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Abstract

One of the most fundamental problems in Computer Networking is to efficiently
route packets belonging to different sessions, such as unicast, broadcast, multicast
and anycast, collectively known as the generalized flows. The goal of this thesis is
to design an efficient routing, and wireless link scheduling policy, that maximizes net
throughput. Currently, the only known throughput-optimal policy is the Backpressure
policy for the unicast problem. In this thesis, we propose provably optimal algorithms
for the broadcast and the generalized flow problems.

Our study begins with the problem of optimal broadcasting in a wireless Directed
Acyclic Graph (DAG). Existing policies achieve the broadcast capacity by balancing
traffic over a set of spanning trees, which are difficult to maintain in a large and
time-varying network. We propose a fundamentally new broadcast policy, which is
decentralized, utilizes local information only, does not require the use of global topo-
logical structures, such as spanning trees. It also yields a new and computationally
efficient characterization of the broadcast capacity in wireless DAGs. We next study
the problem of broadcasting in networks with arbitrary topology and derive a new
dynamic broadcast policy which can be viewed as "Backpressure on sets". This yields
an efficient solution to the problem when combined with a multi-class in-order packet
scheduling rule.

Finally, we study the generalized flow problem and derive an online dynamic pol-
icy, called Universal Max-Weight (UMW). To the best of our knowledge, UMW is the
first throughput-optimal algorithm of such versatility in this context. Conceptually,
the UMW policy is derived by relaxing the precedence constraints associated with
multi-hop routing and then solving a min-cost routing and max-weight scheduling
problem on a virtual network of queues. When specialized to the unicast setting,
unlike Backpressure, the UMW policy yields a throughput-optimal cycle-free routing
and link scheduling policy. The proposed algorithmic paradigm is surprisingly gen-
eral and can be used to solve other related problems, such as optimal broadcasting in
wireless networks with point-to-multipoint links. The proof of throughput-optimality
of the UMW policy combines techniques from stochastic Lyapunov theory with a
sample path argument from adversarial queueing theory and may be of independent
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Chapter 1

Introduction

1.1 The Generalized Network Flow Problem

The Generalized Network Flow (GNF) problem refers to the efficient transportation

of packets, generated at source node(s), to a set of designated destination node(s)

over a multi-hop wired or wireless network. Depending on the number of destination

nodes associated with each source node, the GNF problem encompasses several fun-

damental networking problems including unicast (single destination node), broadcast

(all node are destination nodes), multicast (some nodes are destination nodes), and

anycast (several choices for a single destination node) problem.

Over the last few decades, tremendous amount of research efforts has been directed

towards addressing each of the above problems in different networking contexts. One

of the most prominent unicast algorithm in this context is Backpressure [1], which

is throughput-optimal for unicast flows, under fairly general assumptions. Numerous

extensions of the original Backpressure algorithm have also been proposed in the lit-

erature. Some of the works relevant to this thesis will be discussed in the literature

review section 1.3.

In general, the design of efficient policies for the GNF problem faces several ma-

jor challenges. Unlike the unicast case, the lack of flow conservation property in the

broadcast and multicast problem makes the use of traditional queueing-theoretical ap-

proaches difficult. Wireless channels suffer from interference, and a broadcast policy
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needs to activate non-interfering links at every time slot. Wireless network topologies

undergo frequent changes, so that packet forwarding decisions must be made in an

adaptive fashion. Some dynamic algorithms have been proposed in the literaure [21,

that balance traffic over several spanning trees. However, these algorithms are not

suitable for wireless networks because enumerating all spanning trees is computation-

ally prohibitive, more so when this is to be done repeatedly as and when the topology

changes with time.

Moreover, despite the increasingly diverse mix of internet traffic, to the best of our

knowledge, there exists no universal solution to the general problem, only isolated

solutions that do not interoperate and are often suboptimal. The main difficulty in

designing an efficient dynamic algorithm stems from packet duplications involved in

the broadcast or multicast problem, which invariably leads to an exponential number

of states in the natural formulation of the problem.

In this thesis, our objective is to comprehensively study the Generalized Network

Flow (GNF) problem, with a special attention to the Broadcast problem, in partic-

ular. In Chapters 2, 3, 4 and 6 we will study the Broadcast problem, which is a

special case of the GNF problem, and a fundamentally important flow-problem in

its own right. Then, in Chapter 5 we will study the GNF problem in its full gener-

ality, and propose a general algorithmic paradigm, called Universal Max-Weight

(UMW), that solves the problem. The UMWpolicy is based on the intuitive idea

of a precedence-relaxed network, which is a surprisingly general principle, and is ap-

plicable to a wide array of other related flow problems. As an example, the same idea

of precedence-relaxation will be used in Chapter 6, to solve the throughput-optimal

Broadcast problem in wireless networks with point-to-multipoint links.

1.2 System Model and Problem Formulation

In the following, we outline the general set up which we will be considering throughout

the thesis. In addition to this, we will make specific assumptions applicable to each

individual chapter. Such additional assumptions will be stated at the beginning of
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each chapter.

1.2.1 Network Model

We consider a wireless network with arbitrary topology, represented by the graph

g(V, E). The network consists of VI = n nodes and JEl = m links '. Time is slotted.

A link (i, j), if activated, can transmit ci packets per slot. Due to the wireless

interference constraints, only certain subsets of links may be activated together at

any slot. The set of all admissible link activations is known as the activation set and

is denoted by M C 2E. We do not impose any restriction on the structure of the

activation set M. As an example, in the case of node-exclusive or primary interference

constraint [3J, the activation set Mprimary consists of the set of all matchings [4] in

the graph 9(V, E). Wired networks are a special case of the above model, where

the activation set Mwired = 2 E. In other words, in wired networks, packets can be

transmitted over all links simultaneously. See Figure 1-1 for an example of a wireless

network with primary interference constraints.

