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ABSTRACT

In this thesis a general method for analyzing electron
data from the M.I.T. plasma detector on Imp 8 is formulated.
This approach, which lays the groundwork for any future analy-
sis of electron data, is also applicable for the analysis of
subsonic proton data. The followling topics are studied in
detail.

The etfects of a positively charped spacecraft upon the
electron measurements is investigated. To bypass the theoret-
ical difficulties in solving this problem, a Yukawa type screen-
ing potential with spherical symmetry is assumed. The screen-
ing distance (the Debye length) for the space charge is treated
as a free parameter; varying this parameter allows us to deter-
mine the range of corrections expected for the electron distri-
bution. Using Boltzmann equation,electron distribution function
at the surface of the spacecraft is determined for a given form

of this distribution far from the spacecraft. The corrections



are not found to be trivial and highly dependent upon the size
of the screening distance relative to the spacecraft radius.
For example, the corrections to the observed electron tempera-
tures are on the order of 20%. There appear apparent electron
drifts on the order of +50 km/sec for spacecraft potentials sn
the order of 5 volts. Similarly, an apparent heat flow on the
order of i3X10_3 ergs/cmz/sec develops.

Semi-empirical radial profiles of the wind velocity, effec-
tive temperature, and effective heat flux vector are derived
for the inner planet region of the solar system. The task 1is
accomplished by using the basic conservation relations of mass,
momentum, energy, and magnetic flux, along with empirically
determined electron density distribution within the solar corona
and interplanetary medium as well as an empirically determined
magnetic field line topology. The calculations assume a steady
state under MHD approximation.

Observations in the solar corona and solar wind are reviewed
along with the present status of solar wind theory. A review of
the transport theories for interplanetary electrons, more spe-
cifically the convection model by Feldman et al. (1975)9 and
the conduction model by Scudder and Olbert (1978)14, is given.

Finally, a few samples of M.I.T. Imp 8 electron data are
analyzed, showing the applicability of the analysis program
developed. Core electrons are shown to be Maxwellian, moving
at the same velocity as the proper frame of the plasma, and the
electron temperature can be extracted from the data. The presence

of pickup in the measured currents prevents us from seeing the



suprathermal electrons. Because of this, the heat flux cannot

be determined.

Thesis Superviser: Stanislaw Qlbert, Prefesseor of Physics
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ILLUSTRATIONS

Observed electron distribution function (data
points) derived from observations made by

the LASL detector on board the Imp 8 spacecraft,
from Feldman et al.? The angles indicated in

parentheses give the ff (f = ¢ - ﬁB) angle as

C

defined in Figure 11, the detector is pointing
relative to B. The curves are fits made by
Feldman et a1.9 using a convected bi-Maxwellian
for the core electrons and a truncated convected
bi-Maxwellian for the halo electrons (see text).
Top left figure is a schematic view of Imp 8
detector mounted perpendicular to spin axis of

the spacecraft pointing in the +ZSE direction

(X Z corresond teo the X, Y, Z axis

SE* 'SE* “SE
of the solar ecliptic (SE) coordinate system);

YSE axis points out of the paper; XC, YC, ZC are

the X; ¥, Z axis of the cup ceordinate system;
ﬂc is the azimuthal angle of the detector normal

relative to the XSE axis; acceptance cone of

detector is indicated (200 i1, the YC direction,

120°

i the Xcdirection). Top right figure displays
the angular sectors, current measurements are

made; 33 3/40 and 28° are the angular widths of



Fig.
Fig.
Fig.

Fig.

Fig:

Fig.

Fig.

3a
3b

angular sectors 1 to 7 and 8, respectively.
Measurements are not made in shaded region
because of photo-effects. The lower figure
is a cross-sectional view of the detector;
the dashed lines indicate grid planes (grids
L, 3, 4, 5, and 6 are shielding eridsi: Ic
iz the collector current; AL is the ac
component of IC that is amplified and re-
corded as the measured current; the voltage
ﬁ applied to the modulator and possible
electron path are indicated.

Cross-sectional View of Two Slats
Cross-sectional View of Two Grid Wires
Common Area of Collector Circle and Aperture
Cirtcie

Normalized Response Function R versus Beta;

Alpha equal to Zero

Normalized Response Function R versus Alpha for

various v, in the range V., BV (step size
2% of Lkvz used, see text); Beta equal to Zero.
View of Electron Distribution Function fe and
Normalized Response Function R in VY direction;
v. = 0; Ty = 3100 km/sec and 7000 km/sec

View of Electron Distribution Function fe and

Normalized Response Function R in the Vo

1%,



Fig.10

Fig.11

Fig.lZ

Hig .13

direction; Vy = 0; Vi 3100 km/sec, 4400 km/
sec, and 6600 kn/seci

Mean Response Function R versus ¥ = v/, Eor
Energy Channels 1, 2, and 4.

Mean Response Function R and the Double-
Gaussian Fit to R versus Alpha for the Fourth
Energy Channel (both were normalized to equal
unity at Alpha = 0).

Top figure defines the electron velocity W in

a coordinate system moving at the same velocity
as the proper frame of the plasma. The z axis
of the coordinate system is aligned along the
magnetic field direction. Bottom figure shows
the relationship between the cup .esordinate
system, the solar ecliptic coordinate system,

and the magnetic field vector.

View of a charged perfectly conducting spherical

12.

spacecraft surrounded by a fully ionized plasma.

The inner circle represents the s/c while the
outer circle represents the Debye sphere. The
dashed curve represents 4 possible electron
trajectory, where r is the radial wvector of the
electron, ¥ is the electron velocity, and Vz

is the electron velocity at r,.

Effective Potential V_ .. versus z = r/,AD for

fixed electron energy V ; impact parameters



Fig.

FLg..

Fig.

Fig.

T

Fig.

Fig

Fig.

Fig.

14

16

L7

18

1.9

. 28
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24

bD varied.

Effective Potential Veff versus z = r/ )\ D for
fixed impact parameter bD; electron energy v
varied.

Effective Potential Veff versus z for Special
Critical Trajectory; V= \)S and fixed; impact
parameter bD varied.

Critical Impact Parameter Squared versus the
Critical Point Distance Z

Critical Electron Energy “UC versus the
Critical Point Distance Z.

Parametrically Drawn Lecus of Critical Points
in (V_, (bDZJC) Srads.

Graphic solution for the maximum critical

energy (U_) for various spacecraft

c’max
radil Zg» where the parametric solution given
by Figure 18 is used.
Sinzq‘versus the Gritical Point Dastance Z.o
where Be is the maximum angle 8 for allowed
directions.
Parametric Solutions of Sin28C versus the
Critical Electron Energy \)C for various
Spacecraft Radii Zy

Electron Trajectories in Debye Screening

Potential ;Curve 1 corresponds to a critical

i G
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trajectory, where U = (U_) b, = (b while

c-max? P D)C’

Curves 2 and 3 are trajectories with smaller

impact parameters.

(a) Zy = 0.1

(b) z 1.0

0
(g 2. = 1050

0

Fig.25 Electron Trajectories in Debye Screening Potential;
trajectories rotated so they strike the spaceeraft
at the same point "P". Angles next to solid
curves indicate the asymptotic directions of the
actual trajectories; angles in parentheses next
to the dashed lines indicate the apparent asymp-
totic direction the electrons appear to be coming

from. The electron energy U =.1.0 is the same

for all trajectories.

(a) b 0.1
(b) B ™ 1% 0]
(c) z, = 10.0
Fig.24 View Showing Spacial Dependence of 7 (F;, ?;).

Inner circle represents the spacecraft,which

1§ rotating; spin axis perpendicular to ecliptic
plane and pointing north; ﬂc indicates angle of
rotation; outer circle represents Debye sphere;

direction of wind velocity indicated at bottom

of figure.
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29

26

155

Iso-contours of the 1n fe(?;, 5;). Convected
Maxwellian assumed at infinity; electron tem-
perature TC = 1.2 x 105 OK; spacecraft potential
Eo = 4.5 volts for solid contours; dashed circles
for @0 = 0 volts; wind velocity 'is pointing in
radial direction away from sun and has a magni-
tude equal to 400 km/sec (arrow in center of
figure indicates wind velocity vector in space-
craft frame); Ec indicates angle at which 1n fe
(f;, ?B) is observed at r = r_; refer to Fig.24;
shaded region indicates forbidden zone; W normal
velocity of electron (-r direction) in thermal

- & —
speeds, w, transverse velocity relative to T

i
of electron in thermal speeds. Contours num-
bered 1 to 7 correspond to electron velocities

egual to 0.4, 0.6, 0.8, 1.9, 1.2, 1.4, 1B
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(e) ﬁc = 1809, = = 10.0

Iso-contours of 1n fe (?;;?5) seen by detector
with angular response perfectly differential
in angle; W wy are the X, Y components of
the electronivelocity in salar ecliptic

coordinate system; otherwise figure is the

same as Fig. 25 (see text for details).

Same as Fig. 29, except normalization correction

has been factored out (see text)
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One-dimensional Analog of Spherical Model;

plot of "spacecraft™ potential 0 versus z;
surface of spacecraft for this problem

occurs at z = 9} outer surface of Debye

sphere occurs at |z| = 'AD: wind velocity
direction indicated; electric field E from
potential indicated.

Log-Log Plot of Electron Number Densifty versiis
the Radial Distance r from the Sun (ro = radius
of sun); densities characteristic of equatorial
regions of the sun, curves plotted are model
fits to data (see text);"Spherical Model"
Log-Log Plot of Wind Velocity versus ¥;
"Spherical Model"

Log-Log Plot of Effective Temperature versus I;
"Spherical Model"

Log-Log Plot of Effective Heat Flux Vector
versus r; ''Spherical Model"

Magnetic Field Line Topology of Model Fit to
Observed Hole Boundary of Polar Coronal Hole
studied by Munroe and Jackson (1977); pluses
are data points from Munroe and Jackson;

angles next to field lines indicate co-latitude
of field line at solar surface, r = rg,

Log-Log Plot of Electron Number Density for

Polar Regions of the Sun versus r; Polar
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41

42
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Coronal Hole Model

Log-Log Plot of Wind Velocity versus t;

Polar Coronal Hole Model

Log-Log Plot of Effective Temperature versus
r; Polar Coronal Hole Model

Log-lLog Plot of Effective Heat Flow Vector
versus r; Polar Coronal Hole Model

Plot of Polytrops Index versus Radial
Distance T from the Sun; "Spherical Model™
(see text)

Same as Fig. 41, except this profile is for
Polar Coronal Hole Model

Plot of the Coulomb Mean Free Path for a Ther-
mal Electrom over T Yersus the Radial Distance
r from the sun; "Spherical Model"

same gs bPig. 43; except this profile is for
Polar Coronal Hole Model

Log-Log Plots of various Macroscopic Parameters
versus r (see text for definitions); angles
indicated are the latitudes of the field lines
at 1 AU for solid curves; shaded regions
correspond to field lines with latitudes at

1 AU intermediate to those shown in the figure.
Log-Log Plot of Wind Velocity versus r showing

Dependence of Profile on Density Model Parameters;
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47

48

49

50

12

Polar Coronal Hole Model; wind velocity 500
km/sec at 1 AU; curves number 1, 2, and 3
correspond to demsity profiles 1, 2, and 3
in Big. 37.

Same as Fig. 46, except that Effective
Temperature is plotted.

Same as Fig. 46, except that Effective Heat
Flux Vector is plotted

Plot of f* versus Particle Velocity in
Proper Frame of Plasma. Solid curve
corresponds to model by Scudder and Olbert
(1978)** where f_* is a kappa distribution
function. Dashed curve corresponds to model
by Feldman et al. (1975)9 using typically
observed parameters at 1 AU (see text).
Plot of F versus V; ("energy' spectrum) forw
spectrum # 1. Numerals on the graph sym-
bolize the angular sector for that data
point (see Fig. 2). Circled numbers along
abscissé indicate energy channels 1 to 8 £or
the data points. Lines drawn through data
points are not fits, are only drawn to aid
the eye (BB = 70.50, ﬂB = 1190, n, =42, V =
346 km/sec, flow coming slightly from the

east at =6 O) (see text)
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Same as Fig. 50, except Plot of Bata for
Spectrum #2 (8, = 150°, g = 115°, n, 27,

V = 338 km/sec, flow coming from the east
af:%5 9

Same as Fig. 50, except lines drawn are an
actual fit to the data where a convected
Maxwellian is assumed for fe (Result of fit
ie T ow 1.0 x W07 PR B = 0 polles)

Same as Fig. 51, except lines drawn are an
actual fit to the data where a convected Max-
wellian i1s assumed for fe' (Result of fit

is T, = 1.12 x 10° K, §_ = 0 volts)

Angular Plot of Observed F versus ﬁc for
Spectrum # 1., Numerals used for data points
indicate the energy channel number for that
data point (see Chapter I). Circled numbers
along abscissa indicate thenumber of the
angular sector for the data points (see Fig. 2)
Solid curves are a fit to the data using a
convected Maxwellian for fe. Vertical dashed
lines indicate directions along B. Horizontal
dashed line indicates 5 picoamp level.

Same as Fig. 54, except for Spectrum #2

Same as Fig. 54, except data plotted corresponds

to spectra more typical of the solar wind
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21«
(np = cm_3, ¥ = 547 km/sec) (Result of
£t s To = 180 10 g 9, = 0 volts
Plot of F versus Vé derived from Preliminary
Electron Measurements on Veyager 2; pluses
are data points; solid curve is a model fit

to the data using two non-convected Max-

wellians for fe (np =4.1cm, V 410 km/'S€<),

total electron temperature T 1:08 %

105 “ K), see text for details.
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INTRODUCTION AND SUMMARY

The primary objective of this thesis is to understand the
physics of interplanetary electromns. One of the means of
accomplishing this goal is the analysis of electron measurements
made by the M.I.T. detector on Imp 8. Because of unexpected
difficulties in the detecter, mot all githe griainal soails
could be achieved. More specifically, the heat flux due to
electrons cannot be acquired from the data. However, we are
able to show that estimates of the electron temperature can be
extracted from the measured currents quite well.

Our effort to carry out the electron amnalysis is the first
real attempt within the M.I.T. 8pace Plasma Group in this direc-
tion. Heretofore, the major emphasis at M.I.T. had been confined
to studying the positive ion component. Since I was the first
one to attempt the analysis of electron measurements by M.I.T.
detectors, a new analysis program had to be developed. Methods
of analysis had been developed for proton measurements; since,
in contrast to protons, electrons are highly subsonic, these
methods specifically designed for proton measurements did not
apply. In Chapter I after giving a brief description of the
detector, the general expression relating the measured currents
and the electron distribution function is given. From this
expression,it is apparent that an accurate knowledge of the
transmission (response) function of the detector is required
if any quantitative information about the electron distribution

function is to be acquired from the measured currents. This
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expression is shown to be reducible to a simpler form, taking
advantage of the subsonic character of the electrons. Eitting
the response function by a sum of two Gaussians we are able to
express the measured currents in such a form that analytical
expressions for the current can be derived. These expressions
are a function of both model dependent distribution function
parameters and detector parameters; they can be fitted to the
currents giving us estimates of various model dependent physical
parameters such as the electron temperature.

In Chapter 1T the effects of spacecraft charging upen
electron measurements is investigated. This detailed study was
initiated by the controversial paper by Feldman et al. (1975]9.
In this paper, which contains the results of electron measure-
ments made on Imps 6, 7, and 8, the authors corrected the data
improperly for the effects of spacecraft charging. Thus, there
was a need to re-analyze the problem. Since the actual solution
of the spacecraft charging problem is virtually impossible to
obtain, we make the ad hoc but qualitatively reasonable assump-
tion that the potential is described by a Yukawa type screening
potential (spherical symmetry), where the screening distance
(Debye length) is an adjustable parameter. Since we do not
know the screening distance, we can only estimate the range of
corrections which occur. A form for the electron distribution
function far from the spacecraft is then assumed and, using
Boltzmann's equation, the electron distribution function at the

spacecraft surface is determined.



24.

As expected, spacecraft charging effects are not trivial
for electron energies on the order of the electron thermal speed
(13 eV). It was discovered that depending upon the detector
design (integral, differential in angle), one will observe
different corrections to the data (electrons seemingly drifting
away from the sun, toward the sun). The corrections are found
to be very sensitive to the size of the screening distance
relative to the spacecraft radius (spherical geometry, plane-
parallel geometry). This study shows that corrections on the
order of 20% to the observed electron temperature must be expected.
A shift in energy experienced by electrons and applicable for
glectron energies sufficiently above the spacecratt potential
(electron energies z 10 eV for spacecraft potential X 2 eV) was
derived. Finally, because most of the heat is carried by the
suprathermal electrons, it was concluded that the heat flux
measurements are not affected by spacecraft charge provided the
spacecraft potential is not too large (é 53 eVi.

One needs for a proper analysis of the electron data some
theoretical understanding of the physics of interplanetary
electrons. For this redasaonm, I the fipst half of Chaptexr IIL,

a brief review of coronal and solar wind observations is given
along with a review of the present status of solar wind theory.
In Chapter IV, a review of electron observations is given along
with a review of the two present contending models for the energy
transport (convection, conduction) by interplanetary electrons.
First, the model proposed by Feldman et al. (1975)9 is discussed.

This model, where the authors suggest two separate electron



Z9 .

populations (core, halo) described by bi-Maxwellian distribu-
tions drifting relative to each other in the proper frame, is
difficult to justify from general physical arguments. According
to this model, the thermal energy is transported in the proper
frame (heat flux vector) purely by convection. We felt ‘that
the more conservative point of view, where the heat flux vector
results from a skewness in the electron distribution function
(conduction) must first be considered. In the process of develop-
ing a thoery of energy transport by conduction in the inter-
planetary medium, it became apparent that the macroscopic
parameters (wind velocity, density, temperature, heat flow vector)
of the interplanetary medium as a whole was needed. By using
the basic conservation relation for mass, momentum, energy, and
magnetic flux, along with empirically determined electron density
distributions in the corona and interplanetary medium, and
empirical coronal magnetic field line topologies, we were able
to determine these macroscopic parameters forthe interplanetary
medium as a whole, In the second half of Chapter III, the results
of these calculations are given.

Finally, in Chapter V a few samples of electron data from
the M.I.T. detector on Imp 8 are given and analyzed, showing
the applicability of the method developed in Chapter I, and that
measurementsofthe electron temperature can be derived from the
data. We show the core electrons to be Maxwellian and moving at
about the same velocity as the protons. The presence of pickup
prevents us from seeing the suprathermal electrons so that we

cannot determine by how much the higher energy electrons deviate
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from isotropy; therefore, we cannot acquire estimates of the

heat flow wector from the data, Before concluding, a preliminary
sample of Voyager 2 data is displayed, showing the significantly
improved dynamical range of M.I.T. type detector over that on

Imp 8. Voyager measurements demonstrate the presence of the

suprathermal electrons.
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CHAPTER I

PROPERTIES AND ANALYSIS OF M,I.T. PLASMA DETECTORS

(1.) Introductory Remarks

In this chapter, we discuss the development of an anal-
ysis program for slectron medsurements made by the MJT,TE.
Imp 8 detéctor in the solar wind. In order to understand
better the approximations made and the motivations behind
the approach used in developing this analysis program, some
of the observational properties of solar wind electrons are
reviewed.

Electron observations in the solar wind have been made
by @ number of different spacecrafts: Pieneer; Ezplorer,
Vela,; @Ggo 5, Imp 6, 7, and 8, Mariner 10, Helios A and B.
Results of these observations have been given by Wolfe and
McKibben (1968),1 Wolfe et al. (1967),2 Montgomery et al.

5,4 0gilvie et al. (1971),° Montgomery (1972),°

(1968, 19747,
Serbu (1972),7 Feldman et al. (1973, 1975),8’9 Scudder et al.
{1973),1O and Rosenbauer et al. (1976).11 Most of these ob-
servations have been made near the vicinity of the earth,

and thus confined to the ecliptic plane and one astronomical
unit (AU) from the sun. Exceptions to this are Mariner 10
and the Helios A and B spacecrafts, which, respectively, came

as close as 0.46 AU and 0,3 AU to the sun, though still con-

fined te the ecliptic plane.
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Solar wind electrons with energies less than 60 ev,
commonly called '"core" electrons, are observed to be approx-
imately isotropic and Maxwellian. In contrast, the distri-
bution of electrons with energies greater than 60 ev deviates
from that Maxwellian, exhibiting a high-energy tail in excess
of a Maxwellian profile.3 This component is commonly re-
ferred to as "suprathermal' or "hale' electrons. As an ex-
ample, refer to Figure 1, which is a plot of the electron
distribution function determined from electron measurements
made by the Los Alamos Scientific Laboratory (LASL) plasma
detector on Imp 8 and published by Feldman et al.g

The bulk velocity of the electrons is found to be about
the same as the bulk velocity of the positive ions (wind
velocity). Bulk speeds for electrons and ions during quiet
times vary over the range from 300 km/sec to 500 km/sec with
an average of 425 km/sec or equivalently energies of 930 ev
for protons and 0.5 ev for eslectrons. The average elecliron
density, n_, is about 10 electrons - cm_g, and within exper-
imental error, is found to be equal to the positive ion den-
sity.g A typical electron temperature T  is 1.5 x 10° %% 2

059,10

13 ev. For that temperature, the rms electron thermal

speed ﬁe is about 2600 km/sec, and since wind speeds V are
about 400 km/sec, the electrons are '"subsonic.'" In most in-

stances, the electrons are found to be two to three times

4 o 12]_

hotter than protons TUPV 6 x 10 K [Feldman et al. (1976)

Exceptions to this rule are found in high speed streams,
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V > 650 km/sec, where proton temperatures have been observed
to be two to three times greater than electron temperatures.1
The distribution function for electrons, though nearly iso-
tropic for low energies, is skewed at higher energies along
the magnetic field direction such that a non-zero third moment
- - -

in the proper plasma frame, i.e., heat flow vector de resulits

Lrd

The a; varies in the range 10 ~ to 1072 ergs e e

se
and generally has been observed to point in a direction away

Byl g ol

from the sun along the magnetic field. The de is

observed to be about 40 to 100 times greater than that for

5,8,9 Since the

protons, as expected on theoretical grounds.
electrons dominate the transport of thermal energy in the
solar wind, detailed study of the third moment of the elec-
tron distribution function fe deserves special attention.

To obtain a reliable estimate of a; one needs to know the
shape of fe in quite some detail. The empirical knowledge
of fe depends strongly on the quantitative understanding of
the response of the detector and the method of data analysis.

Therefore, we begin our discussion with the description of

the M.I.T. electron detector.
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(Z.) A Deseription of the M.I.T. Detector en Imp 8

As shown in Figure 2, the detector is cylindrical in
shape with an aperture af one end and a collector plate at
the other. It contains numerous plane grids.13 Any charged
particles striking the collector plate will contribute to the
current I, shown leaving the collector plate. Since the col-
lector plate is ac coupled to the amplifier network, only the
alternating component of IC will <cafitribute to the 'current
A1 shown entering the amplifier network. A modulated
voltage is applied to grid 2; it is composed of a dc potential
Io with a superposed 1 khz square wave of amplitudeliﬁ = §+
3 1; as shown. The sign of the dc potential relative to
pround imposed on grid 2 (“ground" stands for the surface of
the spacecraft), is the same as that of the charged particle
being detected (positive for protons, negative for electrons),
the peak-to-peak value of the square wave defines the energy
"window," and the average value or dc component defines the
energy "level." Grids 1, 3, 4, 5, and 6 and the walls of the
cup are at ground potential. Grid 1 allows for a well-defined
potential barrier between grids 1 and 4, while grids 3; 4, 5,
and 6 are shielding grids preventing the ac voltage on the
modulator grid from inducing currents on the collector by
direet capacitive coupling: Grid 7; the suppresseor grid, i3
bigsed to @ pDegative potential in erder to preyvent the escape

of the photoelectrons and secondary electrons from the
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collector plate. The suppressor voltage is -200 volts for
proton measurements and -20 volts for electron measurements.
The operation of the instrument can be described imn the
following way: Let E+ and ﬁ_ represent, respectively, the
upper and lower levels of the square wave potential applied
to the modulator grid. Due to geometry, only the normal
component of the electron velocity Vi will be affected by
the potential barrier between grids 1 and 2. The correspond-

ing upper and lower v, limits are given by

émev;t =€§i (1.1)

When the modulator is at potential }; only electrons with

Ve >’VZ+ will penetrate the potemntial barrier, while particles

of opposite charge are virtually unaffected by the potential
barrier and thus contribute only a dc current to the collector.
Furthermore, there is a contribution to this dc current for

electrons with VZ:> g

,» for the modulator potential @m = @;.

Since more electrons pass through this potential barrier for

V. >V than for v > v the collector receives an ac cur-
z 7~ z i

+ 1
rent from electrons 180° out of phase with the modulator po-

tential for electrons satisfying the condition

W (1:2)
Ve_< Ve <,
If the collector is ac coupled: to the amplifier network of
the instrument, then only those electrons within the range

indicated by expression (1.2) are measured.

Briefly, the electronics is, in part, composed of a high
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gain preamplifier ac coupled to the collector whose output
is connected to a series of intermediate amplifiers. The
instrument is designed to measure currents over a four decade
range with a minimum sensitivity approximately equal to two
piceamps. The size of the input signal determines” atewhat
point along the amplifier string the output signal is sampled
(intermediate amplifiers are connected in series such that

the total gain G, + N_ G, where N is the number of amplifiers

it
the signal passes through, and G is the gain of each ampli-
fier). The output of these amplifiers then passes through a
synchroneous detector which only selects signals of the proper
phase (180O out of phase with modulator potential). Those
signals are rectified and provide a current which charges an
integrating capaciter., The total charge accumulated (veltage)
is proportional to the initial signal strength, total ampli-
fier gain, and integration time. Then a logarithmic analog-
to-digital (A/D) converter converts this output voltage to

an 8-bit word, which is temporarily stored in a memory until
asked for by the spacecraft and sent back to Earth in the
spacecraft telemetry stream. Due to the logarithmic conver-

sion, a4 constant quantization evrer telative to the caryent

I on the order of 1.6% results.
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(3.) Operational Modes of the Detector on Imp 8

The M.I.T. detector is mounted perpendicular to the
spin axis of the Imp 8 spacecraft (s/c) as shown in Figure
2, such that the detector normal sweens through a 360°
circle in the ecliptic plane.

The angular response of the detector is directionally
differential in the ecliptic plare along the azimuthal direc-
tion of rotation (y-axis of cup) and integral perpendicular
to the ecliptic plane along the spin axis (x-axis of cup).
The corresponding acceptance angles are, respectively, ion
and +60° wide with respect to the cup normal.

The energy range is from 50 ev to 7 kev for ions, and
for electrons the energy range can either be 22 ev to 140 ev
or 22 ev to 2 kev depending upon the instrument mode. In all,
there are 26 energy levels or channels which are displayed in
Table 1 along with the corresponding velocity range for protons
and electrons. The energy levels are contiguous and logarith-
mically spaced and except for the first few energy levels,
which are used only for electrons, the ratio of the width of
the energy channel to the mean channel energy is constant and
on the order of 21%. Note, that when we use the word "energy"
in this context (energy level, energy channel), we more pre-
cisely mean the energy of an electron with velocity normal
to the modulator grid plane. The corresponding resolution

for the normal velocity, oy into the sensoerVZ/VZ 15 10.5%
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where
and
ﬁ\/é: Vi*“\/g._ (1.4)

Each s/c rotation is subdivided into a number of angular
sectors. The size of each angular sector and their number
are determined by the instrument mode. In the case of elec-
tron measurements, the angular sector size and sequence as
shown in Figure 2 are the same for all modes, i.e., tracking
mode (TMS), non-tracking mode (NTMS), and acquisition mode
(AMS). Referring to Figure 2, one can see that no measure-
ments are made in the forward 90° sector centered on the
sunward direction because of a photoelectric effect. The
remainder of the angular sweep is subdivided into seven 25,75,
and one 25.31D angular sector. The 25, 51° angular sector 1s
always the last one measured in an angular sweep where the
remalning 8.44° is used to perform various logic operations
by the instrument, such as stepping the modulator voltage
to the next energy level.,

The energy coverage for electrons in NTMS and AMS are
identical and ranges between 22 ev and 2 kev, using 21 energy
levels in all. As for TMS, the energy range occurs between
22 ev and 140 ev, using only 8 energy levels. In this mode,
for every proton spectrum, two electron energy levels are

sampled, so that 4 proton spectra are taken for each 8-level
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electron spectrum (25 seconds and 2 minutes, respectively,

for each proton and electron spectrum). In doing this, a

25 second gap exists between each subsequent pair of energy
levels so that time fluctuations on the order of this interval
will tend to make one unable to distinguish time and energy
variations between data point pairs. Therefore, one must
compare subsequent spectra to be sure time variations are

not affecting the measurements. Note, even though the time

to take an NTMS or AMS spectrum is.about 2 minutes, the energy
sweep for electrons is carried out continuously with no time
gaps, such that only about 20 seconds is required to cover

the first 8 energy channels. (In most cases the electron
current is at the noise level beyond the eighth energy channel.)

A complete angular-energy scan of a spectrum is performed
by integrating the sensor signal while the instrument sweeps
through a selected angular sector and then sampling the inte-
grated current at the end of the angular sector sweep. This
is done for all angular sectors of an angular sweep at a
fixed energy level. The instrument then steps to the next
higher energy level before another angular sweep is done, etc.,
until the desired energy range is covered.

The characteristic feature of TMS 1is to track the preton
peak, using only 8 energy channels centered around the proton
peak determined in the previous spectrum. This is done in
order to reduce the time interval between spectra to 25 seconds

and to allow one to see structure on a shorter time scale.
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For example, the thickness of a shock is about equal to one
proton gyroradius Rpf\'Sokm and since the spacecraft velocity
is ~ 2 km/sec, the time for the spacecraft to pass through

the bow shock is on the order of 40 seconds or two TMS spectra.

The instrument operates in TMS when high flux conditions
prevail (integrated flux in any angular sector greater than
some threshhold Tl will keep the instrument locked in TMS),
while in low flux conditions the instrument is in NTMS.

Becanse of this, the instrument operates in TMS for typical
solar wind and magnetosheath conditions, and in NTMS when

the spacecraft is in the outer magnetosphere and magnetotail.
The main function of the AMS mode is to perform a general
survey of the plasma conditions to avoid the instrument being
locked in the wrong mode.

Since the angular distribution is narrow for ions in the
solar wind, the 90° sector centered around the sunward direc-
tion is subdivided into eight 11.25° sectors, while the re-
maining sectors are 45° wide. In NIMS these eight 11.25°
sectors are replaced by two coarser 45° sectors because of
the lower particle fluxes. The AMS mode has the same angular
sweep as TMS, while having the same energy sweep as NTMS.

For this instrument the cup has a split collector allowing

for determination of the north/south angle of the wind velocity.
However, for NTMS and electron measurements, only the full
collector (signals from both halves) is used because of low

current conditions.
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(4.) Transmission Function of the Detector

(a.) Relation between the collector current and the electron
distribution function

The mathematical relation between the measured current
and the electron distribution function fe must be known if
one is to extract detailed quantitative information on fe.
This relation is analyzed in terms of the so-called 'trans-
mission function'" defined as the fraction of a monoenergetic,
broad, parallel uniform electron beam incident at a given
direction upon the entrance aperture and detected by the
collector. Thus the current produced by a beam of electrons
is eguel to the product of the flux densitly of the electron
beam, area of the entrance aperture A, electric charge e,

. - & —» = 3
and the transmission function T(¥; VZ+), where Ty 18 dis-

played because T is a function of the modulator grid potential
(energy dependent response).

In reality, we do not deal with a monoenergetic beam of
electrons, but rather with an unknown distribution of elec-
trons in velocity space. One can imagine an infinite number
of such monoenergetic beams, which are composed of an infini-
tesimal number of electrons, coming from all directions and

with different energies. IThe expression
Lg 2
f (V) V,dVv

represents the incident flux density of electrons upen the
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cup aperture from one of these infinitesimal beams, where
V) dv
f. (V
represents the number density of particles with velocity v
-~ -~ - s
in the range from v to v + dv, and v, is the normal component
of the velocity into the cup.

The ac component of the current received by fhe collector

will then be given by the following integral expression:

AT = gA{/)g(\”/’) T, \g_)\gofj‘/‘“f{(?)T(\’/;;"%)\'éo(}V} (1: 5y
Var _

V.

where each integral represents the integrated flux received
by the collector when the potential om the modulator grid is
equal to E;. Note that the arguments for T(Gﬂ VZ_) in the

+
two integrals are different, indicating the energy dependence
of the transmission function. Therefore we are unable to
combine the two integral expressions. Also note that the
positive values for the electric charge e and the potential
§+ will be assumed throughout this chapter. One can see from
(Ils) that a prerequisite for the determination of fe is know-
ledge of the transmission function for the detector. The

actual details for the inversion of this equation in solving

for fe shall be reserved for the next section.

(b.) The structure of the transmission funetion

The transmission function of the M.I.T. Imp 8 Faraday
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eup is determined by {1]° the Yeffective transparency! Wof

the slats TS, (2) the grid transparency T and (3) the

G.’
"geometrical intercept area coefficient," TO. The coeffi-
cilent TO represents that fraction of the electron beam cross-

section, parallel to the aperture plane, that is intercepted

by the collector. The energy dependence is implied by Vo

in the arguments for T Tg, and Ty We thus have

G?
T(T3Ves) = T AT Vo) To(P5 Vey) To (V5 iy ) (146)

Brief discussion concerning T., Tg, and T, will now be given

along with pertinent derivations.

(1) "EBEffective transpareney™ of slats

In Figure 3a we have a drawing of two slats. The purpose
of the slats is to produce an angular response which is dif-
ferential in the y-direction but broad in the x-direction,
giving the detector a capability of determining fe as a func-
tion of angle as the spacecraft rotates. It follows from the
definition for T(Vﬁ VZ+) that one needs only to consider
monoenergetic broad pa;allel uniform beams coming from an
arbitrary direction in deriving Tes Tos 02 T, The principle
behind the slats is identical to that of blinders letting
only the light at normal incidence upon the slats get through

(shadow effect). Thus, by referring to Fig. 3a we have

TS = a/b

where a represents the fraction of the beam getting through
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the slats, and b represents the total beam incident upoﬁ

the slats. Then from Figure 3a it 1s easy to see that
D=a+H tang

and b = D + W, where D is the distance between slats, H and

W are, respectively, the height and the width of the slats,

and

A= tan lgzl

is the incident angle of the beam upon the slats. Thus,

using the above relations we have

bV
TSN ( ‘ i D’ va_}) £°r Kj; </3’mm< (1 7)
V) = :
T;;( O J["" 3 Elgmak
where Tgy = D/ (D + W)

is the normal transparency of the slats andﬁfﬁax 15 the maxi-

mum acceptance angle. From Table 2, which gives all pertinent

physical parameters of the Imp 8 detector, D/H = 0.1735

. 0
gives us & 10 o and

it SN 0.8675. Note, the energy

dependence in the argument for ko has been dronped since the

slats are at ground potential.

(2) Grid transparency

The grids are a mesh of finely woven tungsten wire
which can be approximated by two sets of parallel wires
aligned perpendicular to each other in the x,y plane of the

cup. Thus, the transparency for one grid plane is



where the index i specifies the grid plane, and Lo i

th 4 i
are, respectively, the trafnsparency of the i
grid plane in the x and y directions. Then if one assumes
no correlations of wires in one grid plane with those in
another grid plane (very good approximation when one rotates

the grid wires in different grid planes at different angles

relative to one another] one gets

AN
TG—_;: '’ TG. FECR:
. 1
1=1
where n specifies the total number of grid planes. Figure

3b i1s a cross-sectional view of two grid wires representing
g single layerrof parallel wires of @ grid plane. The guan-
tities b and a have the same meaning as those for the slats;
thus the grid transparency along the x-axis, for example, is

TG,E a/b
%

1t is easy te ses from Fip. 3b that

b=a+dseceG

where d is the diameter of the grid wires and secéaG =

V1 + VXZ/VZZ. Using the definition of Tn along with the

=1

X
expression for sec g one gets the following
J

, 2
i SR (%% VE—:15:7::E (1.10)

X
1

and for the transverse velocity ¥y E 0, the normal trans-

parency 1is
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&y <2
P, = Lk =Lgk )~
i 1

To get the total transparency of the grids TG(Vi VZ+), one

needs to substitute expressions of the type (1.10) for TGx ;
i

T into (1.8) for each grid plane, and then substitute

Gy’
these expressions into (1.9). Table 2 shows d/b equal to
0.07 for the modulator grid and 0.02647 for the remaining
grids, Using the above expressicns for TGN. and equation
(1.9), one cbtains for the normal transparency of the grids
TGN = 0.627. Thus, the total normal transparency

Iy =

TSNTGN = 0.544

The angular width of the grid transparency TG is much
broader than TS' For example, the maximum angle of accept-
ance for the modulator grid, which has a larger d/b ratio
compared to the other grid planes and thus the narrower
angular width, is about 840, which is much larger than the
angular width for the slats @ . = 1",

(3) Geometrical intercept area coefficient, TO

The transmission coefficient TO 18 equal to the fraction
of a broad parallel beam passing through the aperture at a
particular angle 6% that is intercepted by the collector
plate. In other words, refer to Figure 4, the common area
of the collector circle and the aperture circle, which is

projected down upon the collector at the angle E%. Then this

common area divided by the area of the aperture circle is
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equal o TO. The distance Ax shown in Figure 4 is the total
transverse displacement of an electron between the aperture

and collector. The common area of the two circles Acom ThGs

equal to twice the sum of Ay, the area of the triangle LMN,

and the areas AZ’ AS of the arc segments 2, 3 defined, re-

spectively, by the area between chords MN, ML and their

eo¥responding arc segments. Thils
T = A i 2 15 Tl
o~ Peom MTh (1.11)
where Acom = Z(Al + A2 + ABJ’ and oy 15 the radius of the

aperture circle (rA L rc). Now Al = 2 (OM) (LN), and A,
A3 are equal, respectively, to the difference between the
areas of the arcs KMN, QML and the triangles KMN, QML. In
order to determine the areas of these triangles, one must

know the height OM and thus x. The distance x is given by

’ ; : 2
the simultaneous solution of the equations rCZ = x + yz,

and rAZ = (x-Ax 2) + y2,~where T is the radius of the cellector
Solving for x and substituting into (1.11), one gets the

following expression for T

o
L ')(or- AR g 2y | Ok O = 5.2

o { e (oo - GER] For s

—_—

S <AXKK T+ or R2°<E, <61
L. A% & or & E’G‘fo

C

O

One can see from looking at (1.12) that the angular response

for TO is much wider than that for TS
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(c.) Plots of the transmission function

Now we are ready to discuss the behavior of the total

i 22 v2+) as a function of the electron veloeity, 1T is

apparent that we may look upon T as a function of the fol-
lowing variables, the two angles

B = gaut Vy/vz

-1
A tan VX/VZ

(1.13)

I

(1.14)

and the normal velocity v, and v, .

