rotating frame

the conservation of momentum and energy equations are

V.( $ V ~P(3.51)

where, in particular, the gravitational energy I is replaced
by

(3.52)

..is the angular velocity of the sun at a particular field

line ?i 2.9 x 10-6 rad/sec), and

R = r Sso (3.53)

where e is the colatitude in a heliocentric coordinate

system (r, 6, ) aligned with the spin axis of the sun. The

advantage of doing this is that V is parallel to B, so

that the electric field E is zero [see Eq. (3.6)]. It

then follows that the Poynting vector S will also be zero.
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In order to acquire our profiles of q we made the

approximation that the heat flow vector q is aligned with

the magnetic field, i.e.,

(3.54)

whereb = B/B.

The approximation that qis parallel to B should be a good

one as long as the cyclotron frequency for electrons 2. ise

much larger than the electron-proton collision frequency

<< _ 
P 4,1(3.55)

For all regions characteristic of the corona and interplanetary

medium this can be shown to be the case.

In the case of axial symmetry, it is convenient to write

the magnetic field B in the following way:

13 Rp +(3.56)

where Bp is the poloidal component confined to the meridional

plane, while Bt is the toroidal component which points in

the azimuthal direction. Correspondingly, we do the same

for the wind velocity in the inertial frame
VP R(3.57)

where V is the poloidal component andC) the angular velocity
PI

of the wind velocity in the inertial frame.

With axial symmetry, significant simplifications of the

equations result. Most importantly, one can derive four

field line constants [L. Mestel (1968),71 Heinemann and Olbert
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(1978)61]. Defining them, respectively, byLO(,L), L, and

W, we have, (Note: for the convenience of the reader they

are derived in Appendix C)

(1) ~ Ova 13 (3.58)

(2) --- L3(3.59)

(3) L R 8  -7W0 (3.60)

47T-0-

(4) +P 4.I ~ W=0( 3 .6l1

The field line constant c( replaces the particle flux I,

which is a constant when spherical symmetry holds, as the

conserved quantity derivable from the mass conservation

equation. L is the total angular momentum per unit mass

(plasma plus field), while W is the total energy per unit

mass. The field line constant 0 is the angular velocity

of the rotating frame, where the electric field is zero,

and will thus be equal to the angular velocityflat the

footprints of the field lines at the solar surface, where

the flow is field aligned. From Eq. (3.59) and (3.60) one

can solve for Bt, and WI in terms of /0 and CC, i.e.,

A-? 2 _____ (3.62)

where

(3.64)
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is determined at the Alfven point RA = AA sin9A

denominators of Eqs. (3.62) and (3.63) are zero at RA;

therefore, in order for Bt and (-I to be well-defined, the

numerator must correspondingly be zero at this point).

Furthermore, it can be shown from Eq. (3.58) that

A-=- 4 Tr C(72 (3.65)

is the mass density at the Alfven point. During our numerical

integration we must deal with the singularity in Bt and W I

In order to handle this problem we applied L'Hospital's

rule at RA.
ILI -,A

~A -1-
'Q (~R)A)

where V means taking the derivative along the

is the arc length along the field line, i.e.,

(3. 66a)

(3. 66b)

field line,2

(i t(J
2

e - (3.67)

For completeness we will now give the field line equation

for the azimuthal angle

(3.68)

~-P ~(
2 ar 2 4,0

where ( is the azimuthal angle of the field line at the

reference level.

at RA.

I
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Thus, all in all, onceO(, the mass density,1". and

the poloidal magnetic field B are known, it is possible

to reproduce the meridional flow for all r.

(b.) Ad hoc model for the coronal magnetic field

The model for the poloidal component of the magnetic

field Bp (component in meridion plane) is a simple

multipole expansion (from monopole to octupole) which

is independent of the component (axial symmetry). Its

r and E components may be written the following way:

9r fL o Z (N(Ose) 1 ZCOS& (3.69)

Lo fZ3[;b53 + si +24( cos -3 IM& (3.70)

where B0 is the strength of the field at (z,e) = (1, 0)

and

(3.71)

7,= ,/(3.72)

7 =- /13, (3.73)

are the relative strengths, respectively, of the monopole,

dipole, and quadropole terms with respect to the octupole

term.

The theta dependence for the monopole term

h Ce) & a el (Nfr COS e) (3.74)

was used, since for large NM this function approaches a step

function at the equatorial plane where
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+ 1 o & 4c9QV

This allows for the field lines to be radial for large

r, since the areal divergence of the hole boundary appearsradial

beyond 3 r. (cf. Fig. 36)24; we reproduce the observed

monopole term at 1 AU, and allow for the V7* B = 0 condition

to be satisfied. Also, by doing this we get a current sheet

in the equatorial plane which seems to be suggested by

recent observations out of the equatorial plane [E. J. Smith

et al. (1977)47]. The value we used for NM was 86, so

that the function h(G) does not change significantly in the

upper quadrant, for example, until e >890. The parameters

in the expansion 7,,97 , and were adjusted in such a

way that they reproduced the shape of the line studied by

Munroe and Jackson (indicated by crosses shown in Fig. 36).

The parameter B0 was determined by observations at 1 AU

(e.g., B = 5'). The way we did the fits was to plot the

crosses on the Techtronix 4120 graphic system and then plot

various field lines determined by a field line equation to

be derived, for various values of the parameters -71, 7,

andlQ until the points passed through the crosses.

In order to plot the crosses shown in Fig. 36 we had

to use the function
/ +

MA Y. (3.76)

C + 

7) Q
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where fMAX = 7.26 is the parameter which specifies by how

much the areal divergence of the hole exceeds that for 1/r 2

expansion, r 1.31 r., a= 0.51 r , r= 1 r0 , and f =

-2.409. The parameters in the model were determined by Munroe

and Jackson fitting the areal function

(3.77)

to the cross-sectional area of the hole, where A = 0.51 r.2

is the area of the hole at the solar surface (z = 1). The

hole boundary was determined by streamers lining the edge

of the hole. Furthermore, by studying the streamers as the

sun rotated over one solar rotation they found the hole to

be approximately axisymmetric.

The relation

S )C -o5 (3.78)

represents the area of a polar cap of radial and angular

extent r,e. Combining Eqs. (3.77) and (3.78) it is possible

to derive the following relationship, which gives the colati-

tude of the hole boundary as a function of r,

C .. ' ~ o-~)(3.79)

where at the reference level (footprint of field line) the

0colatitude of the field line is 69230 (i.e., z = 1, r = r,

f(r ) = 1). Eq. (3.79) was then used to plot our data points

shown in Fig. 36.

In order to determine the parameters , 7, , andY

along with being able to perform our integrations along the
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field lines, we needed to determine the magnetic stream

function )'(r,e) from which B may be expressed with the

assumption of axial symmetry [see Eq. (3.22)]. The function

)is related to the polar cap magnetic flux

f 01 S iad e .'21'b (3.80)

and since Y is a streamline constant [see Eq. (3.23)],

then Eq. (3.80) is also a field line constant. Thus, by

substituting Eq. (3.69) into Eq. (3.80) it is possible to

determine the field line equation relating r and e. We

may write A(r,6) in the following way

/( e) 1J{e),+ (r+) 3f(e +7(ro) (3.81)

where

j r / (3.82a)

a n d r9[C O
(j) .19d6) '=-io A(3.82b)

0

AZ. *bo (3.83)

A ZSi4 eCose 4 s (3.84)

23 -- csGCo L i 4err, AO '-2(3.85)

By combining these terms in Eq. (3.81) and doing a little

algebra we get the following quartic equation for cos8 :

cos4 & b3X 4cos& +i x (3.86a)

4, M ,-,ZI-) Cos e + X 23 - z+ C -).
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-~ ' / -Csz&)Cos 1  -ZSfg~C
Co = 0- '~~csG.cs o z~rlcs(3. 86b)

where we used the simplifying limit for g(e)

,Y ( ) z - Cos (3.87)

Thus, Eq. (3.86) allows us to solve for Gin terms of Z once

the field line constant C0 is specified at (z ,09)

By setting (z 0,G) = (1, 230) we can solve for the

field line constant C0 for the empirical field line indicated

by crosses. Then for a particular set of values for the

parameters 7,, '/, we can plot a particular curve using

Eq. (3.86) similar to that shown passing through the crosses.

We then adjusted these parameters until we acquired the

reasonable fit shown passing through the crosses. The results

are

(3.88a)

0./ (3.88b)

-- (3.88c)

Once this was done we plotted the remaining field lines

shown in the figure.

It is important to note that this magnetic field model

is curl free, except for the current sheet mainly confined

to the equatorial plane. In reality the field will not be

curl free. The plasma will tend to bring about distortions

in the field by generating currents which will introduce

j x B corrections into our model calculations. Though such
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corrections may in some regions introduce small corrections

in the magnetic field topology, they may not be small

compared to such quantities as gradients in the pressure

which we are trying to determine.

Note the peculiar topology shown at lower latitudes.

As may be seen, some of the field lines do not connect with

the sun. Furthermore, at around 1.4 ro, e 730, the

magnitude of the poloidal field strength Bp vanishes. Since

this topology is similar to that characteristic of helmet

streamers seen in coronal photographs, the zero in B could
p

possibly correspond to the T cusp observed in streamers.

Thus, we will refer to this point by using the term T cusp.

This peculiar topology is probably a combination of our

neglect of the plasma (fields curl free), and properties

peculiar to the specific model used. Because of this,

without considering the errors introduced by modeling, the

correction currents will be large in these regions. For

example, if one considers the equation for jj(component of

current perpendicular to B) which is derivable from the

momentum equation (neglecting rotation),

C V (3.89)

currents will be significant near the T cusp. In fact,

right at the singular point where B = 0, the correction
p

current j will be infinite unless the term in brackets is
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zero. Thus, because of these limitations in our model for

B , we must confine our calculations to higher latitudes

where this problem is not as severe, i.e., 0  230.

(c.) Density model for a polar coronal hole

In Figure 37 we have a log-log plot of the electron

number density in cgs units characteristic of polar coronal

holes. The Munroe and Jackson24 data points, indicated by

x's, and K. Saito (1970)72 data points, indicated by

circles "0", have an angular dependence and are shown along

the radial line at 680 latitude. The data from C. W. Allen

(1973)7 indicated by crosses "+", have no angular dependence

and may be considered as a mean density for the polar coronal

hole. It should be said that all this data was accumulated

during solar minimum though for different cycles, and thus

should correspond to regions characteristic of polar coronal

holes. The data by Allen and Saito, which allow us to extend

our profiles down to the solar surface, are from polarimetric

observations taken during solar eclipses; while the data by

Munroe and Jackson were acquired from coronagraph observations

during the Skylab missions (all white light observations).

Note: the densities are much steeper near the corona and

lower in magnitude than that observed in equatorial regions

or during solar maximum (see Fig. 32). Furthermore, there

is an angular dependence where the density is lowest at the
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poles. It is important to note that there is a large

data gap between S r and 1 AU. This gap results from

the characteristically low densities of the polar corona

during solar minimum, so that the light from the K corona

becomes swamped by the F corona beyond 5 r.. Because of

this data gap our interpolated curves for the density must

be treated as a tentative guess at best. The data points

at 1 AU are densities typical of high speed streams. They

were assumed to correspond to the 230 field line and were

projected up to a latitude of 680 using the angular dependence

given by Munroe and Jackson. 24  The density model we used is

a generalization of that given for the spherical model and

may be written the following way:

jot - A=/.Q C Z ()S~ )(3.90a)

POz) = 4| a,3 Z + gZ aS g 3(3.90b)

J A ) .~7 (i+2, /. ,',e) (3.90c)

where a through a5 are adjustable parameters,/O0 is the

mass density at the reference level, and fMJ (9) is the

angular dependence given by Munroe and Jackson. It should

be pointed out that a variety of other functional forms

were used, and that this model seemed to reproduce the data

best. For purposes of reference the logarithmic derivatives

ofP with respect to x and 4 are given

s - +~ (a., +(a;.w + -~i3 osZVRPz))j
(3. q I a
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.. C.'(3.91b)

The three separate curves shown in Figure 37 correspond

to three separate fits of Eq. (3.90) to the data for the

three density estimates at 1 AU. The numerical values for

the parameters /100, n0, and a through a5 resulting from the

fits are given in Table 18. Note: in computing the mass

density at the reference level$ 0 , we assumed 5% of the

positive ions were alphas. In Table 19 we have listed

values of the electron density n e and radial gradient S

for various (r,e) along the 230 field line. As may be

seen, the slope of the density profile near the reference

level -13 is much steeper than that for equatorial regions

,'~- -9 [see Fig. 32]; while further out at 10 r,, the radial

gradient f,4 -3.0 is the same for both regions.

(d.) Derivation of pertinent expressions for V, Teff, and q

We are now ready to derive the appropriate equation

for the effective temperature Teff and effective heat flow

vector q eff similar to that done for the spherical model.

(Note: we have added the subscripts effective since waves

may be important.) The component along the magnetic field

of Eq. (3.50) (the momentum equation in the rotating frame)

is

,.O V 'V + e~cf4 ~-~(3.92)
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where V Vb and

(3.93)

is the effective pressure and

(3.94)

/ t+3X sMr
is the mean molecular weight (i.e., X and Y are the fraction

of the gas by weight for protons and alphas). For our

calculations, 5% of the positive ions are alphas, thus

X 0.826, Y - 1-X = 0.174, and/= 0.561. From Eq. (3.58)

and the fact that OC is a field line constant, we find

j -I (3.9S)

Then by using the boundary condition Teff- 0as 1-- oW

and Eq. (3.93) for P effwe get the following integral for Teff
o

Z7 ,a 
(3.96)

where S is the arc length along the field line. We will now

introduce the energy per unit mass W* which is related to

the Bernoulli constant

13 (3.97)

;L4-V - 4

Since Teff is related to the derivative of W , the result

will not be effected by adding a constant to it. Now if

the integral is to be well-defined for purposes of doing

numerical integrations we would like to integrand to approach

zero at infinity. Thus we determined the asymptotic limit

for W*
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2LV

where VPoo

(3.98)

is the poloidal component of the wind velocity

at infinity and

We my e --
We may then define a new W

(3.99)

(- \oo

wwJ
Substituting Eq. (3.100) into Eq. (3.96) for W* and integrating

by parts we get the following equation for Teff:

~O
(3.101)

As a side remark, Eq. (3.101) for Teff reduces to the

form for the spherical model [see Eq. (3.33)] when we use

a monopole for B and neglect rotation.