For simplicity of exposition, unless stated otherwise, the network topology will be

assumed to be static. The problem of efficient broadcasting in a time-varying DAG

network will be undertaken in Chapter 3.

r A Qr0
a b

b a b

0cC

(c/ C C

(a) a wireless network (b) activation vector si (c) activation vector s2 (d) activation vector s3

Figure 1-1: A wireless network and its three feasible link activations under the primary
interference constraint.

'In general, the links will be assumed to be point-to-point. The problem of broadcasting with
point-to-multipoint links will be undertaken in Chapter 6.
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1.2.2 Traffic Model

The set of all distinct classes of incoming traffic is denoted by C. A class c traffic is

identified by its source node s(C) E V and the set of its required destination nodes

D(c) C V. As explained below, by varying the structure of the destination set D(c) of

class c, this general framework yields the following four fundamental flow problems

as special cases:

Arrivals are i.i.d. at every slot, with A(c)(t) packets from class c arriving at the

source node s(c) at slot t. The mean rate of arrival for class c is EA(c)(t) = A(c). The

arrival rate to the network is characterized by the vector A = {A(c), c E C}. The total

number of external packet arrivals to the entire network at any slot t is assumed to

be bounded by a finite number Amax.
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" UNICAST: All class c packets, arriving at a source node s(c), are required

to be delivered to a single destination node D(c) = {t(c)}.

" BROADCAST: All class c packets, arriving at a source node s(c), are required

to be delivered to all nodes in the network, i.e., D(c) = y.

" MULTICAST: All class c packets, arriving at a source node s(c), are required

to be delivered to a proper subset of nodes D(c) = {t(c), t(c),.. . , t"} v.

" ANYCAST: A Packet of class c, arriving at a source node s(c), is required to

be delivered to any one of a given set of k nodes D(c) = tE) E ... E t C).

Thus the anycast problem is similar to the unicast problem, with all

destinations forming a single super destination node.



1.2.3 Policy-Space

An admissible policy 7r for the generalized network flow problem executes the following

two actions at every slot t:

" LINK ACTIVATIONS: Activating a subset of interference-free links s(t) from

the activation set M.

" PACKET DUPLICATIONS AND FORWARDING: Possibly duplicating 2 and

forwarding packets over the activated links. Due to the link capacity con-

straint, at most one packet may be transmitted over an active link per slot.

The set of all admissible policies is denoted by H. The set 11 is unconstrained

otherwise and includes policies which may use all past and future packet arrival

information.

A policy 7r E H is said to support an arrival rate-vector A if, under the action of the

policy 7r, the destination nodes of any class c receive distinct class c packets at the

rate A(c), c E C. Formally, let R(c) (t) denote the number of distinct class-c packets,

received in common by all destination nodes i E 'D(c) 3, under the action of the policy

7r, up to time t.

Definition 1.2.1 [Policy Supporting Rate-Vector A]: A policy 7r E H is said to

support an arrival rate vector A if

lim inf = A(c), Vc E C, W.p.1 (1.1)
t-+oo t

The network-layer capacity region A(g, C) ' is defined to be the set of all support-

3To be precise, the super-destination node in case of Anycast.
4Note that, Network-layer capacity region is, in general (e.g. multicast), different from the

Information-Theoretic capacity region [51.

27



able rates, i.e.,

le,
A(9, C) = {A E R+ :7r E II supporting A} (1.2)

Clearly, the set A(9, C) is convex (using the usual time-sharing argument). A policy

qr* E II, which supports any arrival rate A in the interior of the capacity region

A(9, C), is called a throughput-optimal policy. Roughly speaking, our focus in this

thesis is solving the following fundamental problem:

Problem 1.2.2 Design a distributed, low-complexity, dynamic, throughout-

optimal policy for wireless networks.

1.3 Literature Review

In the Broadcast problem, packets generated at a source need to be distributed

among all nodes in the network. For efficient broadcasting, one needs to use appro-

priate packet replication and forwarding to eliminate redundant transmissions. This

is especially important in power-constrained wireless networks which suffer from inter-

ference and packet collisions. Broadcast applications include mission-critical military

communications [6], live video streaming [7], information dissemination in vehicular

networks [8], file searching [9], in-network function computation [10], and data dis-

semination in sensor networks [11] among others.

In the literature, a simple method for wireless broadcast is to use packet flooding [121.

The flooding approach, however, leads to redundant transmissions and collisions,

known as broadcast storm [13]. In the classic paper of Edmonds [141, the broadcast

capacity of a wired network is characterized and an algorithm is proposed to com-

pute the maximum number of edge-disjoint spanning trees, which together achieve

the maximum broadcast throughput. The algorithm in [14] is combinatorial in na-

ture and does not have a wireless counterpart, with associated interference-free edge
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activations. Following Edmonds' work, a variety of different broadcast algorithms

have been proposed in the literature, each one targeted to optimize different metrics

such as delay [15], number of retransmissions [16], energy consumption [17] and fault-

tolerance [18]. In the context of optimizing throughput, [19] proposes a randomized

packet forwarding policy, which is shown to be optimal for wired networks via fluid

limit techniques. However, extending this algorithm to the wireless setting proves to

be difficult.