Figure 5 is a plot of the normalized response R & T/TN
versus &, for A = 0° and for fixed normal velocity v, set
equal to Vz' One sees that the /4  dependence

of T is mainly determined by the transparency of the slats,
which accounts for the cut off shown at A?i:,iloo. Though
not previously mentioned, there is an intermediate ring be-
tween the aperture and collector having a diameter slightly
less than the aperture. The shadow effect due to this inter-
mediate ring accounts for the narrower shape in T near & =
0°, instead of the that implied by (1.7).

Figure 6 is a plot of R versus & for & = OO, and for
various values of the normal velocity v ranging from Vo
to v, , with a step size equal to Z% of the wvelocity window
width. As one can see, a family of curves results, explicitly
showing the dependence of T upon the normal velocity v

(energy dependence in T) for fixed q;and;?. This energy

dependence stems from the refraction of the electron



45.

trajectories as they pass through regions of non-zero elec-
tric field. One can see from Fig. 2 that an electron ex-
periefices 4 repulsive force as it enters the potential bar-
rier between grids 1 and 2 (trajectory is concave upward),
and an acceleration between grids 2 and 3 (trajectory concave
down). The same will hold for the suppressor grid.

To show further how this comes about, consider the
transmission coefficient L It is apparent from 1doking
at Figure 2 that the electrons experience a transverse dis-
placement relative to the point they would normally strike
the collector plane if their trajectories were rectilinear.
This is equivalent to an increase in AXx, the distance be-
tween, respectively, the projected aperture circle and the
collector circle. For example, the relative displacement

AL due to refraction can be shown to be13

AL =L tonat | Trgical

.15y

where//(f Zeﬁﬁ/me VZZ, L is the distance between grids 1L
and 3, and & is the angle of incidence at grid 1. For

v, >> Vz—'/a 2~ 0, there is no deflection (AL = 0), while in
the other extreme Vel = vz_,/d = 1, the deflection 1is twice
that for rectilinear motion (AL = L tantl). For instance,

one can show from using Ea' (1.15) that for & = 45° there

&

will be an effective increase in & due to refraction, from

452 to 47.5% and 51° $er v_ equal to, respectively, Vi and

Vg s This gives rise to a small decrease in Ly from 0.47 to
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Vs but a significant reduction from 0.47 to

0.42 for W
5

0.27 for Ve v

_
The refraction of electrons between the grid planes
partially accounts for the reduction in T shown in Figure 6.

The remaining energy dependence in T resides in T The

Q-
effect is predominant at the modulator grid where electrons

in passing through theé potential barrier between grids 1

and Z experience a decrease in Vs while the transverse

velocity is unaffected. This results in an increase in the

angle of incidence at the modulator plane @G with respect

te that at orid 1,(90, and thus a reduction in T,. This

deflection becomes greater ds v, (note: by vV, we mean the

value of v, at the entrance aperture) approaches v from

above. Correspondingly, the transparency TG decreases such

that it vanishes for v, sufficiently close to Voo For ex-

ample, T, will decrease by 10% as v, varies from Vg T VEY +Av/10,
where ™ is fixed and set equal to 30°. It is important to

note that this dependence of the angular response upon v,

only becomes important for electrons with
v, <V, *+10%(aVe)
This means that R is only weakly dependent upon v, inside
an energy window, and allows us to replace this R by a mean
normalized response R X R(Q, B ; VZ).
It is worth mentioning that the bell shapelike behavior
4

of T for d's less than |[|+10”] is due to the presence of the

intermediate ring. If the ring were absent, the response T
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with respect to & would be flat for & £ |+10°].

One should also note that the angular response in the
x-direction, (predominantly determined by TO) is much broader
than that in the y-direction, where T has the following
limits in & and 4 :

il

0 for o >|*62°] and all @'s.

1]

T = 0 for ,3‘3[j10°} gnel all et¥s,

(d.) Secondary and extraneous effects on transmission function

Most of the effects introduced in this section could go
under the heading of pickup, which one normally tries to re-
duce as much as possible in the detector design. This sec-
tion is mentioned for the sake of completeness and follows
the general outline given in the paper by V. M. Vasyliunas.l3

First, electrons with ¥ )vvz may have trajectories where

+

they do reach the collector fozr ﬁm = ﬁ_, but for ﬁm = E+
miss the collector because of an increase in the refraction
of their trajectories. The same sort of argument will hold
concerning the transparency of the modulator grid. These
effects produce a current 180° out of phase with the modu-
lator (increase current) which is on the order of a few
percent for fe decreasing with energy.

Another problem is the extraneous modulated current
produced by photoelectrons from the modulator. The photo-

electrons strike the suppressor grid at different energies
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as ﬁm varies between ﬁ;. Since the yield Qf secondaries

from the suppressor is a function of primary energy ED’
and if the yield is greater for larger Ep (true for Ep(
1 kev), then an ac current in phase with the modulator is
produced. Due to the high flux of photons from the sun,
photo currents ﬁle_ll amp result. Thus, electron measure-
ments cannot be made toward the sun. The presence of slats
insures that one should have no problem for

45° £ &

Z O
5 /e &= S5

where ﬂg/c is the scan angle of the spacecraft shown in
Figure 2. Still another problem is the secondary electrons
produced by protons hitting the modulator at different

grniergies as @m varies between §+. Since the yield is pre-

portional to the primary energy (ED < 10 kev), this current

X

1s in phase with the modulator. But for regions the Imp 8
spacecraft passes through, this effect should be small.l3
Then there is the secondary emission of electrons at the

modulator and suppressor from electrons striking them, and
since the yield is proportional to the primary flux FD

i

where F  is greater for Eﬁ = ﬁ_, a current 180° out of phase

b 5

from the modulator results. This effect may be sufficiently

large to reduire corrections.l3
Among the remaining effects, the following one should

be mentioned: For the modulator grid wires, the equipotential

assumption at the grid plane is somewhat violated. For ex-

ample, the potential may drop as much as 9% of the modulator
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potential halfway between adjacent grid wires. Since the
window size 1s only 21%, the idea of a uniform potential
barrier is not rigorously valid. One tries to reduce such
effects by reducing the wire spacing of the modulator grid
without reducing the sensitivity of the detector or normal
transparency of grids too much. Corrections introduced by
such eftects can only be déetermined experimentalily s Ezxperi-
ments seem to show such corrections to be small for reasonable

wire spacings and distances between grid planes.
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(5.) Analytical Evaluation e¢f Equatiecn (I.5]

(a.) Simplification of the expressions for AI

The main objective of this section 135 the explicilt
evaluation of Equation (1.5). This equation as written is
not in a form amenable for numerical computations. In re-
viewing the observational characteristics of solar wind
electrons and the properties of the detector response (see
Figures 7 and 8), one may conclude that fe is broad compared
to the detector's response in the y-direction, while compa-
rable in width with respect to T in the xsdirection. Using
this information, one can simplify Bg. (1.5) considerably
without need for explicit knowledge of fe’ exeept that it
be broad in a certain sense to be explained later. If the
distribution function fe is sufficiently steep (Maxwellian,
for instance), the corrections to Al by setting T(ﬁ% VY., )&=

Zitk

T (v: % _)may be ignored. Complete numerical integrations

Z
of Eq. (1.5) were performed without any approximations con-
cerning the transmission function T. Using a Maxwellian
distribution for fe’ we found that the error in combining

the twe integrals in Eq. [(1.5) dis less than 1%. We thus

are justified to use instead of (1.5)

AI:@AT;// /£(¢>R(\7SV2_) Ve o’V (1.16)



Further simplifications result if fe is broad compared
to the angular response. In such situations one may resort

to the mean value theorem. One has:

v2+ % VE-

AI —:eAT,q ol»@:é(%ﬁf){/ R (Vs vz VEV{V)'OIVE} (1.17)
~%V3_

V,
2
vx:—w

where the limits of integration in Vy are explicitly shown,
and the parameters 7. gylie, respectively, somewhere within
the ranges v _< = Vo —% vz< 7 < +-3~VZ. If the detector
response in,ﬁ and v, is differential with respect to f , omne
can make the approximation that 7% 0 and EDQ:VZ. In order

to estimate the error in making this approximation, let us
write the Taylor series expansion of fe around Vy = 0, %

z
and substitute it into (1.16). We thus have:

AIfeAR/M"é(%O)@{\/ {v,_ S

Vi * m oo

[ (F 2] (R)+[; 5]

&
.\5

Vi, 0,V 0, % —%
where
Vi, +%v§
s —
Io: / R(VSVE—)V?,AVE”/V)‘
‘/2__ _% Yz

Il, IZ’ and T3 are similar in form to the above expression

for I,. They may be obtained by replacing ¥ in the integrand
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for Io by v_ v v, (v 2. The second and

z Y Y, = VZ) and v_ vy

Z
fourth terms on the r.h.s. of (1.18) are correction terms

to the intepgral for AT, resulting from the detector not

being perfectly differential in Vy, while the third term is

a correction due to finiteness of the width of a given energy
window. The response is even in Vy, thus the integral Il
vanishes by dinspection. In order to get an estimate of the
size of the I3 term relative to unity, we may take into ac-
count the fact that R(V; v,_) is not a strong function of

¥ in the range from Yy, TO ¥, .. Using ‘Eq. (1.7) for R and

a Maxwellian for fe one gets:

(3R] (2) = tBYE)0-%%) oo

)

. i . 2
Since electrons are subsonic, the correction term ZVV /we

is small compared to unity for typical values of VY and W o
and thus can be dropped. In order to obtain an estimate of
(1.19), it is convenient to proceed graphically. For this

purpose, refer to Figure 7, which shows a typical fe in the

solar wind. Superimposed upon fe is the normalized response

of the slats R, where the lower refers to W = 3100 km/sec

and the upper to v, = 7000 km/sec. Recalling that Vy - %VZ,
we see that Vs i | 540 km/sec for the lowest energy chan-
nel and Vy e - L1200 km/sec for the eighth energy channel.

Since W is typically 2000 km/sec, Eg. (1.19) varies in the

range between 1.2% and 6%. Thus, we see that we are justified
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in dropping the I; term in B (118 ).
Using the same approach for the third term in (1.18),

one gets:

L] (2) - -5 (5

For all energy channels used, [&vz is always less than
700 km/sec. Thus, even for w, as small as 1500 km/sec (i.e.,
T = 7.4 x 10* °K), Eq. (1.20) is less than 4.5%. In order
to show that the detector is differential for all e and to
obtain more typical estimates of (1.20), it is convenient
to separate the electrons into two separate energy regimes.
Electrons with energies less than 60 ev ('"core'" electrons)
have thermal speeds we’\'1900 km/sec, while electrons with
energies greater than 60 ev (suprathermal electrons) have
thermal speeds wef\‘4700 km/sec. Thus, for energies less
than 60 ev (first six energy channels), (1.20] is emnly 1.35%
while for energies greater than 60 ev, (1.20) is negligable
pntil one approaches the highest encvgy chaniels 2 kev,
where sz ~ 2800 km/sec gives a value for (1.20) ~8%. One
might then expect we:>> 4700 km/sec at these energics. Thus,
the approximation that the detector is differential in v,
is very good. Neglecting the correction terms, which are

no larger than 6%, (1.18) reduces to the following:
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jad v 2
2+ 1
AT :eATAv["(V* {e(““o‘@{/ R(¥;30 vl o (1.21)
y, = 20 Ve TpVe

(b.) Evaluation of the integral involving R(V; v

)

7 -

Shown in Figure 8 is a drawing identical to that in
Figure 7 except that the normalized angular response R is
plotted as a function of v, for various values of v, in the
range 3100 km/sec £ v, < 7000 km/sec and vy = 0, One can
see that fe and R have the same width, while at higher
energies R extends out to many thermal speeds and becomes

- = X
very broad compared to fe' For example, Ve mas v, tan

, where O 2 5z°
m

i y land for Vs in the range noted to

max

: : & £
above, Vo whay MAFIES AN the range 5830 km/sec & Vi s < 13,

165 km/sec, or in thermal speeds 3we = I < 6.6 W This
means that one cannot use the mean value theorem for the
variable v.. Because the ¥ dependence of R (see Figure 6)
1s very complicated, the evaluation of the integral involving
R in an analytical form appears hopeless. However, one

notices that the term in braces in (1.21) does not depend on

v, One can define the mean response function R as follows:
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/ ]R(VB"L) Vg olVy A v
=Y — VZ-' '%Vg
R = : . (1.22)
Yer 5k
)/’ /[‘ V%p{V}GJVé
Va‘_ '%Vé
In Figure 9 is a plot of R (f, VZ_) as a function of
§ = VX/VZ
for various values of Ve (energy channels). Note that R

(f; VZ_) is essentially independent of the energy channel
and one is justified in omitting the dependence in (S from
the argument for R. Thus, one gets the following expression

for Egquation {1.21):
AI:%E’AR%(‘éi"vzf)‘—/;/’g(ﬁoyf)RCF)AE (1.23)

Figure 9 shows that R (E) is even in,f, as one might expect,

It turns out that R may be fitted well by a sum of two Gaus-

sians,
2 R
i ¢ % §
Ri=) me (1.24)
£-=I
where gb,tiLz are adjustable parameters. We have determined

d;and a, using the first eight energy channels; the results
are shown in Figure 10. Note an excellent fit, except for

the slight deviation beyond +60°, where R % 0, when one
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_ <2 ol e _ -3

chooses ty 25 669 x 10" § T 1,116, a, = IO IO L
0622 = 21.47%2. Substituting (1.24) into Eguwation (1.2%5). ong

obtains
a

o £

—

D -3 & v ee

AT = 2e AT, 50V V% ﬁ% 4y 7€("’*>O’VZ)€ A5 (1.25)

~ o0

where we made use of the (excellent) approximation

— 2

Vi -V, » 3AVe Ve
i

Equation (1.25) represents the basic equation for our anal-
ysis of electron data. Note that the limits of integration
Y, = 2% may be retained because the Gaussian fit to R de-
viates only by a few percent from zero for angles larger
than 60°. (For the lowest energy channel Vo F 0 B000 km/sec

at +60°

and thus abeout three times larger than the thermal
speed. Hence, the contributions to the integral for fo>

5400 km/sec are negligable.)

(e.) Explicit formulas for AL for various models of .

We have reduced the problem in the previous section to
a one-dimensional integral expression for fe (VX, 0, FZ).
The most useful approach found thus far is to assume a model
form fox fe containing a sufficient number of "“"free' para-
meters to be determined by best fit procedures. (For examnle,

nonlinear least-square-fit routines can be employed to
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determine the model parameters from the set of currents for

each spectrum.)

For the purpose of demonstration, we quote here two
different models for fe. They are as follows: (1) bi-
Maxwellian distribution function fBM (?), and (2) the trans-
port model distribution recently proposed by Scudder and
@1lbert (1977)_14 (The details of the latter example are

discussed in Chapter 4.)

(1) Bi-Maxwellian distribution function

For this model, fe is given by

Al

ﬂr;.E_L VB: e “([‘ﬁ.’wa + 448 wfil)

Tr?/g (1.26)

—
—
where 93 = ¥ "'“V
- . ’ = .
v is the electron velocity, V is the bulk velocity of the
- . 4 ____;/\ ~ -—
solar wind, n, 1is the electron density, W,=2-L ,b-= B/B.

—
(B is the magnetic field vector),
mﬁ

4= ZkL

|

e

Aa 2 k'ﬂ:

n

where Ty and TL are, respectively, the temperatures parallel

and perpendicular to the magnetic field, and



58.

Using (1.26), one gets the following expression for the cur-

rent AT (see Appendix A):

- & ;
LU e U/ @50

én =R e T
al- I»m £e Z ﬁ’wuﬁ(uecosleg) (1.27)

= 2,4T. 2n. 0V
where Io . TTEA B
IS —_—a
SR

y*= /,’[(v V) "'V,.v]

_p ¢ = ABSE

The angles BB and ﬁB are, respectively, the polar and azi-
-3

muthal angles of the B vector in the solar ecliptic coordi-

nate system (see Figure 11). If we set €= 0, Eq. (1.27)

reduces to the special case where fe is a Maxwellian, i.e

4

g U3
AI = Io Uo c 2 \/&'}+an [1.28)

£

In Eqs. (1.27) and (1.28) the expression preceding the

summation sign is the familiar expression for the current

AT. The summed expression is a new term that displays the

= VE, [V, sin (B =) (% Vi ) cos (§-)] s &
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convolution (mixing) of the detector response and Ethe dil=-
tribution function fe' To further show this we will make
some simplifying approximation of Eq. (1.28). From looking
at the coefficients ag and Qa?, i e az/a1 C e | andfxlz/
Qﬁz {4 1, one finds the second term of Bg. (1.28) to be only

2 introduces a 5%

: 2
a 5% correction. Also, the term Vy /wC
correction in the normalization. Dropping these terms one
gets for &1 for directions dt 90° to the wind velocity, to

a good approximation:

7 R (1.29)

where(¥12 ~ 1 was set equal to one. Thus for Uofv 1, there
is a definite mixing of the response function and fe para-
meters. For the limit UO——‘O, the response function becomes
narrow compared to fe and one gets the expression normally
expected for a differential detector

a

=i
3 <
AI = QJIO Uo 8 (1.30)
while for U5*°0, the response function becomes broad compared
to fe’ see Figure 8, and one gets the correspondingly familiar

case

—_— vE e
Bl L % (1.31)

which is an approximation often used for protons. Note: in
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all of the above the tern Vx/wc was dropped because the
bulk velocity vector is confined to the scliptic plane such

that (VX/WC)<(<.1 and results in an error < 1%.

(2] Conduction model14

In this model

where fl<< AL

and (see Appendix A):

4 v =l (1.32)

Ne |
— C — ey (1.33)
)[')( pae ,n}/a wj‘ ( fi 2‘2.,/%)

where f, is the kappa distribution function first proposed
by & Olbert,15 M is an adjustable parameter,'ﬁ = (?:v)/wc,

w_ is the most probable thermal speed for electrons,

&
c " ["(;(+1)
o T T L A
” P(r-12) 2
T is the effective collision time, and P P are, respec-

B Th

J ; : : o
tively, even and odd polynomials in the velocity u. Expres-
sions for Z} Pe, and PO are given in Chapter 4 and Appendix
A. The distribution function f}(has the property that for

SRR ; : . 2

vﬁk%wt it is almost identical to a Maxwellian, and for v~ >%

)(wcz it goes over to a power law in v or in energy. Note
that f,,is isotropic in the frame of reference, moving with

iy
velocity V. For small # the high energy tail is emphasized,
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while for large 2 it approaches a Maxwellian. One can
easily check that
[im C)c = X
M~ o
\_(%{-1) *'241
; A =
lip, (14+ W) s @

5¢—> 00
Substituting the above expression for fe’ Eqg. (1.32) in Eq.
(1.25) and integrating (see Appendix A for details), one gets

the following:

2 .
Al = Io LZ 4 F%J; Mser (1.34)
where
s Aue s
Fg{l..p . S+ = 3
((+U /2 \/;{l 4, U (Li55)

s o & 4 ) +{%’-ﬁ)(%){(_§“ﬁ+o(h + 5 (5) “%b‘”

ol

h
Hide 2—% + ZH [ (2a, + da J(U-U"cos ™0, ) 20

ok

h
+ 0l Sin 30
+ (d, — O, tRHA,COs g + dg Si Q )ho;,]}

hiy
(42) tycos X {- (2% % + SOV B

h
+ ?{H[(O(ﬁ’“x) o ﬁ]}

(1.36)
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and for higher energy channels UO>> L N

[
hox bt

;7.11. A _L _h__é_l}_ o~ .J_
o= = >
hoo u? hox .
and l”#.!; e T

OE s

hot a > 2 R e

Alse, Ual&' \-é_ /’2‘):' 3 u = [.(Vi“ "'V3> V)—’ ]/ it

Uy = [V, sin (B =40 ~ (7 VoD cos (4, -$.) [sin &, /2, |
B(2) = [ ¥(5ED - ¥ 2)]
W= A p.rie)

is the beta function,

is the Psi-function, and

JJ(%): 2B(2M-1) - 520 for allZand approaches zero as 2¢

approaches infinity. In evaluating these integrals, we have

used the saddle point method (see Appendix). The accuracy

of the integration was checked by comparing the integrations

in (1.34) with numerical integrations of the same expressions
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for regions of parameter space of interest. The error was
found to be less than 5 pereent in geheral. Errors =~ 103%
for special combination of parameters do occur for integrals

h and h4£ at the lowest energy channel when TC Z2.5 %

5 2

105 Ok (i.e., angular width of fe becomes comparable to the

angular width in R).
One may also want the expression AI for X ~°  ywhich
holds when the electrons are collision dominated and described

300

by a Maxwellian. For , the saddle point method yields:

AL = I, 2% q, F-;LMWL (1.37)
L=

where =1

hu _
and /VIDDL:: [-f-(j\f)’)(%i)["(%dﬁ +q’n)[]:z +D(}‘L;I
s (EOC,, *ds)(Ule—Ulcos;LGB)%i: i (0(,6 ..,;{%

| ! sl
¢ 20, cos G deS’N#LQB)iL;J #(22) Uy cos

. (1.39)
“lj_ l’l‘t_,( ,,_CK J 3L ]
3 £ il SRR A L ad
[_(E' ajﬂ +Q/‘” 0(,.) he.L ¥ S b +( £ SR
where ) : y
h"" = 133'_4?: 1'.'._-_*:!-_ = U's‘ é—& ‘2"‘3‘4“ = -—_-.-lt_j__ = i
L—‘; hot 5 ot vt fie hot U v fip

e b nJZ:DéJ«*U Ve =t t 53 v+ i/,
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oy GV, and e sl

For large energies UO)‘> 1, the following holds

hig

b

E_;_L_‘.Q.':E;?_L_' IZ.‘?&"U Ctno"lw‘('"u
I”JGL U hot bk hot

= ) e
I’*oL

For large # this model breaks down at large energies, since

h hyt
terms like I%% and E“‘ become unbounded for UO>?> 1
© o

One should note that in the case of finite %, the term

proportional to (%?) (¥%) in Bg. [(1.36) for M.,, goes LD

zero like 1/U for large U. Thus, at high energies this

term, which describes the pressure anisotropy of the electron
gas. drops out. The second term, which is proportiomal to
(1§§, contributes to the third moment ox heat flow wector

of electrons in the proper frame of reference, does mnot go

to zero as U-—*e?, but approaches some non-zerc constant.

This term is less than one if (-f) is less than some critical
A
(;T'critical'
In the event that there is no transport (all thermo-

dynamic gradients are zero), then Mxl,: 1. and Egs. (1.5,
(1.36) reduce to the special case where fe is described by

the 1sotropic kappa distribution, i.e.,
A
=l 144
Al = IoiZ 4, Fou ey
=1

where F% ig given by EBg. (1.35}.

§ &
In the limit as Qfapproaches infinity, Bqg. (1.40) further



reduces to the special case of a Maxwellian for f,. Under

these conditions, =% 6 M = 1, the saddle point method

HL

yields rigorously:
o
AT =13 4fe 2

where F_, is given by Ed. (L.38). Egq. (1.41) 15 fdenficdl
to Eq. (1.28), which was derived using a bi-Maxwellian for
f, and setting =0

Finally, in order to check the accuracy of Equation
(1.25), numerical integrations for AI (AI,,, ) were computed
for a Maxwellian using the most general Equation (1.5). A
similar set of currents for AI were computed using Eq.
(1.28). By referring to Table 3, which gives a comparison
between currents computed numerically and those computed
using Eq. (1.28), one can see that for W > 2000 km/sec the
error is < 3%. Thus, it seems that Eq. (1.25) revpresents

the currents AI quite well.

(6.) Closing Remarks

In this chapter we have shown that the very complicated
three-dimensional integral relation for AI given by Eq. (1.5)
may be reduced to the relatively simple and easy to handle
one-dimensional integral relation given by Eq. (1.25). This
was possible because of the differential property of the

detector response relative to fe and the fact that the angular
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response for R may be expressed by a mean response R [see
Eq. (1.22)]. As was shown, the essential features of the
response may be characterized by the angular variables OC
and;?. The explicit dependence of R upon 40 within the
velocity window of the detector, which is due to refraction,
was shown to be relatively weak. Because of this, we were
able to replace R by R as noted to above. Furthermore, it
was possible to replace R by a sum of two Gaussians which
when fitted to R gave an almost perfect reproduction of it.
It was them shown that Eq. (1.25), within a few percent, gave
an accurate description of the currents when cempared with
laborious numerical integrations using Eq. (1.5).

We would like to stress that once we have an expression
like Eq. (1.25) for AI, a tremendous simplification in the
analysis is obtained. For instance, since the precise form
for fe i8 not @ priceri Knewi,Bg. {1.25) for ATl allows us
simply to substitute any model for {e ifn this eEquatien (i1.e.,
bi-Maxwellian, kappa, kappa plus transport, which can be
evaluated for most cases of interest etc.), by using the
saddle point method, thus giving us analytical expressions
for AT in terms of detector and model dependent parameters.
(Note that the integrations can be evaluated rigorously for
Maxwellian and bi-Maxwellian distributions.) By having such
expressions one may easily develop fitting procedures for
the purposes of doing data analysis along with the ability

for relatively easy comparison with the data. For instance,
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at right angles tolﬁi the transport terms are small, allow-
ing for tremendous simplification in AI [for example, see
Eq. (1.40)]; and thus one can obtain a quick estimate of M
and W if we are using a kappa distribution for f,.
Einally, it should be pointed out that the curvent
recorded by the detector is an average current over an

anglilay sector, iz€.,

¢
<7[ﬁ(?;f)> ’/j%é/é(?)t')di (1.42)

where ot = t - t is the integration time. In our analysis,
we have not done a proper average of the currents over
angle. We have simply set ﬂc for each angular sector egual

to the following:
I ﬁ‘-l
CO S 52{5 :A’;{ /cof ;50(55 (1.43)
<

7

C/

where
rg =4 -2,

Errors introduced by using this averaging procedure in gen-
eral will be small, because electrons are very subsonic and
nearly isotropic in the proper frame (current does not change
appreciably with angle), thus allowing us to avoid further
complications in our analysis program. If need be, once a
final form for fe has been decided upon, and if the accuracy

of the data justifies a more precise analysis, then a more
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appropriate averaging procedure may be built infe the anal-

yei1s Toutine.
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CHAPTER II

SPACECRAFT CHARGING

(1.) Qualitative Statement of the Problem

The problem of spacecraft charging is an old one and
has been of considerable interest for many years. It is a
problem that is very difficult to treat quantitatively (as
will become clearer later on in the discussion); one is
forced to make drastic approximations and assumptions in
order to get a rough feeling for what is happening. The ac-
tual charging up of the spacecraft is the result of a com-
plicated interplay between two competing processes. The
first of these processes results from electrons in the plasma
surrounding the spacecraft having thermal speeds many times
greater than protons, so that the average electron flux
striking the spacecraft is about 40 times greater than the
dverage proton flux striking it (Teﬁji}ﬁ, thus causing the
spacecraft to charge up to a negative potential relative to
the surrounding plasma. (Note: the potential of the sur-
rounding plasma shall be arbitrarily set equal to zero.)
Since this negative ''plasma' current incident upon the space-
craft is proportional to the electron density and thermal
speed, one might expect the spacecraft to acquire a more
negative charge in regions of higher density and temperature
than that in cooler and more rarified regions of space.

Other complicating factors are the scattering of electrons
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and the secondary emission of electrons from the surface of
the spacecraft, which tend to reduce the negative charge
accumulated by the spacecraft. The other process is due to
the photo emission of electrons on the sunward side of the
spacecraft, causing it to charge up to a positive potential.
Some factors important in determining the effectiveness of
this process are: (1} the intensity of the sunlipght dncident
upon the spacecraft, (2) reflection and absorption properties
of the surface material, (3) work function of the surface
material, and (4) energy spectrum of the sunlight incident
upon the spaceeraft (e.g., increasing the ultraviolet spec-
trum produces a greater photo current, since only photons
with energies greater than the work function of the surface
material can contribute to the emission of photoelectrons).
Then, depending on which process dominates, the spacecraft
will either charge up to a positive or a negative potential.
The total current incident upon the spacecraft ("plasma”
current plus photocurrent) initially raises the potential

of the spacecraft. This potential in turn tends to reduce
this current so that under steady state conditions the current
is zero (zero current condition). As the spacecraft charges,
a non-zero space charge density forms around the spacecraft.
This space charge density tends to shield the surrounding
plasma from the charged spacecraft. (The effectiveness of
this shielding (screening) is qualitatively measured by the

Debye length (AD) of the surrounding plasma near the surface
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of the spacecraft, thus giving rise to a screened potential
around the spacecraft.)

The purpose of this chapter is to investigate in a crude
but quantitative manner the effects of spacecraft charging
on electron measurements. Since the experimentally estimated
s/c potentials compare in magnitude to the kinetic energy of
the bulk of the electrons, there is need for detailed study
of this problem. 1In the case of positive ions, this problem
does not arise because ions have much larger masses. For
example, the Imp 8 spacecraft appears to have a potential of
about +2 V01t59 (photoeffect is dominant); electrons have
convective energies of only 0.5 ev (400 km/sec) and thermal
energy of about 10 ev (105 OK). Thus, a bulk of the electrons
have energies comparable to the spacecraft potential, causing
their trajectories to be appreciably perturbed, resulting in
sienificant changes in their distributieon in veloeity space.
Thus, it is necessary to determine the relation between the
desired "unperturbed" fe and the “"perturbed" %; measured at
the spacecraft. In contrast, protons have convective ener-

gies of 800 ev and thermal energies of about 10 ev (105 &

K.
This means that the spacecraft potential is only a small
fraction of a proton's energy, causing only a negligable
perturbation of their trajectories.

The perturbations experienced by fe are expected to

contain three separate effects: (1) an energy shift equal

to the potential energy at the spacecraft surface experienced
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by the electrons as they are accelerated in the Debye sphere
surrounding the positively charged spacecraft, (2) a con-
centration of their trajectories (focusing) as they approach
the spacecraft, and (3) a rarefraction of the electrons as
they are accelerated in the Debye sphere. The actual form
for fe is, in practice, impossible to determine. For example,
if one were to try to solve this problem in a self-consistent
way, even for the simplifying assumption of spherical sym-
metry [Ira B. Bernstein and Irving N. Rabinowitz, (1959)16],
one would find himself faced with trying to solve a very
complicated non-linear integro-differential equation. In
actuality, such a simple configuration does not exist for

any given spacecraft. For example, for Imp 8, some of these
complications are: (1) Imp 8 spacecraft is a cylinder with

a radius of about 1 meter and a height comparable to its
diameter (spherical symmetry does not hold); (2) a number of
antennas are protruding from it; (3) the Debye lengths for
the spacecraft potential may have an angular dependence rela-
tive to the sun--s/c line [More specifically,,XD should be

a few centimeters on the sunward side (photoelectrons con-
tribute to the formation of a relatively dense cloud of
plasma compared to that in the ambient solar wind, over the
illuminated surface of the spacecraft), and AD about 10 meters
on the backward side (average.AD for ambient solar wind is
about 10 meters)]; (4) surface of spacecraft is a poor con-

ductor such that it may become differentially charged,
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thus giving rise to a dipole term to the potential. [On the
sunward side the surface will acquire a positive potential
(photo effect), while on the backward or dark side of the
spacecraft it will acquire a negative potential (negative
"plasma" current). Then, sinece the surface is @ peor Ccon:
ductor, currents in the surface will not flow at a sufficient
rate so as to equalize the potential difference in the surface
material.] Furthermore, aging suffered by the spacecraft
surface material through interactions with the surrounding
plasma and radiation will bring about unknown changes in the
surface properties of this material and make any calculations
questionable no matter how sophisticated they may be.

All of these complications <¢learly imply that dny self-
consistent quantitative solution for this problem is just
about impossible. With these facts in mind, one must resort
to some rough estimate of the size of the effect. The an-
proach we chose was to assume that a plausible spacecraft
potential is known; this allows us to use the collisionless
Boltzmann equation, and thus to solve for ?; in terms of an
assumed fe at infinity. If the potential qualitatively meets
the expected characteristics (proper magnitude, screened
profile, etc.), one expects that the estimates as to the
magnitude of the distortions in %; will npot be tao tar off.

We present the details of our approach in the following sec-

tions.
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(2.) General Quantitative Considerations for a Spherical
Model

Boltzman equation is

[ RIGAA

n
i
Oy &y
e
i R

Al
cell ( )

where

—

A digamrt
JE T H e

is the total phase space time derivative, and

(§2).

represents changes in fe due to cellisiens (i.e., close en-
counters with other particles, strong resonant interactions
with waves, etc.), ;bis the electron velocity, and
E: ~e(f+'§'x§)+wj’ (2.3)

is the force on the electron due to the macrosconic electric,
magnetic, and gravitational fields of the medium;-§>is the
magnetic field of the surrounding plasma, E%is the gravita-
tional acceleration vector, and

L — —>

Ea =yl ~Vak (2.4)
is the electric field, ﬁ is the spacecraft potential, and
'i?is the wind velocity of the plasma. Referring to Figure
12, which gives a pictorial deseription of the preblem, exne
sees that the elsetrons mainly experience the effects of the
potentigl inside the Debye sphere. [This meauns thathithe elec-
tric field due to the spacecraft potential (E’“@O/ D) is

about equal to 0.2 volts/meter for @o = 2 volts and,%D = 10
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meters. The gravitationzl term 1w Eq. (2.58) is negligabile
compared to the electric fields around the spacecraft, while
the induction term ﬂf;x'ﬁgg Az x 10_2 volts/meter for V =
400 km/sec and B = 5 gammas is only a 1% correction and may
also be dropped. Therefore, we may put to a good approxima-
tion:

F= -7k

The collision term in Eq. (2.1) may also be dropped, since

(2.5]

the m.f.p. for collisions involving electrons 15 on the erder
of an AU, so the electrons while traversing the Debye sphere
(AD ~ 10 meters) will experience no collisions. Furthermore,
since Re’ the electron gyro-radius, is on the order of kilo-
meters ()D/Ré¢41}, the electrons will not experience any
significant deflections from the magnetic field while tra-
versing the Debye sphere. Thus, we may also neglect the
effects of the magnetic field in Eq. (2.3)- Finally, we

drop the f% term by assuming steady state.

We shall now impose the ad hoc assumption of spherical
symmetry, @(?) = @(r) (central force problem) which brings
about considerable simplification to the problem. (As we
shall see later, it reduced the proeblem to gquadratures.)

The form of the potential to be used in describing E shall

be the spherically symmetric screened potential (monopole

term), which may be written the following ways:

L =)
o

X (2.6)
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d(r) =

T, 2. ~(z-2)
—— ¢ (2.7)

where v is the radial distance from the center of the space-
gratty T is the radius of the spacecraft, x = r/ro, z = rAAD,
Lo rO/AD, and ﬁé = E(ro). Once the form of the potential
Fasd
ﬁ(r} is specified, one can proceed to study the form of fe
at the spacecraft's surface (entrance aperture of the de-
tector). To-do this we specify the form of the initial
distribution fe at “infinity" (far from the sSpacecvatrt)., and
S
then require that fe satisfy the Boltzmann equation, Eq.
(2:1), at L R

It is possible to express the distribution function fe

in the following way:
£(7V) = V() (2.8)

where E}is some arbitrary function of the scalar quantity
H(?;ﬁ). Note that all the velocity and coordinate dependences
in fe are contgined in H. The redson for doing this is that
the same function H can be used for various functional forms
of'iﬁ Thus, the actual solution for H must be its solution

at infinity plus some correction term. Substituting Eq.