Using the following definition for q ff (since waves

may be present):

(3.102)

where

eff =p P (3.103)

and P, Pw are, respectively, the gas pressure and the

pressure due to waves. The energy equation [see Eq. (3.51)]

then has the following form

-p.V V-V (3.104)

It should also be pointed out that in the rotating frame the

Poynting vector S = 0, neglecting waves; thus S will only

wo

2..

-- v /- )r 4- y
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contribute if there are waves. Since all the terms inside

the parenthesis on the lefthand side of Eq. (3.104) are

field aligned (note assumption that q f q qffb) then

the identity

(3.105)--- i.--.-

will apply where A = Ab is some field aligned vector.

Eq. (3.104) then becomes

4- 2V 4- .. (3.[10{6)

Using the relations kB =/V and B- 7 = 0, Eq. (3.106)

reduces to

(V'+S- Pf 7 ?)+ZjfO(3.10 7)

This means that the quantity in braces is a field line

constant, i.e.,

.1 [ v +2+ f Rif fe7 )=constant along
the field

If we divide Eq. (3.108) by Ot we get

4- Pef + ef
e- -

Using the boundary conditions

e-

we get the following:

(3.108)
line.

(3.109)

(3. 110a)

(3.110b)

(3.111)



181.

The expression for q then reduces to the very simple

relation

r, V 'P 7(3.112)

In the case of no rotation, and monopole for the

B field, Eq. (3.112) reduces to that for the spherical

model [see Eq. (3.43)].

(e.) Some details of the procedure for evaluating solutions

The reader may omit reading this section, where we

discuss for the record our method for evaluating solutions.

Using the method outlined in section 3.5b, we determined

the parameters 7D, and from the Munroe and Jackson

field line. Except for the field strength given by the

parameter B0 , the poloidal component of the B field is

completely determined. As will become apparent, because

our observations are made at 1 AU we must first determine

the toroidal component of the field at 1 AU before we can

determine the parameter B0 . By knowing I, Dand 7Q,

we do know the topology of the field, and since we know the

position of the spacecraft

Si1'j e/"' (3.113)

we will know which field line we are situated upon (i.e.,

rs/ c^'l AU). Note: in reality the determination of a field

line and its origin is not possible except under certain ideal
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conditions such as those outlined at the end of section 3.2,

concerning polar coronal holes and spacecraft observations

at high latitudes. Then by measuring the density, and

assuming the positive ion composition (5% alphas in our

case), we can determine the mass density at Rs/c along a

known field line. This will then allow us to project our

density up to (rs 220) as pointed out in section 3.5c.

Then by using some fitting procedure we determine the ad-

justable parameters 0 and a1 through a5 from the coronal

densities and density point at 1 AU as shown in Fig. 37.

By doing this, the mass density a is determined for all r.

(Note: in essence we are predicting what the density should

be at different latitudes.) Furthermore, from spacecraft

observations we can get the wind velocity in the inertial

frame Vs/c, which is essentially equal to the poloidal

component of V in the rotating frame. We also have available

the magnetic field Bs/c In high speed streams the magnitude

of the density, wind velocity, and magnetic field strength

are fairly constant and less susceptable to fluctuations in

comparison with their corresponding vector components (i.e.,

fluctuations and large amplitude Alfven waves are at a high

level in high speed streams). Using the magnitudes of Vs/c'

B s/cand the already determined density model, we can solve

for for this particular field line at Rs/c
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R4&(3.114)

once -a is specified (/s/C (rs/c, 8 )). As may be

seen, a must be determined in the rotating frame. Since

we are taking into account differential rotation, we must

know the latitude of this field at the reference level.

From Allen (1973) the angular velocity.J2 as a function of

latitude is given by the following relations

__r__C_(3.115)

where

srb A6(3.116)

SW)

is the sidereal rate in days,

F7 -2 77 /S(3.117)

is the synodic rotation period in days, A is the latitude

(i.e., = -- 09,), and A.2.= 0.9856. Since we know what

field line we are situated upon, we can determine e from
0

the field line equation. To do this we simply substitute

(z sC' s/C) in place of (z9, e ) into Eq. (3.86b) for C0 ,

and then solve for G by substituting z = 1 into Eq. (3.86a)
0

for cos . (Note: zs/c = r/r We may then solve for

using Eqs. (3.115), (3.116), and (3.117) along withG (. Once

this is done we will know C( for this particular field line

from Eq. (3.114).
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As pointed out, we have not yet determined the field

strength parameter Bo. To do this we need to know the

poloidal component of the field strength at 1 AU, i.e.,

R - - - (3.118)

For large r, it may be shown from Eq. (3.62) for Bt that

9 5/ 2/ IC C / C (3.119)

thus allowing us to solve for Bt s/C since we knowd.os/C'IR /c

and s/C. Therefore, from Eq. (3.118) we can solve for

Bp s/cfrom Eq. (3.119) and the observed field strength Bs/c*

Futhermore, for large r only the monopole term will contribute

significantly to Bp s/c. Thus, from Eq. (3.69) we have the

following relation for B0:

/,7/'s(3.120)

which allows us to solve for B . Thus, the poloidal component

of our magnetic field model Bp is known for all (r,&). In

our calculations we used Bs/c = 5 Ywhich is a typical value

for high speed streams. Once this is done the field

strength at the reference level is about 16 gauss, which

is about that observed from photospheric magnetograph

observations.
18 , 26

Referring to Eq. (3.62), one will note that the toroidal

component of B will not be known for all (r,i) until the

Alfven point RA is determined. From Eq. (3.65) we can

solve for/'OA since we know a. Then by solving along the
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field line the equation

,( rA el 04(3.121)

where the density model for,,O given by Eq. (3.90) is

substituted in place of /0 (rA' A), one can determine RA'

Next we substitute,/A and RA into Eq. (3.62), Bt will be

determined for all (r,6) along this field line. Corres-

pondingly, since we already know Bp for all (r,e), the

magnetic field B is known for all (r,e3) along this field

line. We would like to point out that the above procedure

may be duplicated for all the other field lines (different

latitudes) by only knowing Vs/c as a function of latitude,

since /,,0 (r,&), and Bp (r,6) are already known.

It is now possible from Eq. (3.58) relating V and B

to solve for the wind velocity V in the rotating frame along

this field line. Then by adding the angular velocity . 1

of the rotating frame to V, we can solve for the wind velocity

in the inertial frame, i.e.,

Vr V -.VR (3.122)

At this point it should be pointed out that the determina-

tion of '( for a particular field line is equivalent to

specify the mass flux for that field line. Then, as in the

spherical case, once the mass flux is specified, the flow

along a particular field line is completely determined, since

we know p and B . Furthermore, as in the spherical model,

once we know V along the field line, the effective temperature
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Teff is determined along the field line by Eq. (3.101),

and once Teff is known, we can solve for q ff along the

field line by substituting V and Teff into Eq. (3.112).

Thus, we have demonstrated that once/0 and B are given

along with the mass flux "Vs/c" for a particular field

line, it is possible to compute radial profiles ofVI.,

T eff and q eff along that field line within the assumptions

and approximations previously outlined.

(f.) Results

We will now give the results acquired for the 230 field

line studied by Munroe and Jackson. As previously noted,

there were three density profiles. The one we felt most

characteristic of the data was density profile number one

(top curve in Fig. 37). Furthermore, we used a field strength

of 5 Y at 1 AU and two values for the wind velocity Vs/c

714 km/sec and 500 km/sec (i.e., solutions 1 and 2). This

was mainly done because of the uncertainty in the wind velocity,

and because we can see the differences between profiles

characteristic of high speed streams and average velocity

streams. For reference, the proton particle fluxes at 1 AU

for the average and high speed streams are, respectively,

1.67 x 108 cm-2 -sec~ and 2.38 x 108 cm-2 -sec~-.

In Figures 38, 39, and 40 we have plotted log-log

plots, respectively, of V1 , Teff, and q f along the 230
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field line for the conditions outlined above (also see

Table 19). From looking at the profiles of the wind velocity,

one should note the high velocities at the reference level

V 0 Z 4.0 and 6.4 km/sec in comparison with those for the

spherical model V0 0 0.5 km/sec shown in Fig. 33. Also,

note the steep rise in velocity relative to that for equa-

torial regions (see Fig. 33). This steep rise is due to

the initially sharp drop in density characteristic of polar

coronal holes, which totally dominates the large divergence

of the magnetic field. The temporary dip in velocity at

around 1.5 r0 to 2 re is due to a temporary dip in the

field strength (i.e., sort of a magnetic bottle) which is

characteristic of the magnetic field model. Thus, one

should take such results with a great deal of caution.

In the 3 r0 to 20 r. region there is a more gradual increase

in the velocity, though it is still large. Finally, beyond

50 r. the acceleration of the plasma has essentially stopped.

The sonic points rs computed as in the spherical model occur

at 5.18 ro and 4.58 r,, respectivelytfor solutions one and

two. Also, the Alfven points rA for solutions one and two

occurred, respectively, at 18.4 r0 and 23 r,. The reason

why rA moves out for smaller Vs/c is because d is less for

smaller Vs/c [see Eq. (3.58)] and/OA = 4T21o is quadratically

related to . For all our solutions we find that the Alfven

point occurs in the range from

'e Y6' r 3 C r-
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Note: this will not be true for the T cusp, since as

B-0, V-A;0.

The T profiles show an initial rise below 1.5 r

an extended isothermal region for solution #2, and a

pronounced temperature rise of up to 3 x 10 6 oK reaching

its peak at about 10 r. for solution #1. This temperature

rise out to 10 r 0was also indicated by Munroe and Jackson's

calculations; however, it should be noted that our calcula-

tions are a further sophistication of theirs since we use

the general MHD equations along the field lines. The

high rise in temperature results solely from our require-

ment for higher velocities at 1 AU. This temperature rise

is related to the necessity for extended acceleration

far from the sun (see Fig. 38), and to the fact that this

acceleration takes place over distances on the order of

the Alfvenic critical distance, as would be predicted in

62Alfvenic wave pressure models (Belcher, (1971)). Some

other interesting points to note are the low temperatures

near the lower corona Te4010 6 oK and the initial rise in

temperature inside 1.5 r.. Note that this initial tempera-

ture rise, where the flow is subsonic, is independent of

V s/c. The low temperature, as observed by previous authors,

supports the notion that conduction is not sufficient to
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drive the expansion from coronal holes. The initial rise

in temperature cannot be explained by Alfven waves since

the wave pressure term due to Alfven waves can be shown

to be negligible this close to the sun. Thus, this is

probably a real temperature rise in the gas. Finally, the

temperature at 1 AU for solution #1 is T ef = 4.2 x 105 oK,

which is about a factor of two greater than that observed.

Using observed Alfven energy flues EA = 12 x 10-3 ergs/cm2/sec

in high speed streams, this number reduces to 2.6 x 105 oK,

which is still too high (i.e., T = (T + T ) = 1.6 x 105 oK
p e

for Tp = 2.6 x 105 oK, T = 9 x 10 4K). But, as pointed out

for the spherical model, this may only be due to the strong

dependence of the temperature at large r on the slope of

the density profile (see section 3.4).

Figure 40 shows the emerging pattern of the effective

heat flow. Note the large value for q ^ff/' 7 x 105 ergs/cm2/sec

at the base of the corona. Note also that qeff decreases

throughout (even within the inner corona) in spite of the

fact that the effective temperature rises. This obviously

contradicts the canonical picture of the heat conduction

in a collision dominated plasma; that is to say that q is

proportional to the negative gradient of the temperature

[see Eqs. (3.7) and (3.8)]. This picture definitely supports

the notion of wave driven winds, which are probably due

to the very low frequency transverse MHD waves, which on a
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large scale downstream eventually become Alfven waves.

Furthermore, it clearly emphasizes the need for the sub-

script "effective" with the temperature and heat flow

vector terms as previously noted. Some other points which

need mentioning are the initially steep drop in q ff

indicating an enchanced energy deposition and the possibility

for energy being conducted back to the lower corona because

of the positive temperature gradient. At about 5 ro the

energy deposition is a minimum and then increases beyond

8 rG (flow becomes more adiabatic). Beyond 8 r& the

slope is -3 and then becomes less steep beyond 1 AU. This

last effect is due to the spiraling of the magnetic field,

and if one considers the radial component of qeff it is

decreasing with a slope equal to -3, as in the spherical

model. Finally, q ef = 18 x 10-3 ergs/cm2/sec, 7 x 10-3

ergs/cm2/sec for, respectively, solutions #1 and #2. As

quoted by Feldman et al. (1976),12 the observed heat flow

vector due to electrons in high speed streams is only 2 x

10-3 ergs/cm2/sec. If this discrepancy were due to Alfven

waves, q ff would only be reduced down to 16 x 10-3 ergs/cm 2

sec for EA = 12 x 10- ergs/cm2/sec (i.e., can be shown
AO

that qA^ E A, where qA is the heat flow vector due to Alfven

waves). Again this discrepancy can be partially corrected

by fixing the slope of the density profile at 1 AU. (Note:

Teff is also too high).
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Finally, we would like to point out that since waves

are important, one might question the original approximation

that q is parallel to B. In the case of Alfven waves, one

can show that in the rotating frame of reference the energy

transport resulting from the Poynting vector due to Alfven

waves is also field aligned [J. V. Hollweg (1974)].74

Thus, with these facts in mind, the approximation that

also seems to apply.
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(6.) Possible Applications of the Results of Sections 4 and 5

One of the most apparent applications of these profiles

is their direct comparison with profiles of the wind velocity,

temperature, and heat flow vector predicted by various models

of the solar wind based on different transport theories.

Such comparisons allow for the discarding of some theories

and probably the modifications of others. Another application

is that we can now calculate at distance r a number of various

physical parameters. Examples are the polytrope index:

1+ c((knT)

the Coulomb m.f.p. of a thermal electron ),;over the scale

height H:

the Alfven velocity

VA I

and the,& parameter equal to the ratio of the gas pressure

P over the magnetic field pressure

P

For instance, in Figures 41 and 42 we have plotted

radial profiles of the polytrope index Y derived from density
and temperature profiles both from the spherical model and

the polar coronal hole model.

Figure 41, which is characteristic of equatorial

regions, shows / to vary considerably around one with 10 r0 .
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This brings into doubt the validity of a polytrope law

near the sun (i.e., f(< 1 not applicable for expansion models).