Another fundamental feature of the wireless medium is the inherent point-to-mutipoint

nature of wireless links, where a packet transmitted by a node can be heard by all

its neighbors. This feature, also known as the wireless broadcast advantage [20], is

especially useful in broadcast applications. Additionally, because of inter-node inter-

ference, the set of simultaneous transmissions in a wireless network is restricted to the

set of non-interfering feasible schedules only. The problem of designing throughput

optimal broadcast policy in wireless networks with point-to-multi-point links was con-

sidered in [211, where the authors studied a highly restrictive "scheduling-free" model,

where it is assumed that scheduling decisions are made by a central controller, acting

independently of their algorithm. With this assumption, they used the randomized

packet forwarding scheme of [191, to design a randomized wireless broadcast algo-

rithm. This algorithm was proved to be throughput optimal with respect to the given

schedule, using fluid limit techniques.

The Multicast problem is a generalization of the broadcast problem, in which

the packets generated at a source node needs to be efficiently distributed to a subset

of nodes in the network. In its combinatorial version, the multicast problem reduces

to finding the maximum number of edge-disjoint trees, spanning the source node

and destination nodes. This problem is known as the Steiner Tree Packing problem,

which is NP-hard [22]. Numerous algorithms have been proposed in the literature for

solving the multicast problem. In [2] [23], back-pressure type algorithms are proposed

for multicasting over wired and wireless networks respectively. These algorithms

forward packet over a set of pre-computed distribution trees, and are limited to the

throughput obtainable by these trees. Moreover, computing and maintaining these
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trees is impractical in large and time-varying networks. We note that because of the

need for packet duplications, the Multicast and Broadcast problems do not satisfy

standard flow conservation constraints, and thus the design of throughput-optimal

algorithms is non-trivial.

The Unicast problem involves a single source and a single destination. The cel-

ebrated Back-Pressure (BP) algorithm [11 was proposed for the unicast problem. In

this algorithm, the routing and scheduling decisions are taken based on local queue

length differences. As a result, BP explores all possible paths for routing, induces

routing loops, and usually takes a long time for convergence, resulting in considerable

latency, especially in lightly loaded networks [24]. Subsequently, a number of refine-

ments have been proposed to improve the delay characteristics of the BP algorithm.

In [251, the BP algorithm is combined with hop length based shortest path routing

for faster route discovery, [26] proposes a variant with shadow queues, [27] suggests

incorporating a bias term in the backpressure calculations, and [28] proposes a second

order variant utilizing the Hessian matrix to improve delay. However, as reported in

[24] based on real testbed implementation, most of these algorithms do not perform

well in practice.

The Anycast problem is a generalization of the Unicast problem and it involves

routing from a single source to any one of the several given destinations. Anycast is

increasingly used in Content-Distribution Networks (CDNs) for optimally distributing

geo-replicated contents [29]. The paper [301 proposes a simple variant of the back-

pressure routing scheme for the anycast problem. However, the above limitations of

the BP scheme still remains as in the Unicast problem.

1.4 Thesis Contributions

1.4.1 Throughput-Optimal Broadcast Policy for Wireless DAGs

In Chapter 2 we consider the problem of throughput-optimal broadcasting in static

wireless DAGs, and in Chapter 3 we extend the results to time-varying wireless DAGs.

30



Our major contributions in these two chapters include the following:

1. A fully decentralized efficient dynamic Max-Weight Broadcast policy, which

is provably throughput-optimal. For designing this policy, we introduced a

cleverly-designed restricted policy-space H*, which follows the constraint of in-

order packet delivery. We showed how the underlying DAG property may be ex-

ploited to design an optimal policy with only a linear number of state-variables

(as compared to the exponential number of state-variables in the natural for-

mulation of the broadcast problem.)

2. We derived a new characterization of the broadcast capacity A* of a wireless

DAG. This is expressed as a LP with exponentially number of constraints.

Moreover, under the primary interference constraint, we show that the LP can

be solved in polynomial time.

3. We extend the above characterization to time-varying wireless DAG networks.

Moreover, we obtain tight upper and lower bounds for the broadcast capacity

for time-varying DAG networks with general interference constraints.

1.4.2 Throughput-Optimal Broadcast Policy for Arbitrary Net-

works

In Chapter 4 we design a throughput-optimal broadcast policy for arbitrary networks.

Our major contributions in this chapter includes the following:

1. We show a nice parallel between the proposed throughput-optimal broadcast

policy 7r* and the well-known throughput-optimal policy for the unicast prob-

lem, namely the backpressure policy. More precisely, the broadcast policy 7r*

may be thought of as performing "backpressure on sets", as opposed to back-

pressure on nodes.

2. Since the policy 7r* has high computational complexity, we extend the in-order

policy space of Chapter 2 and propose a multi-class heuristic broadcast policy
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with a tunable number of classes. We also derive several structural properties

of the multi-class policy space. The heuristic policy is empirically shown to

perform well with small number of classes.

1.4.3 Optimal Control for the Generalized Network Flow Prob-

lem

In Chapter 5 we propose a general algorithmic paradigm for solving the GNF prob-

lem. Our contributions in this chapter includes the following:

1. We introduce the notion of precedence-relaxed virtual network, which is much

easier to analyze and control, than the original multi-hop network.

2. Using Lyapunov-drift theory, we devise a throughput-optimal routing and schedul-

ing policy (called UMW) for the virtual network for different kinds of flows. In

brief, the routing policy reduces to a suitable weighted shortest-route problem

and the link-scheduling policy reduces to a Max-Weight activation problem,

where the links are weighted by the corresponding virtual queue lengths.