(2:8) Inteo Bg: (241), wWe get:

/
dd _
?F(H)ﬁ-t— O
which reduces to:

AH(F, V)

—

= O (2.9
At :



One can split the function H(?;?) into two functions, 1.¢€.,
H(P, V) = h(F V) + G(¥7) (2. 10)
where h is the expression for H when § = 0, while G is the

correction term when ﬁ # 0. For examnle, the Maxwellian

i
,[;,' = C0h5'+, e

has ...
me(\/ “V)

1
h = A (2,11)

while the bi-Maxwellian has
L‘](?)v) o /9,1-'.‘& W, WK (Zwl 2]
where

KZJ; = A?L J;K.-+ Z&%? A‘LK

and o -,
7=V -V 1=E/B

)

In order to obtain solutions of Eq. (2.9), we make use of
the fact that the electron energy and angular momentum are
conserved, i.e.,

2 T —
u - ;::Vﬂev ,e_@(r‘) _ConS'}'“ (2.13)

—

ikt kL Cons T, (2.14)
For a central forece; the electric field simplifies to the

following:

f --4 g(r) ¥ (2.15)

A ; . -
where r ='?7r. It will be convenient to introduce the

quantity

Z7
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which can be rewritten as:

E’; - V, 0 CoS X (2.17)
s
where X is the angle between the B vector and th, and ?Zt
is the transverse velocity of the electron at r = 2 L Thus,

gecordine to Bgs. (2.9), (2.10), and (2.12), the corteetion

term G obeys the equation:

d& _ 2e [/g. E-w + A48 E,w, (2.18)
At e %
where
55
e

Due to the fact that £ and U are conserved, one can express

the radial velocity of the electron as a function of r alone:

2(U+e®d ) W
V. = e SNES (2.19)
Note that since we are considering trajectories coming from

infinity, we have chosen the negative sign for Vs e thus

have for the differential time interval dt:

~dr s

e — (2. 20
At afure®s L
Me 5

substituting Bg. (2:;20) 1inte Eg. [2.18) and inteprating from
infinity to r,, we get
"
2R A r~ i L
ElR. 2] = 6/ 8 [ 26 (4 V)4, v2ef B b ]

-

i (2.71]
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7 =

= ~
where Er_:Ea? ) Lr:l}ar and e

iy -
. FProm expressions

(2.14), (2.16), (2.17), and the definition for w, we have

Wy = V,,!::,, +"’§‘ 5 .\/J; (& 22)

Substituting this expression into Eg. (2.21) and rearranging

terns, we get

(w—\fi)k, - €abr . Yo cos X ke ]
“

o 9

G(Y—::,_z) = -z(o%[uegar, +
(2.23)

where

i A% A~
| e, 3, dr
& BT e
e _ b 2.24
o) V! t U = ( )

c, U (2.25)

are positive definite integral expressions to be evaluated
once the potential @(r) is specified. The other symbols

above have the following meaning:

-

Lo, 2 ¢ ?, (2.26)

defines the velocity ug for an electron at the spacecraft

which has zero energy at infinity [U = 0, see Eq. (2.13)1:
i
i /g_L

I‘O,

(2«27 )
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and we have introduced the impact parameter b

/f «LU’ E (7.:28)

We have thus reduced the problem to quadratures, the integral
expressions K1 and KZ' The substitution of EBf. (2.23) into

Bg. (2.10) gives us via Bgs. (2.12) and ‘(2.8) the desirved
e
expression for fe,

_[4,(% T 0p(u )+ G ]

i :ne/%me (2.29)

jg (FE’)—I}:> 3/

™

A
It should be emphasized that now fe is not only a func-

tion of the electron velocity, but also a function of posi-
tion; (the distribution function %; is different for differ-
ent points on the sphere of radius rO). For instance, by
referring to Eq. (2.23) one can see that there are terms
proportional to the components of the bulk velocity ;?along
the radial direction and parallel to the magnetic field
Vectorfg, along with terms proportional to the cosine of the
angle between ghand r. Therefore, as one moves along the

surface of the spacecraft r, at different angles relative

- =
to the directions defined by V and B, the distribution func-

tion £, will have a different velocity dependence. In essence,
the anisotropies introduced by the bulk velocity and magnetic
field removed the spherical symmetry characteristic of the

potential.
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The first term in Eg. (Z2.43) is the familiar solution
one gets for a dilute gas in the presence of a spherically
symmetric potential. This term, which is present even when
there are no bulk motions and anisotropies in the electrons,
introduces a normalization correction which is more important
at lower electron temperatures (i.e., thermal energy approaches
potential energy of spacecraft ﬁo). The second term which
arises from the temperature anisotropy' modifies the cor-
rections of the first term so that the corrections in ?; are

largest along directions where the electrons are colder (i.e.,

The third and fourth

—>
at right angles to B when T"T> Ti )«

terms result merely from the fact that the electron gas as
a whole is moving in the spacecraft frame. By referring to

Figure 24, one can see that the third term in EBg. (2.23) will

=t o)

cause a reduction in fe for an observer at ﬂc = 07, and an
. - 0
increase in fe for an observer at ¢c = 180 . Therefore,

this term appears to have the tendency for making the elec-
trons have an apparent drift back toward the sun. To see
this better, consider the expression for the differential
work done by the potential upon the electrons in the space-
craft frame along the differential direction dr
= —
O(WS‘/Q = F «dF (2.30)
0

which for g = 0° is

Al = F (wr +V)dt (2.31)
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while for f_ = 180° is

du = Fo (oo

where M is the electron velocity in the proper frame, while
the work dws/c is the same in both cases. Thus, when the
electron gas is, respectively, approaching, receding from
the spacecraft along the radial direction, the time interval
dt over which the elections experience thHis force is, Te~
spectively, smaller, larger than that for V = 0. Therefore,

the work upon the electrons in the electron frame of reference

AWe = Fr we oAt SEa i

is, respectively, lesser, greater than that fer V = 0. Thus;

the electron flux for ﬁc = o°

o]

is less than that for ﬁc =

O

180 , the work per-

Furthermore, since Vr = (0 for ﬁc = 90
formed is the same in both frames of reference, i.e., there
is no effect due to the motion of the plasma in this direc-
tion. The fourth term, as in the case of the second term,
modifies the corrections resulting from the motion of the
plasma so that the corrections are larger along directions
where the electrons are colder (i.e., for TH.>’ T electrons
will acquire an apparent drift across the field). The 1last
term arises purely from the initial anisotropy in fe and 1is
present even for the case of no convection {§'= B). This
term introduces no corrections along directions parallel or

S
perpendicular to B where the distribution function £, is

symnetric relative to the radial direction. At all other
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directions this symmetry of fe relative to T no longer holds,
and corrections from this term will result. For these situ-

== -
ations more electrons along B relative to r are available
for convergence toward the spacecraft than there are per-
pendicular to §§relative to r. Therefore, this term will
have a tendency to remove the initial anisotropy of the
electrans. The leading term in Eg. [2.23) shows that cor-
rections to %; will be important when the spacecraft potential
becomes comparable to the thermal energies of the electrons.
The correction terms in Eg. {(2.23) proportiognal to K1 and KZ
are important for electron energies ”’ﬁb (U—>0), while un-
important at higher energies U7°ﬁ0. Te see this better,
consider the special limiting case of plane parallel geometry,
where )D — 0. For this 1limit, one merely has to replace the

n

normal component of the electron velocity v [—Vr direction)

by (see Appendix B'for proof)
A
v = Vv - % (2.34)

in the expression for H when G = 0. This is simply a state-
ment of conservation of energy; the electrons experience an
energy shift equal to eﬁo. Therefore, for electron energies
large compared to e@o, vn>>uo, we have to a very good ap-
proximation

v v [ 1= (2Y]

(2:55)
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As can be seen, the correction term drops linearly with
energy and will introduce corrections no larger than 5% for
electron energies an order of magnitude greater than the
spacecraft potential ﬁo (e.g., for @o = 2 volts, KEO>> 20 ev

.

where Kgo = %mevoéj. Thus; if the suprathermal electrons,
Keg > 60 ev, contribute to most of the heat flux qq [say,

1 /\’10_2 ergs/cmz/sec (see section 2,4)], and if spacecraft
potentials are no larger than 5 ev, one should be able to
measure the heat flow vector to a reasonable degree of ac-
curdcy considering present experimental wicertainties =42

x 1077 ergs/cmz/sec.

We would now like to consider the relative order of the
corrections in Eq. (2.23) for electron enexgies on the eorder
of the electron thermal speed, kT 2 10 ev, and typical
spacecraft potentials Eoib 2 ev., Furthermore, these energies
correspond to the lower energy channels of the M.I.T. Imp 8
detector and the more recent Voyager detector, whose measure-
ments are confined, respectively, to energies greater than
20 ev and 10 ev. Using the ordering scheme where corrections
due to convection and anisotropy are first order small, i.e.,
convection

V. oo.?

194

(25258 ]
and anisotropy

£, ~O- | £2.57)
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we would like to compare the corrections introduced by space-
craft charging, given by Eq. (2.23). For the enerpies re-
ferred to above, the integrals Kl’ K2 are no larger than 0.3
(first order small). The leading term uéﬁ? fig ™ 5 nrt Eigest
order small, while the corresponding second term due to
anistropy 1is second order smgll. The third term, which
introduces corrections due to convection is second order
small (first order small relative to convection) [see Eq.
(2.36)], while the corresponding fourth term from anisotropy
is third order small. The last term, when we consider only
those electrons striking the spacecraft at angles no larger
than 45° from the radial direction (approximate angular width
of M,T.T., detectors), will be third order small. We may

thus conclude that the corrections due to anisotropy are no
larger than third order small (second order small relative

to the anisotropies of convective and temperature anisotropy),
except for the second term which is second order small, and
may be dropped. Therefore, keeping terms second order small

or larger we get for G
(7w = walirabr k] e

We will now drop the second order correction due to aniso-
tropy, which only effects the normalization. Then by con-
sidering either the limit where,AD-—%O g the tact that for
these energies ,>10 ev and typical detector angular widths

0 A .
~ 45, the corrections to the integral K1 due to the transverse
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velocity of the electrons are small. The appropriate cor-
rection to the data reduces to that given by Eq. (2.34),
where one only needs to account properly for the energy shift
experienced by the electrons.

Finally, if one wishes to measure drift velocities of
the '"'core'" electrons, which as quoted by Feldman et al.g are
~ 50-100 km/sec and thus second order small, one must con-
sider the fact that the corrections introduced by spacecraft
charging are of the same order [see Eq. (2.38)]. Thus, any
attempt to measure such small effects must be considered
questionable, even if the corrections given by Eq. (2.34)
or the more rigorous expression (2.23) for G are used, since

spherical symmetry is probably violated (e.g.,,xD is a func-

tion of angle).



(3,) Analytical Studies of the Formal Solutions--Particle

Trajectories in Debye Potentials

In order to obtain numerical estimates of the effects

due to spacecraft charging, one must evaluate the integral

expressions Kys Ky To do this, the spherically symmetric

screened potential given by Egs. (2.6) and (2.7) 1s substi-

&7 .

tuted into Eqs. (2.24) and (2.25). The integral expressions

for K K2 then become:

13

» X
(1120 € AX

Eji 25 b Mt : g
= e TR
K, \/!A ! X" \/x“%x@z“ ~ b,

or

Z
\P/ nk ée/('ﬂ) o dr >
s wﬂ—:Zo Zéi ,.L
kn Vv \) b

where we have introduced the dimensionless energy
<,

i
ed.) Zs
into Eg. (2.40),

b = b/r
s bd A,

)

Vv

n

are the impact parameter in units of, respectively,

spacecraft radius s and the Debye 1ength.A

(259

(2.40)

(2.41)

(2.42)

€2, 45

the

0> and the index
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n =1,2. The integrals Kn given by Eqs. (2.39) and (2.40)
must be integrated numerically except for the limiting case
of the Coulomb potential (zo = O”AD'AQQ’ see Appendix B).
Insection 2.4 we evaluate various velocity moments of
%; in order to acquire numerical estimates of the apparent
density, drift velocity, temperature, and heat flow vector
that a detector would observe on a spinning spacecraft which
is positively charged: One cannot carry out these calcula-
tions until omne determines the regions in weleoclty space
where the Kn‘s become imaginary, giving rise to "forbidden"
zones 1n velocity space. These forbidden zones or more
appropriately forbidden zone boundaries determine the limits
of integration 1in velocity space. In order to take into ac-
count properly the effects of these forbidden zone boundaries,
one must understand the properties of the electron trajec-
tories within the potential given by Egs. (2.6) and (2.7).
In studying the electron trajectories in a spherically
symmetric potential it is useful to consider the radial mo-

tion in a fictitious or effective potential which is comprised

of the potentiallﬁ'itself, and the potential due to the

"centrifugal force.'" Thus, we introduce the dimensionless
effective potential 2
4 .
S e
N 22 VZ (& )

and rewrite the radial velocity Ve the following way:
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Vi = = Veo I‘”fof (2.45)

where %meuwz = I}, and the screened potential given by Eq.
(2.7) has been substituted for E. The potential V_ .. van-
ishes at infinity and is normalized in such a way that Hore
= 1 at the point Ve = 0 (i:8., the turning point fer an
electron coming from infinity).

In Fig. 13 we have a plot of Vogg versus z for the fixed
parameter V and for various values of the parameter bp. An
interesting feature of these curves is the presence of a
trapping region allowing only bound trajectories. Such trap-
ping regions do not occur in the case of the Coulomb potential.
In our case the shielded potential ﬁ goes to zero more rapidly
than the '"'centrifugal potential' as r approaches infinity
[ﬁ decreases exponentially and the centrifugal potential
goes to zero as l/rz). In Fig. 14 we have an identical set
of curves as those in Fig. 13, except that now the parameter
bD is held fixed and the parameter V is varied. As may be
seen, the curves display the usual dependence expected from
varying the electron's energy. Figure 15 is identical to
Figure 13, except that these curves correspond to a special
limiting case to be discussed later on.

Among the curves in Figures 13, 14, and 15 are special
ones labeled with the number "1". For these curves the
effective potential is equal to one, and its first derivative

with respect to z is equal to zero at a point which we call
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the “eritieal®™ point Zo s % -

(1) Veﬂ = (2.46a)
and
0{ V =0
(2) A7 ¢ff (2.46b)

at z = z.. Equation (2.46) is equivalent to the statement
that the radial velocity of an electron and its acceleration
in the radial direction Gr are both equal to zero at z = Z.

(i.e., v.. =0, v.. = 0 at z = unstable circular orbit).

¥ g5 g d
These special curves correspond to certain trajectories which
define the forbidden zone boundaries. These trajectories
will be referred to as Meritical' trajectories, which define
the boundary separating the allowed and forbidden directions
of an electron at fixed energy U for an observer at r = T
(more precise definition of allowed and forbidden directions
given ldter on in text).

Substituting Eq. (2.44) into Eq. (2.46a) and replacing

z by z. we get

% Ze Z (2.47)

Similarly Eqs. (2.46b) and (2.44) yield

Z ZCCZC+I>

A TR s (2.48)

2 (b )
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Combining EBas. (2.47) and (2.48) we get the following re-
lation for the critical impact parameter (bD)C in terms of

2%
&

250241
{5 TR

T (2.49)
<

The quantity (bDZ)C is plotted versus z. dn Big, ¥6. Move-
over, substituting Eq. (2.49) into Eq. (2.48) we get the
following expression for the dimensionless critical energy

VC in terms of Z."

-1
T = ¢ (2.50)

which we have plotted versus Z. in Fig. 17, Bgs. (2540) and
(2.50) are a set of parametric equations relating the criti-
cal parameters (bD)C and'vc in terms of the parameter z

From these equations one can parametrically draw the locus
of critical points in (VC,(bDZ)C) space which is shown in
Fig. 18. Referring back to Fig. 15, where we have the
special critical trajectory (curve 1), one can see that not
only are Eqs. (2.46a) and (2.46b) satisfied by this trajec-

tory but also

AV

! = O at Z'= 2. (2051

where Z 15 Peferred te 45 the “special critieal' point.

Because Eq. (2.51) gives us an added constraint, Z is a
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uniquely defined point in space. By doing the above differ-
entiation and substituting Egqs. (2.49) and (2.50) in the re-
sulting expression, we get a quadratic equation for Z

Taking the positive root we get:
[+Vs
2

The distance z, may also be evaluated by taking the deriva-

P = .61l (2.52)

tives of Eq. (2.49) or Eq. {2.50) with respect to Z. and
setting them equal to zero. Therefore Zg corresponds to the
minima and maxima of [bDZJC and'UC shown in Figures 16 and
17 Substituting Eq. [Z2.52] into Eas., [(Z.49% apnd {2.50) we
get corresponding special parameters for bD and V.

(by), = 3.33 (2. 554)
Vv, T 0.0371 (2.53b)

It also follows from Figs. 135-15 that since the

&g}/g” Sl
A2

at the minima of V_ .. at z <'ZS, and

A" Vi
po <O

at the maxima of Veff at z = z_, the point z, must correspond
to the trajectory, where the minimum and maximum in Veff
occur at the same point. Thus, all minima in Veff must re-

side inside zZg, while all maxima in Veff must reside outside

T s Thus, trapping regions may only occur outside the
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spacecraft for

gt Ly (2.54)

This also says that the following condition must hold for

all critical points:

L 2z Zg (2.55)
i.e., all critical points not equal to z, must reside outside
Zg- Furthermore, it should be pointed out that these criti-
cal points z_. are present for all spacecraft radii z,. It

also follows from the preceding discussion that the upper
branch in Fig. 18 corresponds to Z. Zgs where Veff is a

minimum and equal to one (i.e., Veff 1l except at ”zC”,
where Veff = 1). Thus, the upper branch in Fig. 18 does not
impose any restrictions upon the trajecteries. Therefore,
curve one in Fig. 15, which corresponds to the special criti-
cal trajectory, divides the (U,l) space into two regions:

for large U and L the centrifugal term completely dominates
the 1/r attraction term of the potential at small r, and

for smaller U, £ the opposite is true.

Referring back to Eq. (2.41) for the original definition

of'o, we can solve for the critical energy UC from‘vc, 1 - P
(ZC“})(ZQ ) Zo-ZC»
o=ef, = 0a (2.56)

It is apparent from Fig. 17 that for zC32 zs,))c 18 4 de-
creasing function of Z.- The same 15 true for U. [see Eq.

[2+58]) ]« Thus, if we consider spacecraft radii Z, Eizs,
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the maximum energy at which critical trajectories can occur

is determined by setting Z. = Zg) 1oy
Z, ] =
(Uc)m“ =g (”'*‘”2_ for Z, = Zs (2.57)

Thus, for example, if Io = 2 volts, and.)D = ro/lo, then
(Uc)maX = 9 volts.

We would now like to define more precisely what we mean
by "allowed" and '"forbidden'" directions referred to previ-
eusly. To do this, let us ceonsider an observer at & parti-
cular point on the spacecraft surface r = Eoso Allowed di-
rections will then be considered to be those directions from
which the observer detects an electron which has come from
infinity and has not passed through the spacecraft. The
contrary is true for the "forbidden" directions. In the
case where the potential ﬁ 1s equal to zero, all allowed
directions will be those directions coming from the upper
hemisphere directly above the observer. Far from the space-
craft the electron trajectory becomes a straight line. We
shall call the direction of this line the "asymptotiec' di-
rection of the trajectory. Because of the symmetry of the
problem, allowed directions are degenerate in the sense that
they represent '"acceptance' cones whose axis of symmetry is
the line along the zenith direction of the observer. There-

fore, because of this symmetry, only those directions con-

fined to an arbitrary plane need be specified. A particular
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direction is thus given by one angle 8, which is the vertex
angle of the acceptance comes. Therefere, for Eo = 0, all
allowed directions will correspond to those 6 in the angular
interval 0° £ 8 <90°. When the potential_ﬁ # 0, critical
trajectories will occur which will give rise to forbidden
directions other than those below the horizon.

It will now be necessary for us to derive an expression

relating the parameter bD and the angle 8. To do this, one

has only to take the square of Eq. (2.14) relating V and

t

0

" 2, vozsinze, along with Eqgs.
o

(2.28) and (2.43), which together relate ﬂ and bD' Doing

f, substitute in place of v

this, we get
.
El - 2{1 ( | + ?435:) $iw T8
f © u (2.58)
As can be seen, large impact parameters for fixed U corre-
spond to large angles of incidence 8, such that for bU large
enough, Sin2 89 =1 (i.e., 8 = 900). Therefore, the '"maxi-
mum' allowable bD for fixed U is

. Ea
(L’“) = Z, (H %1"‘) (2.59)

B mex

For situations when there are critical trajectories,
the maximum allowable by = [bD)C will be less than (bD)max’

or equivalently BC‘< 900, where BC is given by the relation:

@), = 2 (r Frn o
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The case where QC = 90° corresponds to (U ) the

cmane?

maximum energy at which critical trajectories will occur,

or put in another way, the minimum energy at which critical
trajectories will not eccur. This 15 evident from Eq. [2.64)
relating (bD)C, UC, and BC and Bgs. (2.49) and (2.56) which
show that (sz)C increases quadratically while UC decreases

exponentially with increasing Z- for 2 = Zg - One way to

solve for (Uc)maX for arbitrary z, 1s to combine Eq. (2.59)

relating (sz)max and U, and Eq. (2.41) relating V and U,

: ; . : 2
which gives us an expression for V in terms of (bD Jmax

and 2. . 1.8is
0
Zg

2. €
a (Z2.61)

\)rhﬁ X = 2 =
(£D )hux K zo

One can then superimpose curves of V versus (bDZJmax from
Ea. (2.61) for warious z, upon the parametric solution given
in Fig. 18 relating DC and (bDZJC in [V, bDZ) phase space
(lower curve). From the intersections between these two

curves, which give us a'VC that can be substituted into Eq.

one can solve for (U_.)

: i 9
e S BE1ourer 1

(2.41) for (UC)
gives an example where this method was used.

By substituting Eqs. (2.49) and (2.56), respectively,
for (sz]c and UC into Eq. (2.60), we get the following
expression for sin2 BC in terms of Z. and 20

Z Az A1)
Z. | {272, ez, 0 ] 62 82)

o L Nk
Siy_ 6
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which has been plotted in Fig. 20 as a function of 2 for
various z_. As already pointed out, all ceritical points Z.
(i.e., sin2 8C $ 1) occur outside Zg to¥ all Z (specific
examples given are Zy = 3 B0 S R 98 Zs and. 10.0). Since Sin2
s is only z function of P and z,» One can determine sinz

BC in terms of'UC for various Z by solving the corresponding

parametric equations given by Eq. (2.62) and Eq. (2.50) in

terms of the parameter Z.- Fig. 21 displays the parametric

solutions for Ly = 1 O P Zes and 10.0. As may be seen,
the critical energy UC increases with increasing e For
example, for B = 0.3, (Uc)max is only 0.50 mv, while for
2= 10, (UC)max = 9.0 volts, where ]5 = 2 wvolts for both

cases. Thus, it appears that in the case of small.AD rela-
tive to L the effects of the forbidden zone boundaries
become important at energies on the order of the thermal
energies of electrons.

We would now like to show a few trajectories of elec-
trons in our screened potential. For this purpose one only
needs the appropriate equation relating the azimuthal angle
# with the radial direction r. From the equation relating
g with f, i.e.,

/z rg“;"{% (7.6%)
ofie can readily derive the following equation for P in terms
of z by substituting Eq. {2.20) for dt into Eg. (2.63) and

then integrating. The result is
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a—— T

- - - 2 .6
g = 7 EDZZ\[ZT“*;’Z;eZ'ﬁD (2.64)

where Eq. (2.7) was used for . The angle for ﬂ at infinity

§_ was set equal to .

In Figures 22a to 22c, we have three sets of trajectories,
where for each set Zs is equal o, Treéspectiveliy, .1, 1.0,
and 10.0. For each set there are three trajectories cor-
responding to three different values of the parameter bj or
angle of incidence 8 at fixed energy U. The energy U was

chosen to be approximately equal to the energy (U for

C)max

that particular Zo - The outer trajectories correspond to

bp Zf(bD)C (i.6., 8= F /2, gince [ = M. while the

& max)’
other two are for smaller values of the parameter bD' The
angle g =T corresponds to electrons coming from the upper
righthand guadrant of the figures.

As expected, far from the spacecraft the ftrajectories
are rectilinear. (Note the change of scale as the Debye
length AD is varied for fixed rO). Then as the electrons
approach the spacecraft at distances z k- (even though
Z. may be much greater than one), they begin to experience
considerable deflections. For the special case where bDit
[bD]C, . = 0.1, the electrons go into an almost circular

orbit at Z. for a number of revolutions before falling into

and U = (U.)

t = =
the spacecraft. For z_ = 10, bD (bD)C, el e

0
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the critical point z. as previously poinfed out will occur
at the spacecraft’'s surface Zg- This accounts of the elec-
tron skirting the outer edge of the spacecraft before
striking it. These trajectories wisibly supgest flhie pos-
sibility for electrons of sufficiently low energy to be
orbiting around the spacecraft irregardless of whether the
trapping regions occur inside or cutside the spacecraft.

In Figs. 23a to 23c we have another set of electron
trajectories for various Za where the electron energy U =
1.0 (3 ev electrons at Z for f& = 2 volts) is fixed and the
same for all trajectories. We have arranged the trajectories
so that they strike the spacecraft at the same point "P"
where an observer could be assumed to reside. The solid
curves in Figs. 23a to 23c (zo = 0.1, 1.0, and 10.0) cor-
respond to the actual electron trajectories, while the dashed
lines represent the directions an observer at the point '"'P"
would think the electrons were coming from. To each curve
we assign an asymptotic direction (dashed 1line) and angle
indicated in parentheses. Figure 23a (zo = 0.1), whieh is
representative of the 1imit,kn>bro, shows that the electrons
experience significant deflections only for distances on the
prder of the spacecraft radins T trom the spacecraft) i.5.,
the electric field decreases like l/r2 so that the spacecraft
radius r  is the appropriate distance scale. While for the
opposite limit/ln<<ro, in: Fig. 23¢ (zo = 10.0)s most of the

deflections occur for distances on the order of the Debye
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length/xD from the spacecraft. Here we are approaching the
plane parallel geometry, where the screening distance over
which the electric fields are non-zero is the appropriate
distance scale. Another important feature of these trajec-
tories is that electrons which are approaching the detector
from larger angles of incidence experience greater deflec-
tions. Therefore, the effects of trajectory convergence may
be more important for detectors which are integral in angle,
while less important for those differential in angle. In
fact, for a perfectly differential detector, one may expect
“focusing" effects [convergence of trajectories) to disap-
pear conpletely, s¢ that the enly remaining efisct te be
corrected for is the energy shift experienced by the elec-
trons. It is also apparent from comparing Figures 23a to
Z23¢ That as the screeiniing distance,AD is reduced [(larger
zo), the deflections experienced by the electrons increase.
In fact; referring te Figure 23c (zo = 10), electrons coming
from behind the spacecraft (8 = 167°) enter the detector at
8 = 62°. This suggests that detectors which integrate over
large angles of incidence may experience significant cor-
rections at low electron energies for cases where/%D‘<ro.
It is interesting to note that for the short Debye
length 1limit, the geometry for electrons coming in at large
angles (electrons grazing the outer edge of the Debye sphere)

is characteristic of that for curved-plate electrostatic.

analyzers where the inner plate is the surface of the spacecraft
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and the outer one is the Debye sphere.
We are now ready to discuss the velocity moments of

o~
fe' In carrying out the integrations it is convenient to
use the(un, ut) velocity space where

U

*® i - + - (2.65)
u&:Z(Hl ,“7/{{: "Vo/?’(o l efﬁ

i . - . * - - .
u, 1is the electron velocity pointing in the -r direction,

while u, is the transverse velocity relative to T. Using

Bgs {2.62) For sinZBC in terms of z and Eq. (2.65), we

C’ ZO,

get the following parametric equations relating (u (u

n}c’ t]c

in terms of the parameter 2 for fixed Z5

) e P TR R i S0 e
ol ) = "( 2z 2. & 62, hifia)

and

2. (et ErZe
2 Lo

C%&)L o

(2.66b]

which define the forbidden zone boundary in (un, ut) veloetity

space, the principle objective of this section.
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Contours of the Perturbed Electron Distribution Function
fe and its "Moments'" for a Positively Charged Spacecraft

(4.)

(a.) Iso-contours of the 1n ?; (?:'?)

We would now like to display some iso-contours of the

: : : . ot — =
logarithm ef the electron distribution function ln fe {r, vi
at various points along the spacecraft surface, r = T,

These contours will allow us to visualize the deformations
gf the electron distribiition functien by the spacecraft po-
tentidal. In order to sSee the etffects oi the bulk veloecity
on %; more clearly, we have set the anisotropy parameter

éﬁ = 0. Therefore, our contours will correspond to the spe-
cial case where we have an isotropic convected Maxwellian

AN
gt infinity. The form for fe in this case is the following

[see Bqgqs. (2.29), (2.23)]:

<

72;(?—;‘)'&:): B (2.67)

i
wew?

LS Py -w (1 f k)]

where Ky is given by Eq. (2.40). In this problem only the

normal velocity Vo (-r direction) and the transverse velocity
0

NS
% have to be considered. Therefore, the contours of 1n fe
o)

had only to be confined to a plane in velocity space, which

A%

for our purposes can be imagined to be coplanar with the
ecliptic plane. 1In order to see better over what energy re-
gimes spacecraft charging effects are important, we normalized

the velocity components Vo w Vi in units of the most probable
0 o)
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)

thermal speed for a core electron (i.e., T. = 1.2 x 10 K

W = VHO/WC’WtO::VtO/wC ). Furthermore, since we plot
contours of 1n f; for all directions in the welocity plane,

we have in essence renlaced the spacecraft by a point charge

at the eorigin. Therefore, we are loeking at ?; at the radial
distance L5 from the point charge at the origin at various
angles ﬁc relative to the earth-sun line (¢C = 00) (see Fig.

24 for a pictorial description of the problem). These con-
tours were constructed so as to simulate the conditions seen

by a detector on a spinning spacecraft where the spin axis

is assumed to be normal to the ecliptic plane pointing north.
The bulk speed was set equal to 400 km/sec and is aligned

along the earth-sun line. In Figures 25 and 26 we have plotted
these iso-contours for the two limiting cases A .1

(AD>>TO} and e 10.0 (AD<<rO). For each case we have

; ; — P 0 0 0
plotted five Views nf fe’ where ﬁc =", 457, 9@~ , L35, End

180°. The abscissa is the normal component of the velocity
while the ordinate is the transverse component of the velocity.
The velocity range in both directions is plus or minus two
thermal speeds. Furthermore, the pétential at the spacecraft
surface_ﬁo was set equal to 4.5 volts, the dashed circles
correspond to the case where the spacecraft potential is

absent jo = 0, while the solid curves are the iso-contours

of 1n fe when the spacecraft potential is present §o # 0.

Vavd
The iso-contours of 1n fe’ numbered one to seven, correspond

to the levels that a Maxwellian distribution function would



104.

have at electron velocities equal to 0.4, 0.6, 0.8, 1.0,
1.2, 1.4, and 1.6 thermal speeds. Therefore, curve number
four is the one thermal speed contour. The darkened circles
at the center of the figures for 2. = 0.l correspond to the
resulting forbidden zone due to the energy shift experienced
by the electrons (radius equal to uo/wcj. The football shaped
darkened regions for Zes = 10 result from extensions of the
forbidden zone boundaries due to critical trajectories out
to higher enerpies aS,AD decreases relative to fixed o

[As a reminder to the reader, these boundaries were derived
from Eq. (2.66) given in the preceding section. ]

One of the most apparent features of these contours is
that they have spread to larger radii when the potential is
turned on, thus giving the electrons the appearance of being
hotter. This effect is mainly due to the correction term
referred to in section 2.2, which changes the normalization
[see Eq. (2.67)]. Another important feature is that the
deformations are largest near the forbidden zone boundaries
or, equivalently, at lower electron energies. Furthermore,
these distortions are important even out to two thermal

speeds. In the case where ﬁc = 9¢°

;s the iso-contours of in
?; become circles with larger radii than the dashed circles.
This results from the fact that Vr = 0 in this direction,

as pointed out in section 2.2 (i.e., work done upon the

electrons by the potential is the same in both electron and

spacecraft frames).
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To see better the effects of convection, we have plotted
identical contours to those in Figs. 25 and 26, except that
now we have factored out the correction term effecting the
normaligation in EBg. [Z2.67) for %;, leaving us the following

A
expression for fe

- T - u K
_.;J;b[cvo V) yov ]

£ e vt s i 0TE (2.68)
7{:, (Y; 3 V:;) ,!T")A,.,wog e

A~
The set of iso-contours for this fe are given in Figs. 27

and 28 fer, respectively, Al 0.1 and 10.0. We will now
confine our attention to regions where wh'> 0, which cor-
responds to electrons approaching the spacecraft without
passing through it. Onece this 1is dohe, one can sees by com:

OO

il

paring contours for ﬂc (observer at r. lovking at the

o]

gun) with those for ﬁc = 180° (observer at r_ looking away

from the sun) that the electrons have an apparent drift back
toward the sun. Another important feature to note is that
at large angles of incidence near the forbidden zone boun-
daries, the deformations in %; are the largest. This is
especially true for the short Debyve lemgth Timit. Forxr ex-
ample, by referring to Fig. 28a (ﬂc = OO), the deformations
at one thermal speed are significant for 0 as small as 63°.
You will also note that ﬂc = 90° the solid and dashed con-

tours as expected are superimposed upon each other (solid

contours become circles). We would also like to point out
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that in the limit as,lD*% 0, the forbidden-zone boundary,
which is football shaped for o = 10, will become two 1in-
finite planes in the transverse direction at Wi = iuo/wc.
These contours, Figs. 25-28, could be usedofor a variety
of different purposes. One such example is where one could
superimpose upon these contours the acceptance fan character-
istic of the detector in order to get a visual picture of
the effects of spacecraft charging on one's measurements.
As another example, one might want to see how %; would
appear to a differential detector which is mounted on a spin-
ning spacecraft (i.e., detector normal peints in radial di-

rection and is confined to the spin plane). To do this one

Favd
has only to set €, = 0 in Bg. [2.0F) for fe and change ﬂc
0

continuously from 0° to 360° for a single contour. In Fig.

29 we have such a contour, where Eq. (2.67) is used for ?;.
The horizontal and vertical axis in Fig. 29 are, respectively,
the solar ecliptic x and y components of the electron velocity
in units of most probable thermal speeds. Thus, the sun is

to our left (positive x-direction), and downstream is to our
right (negative x-direction). The detector may be imagined

to be rotating around the center of the figure with its normal
pointing in toward the origin. As pointed out in section

2.5y Eor Vop =0 "focusing" effects (convergence of electron
trajectories) disappear, so that for these contours only the
energy shift effect remains. A similar contour is shown in

Fig. 30, where Eq. (2.68) was used for fe (i.e., normalization
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correction term dropped). Referring to both figures, it is
apparent that the electron will appear hotter. Furthermore,
from Fig. 30 we see that the electrons appear to be drifting

back toward the sun.

(it = -y
(b.) Velocity moments of fe (T, V)

Until now we have not presented any numerical estimates
of the size of the effects introduced by the spacecraft po-
tential upon the integral electron measurements. To do this,
we will perform certain velocity moments (macroscopic aver-

o~
ages) of fe that were first referred to in section 2.5. These

o
macroscopic averages are not true moment integrations of fe
over all velocity space, but are more represeéntative of the

Vand
way a detector may measure moments of fe. For example, since

one is unable to sample %; over all velocity space by looking
in one direction (electrons subsonic), one must spin the
spacecraft, thus allowing the detector to sample %; ip daif-
ferent directions. Then, if one had a detector which had an
angular width much larger than that for %; along the plane
parallel to the spin axis and fairly narrow in the spin plane,
such as the M.I,.T. detector (see Fig. 2), one could obtain
slices in velocity space of ?; in different directions.
Finally, by doing an appropriate sum of all these measurements,

one could obtain, in principle, the various velocity moments

a4
of fe (hypothetical detector we are considering does sample
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in the sunward direction). To simulate this, we use a 27
steradian ‘detector which is designed to accept all allowed
directions as defined in section 2.3 and all velocities in
the Vi direction. With this model, only two separate inte-

o
grations 180° apart in angle are needed to produce one com-

P~
plete "moment" intepratidn over fe.
We define the following macroscopic averages (moments)

~

of £

M, -_—/R;[;O(?Vo (2.69)

M, /R £Vnao(3"o (2.70)
~ % 273

M, = W/R[C (V= Vo) ol Ve (2.71)

Eiime/R Ln Vo Wdhe

3]

i

/1,

where R represents the response function of the detector,
el -
v, is the electron velocity at the entrance aperture of the
detector, and v 1s the normal component of the electron

0

velocity v, at the detector. In the case of our 2% detector,

R 1s given by @sing cylindrical coordinates):

{ o 0% vt w0ttt 00 <o @7

& i _wsvmdo)oﬁ%oswjo‘_ﬁfé<z7f
or-

AL

Therefore, in one direction the detector integrates over fe

in the "forward" half of velocity space as defined by Eq.



109,

(2.73), while the "backward" or second half of velocity
space is integrated over by first rotating the spacecraft
180° and then performing the integrations as specified by
BEg. (2.73) again. Then to get the complete "velocity" moment,
we take the appropriate sum of the two separate integrations.

The form of the distribution function ?; used 1n our
caleulations 1s the one derived in section 2.2, Eq. [(2.29]
[the convected bi-Maxwellian distribution function given by

At

Bg. (1l&26) at dnfinity]. We thus have the follewing for fe
[see Eqs. (2.23}, (2.29})]:
- [4 @V s T ERR]

I ) Heﬁ (2:74]
£;(r;)V ,nﬁé_ C?

where

(V +E E ﬂ)k‘ éﬂ‘c@‘g% kZ]
s (2.75]

b(n) = W et
and Ky KZ are given by either Eqs. (2.39) or (2.40).
Referring to Fig. 24, the following definitions are used
in the determination of the apparent electron density, wind
velocity, temperature, and heat flow vector at various look

directions (ﬂc);

1) Apparent Density

n, (£.) = Mcfgé,) +Mo(¢¢”‘f) (2.76)
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2) Component of apparent wind velocity along normal

of detector

%0(550) = (M, (%) -M, (% +m)) /n, (2. 70)

3) Apparent Temperature \
g% (450) = (M_.,_(¢J +M, (ﬁofﬁ))/(nok) (2.78)

4) Component of apparent heat flow vector along normal

of detector

@ho(ﬁi) = /st (¢.) -/, (¢6_+ﬂ'> (2.79)

where the subscript "o" refers to the value of that quantity
at the spdcecraft v = s

In doing our numerical integrations of Eqs. (2.69) to
(2.72), the density, temperature, and wind velocity of the
electrons far from the spacecraft were set equal to the

following: .

JO ¢

i

Ne

T
v = 400 Fim £ 5€C

o (2.80)
g lers T

!

where the wind velocity is confined to the ecliptic nlane
and pointing in the anti-solar direction (see Figure 24).
The anisotropy T" /Tj was set equal to cither 1.5 or 2.0;
the magnetic field was oriented at 45° with resnect o W

and confined to the ecliptic plane [see Figures 24 and 11],
ﬁj@. Bl (2.81)
By TR
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and the spacecraft potential at r, was set equal to 4.5 volts,
T, = 45 volts (2.82)

Because of the lack of symmetry to the problem introduced

by the magnetic field, the integrations over ?; are threes
dimensional. Then because the integrand is also an integral
equation (Kl, Kz), Bgs. [2.69) to {(2.72) are four-dimensional
integrals. In order to reduce the computation time we con-
structed a two-dimensional array in u,, u, space for K4 and

K. The velocities u,, u, are, respectively, the normal,

t
transverse velocity in units of ug - Using a four point
interpolation procedure, we were able to obtain values for

K o Rg EOF HLT G The integrations were performed using
1 2 z = .

£
an iterative procedure based on Simpson's rule. During the
integration process, because of the presence of forbidden
zones, the integral expressions Ky KZ were integrated
numerically at the points in u,, u, space when any one of
the four points used in the interpolation procedure fell
inside the forbidden zone boundary. Finally, the forbidden
zone boundary was determined from the parametric equations
relating (un)C and (ut}C given by Bg. (2.66].

The results of our numerical intesrations for Ty 0.0
and 10.0 are shown, respectively, in Tables 4 and 5. The

reasons why we did the integrations for Ty = U0 instead of

Bl 0.1 are because, for one, they yield almost identical
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results, as may be expected, and also because the integrals
for the Kn‘s, where Eu T 0 (see Appendix B), can be evalu-
ated; thus allowing for simplicity in theé numerical integra-
tions, faster computation time, while also allowing us to
check our interpolation routine (i.e., compare numerical
results for B B 0.0 and 0.1). The results of the integra-
tions for zg = 0.1 and 1.0, respectively, are given in Tables
6 and 7 and, as may be seen, the differences between the in-
tegrations for.z_ = 0.0, 0.1, and 1.0 do not differ signifi-
cantly.