To some degree this variation could be model dependent, so

that one could say that the temperature inside 10 rois

approximately isothermal (fzl); while beyond 10 r. the

flow becomes more adiabatic and eventually approaches 3/2

at infinity. Thus, at least for equatorial regions the

polytrope law may still apply. For polar coronal holes

(Fig. 42) the polytrope law is definitely not applicable,

where inside 10 r 0the polytrope index is much less than

one (i.e., large positive temperature gradient in this region).

In Figures 43 and 44 we have done the same for the

ratio ( /r) for core electrons (see Chapter IV for

definition) as we did for . Using the following criteria:

Ae; collision dominated

> .0collisionless

and from these profiles one can determine those regions

where the electron gas is collision dominated or collisionless.

For instance, the intermediate curve shown in Fig. 43, which

is characteristic of equatorial regions, shows the electrons

to be collision dominated inside 5 r,, to approach a colli-

sionless state at 30 ro, and then to become collision dominated

beyond 2 AU (i.e., if T decreases faster than r-1/2 the gas

will eventually become collision dominated at large r). For
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polar regions (see Fig. 44) the electrons become collisionless

almost immediately r > 2 r and the ratio ( ,0 ,/r) approaches

2
values on the order of 102. Furthermore, the collisionless

state extends far beyond 1 AU. Thus, fluid models of the

solar wind which seem to give a reasonable description of

the equatorial solar wind may not be applicable at polar

regions.

Our model also allows us to predict the overall

meridional flow for all latitudes and radial distances from

spacecraft observations at 1 AU in the ecliptic plane and

interplanetary scintillation measurements which give us

empirical estimates of the solar wind velocity at higher

latitudes. As an example, one may assume a sinusoidal

variation of speed equator-to-pole from 450 km/sec to 800

km/sec similar to that suggested by interplanetary scintil-

lation measurements by Coles and Rickett (1976).7 Then

by using the same method outlined in section 3.5e and applied

in section 3.5f, along with the above empirical information,

one is able to determine /0 and B for all (r,0) and the

profiles of VI, T e ,and q ef, etc. along the 8 = 230

field line (i.e., this field line extends down to 170 lati-

tude far from the sun). Then from "empirical" wind velocities

at higher latitudes, which allow us to determine Gd for the

other field lines, we were able to determine Bt and thus B

for all (r, 0). This then allows one to solve for V Teff,
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and q f, etc. along all field lines above 170 latitude

at 1 AU. Note: all calculations were confined above the

0 -i
O = 23 field line in order to avoid the problem with B

0 p

at lower latitudes near the sun. Figure 45 is the result

of such calculations [Courtesy of Out-of-Ecliptic Proposal

(1977)76], which clearly demonstrates the usefulness of

such a model calculation. Other than for the results

previously noted to, one may readily see that the Alfven

velocities are extremely high near the sun, allowing for

the possibility of great enhanced energy fluxes in MHD

waves. The beta parameter, important for theoretical studies

of waves in plasmas, decreases with increasing latitude,

while beyond 1 AU it becomes much greater than one.
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(7.) Closing Remarks

As pointed out in section 3.5c, the density profile

for polar coronal holes has a large data gap between Sr 0and

1 AU. Furthermore, the latitudinal dependence used by

Munroe and Jackson and in our calculations is probably not,

realistically speaking, that simple and will not hold for

all (r,e0). (Note: this angular dependence was suggested

by the radio dispersion measurements of Counselman and Rankine

(1972)64 out to 20 r..) Thus the functional form for our

density model [see Eq. (3.90)] and fit will therefore not

be unique and quite possibly will not reproduce the data as

well as it does for equatorial regions (spherical model). Since

the profiles are sensitive to the shape of the density profile

(see section 3.4), such model predictions as those presented

here must be treated with extreme caution. This sensitivity

upon the density profile is explicitly shown by Figures 46,

47 and 48 for, respectively, V, Teff, and q ef, where the

three density profiles shown in Fig. 37 were used.

Another difficulty with our profiles is the problem

with our simple magnetic field model noted to in section 3.5b.

In order to remove such ambiguities or uncertainties, one

should eventually use more sophisticated (realistic) models of

the magnetic field topology as developed by R. H. Levine (1977).26

Furthermore, because of the correction currents noted to in

section 3.5b our model calculations will not be totally self-
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consistant. At present there are unfortunately no clear

solutions to this problem. It is hoped that such corrections

are small and if large may possibly be reduced by using the

more sophisticated models referred to above.

It should be emphasized that all the uncertainties in

our model calculations previously referred to are predominantly

due to limitations in the observations. As the observations

get better the models for the density and magnetic field will

correspondingly become more sophisticated and more accurate.

Because of this, the "empirical" profiles of the wind velocity,

Teff , q , etc. will also become more accurate. In the case

of polar coronal holes, referring to the discussions near

the end of section 3.2, the potential for such observational

advances is the greatest. For instance, the mass flux problem

discussed in section 3.4 and its effects explicitly shown

in section 3.5f may be resolved by earth bound observations

of the corona, more specifically near the poles near solar

minimum, and simultaneous spacecraft observations at high

latitudes. It is hoped that experiments of this sort will

be performed, and that observational advances, especially

the determination of electron densities over the sun's poles

beyond 5 rE,, will become a reality in the near future. Finally,

we would like to stress that the most important contribution

of this endeavor is the introduction of the method, and not

the results of our calculations, which should be thought of as

the first generation of many to be performed in the future.
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CHAPTER IV

REVIEW OF THE EXISTING TRANSPORT THEORIES FOR INTERPLANETARY ELECTRONS

(1.) Qualitative Remarks

At present there is no adequate theory for the heat

transport in the solar wind. To begin, the physical

entity describing the heat transport is the heat flow

vector , defined by

T~ (~4 (F7I~1L (4.1)

The classical transport theory (conduction) states that

xVT (4.2)

i.e., that qis proportional to the negative gradient of

the temperature. According to the anzatz by Spitzer and

Harm (1953)7 or, equivalently, according to the Onsager

relations, which predict an expression for q similar to

that given by Eq. (4.2), the proportionality coefficient

(thermal conductivity) is given by [see Eq. (4.4) for

definitions].

in cgs. units. This expression, which has a strong

temperature dependence and predicts large thermal conduc-

tivities in the corona, is only applicable for the case of

a fully ionized Coulomb collision dominated proton-electron
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gas. That is, the characteristic scale lengths L and time

scales Ts of the plasma must be large relative to their

respective counterparts, i.e., mean free path (m.f.p.) A coul

and collision time rcoul for Coulomb collisions.

Our results obtained in Chapter III on the density and

temperature as functions of radial distance from the sun,

allow us to compute radial profiles of the Coulomb m.f.p.

of a thermal electron A coul over the radial distance from

the sun (see Figs. 43 and 44); this in turn allows us

to determine when the core electrons become nearly collision-

less. (Note: the radial distance r is used in the same sense

as the scale height H, which is equal to r divided by the

negative of the logarithmic derivative of the density with

respect to r.) The exact expression used for Figures 43

and 44 is the following (m.f.p. for isotropization of

electrons)48?

(\COY)C (4.4a)Acovu

where

--1(4.4b)

is the Coulomb logarithm, D = 9.76 VT/n is the Debye length

in cm, re = 2.818 x 10-13 cm is the "classical electron

radius," and IY = 6/5 T 3/lW (1 + 2) = 2.83.

As may be seen from Figures 43 and 44, the collision

dominated condition for core electrons does not hold beyond

a few solar radii above the solar surface, especially for
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the case of coronal holes. Furthermore, since ( coul/r)

is proportional to T2/n, the suprathermal electrons are

not collision dominated at all as far as Coulomb collisions

are concerned. Because of these facts, the classical trans-

port theory for q, Eqs. (4.2) and (4.3), gives an inadequate

description of - for the interplanetary medium at large.

At best, it may be applicable within the lower corona. It

also follows that we must have a transport theory which is

applicable to the case when coul > H. At present, such

a theory based on sound physical arguments like those for

a Coulomb collision dominated plasma (Onsager relations),

has not yet been formulated. At present, some new theories

are in the making concerning the heat transport by electrons

in the interplanetary medium. In sections 4.3 and 4.4 we

will review two of them.
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(2.) Brief Summary of Published Observations Concerning Heat Flow

We would like to begin with a more detailed review of

the electron observations than that given in the intro-

duction to Chapter I. Montgomery et al. (1968)3 was the

first one to demonstrate that the interplanetary electrons

had a non-Maxwellian suprathermal tail. More recently,

Feldman et al. (1975)9, using data derived from inter-

planetary electron measurements made by the Los Alamos

Scientific Laboratory (LASL) plasma detector on the earth-

orbiting Imps 6-8, derived electron plasma parameters from

a much broader data base than that previously done.

In Figure 1 we have a plot of data representing the

electron distribution for solar wind electrons determined

by Feldman et al.,9 while in Table 20 we have listed their
9

average properties. The electrons appear to be composed

of two separate and distinct populations.

Below 60 ev are the core electrons with the distri-

bution fc, which are nearly Maxwellian and isotropic (i.e.,

(T11 /Ti)c ~^-1.1) in the proper frame,3, 9  while at higher

energies there are the "halo" (suprathermal) electrons with

the distribution fH, in agreement with the previous results

by Montgomery et al.3 and Ogilvie et al. (1971).5 Further-

more, the suprathermal electrons are non-Maxwellian 3,5

and nearly isotropic ( T11 /Tj )H P" 1.25) in a frame of

reference moving with velocityV H along B (see section 4.3
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for definitions) relative to the proper frame.9 They are

shown to contribute to most of the heat flow.9,5 The

values for the heat flow vector determined by these authors3 ,9,5

varies in the range from 4 x 10- ergs/cm2/sec to 8 x 10- 3

ergs/cm2/sec, in a rough agreement within large experimental

errors. Some other plasma parameters typical of electrons

(refer to Table 20) are: (1) halo density nH 0.065 nc'

(2) halo temperatures TH ^ 6Tc, (3) core drift velocity

AVc~ 50 km/sec, and (4) halo drift velocity AVH / 700

km/sec. The core electrons are drifting back toward the

sun along B and the halo electrons are moving away from the

sun along B both relative to the proper frame. Further-

more, the electrons are found to be gyrotropic relative

-_ 9
to B.

There are various observational difficulties concerning

electron measurements. For instance, spacecraft observa-

tions of solar wind electrons, as pointed out by J.D. Scudder

78
(1971) and K.W. Ogilvie et al. (1971),5 may become con-

taminated because of bow shock associated phenomena. This

contamination, occuring when the magnetic field line at the

spacecraft connects with the earth's bow shock, may introduce

considerable distortion to the distribution of the supra-

thermal electrons, thus making estimates of the skewness of

9,5f at higher energies ambiguous ' (e.g., the heat flow may
e

appear to be flowing back toward the sun). Other diffi-

culties arise because of spacecraft charging effects (see
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Chapter II), which may introduce considerable distortions

of fe for energies $ 10-15 ev for typical values of the

spacecraft potential < 5 ev.5 Because of this, the measure-

ments of f below 10-15 ev are burdened with uncertain
e

corrections that make accurate core density and temperature

estimates difficult. Furthermore, because electrons are

"subsonic," detectors are unable to sample total fe; thus

the calculations of q e must rely on certain assumptions,

which may or may not be justified.

Because of these observational difficulties, progress

in making electron observations has been slow in comparison

with positive ion measurements. However, some progress

has been made, thus allowing for the development of two

distinct models of the interplanetary electrons. They are

the "convection" model by Feldman et al..,9 discussed in

section 4.3, and the "conduction" model by Scudder and

14
Olbert, discussed in section 4.4.



204.

(3.) Feldman's Convection Model of Interplanetary Electrons

Because the solar wind electrons appear to be composed

of two separate and distinct populations, Feldman et al. 9

proposed the following mathematical expression to fit the

data:% s

f ~c (VC7)((4.5a)

ffe c)\ (V -L~~72~,e V,1-

where either CH(E) = 1 for all energies E (4.5b)

or AGs

(4.Sc)

EBA is the breakpoint energy (i.e., point where fc = fH

after averaging overall angles), Ec = Tc; nc, nH are,

respectively, the core, halo electron density; /32J, /Y Af

have the same definitions as those given by Eq. (1.26),

except for the subscript "c" for core electrons and the
- -lb -5

subscript "H" for halo electrons; Vc' VH are, respectively,

the velocity of the core, halo electrons relative to the

satellite frame of reference; and VO = V * b (b = B/B).

In both these models both populations are moving relative

to the proper frame, which is moving at velocity V

relative to the satellite frame. Furthermore, in order



205.

to satisfy the zero current condition, the following

relation should hold

V y , ,(4.6)

where nc, nH are, respectively, the number densities of

the core, halo electrons and

- V, V(4.7)

-\ -7(4.8)

are, respectively, the velocities of the core, halo

populations relative to the proper frame. The relative

velocities ,'Vc' NH are both aligned along B in such a

way that AVc points back toward the sun, and LVH points

away from the sun. Superimposed upon the data points

shown in Figure 1 is a fit by Feldman et al.,9 using the

truncated bi-Maxwellian for the halo electrons. As may

be seen, this model does give a reasonable description of

the data at low energies, while at higher energies (i.e.,

velocities greater than 104 km/sec), the Maxwellian fit

does not follow the data points well. The authors argue

that their model of two convected Maxwellians (convection

model) may be characteristic of interplanetary electrons

and that it may be consistent with exospheric theories

79 80rEviatar and Schulz (1968). Schulz and Eviatar (1972) 8

of the solar wind. With this picture in mind, the break-

point energy EBA ^-' 60 ev gives an approximate estimate of
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the interplanetary potential 1, at 1 AU, the halo electrons

are unbounded, collisionless, and moving away from the sun

with velocities "1700 km/sec relative to the plasma; while

the core electrons are collision dominated, bound to the

sun by the interplanetary potential, and are drifting

back toward the sun relative to the plasma with velocities

"' -50 km/sec, in order to sustain charge neutrality within

the plasma (zero current condition).

It is clear that in this model the halo electrons

carry most of the heat even though they only compose 6%

of the electrons in number.9 The heat flow takes place via

convection of halo electrons relative to core electrons.

There is no contribution to q from stochastic conduction

processes. From Eq. (4.1), we find from Eqs. (4.5) to

(4.8) that

By using the previously given values for nH' / H, TH/Tc'

along with typical core densities n c 10 cm-3 and

5 o
temperatures Tc P'- 1.2 x 10 K, one gets

-3 /ec

about the value quoted previously.