3. Using tools from adversarial queuing theory, we show that the above routing

and scheduling policy may be combined with an appropriate packet scheduling

policy, such that the overall policy is throughput-optimal, in the sense that the

physical queues are stable for all admissible packet arrival rates.

4. When specialized to the unicast setting, the UMWpolicy yields a very differ-

ent and much attractive throughput-optimal control policy than the original

Backpressure policy. In particular, it involves source routing (route of a packet

is fixed at the source on its arrival), yields less queuing delay (due to always

routing along acyclic routes) and incurs much less queuing complexity (only

one physical queue per link, irrespective of the number and types of flows in the

network). We expect UMWto play a decisive role in the emerging networking

technologies, such as, Software Defined Networks [31], [32].
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1.4.4 Throughput-Optimal Broadcast Policy for Wireless Net-

works with Point-to-Multipoint Links

In Chapter 6 we consider the problem of throughput-optimal broadcast in wireless

networks with point-to-multipoint wireless links. Our major contributions in this

chapter are as follows:

1. We extend the technique of virtual network, introduced in Chapter 5, to tackle

this problem. This establishes the generality and efficacy of the virtual network

methodology. Interestingly, unlike in Chapter 5, where virtual queues were

associated with the edges of the network, in this chapter, the virtual queues

correspond to the nodes in the network.

2. We show that the combinatorial version of the wireless Broadcast problem with

point-to-multipoint links is NP-complete, even in wired setting with network

topology being restricted to DAGs. This result should be contrasted with our

results in Chapters 2 and 3 about the efficient solubility of the Broadcast prob-

lem in wireless DAGs with point-to-point links.

3. We introduce a new Max-Weight control policy and a proof technique by com-

bining the stochastic Lyapunov drift theory with the deterministic adversarial

queueing theory. As in Chapter 5, this essentially enables us to derive a stabiliz-

ing control policy for a multi-hop network by solving the problem on a simpler

precedence-relaxed virtual single-hop network.
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Chapter 2

Throughput-Optimal Broadcast on

Static Wireless DAGs

2.1 Overview of the Results

In this chapter, we design a throughput-optimal broadcast algorithm for wireless

networks whose underlying topology is restricted to be a Directed Acyclic Graph

(DAG). To design the algorithm, we start out by considering a rich class of scheduling

policies H that perform arbitrary link activations and packet forwarding. We define

the broadcast capacity A* as the maximum common rate achievable over this policy

class H. We next enforce two constraints that lead to a tractable set of policies

without any loss of throughput-optimality. First, we consider the subclass of policies

flin-order C H which delivers packets to all nodes, in the same order they arrive at the

source, i.e., rn-order. Second, we focus on the subset of policies H* C Hin-order that

allows the reception of a packet by a node only if all its incoming neighbours have

received the packet. It is intuitively apparent that the policies in the more structured

class H* are easier to describe and analyze, but might not be throughput-optimal. We

prove the surprising result that when the underlying network topology is a directed

acyclic graph (DAG), there is a broadcast policy 7r* E H* that achieves the broadcast

capacity of the network. In contrast, we also find a (non-DAG) network containing

a directed cycle in which no control policy in the space Hin-order can provably achieve
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the broadcast capacity.

To design the optimal broadcast policy 7r*, we first establish a queue-like dynamics

for the system-state, represented by relative packet deficits. This is non-trivial for

the broadcast problem because explicit queueing structures are difficult to define due

to packet duplications and consequent loss of work-conservation. We subsequently

show that, the problem of achieving the broadcast capacity in a DAG reduces to the

problem of finding a scheduling policy stabilizing the relative packet deficits, which

can be solved by utilizing Lyapunov drift analysis techniques [1, 33].

The main contributions of this chapter are as follows:

" We derive a simple characterization of the broadcast capacity of a wireless

DAG network. We also show that, for a wired DAG with integral capacities, its

broadcast capacity is determined by its minimum in-degree, which is also equal

to the maximum number of edge-disjoint directed spanning trees rooted at the

source.

" We design a dynamic algorithm that utilizes local queue-length information to

achieve the broadcast capacity of a wireless DAG network. This algorithm does

not rely on constructing spanning trees and is computationallly efficient. This

algorithm also yields a constructive proof of a version of Edmonds' disjoint tree-

packing theorem [14], generalized to wireless activations but specialized to DAG

topology.

" Based on our characterization of the broadcast capacity, we derive a polynomial-

time algorithm to compute the broadcast capacity of any wireless DAG under

the primary interference constraints.

" We propose a randomized multiclass extension of the proposed broadcast algo-

rithm, which can be effectively used to do broadcast on wireless networks with

arbitrary topology.

* We demonstrate the superior delay performance of our algorithm, as compared
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to the centralized tree-based algorithms [2J, via numerical simulations. We also

explore the efficiency/complexity trade-off of the proposed multiclass extension

through extensive numerical simulations.

The rest of the chapter is organized as follows. In Section 3.3, we define the

broadcast capacity of a wireless network and provide a useful outer bound on the

capacity from a cut-set consideration. In Section 2.3, we propose a dynamic broadcast

algorithm that achieves the broadcast capacity in a DAG. In section 2.4, we propose

an efficient algorithm for computing the broadcast capacity of any wireless DAG under

the primary interference constraints. Our DAG-broadcast algorithm is extended to

networks with arbitrary topology in section 2.5. Illustrative simulation results are

presented in Section 2.6. Finally, we conclude this chapter in section 2.7.