We will now discuss the results of our integrations for
the large Debye length limit (i.e., B Gial 5 Alf%«i). For
no anisotropy (T, /T, = 1.0), we find the average density
n, 2 12.86 mes, which is about the same result one gets with
no convection (§?= 0, see Appendix B). Also, the electrons
have an apparent drift velocity relative to the electron

frame of reference back toward the sun, i.e.,z&VO(O) 2 =45

km/sec, where

AL () = V;b(ﬁo) ~Veosd, (2.83)

is defined to be the apparent drift velocity. Also, the

5

electrons have an apparent heat flow 2 -3.3 x 10 ~ ergs/

cmz/sec, which is comparable to observed heat flow ~ 8 x 10—3
ergs/cmz/sec. Both these effects are consistent with the

A

backward drift of electrons suggested by the contours of fe‘

5 ©

The temperature TO;K 1.4 x 107 "K is about 18% higher than



113,

that for no spacecraft charging. The results of the inte-
grations with anisotropy (T, /T; = 1.5, 2.0) yield quali-
tatively similar distortions 1in fe that are found for no
anisotropy. Some of the new affects introduced by the
anisotropy are the following:

(1) &t right angles (o T the gemsity s the lazgest
with respect to all other directions, while the contrary is
true along B. This is consistent with previous discussions
in section 2.2 concerning the correction term effecting the
normalization in ?; which is largest along directions where
the temperature is coldest.

(2) The drift velocity vector is equal to 44 km/sec in

magnitude where § = =17°

(azimuthal direction drift velocity
vector is pointing; #§ has same definition as ﬂc, see Fig.
24), and 47 km/sec in magnitude where ﬁ = -31° for T /?L

= 1.5 and 2.0, respectively. The directions indicated are
such that the drift is toward the sun slightly rotated per-
pendicular to the magnetic field. A similar effect occurs
for the apparent heat flow vector which is equal to 3.27 x
e ergs/cmz/sec in magnitude where § = -8.2°, and 3.42 x

10—3 ergs/cmz/sec in magnitude where ﬁ

I

<12.5° For' 'Toee /T

= 1.5 and 2.0, vrespectively. These results are consistent
with the fact that the distortions introduced by convection
(ﬁ‘# 0) are greatest along those directions where the temper-

ature is the smallest (i.e., transverse to the magnetic

field for T“ b Tl).
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(3) The increase in temperature in all directions 1is
about the same, ~~ 18%, so that the change in anistropy is
small.

The results for Py 10.0, or short Debye length limit
{)D<<r0), are markedly different from those for the long
Debye length limit. One important result is that the density
is less than the initial density by about 7%, contrary to
that for the long Debye length limit, where the density is
greater than the initial density by about 29%. This may be
understood by considering the fact that for the short Debye
length 1limit the geometry of the problem is becoming more
plane parallel. For this geometry, trajectory convergence
is not as important as the rarefraction experienced by the
electrons as they enter the Debye sphere. This Yrarefraction
comes about from the electrons being accelerated, so that in
order ta conserve particles their density becomes'less (see
Appendix B for more details). This rarefraction, as far as
the numerical integrations are concerned, may be related to
the extension of the forbidden zone out to higher energies,
thus truncating significant portions of %; in. the integra-
tions (electrons coming in from the sides). Another important
change 1s that the electrons appear to be drifting away from
the sun rather than toward it, i.e., (AV_, = 35 km/sec, g =
180°), (43 km/sec, ﬁ = 190°) for, respectively, Tl /T, = 1.0

and 2.0. Referring to Table 5, it appears that this flip

—
NS gn forJQVb may to some degree be explained by the decrease
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A
in density. Furthermore, the contours of fe suggest that
the electrons are drifting toward the sun for z, = 10.0. By

looking at these contours, one can see that an appreciable
part of %; is excluded by the forbidden zone in the backward
direction (see Fig. 26) as is indicated in Table 5. Thus,
it is the design of the detector that determines which way
the electrons appear to be drifting (i.e., drift toward the
sun for detectors differential in angle, drift away from sun
for detectors integral in angle). The apparent heat flow
vector is essentially the same as that for the large Debye
length 1limit, though somewhat less.

We will now discuss the distortions introduced by
spacecraft charging upon the temperature measurements for
small AD' At this limit even though the petential 1s still
4.5 volts, the temperature has increased by as much as 55%
for Ten/Ty = 1.0 and 2.0, Thus, for the short Debye lemgth
limit the effects of spacecraft charging are not trivial.

By referring to the contours of %; for g 10.0, orne may
conclude that for this potential (EO = 4,5 volts) spacecraft
charging effects will be important even out to a few thermal
speeds. Furthermore, the apparent anisetreopy for this limit
#1.90 is somewhat less than the initial anisotropy T, /T,
= 2.0. This may in part be due to the fact that for small
AD the integral KZ becomes comparable to Kl.
In Table 8 we have tabulated the results of our "moment"

integrations for,AD = 0 (26¢°°). For this limif, as pointed
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out in sectionm 2.2, the appropriate correcfion i1s a sSimple
energy shift of the normal component of the velocity, (for

details see Appendix B), i.e.,

o = \/7; S (2.84)

As a reminder, these integrations correspond to observations

by detectors integral in angle. Here the density has de-
creased by almost a factor of two. Also, the wind velocity
has almost doubled from 400 km/sec to 713 km/sec, while the
heat flow has flipped in sign, so that it is now flowing
away from the sun with a magnitude £ 2.95 x 10_3 ergs/cmz/
sec. Furthermore, the temperatures have increased by more
than & factor of 2, while for T“ /Tl = 2.0 the apparent
anistropy (T, /ji)oif 1.5 has become less by about 50%.

In Table 9 we have displayed the results of calculations
similar to the above, except that now they correspond to a
detector differential in angle. This corresponds to the

limit where e 0, which is analogous to the plane parallel

0
problem, though it holds for all AD' In this case the resnles

are similar to those for the long Debye length limit, where
the corrections for the temperature are, for example, only
about 18% compared to 120% for the integral detector (AD = 0).
This difference in results between the differential and in-
tegral detectors in angle may be attributed to the forbidden
zone boundaries. For example, the integral detector must

integrate along the forbidden zone boundary (infinite plane
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in transverse direction at Vo uo), where the distortions

Va4
in fe arel large (critical trajecteries); while for the dib-

ferential detector, the forbidden zone, which only results
from the energy shift experienced by the electrons (circle
with radius uO), only brings about moderate distortions in

%;. Thus, if one wishes to make electron measurements down

to energies near the potential on the spacecraft, where the
forbidden zone boundaries occur, it appears that only electron
detectors differential in angle may be used, so that the cor-
rections due to spacecraft charging be minimized, and the

simple correction given by Egq. (2.84) be appropriate fer all

Debye lengths.
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(5.) Closing Remarks

In order to by-pass the tremendous difficulties in
solving the problem of a charged spacecraft, we assumed a
highly simplified model for the spacecraft potential with
spherical symmetry and simple Debye screening. The three
parameters introduced by this potential are the potential at
the spacecraft surface @O, the radius of the spacecraft E.
and the screening distance,AD. In formulating the problem
it was found that e ﬁo and 2y rO/AD are the important
parameters in the problem. The potential ﬁo determines over
what energy range distortions of fe are important, while the
ratio Zs specifies the type of geometry involved, i.e.,
spherical for largelAD, plane parallel for small,AD. As 1is
apparent throughout the discussion in this chapter, signifi-
cantly different results are obtained denending upon the
size of B and the type of detector used (i.e., detector
differential in angle or integral in angle).

In iconclusion, it is apparent from our calculations
that the forbidden zone boundaries bring about considerable
distortions to the observations made by detectors which in-
tegrate near these boundaries (27 steradian detector, ener-
gies near ﬁo). Furthermore, markedly different corrections
result depending upon the size of the Debye length (e.g.,
convergence, rarefraction,iﬁvo = +300 km/sec, -50 km/sec,

e = 40 & 1072 ergS/cmz/sec, (AT/T) = 20%, 120%). Since we
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do not know the Debye length we are unable to know how prop-
erly to correct the data. In contrast, when spherical sym-
metry does hold, the differential detector appears not to
have any of these difficulties, in that distortions do not

get that large and the simple correction to the data given

by Bg. (2.84) applies for all Debye demplhs, i sample
energy shift correction for normal velocity into the detector.
In general, spherical symmetry does not hold (e.g.,/\D 1s

a function of angle around the spacecraft); therefore modi-
fications will result,; so that any electron measurements
made near the spacecraft potential (i.e., U = 0) probably
cannot be made. For instance, in the case where spherical
symmetry does not hold, one could imagine cases where the
distortions introduced by spacecraft charging upon measure-
ments made by a detector differential in angle would be
more severe than those for detectors integral in angle.
Thus, in this case, the detectors integral in angle would
be superior to those differential in angle. Therefore, in
order to avoid these ambiguities, one must confine his mea-
surements sufficiently abeve the spaceecraft potential, (e.g.,
greater than 10 ev for @o = 2 volts, see section 2.2), in
order to ensure that the corrections due to spacecraft charg-
ing are only a small perturbation, so that the simple energy
shift correction given by Eq. (2.84) will hold for all de-

tectors (see section 2.2).
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CHAPTER 'L11

SEMI-EMPIRICAL DERIVATIONS OF THE WIND VELOCITY, EFFECTIVE
TEMPERATURE, AND EFFECTIVE HEAT FLUX PROFILES

(1.) Opening Remarks

After having been acquainted with the experimental
techniques involved in measurements of interplanetary
electrons, we are now ready to turn our attention to the
primary goal of our thesis. That i1is, the analysis of the
physical processes involving interplanetary electrons. It
is now well understood why most investigators in this field
consider the importance of electrons from the fact that
they are almost totally responsible for the conduction of
heat. Before we embark on the models of the heat transport,
it is essential that we understand the overall global
pictures of the behavior of the macroscopic character of
the solar wind. For example, of prime importance is that
one understands how the heat flow vector due to electrons
behaves as a function of distance from the sun.

At present, self-consistent solutions of the "fluid
equations'" describing the solar wind do not yet exist.
Since they are very difficult to obtain, we decided to

utilize a semi-empirical approach. To this end we have

devised a certain systematic procedure of making use of

the empirical knowledge of the interplanetary density and
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phenomenological magnetic field topologies in conjunction
with the three conservation laws for the interplanetary
plasma as a whole. Before going into details of these
calculations, we should like to review some of the observa-
tions pertaining to the solar coréna and the interplanetary
medium given in section 3.2 and the theoretical models of

the solar wind given in section 3.35.
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(2.) Review of Observations in the Solar Corona and Solar Wind

The solar corona, the euter envelope of the solar
atmosphere and '"source'" of the solar wind, displays a complex
structure composed of a number of different coronal forms. Three
of the most prominent coronal features which give a more or
less overall description of the solar corona are ''quiet' regions
(QR), coronal holes (CH), and active regions (AR). A brief

description of each will now be given.

1. The quiet corona is defined to be those regions of the

corona which are characteristic of the mean or normal corona.
The magnetic topologies of the ''quiet'" corona are made up of

a complex structure of closed and open field lines; the latter
lines dre believed to open With a more or 1&ss 1/r2 divergence.
For reference, the electron density and coronal temperature
characteristic of the lower ''quiet" corona, as determined by

Munroe and Whitbroe (1972)17 from EUV data are, respectively,

5.5 X 108 cm_S, and 1.66 x 106 °K. The large scale £ield
strengths appear to be on the order of 10 gauss [Gurman et al.
(lazayisy,

2, Coronal holes, which appear as dark features on

x-ray photographs of the solar corona display the following
19
] .

characteristics [see review article by Zirker (1977)

(a) They display lack of emission in soft x-rays
[Vaiana et al. (1973)20], reduced emission in certain EUV

lines [Munroe and Withbroe (1972),17 Neupert and Pizzo

21

CLE 74, Fisher and Musman (1975L22 K-coronometer data
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[Altshulexr et al. (1972123 Munroe and Jackson (1977]24],
and reduced emission in metric wavelengths [Dulk and
Sheridan (1974)25]. This implies that they appear to be
regions of low density and temperature relative to those
found in the 'quiet" corona. For example, Munroce and
Withbroe (1972),17 using EUV data, concluded that coronal
holes were regions of reduced pressure by a factor of 3
relative to the quiet corona, with coronal temperatures

50 8 -3

K lower than normal (nekzlo EE T33106 o

about 6 x 10 K).
(b) Temperature gradients at the transition level
are about a factor of 2 less than that found in "quiet"
regions, such that for coronal holes the conductive flux
from the corona down to the transition layer was reduced
by an order of magnitude.17
(c) Coronal holes coincide with large unipolar regions
(or magnetic cells) [R. H. Levine (1977)26], where the
magnetic field line topology is open with highly divergent
field geometries near their boundaries.zo’ 405 2 e s
(d) Coronal holes are found to be long lasting slowly
evolving structures in the corona [Timothy et al. (1975)?7
Bohlin (1977)2% Sheeley (1976)2°] which have lifetimes on
the order of many solar rotations (é.g., 3 to 10 solar
rotations).

(e) Coronal holes appear to be less structured than

that found in quiet regions.
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(£) Polar coronal holes (PCH) appear to be present at
all times (at least near solar minimum) and equatorial coronal
holes are in general just extensions of polar coronal holes.28

(g) During solar minimum the coronal electron density
inside polar coronal holes displays a latitudinal dependence
such that the density is a minimum at the poles, and a
maximum near the equator.21

(h) Coronal holes appear to rotate rigidly, showing
no differential rotation with latitude as is found for
most photospheric phenomena such as sun spot527 [Wagner
(1975) 307,

(i) Outward streaming velocities of plasma in the
range 16-20 km/sec have been observed within coronal holes
from Doppler shifts of Si IX and Mg IX lines [Cushman and
Rense (1976)°17.

(j) Polar plumes are found to lie within the boundaries
of polar coronal holes [I. A. Imad and G. L. Withbroe (1976)32].
Polar plumes are vertical columns of enhanced brightness
relative to the weakly emitting polar coronal holes. They
are about 3 x 104 km wide at about 1.1R - and extend out to
distances on the order of a solar radius above the solar limb.
They also tend to bend over as if to follow the large scale
solar magnetic field which appears characteristically dipolar

in these regions.

3. Active regions extending into the corona are large




bipolar magnetic features (closed field line topologies)
where the underlying photospheric magnetic field strengths
are very large relative to that found in ''quiet" regions.
They appear to form around the outer boundaries of coronal
holes.26 They are regions of enhanced emission in x-rays,
EUV lines [Noyes et al. (1970)33], white light corona
[Newkirk (1967)°%], and metric wavelengths [Kundu (1967)°7].
For typical active regions at the base of the corona

the electron density neNlO9 cn™ > is about a factor of

2=3 greater, coronal temperatures T#2.3 X 106 °K are

1525

slightly greater, and the temperature gradient at the transition

layer is about a factor of 5 greater than that found in the

y 33
Yaguiet" coreona.

Without going dintc toe muech detail, active
regions are associated with such features as helmet streamers
(arch-1like structures which form over ''quiescent'" prominences
near the solar limb and extend out to several solar radii
from the sun where they become thin streamers), streamers
(extensions of enhancement which form over sunspot groups),
sun spots (dark regions at the photospheric levels which are
assoclated with very strong magnetic fields"‘lo3 gauss),
enhancements (regions of enhanced emission which form over

sunspot groups), and condensations (small~104

km, very bright
emitters of radiation). Selar flares [évestka (1976)36],
which are eruptive phenomena on the sun and usually occur in

sunspot groups, emit radiation in a broad spectral range from
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- rays and hard x-rays all the way down to radio waves.
Furthermore, in flare events some ions are accelerated up
to very high energies on the order of 10Mev or in some
cases 100 Mev.36 Flares will produce hydromagnetic shock
waves in the interplanetary plasma, resulting in considerable
disruptions of the solar corona and the interplanetary
medium for time periods on the order of hours, Also,
there are the recently discovered x-ray bright points which
are intense point-like sources of x-ray emission [Vaiana
et al. (1970)37}, and known to be associated with mini-flares.
As can be seen from this descriptive summary of the
solar corona, it is an extremely complex structure spatially
and temporally (Note: lack of structure (uniformity) seen
within coronal holes may in part be due to our inability to
see within them.) Furthermore, if one goes down to lower
levels of the solar atmosphere where the photosphere and
chromosphere reside, the structure gets even more complex
(granulation, sunspots, plagues, spicules, etc.). Therefore,
any attempt to describe the coronal expansion must consider
the inherent complexities of the solar corona, at least in
the interpretation of ones results.
The phenomenon of the coronal expansion and the inter-
planetary medium (solar wind) has been well-established and
may be characterized in a qualitative way by a freely expand-

ing fully ionized plasma which is moving in an approximately
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radial direction away from the sun. Since the magnetic
fields are constrained to move with the plasma which 1s
moving radially away from the sun and because the sun is
rotating, the photospheric magnetic fields of the sun

become drawn out into interplanetary space with a form
approximately described by an Archimedian spiral. The
positive ion composition of this plasma mainly consists

of protons 1H+ with about a 5% contribution by # from alpha's
4He++. Observationally the solar wind appears to be com-
posed of two separate and distinct streams: high-speed
streams (HSS), which are moving away from the sun at 1 AU
with velocities V/~700 km/sec, and low-speed streams (LSS),
which in general reside between subsequent high-speed
streams and have velocities V~300-325 km/sec. Superimposed
upon this structure is the presence of shocks resulting

from stream-stream interactions (e.g., high-speed streams
overtake low-speed streams), flare-produced interplanetary
shocks, discontinuities (abrupt changes in the plasma and
field parameters), filaments (regions which reside between
subsequent discontinuities, scale sizes #/.01 AU), and waves,
most notably Alfvén waves. Most of this structure may be
attributed to azimuthal variations of the solar wind structure
resulting from longitudinal variations of the solar wind
sources on the sun. Then as the sun rotates (27 day synodic

period) different streams will evolve along the sun-earth line
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as a function of time, in such a way that the observed
structure noted above is repr¢duced.

The low speed streams often referred to by the name
fgulet Solar wind”rare characterized by relatively low
wind velocities ~300 km/sec which for a particular low-
speed stream is not too variable, and the presence of
microscale fluctuations (Alfvén waves, etc.) are at a
relatively low level [see Tables 11 and 12 from A. J.

Hundhausen (1972)38

for a listing of average properties of
low-speed streams]. Some of the other more important physi-
cal properties of low-speed streams are: (1) proton tempera-
tures Tpﬁf4 X 104 OK, (2) densities ~ 10 cm_g, (3) electron
heat flow vector qe>>qp and is"’lO_2 ergs/cmz/sec, (4) proton
particle fluxes~2.4 x 108 cn? secul, and (5) magnetic

field strengths B~5y (¥ = 167> gauss) .

As pointed out by Hundhausen (1972)?8 the frequency
distributions for the plasma parameters such as density,
temperature, and magnstic field strength are very broad even
for the narrow range of velocities between 300-325 km/sec.
Thus, low speed streams do not appear to be representative
of a well-defined, distinct state of the solar wind.38
Furthermore, from auto-correlation studies by Gosling and
Bame (1972)?9 the condition of steady state for low-speed

streams only holds for periods less than 30hours (3 hour

averages of plasma parameters were used). A more complete
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0 further shows this to

study by Gosling et al. (1976)4
be the case, especially for the year 1967 during solar
maximum, when low-speed streams dominated the stream
structure.

High speed streams which have very high wind velocities
V ~700 km/sec are characteristically very broad (1400 in
solar longitude), magnetic field is predominantly one polarity,
microscale fluctuations are at a relatively high level and
predominantly (~80%) composed of outwardly propogating
Alfvén waves [Belcher (1976)41], plasma parameters such
as density, temperature, and field strength are very stable
(unchanging), and the lifespan of these streams may last
for many solar rotations (refer to Table 13 and 14 from,
respectively, Feldman et al. (1976)12 and Bame et al. (1977)42
for a listing of average properties of high-speed streams).
Some of the other more important physical properties of
high-speed streams other than those noted above are: (1)

> °K are about a factor of

2-3 greater than the electron temperatures Teﬂﬁlos OK, (2)

proton temperatures T5¥2.3 6o 11

densities ~4 cm_s and (3) electron heat flow vector

. ergs/cmz/sec are smaller than that found in

8

qeﬂ‘B x 10
low-speed streams, (4) proton particle fluxes”~3 x 10
c:rn—2 = sec_1 are a little higher than that found in low-
speed streams, (5) magnetic field strength B~ 5¥, and

(6) the Alfveén energy flux EAﬁill X 10_3 ergs/cmz/sec.
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Gosling et al. (1976]40 also showed from autocorrela-
tion studies of the solar wind that high-speed streams
appear to be more characteristic of the solar wind during
solar minimum, especially the years 1973-1974, and are very
long-lasting (up to 10 selar rotations). FPurthermore,
a study done by Bame et al. (1977)42 showed that except for
the wind velocity the plasma and field parameters within
high-speed streams are more steady and more uniform than
that found within low-speed streams. They also showed that
the 4He++ abundance within high-speed streams is very uniform
(not true for low-speed streams) and its abundance relative
to protons within high-speed streams is 4.8% (slightly higher
than that found in low-speed streams 7~ 3.8%). Thus it appears
that high-speed streams--and not low-speed streams--fulfill
the requirement of being a well-defined state of the solar
wind along with the conditions of steady state and uniformity.
The correlation studies by Krieger et al. (1973)?3
Neupert et al. (1974)21 Krieger et al. (1974)** and Nolte
et al. (1976)45 show that coronal holes are highly correlated
with high-speed streams (i.e., they are the "sources'" of
high-speed streams). As noted above, coronal holes and high-
speed streams both satisfy the conditions of steady state
and uniformity, contrary to that found for low-speed streams
and their suspected source 'quiet'" regions. Thus, they appear

to be more appropriate candidates for purposes of comparison
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with theory. Furthermore, because of the high correlation
between coronal holes and high-speed streams, we have the
situation of cause and effect. This allows one to fix the
boundary conditions, respectively, at the sun from coronal
observations and at 1 AU from spacecraft observations, and
thus allows for a better observational test of theory. Of
course, from observations confined to the ecliptic plane
there is the problem of evolutionary effects from stream-
stream interactions. One could speculate that spacecraft
observations made near the mid-points of very broad high-
speed streams (the time it takes a high-speed stream to
sweep past an observer at 1 AU 1s much longer than the pro-
pagation time of the stream from the sun to 1 AU) will
closely approximate stream characteristics free from stream-
stream interactions. This problem may also be bypassed by
spacecraft observations out of the ecliptic plane when one
considers the Pioneer 10 and 11 results along with solar mag-
netographic observations which suggest the presence of an
interplanetary neutral sheet confined to the equatorial
plane of the sun [E. J. Smith et al. (1977)%°. E. 7. Smith
et al, (1977)47]. This means there may only be one sector
boundary which separates fields of opposite polarity in the
northern and southern hemispheres. Thus with the concept
of polar coronal holes one could imagine a single slowly

evolving high-speed stream in each solar hemisphere (no
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multiple streém structure) eminating continuously away

from the sun and free from distortions due to stream-stream
interactions. It is rather clear that spacecraft observa-
tions over the poles of the sun near solar minimum would
offer a unique opportunity to test solar wind theories

under nearly ideal conditions.
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(3.) Present Status of the Theory of the Solar Wind

The basic equations governing the coronal expansion

under steady state conditions are:

7-B=0 (3.1)
Ux(VxB) =0 (5.2)
AR e 7 g (3.3)

V.(/OVV + (P+BYsm) I -BB ‘HT) ~oV S (5.4)
VA((pVHERV T _Zf) e

where/O is the mass density, V is the wind flow velocity,
P is the scalar pressure, B is the magnetic field vector,
9§ is the gravitational potential, I is the unit dyadic,
q is the heat flow vector, and S is the Poynting vector.
The approximations made in this formulation are: 1) ‘the
MHD approximation, stating that the electric field E is
given by: il e SRR
E+¥XB s (3.6)

2) a scalar pressure is used for the tensorial pressure
% (viscosity effects), and 3) contributions due to waves
(e.g., Alfven waves, etc.) are ignored.

It should be pointed out that the MHD approximation
is the zeroth order approximation [given by Eq. (3.6)] of
the generalized Ohm's law [see Rossi and Olbert (1970)48],
where terms proportional to gradients in the plasma divided
by the density are dropped, including a term due to collisions.

In general it can be shown that if the proton gyroradius
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R is small compared to scale lengths L characteristic

T,P
of the plasma (e.g., L is the distance over which the

density changes appreciably) these higher order terms may

be dropped. Furthermore, the collision term, which is
inversely proportional to the so-called '"'magnetic Reynolds
number" Rmagﬁ>’ 1, may also be dropped. Therefore, under
these tonditioiis Eq. (3.6) for the slkectric tield iis 3

good approximation. Furthermore, observations in the inter-
planetary medium have given strong support to the validity
off this approximation (e.g., presence of Alfven waves, etc.).
In fact it is generally believed that, with the possible
exception of the thin layer of the chromosphere, the MHD

approximation is true throughout the interplanetary medium

of our concern, certainly above the lower corona.

(a.) '"Classical'" Parker model

We shall review some of the theoretical developments
in solar wind theory. To start with, we present the ''classical"
physical picture due to E. N. Parker, used in the initial
development of solar wind theory.

The high temperatures characteristic of the solar

6 °K are believed to be the result of convective

cogrona T vl0
motions at photospheric layers where temperatures are only
on the order of 6000°K. The convective motions generate

MHD waves which propogate up along the sun's magnetic fields
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to the base of the corona where they become strongly damped
and deposit their energy. In doing so they heat up the
lower corona to very high temperatures TN'lO6 0K, causing
the gas to become fully ionized. For a collision-dominated
gas (lower corona is collision dominated) the heat flow
Vector'$ is proportional to the negative gradient of the
temperature, i.g.,

G = -, VT (307
where X,is the thermal conductivity. For a fully ionized
two component plasma (protons and electrons) the proportion-

ality coefficient X is [as determined from the Onsager

relations, see Rossi and Olbert (1970)48]:

sk |92 X10 -5/2 (3.8)
% = %o T = — T
& In /A

where the 1n/\lis the Coulomb logarithm (see Chapter IV for
details). For conditions typical of the lower corona we
Find; e =
W, R § X 10 erys /cim/sec,/o(e;, s
As can be seen, the thermal conductivity is a strong function
of the temperature and for T = 106 °K is about 20 times the
conductivity of copper at room temperature. Because of
the positive gradient in temperature across the transition
layer from the chromosphere to lower corona, thermal energy
will be conducted back down into the chromosphere. Then as

the coronal temperature continues to rise, the energy con-

ducted back will eventually become comparable to the wave
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energy deposited into the corona, so that no further increase
in temperature occurs. For quiet regions this temperature
rise appears to take place in a very thin layer “’103 km

wide and about .04 r, above the photosphere. Just above

this transition layer, somewhere in the range 1 r, £ rs Irs,,
it was then felt that the temperature reached a maximum Tmax
at some distance e beyond which the temperature decreases
with increasing r (no more wave deposition). (Note: 71T is
the radial distance in a heliocentric coordinated system,

lOcm is the radius of the sun.) Since for

e =7 % 10
]7>rmax the temperature gradient is negative and the plasma
has a high thermal conductivity, a significant amount of
thormal energy q™~2 X 104 ergs/cm%bec is conducted away from
the sun. The high temperatures characteristic of the lower
corona extend out to many solar radii away from the sun (small
thermal gradient) rendering the heart of the corona almost
isothermal. Because of this the pressure gradients of the
gas, mainly due to the sharp drop in density, remain greater
for all t than the attracting force of gravity, which rapidly
decreases with a 1/1"2 dependence (''nozzle" effect). Thus,

the plasma experiences a constant push away from the sun so
that it eventually attains supersonic velocities away from

the sun for r;’rc, where rCN 5T iz the sonic critical

0}
point.
With the above picture in mind, Parker solved the

equations (3.1) to (3.5) under the assumption of spherical
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symmetry (monopole magnetic field). Assuming spherical
symmetry, he was able to ' ignore the effects of the
nonradial magnetic field in order to simplify the mathe-

matics. This lead to the equations:

I = L}’ﬂ’n\/?"a (3. 108])
F = 4Tanr1[2LmH\/l+S,kT— Gﬂ\;@ﬁ"}’r‘mrlgz(&ll)

where I, which is a constant and equal to the particle flux,
was derived from the conservation of mass equation, Eq.
(3.3), while F, which is also a constant and equal to the
energy flux, was derived from the conservation of energy
equation, Eq. (3.5). We also have from the momentum equa-

tion the following:

v 4Y AP ,/ogﬁ'@ (3.12)
Y Adr Ar P
where
o= nmy (3.13)
P=znkT (3.14)
is the scalar pressure, n is the number density for electrons
Or protons, G = 6.67 X 10_8 dyne - cmz/gm2 1s the gravita-
tional constant, Mg= 2 x 1033 gm is the mass of the sun,
and m, 1s the mass of the hydrogen atom. These equations
are not yet closed since a separate equation specifying the
heat flow vector q must be given. One could use the Onsager
relations for g. using Bas. (3.7) and (3.8}, bBut this expres-

sion will hold only in the lower corona where the plasma is
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collision dominated. Further out 5 r the plasma becomes
collisionless. Realizing this, Parker (1958)49 chose to
approach the problem empirically by assuming a polytrope
relation for the pressure
¥
P=p (ﬁ) (3.15)
o \ g

where X is the polytrope index and Po?‘% are, respectively,
the pressure and mass density at the reference level. In
order to avoid the theoretical difficulties related to the
understanding of the heating mechanisms of the lower corona,
the reference level r_ was confined to regions above the
temperature maximum (i.e., ro:>rmax)' Using EBg. (3<14)

in conjunction with Eq. (3.15), one has

v

Prom Bgs. (3.10) to (3.12) and 3.15): one ean show that g

must have the following ad hoc form for this model

3 <l_ _E_)pv (3.17)
A e

Thus the polytrope assumption closes the equations and allows
their explicit solution. Furthermore, from Eqs. (3.16) and
(3.17) it is evident that this replacement of the (unknown)
q by Eq. (3.17) leads to the following consequences:

1) For the range 1 <¥ < 5/3 the heat flow vector is
positive and finite. For large r, where free expansion is

expected to take place (i.e.,/ﬁ C><l/r2], the temperature will
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have the following radial dependence:

Tt

§o= 2(y-D

2) Y = 5/3 (Adiabatic case)

_q/
T < 2 for o e

i where O < '§T< % for F>>Ys E5eils )

and

3) Y = 1 (Isothermal) has to be treated separately
in that one must first take the divergence of Eq. (3.17) for
q, then set ¥ = 1, and integrate the resulting expression
for q. After doing this -‘one gets

¢= 7. (3) +RU (D)L (7) 5-20

where VO is the wind velocity at s and T = To'

4) Y <1 Here the temperature increases with radial
distance, q< 0 (heat is being conducted back toward the
sun) and for this solution the pressure is not zero at
infinity. Thus they are not appropriate for wind solutions.

By using a polytrope, Parker in essence was assuming
the form of the temperature profile (radial dependence of
T). For instance, once solutions are obtained for © and V
as functions of r, one can determine the temperature for
all r by substituting the solutions for/O imto’ Bg,. (3216)
(i.e.; radial dependence of T implicitly given).

LR solvinmg BEgs. [8.100, (5.11); and (3§.32) alons with
Eq. (3.15) for the pressure, one finds that there are four
different classes or topologies of solutions depending

upon the boundary conditions used. Separating these four
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classes of solutions are two critical point solutions

which pass through the sonic critical point E (coefficients
in the equations becomes singular at rc). Of all of these
solutions only one of the two critical point solutions
satisfies physically accpetable boundary conditions. As
specified by Parker, they are:

1) Velocity V at lower corona 165 should be no more
than a few km/sec since velocities significantly larger
than this are not observed in the solar atmosphere (i.e.,
V<ZC§”150 km/sec in the lower corona, where CS2 = y(P40)
is the sound speed squared).

2) Pressure P at infinity is zere. This follews
from the observation that pressures in the interstellar
medium (outside the solar cavity) are known to be small.

The condition of zero pressure does not necessarily

rule out hydrostatic equilibrium. For example,a/é 3/2
implies a radial temperature gradient £T 2 1 and zero
pressure at infinity under the condition of hydrostatic
equilibrium (V = 0). But coronal observations at that

time indicated that the coronal temperature profile was
much flatter, in fact (1 - ST) 2 0 at least out to a few
solar radii. Under these conditions there is no hydrostatic
equilibrium and there must be a free expansion in order to
get zZero pressure at infinity. Furthermore fyxom Eq. (3.1%7)3
the condition 1im P = 0 implies 1lim q = 0 if V = constant

=0 =
for r>>r0
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The isothermal case (¥ = 1) gives the highest velocities
at 1 AU but has a density profile steeper than that observed
in the lower corona, and wind velocities which logarithmically
diverge as r-—so (i.e., thermal pressure force pushes on the
gas out te infindity). For case 2, where 1<¥<5/2, the
velocities at infinity are finite and approach a constant
value. ¥ & 1.1 (ST o 0.9 gt 1.04 v. and IT z 0.2 for large 1)

@

gives solutions most characteristic of the observations in

the lower corona and 1 AU [e.g., for roﬁir@ s = 5 X 107
Cm_S, T, = L.3 % 10° Y%, one gets m = 17 cm_s, V = 290 km/sec,
and T N106 B (too high) at 1 AU].50 In reality one value

of the polytrope index will not hold for all r. For example,
at 1 AU the observed temperatures T/\JlO5 °K are an order

of magnitude lower than coronal temperatures. This indicates
the corona cannot be isothermal for all r. Furthermore,

at 1 AU the observed heat flow vectors q NlO_2 ergs/cmz/sec
are much lower than that predicted by the TS/2 law for the
conductivity using observed densities and temperatures at 1 AU.
Thus using these two facts, the flow must be more adiabatic
at 1 AU than that in the lower corona. Parker (1963)?0
realizing the pessibility for adiabatie E£low for larpe 1,
computed solutions where ¥ = 1 (isothermal) for r ¢ r £ b,
and ¥ = 5/3 (adiabatic) for r>b where bfV10r62>rC. For

the boundary Conditionsrbﬁqujn = 3 X 107 cm_3

6 o

and TO =

10 K he computed solutions more typical of the solar wind
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with wind velocities V = 300 km/sec, densities n - 10 cm_g,

and temperatures T~7 x 1o>50 50

K (again toe high) at 1 AU,
Thus , except for the high temperatures at 1 AU, which ‘can
easily be corrected for by introducing a more continuous

change in Y with r, the polytrope model by Parker appears

to be able to reproduce the overall characteristic of the

"guiet' solar wind.

(b:) Other variants of thermally driven spherical winds

Single fluid models of the solar wind, where conduction
is the only driving mechanism, have been developed by a

number of different authors. These models assumed spherical

5/2

symmetry and the T law [see Egs. (3.7) and (3.8)] for the

heat flow vector in the energy equation. There are at
least 3 sets of solutions which are known to exist. Each

one has a different radial dependence for T. Briefly they

2/7 Parker (1964)?1 Noble and Scarf (1963)52;

Whang and Chang (1965)53; and 3. ] T/‘*l/ra/3

arer  1.) Tl
2.) T~1/r2/5
54 55

Durney (1971), Roberts and Soward (1972) As of now

the one most quoted is that by Whang and Chang. Their re-

sults are given in Table 15 from Hundhausen (1972).38
One of the difficulties of these models is their inmability

to produce wind velocities greater than 400 km/sec at 1 AU,

while having temperatures and densities characteristic of the

lower corona, (i.e., require higher temperatures, lower densi-
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ties at the coronal base than that observed). But the

major difficulty, as previously mentioned, the expression
for'ﬁ’is inappropriate in the interplanetary medium where

for £25-10 ry it is collisionless. Furthermove, the

thermal coupling between protons and electrons due to

Coulomb collisions is very weak. Thus, a two-fluid picture
should be more appropriate in describing the coronal expan-
sion especially for distances outside 10 r .. Such a calcula-
tion was performed by Sturrock and Hartle (1966)56 where

they used the classical heat conduction formula for a Coulomb
collision dominated plasma appropriate for electrons and
protons in their separate energy equations. Again, as in

the single-fluid models, their solutions tended to have a
need for higher temperatures, lower densities than normally
found within the lower corona, for V >400 km/sec at 1 AU
(i.e., best fit to observations gave V ~~ 250 km/sec). Another
difficulty was that electron temperatures were a factor

of 2-3 greater, proton temperatures were an order of magni-
tude lower and electron heat flow vector was an order of
magnitude greater than that observed. The low proton, high
electron temperatures can be understood since the thermal
conduction for electrons is /40 times greater than that for
protons, (i.e., electrons retain high coronal temperatures,
protons cool adiabatically). But the observations indicate

a stronger thermal coupling between electrons and protons.
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This plus the overestimate for A is strong evidence that
the TS/2 relation for M_is inappropriate in the inter-
planetary medium. One attempt to correct this problem of

5/2 law

low proton temperatures while still keeping the T
for ¢ was to introduce viscesity effects, which are im-
portant for protons but not electrons, into the two-fluid
model. This was done by Wolff, Brandt, and Southwick
(1971)57 where they were able to reproduce the observed
temperatures for protons while retaining the same results

for electrons computed by Sturrock and Hartle. In these
calculations they included the effects of the spiral magnetic
field upon the thermal conduction and viscosity expressions
in the energy equations. Since thermal energy is constrained

to move along the magnetic field, the heat conduction and

viscosity in the radial direction are reduced by the factor:

(1+ (=5

where f1is the angular velocity of the sun. Thus as the

s

magnetic fields wrap around, the flow becomes more adiabatic
so that more thermal energy is converted into the kinetic
energy of the flow (gets slightly higher wind velocities,

V & 310 km/sec). Though the problem of low proton tempera-
ture may be accounted for, the high electron temperatures
and heat flow vectors predicted by these models are still

unacceptable.
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(c.) The meridional models

With the recent discovery of coronal holes and their
association with open highly divergent (non-radial) field
lines and their correlation with high-speed streams, the
assumption of spherical symmetry no longer seems appropriate.
Near the sun the tension in the magnetic field lines dominates
the dynamical and thermal pressures of the plasma, so that
the flow is constrained to move along the magnetic field. It
is thus apparent that when considering models of the solar
wind, one must take into account the meridional flow (curvilin-
ear) along the magnetic field lines.