As far as the comparison of Eq. (4.9) with our results

in Chapter III, we note that Eq. (4.9) would be consistent

for large r with our profiles of q if VH and the ratio

TH/Tc are independent of r.
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(4.) Scudder, Olbert Conduction Model of Interplanetary

Electrons

The convection model described in the preceding section

has been subjected to criticism by J.D. Scudder and S. Olbert

(1977).14 They point out that the LASL observations are

not really consistent with exospheric theory of collisionless

halo electrons, near isotropy of halo electrons in "convection"

frame of reference. They propose that a conduction model,

where collisions at least to some degree are important and

there is no convection, must be first examined to see whether

one obtains results similar to those of the LASL model.

They claim that it is difficult to accept on physical

grounds a picture of two pure Maxwellian distributions

drifting relative to each other throughout the solar system.

The only way that one can possibly visualize the LASL model

to be valid is that these two populations have two completely

different mechanisms of interaction. For example, if the

core electrons interact among themselves via Coulomb

collisions and the halo electrons interact via wave

particle processes, both having very short mean free paths

independent of each other. Until now, this has not been

demonstrated.

Scudder and Olbert make suggestions as to how one may

try to see the effects of stochastic processes and of

gradients and forces upon the original distribution. At
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the time of this writing, their approach was a semi-

quantitative approach using Krook's approximation and the

Chapman-Enskog Method. We give here a brief account of

their findings.

(a.) Boltzmann equation in proper frame S* (S* moving with

wind velocity V)

In order to study the effects of collisions and the

thermal gradients, etc., upon the electron distribution

function f e and the resulting energy flow in the proper

frame S*, it is convenient to use the Boltzmann equation

in the proper frame S*. [For reference, see Rossi and

Olbert (1970)481. The Boltzmann equation in the inertial

frame S for arbitrary f is

()Cl

+ -_ 0

is the total phase space time derivative, v is the

velocity,

is the Lorentz force plus gravitational force on a

(4.10 b)

particle

particle with charge q and mass m. In order to transform

Eq. (4.10) into the proper frame, we may use the fact that

f is invariant under the Lorentz transformation, i.e.,

where

c4~

(4. 10a)

(4.11)

charged

yly)



209.

>).4)(4.12)

where f* is the distribution function in the proper frame,

and

aV> (4.13)

is the particle velocity in the proper frame. Using Eqs.

(4.12) and (4.13), one can readily show that

- - (4.14a)

(4.14b)

(4.14c)

Furthermore, since the collision term is invariant with

respect to the transformation given by Eq. (4.12), we have

(4.15)

Then by using the non-relativistic transformation for E

and B, i.e.,

EV= E + (4.16a)

(4.16b)

along with Eqs. (4.14), (4.15), and (4.16), we get the

following expression for Boltzmann's equation in the

proper frame S*:

(dfe)X(4.17a)

where

d----+iVi 4 2 2-i .j(4.17b)
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If we introduce the following notation for the total time

derivative in coordinate space

(4.17c)

then the acceleration -a has the following form

+ I(4.17d)

The acceleration * contains all the external forces

imposed upon the charged particles in the proper frame

due to electric, magnetic, and gravitational fields,

along with the inertial forces of the charged particles in

the proper frame. The last term in Eq. (4.17d) contains

the "viscous" forces of the plasma upon the particle.

(b.) Krook's anzatz

By using Krook's approximation, one avoids the tre-

mendous complications introduced by more realistic ex-

pressions of the collision term (i.e., ( h/ f t ) coll).

In general, the collision term will be a function of all

the distribution functions representing the different

species in the plasma and terms describing the wave-

particle interaction, so that one ends up with a series

of coupled, inhomogeneous, non-linear integro-differential

equations for f1*. In addition, the form of the wave-

particle interaction term is generally not well-known.
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Therefore, in order to study qualitatively the

collisional effects upon f* under the influence of various

gradients and forces in the plasma, Krook's approximation

for the collision term is used, i.e.,

(4.18)

where V is some phenomenological collision time yet to

be given. The distribution function f* may be represented

by:

(4.19)

where f * is some known distribution function at some
0

reference location r0, t0 and f1I* is a correction term to

f* resulting from the propagation of electrons through the

gradients of the plasma and collisions. By substituting

Eq. (4.19) into Eq. (4.18), which is then substituted into

Eq. (4.17), we get

0( 4- (4.20)

It is interesting to note that this equation has a form

similar to the radiative transfer equation, where 1/ t

would be the opacity and the term on the r.h.s. of the

equation is the source term.

For conditions characteristic of the interplanetary

medium, the gyro-frequency -lof the various species will

in general be many times larger than their corresponding

collision frequencies YC, i-e.,

\__ (4.21)
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Because of this, especially in the case of electrons, the

charged particles will undergo many gyrations between

collision. Therefore, they will in general have distri-

butions which are gyrotropic with respect to the magnetic

field. This allows us to make the following average of

Eq. (4.20), where we take advantage of the fact that the

particles undergo many gyrations between collisions
.2rr-

~~I VI(4.22)

where

CeOr C O S (4 .2 3 )

?AAl
COS C4

wl , w. are the components of w4, respectively, parallel

and perpendicular to B, 0* is the polar angle of the

velocity vector w relative to B, and is the azimuthal

angle of w around B (see Figure 11). The second term on

the r.h.s. of Eq. (4.17d) may be written the following

way by using (4.23) for and the relation _C2 /kin

__4 xg) V f 4,(4.24)

Then since

(4.25)

this term drops out. Furthermore, we have for f*, the

following

-- ;(4.26)
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if f * = f * is assumed to be initially gyrotropic.
0 0

In the Chapman-Enskog approximation, the correction

term f * is assumed to be a small perturbation of f 0 *, i.e.,

< ((4.27)

Then by considering any gradients or time derivatives

of any macroscopic parameter M to be first order small, i.e.,

j )<1(4.28a)

(4. 28b)

where is the m.f.p. for any stochastic process, so that

any gradient or time derivatives of f*, which is first-order

small, will be second-order small, while the corresponding

gradients of f 0 * are first-order small. Furthermore, any

product of f1 * with gradients or time derivatives of any

macroscopic parameter M will also be second-order small.

From this, one can show that

.&j:~~6f(4.29)
dt

provided that the electric field in the proper frame along

B is first-order small.

Assuming that Eq. (4.29) holds, one finds for an

isotropic f0 * in a steady state ( =0)

--- t(4. 30)

where

S-\(4.31)
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51
is the time averaged "viscosity" term, using

(4.32)

the notation

(4.33)

and introducing the Legendre polynomials of order

and two,

B'

one obtains

CoJ&

afr so lge

after some algebra

, ~% M~.v (4.35). I i~v

One should note from Eq.

violated,

(4.30), that if Eq. (4.28) is

f * will no longer be first-order small.

may now rewrite Eq. (4.30) for fI* in amore

4P~QjfP r.2

useful form

(4.36)

where

0- - d~~

m ui

where we made use of the continuity equation,

div =

one

- 1)
(4. 34a)

(4.34b)

(4.37)

(4.38)

(4.39)

viz,

(4.40).b4
-g ff

~4)



215.

One of the nice features of Eq. (4.36) is that it is

readily apparent which terms contribute to the different

velocity moments of f*. For example, the first and third

terms contribute to the even moments of f, while the second

term contributes to the odd moments of f*; in particular,

the heat flow vector is given by the second term. In the

case where MHD is valid, one can further show that Eq.

(4.33) for ) reduces to 48

(4.41)

Therefore, l2 reduces to [see Eq. (4.39)]

(4.42)

(c.) An example of f *

In the case of a collision dominated gas ( ) 4.< H),

the form for f * is known to be an isotropic Maxwellian fM,

For conditions characteristic of the interplanetary medium,

which in general is not collision dominated, one is unable

to predict a priori the form of f *. Thus, the only alter-

native is either to guess at its form from qualitative

physical arguments or from observations.

As an example, we will use the kappa distribution f

14
proposed by J.D. Scudder and S. Olbert (1977), which at

times seems to give a reasonable empirical description of
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f * for interplanetary electrons [Ogilvie et al. (1977)81

Detailed descriptions of f,, are given in Chapter I and

Appendix A.

For convenience, we display it again here

.3 4+1(4. 43a)

where

.... (.-- (4.43b)

(4.43c)

2 is the kappa parameter, pi (z) is the gamma function, wc

is the most probable thermal speed, n is the number density,

and Tc is the "core" temperature. Substituting Eq. (4.43)

into Eq. (4.36), we get the following expression for f :

-* 0e C'(4.44a)

where

Pe Ve vn (4.44b)

2C2Co+ + ,Xj( 2/Xc) (4.44c)
c

(4.44d)

(4.44e)
Then by using the notation

ot ~(4.45)

where G = n, Tc, Xand B, and
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V V Vr dw- (4.46)

0- .(4.47)

where 'Xis the garden hose angle, we get the more useful

expressions for computational purposes for Eqs. (4.44b)

and (4.44c),

PC e Y L -TxL'( +4.4 Aa

y& C, ci2v--+hkAoI

+ 3 + OjJ + (4.48b)

where I -. =2 z --t(4.48c)

is positive definite for all R'> 2, lim ho ( ) = 0,

and no larger than /* 0.25,

/f(Z z(4.48d)

is the beta function,

Z) z.... (Z) (4.48e)

is the Psi-function, and

An A (4.48f)
AjA -r

Let us discuss the values of the individual co-

efficients O(.T , Yn, etc. For instance, in the case of a
c

free expansion, the density will drop with a 1/r2 dependence

= -2, while the temperature decreases adiabatically,so that n .
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(T= -4/3. The coefficient y results from the fact that
c

)( should be a function of distance away from the sun.

Referring to Eq. (4.41) for the scalar quantity ) , one

can see that under normal interplanetary conditions, ) + 1/2

(i.e., Bcl/r 3/2, land / 1/r2). Note: if there were no

spiral field, B 0<1/r2 , the scalar quantity ' = 0. The

coefficient of the last term of Eq. (4.48a)

(3 -) + ) (4.49)

under normal conditions is negative, causing the electrons

to be hotter along the B field while cooler perpendicular

to it (i.e., T j /TI > 1). But for certain conditions

this term may be positive, so that Th /TI e 1. For

example, one can see that for regions where the density

increases with r, n'> 0; while the magnetic field becomes

compressed (increases with r), Eq. (4.49) may become greater

than zero. Such regions may occur behind the leading

edges of high speed streams.

The polynomial Podd' which gives rise to the heat flow,

is proportional to w, . The term proportional to Ar or

equivalently to Er* tends to make the currents in the plasma

small, i.e., quasi-neutrality condition. The term pro-

portional to w3 cos

2. C+(4.50)

because of its strong velocity dependence relative to the

other terms, contributes to most of the heat flow q
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[see Eq. (4.1) for definition of i]. Furthermore, these

terms do not tend to cancel each other under normal

expansion conditions (i.e., temperature and density

decrease with r). By imposing the zero current condition

[see Eq. (4.63) for definition of j *], where the current

is mainly due to electrons, one finds Er* > 0. Because of

this, the low energy portion of fe * will appear to be

drifting back toward the sun, as in the convection model

by Feldman et al.9 The Peven term, which produces aniso-

tropies in the pressure can be shown to be small relative

to Podd for electrons. For example, by noting that the

leading factor outside the braces for P even is proportional

to the wind velocity Vr, while for P odd the leading factor

is proportional to w, one can see that since electrons are

subsonic (V /w )< 1, P << P Furthermore, since
r c even odd

the collision time ' /wc, it follows that Pv'' ( )
A ~c even 2ic

[see Eq. (4.44a)]. Then, if (A/cV) - 1/10 at

1 AU when considering both Coulomb collision and wave-

particle interactions [see Fig. 43, Curve #2 from

Chapter III which shows ( Acoul/r) Z7 1/5 at 1 AU],

P only introduces corrections"-2% to f * for V/weven 0r c

0.2. Thus, one would expect the core electrons to be nearly

isotropic in the proper frame, which is consistent with

observations.9 Finally, as previously noted concerning

Eq. (4.49), because of the angular dependence displayed in
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Eq. (4.48a) for Peven, the temperature is greater along B

for normal interplanetary conditions.

It should be emphasized that this model does not

represent a specific theory, but rather it is a tool which

has close connections with theory. As a model it is

incomplete, i.e., some empirical input is needed for

completeness. As previously noted, it is not possible to

predict f * from theory; it must be determined from

observations. Thus, f0* is one of the empirical inputs

required by this model. In the case of electrons, where

transport effects are expected to be small perpendicular

to B (fe* nearly isotropic), it should be possible to

determine f * from measurements made in this direction
0

(see Figure 1). Another empirical input is the collision

time V . As in the case for f *, one must make a

guess at its form.

An example for J in the case of electrons will now

be given. To begin with, one can write the following

parameterization for the collision frequency due to

Coulomb collisions

V4ucou -(4.51)

where

+ P(4.52)

is the characteristic Coulomb collision frequency for the

isotropization of electrons,48 where
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(4.53)

is the characteristic collision frequency for electron-

proton collisions.

In the interplanetary medium, not only are there

Coulomb collisions, but also wave-particle interactions

due to collective phenomena. In order to take into

account wave-particle interactions, the following expression

for the collision frequency due to waves is introduced

2 ; . - 7 1
1) -2

'~A)

2.)

(4.54)

where A is the m.f.p. for wave-particle interactions.

For simplicity, we assume .
w

is independent of w;

generalizations of this model can easily be taken into

account by allowing for a velocity dependence in .

Introducing the Coulomb m.f.p.

(4.55)
COUL

-d COi.-

and the definition for t"

I -z (4.56)z....
where ' i. is the collision time for a particular type of

interaction, we get the following for 'Z:

Some interesting features of Eq. (4.57) are:

(4.57)

1) for

velocities small compared to a thermal speed, u <*- 1,

Tr /rre l A, A
3,4- -Fe
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Eq. (4.57) reduces to

-3 (4.58)

the collision time for Coulomb collisions (note strong

velocity dependences); 2) for velocities large compared

to a thermal speed, u >> 1, Eq. (4.57) reduces to

/ I(4.59)

which has the property of approaching zero for large

energies (i.e., electron run away does not occur).