2.2 The Wireless Broadcast Capacity

Intuitively, the network supports a broadcast rate A if there exists a scheduling policy

under which all network nodes can receive distinct packets at rate A. The broadcast

capacity is the maximally supportable broadcast rate in the network. Formally, we

consider a class H of scheduling policies where each policy r E H consists of a sequence

of actions {rt}t executed at every slot t. Each action lt comprises of two operations:

(i) the scheduler activates a subset of links by choosing a feasible activation vector

s(t) E S; (ii) each node i forwards a subset of packets (possibly empty) to node j over

an activated link e = (ij) (with se(t) = 1), subject to the link capacity constraint.

The policy class H includes policies that may use all past and future information, and

may forward any subset of packets over a link.

Let R'(t) be the number of distinct packets received by node i E V from the

beginning of time up to time t, under the action of a policy r E H. The time average

lim inf_,m+, R'(T)/T is the rate of distinct packets received at node i.

Definition 2.2.1 (Broadcast Policy) A policy r E H is called a "broadcast policy
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of rate A" if all nodes receive distinct packets at rate A, i.e.,

min lim inf R' (T) = A, w. p. 1, (2.1)
iEV T-+oo T

where A is the packet arrival rate at the source node r.

Definition 2.2.2 The broadcast capacity A* of a wireless network is the supremum

of all arrival rates A for which there exists a broadcast policy ,r E H of rate A.

2.2.1 An upper bound on broadcast capacity A*

We characterize the broadcast capacity A* of a wireless network by proving a useful

upper bound. This upper bound is understood as a necessary cut-set bound of an

associated edge-capacitated graph that reflects the time-averaged behaviour of the

scheduling policies in rl. We first give an intuitive explanation of the bound, assuming

that the limits involved exist. In the proof of Theorem 2.2.3 we rigorously establish

the result without this assumption.

Fix a policy 7r E 1. Let /3" be the fraction of time link e E E is activated under

7r; i.e., define the vector

T

/37r = (#3(,eE E) = lim s8(t), (2.2)
t=1

where s"(t) is the chosen link-activation vector by policy 7r in slot t. The average

packet flow rate over a link e under the policy ir is upper bounded by the product of the

link capacity and the fraction of time the link e is activated, i.e., ceo3 r. Hence, we can

define an associated edge-capacitated graph, 97' = (V, E, (-e)) where each link e E E

has capacity Fe ce e"; see Fig. 2-1 for an example of such an edge-capacitated graph.

Next, we provide a bound on the broadcast capacity by maximizing the broadcast

capacity on the ensemble of graphs 9" over all feasible average edge-activation vectors

e7r

Define a proper cut U of the network graph Q r as a proper subset of the node set
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V that contains the source node r. Define the edge-cut Eu associated U as

Eu = {(i, j) GE I i E U, j U}. (2.3)

Since U C V, there exists a node n E V \ U. Consider the throughput (rate of packet

reception) of node n under policy 7r. The max-flow min-cut theorem shows that the

throughput of node n cannot exceed the total link capacity EeEEU Ce 0,7 across the cut

U. This cut-set bound is valid even when we consider the general flow of information

in the network (see Theorem 15.10.1 of [341). Hence the cut-set bound holds even

when we allow network coding operations. By definition of achievable broadcast rate

Ar, we have A' EeEEu Ce oe. This inequality holds for all proper cuts U and we

have

A"r < min ' I r" (2.4)
U: a proper cut Ce 02

ec-Eu

Equation (2.4) holds for any policy 7r E H. Thus, the broadcast capacity A* of the

wireless network satisfies

A* = sup A' < supEn minu: a proper cut EecEu Ce Oe3irH

< max3cconv(s) minU: a proper cut ZeEEu Ce / 3 e,

where the last inequality holds because the vector 3' lies in the convex hull of the

activation set S; Refer to Eqn. (2.2). Our first theorem formalizes the above intuitive

characterization of the broadcast capacity A* of a wireless network.

Theorem 2.2.3 The broadcast capacity A* of a wireless network 9(V , c) with

activation set S is upper bounded as follows:

A*< max min Ce ie). (2.5)
,3Econv(S) U: a proper cut E '
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Figure 2-1: The edge-capacitated graph 9" for the wireless network with unit link capacities
in Fig. 1-1 and under the time-average vector /3 = (1/2,1/4, 1/4). The link weights are the
capacities ce,3 . The minimum proper cut in this graph has value 1/2 (when U = {r, a, c} or

{r, b, c}). An upper bound on the broadcast capacity is obtained by maximizing this value
over all vectors 3' E conv (S).

Proof See Appendix 3.3.1.

2.2.2 Constrained Policy-Space: In-order packet delivery

Studying the performance of any arbitrary broadcast policy 7 E II is analytically

formidable because packets are replicated across the network and may be received

out of order. To avoid unnecessary re-transmissions, each node must keep track of

the identity of the received set of packets, which complicates the system state; because

instead of the number of packets received (as in classical back-pressure algorithm [1]),

the system state is properly described here by the identity of the subset of packets

received at each of the nodes.

To simplify the state, we focus on the subset of policies fi-order C H that enforce

the following constraint. It will be shown subsequently that, this restriction can be

made without loss of throughput-optimality in a DAG.

Index the packets serially {1, 2,. . .} according to their order of arrival at the source.
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Constraint 2.2.4 (In-order packet delivery fli"-order) In this policy-space, a node

is allowed to receive a packet p at slot t only if all previous packets {1, 2,...,p - 1}

have been received by that node by slot t.

In-order packet delivery is practically useful in live media streaming applications [71

where buffering out-of-order packets incurs increased delay and degrades the playback

quality. As shown below, Constraint 1 greatly simplifies the state space representation

of the system.