A number of attempts have been made to solve for the
non-spherical MHD solar wind flows where axial symmetry and
a polytrope law for the pressure P are assumed. Examples
are, G. W. Pneuman and R. A. Kopp (1971)?8 who developed
numerical selutions for the isothermal case and no rotation
in a dipole field; I. Okamoto (1975)°° who did a more
sophicated analysis compared to that done by Pneuman and
Kopp, but in essence came to similar conclusions concerning
the structure of the equations (elliptic) and therefore the
numerical methods to be used; and Nerney and Suess [1975L60
who did an expansion of the equations within the equatorial
plane, where they solved for the flow far from the sun. M.
A. Heinemann and S. Olbert (1978)61 were able to show that

none of these solutions were self-consistent.
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Heinemann and Olbert were successful in developing a
proper formulation of the problem by deriving a second
order quasi-linear differential equation, called the
transfield equation, for the magnetic stream function }&

defined by
PisS

B = VXé‘gé}// (3.22)

where %¢ is a unit vector pointing in the azimuthal
direction. It follows from this definition that 70i5 a
field line constant, i.e.,
B .Y % =0 (5.23)

They discovered the existence of four distinct domains
separated by three critical surfaces (cusp, slow, and fast),
where two of these domains were hyperbolic while the other
two were elliptic.. The transfield equation for ?ﬁturned
out to be exceedingly complicated, so much so that it
appears an 1mpossible task for obtaining self-consistent
solutions which must simultaneously satisfy all boundary
conditions, including those at the eritical surfaces. When
one realizes how idealized this model is in comparison to
reality, the explicit self-consistent solutions of non-
spherical models appear nearly impossible at present.

Along with the theoretical difficulties for nonspherical
solar wind flow, there are the theoretical barriers in
understanding the transport of energy in a plasma where

Coulomb collisions are virtually absent. As previously
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5/2 law

pointed out, the observations indicate that the T
for the conductivity, or equivalently the Onsager relations,
is inappropriate for the interplanetary medium. This
result is not totally unexpected, and quite possibly
wave-particle interactions are the appropriate mechanisms
for regulating the transport of energy (see Chapter 4).
Furthermore, in the case of coronal holes, where the densi-
ties within them are relatively low, the plasma becomes
practically collisionless beyond one solar radius above
the solar surface (see sections 3.5 and 3.6). Therefore,
before any realistic model of the solar wind may be
constructed, the correct transport coefficients derived
from theory must be determined. As in the case for non-
spherical flow, and probably more so, the theoretical
difficulties in understanding the transport of energy in
a plasma that is not collision dominated are formidable.
Thus, there is a need for some empirical input in developing
theories for the transport of energy in the interplanetary
medium.

Except for the electron density and magnetic field
line topologies (inferred from observed coronal topologies),
all reliable observational information 1is absent between
a few tenths of a solar radius above the sun's surface out
to 1 AU. Since most of the expansion takes place within

the range from 1 rg to 50 r, , it is important that the
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information pertaining to the radial dependence of the
wind velocity, temperature, and heat flow vector of the
expanding plasma within this range be as reliable as
possible. Therefore, in order to fill this observational
gap, we propose a semi-empirical approach based on the
MHD conservation relations and empirically determined
electron density distributions and magnetic field line
topologies. By using the conservation laws one avoids
the many pitfalls in making assumptions about the physical
processes effecting the expansion which at present are
poorly understood.

We would now like to make a few comments concerning
the energy balance problem for the coronal expansion. As
determined by Munroe and Jackson (1977),24 the cross-sectional
area of a polar coronal hole opens up to an area seven times
greater than expected for 1/r2 expansion. Since particle
fluxes for high-speed streams are about the same as those
for low-speed streams, the particle flux eminating from
within coronal holes must be a factor of seven greater
than that for l/r2 expansion, in order to conserve particles.

6 OK within coronal holes

6 o

Furthermore, temperatures T V10

K.17

are colder than that within quiet regions T~1.6 x 10
This means the thermal conduction flux is reduced by a
factor of ~~5. Thus, there is a net effective reduction

in energy by a factor of ~40 available to drive the coronal
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expansion (see Figures 39 and 40 from section 3.5). Con-
sidering the problems that the heat conduction models

already have in producing flows with wind velocities greater
than 400 km/sec for coronal conditions characteristic of

the '"quiet" sun, the energy balance problem introduced by
coronal holes seems to make the whole picture of a thermally
driven wind questionable. One way to account for this
problem, as pointed out by J. W. Belcher (1971)62 s Lto

allow for extended heating and momentum transfer via out-
wardly propagating MHD waves (preferably Alfvén waves) .

As demonstrated by Belcher, by introducing a wave pressure
term due to Alfven waves in the momentum and energy equations
within the framework of a Parker type model for the solar
wind (polytrope), he was able to account for the overall
characteristics of high speed streams consistent with
conditions in the lower corona. Therefore, it does not

seem unreasonable to speculate that this may be the case,
especially in the fact that high speed streams are associated
with a predominant presence of outwardly propagating low
frequency (periods ~hours) Alfvén waves.41 Moreover, it

1s known that within coronal holes the temperature gradients
are not as steep as those found in '"quiet" regions.l7 This
suggests that within coronal holes, the waves are not strongly
damped in the lower corona, so that a considerable portion

of the wave energy can propagate upward.
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Observations at 1 AU do indicate that the observed
Alfvén wave energy fluxes EANIO_2 ergs/cmz/sec in high
speed streams can only account for about 7% of the energy
needed to accelerate high speed streams to their observed
energy fluxes.41 Thus, on its face value, it would
seem that Alfvén waves alone would be insufficient to
drive the solar wind. One could argue, since gB/B ~ 1
(§B is the wave amplitude) that the low Alfven wave energy
fluxes at 1 AU may be the result of the waves being
damped by non-linear saturation effects during transit
ftrom the sun to 1 AU.41 Since most of the power in Alfven
waves at 1 AU occurs at time periods TA”*hours, wavelengths
for Alfven waves )A are on the oxder of d selar vadius I, .
Then since the wave pressure term due to Alfven waves was
derived by Belcher using the WKB approximation [i.e.,.AA/L
££1), it will not be applicable near the sun. At present,
there is not a theory for MHD waves which applies in regions
where the wavelengths of the waves are on the order of the
scale size of the medium. It is hoped that progress in

this area will be made in the near future.
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(4.) Spherical Model

Let us begin with the calculations for a highly
schematic spherical model of the solar wind. For this
purpose let us use a composite of the radial density
profile shown in Figure 3Z. 1In Figure. 32 we have a log-
log plot of the electron nunber density in ¢fs units
versus the radial distance from the sun in units of solar
radii r in a heliocentric coordinate system. (Note:
all plots given in this chapter are log-log plots unless
otherwise noted, where the abscissa is the same as that
in Figure 32.) This figure represents a survey of the
electron density measured over a wide variety of time
periods, different periods of the solar cycle (solar minimum,
maximum), while. being predominantly confined
to the equatorial plane. They were measured using various
techniques: (1) white-1light K-coronometer measurements
[Newkirk (1967)°% Van de Hulst (1953)°3], radio frequency
dispersion measurements for Pulsar NP 0532 (Crab Pulsar)

[Counselman and Rankine (1972)64

], satellite time-delay
measurements [Muhleman et al. (1977)65], time delay measure-
ments of radar pulses to Venus and back [Campbell and

Muhleman (1969)66], and deep space plasma probe measurements

[Neugebauer (1966),67 Lazarus (1972)68].
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The K-coronometer measurements [see review article
by G. Newkirk, Jr., (1967)34] of the electron density n.
are determined from white light photographs of the sun
taken during eclipses or more recently from coronagraph
observations on Skylab.z4 Then from the observed radiances
and polarization determined from these photographs and
the assumption that the K corona is entirely due to
Thomson scattering of the photospheric light by free
ellectrons, it is possible to recenstruct the density dis-
tribution within the corona. Since the light intensity is
proportional to the integrated electron density along the
line of sight, it is possible to measure reliably n, out
to distances ~~10 r,, and for extremely bright streamers
~ 20 Ty - The limiting factor results from the K corona
being only a small fraction of the F corona or zodiacal
light which is unpolarized. Under such conditions only
a minute polarization in the F corona will swamp the radiance
from the K corona.34
Radio frequency dispersion measurements are based on
the fact that the group delay of radio pulses propogating
through an ionized plasma is inversely proportional to the
frequency squared, where the proportionality constant 1s
proportional to the integrated electron density along the

ray path. By making simultaneous time delay measurements

of radio pulses from the crab pulsar at different frequencies
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taken at different impact parameters (different distances

from the sun), while only making assumptions about the
geometry and an empirical model for the density, it is
possible to reconstruct the electron density distribution.
This method gives reliable estimates of the electron

density in the range from 5 roto 20 rgywhere the major limiting
factors result from multiple random scattering of the radio
waves due to inhomogeneities in the density distribution

near the sun ~5 r.and the uncertainty in the interstellar

64

©
dispersion baseline far from the sun ~20 rg. The

satellite time delay measurements simply measure the residual
time delay resulting from the radio signal propagating

at the group velocity of the medium between the spacecraft
and the earth. In such measurements one must take into
account the fluctuations of n, which are on the order of
100%, for the purposes of computing the data weights
(measurements must be confined for ¥ >10 Ib].65 Finally,

the plasma probe measurements are direct measurements of

the density with ion detectors on spacecraft (e.g., our

own Imp 7 and 8 M.I.T. plasma detectors). In Figure 32

the X's and crosses "+'" were determined via K-coronometer
measurements and correspond, respectively, to the density
distribution for a helmet Streamer,34 and regions character-
istic of the "guiet" corona near solar maximum.63 The boxes

"[O" were taken near solar maximum (1969, 1970) using radio

dispersion measurements,64 while the diamonds " 9" and
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darkened boxes "#'" were measured using, respectively,

e and time delay

spacecraft time delay measurements (1970)
measurements of radar pulses to Venus (1969).66 Binally,
the circles "0" and traingles "A'" were determined via
plasma detectors on the spacecraft.67’ 68
In order to compute radial profiles of V, Teff and
Ao g We must know the radial dependence of the density for
all r. In order to do this we must £it a model to the
empirical density profile displayed in Figure 32. The
density model we chose is a very simple two parameter

model which we find reproduces the data quite well, and

may be written the following way:

% a(z-4)
QL i P R (3.24)
where z = ro/r is the inverse distance, pee 1.04 vy is the

reference level, the density n at the reference level and o
are adjustable parameters to be determined.

This model is characteristic of solutions for the
density n within a gravitationally bound isothermal atmos-
phere in hydrostatic equilibrium for small r (z = 1) where
the flow is expected to be highly subsonic. Under these

conditions the parameter ¢ is given by the following relation:

GM@N)H (5.25)
24T

where To = T(ro) is the temperature at the reference level.

g =

For large r (z>0) Eq. (3.24) approaches the solution for a

freely expanding gas, where the density drops with a 1/1"2



155,

dependence. Spacecraft observations made by Mariner 2
between Venus and the earth suggest a 1/I‘2 dependence?g

but because of time variation problems this has not yet

been experimentally verified. The results by Muhlemann

et |l (1977]65 are strong evidence that the density does
decrease with a l/r2 dependence. A quick and simple way

to make a fit to the data is simply to plot the log

((38 % 2) versus z (z = 1/x), which to a very good approxi-
mation is a straight line. Then by either reading off the
slope or the intercept at z = 1, one may determine a reasonably
accurate value for ¢, The three curves shown in Figure 32
correspond to three separate fits to the data and are repre-
sentative of lower, intermediate, and upper bounds of the
density distribution. In Table 16 we have tabulated for the
three profiles the values of the parameters n, and ¢ and the
predicted values of the density n at 1.04 gy A0 Tgy 215 The=
1 AU, and the density index

( = i_%_a!‘_)) = —(z2+02) (5.26)
| n Y

One should note that the logarithmic slope given at 10 rg
is J;% — 2.8, which is about that given by Counselman and
Rankine at this distance, i.e., Srit -2.9, and the inter-
mediate curve was fit so that n = 10 em™® at 1 AU.

The conservation relations used for this model are

given by Bgs. (3:10), (5:11); and (3.12) and are rewriften
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here for convenience, i.e.,

\/d—v i Bk oAbess G’Mo o (3.28)
g nmy dy— Y,.z.

_ GMgm S
e Vet [ £m, VE e 5k T S0 [, (329)

Pesg = 2ndke Togg (3.30)
(Note: we added the subscript "effective' since waves may
be important.)
Substituting Eq. (3.84) for n inte the conservation
of mass relation EBg. (3.27), it 18 an sasy natter to solve

for the velocity V for all r, i.e.,
L A

L/': \4x>6? (3.351]

where g

Moo= i (3,52

e AU
and VAU’ Zyy are the values of V and z at 1 AU. Thus, once
the mass flux ”VAU” is specified, the velocity V is given
for all r. Brom Bgs. [3.27), {53.28), and 1(5.30) @and using
the boundary condition Teff =0 at infinity (z = 0), it is

possible to derive the following integral equation toxr T afft

_[:;H" it [}’l Vo e n(r)rs h(H)T‘J GMJ wdb] e
where o

Vo = Voo € (3.34)
is the value of the velocity at the reference level T Note

that once the density is given as a function of r the temperature

Teff can be determined for all r. Substituting Eq. (3.24) into
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Ba. (3:33), it is found that the integrations wcan be

evaluated in terms of known functions. The result 1is

o = T i F 0

Tz) (0'2_)
~[1+ (-0-_?5 =] é’-wzf
il AT w2 Ve sy
. Py .
et |
%= 2@;:49 g

where ATIE is the escape velocity at the reference level L
Again, once the mass flux is given, Eqs. (3.36) and (3.37),
Teff is determined for all v:. Eg. (3.35}) for Teff has a

few interesting limits. DPeor spall ¢, z ~ 1 and for typical
values of 0 (see Table 16), Eq. (3.35) reduces to the follow-

ing simple form:

2
-— = 3.39
T,()( 20_, esr_[/ (cz) (0“2) ] ( )
where by
, U
ATese = &0 Y% (3.40)

If we ignore the second and third term in the brackets,
Eg. (3.39) reduces to the form characteristic of a gravitad-
tionally bound isothermal static atmosphere where T is given
by Bg. (3.25). One may also note that the first order
corfection tewm -2/ [0z) is a cveling factor arising from

the expansion of the corona. For large r (z=0), Eq. (3.35)
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for Teff has the following asymptotic form

Tose = T ) 2(IHE DG L {oer o G
Phtis for larpe T, Teff decreases with a radial dependence
slightly less than 1/r and approaches a 1/r dependence as
r—=°, One can see from Eqs. (3.39) and (3.41) that a larger
d‘gives colder temperatures for small r, and higher temperatures
for large r and visa versa for smaller U,

In order to determine an expression for Qepg W divided

Eq. (3.29) for F by I and specified the boundary condition

Tetf (3.42)
. EE% = o
P

By doing this we get the following expression for Qe ff

Qerf = N V{ei il (¢ e SkTeyt Mo m“} (3.43)

=
Thus, by knowing the radial dependence of n (given by

empirical density distribution), V (given once the mass flux
”VAU” is specified), and Teff [given by Bg. (3.35)], 1t

is an easy exercise to compute the radial profiles of e £
from Eq. (3.43). Furthermore, the radial dependence for
deggp Can be shown to have the following asymptotic form for

large Tt

3 2 i 2% -
Gesr = Lnmy Vo, {BL(HF )(w2) t i ral ) (3;44)

and since an/r2 for large r,

|
?,e’:{ o< ;3 ;0\— l&f}e = (3.45)

(Note: radial gradient is slightly steeper than a 1/r3 drop

off.) Also, as may be seen from looking at Eq. (3.44), Qefsf
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is proportional to the convective emnergy flux at infinity
Lrm, \/Oj (3.46)

In Figures 33, 34, and 35 we have plotted radial
profiles of the wind velocity, Teff’ and Qe £ derived,
respectively, from Egs. [3.31), (3.35), and (3.43) using
the three fits to the empirical density shown in Figure 32
and where the wind velocity at 1 AU was set equal to 425
km/sec (VAU = 425 km/sec). The variation of the wind velocity
with distance appears similar to a Parker type solution,
where ¥~ 1 and T02:106 °K. The sonic critical point s

determined using the temperature profile in Fig. 34 1is

about equal to 5r where

(L) = D(AT) (3.47)

[

where gjis clese to uniby.

The temperature profile displays a striking flat portion

6 o

inside 10 To (isothermal) where TOQ:I.ZS x. 10 K, a slight

bulge at 10ry, and a nearly 1/r decrease for v ~ 10 L - Also

note that the temperature profiles are independent of the
magnitude of the density. The temperature at 1 AU for the
intermediate density profile is equal to 1.33 x 105 “k. Using
the empirical relation by Burlaga and Ogilvie (1970)69 for

the proton temperature Tp’ 3 0 =

H

\/F]—'; wo g e L 14 (5.48)
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30

where V is in km/sec and T in 10 K, and sets V = 425 km/sec,

one gets Tp = Db % 104 °K. Then if one uses for the
electron temperature T _ the average value quoted by Feldman

5 OK and uses the relation

=
ot al: (1975 ¢ degs T 9 B 10
T = EL(TPTTGJ (3.49)
gne gets for T the following:
T = ngXIOSQK
which happens to be only 4% different from that determined
by our prefiles. This xesult should net be thought as
being 4an indication that our profiles can predict temperafures
with such accuracy, but that it is an indication they may
give a reasonable description of the temperature profile
within the interplanetary medium. The temperature TO at
the reference level is smaller than it should be, since our
simple model for 1 does not reproduce the data that well
inside 1.2r,.

The radial profiles for degg aTre monatonic with a
logarithmic slope approximately equal to -3. The slope in-
side & kg is less stecp than that vutside B ', indicating
that the flow is more adiabatic outside 8 T'e, which is about
the point where the temperature begins to decrease [sece
Fig. (34)]. One should also note that these profiles
indicate a density dependence upon ¢, while the conduction
law given by the Onsager relations is independent of the

density [see Eq. (3.8)]. The values for e g (see Table 17)
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at, respectively, r, and 1 AU for the intermediate curve
are equal to 7 x 104 ergs/cmz/sec and 8.60 x 10-3 ergs/cmz/sec.
The value at T is about a factor of two to three greater
than that expected from classical heat conduction [i.e.,
BEgs. (3.7) and (3:8)]. This is not necessarily an indica-
tion that conduction is not the dominant energy source when
one considers the approximations and inaccuracies in our
model. Furthermore, the value at 1 AU is about equal to
the average value for the electron heat flow vector C[F
g 1077 ergs/cmz/sec quoted by Feldman et al. (1975).9
Again this result should only be thought of as an indication
that oir profiles give & reasonable Tépresentation of g in
the interplanetary medium.

We would now like to address the issue of the mass
flux ”VAU” and radial gradient of the density, which intro-

duce the greatest uncertainty into our model predictions.

By increasing V above 425 km/sec, the bump at 10 r

AU R

the Teff profiles will move out and become more enhanced,

While the contrary will oceur if VAU is reduced. Furthermore,
the temperatures at 1 AU will increase with increasing velocity.

For instance, a 40% increase in V results 1n a factor of

AU
2 increase in Teff' Temperature profiles are insensitive
to VAU inside 1.5 Tgy» as expected, since the flow is subsonic

in this region. The degg Profiles are also sensitive to

VAU’ but this is expected since for larger VAU we need more
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energy to drive the expansion. Thus we may ask the question,
what is the appropriate velocity or mass flux for our
particular density profile. This issue can only be

resolved by making spacecraft observations in a particular
stream from which we know its source, measuring the density
profile at that particular time along the line of sight
between the source and the spacecraft; such problems as

the time evolution of the source (steady state) and propoga-
tion distortions (stream-stream interaction) are minimal.

As of now this has not yet been done. It is hoped that
observational studies in the future will alleviate this
deficiency. Uncertainties in the radial gradient of the
density will also introduce considerable error, though

for reasonable variations of the model parameters (uncertain-
ties in the measured density profile) we find the overall
shape of the T and q profiles to be preserved near the sun
(e.g., bump at 10 Tey in temperature profile will not go
away). Far from the sun, where n°<1/r2, the T and q profiles
are very sensitive to the slope of the density. For instance
a change in slope from JP= 2.04 to 5;= 2.07 will produce

an increase in the temperature at 1 AU by a factor of two.
Thus, the observed temperature at 1 AU should be used to

fix the slope in the density at 1 AU and not visa versa.

The same strong dependence on Srat 1 AU is also found for

q. Thus, the observed q at 1 AU may also be used as an

added constraint upon the density profiles.
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Even with the mass flux problem ”VAU and the intrinsic
uncertainties in the data, along with the approximations
made and the simplicity of the model used, the results
appear to be able to reproduce the observations quite well.
Thus, we feel that this model does give a reasonable though
crude description of the average or mean solar wind in the
equatorial plane. Due to the reasonable success of this

procedure we decided to tackle a more specific problem des-

cribed in the next section.
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(5.) MHD Model of a Polar Coronal Hole

(a.) Generalization of spherical model

We have chosen as a specific example the Polar Coromnal
Hole (PCH) studied by Munroe and Jackson (M § J).24 As
previously emphasized, empirically the density is by far
the best known physical parameter, and in the case of the
polar coronal hole studied by Monroe and Jackson we not only
have available the three-dimensional distribution of the
density, but the geometry of the hole boundary from which
the magnetic field line topology can be inferred. In order
to obtain numerical solutions we need models of the density
and magnetic field, along with the assumption of axial
symmetry. Since the polar coronal hole is approximately
axisymmetric this will be a good approximation. In contrast
to the spherical model, the topology of the magnetic field
now enters in an important way (see Fig. 36); thus as pre-
viously emphasized one must self-consistantly take into
account the meridional flow in order to obtain unambiguous
estimates of such physical quantities as the wind velocity,
temperature, and heat flow vector. This approach, where
we use the MHD conservation relations along with density
and magnetic field models, allows us to integrate along
differential flux tubes rather than being forced to consider

an integral areal divergence of the coronal hole, as done
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2 pointed out by Rosner and

by Munroe and Jackson.
Vaiana (1976}70 curvatures in the magnetic field lines
below Z rg can bring about considerable errors in calcula-
tions based on the integral areal divergence of the field
lines. Furthermore, the rotation of the sun and its re-
sulting spiral field were also included in the model calcula~
tions, thus allowing us to perform unambiguously our
integrations along the field lines for all T,

Because we take into account the rotation of the sun,
we find it more convenient to write the equations, Egs. (3.1)

to (3.5), in the rotating frame. In the retating frame

the conservation of momentum and energy equations are

Vv ((0‘\774' (P-}BQ/?]T)::I_: ”§§/#W)= ’ﬁV?*EVXﬁ (2. 5()
V- (—5,0\/2\7’+§ PV +7+5) = -/&7.73? (3.51)

where, in particular, the gravitational energy §:is replaced
by )

:W =9 “i’—flaR& (5.t
42 1s the angular velocity of the sun at a particular field
line L2~ 2.9 x 109 rad/sec), and

R=F Sip& (3.55)

where © is the colatitude in a heliocentric coordinate
system (r,€3,9{} aligned with the spin axis of the sun. The
advantage of doing this is that v?is parallel to ﬁt SO
that the electric field E»is Zeéro [se€e BHg. (3.600. It

—p
then follows that the Poynting vector S will also be zero.
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In order to acquire our profiles of @ we made the
approximation that the heat flow vector’f’is aligned with
the magnetic field, i.,e.,

L
o= g 5 (3.54)
S -y i
where b = B/B.
The approximation that;?? is parallel to B should be a good
one as long as the cyclotron frequency for electronsj."l.e is

much larger than the electron-proton collision frequency

\)Qp’ AT )
e,
P (5,557

(e
For all regions characteristic of the corona and interplanetary

medium this can be shown to be the case.
In the case of axial symmetry, it is convenient to write
—
the magnetic field B in the following way:
— — F
B = BP + B, (3.56)
—
where Bp is the poloidal component confined to the meridional
s : : : :
plane, while Bt is the toroidal component which points in
the azimuthal direction. Correspondingly, we do the same
for the wind velocity in the inertial frame
e el A
;o= +w . RE (3.57)
= V 7 - A
where VPI is the poloidal component andid& the angular velocity
of the wind velocity in the inertial frame.
With axial symmetry, significant simplifications of the

equations result. Most importantly, one can derive four

field line constants [L. Mestel (1968),71 Heinemann and Olbert



(1978)61]. Defining them, respectively, by &, W, L, and
W, we have, (Note: for the convenience of the reader they
are derived in Appenéi} £) o

(1) 0(-[—3% :p\/ anpl B'VOC:O

(2)  w = wI’L ind B V00 (3.59)

(3.58)

BeR .4 B-WL=O (3.60)

4T L

(4 |y = Ly +€ .P_ +ﬂ?+£ and B-VW=03. 61

(3) | = (o, R*-

The field line constant d,replaces the patrticle flux I,
which is a constant when spherical symmetry holds, as the
conserved quantity derivable from the mass conservation
equation. L is the total angular momentum per unit mass
(plasma plus field), while W is the total energy per unit
mass. The field line constant Wis the angular velocity
of the rotating frame, where the electric field is zero,
and will thus be equal to the angular velocity {2 at the
footprints of the field lines at the solar surface, where
the flow is field aligned. From Eq. (3.59) and (3.60) one

2

can solve for Bt’ and(JI in terms of/é7and B faiel

B, = ‘f;_{ﬁﬁhl(ﬂ) (.52
f"/;*/?u
; (3.68)
I)_( -

where

L= J?—RA (3.64)

o7,
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is determined at the Alfven point RA = T, sinEBA [Cariesys
denominators of Bgs. [35.62) and [3.03) are zero at RA;
therefore, in order for B, and aﬁ to be well-defined, the
numerator must correspondingly be zero at this point).
Furthermore, it can be shown from Eq. (3.58) that

B, = 4 BeUEE (3.65)

is the mass density at the Alfvén point. During our numerical

integration we must deal with the singularity in B, and(OI

at RA' In order to handle this problem we applied L'Hospital's
rule at RA. ' 2 2(&%/6“}%)
B = ,afl A (3.66a)
Z y
3 (JI. £~/‘7

o (f}ﬁme)A (3.66b)
) (3% j’/’lq

where ii means taking the derivative along the field line,)z

wrﬁ:f)_([qt

is the arc length along the field line, 1.€:,

' B (3.67)
j - Y:' (! i (zf B,.,i A}cng,B

For completeness we will now give the field line equation

for the azimuthal angle

(/ 3¢ a‘(z LE
Z TAieny, B

s

where ﬁiis the zzimuthal angle of the field line at the

reference level.
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Thiis, all an all, once &, the mass density/ﬂ, and
iy
B

the poloidal magnetic field B, are known, it is possible

to reproduce the meridional flow for all T

(b.) Ad hoc model for the coronal magnetic field

The model for the poloidal component of the magnetic
field-g; (component in meridion plane) is a simple
multipole expansion (from monopole to octupole) which
is independent of the ¢ component (axial symmetry). Its
r and © components may be written the following way:

By =B, 2" [L 7, tanh (NyCo30) +7,Zcos 6 (3.69)
+ 7, zli(?;co.sle -i> +-Z3-:i—(§cos'16*3)coséj

.. Bow3 - : *3 P (3.70)
Be = 223[7,siw € thzsiw26 +2°3 (scos*6 -1 5in 6 |
where BO is the strength of the field at (z,e) = (1, 0)

and
/T Q:;M (BT
%, & B /B, (5,72}
7q = Be/B, (3.73)

are the relative strengths, respectively, of the monopole,
dipole, and quadropole terms with respect to the octupole
Lterm.
The theta dependence for the monopole term
h(6) = Yanh (N, cos ©) (3.74)
was nused, since for large NM this function approaches a step

function at the equatorial plane where
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¥ | 0 < 6 <90

ln(e) = (3.75]

- | q0° < 6 4 1§0°

This allows for the field lines to be radial for large
r, since the areal divergence of the hole boundary appears radial
beyond 3 r, (cf. Fig. 36)24; we reproduce the observed
monopole term at 1 AU, and allow for the Ve ?;== 0 condition
to be satisfied. Also, by doing this we get a current sheet
in the equatorial plane which seems to be suggested by
recent observations out of the equatorial plane [E. J. Smith
et al. (1977)47]. The value we used for NM was 86, so
that the function h(8) does not change significantly in the
upper quadrant, for example, until & >89%, ' The parameters
in the expansion 7 ,?L, and,zg were adjusted in such a
way that they reproduced the shape of the line studied by
Munroe and Jackson (indicated by crosses shown in Fig. 36).
The parameter BO was determined by observations at 1 AU
beiegey B = S8y, The way we did the fits was to plot the
crosses on the Techtronix 4120 graphic system and then plot
various field lines determined by a field line equation to
be derived, for various values of the parameters %, 7%,
andf?Q until the points passed through the crosses.

In order to plot the crosses shown in Fig. 36 we had
to use the function (r-y)/0

o

(3.76)
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where fMAY = 7.26 is the parameter which specifies by how
much the areal divergence of the hole exceeds that for 1/r2

expansion, s Jis Ak oo g = 0.51 Lot Ly 7 L T s

and fl =
-2.409. The parameters in the model were determined by Munroe
and Jackson fitting the areal function

ac) =A(E) £ (3.77)

to the cross-sectional area of the hole, where Ao =i 0.51 ¥ .

0]

is the area of the hole at the solar surface (z = 1). The
hole boundary was determined by streamers lining the edge
of the hole. Furthermore, by studying the streamers as the
sun rotated over one solar rotation they found the hole to
be approximately axisymmetric.
The relation

Ar, ) = amr*([=cos®) (3.78)
represents the area of a polar cap of radial and angular
extent v,©¢ Combining Eags. (3.77) and (5.78) it dis possible
to derive the following relationship, which gives the colati-

tude of the hole boundary as a function of r,

=i S 3.79
6 = 08 } 2—-};_{(?’*)) ( )

where at the reference level (footprint of field line) the
colatitude of the field line is 60’«‘\1“230 (1.6 282 1. ¥ = ¢
f(ro) = 1). Eq. (3.79) was then used to plot our data points
shown in Fig. 36.

In order to determine the parameters 7,, 7@ , and 7%

along with being able to perform our integrations along the
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field lines, we needed to determine the magnetic stream

—
function.}%r,e) from which B may be expressed with the
gssumption of axial symmetry [see Eg. (3.22)]. The function

7&15 related to the polar cap magnetic flux

fB,, 2ol 2 /Rr- 3;//»' S:NGdGa[;Z{ ar ¥ (3.80)

and since ?éls a streamline constant [see Eq. (3.23)],
then Eq. (3.80) is also a field line constant. Thus, by
substituting Eg. [3.69] into Bg. (3.80) it 15 possible to
determine the field line equation relating r and ©. We

may write ?&r,@) in the following way

')”(r;e) = ’}f‘(f;e) + 3"3(*",9) *‘%@(”79) +7%(739> (3.81)

where
%m -::/4/\4 ;’(QD where, Ay, = erol (3.82a)
and L
_ Cos NM
;(9) /L(@)Sw MMIO} cost.(nf,.cose)](s'BZb)
2L
%b = A,z Sine where A, = 32_’3 (3.83)
. Bor*
’}A@ -.:AGZ“SmlSc:nse where AQ'-" lr' (3.84)

% = /qc -2—-3[(6—{{(052‘8)6053‘9 *1] where [—)02 %21(3.85)

By combining these terms in Eq. (3.81) and doing a little

algebra we get the following quartic equation for cos®:

4 3
Cos"@ +Ex 7 cos’® * L XA (7 -2 zcos*g) (3.86a)

¥y .3 i 2 # el Lo3
+Lx3 (7, - % 2%)cos0 +L x3( 2 hEC T
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/ e a0 -i| +2%2 5,,8 cos8
(o & 293?[(6 Scos*,)cos 6, -t +277 508G co “(3. 86b)

WG B
+ 2, P56, +7, (1-0056.)
where we used the simplifying 1limit for g(e)

lim, 9(6) = | -lcesol (3.87)

Thus, Eq. (3.86) allows us to solve for &in terms of Z once
the field line constant CO is specified at (zo,ég).

By setting (Zo’eb) = (1, 230} we can solve for the
field line censtant C, for the empirical field line indicated
by crosses. Then for a particular set of values for the
parameters %ﬁ, b 3 ?;we can plot a particular curve using
Eq. (3.86) similar to that shown passing through the crosses.
We then adjusted these parameters until we acquired the

reasonable fit shown passing through the crosses. The results

are
VM = 0O 25 (3.88a)
2, = 0./3 (3.88Db)
7@ = 6, (2.68c)

Once this was done we plotted the remaining field lines
shown in the figure.

It is important to note that this magnetic field model
is curl free, except for the current sheet mainly confined
to the equatorial plane. In reality the field will not be
curl free. The plasma will tend to bring about distortions
in the field by generating currents which will introduce

= o . : :
J X B corrections into our model calculations. Though such
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corrections may in some regions introduce small corrections
in the magnetic field topology, they may not be small
gofipared to such quantities ds gradients in the pressure
which we are trying to determine.

Note the peculiar topology shown at lower latitudes.
As may be seen, some of the field lines do not connect with
the sun. Furthermore, at around 1.4 Q3,9:3730, the
magnitude of the poloidal field strength Bp vanishes. Since
this topology is similar to that characteristic of helmet
Streamers seen in coronal photographs,; the zero in Bp could
possibly correspond to the T cusp observed in streamers.
Thus, we will refer to this point by using the term T cusp.
This peculiar topology is probably a combination of our
neglect of the plasma (fields curl free), and properties
peculiar to the specific model used. Because of this,
without considering the errors introduced by modeling, the
correction currents will be large in these regions. For
example, if one considers the equation for Ej(component of
current perpendicular toﬂg) which is derivable from the

momentum equation (neglecting rotation),

i x[/’p(t e *VPJ g

currents will be significant near the T cusp. 1o fast,
right at the singular point where Bp = 0, the correction

P 4
current jiwill be infinite unless the term in brackets is
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zero. Thus, because of these limitations in our model for
-_—
Bp, we must confine our calculations to higher latitudes

. X ; 0
where: this problem is not 4s severe, 1.e.,€%}£23 g

(c.) Density model for a polar coronal hole

In Figure 37 we have a log-log plot of the electron
number density in cgs units characteristic of polar coronal
holes. The Munroe and Jacksonz4 data points, indicated by

x's, and K. Saito (1970)7%

data points, indicated by

circles '"0'", have an angular dependence and are shown along
the radial line at 68° latitude. The data from C. W. Allen
(1973)73 indicated by crosses "+'", have no angular dependence
and may be considered as a mean density for the polar coronal
hole. It should be said that all this data was accumulated
during solar minimum though for different cycles, and thus
should correspond to regions characteristic of polar coronal
holes. The data by Allen and Saito, which allow us to extend
our profiles down to the solar surface, are from polarimetric
observations taken during solar eclipses; while the data by
Munroe and Jackson were acquired from coronagraph observations
during the Skylab missions (all white light observations).
Note: the densities are much steeper near the corona and
lower in magnitude than that observed in equatorial regions

or during solar maximum (see Fig. 32). Furthermore, there

is an angular dependence where the density is lowest at the
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poles. It is important to note that there is a large

data gap between S,r and 1 AU. This gap results from

the characteristically low densities of the polar corona
during solar minimum, so that the light from the K corona
becomes swamped by the F corona beyond 5 Te, - Because of

this data gap our interpolated curves for the density must

be treated as a tentative guess at best. The data points

at 1 AU are densities typical of high speed streams. They
were assumed to correspond to the 23° field line and were
projected up to a latitude of 68° using the angular dependence

given by Munroe and Jackson.z4

The density model we used 1s
a generalization of that given for the spherical model and

may be written the following way:

a.z
0(re)=p2.a,€ z*P@) 4,,(8) (3.90a)
P(2) = I+ 4,z +G,2% +452° (3-508)
£ (6) = 0779 (1+2.4%5ip"6)

where ay through ag are adjustable parameters,/oo 18 the

mass density at the reference level, and fMJ (@) 1is the

(5. 590¢c)

angular dependence given by Munroe and Jackson. It should
be pointed out that a variety of other functional forms

were used, and that this model seemed to reproduce the data
best. For purposes of reference the logarithmic derivatives

of/a with respect to x and © are given

= /;‘*;'jf :-2[3, +z (a,* (g +24,2+30, 2>/ P(2)) ]
(3.91a)
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J " J—C—[Z ~ 214 Sivde (3.91b)
2 pde [ ta.id 50 @
The three separate curves shown in Figure 37 correspond
to three separate fits of Eg. (3.90) to the data for the
three density estimates at 1 AU. The numerical values for
o’ i

fits are given in Table 18. Note: in computing the mass

the parametersfoo, n and a, through ag resulting from the

density 4t the referenice level/éb, we assumed 5% of the
positive ions were alphas. In Table 19 we have listed

values of the electron density n, and radial gradient Jh

for various (r,© ) along the 23° field line. As may be

seen, the slope of the density profile near the reference
Tevel !;ﬁ =13 is much steeper than that for equatorial regions
J;ﬁ -9 [see Fig. 321 while further out at 10 Teys the radial

gradient 1;73—3.0 is the same for both regions.

—CS
(d.) Derivation of pertinent expressions for V, Teff’ and Qegy

We are now ready to derive the appropriate equation
for the effective temperature Teff and effective heat flow
vector Ao ff similar to that done for the spherical model.
(Note: we have added the subscripts effective since waves
may be important.) The component along the magnetic field

of Eq. (3.50) (the momentum equation in the rotating frame)

\/% +£€&H i %ij:o (3.92)
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— N
where V =Vb and

By = /oA.T;;,c (3.93)
€

A
is the effective pressure and

2. (3.94)
o t+3X +.5Y

is the mean molecular weight (i.e., X and Y are the fraction

of the gas by weight for protons and alphas). For our
calculations, 5% of the positive ions are alphas, thus
X £0.826, Y - 1-X = 0.174, and/a== 0.561. From Eq. (3-58)
and the fact that & is a field line constant, we find

%%& */"fz g 9(_”_58_ 5 lp) o (3.95)

Then by using the boundary condition T_c >0 as f—»o00

and Egq. (3.93) tor Péf we get the following integral for Teff

T =42 [P A(EF 1 p)as O

where S is the arc length alonc the fleld line. We will now
introduce the energy per unit mass W¥*¥ which is related to
the Bernoulli constant

¥

yls 2 (3.97)
W= =i+

*
Since Teff is related to the derivative of W

, the result
will not be effected by adding a constant to it. Now if
the integral is to be well-defined for purposes of doing
numerical integrations we would like to integrand to approach

zero at infinity. Thus we determined the asymptotic limit

for W*
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%* P A G
e 1 fm!l RA (3.98)
oo A " Poeo
where Vk is the poloidal component of the wind velocity
[~ =]
at infinity and
£ = I [l’ﬁ(’g)l) (3.99)
= |im X
od '___‘300 /C/JQ
We may then define a new W

/ _ 9-'_’ | 3_-_ 1 R & iq AL L ha
W = We W ‘I(VP,O Vp)+1C“R "/o:.‘)+;z.'1)€soz RS
Substituting Eq. (3.100} into Eq. (3.96) for W* and integrating

by parts we get the following equation for Teff:

Um i Ay (3.101)
| ] :
LN Sy mPN,
./k (AN 0(

As a side remark, Eg. (3.101) for Teff reduces to the

form for the spherical model [see Eq. (3.33)] when we use
—

a monopole for B and neglect rotation.