Using this model for C' in conjunction with the

empirically determined model for f * and fitting the f*

given by Eqs. (4.26) and (4.36) to the data, one can in

principle determine such parameters as w ,coul, etc.

In addition, one may refer to the profiles determined in

Chapter III and use them to perform a more global test of

the model. These profiles give us an estimate of coul'

thus allowing for a better determination of > w(i.e.,
more constraints). From this example, it should now be

clear as to the usefulness of such an approach.

We will now give a numerical example showing the

effects of the gradients upon f*. In Fig. 49 we have a

plot (solid curves) of f*, where f0* = f and Eq. (4.57)

is used for Z . The top curve corresponds to * =00

while the lower for e* = 1800. (Note: B defined to be

pointing away from the sun.) The values for the various

parameters in this model were chosen to correspond to those
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predicted by our radial profiles and observations at 1 AU

( ( -1, n = - 2, arbitrarily set equal to

zero, 6 = 2A /w 2 = 16/5 [see Eq. (4.66)], Y = + ,
r r c

2 450, } = 6.0, Vr = 400 km/sec, wc = 1900 km/sec, and

( , /r) = 1/5). The dashed curves correspond to the con-

vection model by Feldman et al., where typical values of

the parameters found at 1 AU and the simpler model of a

convected bi-Maxwellian for the halo electrons were used.

It should be emphasized that both these curves do not

correspond to actual fits to real data. We would like to

say that the data shown in Fig. 1, if plotted in the proper

frame, follows a path similar to one intermediate between

the solid and dashed curves. As may be seen, for both

models we have the "core" electrons drifting back toward

the sun, while the "halo" or suprathermal component

appears to be moving away from the sun along B. This last

effect for the conduction model is due to a non-zero third

moment in f* and not due to a relative convection; it gives

rise to similar values of the heat flow determined by the

convection model. Because of this similarity (in doing an

actual fit, they do not differ so markedly as that shown

in Fig. 49), one is hard put to distinguish between the two

models. Furthermore, since both models have similar angular

dependences, i.e., see Eqs. (4.9) and (4.36) , this task

should be even more difficult.
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(d.) Estimates of the heat flow vector q11 based on the

Scudder, Olbert model

As in section 4.3, the kappa distribution fX is used

for f *, while the collision time Lis given by Eq. (4.57).

Furthermore, the approximate form given by Eq. (4.41) has

been substituted into Eq. (4.48a) for ') . Going one step

further, the assumption that the parameter

(4.60)

-Co

was made (i.e., coul

Introducing the constraint of particle conservation,

viz

3/A) -:z C(4.61)

we find the following relation for X Tc and 61c via Eqs.

(4.44) and (4.61) for cn = - 2:

" A2)(4.62)

where h(X) is given by Eq. (4.48c). Eq. (4.62) for O Tc

says that the electrons will cool adiabatically (i.e.,

(Tc = - 4/3) for X 0 or 6Y,.r = 0. For finite 'X

(e.g., '}( ~6), 0(1Tc > - 4/3, the temperature drop is

less than that for adiabatic cooling when O '> 0 (i.e.,

electrons becoming collision dominated), while for r< 0

(i.e., electrons becoming accelerated up to higher energies),

the contrary is true, i Tc < - 4/3. Secondly, we imposed
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the zero current condition

3 (4.63)

giving us the following for (n = - 2 and & Tc given

by (4.62):

--{ +f )f Cos (4.64)

where

a~x) 0(% X ) (4.65)

is positive definite for all 2'> 2, has the limit

and is no larger than 0.5, and

WE (4.66)

is the interplanetary potential in units of .kTc which

results from our constraint that the current be zero.

From (4.64), the electric field is enhanced for 66>o.

Setting 6< = 0, we get

7e-k(4.67)

which gives us a potential ^-' 40 ev for '( = 4 and kT c-13 ev.

The expression for the heat flow vector q el is

[see Eq. (4.1)]

e 3(4.68)

which after performing the integrations, setting nX= - 2,

and Eqs. (4.62), (4.64) for, respectively, 64'Tc' r, we

get the following
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where

6

is positive

[ 22--3
21-/

definite for X '> 2 and diverges for )C= 2,

and has the limit

I iv

Thus, for X9 -c (i.e.,

c(9<) -- Q

for a single Maxwellian),

1=

If we substitute n
e

2
K& e

= 10 cm-3,9 and wc = 1900 km/sec,

x105 oK) into Eq. (4.70),

;~.I;~ -i0 cosx

while for )-C= 4 and using the same parameters,

from Eq.

(4.71)

we get

(4.69)

CoSx (4.72)

and by setting ( Aw /r) cos = 0.1, (4.71) and (4.72)

reduce to, respectively,

= 3 .) k eo e s cw7 e c

-3
er~4

fe
and

j;2,

which are about the values typically observed

interplanetary medium.

(4. 73)

(4.74)

in the

20-

226.

(4.69)

we get

1.25

(4.70)

we get

cos

, A (- &)]
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CHAPTER V

ANALYSIS OF M.I.T. IMP 8 DATA

(1.) Introductory Remarks--Constraints on our Data Analysis

The main objective of this chapter is to demonstrate

how the formal results obtained in Chapters I and II may be

applied to the electron measurements by the M.I.T. detector

onboard the Imp 8 spacecraft. Ideally, the end product of

our effort should be the determination of the detailed

shape of the electron distribution function for a given

period and location in space. The knowledge of this

function would then allow us to compute a variety of

macroscopic averages characterizing the interplanetary

electron gas. Among those macroscopic parameters, the

following are of primary interest: (1) the electron

number density, ne, (2) the mean streaming velocity of

electrons, V , (3) the scalar electron temperature, T ,

(4) the thermal anisotropy ratio, T11 e/T1 e' and (5) the

heat flow vector, q . Unfortunately, there are a number of

practical considerations that reduce the scope of such a

comprehensive list. The operational limitations of the

M.I.T. electron detector, especially the narrowness of

the dynamic range, render any reliable determination of

some of the above quantities nearly impossible. As it

will become clear from the forthcoming discussion of the
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data samples, any attempt to determine quantitatively q

and Tie /T 1  would be about futile. On the other hand,

the determination of ne, Ve and Te should be possible at

least in principle. The precision with which one can

measure these quantities should vary widely from case to

case. Since n can be ascertained from the measurements
e

of the proton densities by the M.I.T. positive-ion

detector on Imp 8, and, sinceV may be expected to be close

or equal to the proton mean velocity V , it is obvious

that the most desirable quantity to be determined is the

electron temperature, Te. We shall demonstrate in the

next section that Te can, indeed, be measured quite

accurately, inspite of the aforementioned limitations of

the detector. In contrast, the accuracy of directly

obtained values of n e and V cannot be expected to be high.e e

For this reason, we decided to adopt the following pro-

cedure: we make use of the available proton density and

the proton mean velocity (the wind velocity) for each

observational sample and thus treat n e and V as givene e

quantities putting

ne = 1.1 n (5.1)
e p

and

Ve Vp (5.2)

The factor 1.1 represents the correction due to the

presence of c(-particles (5% seems to be a reasonable
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average abundance of C(- particles by number, relative to

protons). Equation (5.1) states simply the neutrality

condition of ambient plasma, after appropriate corrections

for a possible spacecraft charging were made. It represents

a very severe constraint on the fitting procedures in

electron data analysis. Equation (5.2) is an assumption,

supported by strong physical arguments, and is verifiable

a posteriori. The importance of the constraint given by

Eq. (5.1), other than for the fact that we reduce the

number of unknowns, can be seen by considering the follow-

ing facts: First, the proton number density can be deter-

mined by the M.I.T. detector with an absolute accuracy/-'20%,

while relative uncertainties between electron and proton

current measurements should be less. Secondly, ion

measurements are not hampered by spacecraft charging

effects as are electron measurements. As shown in

Chapter II, because of spacecraft charging, the normaliza-

tion and temperature will acquire errors /\-120%, since one

does not a priori know the potential 10of the space-

craft. Thirdly, the total distribution of the ions are

available for analysis, while for electrons only a portion

of the distribution is sampled (bulk of f is available

only at energies less than 20 ev).

In order to reduce the possibility of contamination

of the data from bow shock related phenomena we have
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confined our analysis to observations made on the dawn

side of the solar wind, along with the constraint that the

magnetic field does not connect to the earth's bow shock

(i.e., B "' 1350 or 3150).

Our final constraint is due to the unfortunate

presence of noise ^ 5 picoamp (1 picoamp = 10-12amp) in

the data for reasons that are not as yet understood. This

noise confines our analysis to high density, low speed

streams, where the electron currents are sufficiently

above the 5 picoamp level for the first few energy channels

in all eight angular sectors.
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(2.) Examples of M.I.T. Imp 8 Electron Data

Due to the lack of dynamical range of the detector, we

are forced to consider only the lowest energy channels.

In this energy regime (i.e., energy channels 1 to 4),

where transport effects are probably small, the electrons

(core electrons) are expected to be Maxwellian. Because

of this, we make the initial assumption to be verified by

the data, that the electrons are Maxwellian in the proper

frame of the plasma.

Before showing some samples of data, we should like to

introduce the following quantity, which we found to be

more useful in the analysis than the currents ALI:

(5.3)F
where R(o) is the mean response function of the detector

defined by Eq. (1.22), evaluated at = v /v = 0, andx z

I is the I defined in Eq. (1.27). Since we are assuming

the core electrons to be Maxwellian, we will use Eq. (1.28)

of Chapter I for the current Al. For simplicity we

have dropped the second term in Eq. (1.28) for A.I and

set o12 = 1.0. The resulting expression, which gives

the currents in a given channel to within 10% for wc "

1800 km/sec, is the following:

R7(6) F (s.4a)

where .- Ua

(S.4b)

I -UO;
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Figures 50 and 51 show the plots of F versus the

normal velocity 7 for two different spectra labeled,

respectively, spectrum # 1 and spectrum # 2. Along the

abscissa the circled numbers are the numbers of the first

eight energy channels. The numerals on the graph

symbolize the data points of the corresponding angular

sector identified in Figure 2. The lines drawn through

the data are not a fit but are shown only for the purpose

of aiding the eye in following the data points. Figures

52 and 53 are identical plots of the data shown, respec-

tively, in Figures 50 and 51, except now the curves shown

are fits to the data where a Maxwellian was used for f
e

The two spectra were taken about two hours apart. For

these spectra no significant time variations (less than

5%) in the data occurred for time periods less than 10

minutes (i.e., 5 TMS spectra). As may be seen, angular

sectors 2 and 3 display an energy dependence characteristic

of a Maxwellian, while for angular sector 8, which is

aligned along B toward the sun, shows a non-Maxwellian tail

at higher energies. This rise in f is probably due to

the skewness in f e' which contributes to the heat flow

vector qe. Angular sectors 2 and 3 do not display the

presence of suprathermal electrons. The horizontal dashed

line shown in Figures 50 to 53 represents the 5 picoamp

level. Data points below this line may be subject to large
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errors (on the order of a factor of two) due to the pickup

problem mentioned. Thus, if suprathermal electrons were

present we would not be able to see them. Because of

this fact, we cannot measure q using this data, since we

must have the suprathermal electrons in order to determine

by how much fe deviates from isotropy.

Figures 54 and 55 exhibit angular plots of F for

spectra # 1 and # 2 shown in the previous figures. The

numbers at the bottom of the figures correspond to the

angular sectors indicated in Fig. 2, while the symbols

used for the data points are the numbers of the energy

channels for those data points. The arrow near the top

center of the figure gives the direction of the wind

velocity vector in the spacecraft frame. The vertical

dashed lines indicate directions parallel and anti-parallel

to the magnetic field. The horizontal dashed line

indicates the 5 picoamp level. The wind velocities for

these spectra are /,-/ 340 km/sec, while the densities are

'- 20 and 40 cm-3, respectively. The solid curves were

generated from Eq. (5.4b) for F with wc = 1825 km/sec

(Tc = 1.1 x 105 oK) for Fig. 54 and wc = 1840 km/sec

(Tc = 1.12 x 105 oK) for Fig. 55. As may be seen, the

theoretical curves follow the data points quite well for

energy channels 1 to 4 for spectra # 1 and energy channels

1 to 3 for spectra # 2. The problem at higher energies

results from the noise problem and should thus be ignored.
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The poor fit for angular sectors 7 and 8, which are aligned

along the magnetic field direction and pointing toward the

sun, results from transport effects along B. In both of

these fits the spacecraft potential 1 was set equal to

zero. Using the simple energy shift correction given by

Eq. (2.34), we found no significant changes in the fit

when the potential TO was set equal to 1 volt. But when

the potential was set equal to 2 volts, a significant

change did result, in such a way that the fit became

worse. Thus, it seems from this sample of data, where

the currents are significantly above the noise, that the

spacecraft potential on Imp 8 is less than 2 volts.

We should like to emphasize the fact that once n e

and V are given one can determine wc from any data point

from energy channel 1, where the currents are relatively

large ^10-10 amp, and transport effects are small. Then

using this value of w c, one can produce curves similar

to those shown in Figures 54 and 55 with the help of Eq.

(5.4b). We feel that we can say with confidence that the

core electrons are Maxwellian and moving at the same

velocity V as the protons. The above results also show

that the instrument is operating properly within the

uncertainties discussed above.

The data shown in the previous figures are not typical

of the solar wind. They were shown because they contain an

unusually high number of data points well above the noise.
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Such fortunate circumstances occur when the plasma

density is very high. Under average conditions the

density is substantially lower (about a factor of 2 to

5). Fig. 56 shows an angular plot of F for a different

time period where the wind velocities are higher ^-- 550

km/sec, and densities about 7 cm 3. Note that an

appreciable portion of the data is near the noise (the

horizontal dashed line), thus producing the poor fit

in the backward directions even for the first energy

channel. Since the potential was shown to be small from

the previous samples, we set the potential -1 = 0 volts.

The curves shown in the figure correspond to a thermal

speed wC= 2000 km/sec (Tc = 1.3 x 105 oK). Except for

the deviations along B, where transport effects are

present, the fit is good within the uncertainties mentioned

above. For the largest currents in this spectrum, the

uncertainties introduced by the noise are -z- 10%.

Keeping in mind the conclusions reached from the previous

spectra (i.e., instrument operating properly, core electrons

are Maxwellian and moving at the same velocity V as the

protons), this last example clearly demonstrates the fact

that it is possible for us to get estimates of the tempera-

ture from electron data that on casual inspection appears

to be unusable.