Let Ri(t) be the number of distinct packets received by node i by time t. For policies

in fin-order the set of received packets by time t at node i is {1, . , Ri(t)}. Therefore,

the network state in slot t is given by the vector R(t) = (Ri(t), i E v).

In section 2.3 we show the existence of a throughput-optimal broadcast policy

in the space lin-order when the underlying topology is a DAG. On the other hand,

the following complementary result, Lemma 2.2.5, says that there exists a non-DAG

network in which any broadcast policy in the space Hin-order is not throughput optimal.

This implies that the policy-space 11in-order can not, in general, be utilized beyond

DAGs while preserving throughput optimality.

Lemma 2.2.5 Let A*in-order be the broadcast capacity of the policy subclass

ri"n-ord C 1 that enforces in-order packet delivery. There exists a network topol-

ogy containing a directed cycle such that A*in-order < A*.

Proof See Appendix 2.9.

We will return to the problem of broadcasting in networks with arbitrary topology

in Section 2.5, where we will show how the proposed algorithm may be extended to

handle the general case.
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2.2.3 Achieving the broadcast capacity in a DAG

At this point we concentrate our attention to Directed Acyclic Graphs (DAGs).

Graphs in this class are appealing for our analysis because they possess the well-

known topological ordering of the nodes [4]. For DAGs, the upper bound (2.5) on

the broadcast capacity A* in Theorem 2.2.3 will be relaxed further. For each receiver

node v $ r, consider the proper cut Uv that separates the node v from the rest of the

network. i.e.,

U = V\{v}. (2.6)

Using these collection of cuts {U,, v = r}, we obtain a relaxed upper bound ADAG On

the broadcast capacity A* as:

ADAG= max mil C' e (2.7)
#Occonv(S) {Uv,v r} ecEu,

> max min Ce Ce > A*,
OEconv(S) U: a proper cut E

eEEu

where the first inequality uses the subset relation {U,, v 4 r} C {U: a proper cut}

and the second inequality follows from Theorem 2.2.3. In Section 2.3, we will propose

a dynamic policy that belongs to the policy class Iin-Order and achieves the broadcast

rate ADAG. Combining this result with (2.7), we establish that the broadcast capacity

of a DAG is given by

A* = ADAG = max min Ce C3e, (2.8)
OEconv(S) {Uv,v7r} eEEue

= max min
3Econv(S) U: a proper cut E Cet-'

The capacity is achieved by a broadcast policy that uses in-order packet delivery.

In other words, we show that imposing the in-order packet delivery constraint does

not reduce the broadcast capacity when the topology is a DAG. As a corollary, we

also retrieve the result that network-coding operations do not increase the broadcast-

capacity in our setting.
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From a computational point of view, the equality in Eqn. (2.8) is attractive, because

it implies that for computing the broadcast capacity of any wireless DAG, it is enough

to consider only those cuts that separate a single (non-source) node from the rest of

the network. Note that, there are only |VI - 1 of such cuts, in contrast with the

total number of cuts in Eqn. (2.5), which is exponential in the size of the network.

This fact will be exploited in section 2.4 to develop a strongly poly-time algorithm for

computing the broadcast capacity of any wireless DAG network under the primary

interference constraints.

2.3 Efficient Broadcast Policy for a DAG

In this section we design a throughput-optimal broadcast policy for wireless DAGs.

We start by imposing an additional constraint on packet-forwarding that leads to a

new subclass of policies fI* C Hin-order. As we will see, policies in 11* can be described

in terms of relative packet deficits which constitute a simple dynamics. We analyze the

dynamics of the minimum relative packet deficits, which behaves like virtual queues.

We design a dynamic control policy 7r* E ]* that stabilizes the virtual queues. The

main result of this section is to show that this control policy achieves the broadcast

capacity whenever the network topology is a DAG.

2.3.1 System-state by means of packet deficits

We showed earlier in Section 2.2.2 that, constrained to the policy-space Hin-order, the

system-state is completely represented by the vector R(t). However this constrained

policy-class alone is not sufficient to obtain a one-step dynamics of the system, which

is an essential prerequisite to design a stabilizing control policy. As a result, we

restrict our attention to a sub-class of policies in Win-order, defined as follows.

A node i is called an in-neighbor of node j if there exists a directed link (i, J) E E

in the underlying graph g. The set of all in-neighbours of a node j is denoted by

5j,(j). The out-neighbours of a node is defined similarly.
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Constraint 2.3.1 (Policy-space H*) A packet p is eligible for transmission to node

j at a slot t, only if all the in-neighbours of j have received packet p in some previous

slot.

We denote this new policy-class by [1* C nin-order. It will be shown subsequently

that this restriction can be done without loss of throughput-optimality. Fig. 2-2

shows the relationship among different policy classes'.

Following two properties of the system-state R(t) under the action of a policy 7r E 1*

will be useful.

Lemma 2.3.2 Under any policy 7r E F*, we have:

(1) Rj(t) < minisc6,(j) Ri(t)

(2) The indices of packets p that are eligible to be transmitted to the node j at

slot t are given by

{p I Rj(t)+1 p min Ri(t)}.
ic3inCj)

The proof of the above lemma follows directly from the definition of the policy-

space f*.