Using the following definition for deff (since waves

may be present):

7 7 +5 SRV (3.102)
iy - w2
fe:‘f /f &
where
= + 5 3.103
Fé;; F [¥) ( )
and P, P. are, respectively, the gas pressure and the

W

pressure due to waves. The energy equation [see Eq. (3.51)]

then has the following form
L oA eE D P )=~ 7'71? (3.104)
V'[;L/OV V +2hyV fe# =T

It should also be pointed out that in the rotating frame the

—
Poynting vector 8 = 0, neglecting waves; thus giwill only
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contribute if there are waves. Since all the terms inside
the parenthesis on the lefthand side of Eq. (3.104) are

. . . - o N
field aligned (note assumption that Bagg ™ qeffb) then

the identity
V‘.,,Z\;9 = 5 ~—-) (3.105)

- A
will apply where A = Ab is some field aligned vector.

Eq. (3. 104) then becomes

¥
& oL { [ /OV +" Pe,qV+ ff;;]f:7 (3.106)

Using the relations «F -/OV and B -V® = 0, Eq. (3 106)

reduces to

E 21! [(;L/ Ve %Pe“ +/uﬁ)l/+lgeg]fzo(3.1o7)

This means that the quantity in braces is a field line

constant i.e.

[(;,/OV T R’JF +/“@-)V+;"ffj Wo = constant along (3.108)
the field line.

If we divide Eq. (3.108) by o we get

v ¢ Fesr 4 fesr L (3.109)
L Rl = =
O
Using the boundary conditions
[ e o (3.110a)
A =>0o0 /’V

\ s (3.110b)
i Tess
D s
we get the following:
W

W= W, (3111
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The expression for eff then reduces to the very simple

relation
3 R Pﬂ_ff (5.112)
ﬁ%ff "/é)V’ZlM =0 -]

In the case of no rotation, and monopole for the
B field, Eq. (3.112) reduces to that for the spherical

model [see Eq. (3.43)].

(e.) Some details of the procedure for evaluating solutions

The reader may omit reading this section, where we
discuss for the record our method for evaluating solutions.

Using the method outlined in section 3.5b, we determined
the parameters 3&,‘?5, andﬂ?Q from the Munroe and Jackson
field line. Except for the field strength given by the
parameter Bo’ the poloidal component of the-ﬁbfield is
completely determined. As will become apparent, because
our observations are made at 1 AU we must first determine
the toroidal component of the field at 1 AU before we can
determine the parameter B_. By knowing 3Z’47D’ and'?Q,
we do know the topology of the field, and since we know the
position of the spacecraft

Q% = }r;/csi,d s /., (35.113)

we will know which field line we are situated upon (i.e.,
~ 1 AU). Note: in reality the determination of a field

T
s/c

line and its origin is not possible except under certain ideal
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conditions such as those outlined at the end of sectien 3.2,
concerning polar coronal holes and spaceéraft observations
at high latitudes. Then by measuring the density, and
assuming the positive ion composition (5% alphas in our
case), we can determine the mass density at RS/C along a
known field line. This will then allow us to project our
density up to (rs/c’ 220) as pointed out in section 3.5¢.
Then by using some fitting procedure we determine the ad-
justable parameters/oo and aq through ag from the coronal
densities and density point at 1 AU as shown in Fig. 37.

By doing this, the mass density/o is determined for all T.
(Note: 1in essence we are predicting what the density should
be at different latitudes.) Furthermore, from spacecraft
observations we can get the wind velocity in the inertial
frame VS/C, which is essentially equal to the poloidal
component of V in the rotating frame. We also have available
the magnetic field-Ez/c. In high speed streams the magnitude
of the density, wind velocity, and magnetic field strength
are fairly constant and less susceptable to fluctuations in
comparison with their corresponding vector components (i.e.,
fluctuations and large amplitude Alfvén waves are at a high
level in high speed streams). Using the magnitudes of Vs/c’
BS/C, and the already determined density model, we can solve

for & for this particular field line at Rs/c
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d = A 7 ;/ +_(1 Rs/c, (3.114)
&Q
Egrﬁ;
once (L is specified (/05/(: =/»O(rs/c’ QS/C)). As may be
seen,ix.must be determined in the rotating frame. Since
we are taking into account differential rotation, we must
know the latitude of this field at the reference lewvel.

From Allen (1973) the angular velocity f2as a function of

latitude is given by the following relations

e ol Frec. (3.115)
Tsoo (§¢,¢2)
where .7~
7" L SYA
ST + (3.116)
Tew oL2 f3co

is the sidereal rate in days,

Topn = 26,75 + 5.7 sin* (3.117)
is the synodic rotation period in days,,A is the latitude
(i.e.,,) = g?* ), and &L= 0.9856. Since we know what
field line we are situated upon, we can determine E% from
the field line equation. To do this we simply substitute

(z

and then solve for G% by substituting z = 1 into Eq. (3.86a)

S/C’es/c) in place of (ZO, @O) into Eq. (3.86b) for Co’

for cos ©. ((Note: = ro/rs/cj We may then solve for 2

fclc
using Eqs. (3.115), (8:116)}, and [5.117) aleng witﬁléij. Once
this is done we will know & for this particular field line

from Eg. (5.114}).
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As pointed out, we have not yet determined the field
strength parameter B . To do this we need to know the

poloidal component of the field strength at 1 AU, i.e.,

o \{ : (3.118)
BP)/(. 4 ES?C#B";;/C

For large r, it may be shown from Eq. (3.62) for Bt that

i (3.119)
Bfiﬂk,/u '-JiL/C%ﬁLFQLQ-‘/QZJA;

. . R
thus allowing us to solve for Bt S since we know.f)_)/%/C

and.Q%/C. Therefore, from Eq. (3.118) we can solve for

ile

Bp S/Cfrom Eq. (3.119) and the observed field strength Bs/c'
Futhermore, for large r only the monopole term will contribute

significantly to B Thus, from Eg. {3.69) we have the

P sie”
following relation for BO:

g = QBP% /97M /z;’;o (3.120)
which allows us to solve for BO. Thus, the poloidal component
of our magnetic field model E; is known forxr all (r,&). In
our calculations we used Bs/c = 5)’which is a typical value
for high speed streams. Once this is done the field
strength at the reference level is about 16 gauss, which
is about that observed from photospheric magnetograph

observations.lg’ 26

Referring to Eq. (3.62), one will note that the toroidal
component of B will not be known for all (r,e) until the
Alfven point RA 18 determined. From Eq. (3.65) we can
solve for/OA since we know &. Then by solving along the
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field line the equation
©(%,6,) = /% (3n321)
where the density model for/O given by Eq. (3.90) is
substituted in place of /J(rA, A)’ one can determine RA'
Next we substitute/dk and RA into Eq. {5.62), Bt will be
determined for all (r,€9 ) along this field line. Corres-
pondingly, since we already know E; for all (r,© ), the
magnetic field-ﬁbis known for all (r,&) along this field
line. We would like to point out that the above procedure
may be duplicated for all the other field lines (different
latitudes) by only knowing Vs/c as a functieon of latitude,
since £ (r,©), and —]?p (r,®) are already known.
It is now possible from Eq. (3.58) relating Vand B
to solve for the wind velocity vﬁin the rotating frame along
this field line. Then by adding the angular velocity JE;IQ
of the rotating frame to ﬁi we can solve for the wind velocity
in the inertial frame, i.e.,
\7; - \7 £ R (3.122)
At this peint it should be pointed out that the determina-
tion of & for a particular field line is equivalent to
specify the mass flux for that field line. Then, as in the
spherical case, once the mass flux is specified, the flow
along a particular field line is completely determined, since
we know/ﬁ)and E;. Furthermore, as in the spherical model,

sl

once we know V along the field line, the effective temperature
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T is determined along the field line by Eq. (3.101),

etf
and once Teff is known, we can solve for deff along the
field line by substituting V and Teff intel Bad (3. L1272,
Thus, we have demonstrated that once & and E: are given
along with the mass flux ”VS/C” for a particular field
line, it is possible to compute radial profiles of V?,
Teff’ and Ao gy along that field line within the assumptions

and approximations previously outlined.

(f.) Results

We will now give the results acquired for the 23° field
line studied by Munroe and Jackson. As previously noted,
there were three density profiles. The one we felt most
characteristic of the data was density profile number one
(top curve in Fig. 37). Furthermore, we used a field strength
of 5 X at 1 AU and two values for the wind velocity Vs/c =
714 km/sec and 500 km/sec (i.e., solutions 1 and 2). This
was mainly done because of the uncertainty in the wind velocity,
and because we can see the differences between profiles
characteristic of high speed streams and average velocity
streams. For reference; the proton particle fluxes at 1 AU
for the average and high speed streams are, respectively,

1,67 % 10% en —sec " and 2.3 x 10° op ¢ —seoT !

In Figures 38, 39, and 40 we have plotted log-log

: o)
plots, respectively, of Voo Teff’ and Ao g along the 23
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field line for the conditions outlined above (also see

Table 19). From looking at the profiles of the wind veloelty,
one should note the high velocities at the reference level

e 22 4.0 and 6.4 km/sec in comparison with those for the
spherical model ¥, & 0.5 km/sec shown in Fig. 33. Also,

note the steep rise in velocity relative to that for equa-
torial regions (see Fig. 33). This steep rise is due to

the initially sharp drop in density characteristiec of polar
coronal holes, which totally dominates the large divergence

of the magnetic field. The temporary dip in velocity at
around 1.5 T to 2 F

© ©
field strength (i.e., sort of a magnetic bottle) which is

is due to a temporary dip in the

characteristic of the magnetic field model. Thus, one

should take such results with a great deal of caution.

In the 3 rg to 20 r, region there is a more gradual increase
in the velocity, though it is still large. Finally, beyond
50 rg the acceleration of the plasma has essentially stopped.
The sonic points B computed as in the spherical model occur
at 5.18 rp and 4.58 To» respectively: for solutions one and

two. Also, the Alfven points r, for solutions one and two

A
cccurred, respectively, at 18.4 Ty and 23 Ty The reason
why r, moves out for smaller Vs/c is because O is less for

a .
smaller Vs/c [see Bg« [3.5%8)] and/ﬂk = ATo¢ is quadratically
related to . For all our solutions we find that the Alfven

point occurs in the range from
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Note: this will not be true for the T cusp, since as
B0, Vyn0.

The Teff profiles show an initial rise below 1.5 Ty
an extended isothermal region for solution #2, and a

© Ok reaching

pronounced temperature rise of up to 3 x 10
its peak at about 10 T for solution #1. This temperature
rise out to 10 ro was also indicated by Munroe and Jackson's
calculations; however, it should be noted that our calcula-
tions are a further sophistication of theirs since we use
the general MHD equations along the field lines. The

high rise in temperature results solely from our require-
ment for higher velocities at 1 AU. This temperature rise
is related to the necessity for extended acceleration

far from the sun [see Fig. 38), and to the fact that this
acceleration takes place over distances on the order of

the Alfvénic critical distance, as would be predicted in
Alfvénic wave pressure models (Belcher, (1971)).62 Some
other interesting points to note are the low temperatures

6 o

near the lower corona Te A0 K and the initial rise 1in

55

temperature inside 1.5 Tg- Note that this initial tempera-

ture rise, where the flow is subsonic, is independent of

17

Vv The low temperature, as observed by previous authors;

0

supports the notion that conduction is not sufficient to
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drive the expansion from coronal holes. The initial rise

in temperature cannot be explained by Alfvén waves since

the wave pressure term due to Alfvén waves can be shown

to be negligible this close to the sun. Thus, this is
probably a real temperature rise in the gas. Finally, the
temperature at 1 AU for solution #1 is N 1.2 % 107 %%,
which is about a factor of two greater than that observed.
Using observed Alfven energy flues EA = 12 x 10_3 ergs/cmz/sec
in high speed streams, this number reduces to 2.6 x 105 OK,
which is still too high (i.e., T =, (T, * T ) = 1.6 x 16°
for T = 2.6 x 10° °k, T_ = 9 x 10* °). But, as pointed out
for the spherical model, this may only be due to the strong
dependence of the temperature at large r on the slope of

the density profile (see section 3.4).

Figure 40 shows the emerging pattern of the effective
heat flow. Note the large value for qeff“’7 4 105 ergs/cmz/sec
at the base of the corona. Note also that Ao £ decreases
throughout (even within the inner corona) in spite of the
fact that the effective temperature rises. This obviously
contradicts the canonical picture of the heat conduction
in a collision dominated plasma; that is to say that q is
proportional to the negative gradient of the temperature
[see Eqs. (3.7) and (3.8)]. This picture definitely supports

the notion of wave driven winds, which are probably due

to the very low frequency transverse MHD waves, which on a
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large scale downstream eventually become Alfvén waves.
Furthermore, it clearly emphasizes the need for the sub-
script "effective" with the temperature and heat flow

vector terms as previously noted. Some other points which
need mentioning are the initially steep drop in degf
indicating an enchanced energy deposition and the possibility
for energy being conducted back to the lower corona because
of the positive temperature gradient. At about 5 rg the
energy deposition is a minimum and then increases beyond

8 T (flow becomes more adiabatic). Beyond 8 o the

slope is -3 and then becomes less steep beyond 1 AU. This
last effect is due to the spiraling of the magnetic field,
and if one considers the radial component of Adesf it 1is
decreasing with a slope equal to -3, as in the spherical
model. Finally, q_pr = 18 x e ergs/cmz/sec, %z 107
ergs/cmz/sec for, respectively, solutions #1 and #2. As
quoted by Feldman et al. (1976112 the observed heat flow
vector due to electrons in high speed streams is only 2 x
1452 ergs/cmzfsec. If this discrepancy were due to Alfven
waves, q_ce would only be reducéd down to 16 x 10_3 ergs/cmz/
sec for EA = 12 x 10_3 ergs/cmz/sec (i.e., can be shown

that qAﬁ’é;EA, where qp 18 the’%eat flow”vector due to Alfven
waves). Again this discrepancy can be partially corrected

by fixing the slope of the density profile at 1 AU. (Note:

Teff is also too high).
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Finally, we would like to point out that since waves
are important, one might question the original approximation
that abis parallel to ﬁ? In the case of Alfvén waves, one
¢an shew that in the rotating frame of reference the energy
transport resulting from the Poynting vector due to Alfven
waves is also field aligned [J. V. Hollweg (1974)].74

Thus, with these facts in mind, the approximation that

— AN
Gert = fess b

also seems to apply.
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(6.) Possible Applications of the Results of Sections 4 and 5

One of the most apparent applications of these profiles
is their direct comparison with profiles of the wind velocity,
temperature, and heat flow vector predicted by various models
of the solar wind based on different transport theories.

Such comparisons allow for the discarding of some theories
and probably the modifications of others. Another application
is that we can now calculate at distance r a number of various

physical parameters. Examples are the polytrope index:
A(Ln T)
X ==l Jhs B
Ak

the Coulomb m.f.p. of a thermal electron AeiOVGT the scale
height H:
(/\e;/H)
the Alfven velocity
y S
AT Ve
and the/g parameter equal to the ratio of the gas pressure

P over the magnetic field pressure

P

B B

(B/¥T)

For instance, in Figures 41 and 42 we have plotted
radial profiles of the polytrope index X,derived from density
and temperature profiles both from the spherical model and
the polar coronal hole model.

Figure 41, which is characteristic of equatorial

regions, shows X to vary considerably around one with 10 r_..

0
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This brings into doubt the vdlidity of a polytrope law

near the sun (i.e.,)’( 1 not applicable for expansion models).

To some degree this variation could be model dependent, so

that one could say that the temperature inside 10 rgis

approximately isothermal (Y=«1); while beyond 10 rg the

flow becomes more adiabatic and eventually approaches 3/2

at infinity. Thus, at least for equatorial regions the

polytrope law may still apply. For polar coronal holes

(Fig. 42) the polytrope law is definitely not applicable,

where inside 10 To the polytrope index is much less than

one (i.e., large positive temperature gradient in this region).
In Figures 43 and 44 we have done the same for the

ratiol, { E;WL/r) for core electrons (see Chapter IV for

definition) as we did for Y_ Using the follewing criteria:

collision dominated

oo < @
Ae' collisienless
AL "5 [ )

= >

and from these profiles one can determine those regions

where the electron gas is collision dominated or collisionless.
For instance, the intermediate curve shown in Fig. 43, which

is characteristic of equatorial regions, shows the electrons

to be collision dominated inside 5 rg, to approach a colli-
sionless state at 30 r,, and then to become collision dominated

142

beyond 2 AU (i.e., if T decreases faster than r the gas

will eventually become collision dominated at large r). For
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polar regions (see Fig. 44) the electrons become collisionless
almost immediately r > 2 qgand the ratio i Suw_/r) approaches
values on the order of 102. Furthermore, the collisionless
state extends far beyond 1 AU. Thus, fluid models of the
solar wind which seem to give a reasonable description of

the equatorial solar wind may not be applicable at polar
regions.

Our model also allows us to predict the overall
meridional flow for all latitudes and radial distances from
spacecraft observations at 1 AU in the ecliptic plane and
interplanetary scintillation measurements which give us
empirical estimates of the solar wind velocity at higher
latitudes. As an example, one may assume a sinusoidal
variation of speed equator-to-pole from 450 km/sec to 800
km/sec similar to that suggested by interplanetary scintil-

75 Then

lation measurements by Coles and Rickett (1976).
by using the same method outlined in section 3.5e and applied
i1t sectien 3.5&,; along with the above empiTitsl information,
one is able to determine/o and §: tor all (v, 9 ) and the
profiles of Vy, T ¢, and dopgr CtC. along the E% = 22°

field line (i.e., this field line extends down to 17° lati-
tude far from the sun). Then from "empirical" wind velocities
at higher latitudes, which allow us to determine & for the

—
other field lines, we were able to determine Bt and thus B

for all (r,© ). This then allows one to solve for VI, Teff’
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and doggr CtC- along all field lines above 17° latitude

at 1 AU. Note: all calculations were confined above the

& = 7%

)
at lower latitudes near the sun. Figure 45 is the result

—_—
© field line in order to avoid the problem with Bp

of such caleculations [Ceourtesy of Out-of-Ecliptic Proposal
(1977)76], which clearly demonstrates the usefulness of

such a model calculation. Other than for the results
previously noted to, one may readily see that the Alfvén
velocities are extremely high near the sun, allowing for

the possibility of great enhanced energy £luxes in MHD

waves. The beta parameter, important for theoretical studies
of waves in plasmas, decreases with increasing latitude,

while beyond 1 AU it becomes much greater than one.
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(7.) Closing Remarks

As pointed out in section 3.5c, the density profile
for polar coronal holes has a large data gap between Sro and
1 AU. Furthermore, the latitudinal dependence used by
Munroe and Jackson and in our calculations is probably not,
realistically speaking, that simple and will not hold for
all (r,©). (Note: this angular dependence was suggested
by the radio dispersion measurements of Counselman and Rankine
(1972)64 out to 20 r@.) Thus the functional form for our
density model [see Eq. (3.90)] and fit will therefore not
be unique and quite possibly will not reproduce the data as
well as it does for equatorial regions (spherical model). Since
the profiles are sensitive to the shape of the density profile
(see section 3.4), such model predictions as those presented
here must be treated with extreme caution. This sensitivity
upon the density profile is explicitly shown by Figures 46,
47 and 48 for, respectively, VI, Teff’ and degeo where the
three density profiles shown in Fig. 37 were used.

Another difficulty with our profiles is the problem
with our simple magnetic field model noted to in section 3.5b.
In order to remove such ambiguities or uncertainties, one
should eventually use more sophisticated (realistic) models of
the magnetic field topology as developed by R. H. Levine (1977).26
Furthermore, because of the correction currents noted to in

section 3.5b our model calculations will not be totally self-
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consistant. At present there are unfortundtely no clear
salutions to this problem. It is hoped that such corrections
are small and if large may possibly be reduced by using the
more sophisticated models referred to above.

It should be emphasized that all the uncertainties in
our model calculations previously referred to are predominantly
due to limitations in the observations. As the observations
get better the models for the density and magnetic field will
correspondingly become more sophisticated and more accurate.
Because of this, the "empirical'" profiles of the wind velocity,
Teff’ Qeggo etc. will also become more accurate. In the case
of polar coronal holes, referring to the discussions near
the end of section 3.2, the potential for such observational
advances is the greatest. For instance, the mass flux problem
discussed in section 3.4 and its effects explicitly shown
in section 3.5f may be resolved by earth bound observations
of the corona, more specitically neaxr the poles near solar
minimum, and simultaneous spacecraft observations at high
latitudes. It is hoped that experiments of this sort will
be performed, and that observational advances, especially
the determination of electron densities over the sun's poles
beyond 5 r,, will become a reality in the near future. Finally,
we would iike to stress that the most important contribution
of this endeavor is the introduction of the method, and not
the results of our calculations, which should be thought of as

the first generation of many to be performed in the future.
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CHAPTER IV

REVIEW OF THE EXISTING TRANSPORT THEORIES FOR INTERPLANETARY ELECTRONS

(1.) Qualitative Remarks

At present there is no adequate theory for the heat
transport in the solar wind. To begin, the physical
entity describing the heat transport is the heat flow

vector ai defined by
1 BE P b 3
5‘? :E'EMB/(V ,-V) (v—-V);goll/ (4.1)

The classical transport theory (conduction) states that

= -0 VT 4.2

a8, that H?is proportional to the negative gradient of
the temperature. According to the anzatz by Spitzer and
Harm (1953)77 or, equivalently, according to the Onsager
relations, which predict an expression for Easimilar to
that given by Eq. (4.2), the proportionality coefficient
(thermal conductivity) is given by [see Eq. (4.4) for

definitions].

op .92 Xlc TS/’A (4.3)
" L /A

in cps. vnits. This expression, which has 4 stroneg

temperature dependence and predicts large thermal conduc-
tivities in the corona, is only applicable for the case of

a fully ionized Coulomb collision dominated proton-electron
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gas. That is, the characteristic scale lengths L and time

scales TS of the plasma must be large relative to their
respective counterparts, i.e., mean free path {(m.f.p.) A el

and collision time tEoul for Coulomb collisions.

Our results obtained in Chapter III on the density and
temperature as functions of radial distance from the sun,
allow us to compute radial profiles of the Coulomb m.f.p.
of a thermal electron A conl 2VEL the radial distance from
the sun (see Figs. 43 and 44); this in turn allows us
to determine when the core electrons become nearly collision-
less. (Note: the radial distance r 1s used in the same sense
as the scale height H, which is equal to r divided by the
negative of the logarithmic derivative of the density with

respect to r.) The exact expression used for Figures 43

and 44 is the following (m.f.p. for isotropization of

>

electrons)A'S: Q_JJ—)L
£ ( e, C

covl oy =i :
(r“ ) (4wre*n? LedL )

(4.4a)

Y ———

where

3’&>7ﬁ lg~ (4.4b)

o i
g &~ Yo

o /A

is the Coulomb logarithm, D = 9.76 UT/n is the Debye length
in cii, T 2.818 = 10_13 cit 15 the "glassical electron

redins, ™ and 77 = 5/5 Y s/w (14 2) = 7.85.

As may be seen from Figures 43 and 44, the collision
dominated condition for core electrons does not hold beyond

a few solar radii above the solar surface, especially for
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———

the case of coronal holes. Furthermore, since ( )

coul/r)
is proportional to Tz/n, the suprathermal electrons are
not collision dominated at all &s far as Coulemb collisions
are concerned. Because of these facts, the classical trans-
port theory for ai Egqs. (4.2) and (4.3), gives an inadequate
description of ﬁ’for the interplanetary medium at large.

At best, it may be applicable within the lower corona. It
also follows that we must have a transport theory which is
applicable to the case when ;gcoulj> H. At present, such

a theory based on sound physical arguments like those for

a Coulomb collision dominated plasma (Onsager relations),
has not yet been formulated. At present, some new theories
are in the making concerning the heat‘transport by electrons

in the interplanetary medium. In sections 4.3 and 4.4 we

will review two of them.
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(2.) Brief Summary of Published Observations Concerning Heat

Flow

We would like to begin with a more detailed review of
the electron observations than that given in the intro-
duction to Chapter I. Monmtgomery et al. (1968)3 was the
first one to demonstrate that the interplanetary electrons
had a non-Maxwellian suprathermal tail. More recently,
Feldman et al. (1975)9, using data derived from inter-
planetary electron measurements made by the Los Alamos
Scientific Laboratory (LASL) plasma detector on the earth-
orbiting Imps 6-8, derived electron plasma parameters from
a much broader data base than that previously done.

In Figure 1 we have a plot of data representing the
electron distribution for solar wind electrons determined
by Feldman et alug while in Table 20 we have listed theilr
average properties? The electrons appear to be composed
of two separate and distinct populations.

Below B0 ev are the core electrons with the distri-
bution fc, which are nearly Maxwellian and isotropic (i.e.,

. ) [ in the proper frame,’
(ly 4Ty Y, A1 1) ia th frame)”

while at higher
energies there are the "halo" (suprathermal) electrons with
the distribution fH’ in agreement with the previous results
by Montgomery et al.3 and Ogilvie st al. (197‘1).S Further-
more, the suprathermal electrons are non-Maxwellian 32

and nearly isotropic ( T I Yo 2 1,257 30 a Frame of
Y B i & AH

—_— -—
reference moving with velocity‘AVH along B (see section 4.3
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for definitions) relative to the proper frame.9 They are

9,5

shown to contribute to most of the heat flow. The

values for the heat flow vector determined by these authors’
varies in the range from 4 x 10_3 ergs/cmz/sec to & % 10_3
ergs/cmz/sec, in a rough agreement within large experimental
errors. Some other plasma parameters typical of electrons

(refer to Table 20) are: (1) halo density n,40.065 n

3

H
(2) halo temperatures TH 2:6TC, (3) core drift velocity

Aﬁi“’- 50 km/sec, and (4) halo drift Velocityzﬁi{”“700
km/sec. The core electrons are drifting back toward the
sun along gsand the halo electrons are moving away from the
sun along gaboth relative to the proper frame. Further-
more, the electrons are found to be gyrotropic relative
to Eﬁ

There are various observational difficulties concerning
electron measurements. For instance, spacecraft observa-
tions of solar wind electrons, as pointed out by J.D. Scudder
(1971)78 and K.W. Ogilvie et al. (1971}§ may become con-
taminated because of bow shock associated phenomena. This
contamination, occuring when the magnetic field line at the
spacecraft connects with the earth's bow shock, may introduce
considerable distortion to the distribution of the supra-
thermal electrons, thus making estimates of the skewness of
fe at higher energies ambiguousg’5 (e.g., the heat flow may

appear to be flowing back toward the sun). Other diffi-

culties arise because of spacecraft charging effects (see

il 5



205.

Chapter II1), which may introduce considerable distortions
of fe for energies 5 10-15 ev for typical values of the
spacecraft potential <5 ev.S Because of this, the measure-
ments of fe below 10-15 ev are burdened with uncertain
corrections that make accurate core density and temperature
estimates difficult. Furthermore, because electrons are
""subsonic," detectors are unable to sample total fe; thus
the calculations of d, must rely on certain assumptions,
which may or may not be justified.

Because of these observational difficulties, progress
in making electron observations has been slow in comparison
with positive ion measurements. However, some progress
has been made, thus allowing for the development of two
distinct models of the interplanetary electrons. They are
the "convection'" model by Feldman et ang discussed in
section 4.3, and the '"conduction" model by Scudder and

Olbert,l4 discussed in section 4.4.



204.

(3.) Feldman's Convection Model of Interplanetary Electrons

Because the solar wind electrons appear to be composed

of two separate and distinct populations, Feldman et 31.9

proposed the following mathematical expression to fit the

data:

- B (R TY =ag e leob
f(v) \f/} e (4.5a)

ATV =88, (hVu,)
i CH (E

4, V@,

where either CH(E) =1 for all energies E (4.5b)
or ~E ~E)/E -
e Sa i E £ by,
C (F_—) = (4.5¢)
Bhx= 8
1 E=Ex,

EB is the breakpoint energy (i.e., point where fc = fH
“A

after averaging overall angles), Ec = 4ETC; n_, ny are,

respectively, the core, halo electron density;gﬂ_)él)éig
have the same definitions as those given by Eq. (1.26),

except for the subscript "¢ for ceore electrons and ‘the

_—
sibscript "HY f£6r halo electrons: VC, VH a¥e, respectively,

the velocity of the core, halo electrons relative to the

N~

) —_ —> A -

satellite frame of referencej .and V, =V *®*b (b = B/B).

In both these models both populations are moving relative
-

to the proper frame, which is moving at velocity V

relative to the satellite frame. Furthermore, in order
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to satisfy the zero current condition, the following

relation should hold

==3
— . ol )
n AV +hs &V =0 (4.6)
c
where n., ny are, respectively,; the number densities of
the core, halo electrons and
— —= e
MM = Ve -V e

AV; . V: —'7 (4.8)

are, respectively, the velocities of the core, halo
populations relative to the proper frame. The relative
—> —
velocities 43Vc, X&VH are both aligned along'ﬁain such a
—_—

way that gﬁﬁl points back toward the sun, and z}vH

away from the sun. Superimposed upon the data points

points

shown in Figure 1 is a fit by Feldman et al.? using the
truncated bi-Maxwellian for the halo electrons. As may
be seen, this model does give a reasonable description of
the data at low energies, while at higher energies (i.e.,
velocities greater than 104 km/sec), the Maxwellian fit
does not follow the data points well. The authors argue
that their model of two convected Maxwellians (convection
model) may be characteristic of interplanetary electrons
and that it may be consistent with exospheric theories
[Eviatar and Schulz (1968}79 Schulz and Eviatar (1972)801
of the solar wind. With this picture in mind, the break-

point energy EBA N 60 ev gives an approximate estimate of
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the interplanetary potential §I at 1 All, the halo electrons
are unbounded, collisionless, and moving away from the sun
with velocities /™~ 700 km/sec relative to the plasma; while
the core electrons are collision dominated, bound to the
sun by the interplanetary potential, and are drifting
back toward the sun relative to the plasma with velocities
~ -50 km/sec, in order to sustain charge neutrality within
the plasma (zero current condition).

It is clear that in this model the halo electrons
carry most of the heat even though they only compose 6%
of the electrons in number.9 The heat flow takes place via
convection of halo electrons relative to core electrons.
There is no contribution to EZ from stochastic conduction
processes. From Eq. (4.1), we find from Eqs. (4.5) to
(4.8) that

! T _,
foE e i (B e

—
By using the previously given values for N é&VH, TH/TC’

along with typical core densities n. o 18 cm_3 and

temperatures T _~ 1.2 x 105 OK, one gets
C

Te™ 479 vio

about the value quoted previously.

ef}S/le/gﬂo

As far as the comparison of Eq. (4.9) with our results
in Chapter III, we note that Eq. (4.9) would be consistent
-
for large r with our profiles of g if L&VH and the ratio

TH/TC are independent of r.
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(4.) Scudder, Olbert Conduction Model of Interplanetary

Electrons

The convection model described in the preceding section
has been subjected to criticism by J.D. Scudder and S. Olbert
(1977).14 They point out that the LASL observations are
not really consistent with exospheric theory of collisionless

halo electrons, near isotropy of halo electrons in ''convection"

frame of reference. They propose that a conduction model,
where collisions at least to some degree are important and
there is no convection, must be first examined to see whether
one obtains results similar to those of the LASL model.
They claim that it is difficult to accept on physical
grounds a picture of two pure Maxwellian distributions
drifting relative to each other throughout the solar system.
The only way that one can possibly visualize the LASL model
to be valid is that these two populations have two completely
different mechanisms of interaction. For example, if the
core electrons interact among themselves via Coulomb
collisions and the halo electrons interact via wave
particle processes, both having very short mean free paths
independent of each other. Until now, this has not been
demonstrated.

Scudder and Olbert make suggestions as to how one may
try to see the effects of stochastic processes and of

gradients and feorces upen the original distribution. AL
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the time of this writing, their approach was a semi-
quantitative approach using Krook's approximation and the
Chapman-Enskog Method. We give here a brief account of

their findings.

(a.) Boltzmann equation in proper frame S* (S* moving with

p -
wind velocity V)

In order to study the effects of collisions and the
thermal gradients, etc., upon the electron distribution
function fe and the resulting energy flow in the proper
frame S*, it is convenient to use the Boltzmann equation
in the proper frame 8%.  [Feor reference, sece Rossi and
Olbert (1970)48]. The Boltzmann equation in the inertial

Eruie § £oy arbatrary £ is

df - (535) (4.10a)
colil

At it
where
B s .;..+'{7-S7+£-V;, (4.10b)
At It

is the total phase space time derivative, v is the partiecle
velocity, ) e
?iﬁ(f+7x8)+rﬂj (4.11)
is the Lorentz force plus gravitational force on a charged
particle with charge q and mass m. In order to transform
Eq. (4.10) into the proper frame, we may use the fact that

f is invariant under the Lorentz transformation, i.e.,
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£t ?,7> = f*(t)?)ﬁ? (4.12)

where f* is the distribution function in the proper frame,
and —
e s q

Y = ¥ \/(I’“)‘!‘J) (4.13)

is the particle velocity in the proper frame. Using Egs.

(4.12) and (4.13), one can readily show that

L.

%I- - - Jt W (4.14a)
o <«

A L (4.14b)

FXi Xz Yy }Zd;-

e i—£¥ (4.14¢)

T e

Furthermore, since the collision term is invariant with

=

respect to the transformation given by Eq. (4.12), we have

{i) .___.({f*) (4.15)
<£f coll 5t Jeon b

Then by using the non-relativistic transformation for E

— )
and B, T:€-,

e | s —> —
FE = E # V' XE (4.16a)
et =R (4.16b)

along with Eqs. (4.14), (4.15), and (4.16), we get the
following expression for Boltzmann's equation in the

proper frame S*:
%

A " Ll (4.17a)
0’{;‘;{ ik (‘[f )Con

where

& g s R
f_f__i+v.17+u°\7+&-f7w (4.17b)

o+
¥
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If we introduce the following notation for the total time

derivative in coordinate space

B 4 S (4.17¢)
Dt It vV
then the acceleration @* has the following form
g sy ol oy B el e
2¥= 2w L (waBIaT -l e S
nm m

The acceleration a* contains all the external forces
imposed upon the charged particles in the proper frame

due to electric, magnetic, and gravitational fields,

along with the inertial forces of the charged particles in
the proper frame. The last term in Eq. (4.17d) contains

the "viscous" forces of the plasma upon the particle.

(b,) Krook's anzatz

By using Krook's approximation, one avoilds the tre-
mendous complications introduced by more realistic ex-
pressions of the collision term (i.e., (§f#*/ 4 )coll]'
In general, the collision term will be a function of all
the distribution functions representing the different
species in the plasma and terms describing the wave-
particle interaction, so that one ends up with a series
of coupled, inhomogeneous, non-linear integro-differential
equations for fl*. In addition, the form of the wave-

particle interaction term is generally not well-known.
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Therefore, in order to study qualitatively the
collisional effects upon f* under the influence of various
gradients and forces in the plasma, Krook's approximation
for the collision term is used, i.&.,

(&* o

(4.18)

0t oy ey

where C is some phenomenological collision time yet to

be given. The distribution function f* may be represented

by: & g

j(*:/{ +/}_ (4.19)

where fo* is some known distribution function at some
reference location ?Z, tO and fl* is a correction term to
f#* resulting from the propagation of electrons through the
gradients of the plasma and collisions. By substituting
Eg. (4.19) inte Bg. (4.18), which is then substituted info
Eg. (4.17), we get .
o{:[* +l('., e *_‘Z{,*,[* (4.20)
At 7 T At "°
It is interesting to note that this equation has a form
similar to the radiative transfer equation, where 1/ T
would be the opacity and the term on the r.h.s. of the
equation is the source term.
For conditions characteristic of the interplanetary
medium, the gyro-frequency {2 of the various species will

in general be many times larger than their corresponding

collision frequencies 'Uc, i.e.,

1)-5‘——<<1
(P

(4.21)
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Because of this, especially in the case of electrons, the
charged particles will undergo many gyrations between
collision. Therefore, they will in general have distri-
butions which are gyrotropic with respect to the magnetic
field. This allows us to make the following average of
Eq. (4.20), where we take advantage of the fact that the

particles undergo many gyrations between collisions

e 2N .
P ok gt

=200 ;LhTrO
where
@ i i
Sin & cos¢/
o WJ_COS¢ ' 9—5“ (4.23)
— Y e 3
= : e SinE S$iNv
w W, SIN¢/ Y
&
21)/; Cad &
W, s W, are the components of'ﬁi respectively, parallel

and perpendicular to ﬁ, 6©* is the polar angle of the

velocity vector w relative to B, and gﬁ* is the azimuthal
—_—

angle of W around B (see Figure 11). The second term on

the r.h.s. of Eq. (4.17d) may be written the following

way by using (4.23) for W and the relation .(1"518 /'

£ /2 xB % Tl (4.24)
73 X -|7 = 0.4 -

(W %8 ) w i £2 b7

Then since

)

oy (4.25
7 )
this term drops out. Furthermore, we have for f}’ the

following

——

—

&
i :,{ +[J (4.26)
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if fo* = fo* is assumed to be initially gyrotropic.
In the Chapman-Enskog approximation, the correction

term fl* is assumed to be a small perturbation of fo*, S

=% b (4.27
5 )

Then by considering any gradients or time derivatives

of any macroscopic parameter M to be first order small, i.e.,

[ UM <<1 (4.28a)
T dml <<t i

where,A is the m.f.p. for any stochastic process, so that

any gradient or time derivatives of ?;*, which is first-order
small, will be second-order small, while the corresponding
gradients of fo* are first-order small. Furthermore, any
product of ?;* with gradients or time derivatives of any
macroscopic parameter M will also be second-order small.

From this, one can show that

e *
TH s A" (429
At At "°

provided that the electric field in the proper frame along

-_-& - -
B is first-order small.