One sees from the angular response of the currents

from the Imp 8 detector how serious the noise problem is as
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far as the study of the suprathermal electrons, skewness

of the distribution, and thus the determination of the

heat flow is concerned. It is clear from these figures

how much more information we would get if we were able to

drop the noise level line by an order of magnitude. On

the recently launched Voyager spacecrafts, there is an

M.I.T. electron detector with a significantly lower noise

level -'10~14 amp (i.e., an improvement in sensitivity

by a factor of 500). The date from this new detector are

now being processed.

At this moment we have available only one partial

preliminary sample. A quantity similar to the F defined

by Eq. (5.3) for the Imp 8 detector and derived from

Voyager 2 data taken at 1 AU is shown in Fig. 57. It is

readily apparent from this figure that the better sensi-

tivity of this instrument, permits us to see the supra-

thermal electrons, which appear at velocities greater

than 4500 km/sec (58 ev). The data in Fig. 5.7 refer

to one specific direction of the cup normal. The detector

is mounted in such a way that its normal is pointing

approximately at right angles to the sun-earth line, thus

at 900 with respect to the wind velocity. The angular

dependence of the electron current is not available because

the spacecraft does not spin. According to preliminary

private communication from Goddard Space Flight Center,
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the direction of the magnetic field is believed to be

about 760 to the normal of the cup. With this information

in mind, we have attempted to fit the experimental

points with an isotropic distribution. We have found that

it was not possible to fit the data points by using a

single kappa distribution given by Eq. (1.40). However,

two non-convected Maxwellian distributions with different

densities and temperatures (core, halo) were found

to reproduce the data very well.

The solid curve in Fig. 57 represents these two

Maxwellians, assuming that nc = 3.65 cm-3, nH = 0.152 cm-3

w = 1650 km/sec (Tc = 9 x 10 4K), wH= 3500 km/sec

(TH = 4.05 x 1 0SoK) and 0 = 2 volts. Using the

relation

n T = nc Tc + nH TH

we get a total temperature T = 1.06 x 105 0K. Note: the

ratios for nH/nc = .04 and TH/Tc = 4.5 are not the same as

that typically found in the solar wind at 1 AU.

In conclusion, we can say that estimates of the core elec-

tron temperature can be acquired from the data on Imp 8 once

the density and wind velocity of the protons are given. In

cases where the electron currents are sufficiently high, the

determination of ne, Ve, and wc directly from the data should

also be possible (see Figures 54 and 55). The core electrons

were shown to be Maxwellian and moving at the same velocity as

the protons. The presence of suprathermal electrons at high
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energies could not be detected due to the presence of pickup

of - 5 picoamps. At present, this problem of pickup is not

understood. Because we cannot see the suprathermal electrons,

we are unable to determine by how much the electron distribution

function deviates from fore-aft symmetry along the field lines

(skewness in f e) thus we cannot determine the heat flux vector

from the data.

Preliminary results from the M.I.T. electron detector on

Voyager 2 showed a significant improvement in the sensitivity

over that on Imp 8.
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APPENDIX A

For various models of f (v) evaluate the integral

.a.

(A.1)

-QO

where = vx/vz and thus determine the current

(1) Bi-Maxwellian distribution function

4A1 (~>
Ykw '

(A. 2)

(A.3)

where

/= Z'b, b

4;4-

-'/ and B' is the magnetic field vector.

Refer to Figure 11 for definitions of the magnetic field

vector with respect to the solar ecliptic coordinates system

(SE), and the relationship between the cup coordinate system

and the solar ecliptic coordinate system. From looking at

Figure 11 it is straightforward to show that the rotation

matrix which transforms a vector from the cup coordinate
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system to

ing:

RC-B =

where

the magnetic field coordinate system is the follow-

- ~

cose(/6 (,,-Cos s'a |)

C, 5
0 S ((A.44)

* 1/

~V

v (Vn)V)and

From (A.4) one can derive the following expression for w

in terms of cup velocity coordinates:

Introducing the following definitions:

the component of U along the B - field,

212

and
/V-9
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the expression for fe (v, o, z) is

kI srx

Substituting (A.5) into (A.1) and integrating gives the fol-

.+) + 2 + 6 u Uo C )s

lowing for H
.-u+ 6u( 2/ / l 6Cos2e)C-a

IT +1 + - ( 6i CDS

It then follows that

41-I L/C

where

the expression for I is:

--- (A.7)

'~ y~+U(+6c)~

b

To
For 6 = 0, (A.7) reduces to the simpler case of a Maxwellian

for fe, i.e.,

(A.8)

(2) Conduction model-14

(A. 9)

where fx is the kappa distribution function

(A.6)
V)e/..L F-,

- --To

. ( --;;0) =- J,' ( I - ( P,
le-
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ne is the electron density, 2 bX ' 'is the kappa parameter,

wc is the "core" thermal speed,

i is the effective collision time,) is

for wave-particle interactions, coul is

the effective m.f.p.

the effective m.f.p.

for Coulomb collisions, and Pe, P0 are polynomials in the

velocity and look like the following (see Chapter 4):

1 )C( (+ k(+ Cex ( A . 1

Pej-

C06 . + ( I - 3 co s B

(A I 2"

- a-, Jfces26
where

Cos

r is the radius vector for the heliocentric coordinate system,

where

242.

cx

(A.10)

3 Xa.,
PO'(-

(A . )



T(~)
I

B(~)

3'7~)

is the electric field alongF),

2<,

CK

where

& / ) k~~*~)
I1

Before substituting (A.lO), (A.ll) into (A.9), the following

definitions shall be made:

U0 /jW

U

U, L" S j,t

and

243.

O Ef -

(Er

and

)

/w,-

-(C s
~4e~

2co seCA

,XC.

-= 0 Co s 98

--) 2- V1, a- I
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After substituting (A.O) , (A.11) into (A.9), which is then

substituted into (A.1) and integrated, one gets the following

for H:

W,3 O

+c4~ 1 x' + q 2
Im~L 2-C

~d,~co~Og #c4si~i~a)5ijj

+ I)', coQv

where a.
c~O

-2 -
0 /

b.
00o

-2
'ix

0

2(3 6

(/4~f

+ ( +c4I'

k)0L

-('1~

(A.13)

- c&r) J~1t

h o
6 e

C.

(A.14)

0 0 A -

DZB COSI-

0 + 0 , X(X) cex ) j
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kt2

-

)
0

In order to evaluate integrals a to e the saddle point

method had to be used. A brief outline of this method will

now be given. First consider the integral expression:

-0

(A.15)

The function g(x) can be written like eG(x) where G(x) =

In g(x). One then writes a Taylor series expansion of G(x)

up to the second derivative around some point x0

- + X (A.16)

where the point x0 is determined by setting =0.

Then, after defining the parameter

y
and substituting (A.16) for G(x) into (A.l5), one gets the

following for H:

H (XJX (A.17)

d.

245.

e.
.742

(ze / IL f ) ( / i- ,

X) jiX
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This integration of (A.17) is straightforward and has the

following result:Zv-i?
XO (A.18)

The basic philosophy of this approach is to find the maxi-

mum of the integrand = 0, where it is assumed that

most of the contribution to the integral resides. Then the

integrand is replaced by a Gaussian whose width is determined

by the curvature of the integrand at its maximum; and because

one knows the integral for a Gaussian, an analytical expres-

sion for the integral (A.15) can be determined, i.e., Equa-

tion (A.18). Since there is no way of estimating the accuracy

of this approximation, one must check the answer by doing

numerical integrations and comparing. As a final note, this

method becomes exact for g(x) equal to a Gaussian.

Using this method, integrals a to e become the following:

a.

IIV_

where 'a+/

b. 3

'-S (~ef)i&/ 4
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where

(A.19)

U I _

A-'

U ~ (j.9 ~ UV~-i)

- L~/Li~

e.

K i

where

~~;z

I~HY7~~c-)

0 '0

The integrals were checked for all values of parameter

space relevant to the physical parameters of the detector,

2.- -

oiY+lt

1 J

C.

11

where

d.

where .

Y3
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and the model parameters2 (, wC, , and V. In general the

accuracy was better than 5%. Inaccuracies - 10% for h3L

and h4j do occur for specific combinations of the parameters

at the lowest energy channel when electron core temperatures

are 2 2.5 x 105 oK (i.e., angular width of f becomes com-
e

parable to the angular width in R).

Substituting (A.13) into (A.2), one gets the following

for I:

where

. XV) X(A.21)

and Allx is equal to the term in braces for H in (A.13).

/4kgtis equal to unity when there is no transport (i.e., all

gradients in macroscopic parameters vanish). Then Eq. (A.20)

reduces to the simpler case of an isotropic kappa distribu-

tion for fe. For the special limiting case2( " , f .re-

duces to a Maxwellian, and Eq. (A.21) for F.becomes rigor-

ously:

Fr) -
(A.22)

where the following limits were used



; Co

(X -1
IJI , ( I

Equation (A. 20) for the current AI when 'yz = 1, and ?C=00

is identical to (A.8)

f and then setting 6 =

derived using a bi-Maxwellian for

0.

249.
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APPENDIX B

(1) Numerical Checks of "Moment" Integrations in

Section 2.4

To check the numerical procedures and approach, numer-

ous checking procedures were developed. For examule, in

order to check the basic integration routine we computed

estimates of the density, wind velocity, temperature, and

heat flow vector for the special case of no potential (

= 0 volts), where the anisotropy parameter Ti /T1 was set

equal to 1.5. The results of these integrations are quoted

in Table 10, demonstrating that the integration routine is

operating properly and that our definitions given by Eqs.

(2.76) to (2.79) are appropriate. Note. for this check the

interpolation routine was not needed.

We next considered the special case of normal incidence

(i.e., differential detector, vt = 0). At this limit the
0

integrals K1 and K2 reduce to the following form:

kan)(B.1)
and

4Y (B.2)



251.

As may be seen, both integrals are independent of D and are

well defined for all U > 0. By substituting Eq. (B.1) for

K1 in Eq. (2.23) for G(r , ) and by noting that for vt
0'110

=0, the K2 term drops out, one gets the following for f e

given by Eq. (2.29):

V 6(B.3)
1T

where

-: - -V (B.4)

Eq. (B.4) is exactly the same expression one would get with

no potential, except for the energy shift experienced by the

normal component of the electron velocity vn 'i.e.,

(B.5)

Eqs. (B.3) and (B.4) are the expressions which we used in

our numerical integrations for the special case of a detector

differential in angle.

One can show that the solution given by Eqs. (B.3) and

(B.4) are similar to that for the plane geometry analog of

our spherical model. At this limit the potential may be

written the following way (see Figure 31)
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(Z o(B. 6)

Then if a convected bi-Maxwellian is assumed to be the ini-

tial fe at IzI =D and using the same method outlined in

section 2.2, one will get for fe at z = o a solution similar

to that given by Eqs. (B.3) and (B.4), i.e.,

where the only difference is that the -Vt term in Eq. (B.4)

is replaced by (Vt t-V). This is the expression we used
0

in our numerical integrations for theAD.- 0 limit. We would

like to note that for the one-dimensional problem the trans-

verse velocity replaces the angular momentum as the conserved

quantity. When this happens the r /r term in K2 , Eq. (B.2),

is replaced by one, so that K2 = K1 '

For the special case of no convection and no anisotropy,

one may solve for the density at z = 0, i.e.,

( I rt(Zb/'~4,)) (B.8)

where n, D is the density at /Z =WD. For T = 1.2 x 10S oK,

and 0= 4.5 volts, Eq. (B.8) gives us the following for n
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k)0  -
(B.9)

Thus the density has decreased by almost a factor of two.

This rarefraction comes about because the electrons are ac-

celerated toward the origin when they enter the region of

non-zero electric field, while at the same time the total

number of electrons must be conserved. Using the same num-

bers, we check our numerical routine by using Eq. (B.7) for

H and the appropriate forbidden zone boundary (i.e., two

infinite planes in the transverse direction wn =+u 0 /wc'

see section 2.4). These results were the same as those in

(B.9) within a few percent (see Table 8, / c = 900, Vr = 0).

For the same problem, but with the three-dimensional geo-

metry of a sphere, one gets the following expression for the

density:

No ~=Nez,(B.10)

where nc is the density at infinity. Using the same numbers

for and T, one gets for n0:

Y= .S n O(B.11)

Here, contrary to the one-dimensional case, the density has

experienced an increase by 29%. In this case, as in the one-

dimensional problem, the electrons experience a rarefraction

which is indicated by the second term in Eq. (B.10). But,

because the electrons experience a convergence of their
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trajectories from the larger area of the Debye sphere to

the smaller sphere of the spacecraft [first term in Eq.

(B.10)] the density increases. Eq. (B.11) is useful in that

it allows us to check our numerical integrations for 1 / 0

for the case of no convection (V = 0) and no anisotropy

(TI /T1 = 1). The results of this calculation, which are

shown in Table 10, gave a density about equal to that given

by (B.11) with an error less than 1%.

For the special limit of infinite Debye length (D - **

z = 0.0) or Coulomb potential, the integrals K1 , K2 given

by Eqs. (2.39) or (2.40) may be evaluated in terms of known

functions, i.e.,

I( () (B.12)

*iU(B.13)

where

(B.14)

is the eccentricity parameter

) /+e- -
14 (B.l5)
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is the maximum b0 (i.e., 9 = 900). These are the expressions

we used in our numerical integrations for the large Debye

length limit )D"rO discussed in section 2.4. They were also

used to check our four point interpolation scheme for z /

0.0.

(2) Proof that) D-+0 Limit is Equivalent to the Plane

Parallel Geometry Problem

If the notion of plane parallel geometry is correct,

as suggested throughout Chapter II, then the integral ex-

pressions K1 , K2 must reduce to the form given by Eq. (B.1)

as\ 1D0. To show this is the case, we shall first rewrite

Eq. (2.40) for K in the following way:

00 z-cz-Z.)

L (izi) /o C /z

k ( 2 (B.16)
Z Z. -(-zI)Zr e*

where Eq. (2.50) for 1)c was substituted forl), while the

following was substituted for bD2

C (B.17)

where we used Eq. (2.49) for (bD2 c and

n e q < I (B.18)



256.