Define the packet-deficit Qjj(t) over the link (i,j) E E to be Q=(t) = Ri(t) -

Rj(t). Under a policy in fl*, Qjj(t) is always non-negative because, by part (1) of

Lemma 2.3.2, we have

Qjj(t) = Ri(t) - R3(t) > min Rk(t) - R (t) > 0.
k&5in(j)

The variable Qjj (t) denotes the number of packets received by node i but not by node j
upto time t. Intuitively, if all packet-deficits {Qjj (t)} are bounded asymptotically, the

'We note that, if the network contains a directed cycle, then a deadlock might occur under a
policy in 11* and may yield zero broadcast throughput. However, this problem does not arise when
the underlying topology is a DAG.
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H: all policies that perform
arbitrary link activations and routing

nin-order: policies that enforce n-ol
in-order packet delivery

II*: policies that allow reception
only if all in-neighbors have

received the specific packet

Figure 2-2: Containment relationships among different policy classes.

total number of packets received by any node is not lagging far from the total number

of packets generated at the source; hence, the broadcast throughput will be equal to

the packet generation rate.

To analyze the system dynamics under a policy in H*, it is useful to define the

minimum packet deficit at node j h r by

Xj (t) d *min Qi (t). (2.9)
iE i.(j)

From part (2) of Lemma 2.3.2, Xj(t) is the maximum number of packets that node j
is allowed to receive from its in-neighbors at slot t under f*.

As an example, Fig. 3-2 shows that the packet deficits at node j, relative to its in-

neighbors a, b, and c, are Qaj(t) = 8, Qbj(t) = 5, and Qcj(t) = 4 respectively. Thus

Xj (t) = 4 and node j is only allowed to receive four packets in slot t due to Constraint

2.3.1.

We can rewrite X,(t) as

Xj(t) = Qiy (t), where i* = arg mi Q y(t), (2.10)
t iEin(j)

i.e., the node i* is the in-neighbor of node j from which node j has the smallest packet

deficit in slot t; ties are broken arbitrarily in deciding i*.2  Our optimal broadcast

2 We note that the minimizer i* is a function of the node j and the time slot t and should
be properly denoted as it*(j); we slightly abuse the notation by dropping the symbol j from i't
throughout to simplify notations.
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policy will be described in terms of the minimum packet deficits {Xj(t)}jy.

--.R t 18 ..-

--------- a --- b ---. c j R (t ) =10

Rb(t) = 15 R,(t) = 14

Figure 2-3: Under a policy 7r E II*, the set of packets available for transmission to node j in
slot t is {11, 12, 13, 14}, which are present at all in-neighbors of the node j. The in-neighbor
of] having the smallest packet deficit is i* = c, and Xj(t) = min{Qaj(t), Qb (t), Qcj (t)} = 4.

2.3.2 The dynamics of the state variables {X j(t)}jr

We now analyze the dynamics of the state variables

X,(t) = Qij(t) = Rg (t) - R3 (t) (2.11)

under a policy 7r E H*. Define the service rate vector [L(t) = ([Lj(t))(ij)EE by

if (i,j) C E and the link (i, j) is activated,

0 otherwise.

Equivalently, we may write pij(t) ci 3si(t), where s(t) is the link-activation vector

s(t), chosen for slot t. At node j, the increase in the value of number of packets

received, i.e., Rj(t), depends on the identity of the received packets; in particular

for efficiency, the node j must receive distinct packets. Next, we clarify which set of

packets are allowed to be received by node j at time t.

The number of available packets for reception at nodej is min{X (t), EkEV P/kj(t)}.

This is because: (i) Xj(t) is the maximum number of packets node j can receive from

its in-neighbours subject to the Constraint 2.3.1; (ii) ZkEV Pk (t) is the total incoming

transmission rate at node j under a given link-activation decision. To correctly derive

the dynamics of Rj(t), we consider the following efficiency requirement on policies in

H*:
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Constraint 2.3.3 (Efficient forwarding) Given a service rate vector p(t), node

j pulls from the activated incoming links the following subset of packets (denoted by

their indices)

{p I Rj (t) + 1 p < Rj (t) + min{Xj (t), E P j (t)}, (2.12)
keV

The specific subset of packets that are pulled over each incoming link are disjoint but

otherwise arbitrary.3

Constraint 2.3.3 requires that scheduling policies must avoid forwarding the same

packet to a node over two different incoming links. Under certain interference mod-

els such as the primary interference model, at most one incoming link per node is

activated in a slot and Constraint 2.3.3 is redundant.

In Eqn. (2.11), the packet deficit Qi, 3 (t) increases with Rq (t) and decreases with

Rj(t), where Ri (t) and Rj(t) are both non-decreasing. Hence, we can upper-bound

the increase of Qij(t) by the total service rate of the activated incoming links at

node i*, i.e., EmEV umij (t) . Also, we can express the decrement of Qigj(t) by the

exact number of distinct packets received by node j from its in-neighbours, given by

min{X2 (t), EkV Pk(t)} by Constraint 2.3.3. Consequently, the one-slot evolution of

the variable Qy (t) is given by 4

Qi-j(t + 1) (Qi 3 (t) - p/j(t)) + tmj(t)

kEV mGV

(Xj(t) - Zpka(t)) + S iPmi,(t), (2.13)
kEV mEV

where (x)+ = max(x,0) and we recall that Xj(t) = Qit(t). It follows that Xi(t)

3 Due to Constraints 2.2.4 and 2.3.1, the packets in (2.12) have been received by all in-neighbors
of node j.

4 We emphasize that for a given node j, the node i*, as defined in (2.10), depends on time t and
may be different from the node i*+.
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evolves over slot t according to

(a) .(b)
X3 (t + 1) = min Qij(t + 1) Qqy3(t + 1)

iEkia(j)

(c)

< (X(t) - Z 0)(t)) + Z pi,.(t), (2.14)
keV mEV

where the equality (a) follows the definition of X3 (t), inequality (b) follows because

node i* E 6j.,(j) and inequality (c) follows from Eqn. (2.13). In Eqn. (2.14), if i r,

the notation is slightly abused to define EmEV pm(t)= A(t) for the source node r,

where A(t) is the number of exogenous packet arrival at source at slot t.