Assuming that Bg. {4.29) helds, one finds for an

1sgtTepic fo* in a steady state ( f% = 0)

S

o " g 4. 50]
'[’*:.— —L‘[V*V*’L«)Cos@ Vi 1A, ces & J —zuj;—j;],é

I

where

—_ =5
¢4 E ~ O L
Hl/ £ ( m .f-? bt) (4.31)

H
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e
S’I‘ W+ ”"}Xy' d

is the time averagced "viscosity' term, using the notation
& bl o

(4.32)

= bl (4.33)
and introducing the Legendre polynomials of order one
and two, "
= CosE
F " (4.34a)
Fe
Bo=d(3c0s 0%~
' (4.34b)

one obtains after some algebra
— ) —3)
3 = nk] 4.35
oo LV R = A
One should note from Eq. [(4.30); that af Bg. (4.28) is

violated, ?i* will mo longer be first-ordexr small.

We may now rewrite Eq. (4.30) for 3 in amore useful form

1
- %
= "C“[—Qo + Pz +Bs2 T £ (4.36)
where S b J
= X & .
n,=V-V t3 th"‘/a J2 (4.37)
¢
n, =wV +A, 329 (4.38)
D,

AL, B "(“J+3Lofﬂ"f')%2‘ e

where we made use of the continuity equation, viz,

divV =L L0
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One of the nice features of Bg. (4.36) is that 1t is
readily apparent which terms contribute to the different
velocity moments of F*, For example, the first and third
terms contribute to the even moments of E;, while the second
term contributes to the odd moments of E;; in particular,
the heat flow vector is given by the second term. In the
case where MHD is valid, one can further show that Eq.

(4.,.33) for V reduces to 48

) = g.%(/gw /—E—) (4.41)

Therefore,.flz reduces to [see Eq. (4.39)]

(4.42)

¢

g
Q, = ”%(L/'OT’S)W)%

(c.) An example of fo*

In the case of a collision dominated gas ( ) << H),
the form for fo* is known to be an isotropic Maxwellian fM'
For conditions characteristic of the interplanetary medium,
which in general is not collision dominated, one is unable
to predict 4 priori the form af fo*. Thus, the only alter=
native is either to guess at its form from qualitative
physical arguments or from observations.

As an example, we will use the kappa distribution f;(
proposed by J.D. Scudder and S. Olbert [1977),14 which at

times seems to give a reasonable empirical description of
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[Ogilvie et al, (1977)85 .

f # for interplanetary electrons
Detailed descriptions of f,, are given in Chapter I and
Appendix A.
For convenience, we display it again here
J[ *::Jéx = n <j}( ‘ 2+
; PEwd 1+ o)

where 3
i
Lo, 2 %,}A (4.43b)
%-.-u
AT =2m We
w

XM is the kappa parameter, ¥ (z) is the gamma function, o

is the most probable thermal speed,

(4.43a)

(4.43¢)

n is the number density,

Substituting Eq. (4.43)

18 the Ycore™ temperdture.

and T
c
into Eq. (4.36), we get the following expression for fl*
= 7€< (Pcveh +R’0‘°{) ¢ et
where D
= = -- ?‘( ( T —“—'
Pevevs ( 'gw | ?sz' (4.44Db)

+ 7 u? [ (ﬁ.xzﬁ-) ~2V F(3Vtd L/o)f, 5]
Prud = wecos 0¥ [- VA("C")*-W,?(A(Hu/x)m 44¢)

+ 7u*[-T, L (xw*) + 24,/ w*] |

L 2 a
= ZJ
U W W (4.44d)
37 -  GCH |
UK
(4.44e)

Then by using the notation
o
= v = LG
A, s

where G = n, Tc’ 2¢, and B, and

(4.45)
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o . oA
V'V =V g (4.46)
V) = cosX :(ir" (4.47)

where X is the garden hose angle, we get the more useful
expressions for computational purposes for Eqs. (4.44b)

and (4.44¢),

Feven = (\_{r_;)[_g, Ay, ~ A~ [ (70 =2 L. (1050l @ a5
“7&2[0{%.}0(% Eaq —=€39 +oth)smlea*]}
kel = Wi\____of_@*{; oy, = A, [ (3 =2 (1+22/5) ] oy,
R e R foux wm

where L (9e) = chg(x%-t) - (4.48c)
is positive definite for all 2 > 2, lim }] (2¢) =0,
>0

and no larger than ~ 0.25,

giz) = QL_( Y(E) “}é(—f—:)) (4.48d)

is the beta function,

¥(z) =ﬁ.3'—(z,£*/"’(z) (4.48¢)

is the Psi-function, and

- A . £
;4r - }i . (4.48f)

Let us discuss the values of the individual co-
efficients 6(1? y C{n, etc. Por instance, in the case of a
¢
free expansion, the density will drop with a 1/r2 dependence

so that C{n = -2, while the temperature decreases adiabatically,



O(T = -4/3. The coefficient Qﬁx results from the fact that

C

M should be a function of distance away from the sun.

Referring to Eq. (4.41) for the scalar quantity ¥ , one

can see that under normal interplanetary conditions, V = 4 142

Cis,s BEE T fpot s

, and e 1/r2). Note: if there were no
spiral Field, B 0<1/r2, the scalar quantity V £ 0. The
coefficient of the last term of Eq. (4.48a)

(29 &y, ) (4.49)
under normal conditions is negative, causing the electrons
to be hotter along the Ebfield while cooler perpendicular
to it (i.e., Ty /T, = 1): But for certain gonditions
this term may be pesitive, 50 that Ty /TL < L1l. Per
example, one can see that for regions where the density
increases with r,lxn > 0; while the magnetic field becomes
compressed (increases with r), Eq. (4.49) may become greater
than zero. Such regions may occur behind the leading
edges of high speed streams.

The polynomial Podd’ which gives rise to the heat flow,

is proportional to w The term proportional to Ar or

]
equivalently to Er* tends to make the currents in the plasma
small, i.e., quasi-neutrality condition. The term pro-
portional to W cos 6%

..y&j‘w CQJQ*C«C’(TC‘*‘OZ“) (4.50)

because of its strong velocity dependence relative to the

other terms, contributes to most of the heat flow q

218,
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[see Eq. (4.1) for definition of’??}. Furthermore, these
terms do not tend to cancel each other under normal
expansion conditions (i.e., temperature and density
decrease with r). By imposing the zero current condition
[see Eq. (4.63) for definition of j“ *1 , where the current
is mainly due to electrons, one finds Er* > 0. Because of
this, the low energy portion of fe* will appear to be
drifting back toward the sun, as in the convection model
by Feldman et al.g The peven term, which produces aniso-
tropies in the pressure can be shown to be small relative
to Podd for electrons. For example, by noting that the

leading factor outside the braces for P is proportional

even

to the wind velocity Vr’ while for POdd the leading Ffactor

is preportional to w, one can see that since electrons are

i E < < .
subsonic (Vr/wc)<(< 1 s Peven Podd' Furthermore, 51t;e
S < . -
the collision time 2‘“/4/wc, it follows that P .~ ( Ei)

A

(73 ) [see Eq. (4.44a)]. Then, if (z%/v* ] 7= 1/10 gt

1 AU when considering both Coulomb collision and wave-

particle interactions J[see Fig., 43, Curveé #2 from

—

Chapter III which shows ( A 1/r) 2 1/5 at 1 All,

cou

. = AL * V Fa
Peven only introduces corrections ~2% to fo for r/wC
0.2. Thus, one would expect the core electrons to be nearly

isotropic in the proper frame, which is consistent with
: 9 , ’ 4
observations. Finally, as previously noted concerning

Eq. (4.49), because of the angular dependence displayed in
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Eq. (4.48a) for P , the temperature is greater along B

even
for normal interplanetary conditions.

It should be emphasized that this model does not
represent a specific theory, but rather it is a tool which
has close connections with theory. As a model it 1is
incomplete, i.e., some empirical input is needed for
completeness. As previously noted, it is not possible to
predict fo* from theory; it must be determined from
observations. Thus, fo* is one of the empirical inputs
required by this model. In the case of electrons, where
transport effects are expected to be small perpendicular
totgb(%;* nearly isotropic), it should be possible to
e term e fo* from measurements made in this direction
(see Figure 1). Another empirical input is the collision
time C . As in the case for fo*, one must make a
guess at its form.

An example for Zf in the case of electrons will now
be given. To begin with, one can write the following
parameterization for the collision frequency due to

Coulomb collisions

Voo = Veou 723 (4.51)
where

sty - 6/ 3 -

vcoua.- I EV; (I+JJ—~>\)€P (4.52)

is the characteristic Coulomb collision frequency for the

isotropization of electrons,48 where
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2
= df et (/'mec, )hﬂwA (4.53)
e

\J‘i’P 34 Te

is the characteristic collision frequency ifor electron-

proton collisions.
In the interplanetary medium, not only are there
Coulomb collisions, but also wave-particle interactions
due to collective phenomena. In order to take into
account wave-particle interactions, the following expression

for the collision frequency due to waves is introduced

7

o dEgE (4.54)
Vo TR
w

where )_w 15 the m.f.p. for wive-particle i1nterdcticns.
For simplicity, we assume w 1S independent of w;
generalizations of this model can easily be taken into
account by allowing for a velocity dependence in ,A o

Intreoducing the Coulomb m.t.p.

pum————

;\" e ), (4.55)
CoulL -
VCOUL.

and the definition for &

[
B A (4.56)
" 4T

where Zfi is the collision time for a particular type of

interaction, we get the following for T

N (43577
2 T o= ‘ _ :
wc Z{y + ’sz-J /Icwz.

Some interesting features of Eq. (4.57) are: 1) for

velocities small compared to a thermal speed, u << 1,
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Bg. (4.57) reduces to

—

Z—/ S /|coua. 5 (4.58)

PR

We
the collision time for Coulomb collisions (note strong

velocity dependences); 2) for velocities large compared

to a thermal speed, w 2> 1, Eq. (4.57) weduces to

& i@. E (4.59)
¢ W, W

which has the property of approaching zero for large
energies (i.e., electron run away does not occur).

Using this model for T in conjunction with the
empirically determined model for fo* and fitting the £%
given by Eqs. (4.26) and (4.36) to the data, one can in
principle determine such parameters as /\w’ :jcoul’ et
In addition, one may refer to the profiles determined in
Chapter III and use them to perform a more global test of
the model. These profiles give us an estimate of /Xcoul’
thus allowing for a better determination of ’xw (R
more constraints). From this example, it should now be
clear as to the usefulness of such an approach.

We will now give a numerical example showing the
effects of the gradients upon 5;. In Fig. 49 we have a
plot (solid curves) of E;, where fo"c = f?( and Eq. (4.57)

is used for ¢ . The top curve corresponds to ©%* = 0°
_—

while the lower for &% = 180°. (Note: B defined to be

pointing away from the sun.) The values for the various

parameters in this model were chosen to correspond to those
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predicted by our radial profiles and observations at 1 AU

( G(T = -1, an == 6(5( arbitrarily set equal to
&

ZETro, &(r = ZAr/wC2 = 16/5 llsee Bg. (4.66)1, V= % &,

X = 45°, 2€=6.0, V_ =400 km/sec, w_ = 1900 km/sec, and
( A fr} = 1/5). The dashed curves correspond to the con-
vection model by Feldman et al., where typical values of
the parameters found at 1 AU and the simpler model of a
convected bi-Maxwellian for the halo electrons were used.
It should be emphasized that both these curves do not
correspond to actual fits to real data. We would like to
say that the data shown in Fig. 1, if plotted in the proper
frame, follows a path similar to one intermediate between
the solid and dashed curves. As may be seen, for both
models we have the '"core" electrons drifting back toward
the sun, while the "halo'" or suprathermal component

appears to be moving away from the sun along-§T This last
effect for the conduction model is due to a non-zero third

—

moment in f* and not due to a relative convection; it gives
rise to similar values of the heat flow determined by the
convection model. Because of this similarity (in doing an
actual fit, they do not differ so markedly as that shown

in Fig. 49), one is hard put to distinguish between the two
models. Furthermore, since both models have similar angular
dependences; 1.€., see Eqs. (4.9) and (4.36) , this task

should be even more difficult.
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(d.) Estimates of the heat flow vector q, - based on the

—_—

Scudder, Olbert model

As in section 4.3, the kappa distribution fg4¢ is used
for f_*, while the collision time Cis given by Eq. (4.57).

Furthermore, the approximate form given by Eq. (4.41) has

been substituted into Eq. (4.48a) for 6 12 Going one step
further, the assumption that the parameter
- du
bz ==, =0 (4.60)
M

(oL

o ).

Introducing the constraint of particle conservation,

e
made (i.e. )
L5 ( ? coul

G,
o .
325 =
//t‘ 30w =0 (4.61)

we find the following relation for O(Tc and Cty;via Egs.
(4.44) and (4.61) for 6{11 = - 2:

SO ; (4.62)

A, = ~% r 2ol h(x)

where h(2¢) is given by Eq. (4.48c). Eq. (4.62) for G(TC
says that the electrons will cool adiabatically (i.e.,

Wove = =~ 413) for H ¥ ox Moz = 0, Por finite 4
(svgey = 6),; 6¥-Tc > - 4/3, the temperature drop is

less than that for adiabatic cooling when 6%;_f> i fi.e:;
electrons becoming collision dominated), while for Q@;((]
(i.e., electrons becoming accelerated up to higher energies),

the: contrary s trie, CK/TC <: - 4/3. Secondly, we imposed
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the zero current condition

ok :
ph = f b s

giving us the following for 6(n = - 2 and O(Tc given

by [4.62)
’
= 2L g (}c)fco;]c (4.64)
A, %’/[” %}

where

?(%) / - 4 BR*-D (4.65)

is positive definite for all 2¢ > 2, has the limit

bfh ﬁ(’)() = K3

I > 0o
and 15 ne larpexr than »~ 0.5, and
%
= & B = (4.66)
e ¥ Bl i
A Te

is the interplanetary potential in units of ,JETC which
results from our constraint that the current be zero.
From (4.64), the electric field is enhanced for CK2;>0'
Setting Q@t = 0, we get
a = § (4.67)
r

3 2¢-1

which gives us a potential ~ 40 ev for %< = 4 and kTC¢3 15 ewv.

The expression for the heat flow vector qq is
Il

[see Eq. (4.1)]

Py = 3 (4.68)
?En N Eiﬂﬂ&//;QI W, A7

which after performing the integrations, setting C(n = o= 2y

we

and Eqs. (4.62), (4.64) for, respectively, C(Tc’ 5(1”

get the following
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3 4 M(ac-2) i %‘” 1o, G (7)) cos X 159
?fn"%h‘im"’ \F (- /J( X é ) il

where (%) 29{ =2 5 L\(%)}

(-1 (7~ Se-(7-2)
is positive definite for 2 > 2 and diverges for € = 2,

and has the limit
[ L) =0
W — OO
Thus, for 3€ o= (i.e., for a single Maxwellian), we get

2

N, rm, W
7 9 I -

10 cm_s, and Hoe 1900 km/sec,

I

If we substitute ne
50

Cr. 2 1:.25 % 10 K) into Eq. (4.70), we get
&
-4 471
ﬁe) = 213 Xlo ('—l;?") cos X ( )
I

while for 7€ = 4 and using the same parameters, we get

from Eq. (4.69)

-2 [ s
- oo (Heax

and by setting ( ,)w/r) cos ?5 = 0.1, (4.71) and (4.72)
reduce to, respectively,
‘ =3 a
;{ = Z.la X5 ei}h/CW7/GeC [, T2)
7

and : //
= - s JemY Sec
oy e DGR G (4.74)
which are about the values typically observed in the

interplanetary medium. 3 3oks
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CHAPTER ¥

ANALYSIS OF M.I.T. IMP 8 DATA

(1.) Introductory Remarks--Constraints on our Data Analysis

The main objective of this chapter is to demonstrate
how the formal results obtained in Chapters I and II may be
applied to the electron measurements by the M.I.T. detector
onboard the Imp 8 spacecraft. Ideally, the end product of
our effort should be the determination of the detailed
shape of the electron distribution function for a given
period and location in space. The knowledge of this
function would then allow us to compute a variety of
macroscopic averages characterizing the interplanetary
electron gas. Among those macroscopic parameters, the
following dare of primary interest: (1) the election
number density, N (2) the mean streaming velocity of
electrons, iz, (3) the scalar electron temperature, Te,

(4) the thermal anisotropy ratio, T, e/Tl e and (5) the
heat flow vector, G;. Unfortunately, there are a number of
practical considerations that reduce the scope of such a
comprehensive list. The operational limitations of the
M.I.T. electron detector, especially the narrowness of

the dynamic range, render any reliable determination of
some of the above quantities nearly impossible. As it

will become clear from the forthcoming discussion of the
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data samples, any attempt to determine quantitatively az
and Ttle/TJ_e would be about futile. On the other hand,
the determination of n,, vi and Te should be possible at
least in principle. The precision with which one can
measure these quantities should vary widely from case to
case. 3Since n, can be ascertained from the measurements
of the proton densities by the M.I.T. positive-ion
detector on Imp 8, and,since??e may be expected to be close
or equal to the proton mean velocity ﬁ;, 1t 15 obviois
that the most desirable quantity to be determined is the
electron temperature, Te. We shall demonstrate in the
next section that Te can, indeed, be measured quite
accurately, inspite of the aforementioned limitations of
the detector. In contrast, the accuracy of directly
obtained values of n, and VZ cannot be expected to be high.
For this reason, we decided to adopt the following pro-
cedure: we make use of the available proton density and
the proton mean velocity (the wind velocity) for each
observational sample and thus treat . and Vé as given
quantities putting

n, = § i | np (5,1])
and

Vo 2V, (5.2)
The factor 1.1 represents the correction due to the

presence of C{-particles (5% seems to be a reasonable
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average abundance of & - particles by number, relative to
protons). Equation (5.l1) states simply the neutrality
condition of ambient plasma, after appropriate corrections
for a possible spacecraft charging were made. It represents
a very severe constraint on the fitting procedures in
electron data analysis. Equation (5.2) is an assumption,
supported by strong physical arguments, and 1s verifiable

8 posterieri. The importance of the constraint given by

BEg: (5.1}, other than for the fact that we reduce the
number of unknowns, can be seen by considering the follow-
ing facts: First, the proton number density can be deter-
mined by the M.I.T. detector with an absolute accuracy~205%,
while relative uncertainties between electron and proton
current measurements should be less. Secondly, ion
measurements are not hampered by spacecraft charging
effects as are electron measurements. As shown in
Chapter II, because of spacecraft charging, the normaliza-
tion and temperature will acquire errors <~ 20%, since one
does not a priori know the potential §c>0f the space-
craft. Thirdly, the total distribution of the ions are
available for analysis, while for electrons only a portion
of the distribution is sampled (bulk of fe 1s available
only at energies less than 20 ev).

In order to reduce the possibility of contamination

of the data from bow shock related phenomena we have
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confined our analysis to observations made on the dawn
side of the solar wind, along with the constraint that the
magnetic field does not connect to the earth's bow shock
. 0 o}
(i.e., @y = 1557 or 31ET)L
Our final constraint is due to the unfortunate

~12 :
amp) 1n

presence of noise ~5 picoamp (1 picoamp = 10
the data for reasons that are not as yet understood. This
noise confines our analysis to high density, low speed
streams, where the electron currents are sufficiently

above the 5 picoamp level for the first few energy channels

in all eight angular sectors.
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(2.) Examples of M.I.T. Imp 8 Electron Data

Due to the lack of dynamical range of the detector, we
are forced to consider only the lowest energy channels.
In this energy regime (i.e., energy channels 1 to 4),
where transport effects are probably small, the electrons
(core electrons) are expected to be Maxwellian. Because
of this, we make the initial assumption to be verified by
the data, that the electrons are Maxwellian in the proper
frame of the plasma.

Before showing some samples of data, we should like to
introduce the following quantity, which we found to be
more useful in the analysis than the currents AI:

AT (5.3)
T RE

where R(o) 1s the mean response function of the detector

i

defined by Eq. (1.22), evaluated at § = vx/ﬁ; = 0, and
IO is the IO defined in Eq. (1.27). 8Since we are assuming
the core electrons to be Maxwellian, we will use Eq. (1.28)
of Chapter I for the current AI. For simplicity we
have dropped the second term in Eq. (1.28) for 21T and
set 0(12 = 1.0. The resulting expression, which gives
the currents in a given channel to within 10% for W ~S
1800 km/sec, is the following:

P R (5.4a)
where g

Fw = _g-‘-’——-g—-" (5.4b)
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Figures 50 and 51 show the plots of F versus the
normal velocity V; for two different spectra labeled,
respectively, spectrum # 1 and spectrum # 2. Along the
abscissa the circled numbers are the numbers of the first
eight energy channels. The numerals on the graph
symbolize the data points of the corresponding angular
sector identified in Figure 2. The lines drawn through
the data are not a fit but are shown only for the purpose
of aiding the eye in following the data points. Figures
52 and 53 are identical plots of the data shown, respec-
tively, in Figures 50 and 51, except now the curves shown
are fits to the data where a Maxwellian was used for fe
The two spectra were taken about two hours apart. For
these spectra no significant time variations (less than
5%) in the data occurred for time periods less than 10
minutes (i.e., 5 TMS spectra). As may be seen, angular
sectors 2 and 3 display an energy dependence characteristic
of a Maxwellian, while for angular sector 8, which 1is
aligned along B toward the sun, shows a non-Maxwellian tail
at higher energies. This rise in fe is probably due to
the skewness in fe’ which contributes to the heat flow
vector q. Angular sectors 2 and 3 do not display the
presence of suprathermal electrons. The horizontal dashed
line shown in Figures 50 to 53 represents the 5 picoamp

level. Data points below this line may be subject to large
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errors (on the order of a factor of two) due to the pickup
problem mentioned. Thus, if suprathermal electrons were
present we would not be able to see them. Because of

this fact, we cannot measure dg using this data, since we
must have the suprathermal electrons in order to determine
by how much fe deviates from isotropy.

Figures 54 and 55 exhibit angular plots of F for
spectra # 1 and # 2 shown in the previous figures. The
numbers at the bottom of the figures correspond to the
angular sectors indicated in Fig. 2, while the symbols
used for the data points are the numbers of the energy
channels for those data points. The arrow near the top
center of the figure gives the direction of the wind
velocity vector in the spacecraft frame. The vertical
dashed lines indicate directions parallel and anti-parallel
to the magnetic field. The horizontal dashed line
indicates the 5 picoamp lewvel. The wind velocities for
these spectra are Vv 340 km/sec, while the densities are

~”

~~ 20 and 40 cm—D, respectively. The s56lid curves were

generated from Bg:. (5.4b) for F wmith Wor = 1825 km/sec

(T.

I

1.1 x 10° °k) for Fig. 54 and W, T 1840 km/sec

(T_ = 1.12 x 10° °

= K) for Fig. 55. As may be seen, the

theoretical curves follow the data points quite well for
energy channels 1 to 4 for spectra # 1 and energy channels
1 to 3 for spectra # 2. The problem at higher energies

results from the noise problem and should thus be ignored.
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The poor fit for angular sectors 7 and 8, which are aligned
along the magnetic field direction and pointing toward the
sun, results from transport effects alepg B, « Ia beth of
these fits the spacecraft potential §§O was set equal to
zero. Using the simple energy shift correction given by
Eq, (2.34), we Ffound no significant changes in the fit
when the potential ESO was set equal to 1 volt. But when
the potential was set equal to 2 volts, a significant
change did result, in such a way that the fit became
worse. Thus, it seems from this sample of data, where
the currents are significantly above the noise, that the
spacecraft potential on Imp 8 is less than 2 volts.

We should like to emphasize the fact that once n,
and'ﬁpare given one can determine W from any data point
from energy channel 1, where the currents are relatively
large ’VlO—10 amp, and transport effects are small. Then
using this value of w., one can produce curves similar
to those shown in Figures 54 and 55 with the help of Eq.
(5.4b). We feel that we can say with confidence that the
core electrons are Maxwellian and moving at the same
velocity Gaas the protons. The above results also show
that the instrument is operating properly within the
uncertainties discussed above.

The data shown in the previous figures are not typical

of the solar wind. They were shown because they contain an

unusually high number of data points well above the noise.
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Such fortunate circumstances occur when the plasma
density is very high. ©Under average conditions the
density is substantially lower (about a factor of 2 to

5). Fig. 56 shows an anpuldar pleot of F fov g diftferent
time period where the wind velocities are higher ~~ 550
km/sec, and densities about 7 cm_s. Note that an
appreciable portion of the data is near the noise (the
horizontal dashed line), thus producing the poor fit

in the backward directions even for the first energy
channel. Since the potential was shown to be small from
the previous samples, we set the potential EEO = 0 wolts.
The curves shown in the figure correspond to a thermal
speed W = 2000 km/sec (TC S A 105 OK). Except for
the deviations along gi where transport effects are
present, the fit is good within the uncertainties mentioned
above. For the largest currents in this spectrum, the
uncertainties introduced by the noise are -~~~ 10%.

Keeping in mind the conclusions reached from the previous
spectra (i.e., instrument operating properly, core electrons
are Maxwellian and moving at the same velocity-v'as the
protons), this last example clearly demonstrates the fact
that it is possible for us to get estimates of the tempera-
ture from electron data that on casual inspection appears
to be unusable.

One sees from the angular response of the currents

from the Imp 8 detector how serious the noise problem is as
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far as the study of the suprathermal electrons, skewness

of the distribution, and thus the determination of the
heat flow is concerned. It is clear from these figures
how much more information we would get if we were able to
drop the noise level line by an order of magnitude. On
the recently launched Voyager spacecrafts, there is an
M.I.T. electron detector with a significantly lower noise
level ’\*‘10-14 amp (i.e., an improvement in sensitivity
by a factor of 500). The date fyom this mew detecter are
now being processed.

At this moment we have available only one partial
preliminary sample. A quantity similar to the F defined
by Eq. (5.3) for the Imp 8 detector and derived from
Yoyager 2 data taken at 1 AUl is shown in Fig. 57, It is
readily apparent from this figure that the better sensi-
tivity of this instrument, permits us to see the supra-
thermal electrons, which appear at velocities greater
than 4500 km/sec (58 ev). The data in Fig. 5.7 refer
to ane specific direction of the cup normal. The detector
1s mounted 1n such a way that 1its normal is pointing
approximately at right angles to the sun-earth line, thus
at 90° with respect to the wind velocity. The angular
dependence of the electron current is not available because
the spacecraft does not spin. According to preliminary

private communication from Goddard Space Flight Center,
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the direction of the magnetic field is believed to be
about 76° to the normal of the cup. With this information
in mind, we have attempted to fit the experimental

points with an isotropic distribution. We have found that
it was not possible to fit the data points by using a
single kappa distribution given by Eq. (1.40). However,
two non-convected Maxwellian distributions with different
densities and temperatures (core, halo) were found

to reproduce the data very well.

The solid curve in Fig. 57 represents these Two

Maxwellians, assuming that n_ = 3.65 cm_s, n, =.0.152 cm"S,
w_ = 1650 km/sec (T_ = 9 x 10* °K), wy = 3500 kn/sec
(T = 4.05 x 10° °k) and §o = 2 volts. Using the
relation

nT = n. TC g TH
we get a total temperature T = 1.06 x 105 °k. Note: the
ratios for nH/nC = .04 and TH/TC = 4.5 are not the same as

that typically found in the solar wind at 1 AU.

In conclusion, we can say that estimates of the core elec-
tron temperature can be acquired from the data on Imp 8 once
the density and wind velocity of the protons are given. In
cases where the electron currents are sufficiently high, the
determination of n,, Ge’ and W directly from the data should
also be possible (see Figures 54 and 55). The core electrons

were shown to be Maxwellian and moving at the same velocity as

the protons. The presence of suprathermal electrons at high
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energies could not be detected due to the presence of pickup
of » 5 piceamps. At present, this preblem of pickup is not
understood. Because we cannot see the suprathermal electrons,
we are unable to determine by how much the electron distribution
function deviates from fore-aft symmetry along the field lines
(skewness in fe); thus we cannot determine the heat flux vector
from the data.

Preliminary results from the M.I.T. electron detector on
Voyager 2 showed a significant improvement in the sensitivity

over that on Imp 8.
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APPENDIX A

For various models of fe (v) evaluate the integral

W

he= [ L(reme s =

where f = VX/VZ, and thus determine the current
(A.2)

s

; —3 ‘

AT = 2eATu g 2% % 2 4H,
L

(1) Bi-Maxwellian distribution function

2
VQ,QLVZ; .—[2%1N +£5ﬁ}%9}j

L A7 ol (A.3)

where é&q & Fﬁ";r
¥,
b, = o
“n A1y
+rg
V-
L AT,

LB = B, -4
— N — —
Hw,= W %, b = B?B, and B is the magnetic field vector.
Refer to Figure 11 for definitions of the magnetic field

vector with respect to the solar ecliptic coordinates system

(SE), and the relationship between the cup coordinate system

and the solar ecliptic coordinate system. From looking at

Figure 11 it is straightforward to show that the rotation

matrix which transforms a vector from the cup coordinate
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system to the magnetic field coordinate system is the follow-

oS Gy 517 (?{B‘fgg Ju e S col{ﬁs'ﬁ»)

= gl/\) QB

Reap = o Cos (‘?{3 “?{c) 5'?’/)43”7’1.) (A.4)

Cas 98 Xf_}l/g/j I//V’/ﬁ;’é) 'S/;v‘%co"(f;a'%;)

where s

and

From (A.4) one can derive the following expression for W

in terms of cup velocity coordinates:
w, = Vicos€g t[T 5iv A% " Dcos by~ [siv &
Introducing the following definitions:
Qf 5,8;;21
U, = V3 [Vy sin (g -2%) - (V% 4/2)603(%‘&.;)]5«*# Eg
the component of G‘along the B - field,
Ut = A [T T Y
¢ = 2fB/58,

and .; _ V&f/U;
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the expression for fe (VX, g VZ) 157

A
nop iz, -lureceses)FrvrelyracliUpcose, £
_iéi~ﬁt? N
(A.JJ

/(,VX;O \V% T\,"}/»

!
Substituting (A.5) into (A.1) and integrating gives the fol-
lowing for H: N
"[Ul"’ 6U,—;2 /( | + €écCos 83)]

mﬁ/g_L M! hé
}{L = = ; ' s (A.6)
m V-DCL +yF (1 +ECos )

It then follows that the expression for AI is:

"LUL‘{- 5()“1/( |+€Cos ZQBDJ

e A 2 o B
s ie\/l-’g‘i— U ¢ 2 4;‘;_____@_1____ (A.7)
i V;CLL'I“UO&(‘*&C@SAQB)
where 5
j[ﬁ = ;? e A TL ;; Kk.ékvé

For € = 0, (A.7) reduces to the simpler case of a Maxwellian

for fe, 1.€ vy

AT = 6 Z fA.8]
A= Vﬁ( o U

(2) Condustioen model1

}g(\f)._.fg((m(g_r&)@) (A.9)

where £, is the kappa distribution function
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where C‘K - e

n, is the electron density, 2 L £ o»is the kavpa parameter,

W is the 'core' thermal speed,

Aoy 28" e e

PR .. s
Y74 ¥ + J— y /]CoUL-

Zlis the effective ¢ollision time,,}w is the effective m.F.p.

wl =

—

for wave-particle interactions,,} is the effective m.f.p.

coul

for Coulomb collisions, and Pe, P are polynomials in the

o
velocity and look like the following (see Chapter 4):

&= "(’%‘ME% t oy +[ SO 3k (149073) ] B (1D
= yz{"“[q;g ~ e ~2cos 8", + (1-3cos 0% ) ey ]j

. {—(f— a, +o, +[ SC5c) 2 M7 ] e )

r (A.12)

o O
N

+7 [y -at) u* = & T f cos X

where
2+

P o | + 3%

cos ¥ = b F

- . X i . 5
r is the radius vector for the heliocentric coordinate system,
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3 = 25 Bt ) — e
B(z2)

1

LR e
Yiz) = %4 T(2)

a(k' = ELEE: r
A T
(E
T

is the eleetric field along?f),

U = Acos O
g 8 AL

XKy = wé—?—f:,ﬁ,@

and

where -
G = A, Viﬁ)]f.g’)’)’() etc .

Before substituting (A.10), (A.11) into (A.9), the following
definitions shall be made:

A
0t s [( W)+ R/
y = [V 00 () - (% “Vadeos o~ T sin /e
no- ¥

and

0> = Uolﬁl rU°

Hy 7 U, Fcos g +U,
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After substituting (A.10), (A.11) into (A.9), which is then

substituted into (A.1) and integrated, one gets the following

for H:
b neC ,l Vi +ol, + ((H) A Pt
HJ;" = L"’L[ ( ( [ ( a{ J/( ) y)"oz.
h + L Dag,
T A ff g %[(2 an*%;)(uﬂl"u e @B)LL
+ (0{ q/% + 3 oy, COF 98 S

b (2, cos X[ (Feu™ % + S0 c(x)['& v, e

/Y4
ok
+2§—’~((d Q’;JL,L#GK) )]E
where a. T
ot — g F
4 e iz
e w(umdl
b. % ._djilfl
‘ 3
Wy - =
1L (21"’+£)(/+?ff/%)
. - WEE
A AN

—
[
o

i
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d _.ﬂgffl
e é A ¥
g i + 2
hyy B2 ) g7+ £ i+ u*/2)"
iy

)

&

23/ ({+Z£l/% e 9(30
/(zmi) (1eu/3)"

In order to evaluate integrals a to e the saddle point
method had to be used. A brief outline of this method will

now be given. First consider the integral expression:

H :/ ?(x)alx (A.15)

The function g(x) can be written like eG(X) where G(x) =
In g(x). One then writes a Taylor series expansion of G(x)

up to the second derivative around some point X,

)6 i e 3
cexy =60y B o SE (0
I

where the point x_ is determined by setting [ Ty
0 X "

Then, after defining the parameter

4 X.Q]
2[}XL Yo

and substituting (A.16) for G(x) into (A.15), one gets the

following for H:

v ,y“‘(xax‘,bl
= j(X.;)/f AX (A.17)
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This integration of (A.17) is straightforward and has the

following resule:

Vr
H = }(Xo) ¥ (A.18)

The basic philosophy of this approach is to find the maxi-
mum of the integrand [%%{L“= 0, where it is assumed that
most of the contribution to the integral resides. Then the
integrand is replaced by a Gaussian whose width is determined
by the curvature of the integrand at its maximum; and because
one knows the integral for a Gaussian, an analytical expres-
sion for the integral (A.1l5) can be determined, i.e., Equa-
tion (A.18). Since there is no way of estimating the accuracy
of this approximation, one must check the answer by doing
numerical integrations and comparing. As a final note, this
method becomes exact for g(x) equal to a Gaussian.

Using this method, integrals a to e become the following:

a.
by & i
e —“—"‘_‘_—-%H g
OL ([+ Ul/%) %,L
where 59 9 i H A+ |
= + ¥ Ad 7= 22
%JL %)’-' Z %3 g 770 S [+ Ul/%
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where i Uol _U‘i_—_é_c_[_]
It ok U

2. PN
where X;Ub = ‘Y!,L * ;"‘_:T

(A.19)

where s }/1 x Ul/Ul
AL

WL (V)
o -}4.1‘"
l’);/x_ ~ (U¥+§)(I+UL/% XI‘L

A

where . 5 % Uo
- o~ _._-———--'—”““""”'T—\
Yo =¥ T Gad a7

The integrals were checked for all values of parameter

space relevant to the physical parameters of the detector,
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—
and the model parametersﬂ(,tﬂﬂ 5, and V., In general the
accuracy was better than 5%. Inaccuracies ~ 10% for hSL

and h do eoccur for specific combinations of the parameters

AL
at the lowest energy channel when electron core temperatures
are = 2.5 X 147 g (i.¢:; angular width of fe becomes com-
parable to the angular width in R).

Substituting (A.13) inte (A.2), one gets the following

tam T

Z
AL = IogZ % ok M%L (A.20)
Al

where

U,3 1

st

Fee = C%(,Hﬁ/%) m (A.21)

and/Myj_is gqual to the term 4n braces { g for H in (A.13),
/@tiis equal to unity when there is no transport (i.e., all
gradients in macroscopic parameters vanish). Then Eq. (A.20)
reduces to the simpler case of an isotropic kapnpa distribu-
tion for f_ . For the special limiting case ~ S R
duces to a Maxwellian, and Eq. (A.21) for %Mi becomes rigor-

ously:

F;O/Q‘ = g 6 (A.22)

Ve +0°

where the following limits were used
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]im C% "1

?{_-300

}irva 7; . 1

b s _.(%H) —U;L
A v ) = =

o> 00

Equation (A.20) for the current Al when /%%6: 1, and # =@

is identical to (A.8) derived using a bi-Maxwellian for

fe and then setting £ =g,
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APPENDIX B

(1) Numerical Checks of '"Moment'" Integrations in

Section 2.4

To check the numerical pnrocedures and approach, numer-
ous checking procedures were developed. For example, in
order to check the basic integration routine we computed
estimates of the density, wind velocity, temperature, and
heat flow vector for the special case of no potential (@O
= 0 volts), where the anisotropy parameter T,, /T, was set
equal to 1.5. The results of these integrations are quoted
in Table 10, demonstrating that the integration routine is
operating proverly and that our definitions given by Egs.
(2,76) to (2.79) are appropriate. MNotei for this check the
interpolation routine was not needed.

We next considered the special case of normal incidence

(i.e., differential detector, Voot = 0} . At this 1imit the
0

integrals Ky and K, reduce to the following form:

K, =2 & M ’W) (B.1)

H

and

L ”(:e_)_—i'ffi_
kz T e P \/H}/ (B.7)
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As may be seen, both integrals are independent of‘AD and are

well defined for all U > 0. By substituting Eq. (B.1l) for

K1 in Bg. [Z2:23) LfTowx G(FZ, ?B) and by noting that for V:Ep
= 0, the K, term drops out, one gets the following for fe
given by Bg. (£.249)¢
— - J.
[z o= 24l ,

where

H = /f,L[(anf—zﬁ V%] s
r g [1E (e V) Vb 2 (I VbV ]

Eq. (B.4) is exactly the same expression one would get with
no. potential, except for the energy shift experienced by the

normal component of the electron velocity Vs 4 Lol
o}

W, —= mf (B.5)

3

Eqs. (B.3) and (B.4) are the expressions which we used in
our numerical integrations for the special case of a detector
differential in angle.