As 5>O0, the spacecraft radius in units ofAD, z6-O For

this limit, the energy (Uc)max below which critical trajec-

tories appear goes to infinity [see Eq. (2.57)]. Thus, for

all finite energies U there are critical trajectories.

fore, for

u < (B.19)

we have (see section 2.3)

(B.20)zc > zo

Then because of the exponential term in the numerator

of the integrand for K1 , appreciable contributions to the

integral occur only for

(B.21)

with possible exceptions to the critical points zc. For

.-!-- (no critical trajectories), the term proportional to

Eq. (B.17), is small compared to

I Z+ l (B.22)

for all z. For A-' 1, Eq. (B.17) becomes comparable to

Eq. (B.22) only for z t-' zc, so that the denominator approaches

zero. The singularity due to the denominator goes like 1/ ,

where j<4<1. This singularity due to the impact parameter

b D will only be important if

- (z'-z)
-- - -^

There-

(B. 23)

- (Z-
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As z , z0 must also approach infinity. Then because the

exponential term decreases faster than <, (B.23) should tend

to zero for all finite U as z-**t

Therefore, the term given by (B.17) may be dropped com-

pared to (B.22) as zoo, so that

(B.24)

zo

which is the solution for the plane parallel problem. Also,

since contributions to the integral for K2 occur only for

z ~'-' z0 (r '-' ro), the term r0 /r in the integrand for K2 [set

Eq. (B.2)] may be set equal to 1 as z--.
0

For example, for

6 4 -

we have

Then as)D0, 6 must also approach zero in order for z N z .

Therefore,

k (B.25)

which is the solution for K2 in the plane parallel problem.

Thus, we have indeed shown that as,\D->O, the problem reduces

to the one-dimensional (plane-parallel) case, so that the

simple correction
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is appropriate to use in the short Debye length limit

( D= 0).
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APPENDIX C

We will derive the vector relation given by Eq. (3.58),

showing the flow to be field aligned in the rotating frame

of reference. A more complete derivation may be found in

L. Mestel (1968).7 The magnetic field in terms of poloidal

and toroidal components has the form

-& + (C.1)

where B the poloidal component is confined to the meridional
p

plane, while Bt points in the azimuthal direction. The

wind velocity in the inertial frame may be split up in a

similar way

V1  Vp + WIRe (C.2)

where V is the poloidal component and (.) is the angular
PI

velocity of the flow. From the ideal Ohm's law Eq. (3.6)

we may express the electric field E the following way:

-- ;V -*>= -I[ -- ; --.> -]-.(C.3)

in terms of poloidal and toroidal parts. Because of steady

state the electric field is expressable in terms of the

negative gradient of a scalar potential [see Eq. (3.2)], i.e.,

- - (C.4)

Then because of azimuthal symmetry the toroidal component

of E must be zero.

- (C. 5)
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Thus, the poloidal component of the magnetic field

is parallel to the poloidal component of the wind velocity.

6 r >/cYVp (C. 6)

Then with the assumption of axial symmetry the following

is also true:

V. F. -9 (C.7)

(C. 8)

by referring to Eq. (C.6) it is then apparent that

(C.9)

so that k is a field line constant. Furthermore, from

Eq. (C.7) and Eq. (C.8) it is readily apparent that all field

line constants are streamline constants. It can then be

shown by taking the poloidal component of the ideal Ohm's

law Eq. (C.3), Eq. (C.6), and azimuthal symmetry that

oeR I) g7 VcJ o
RIO

(C. 10)

so that

0Tn
=constant along (C.11)

the field line.

From Eqs. (C.6) and (C.10) it can be shown that

(C.12)

where(.=Wez ' (i.e., ez is a unit vector aligned along the axis

of symmetry). It then follows from Eq. (C.12) and the ideal

Ohm's law that in a rigidly rotating frame with angular velocity

o the electic field is zero along a given field line.

r I

Thus,.
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for this frame the flow is field aligned. In the case of

the sun, near the base of the corona or footprints of the

magnetic field, the flow is constrained to move along B

(i.e., tension in B field dominates all other forces in these

regions). Then since the sun is rotating, the flow will

be field aligned along field lines in the frame rotating

at the angular velocity of the sun-f(at the footprints of

the field lines (i.e., because of differential rotation,

field lines of a different latitude will have field aligned

flow in frames with different angular velocity). We thus

have the following from Eq. (C.12),

~f3 ~ 7OV(C.13)

which is the desired result, where V is the wind velocity

in the rotating frame, and

(C.14)

Then if1* and B are known one may determine the wind velocity

in the rotating frame along a given field line once OL is

known for that field line.

We will now derive expressions for the toroidal component

of B and the angular velocity of the flow (4, which will

allow us to extend our integration along the field lines

in the rotating frame out into the interplanetary medium.

From Eqs. (C.11) and (C.13) we can get the following relation

for Bt 
(
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Then from the toroidal equation of motion

l X O(C.16)

in combination with Eq. (C.6) and (C.7) we get

at -.: (C.17)

where L is the total angular momentum per unit mass of

the field plus gas. From this and Eq. (C.lS) we can get

the following relation for CO

- (C.18)

We would now like to derive a useful relation between

the field line constant 0t and the mass density at the

Alfven point/,A. For instance, near the sun the flow will

be subalfvenic V<VA, while superalfvenic V>VA far from

the sun, where

(C.19)

is the Alfven velocity. Thus for some point (rA' A), called

the Alfven point, along a given field line (i.e., confining

our discussions in the rotating frame), the wind velocity

will be equal to the local Alfven velocity

V VA (C.20)

Then because

(C.21)
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in the rotating frame we get the following relation for /A

from Eqs. (C.19), C.20), and (C.21):

j0.2-(C.22)

Thus, once O is knownfor a field line, the mass density

at the Alfven point for that field line is known. Then

since we know / and B? for all b from our empirical models,

it is possible to determine the Alfven point (YA,A) for

the field line. Combining Eqs. (C.15) and (C.18) we get

the following relation for Bt

-0 (L ,(C.23)

and rewriting Eq. (C.18)

(C.24)

It is apparent from looking at Eqs. (C.23)and(C.24) that

Bt and W I become undefined at the Alfven point unless the

numerator is simultaneously zero. By doing this we determine

L, i.e.,

A A Lre-R A eA (C.25)

We thus have for Bt and 0L) the following:t I

R;L/#%A (C.26)

(C.27)
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Table 1

Electrons Protons

0o V+ v Vz vz vz vz
Channel # (volts (volts) (kmsec) (kmsec) (km/sec) (km/sec) (km/sec) (km/sec)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27

28
38
48
55
68
83

102
126
155
190
235
280
354
437
531
659
813
995

1,219
1,503
1,849
2,266
2,793
3,436
4,216
5,183
6,368

11.0
11.0
11.0
11.4
14
17
21
26
32
39
48
59
73
90

110
136
166
204
251
310
378
467
573
705
866

1,068
1,304

3,432
3,889
4,317
4,620
5,136
5,672
6,290
6,991
7,754
8,583
9,543
10,432
11,718
13,019
14,355
15,989
17,750
19,641
21,744
24,146
26,771

2,808

3,355
3,843
4,164
4,631
5,118
5,672
6,304
6,991
7,743
8,614
9,386
10,566
11,741
12,938
14,416
16,022
17,721
19,610
21,772
24,161

3,120
3,622
4,080
4,392
4,884
5,395
5,981
6,648
7,373
8,163
9,079
9,909

11,142
12,380
13,650
15,200
16,886
18,680
20,677
22,960
25,466

624
534
474
456
505
554
618
687
763
840
929

1,046
1,152
1,278
1,417
1,573
1,728
1,920
2,134
2,374
2,610

102
114
125
139
1/55
171
190
211
230
259
288
317
353
393
434
481
534
592
673
747
829
918

1,018
1,128

10.6
11.7
12.9
14.4
16.0
17.7
19.5
21.6
24.3
26.8
29.7
33.0
37.0
40.0
45.0
50.0
55.0
61.0
69.0
77.0
85.0
95.0

105
116



Table 2

Height of Slats H

Distance between Slats D

Width of Slats W

Normal Transparency of Slats TSN

Modulator Grid d/b ratio

All other Grids d/b ratio

Normal Transparency of Grid TGN

d 12 d23 = 45 = 76

d 34

d
5 6

d 67

H + > d
i = 1

Radius of Aperture rA

Radius of Collector r
c

Radius of Intermediate Ring rR

Normal Transparency TN

Angular Sector 1 - 7

Angular Sector 8

Spacecraft Spin Period

Integration Time Angular Sector 1-7

1.0"

0.1735"

0.0265"

0.8675"

0.07

0.02647

0.627

0.3"

0.125"

0.025"

0.25"

2.6"

2.5"

2.875"

2.45"

0.5438

33.750

25.310

2.60 sec.

244 msec.



(Table 2 continued)

Integration Time Angular Sector 8 183 msec

TMS Spectrum Time 1 min. 44 sec.

NTMS Spectrum Time 55 sec.

AMS Spectrum Time 55 sec.

* "symbol means inches

** d is the distance between grid planes n and m



Table 3

n = 10 cm-3 V = 400 km/sec"

c = 1500 km/sec

Energy Num IuI_~__
CEaney d (degrees (picoamp) (picoamp) T NumChannel ________I_____________ _________

62
96

129
163
197
231
264
298
62
96

129
163
197
231
264
298
62
96

129
163
197
231
264
298
62
96

129
163
197
231
264
298
62
96

129
163
197
231
264
298

25.18
13.43
7.628
5.583
5.853
8.651
15.79
29.06
7.075
3.397
1.754
1.217
1.286
2.031
4.104
8.361
1.790
0.7818
0.3700
0.2449
0.2607
0.4368
0.9677
2.161
0.6571
0.2692
0.1204

0.1440
0.3387
0.8049
0.1340

-

0.1678

24.12
12.72

7.149
5.206
5.464
8.132

15.01
27.94
6.713
3.186
1.630
1.127
1.192
1.894
3.864
7.965
1.698
0.7335
0.3448
0.2275
0.2424
0.4082
0.9116
2.059
0.6210
0.2517
0.1117
0.0714
0.0765
0.1340
0.3180
0.7640
0.1221
0.0448
0.0182
0.0111
0.0119
0.0222
0.0581
0.1537

.042

.053

.063

.068

.066

.060

.049

.039

.051

.062

.071

.070

.073

.067

.058

.047
.051
.060
.068
.071
.070
.065
.058
.047
.055
.065
.072

.069

.061

.051

.09

.084

* An aberration angle of 4.30 (wind appears to be coming from
the west) resulting from the motion of the spacecraft was
included in the calculations.



(Table 3 continued)

W = 2000 km/sec

1 62 72.65 70.69 .027
1 96 50.77 49.31 .029
1 129 36.78 35.67 .030
1 163 30.79 29.84 .031
1 197 31.63 30.66 .031
1 231 39.51 38.35 .029
1 264 55.68 54.13 .028
1 298 78.83 76.79 .026
2 62 38.91 37.87 .027
2 96 25.65 24.90 .029
2 129 17.63 17.08 .031
2 163 14.33 13.88 .031
2 197 14.79 14.33 .031
2 231 19.16 18.58 .030
2 264 28.56 27.76 .028
2 298 42.79 41.69 .026
3 62 19.22 18.77 .023
3 96 12.02 11.71 .026

3 129 7.872 7.657 .027
3 163 6.233 6.060 .028
3 197 6.457 6.280 .027
3 231 8.648 8.420 .026
3 264 13.56 13.23 .024
3 298 21.39 20.92 .022
4 62 11.55 11.31 .021
4 96 6.972 I 6.805 .024
4 129 4.423 4.309 .026
4 163 3.440 3.351 .026
4 197 3.574 3.482 .026
4 231 4.894 4.773 .025
4 264 7.940 7.762 .022
4 298 12.96 12.71 .019
5 62 5.371 5.239 .025
5 96 3.069 2.980 .029
5 129 1.853 1.794 .032
5 163 1.403 1.357 .033
5 197 1.463 1.416 .032
5 231 2.073 2.010 .030
5 264 3.545 3.449 .027
5 298 6.102 5.964 .023



"Moment" Integrations. Z0 = 0.0, 0 = 4.5 volts

M M x10-8  1 x0 N103  n V T Qx103  VcosT Oc 0 1 M2 a 0 3xa n 0 V T0 O1 cs A T O&/T

# deg cm 3  cm 2  dyne erg-cm-2 cm3 km/sec 105 erg-cm 2  km/sec km/sec 10%
sec~ cm-2  sec-1 Ok sec~ Ok

1 0 7.336 10.17 1.192 25.284 12.776 355 1.42 -3.316 400 -45 1.2 18.3
o 2 45 7.089 9.43 1.206 25.92 12.854 248 1.41 -2.37 283 -35 1.2 18.3

3 90 6.479 7.75 1.246 27.26 12.958 0 1.39 0 0 0 1.2 18.3
4 135 5.765 6.24 1.290 28.29
5 180 5.44 5.64 1.307 28.60
6 225
7 270
8 315

1 0 7.146 10.28 1.258 26.552 12.51 358 1.52 -3.24 400 -42 1.286 18.2
2 45 6.420 9.64 1.429 29.086 11.65 265 1.82 -1.83 283 -18 1.543 18.0
3 90 6.438 7.96 1.323 28.681 12.70 13.4 1.50 0.471 0 13.4 1.286116.6
4 135 6.166 6.09 1.195 27.322 13.74 -241 1.21 2.77 -283 42 1.02817.7
5 180 5.360 5.80 1.371 29.788
6 225 5.229 6.55 1.495 30.916
7 270 6.257 7.79 1.30 28.21
8 315 7.573 9.40 1.098 24.55

1 0 7.063 10.48 1.322 28.10 12.48 360 1.6 -3.34 400 -40 1.35 18.5
2 45 6.052 9.88 1.60 31.68 11.03 276 2.14 -1.57 283 -7 1.8 19
3 90 6.50 8.22 1.402 30.42 12.67 23.7 1.58 0.74 0 23.7 1.35 117
4 135 6.623 6.05 1.131 26.88 14.69 -229 1.06 3.17 -283 54 0.9 118
5 180 5.418 5.99 1.441 31.44
6 225 4.98 6.84 1.66 33.25
7 270 6.166 7.92 1.359 29.68
8 315 8.066 1 9.42 1.019 23.71