One can show that the solution given by Egs. (B.3) and
(B.4) are similar to that for the plane geometry analog of
our spherical model. At this 1limit the potential may be

written the following way (see Figure 31)
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Flz2) =+ ( /\DJZ!> (B.6)

Then if a convected bi-Maxwellian is assumed to be the ini-

tial f_ at |z] ﬂle and using the same method outlined in
~t
section 2.2, one will get for fe at z = o a solution similar

t+o that given by Egs. (B.3) amd. [(B.d), Iue,,

H =4, [ (W -V VT + s (R0 - s
e (7 T ra(VEmar V) bbe (- -T2

-
where the only difference is that the -V_ term in Eq. (B.4)

t
. > = - . .
is replaced by (vt = Vt). This is the expression we used
0
in our numerical integrations for the,}D"% 0 limit. We would

like to note that for the one-dimensional problem the trans-
verse velocity replaces the angular momentum as the conserved
quantity. When this happens the ro/r term in Ky, Ea. (B.2) 5

is replaced by one, so that K, = K

2 k-

For the special case of no convection and no anisotropy,

one may solve for the density at z = 0, i.e.,
4’/ W
iy, S a8 *"6*”7((2{.,/%)) (B.8)

where nA.D is the density at ]Zl = AD' Bor T = 1.2 x 105 OK,

and §0 = 4.5 wolts, Bq. (B.8) givées us the following for n,:
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b, = ©.54S HAD (B.9)
Thus the density has decreased by almost a factor of two.
This rarefraction comes about because the electrons are ac-
celerated toward the origin when they enter the region of
non-zero electric field, while at the same time the total
number of electrons must be conserved. Using the same num-
bers, we check our numerical routine by using Eq. (B.7) for
H and the appropriate forbidden zone boundary (i.e., two
infinite planes in the transverse direction W & iuo/wc,
see section 2.4). These results were the same as those in
(B.9) within a few percent (see Table 8, ﬁc = 900, Vr = 0).

For the same problem, but with the three-dimensional geo-

metry of a sphere, one gets the following expression for the

density:
Ly s o 6%1/%21-(’#{/%/@)]
K, = Iﬂw V7 2’;; i (B.10)

where n,, is the density at infinity. Using the same numbers

far Eo and T, one gets for Wy

N, = L* Neo Sas
Here, contrary to the one-dimensional case, the density has
experienced an increase by 29%. In this case, as in the one-
dimensional problem, the electrons experience a rarefraction
which is indicated by the second term in Eq. (B.10). But,

because the electrons experience a convergence of their
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trajectories from the larger area of the Debye sphere to
the smaller sphere of the spacecraft [first term in Eq.
(B,10)] the density inereases. Eq. {(B.11)] is useful in that
it allows us to check our numerical integrations for Eo £ 0
for the case of no convection (§?= 0) and no anisotropy
(T]i/TL = 1). The results of this calculation, which are
shown in Table 10, gave a density about equal to that given
by (B.11) with an error less than 15%.

For the special 1limit of infinite Debye length (JD—% o
Zy = D.0) or €Coulomb potential, the integrals Kl, KZ given

by Egs. (2.39) or (2.40) may be evaluated in terms of known

functions, d.6€.,

i —t(/-%(%%{ﬂ)]
K, L’—[sw {6) T E (B.12)

k&:\/%_@#[ (*)m ;zb( ) j (B.13)

o

where

d\ay
W’L‘/(&) b, (B.14)

is the eccentricity parameter

a e 2.
= |+ =
(. )"'“" U (B.15}
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is the maximum bO (i.e., 8 = 900). These are the expressions
we used in our numerical integrations for the large Debye
length 1imit_)ﬁy>ro discussed in section 2.4. They were also
used to check our four point interpolation scheme for z g #

0. Q.

(2] Progf that,Aﬁ%O Limit is Equivalent to the Plane

Parallel Geometry Problem

If the notion of plane parallel geometry is €orrect,
as suggested throughout Chapter II, then the integral ex-
pressions Kl’ KZ must reduce to the form given by Eg. (B.1)

as,Aﬁ*O. To show this is the case, we shall first rewrite

Eq. (2.40) for K; in the following way:

d(z'Z)

- V’GI/(HZ){ ) l A2 o

5(2E S

where Eq. (2.50) for‘})C was substituted for ), while the

following was substituted for bD2
2
¢ 2z 0) (B.17)

b ZL’~1

where we used Eq. (2.49) for (bDZ}C and

02 §<1 (.18)
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As‘Xﬁbo, the spacecraft radius in units of,AD, g0, | For

this 1imit, the enerpgy (UC] below which critical trajec-

max
tories appear goes to infinity [see Eq. (2.57)]. Thus, for
all finite energies U there are critical trajectories. There-

fore, for

U << (uc)max (B.19)

we have (see section 2.3)
Zo P8y (B.20)

Then because of the exponential term in the numerator
of the integrand for Kl’ appreciable contributions to the

integral occur only for

B.21
with possible exceptions to the critical points Z.- For g
£4<1 (no critical trajectories), the term proportional to f,

Eq. (B.17), is small compared to

_.(Z"Zc,)
2 £
] +;(2&>€ (B.22)

for all 2. FOT.g/V 1, Eq. (B.17) becomes comparable to

BEq. (B.ZZ2) bfily £or & ™~ Z., SO that the denominator approaches
zero. The singularity due to the denominator goes like 1/5,
where4;<<1. This singularity due to the impact parameter

bD will only be important if
= (Zc, ——Zu)

e

—_— ~ 1 (B.25)

§



257,

As za»“% Z. must also approach infinity. Then because the
exponential term decreases faster than J, {B.23) should tend
to zero for all finite U as 26>"?

Therefore, the term given by (B.17) may be dropped com-

pared to (B.22) as zgﬂw, so that

i 1 = 2(%"\6{}—:) (B.24)

2,50

which is the solution for the plane parallel problem. Also,

since contributions to the integral for K? occur only for

z Mz (rf”'ro), the term ro/r in the integrand for KZ [set

Eg. (B:Z)] may be set equal to 1 as 26309 For example, for
= rp +E where 2R e

we have

Z=Zo+’§"

O

Then as,lB;O,‘e must also approach zero in order for z PHE

Therefore,

<25 ]
/;m e /\’, (BuZ5.

713
2—:-00

which is the solution for K, in the plane parallel problem.
Thus, we have indeed shown that as,Xﬁ*O, the problem reduces

to the one-dimensional (plane-parallel) case, so that the

simple correction
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, 2y 2
th vﬁb 2
is appropriate to use in the short Debye length 1imit

(AD = () .
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APPENDIX C

We will derive the vector relation given by Eq. (3.58),
showing the flow to be field aligned in the rotating frame
of reference. A more complete derivation may be found in

i

L. Mestel (1968). The magnetic field in terms of poloidal

and toroidal components has the form
—
— =
B = BP + Bf (.19
o
where Bp the poloidal component is confined to the meridional

plane, while B, points in the azimuthal direction. The

t
wind velocity in the inertial frame may be split up in a

similar way

— —_— ~ 2
i 5
Vo =V, twiRe (C.2)
.——k
where VpI is the poloidal component andCOI is the angular
velocity of the flow. From the ideal Ohm's law Eq. (3.6)

-

we may express the electric field E the following way:

— - -— — - — —
= L L R =L e HE - ¥ ] (C.50)
E o= ghk”B C[VPIXBP V*:r P B VP:
in terms of poloidal and toroidal parts. Because of steady
state the electric field is expressable in terms of the
negative gradient of a g¢calatr petential [see Bg. (3.2)], i-e.,

E? ke —'V7E§jg (C.4)

Then because of azimuthal symmetry the toroidal component

=
of E must be zero.

—» I o
By 5 ”‘é( PIX Ego)"‘"‘o (5]
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Thus, the poloidal component of the magnetic field

is parallel to the poloidal component of the wind velocity.

—

%Bp /J'l/“; (C.6)

Then with the assumption of axial symmetry the following

15 also true:

- i —
7B = FrEp =% (E.7)

—
V/fv'_;) = 7. (/OV,;I)SO (€9
by referring to Eq. (C.6) it is then apparent that
.V =0 (C.9)
so that & is a field line constant. Furthermore, from
Bg. (€.7) and Eq. {(C.8) it 1s veadily apparent that 411 field
line constants are streamline constants. It can then be
shown by taking the poloidal component of the ideal Ohm's

law Eq. (C.3), Eq. (C.6), and azimuthal symmetry that

— K o
G - L) fps 0

so that

« By - il = constant along (€.11)

qu o R the field line.

From Egs. [(C.6) and {(€C.10) it cam be shown thit
=2 —
T xXB . 3 xR (€.12)
* £

- -
wherew=weZ [ e v e, is a unit vector aligned along the axis

of symmetry). It then follows from Eq. (C.12) and the ideal
Ohm's law that in a rigidly rotating frame with angular velocity

S the electic field is zero aleng a given field line. Thus,
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for this frame the flow is field aligned. In the case of

the sun, near the base of the corona or footprints of the
magnetic field, the flow is constrained to move alongrﬁp3
(i.e., tension indg field dominates all other forces in these
regions). Then since the sun is rotating, the flow will

be field aligned along field lines in the frame rotating

at the angular velocity of the sun_fiat the footprints of

the field lines (i.e., because of differential rotation,
field lines of a different latitude will have field aligned

flow in frames with different angular velocity). We thus

have the following from Eq. (C.12),
i —

& B sﬁ\/ (C.13)
—
which is the desired result, where V is the wind velocity

in the rotating frame, and

..-'--‘9”;-3

o = 0. (Lel1d])

Then if/ﬂ and Eaare known one may determine the wind velocity
in the rotating frame along a given field line once & is
known for that field line.

We will now derive expressions for the toroidal component
of Eband the angular velocity of the flow &J, which will
allow us to extend our integration along the field lines
in the rotating frame out into the interplanetary medium.

From Egs. (C.11) and (C.13) we can get the following relation

for Bt:

B{_ = g R (C\)I “'.Q) [E. 150
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Then from the toroidal equation of motion
(VXE) xE — &) (C.16)
YT ¢
in combination with EBq. (6.8) and (C.7) we get

S41m X

where L is the total angular momentum per unit mass of

the field plus gas. From this and Eq. (C.15) we can get

the following relation forCOI

Yol
b q (C.lg)

f I

/0

We would now like to derive a useful relation between

s =

the field line constant & and the mass density at the

Alfven point/éh. For instance, near the sun the flow will

be subalfvenic V(VA, while superalfvenic V>VA far from
the sun, where
—
\7 i Sl (C.19)
AT VqﬁyD

is the Alfven velocity. Thus for some point (rA;éh), called
the Alfven point, along a given field line (i.e., confining
our discussions in the rotating frame), the wind velocity
will be equal to the local Alfven velocity

V:VA [(E.720)

Then because

_ oY
o= /OB (.21
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in the rotating frame we get the following relation for/c:?A
From Bgsw. (€.19), C.Z07), afidiil. 217
Sy = 4o (G.22)
Thus, once & is knownfor a field line, the mass density

at the Alfven point for that field line is known. Then
since we know,ﬁ and E; for all + from our empirical models,
it is possible to determine the Alfvén point (TA,ék) for
the field line. Combining Bas. [C.153) and (C.18) we get
the following relation for Bt
-/ CLw@RlJ (G.75]
LR =
and rewriting Eq. (C.18)
1 i /A39 L; (C.24)

Ve R

by

Wy =

} = /%-4p

It is apparent from looking at Eqs. (C.23)and(C.24) that

Bt and.&% become undefined at the Alfven point unless the
numerator is simultaneously zero. By doing this we determine
Ly do€iss

A ;
L':—O-RA Where RA"'*}S'“QA (.26

We thus have for By and &% the following:
a _ R:L/R:L
= ~pak (TR e
o« R 1'"/4%/?0

a- a1~ ok

(G.27)
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Table 1

Electrons Protons
| 2, i AN V. g V. v, Vg v, iy
Channel # (volts)! (volts) (km?sec)f (km?sec) (km/sec) | (km/sec) | (km/sec) | (km/sec)
1 28 | 11.0 3,432 | 2,808 3,120 624 = -
) 38 | 11.0 3,889 | 3,355 3,622 | 534 = =
3 4 | 110 | 4,m7 | 3,88 4,080 | 474 . a
4 55 1 AL.A 4,620 | 4,164 4,392 456 102 10.6
5 68 14 5,136 | 4,631 4,884 505 114 11.7
6 T S 5,672 1 5.1i8 5,395 554 | 125 12.9
7 102 21 6,290 | 5,672 5,981 618 | 139 14.4
8 126 26 6,991 | 6,304 6,648 687 | 155 16.0
9 155 32 7,754 | 6,991 7,373 | 763 | 171 577
10 190 39 | 8,583 | 7.748 8,163 840 | 190 19.5
11 235 48 9,543 | 8,614 95079 | 929 | i b 21.6
12 280 59 10,432 | 9,386 9,909 | 1,046 | 230 4 243
13 354 73 11 718 | 10,566 11,142 1,152 | 259 26.8
14 437 90 | 13,019 | 11,741 | 12,380 1,295 | 288 29,7
15 531 110 | 14,355 | 12,938 | 13,650 1,417 | 317 33.0
16 659 136 | 15,989 | 14,416 | 15,200 | 1,573 | 353 37.0
17 813 166 I 17,750 | 16,022 | 16,886 | 1,728 | 393 | 40.0
18 995 | 204 | 19,641 i 17,721 | 18,680 | 1,920 | 434 45.0
19 1,219 257 | 21,744 | 19,610 | 20,677 | 2,134 | 481 50.0
20 1,503 310 | 24,146 | 21,772 | 22,960 | 2,374 | 534 55..0
21 1,849 378 | 26,771 | 24,161 | 25,466 | 2,610 | 592 b 610
99 2,266 467 l - | - ‘ - At { 673 | 69.0
23 2,783 | 503 i - - irs 0] = M
24 3,436 705 . "~ | - ; - |- | 829 | 85.0
25 4,216 866 ; = | - | - | = | 918 | 95.0
26 5,183 {1,068 | 2 | & | - | - | 1,018 | 105
27 6,368 |[1,304 E - | - | = [ = | 1,128 | 116
. L | | | |




Eablic. 2

Height of Slats H I
Distance between Slats D G.1735%
Width of Slats W D . 0265
Normal Transparency of Slats TSN 0.8675"
Modulator Grid d/b ratio 0.07
All ether Grids -d/b ratie 0.02647
Normal Transparency of Grid TGN . 6.27
dpg = Yy T s T e BB
d34 0 s 112 58
d56 B 2 )
d67 1 0.. 252

"
H + ) 2‘_1 d, 2.6
Radius of Aperture r, 25"
Radius of Collector . 2.B75"
Radius of Intermediate Ring ro 245"
Normal Transparency TN 0.5438
Angular Sector 1 - 7 33.75°
Angular Sector 8 3589
Spacecraft Spin Period 2.60 sec.

Integration Time Angular Sector 1-7 244 msec.




(Table 2 continued)

Integration Time Angular Sector 8 183 msec

TMS Spectrum Time
NTMS Spectrum Time

AMS Spectrum Time

I A

55 sec.

55 sec.

L4 sec.

* %

" symbol means inches

dnm is the distance between

grid planes n and m




Table 3
n_ =10 cm3 V = 400 km/sec*

Y. = 1500 km/sec

Energy I : I | I - I

Bthass 2 $. (degrees (picggﬁp) . (picoamp) ! Nu?Num
1 62 25.18 | 24,12 ; 042
1 96 13.43 12 72 | .053
1 129 7.628 7.149 4 .063
1 163 5.583 5.206 |  .068
1 . 197 5.853 5.464 ? .066
i i 231 8.651 8.132 | .060
1 § 264 15.79 15.01 | . 049
il ; 298 29.06 27.94 | .039
8 i 62 a0 s, 6.713 | .051
2 | 96 4307 3.186 | .062
2 | 129 1.754 Lein | <0
2 | 163 i 247 1.127 ; .070
2 i 197 . 1.286 1,192 ; 073
2 ; 2531 ' 2031 1.894 ; .067
"B 264 L B 3.864 |  .058
2 ; 298 | 8.361 7.965 : .047
3 ' 62 I 1.790 1.698 ? .051
3 96 | 0.7818 0.7335 | .060
3 129 : 0.3700 0.3448 | .068
3 163 : 0.2449 0. 2275 071
3 197 ; 0.2607 G. 2424 | .070
3 23T J 0.4368 0.4082 ' .065
3 264 | 0.9677 0.9116 .058
3 298 \ 2.161 2.059 .047
4 62 1 0.6571 0.6210 | .055
4 96 | 0.2692 G.9517 | .065
4 129 ; 0.1204 001 3 A .072
4 163 * ~ G. 0714 | ”
4 197 i x 0.0765 | ’
4 23% i 0.1440 0.1340 .069
4 264 | 0.3387 g.3180 | .061
4 298 | 0.8049 0.7640 | .051
5 62 | 0.1340 ¢.1221 | .09
5 96 - g 0.0448 | =
5 129 | - 0.0182 | =
5 163 | = 0.0111 =
5 197 i = 0.0119 | =
5 b { = 0.0222 -
5 | 264 | - 0.0581 | g
5 | 298 | 0.1678 0

.1537 : .084

o
W

An aberration angle of 4.3° (wind appears to be coming from
the west) resulting from the motion of the spacecraft was
included in the calculations.



(Table 3 continued)

WC = 2000 km/sec

1 62 7.2.65 70.69 027
1 96 5074 49.31 .029
1 129 36.78 35 467 .030
1 163 30.79 29.84 HOL
1 197 S 30.66 981
1 231 38.51 38.35 .029
1 264 55.68 54.13 .028
1 298 78.83 76.79 .026
2 62 38,91 37.87 .027
2 96 25.65 | 24.90 .029
2 129 176 17.08 .031
2 163 Theg A 13.88 031
2 197 14.79 | 14.33 .031
2 A 19.16 18.58 .030
2 264 28.56 |  27.76 .028
2 298 i 41.69 .026
3 62 19,22 | 18.77 .023
3 96 ; 1207 11.71 .026
3 129 | 7.872 | 7.657 .027
3 163 ; 6,233 | 6.060 .028
3 197 5 61457 | 6.280 .027
3 231 % 8.648 8.420 .026
3 264 | 13.56 13.23 024
3 298 gy | 20.92 .022
4 62 11,55 | 130 021
4 96 6.972 | 6.805 024
4 129 4.423 | 4.309 .026
4 163 3.440 | 3,351 .026
4 197 2.574 | 3.482 .026
4 231 4.894 | 4,773 D25
4 264 | 7.940 | 7.762 .022
4 298 | 12.96 | 1231 .019
g 62 5.371 5.239 .025
5 96 3.069 2.980 .029
5 129 1.853 | 1.794 032
; 163 1.403 | 1,357 .033
5 197 1.463 1.416 .032
5 231 7073 2.010 .030
5 264 3.545 3.449 2027
5 298 6.102 5.964 .023




Table 4 "Moment" Integrations. % = 0.0, @ = 4.5 volts

(o] (o]
bo | M MlxlO_S M2x1010 Myx103 | v, T, | Qx103 | Veosd, av, | T |am/T
# | deg | em™3 em™2 dyne erg—cm_zl em™3 | km/sec | 10° erg-cm™2 | km/sec | km/sec 10° %
sec™1 cm™2 sec™1 ; Ok sec_l %
11 8 1753 10047 |1.192 25.284 |12.776| 355 1.42| -3.316 | 400 | -45 | 1.2 |18.3
= 421 &5 7089 9.43 | 1.206 25.92 |12.854| 248 L4010 =297 | Zea | 5 | 2.7 {383
= 13| 90|6.479| 7.75 | 1.246 27.26 |12.958 0 1.39 0 . 0 0 1.2 | 18.3
w 141135 |5.765 6.24 | 1.290 28.29 '
~ | 5|180|5.44 | 5.64 |1.307 28.60 ' _
| 6 | 225 ; | | |
~ 171270 } f - | |
8l 315 | | |
| i | :
11 o [7.146] 10.28 | 1.258 26,552 [12.51 | 358 i 1.52| -3.24 | 400 | -42 | 1.286(18.2
2| 45|6.420] 9.64 | 1.429 79,086 |11.65 | 265 |1.82] -1.83 | 283 ~18 | 1.543|18.0
2 ]3] 90{6.438| 7.96 | 1.323 28.681 |12.70 | 13.4]1.50 0.471 0 13.4 | 1.286/16.6
~ 141|135 6.166 6.09 | 1.195 27.322 {13.74 | -241 1..21 2,77 | =283 42 | 1.028{17.7
" 15180 |5.360 5.80 | 1.371 29.788 ? | -
4] 6| 225 | 5.229 6,55 | 1.495 30.916 ? i
=S L7 o7e L6257 779 | 1.30 28.21 § | |
8| 315 |7.573 9.40 | 1.098 24.55 E | | 1
1| 0 |7.063| 10.48 | 1.322 28.10 [12.48 | 360 | 1.6 -3.34 | 400 | -40 %1.35 %18.5
o 2 25 6000 9.88 | 1.60 31,68 11,03 | 276 |2.14% -1.5 | 283 -7 _|1.8 l19
< 3] 90/6.50 | 8.22 | 1.402 3042 |12.67 | 23.7 | 1.56 0.74 | B 23,7 1132 |17
. | 4|135]6.623| 6.05 |1.131 26.88 |14.69 | -229 | 1.06 3.17 | =283 54 0.9 |18
_ | 5|180|5.418| 5.99 |1.441 31, 4% | : a 3 ! \
4l 6| 225 4.98 6.84 | 1.66 33.25 | | i | | |
~ |71270]6.166 | 7.92 | 1.359 29.68 | = | ; | !
8| 315|8.066 9.42 |1.019 23 7. | E
l l i




Table 5 "Moment'" Integrations. 2Z_ = 10.0, & = 4.5 volts

(o] (e}
éc M MlxlO'8 M2X10105M3x103 Ry 1 Vo T, QoxlO3 Vecosge | AV, f i AT/T
#| deg | em™3 em™2 dyne ergs—cm'2 em™3 | km/sec | 10 ergs~cm‘2 km/sec | km/sec | 10° 4
sec™l em™2 sec” E oK sec™ L . OK

1| 0 |5.403| 9.174 1.162 | 24.919 9.32 | 435 1.86 | -2.59 400 +35 1y 2 55

|2t 45]5.207] 8.504 1.174 | 25.337 9.36 = 306 1.86 ~1.86 283 +23 | 1.2 55
S 13| 90} 4.704| 6.991 1.202 | 26,381 | 941 B 1.85 0 0 o e 55
= |4]135| 4,156 | 5.640 | 1.226 | 27.194 |
" 151|180 3.916| 5.128 1.7208 | 21505 i
T4 6| 225 f i %

sy 278 5

%8 315 | | |

bal 0 |s.2761 9.37 1.269 | 27.26 | 9.106| 443 206571 =5, 14 400 +43 | 1.35| 53

2} 45 4.70 9.16 1,574 ] 31.28 | 8.40 | 338 2.732| =0.91 283 | +55 | 1.80| 52
S 13] 90{4.57 7.24 Lt | 2B.k7 | 9.179 7.6 | 2.070 0.335 0 +7.6| 1.35| 53
~ 141|135 4.65 5.37 1.057 | 26.00 {10.30 [-278 1.430 | +3.169 |[-283 +5.0| 0.90| 59
P isl180] 3.83 | 5.34 1.327 | 29.40 | {

P:;j§6 225 | 3.688 | 6.32 1.593 | 32.19 ; 1

7| 270 | 4.60 7.17 1.301 | 28.14 | f

{8]315|5.635 | 8.23 0.978 | 22.83 ; ;

i i i 1 |




Table 6 "Moment" Integrations. Ay = Oy (Tn/TL) = 2.0, &, = 4.5 volts

| -8 | 10 3 | | ' 'f 3 l 3 l
i dc !? MO MlxlO :} MZXlO M3x10 Lo, l VO TO 1‘ QoxlO Vcosrfﬁc AVO : T |AT/T
‘ f 2 | ' ? ! ;
- deg | em™3 cm . | dynes ergs—cm"z.‘ cm_?’% km/sec 10° lergs —cm™2 km/sec | km/sec | 10° %
5 I sec—l | ecm” sec | ! % | sec™d ; | X
1] o | 7.02310.37 1.315 | 28.01  [12.40| 352 | 1.61 | -3.59 400 | -48 | 1.35] 19
| 2] 45| 6.050 | 9.836 1.591 31.66 ‘10.54i 285 2,23 | -1.41 | 283 | 2 i 1.80| 24
i 31 90| 6.50 8.203 1.394 30.28 12.65; 2645 1.573  +40.83 0: | 26.5 1} 1.35l 16.5
; 4] 135| 6.600| 6.031 1.387% - 26,92 ‘14.61i—23l 1.063 | +3.28 -283 52 O.90i 18
f 5{ 180| 5.375| 6.000 1.440 31..:60 ; 1 { 5
| 6 | 225 | 4.493| 6.833 1,652 | 33,07 ;
72700 6,152 7.906 1..352 29.45 % ?
| 8315 8.006 [ 9.407 1.014 23.64 ﬁ '
| \
Table 7 "Moment'" Integrations. By = 140 (T, /T3) = 2.0, B, = 4.5 volts
6| M ax108 ! mx1010)M x103 n v T | Qx103 Veosd.| AV T |AT/T
d o ik | 2 3 0 0 0 0 Ghele 0
_.3 _2 - —2 —3 5 _2 5 qy
deg | cm cm dynes |erges-cm ‘| cm km/sec|x10 ergs—cm km/sec| km/sec|x10 7
sec™l cm” sec™1 9% sec” %
1 0 6.820| 10.22 1.302 27 . 79 12.250 (344 1.621 =373 400 -56 135 20
2 451 5.936 9.779 1.588 31.62 10.888 270 2,158 -1.69 283 -13 1.80 20
3 | 90 16,3301 S.110 1.379 | 29.93 12 4137 20.4631,.591 +0.66 0 +20.46| 1.35 18
41135 6.690 6.084 1139 2 s 21 14.350 0 0 +3 7 -283 0 0.90 0
a5 | 180 | 5,427 6.002 1.438 3l...52
b | 225 | 4,952 6.843 1,655 333,
71270 6.083 7.856 1.347 29,29
81| 315 | 7.660 92T 1.009 23,50
I




Table 8 "Moment" Integrations. ZO =80, 0, = 4.5 volts
8 10 3 3 E
aﬂc M MlxlO M,x10 M3x10 n VO 'I’O QoxlO Vcoséc AVO T AT/T
#| deg em™3 cm™2 dyne e:::g—cm'2 cm=3 | km/sec| 10° erg—cm_2 km/sec | km/sec| 10° 7
’ sec—1 cm” sec” g sec” OR
18 0 3, 615 T D2 1.106 22.785 5..5% 713 | 24720 2 951 400 +313 1.2 126
- 2 451 3.340 6.895 1103 22.544 5.48 51.1. &2.786 2.02 283 +228 12 132
= 3 901} 2.710 B.331 1.065 21.704 5.42 0 %2.848 0 0 0 a1 137
" 4] 135] 2.140| 4.102 | 1.004 |20.525 g
e 51 180§ 1.924 3.640 | 0.9706 | 19.834
=l 6l 225 | %
7 270 : |
8| 315 ; i
|
1| o |3.657| 7.91 | 1.213 [25.095 |5.68 | 701 [2.92 | +2.416 | 400 301 | 1.35] 116
5| 2 45 1 35523 8.09 1 1.324 29.777 6.014 | 467 |33/ 1 . 277 283 184 1580 99
St ) 90 | 2.791 5.71 | 1.174 24,185 502 0 { 3.050 -0.169 0 0 1.351] 126
" 41 135 ] 1.901 3.41 | 0.780 16.345 5.105 |-547 | 2.360 -2.604 -283 -264 0.90] 162
. |5{180{2.023| 3.93 | 1.079 |22.679
S| 6] 225 2.491 | 5.28 | 1.445 | 28.50 Ay o151
=0 L7270 F2.780 | 511 { 1.174 24,354 Ty ® :
8] 315|3.204| 6.20 | 0.884 | 18.949




Table 9 "Moment'" Integrations. v__ = 0, & = 4.5 volts

|

| / ' 1 | { t
b E My | Mx1078 | Mx1010) Myx10° oee AT Qx10° choséci AV, T LAP/F
# deg1 cm™3 om™2 dyne ;erg—cm“zi cm_3 lkm/sec 10° } erg~cm‘2§ km/sec! km/sec | 10° o
i sec™1 em™2 | gee”l T % % j sec—l % : %
1| o |7.475| 10.30 | 1.198 | 25.425 | 12.81 | 368 |1.408 | -2.789 | 400 | -32 | 1.2 | 17
_ |2 45|7.175| 9.51 | 1.211| 26.04 | 12.86| 259 |1.405 | -2.02 | 283 | -24 | 1.2 | 17
= 3 90 | 6.498 7.73 1.248 | 27.264 | 13.0 i 0 ;1.391 0 | 0 o S 17
i 41 135| 5.689 6.18 1.:282% 1 28,067 E [ !
5| 1801 5.337| 5.59 | 1.291 | 28.214 | |
4] 6 225 | F !
il 20| | | | |
8| 315 ‘ ! i
1 | i i \ | l
1 0 7.26 QL2 1350 28.89 | 12.63 F21 131.6% | =-3.056 | 400 | -29 } 1.35 19
e 21 45 | 6.104 9.92 1.603 31.74 11.04 | 282 52.12 [ =-1.394 | 283 | -1 i 1.80 18
5 3 90 | 6.662 8.48 1.442 | 31.38 12.86 40 11.59 ? +1.360 | 0 | +40 1 135 18
) 4; 135 | 6.440 5.96 1.117 | 26.495 14.59 -245 21.06 | +2.589 ; -283 i +38 ; .90 18
oy 5% 180 | 5.372 6.03 1.455 31.946 E i :
él;i 6; 2251 4.931 6.81 1.634 | 33.134 { 1 : ’
7] 270 6,295 7.97 | 1.371 | 30.074 | 5 | |
Bj 315 | 8.147 9.53 1.026 23.906 ? i
| | ‘ i 1




Table 10 "Moment' Integrations. &, = 0.0, @ 0.0 volts
6 | M M. x10™8 | M. x1010|m_x103 i v T Q x103 | veosd | AV T | AT/T
c o} ik 2 3 o o 0 o e | 0 i
#| deg| cm3 cm™2 dyne |erg-cmT3 cm™3  |km/sec| 10° erg—cm_2 km/secé km/sec| 10° | %
sec™ L cm™2 sec O sec” 5- e !
1 0 |6:1275 780 0.8924 |18.6186 [10.0001 400 11.286 0 400 0 1.286:4 O
v 2 4515.7335 762 1.066 21,5052 9.9998| 280 }11.543 0 283 | -3 1.548:] O
= | 3| 90{5.0002 | 5.57 | 0.887 [18.977 |10.0002| "0 |1.286 0 o { o0 [1.286| O
i 41 135]14.1043 3270 0.7076 |15.686 10.0003| -283 |1.028 0 -283 | 0 1.0281 0
. 5| L8043, 873 3.80 0.882 18.6186 ‘
e 6 22514.%663 | 4.816 | 1.063 |21.5857
i 71 270{5.00004| 5.573 0.8872 |18.9767
8i | 315 1:5..896 6.5206 0L 7217 15692
L e ———
2 1 0 |6.4327 12.8654 0
e | 2} #3) " ¥
= 3 9o
I 1 fagsl o
~ ~ |5]180]
e M 6] 298] ¢
g rad2gel " |
A 8|315] " | |
i |

§EO



Table 11

Average Properties of the Low-Speed Solar Wind

Parameter Average Value
V, km/sec 300 - 325
n, cm™3 g -
Eo G 1.5 x 10°
(Tu/r‘ij_l_)e | 1.1
Ls 98 | 4 x 10%
(Tu/Ty) 2
B, gamma® [ 5

i

oL
w

1 gamma = 1072 gauss.

Table 12

Average Particle and Energy Flux Densities
in the Low Speed Solar Wind

| Parameter Average Value

g nVv 2.4 x 108 cm2-sec~! 7
%— v3 .22 ergs/cmz/sec.
nV(%kT) 8 x 10-3 ergs/cmz/sec.
de 7 x 1073 ergs/cmz/sec.
d, 1072 ergs/cm?/sec.




Table 13

ol

Average Properties of Solar Wind High-Speed Streams

Parameter Average Value
Vmax, km/sec™™ 741 T 4%
nV, (108 cm=2-sec™1) 3143 % 0.5
T 10° K w5 Eies
T_, 10% %K 0.9 ¥ o0.08

-3 2 dkk +
ETP’ (10 ergs/cm”/sec) 24 - 5
4. T (10—3 ergs/cmz/sec) 2.8 i 0.9
By (1073 2 ¥ T~ 4s7
N ergs/cm“/sec) 1.6- 4.

+

Efiuscs ergs/cmz/secT+ 2.4 - 0.5

*&

See Text for definitions.
Vmax is maximum velocity in high-speed stream.
High-speed streams were selected by the criterion
that Vmax = 650 km/sec.
E 5 = nV (ngp) is the enthalpy flux.
¥
E, = oV (gﬁb <¢§V%>)is the Alfven energy flux where
<§ V"> is the mean square velocity perturbation.
GMem
ro
gravitational energy flux.

Ef1yx = OV [l/ZmPV2 # P] is the kinetic plus



Table 14

Averages of Selected Parameters for High-Speed Streams

Parameter Average Value
Tl cm™3 ? 3:9 T 0.6
V, km/sec ‘ 7o T 32
T, (102 5K0) | 53 Tine
T (107" 8) | 1.0 T .08
|
Ty (105 OK)* | 4.2 gy
+
n“/anr 1 0.048 - 0.005

* Tp 1is the temperature of alpha particles.
1 e is the density of alpha particles.



Table 15

%
The Basic "One-Fluid" Model of the Coronal Expansion (r.=7.5Tg)
c o]

r=Yg r=1AU T 6C
Density, em™3 7.4x107 8
Expansion Speed, km sec1 12 260 915
Temperature, °K 1.6x106 1.6x10°  ocr=2/5

L
~

o4l is the sonic critical point



Table 16

3 o L. 03, 101 2155
n Sz n L n Sz

7.69 x 108| 6.787 | —

| 6 x 108 | -8.787 | 13454 | -2.79 | 15.9 | -2.035

|

3.027 x 108 | 6.589 | 3.026 | -8.589 | 8112 | -2.66| 10.0 | -2.032
x 108 |
2.93 x 108 | 7.262| 2.03 ~9.762 | 4o88 | <2.76/| 4,85 | -2,095 |
| 5
; x 108 |




Table 17

v Tefs Seff s
(km/sec) (106 oK) (ergs/cm?/sec) ST Sq X ( )wﬂ,/r)
Distance | Profile## !
1 .50 126 | 1.14 % 105 -.280 ; ~2.61 | 1.03 7 x 107
1.03r, 2 .60 1.26 7x10% | -.287 | -2.61 | 1.03] 1.42 x 1072
3 .31 1.176 3.53 x 10% .266 | -2.62 | 1.03 | 1.28 x 10~4
1 199 1,13 218 .09 3.11 | 1.03] .21
10r, 2 227 1.13 E 130 012 | 312 | 1.06] 345
3 206 1.12 § 7 032 | 3.09 1.012 .628
i 425 137 | 14.5 x 103 .95 3.08 | 1.47 | .122
215¢, 2 425 .133 8.66 x 1073 | .95 | 3.08 | 1.47 | .187
3 425 .145 4.74 x 1073 944 | 3.08 | 1.46 | .439
i 439 0 0 1.0 3 1.5 0
oo 2 439 0 0 1.0 3 1.5 0
3 440 0 0 1.0 3 1.5 0




Table 18

Model # n_ Po ay a, ay l a, as
1 1.32 x 108 | 2.414 x 10716 | 4.68 x 1074 | 6.68 | 1.16 -8.15 | B.72
2 1 x108 | 1.83 x 10716 | 4.28 x107% | 7.53 | 1.02 | -7.25 | 6.76
3 7.5 = 100 | 1372 220726 | 2.8 x 107" | .85 | .98 24,61 | 19,41




Table 19

*/ro i n } g Ve V¢ Vap Teff Qefs | S i 5‘9
1.03 | 23 1.395} 6.372 | 3.263|0.70 | 2880 1.050 | 6.91 | -12.71| 1.160
x 108 | x 10| x 107
r,= | 66.8 2.9 | 192.0 |21.1 .57 | 1266 207 2.20 ~3.20 | 0.552
< | hsBB x 10% | x 105] =x 103
§ | 10.27 | 70.3 | 2840 383.0 |18.7 |[5.30 | 790.0 |2.8 |231 | -2.65 | 0.469
E | i x 100 §
@ | ra= | 71.5| 702 | 500.0 | 14.13 | 4.66 | 500.0 |2.580| 41.6 | -2.4 | 0.440
18.4 j § x 106
215 73 3.34 | 715.0 1.70 | 0.76 50.70 | 4.18 | 18.0 ~2.04 | 0.405
y | x 105 x 1073
1.03 | 23 1.375|  4.49 | 2.285| 0.7 | 2880 L.OAT | 303 12,71 | 1,160
| x 108 i | %100 = 10°
r = E 67.5| 1.967| 154 14.8 § 0 | 1z1e 1.458 | 584 ~3.06 | 0.535
s g | x 10%] | x 100
8 10.27§ 70.3 | 2839 268 13.1 ; 7| 790 1.552 i 83 | -2.65 | 0.469
§ % i ; X 106% ?
& | r,= é 71.8 | 392 | 380 8.4 ; .8 380 1.24 z 6.76 | -2.360.433
23 | g | x 10° | |
15 |73 | 90w | soo |1z | .ese| s0.7 |2.8 | 7 | ~2.04 | 0.405
; | i x 10° i p:d 10“3!




Table 20

Average Values and rms Variations of Solar Wind Electron Parameters

Parameters Average Values

N em™3 10.0 4 4.8

Vv, km/sec 425 T 73

T_, °K (1.25 ¥ 0.29)10°

(Tu/Ty), 1.08 < 0.08

q , cegs (.8 T B

fa { o

ERAS Volts ? 62.5 - 13

E Model #1 * Model #2 *
ny, cm3 | 0,57 £ 0.23 D34 015
ng/n | 0.065 ¥ 0.027 0.038 ¥ 0.017
vy, km/sec | 689 ¥ 369 1215 T 579
v, km/sec | 488 &3 4900 3D
T 9K | 6.9 ¥ 1.1)105 8.7 T 1,410
(0T )5 1.22 £ 0.18 1.29 £ 0.28
+ +

TeIT 57 &a.d 2

* (. given by Eq. (4.5b) for Model #1, Eq. (4.5¢) for Model #2.
H