Table 4

I-

F-

F-



"Moment" Integrations. Zo = 10.0, 0 = 4.5 voltsTable 5

M9 M x10- 8 M2x101 M3x1
3  n V T QOx10 3  Vcosc AV T &T/T

# deg cm- 3  cm-2  dyne ergs-cm-2 cm-3  km/sec 105 ergs-cm-2 km/sec km/sec 105

sec~ 1  cm-2 sec-1 sec~1 kK

1 0 5.403 9.174 1.162 24.919 9.32 435 1.86 -2.59 400 +35 1.2 55

'2 45 5.207 8.504 1.174 25.337 9.36 306 1.86 -1.86 283 +23 1.2 55

3 90 4.704 6.991 1.202 26.311 9.41 0 1.85 0 0 0 1.2 55

4 135 4.156 5.640 1.226 27.194
5 180 3.916 5.128 1.228 27.505
6 225
7 270
8 315

1 0 5.276 9.37 1.269 27.26 9.106 443 2.065 -2.14 400 +43 1.351 53

2 45 4.70 9.16 1.574 31.28 8.40 338 2.732 -0.91 283 +55 1.80 52

3 90 4.57 7.24 1.314 28.47 9.170 7.6 2.070 0.335 0 +7.6 1.35 53

C 4 135 4.65 5.37 1.057 26.00 10.30 -278 1.430 +3.169 -283 +5.0 0.90 59

5 180 3.83 5.34 1.327 29.40
6 225 3.688 6.32 1.593 32.19
7 270 4.60 7.17 1.301 28.14
8 315 5.635 8.23 0.978 22.83



"Moment" Integrations. go = 0.1, (T,/T 1 ) = 2.0, dio = 4.5 volts

Sx M x1 x108 M2x103 n V0  T Qx103 Vcosdec AV 0 T aT/T

# deg cm~ 3  cm 2  dynes ergs-cm 2  cm 3  km/sec 105 ergs -cm- km/sec km/sec 105 %
sec~ 1  cm-2  sec 3 sec- OK

1 0 7.023 10.37 1.315 28.01 j12.40 352 1.61 -3.59 400 -48 1.351 19
2 45 6.050 9.836 1.591 31.66 10.54 285 2.23 -1.41 283 2 1.80 24
3 90 6.50 8.203 1.394 30.28 12.65 26.5 1.573 +0.83 0 26.5 1.35 16.5
4 135 6.600 6.031 1.131 26.92 14.61 -231 1.063 +3.28 -283 52 0.90 18
5 180 5.375 6.000 1.440 31.60
6 225 4.493 6.833 1.652 33.07
7 2701 6.152 7.906 1.352 29.45
8 315 8.006 9.407 1.014 23.64

Table 7 "Moment" Integrations. o = 1.0 (T,,/T1 ) = 2.0, po 4.5 volts

M M x108  M X010 M 103 n V T Q x103  Vcose V T AT/T

# deg cm-3 cm-2  dynes erges-cm-2 cm-3 km/sec x105 ergs-cm-2 km/sec km/sec x105  %
sec~ 1  cn-2  sec K secJ

1 0 6.820 10.22 1.302 27.79 12.250 344 1.621 -3.73 400 -56 1.35 20
2 45 5.936 9.779 1.588 31.62 10.888 270 2.158 -1.69 283 -13 1.80 20
3 90 6.330 8.110 1.379 29.93 12.413 20.46 1.591 +0.66 0 +20.46 1.35 18
4 135 6.690 6.084 1.139 27.21 14.350 0 0 +3.71 -283 0 0.90 0
5 180 5.427 6.002 1.438 31.52
6 225 4.952 6.843 1.655 33.31
7 270 6.083 7.856 1.347 29.27
8 315 7.660 9.217 1.009 23.50

Table 6



Zal = ot, o = 4.5 volts

M M x108 M2x1010 M 33 n V T Qx103 Vcose AV T AT/T
c 0 1200 0 0 C ____

# deg cm 3  cm~ 2  dyne erg-cm-2 cm-3 km/sec 105 erg-cm-2  km/sec km/sec 105 %

sec 1  cm 2  sec- OK sec-1 OK

1 0 3.615 7.592 1.106 22.785 5.54 713 2.720 2.951 400 +313 1.2 126

2 45 3.340 6.895 1.103 22.544 5.48 511 -2.786 2.02 283 +228 1.2 132

3 90 2.710 5.381 1.065 21.704 5.42 0 2.848 0 0 0 1.2 137

4 135 2.140 4.102 1.004 20.525
5 180 1.924 3.640 0.9706 19.834
6 225
7 270
8 315

1 0 3.657 7.91 1.213 25.095 5.68 701 2.92 +2.416 400 301 1.35 116

2 45 3.523 8.09 1.524 29.777 6.014 467 3.577 +1.277 283 184 1.80 99

3 90 2.791 5.71 1.174 24.185 5.582 0 3.050 -0.169 0 0 1.35 126

4 135 1.901 3.41 0.780 16.345 5.105 -547 12.362 -2.604 -283 -264 0.90 162

5 180 2.023 3.93 1.079 22.679

6 225 2.491 5.28 1.445 28.50 = 1.51

7 270 2.790 5.71 1.174 24.354 T) =

8 315 3.204 6.20 0.884 18.949

"Moment" Integrations.Table 8



"Moment" Integrations. vto = 0, %o

-x18  3x00  i
_ M0 M1x 10 M2x1010 M3_ n' V T QxO103 VcoscF Lvo T AT/T

# deg cm-3  cm-2  dyne erg-cm-2 cm-3 km/sec 105 erg-cm-2 km/secl km/sec 105
sec- cm 2  sec-' 0K sec -

1 0 7.475 10.30 1.198 25.425 12.81 368 1.408 -2.789 400 -32 1.2 17
2 45 7.175 9.51 1.211 26.04 12.86 259 1.405 -2.02 283 -24 1.2 17
3 90 6.498 7.73 1.248 27.264 13.0 0 1.391 0 0 0 1.2 17
4 135 5.689 6.18 1.282 28.061
5 180 5.337 5.59 1.291 28.214
6 225
7 270
8 315

1 0 7.26 10.72 1.350 28.89 12.63 371 1.61 -3.056 400 -29 1.35 19
2 45 6.104 9.92 1.603 31.74 11.04 282 2.12 -1.394 283 -1 1.80 18

3 90 6.662 8.48 1.442 31.38 12.86 40 1.59 +1.360 0 +40 1.35 18
4 135 6.440 5.96 1.117 26.495 14.59 -245 1.06 +2.589 -283 +38 0.90 18
5 180 5.372 6.03 1.455 31.946
6 225 4.931 6.81 1.634 33.134
7 270 6.195 7.97 1.371 30.074
8 315 8.147 9.53 1.026 23.906

Table 9 = 4.5 volts



"Moment" Integrations. Zo = 0.0, 0o = 0.0 voltsTable 10

____ ___- N M10 M O0xl 3_ M_ M x10-_ 8 Mx10 N[ M3 3 n_ V_ T Q x10 3  Vcose AV T AT/Tc o 11 2 3 0__ 0 0 -2c 0 _ _ _ _

Sdg m~3  cm 2  dyne erg-cm 3 cm 3  km/sec 105 erg-cm km/sec km/sec 105 %

sec1 cm-2 seck K sec- K

1
2
3
4
5
6
7
8

II

-)

C)

0 ~
Lr)

0

0
45
90

135
180
225
270
315

0
45
90

135
180
225
270
315

6.1275
5. 7335
5.0002
4.1043
3.873
4.2663
5.00004
5.896

6.4327
if

"

"I

7.80
7.62
5.57
3.70
3.80
4.816
5.573
6.526

0.8924
1.066
0.887
0.7076
0.882
1.063
0.8872
0.7117

18.6186
21.5052
18.977
15.686
18.6186
21.5057
18.9767
15.692

10.0001
9.9998

10.0002
10.0003

12.8654
I"

400
2.80
0

-283

1.286
1.543
1.286
1.028

0
0
0
0

400
283
0

-283

0

0
-3
0
0

1. 286
1.543
1.286
1. 028

0
0
0
0

1
2
3
4
5
6
7
8



Table 11

Average Properties of the Low-Speed Solar Wind

Parameter Average Value

V, km/sec 300 - 325

n, cm-3  8.7

T , OK 1.5 x 105

(T,,/T ), e1.1

T ,OK 4 x 104
p
(T,,/T ) 2

p
B, gamma* 5

* 1 gamma = 10-5 gauss.

Table 12

Average Particle and Energy Flux Densities
in the Low Speed Solar Wind

Parameter Average Value

nV 2.4 x 10 8 cm~ 2-sec- 1

1 V 3  0.22 ergs/cm2/sec.

nV(-kT) 8 x 10-3 ergs/cm2 /sec.

q, e7 x 10-3 ergs/cm2 /sec.

q 10-5 ergs/cm2 /sec.



Table 13

Average Properties of Solar Wind High-Speed Streams

Parameter Average Value

Vmax, km/sec^^ 741 - 49

nV, (108 cm-2-sec- 1) 3.3 0.5

TP, 105 OK 2.3 - 0.3

Te, 105 OK 0.9 0.08
+

E TP, (10-3 ergs/cm2/sec)^^^ 24 - 5

ge r, (10~3 ergs/cm2/sec) 2.8 - 0.9

EA' (10-3 ergs/cm2/sec)t 11.6 4.7

Eflux, ergs/cm2/sectt 2.4 - 0.5

See Text for definitions.

** Vmax is maximum velocity in high-speed stream.

High-speed streams were selected by the criterion

that Vmax _1 650 km/sec.

*** E = nV ( kTp) is the enthalpy flux.

TP 5
t BA =nV ( mp < V 2>) is the Alfven energy flux where

SV2> is the mean square velocity perturbation.

t Eflux nV [l/2m V2 + GM@mTP] is the kinetic plus
g r ro

gravitational energy flux.

>
2
t



Table 14

Averages of Selected Parameters for High-Speed Streams

Parameter Average Value

n, cm- 3  3.9 + 0.6

V, km/sec 702 - 32

T , (l05 OK) 2.3 + 0.3
P+

T , (105 OK) 1.0 - 0.08

T , (105 OK) 4.2 - 3.0
+

n /n t 0.048 - 0.005
IKp

*T( is the temperature of alpha particles.

t n. is the density of alpha particles.



Table 15

The Basic "One-Fluid" Model of the Coronal Expansion (rc=7.5r@)

r=r, r=lAU r-:. G

Density, cm~ 3  7.4x10 7  8

Expansion Speed, km sec 1I 1.2 260 .315

Temperature, OK 1.6x106 1.6x10 5 o (r-2/5

* rc is the sonic critical point



Table 16

n 0 a.- 1. 03r 10r, 215r

1 7.69 x 108 6.7871 
g

6 x 108 -8.787 13454 -2.79 15.9 -2.035

2 3.027 x 108 6.589 3.026 -8.589 8112 -2.66 10.0 -2.032

x 108

3 2.93 x i08 7.262 2.03 -9.262 4288 -2.76 4.85 -2.035

x 108



Table 17

T qV Teff j eff
(km/sec) (106 OK) (ergs/cm2/sec) T q (cv../r)

Distance Profile#

1 .50 1.24 1.14 x 10 5  -.280 -2.61 1.03 7 x 10-5

1.03r0  2 .60 1.26 7 x 104  -.287 -2.61 1.03 1.42 x 10-4

3 .31 1.176 3.53 x 104 -.266 -2.62 1.03 1.28 x 10- 4

1 199 1.13 218 .09 3.11 1.03 .21

10r0  2 227 1.13 130 .012 3.12 1.04 .345

3 206 1.12 71 .032 3.09 1.01 .628

1 425 .137 14.5 x 10-3 .95 3.08 1.47 .122

215r0  2 425 .133 8.66 x 10-3  .95 3.08 1.47 .187

3 425 .145 4.74 x 10-3 .944 3.08 1.46 .439

1 439 0 0 1.0 3 1.5 0

0o2 2 439 0 0 1.0 3 1.5 i: 0

3 440 0 0 1.0 3 1.5 0



Table 18

Model # 1  a2  a3  a a5

1 x 108 2.414 x 101 6  4.68 x 10- 6.68 1.16 -8.15 8.72

2 1 x 108 1.83 x 10-16 4.28 x 10-4 7.53 1.02 -7.25 6.76

7.5 x io7 1.372 x i016 2.82 x 10- 6.85 7.98 -24.61 19.41



Table 19

r/ro e n V V V VAp Te q x

1.03 23 1.395 6.372 3.263 0.70 2880 1.050 6.91 -12.71 1.160

x 10 8  x 106 x 105

rs 66.8 2.9 192.0 21.1 4.57 1266 2.17 2.20 -3.20 0.552

4.58 x10_ x106  x 103

10.27 70.3 2840 383.0 18.7 5.30 790.0 2.8 231 -2.65 0.469

x 106
0
2 rA= 71.5 702 500.0 14.13 4.66 500.0 2.580 41.6 -2.4 0.440

18.4 x 106

215 73 3.34 715.0 1.70 0.76 50.70 4.18 18.0 -2.04 0.405

105 x1-3I~~~ ~ x10- _____

1.03 23 1.375 4.49 2.285 0.7 2880 1.047 3.13 -12.71 1.160

x 108 x 106x 105

rs= 67.5 1.967 154 14.8 5.0 1210 1.458 584 -3.06 0.535

5.18 x_10
4  x 106

0 10.27 70.3 2839 268 13.1 5.7 790 1.552 83 -2.65 0.469

x lo

0

2r 71.8 392 380 8.4 5.8 380 1.24 6.76 -2.36 0.433

23 x 106

215 73 3.34 500 1.2 .986 50.7 2.18 7 -2.04 0.405

x 5 10 x 10-3



Table 20

Average Values and rms Variations of Solar Wind Electron Parameters

Parameters Average Values

ne, cm 3  10.0 +4.8

V, km/sec 425 + 73

Tc, OK (1.25 + 0.29)105

(T,,/Tj)c 1.08 - 0.08

q , cgs (7.8 + 5.4)10-3

EBA, Volts 62.5 - 13

Model #1 * Model #2 *

nH, cm-3  0.57 0.23 0.34 0.15

nH/n 0.065 + 0.027 0.038 0.017

VH, km/sec 689 - 369 1215 - 579
+ +

V , km/sec -48.8 + 33 -49.0 30
c \

T OK (6.9 i1.1)10 (8.7 + 1.4)105

(H/TJ)H 1.22 0.18 1.29 0.28

T /T 5.7 + 1.3 7.2 + 1.4
H c57- 3+

(4.5, ) for Model #2.(4.5b) for Model #1, Eq.* CH given by Eq.