2.3.3 A Throughput-optimal Broadcast Policy

Like the Back-Pressure algorithm [1], our broadcast policy is designed to keep the

deficit process {X(t)}to stochastically stable. For this, we regard the variables Xj (t)

as virtual queues that follow the dynamics (2.14). By performing drift analysis on the

virtual queues Xj(t), we propose the following max-weight-type broadcast policy 7r*,

described in Algorithm 1. However, the way the weights are computed in r* (2.16), is

very much different from the Back-Pressure algorithm. Also the fundamental feature

of packet duplications is essentially new here. The policy lr* belongs to the space

fl* and enforces the constraints 2.2.4, 2.3.1, and 2.3.3. We will show that this policy

achieves the broadcast capacity A* of a wireless network over the general policy class

H when the underlying topology is a DAG. The steps of the algorithm are illustrated

in Fig. 2-4.

Distributed Implementation As evident from the description of Algorithm 1,

computation of the weight-vectors W(t) and packet forwarding decisions are made

locally by individual nodes. The only network-wide operation that the algorithm

needs to perform is step 3, where it needs to select the maximum-weighted feasible

activation set. The problem of scheduling the Max-weight activation set in a dis-

tributed fashion has been studied extensively in the literature [35] [36]. In particular,
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the work of Bui et. al. [36] designs a distributed algorithm for solving the Max-weight

scheduling problem with constant overhead in the primary interference setting.

Algorithm 1 Optimal Broadcast Policy lr* for a Wireless DAG:
At each slot t, the network-controller observes the state-variables {R3 (t), j E V} and
executes the following actions

1: For each link (i,j) E E, compute the deficit Qj3 (t) = Ri(t) - R3 (t) and the set of
nodes K(t) C 60st(j) for which node j is their deficit minimizer, i.e.,

Kj (t) <- {k E V I j = arg min Qmk (t)}. (2.15)
mE3jn(k)

The ties are broken arbitrarily (e.g., in favor of the highest indexed node) in
finding the arg min(.) in Eqn.(2.15).

2: Compute Xj(t) = minisc3.(j) Q%(t) for j $ r and assign to link (i, J) the weight

Wij(t) +- (X(t) - E Xk(t)). (2.16)
kEKj(t)

3: In slot t, choose the link-activation vector s(t) = (se(t), e c E) such that

s(t) E arg max Es c ,We(t). (2.17)
eEE

4: Every node j / r uses activated incoming links to pull packets {Rj(t) +
1, .. . , Rj (t) + min{ E ci2 sij (t), Xj (t)}} from its in-neighbors according to the
Constraint 2.3.3.

5: The vector (Rj(t), j E V) is updated as follows:

R3 (t + 1) fR3 (t) + A(t),
Rj(t) + min{ZE cjjsjj(t), Xj(t)}, j r,

The next theorem demonstrates the optimality of the broadcast policy 7r* de-

scribed above.

Theorem 2.3.4 If the underlying topology of G is a DAG, then for any exogenous

packet arrival rate A < ADAG, the broadcast policy 7r* yields

. r* (T)
min lim inf = A, w.p. 1,
iCV T-+oo T
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Step 1

r R,(t) = 10 Qra(t) = 7 Kr(t) = {a}
Qrb(t) = 7 Ka(t) = b, c}*

Ra (t) 3 Rb(t) = 3 Qr,(t) = 8 Kb(t) = {0}
a b Qab(t) = 0 Kr(t) = {0}

Qac(t) = 1
Qbc(t) = 1

c Re(t)=2

Step 3

a b
Ra(t) #3

C Rc(t)= 2

Step 2

Wra (t) = (X (t) - Xb (t) r-X(0))+ = 6

Xb(t) = 0 Wrb(t) = (Xb(t))+ 0
Xa(t) = 7 Wrc(t) = (X(t))+= 1

a b Wa(t) = (X(t))+ 0
Wac(t) = (X(t))+= 1
Wbc(t) = (Xc-(0)+ 1

C Xc(t)=1

Step 4
s1 : Wra (t) + Wbc (t) = 7 : R, (t + 1) = 11 One packet arrives at the source

s 2 : Wrb(t) + Wac(t) = 1
S3: Wr(t)+ Wab(t)=1 Ra(t+1) Rb(t+1)= 3
Choose the link-activation ve a b
Forward the next packet #4
Forward the next packet #3

C R(t +1)=3

Figure 2-4: Running the optimal broadcast policy 7r* in slot t in a wireless network with
unit-capacity links and under the primary interference constraint. Step 1: computing the
deficits Qij(t) and Kj(t); a tie is broken in choosing node a as the in-neighbor deficit
minimizer for node c, hence c E Ka(t); node b is also a deficit minimizer for node c. Step 2:
computing Xj(t) for j $ r and Wij(t). Step 3: finding the link activation vector that is a
maximizer in (2.17) and forwarding the next in-order packets over the activated links. Step
4: a new packet arrives at the source node r and the values of {R,(t + 1), Ra(t + 1), Rb(t +
1), R,(t + 1)} are updated.

where ADAG is the upper bound on the broadcast capacity A* in the general policy

class H, as given by Eqn. (2.7). Consequently, the broadcast policy 7r* achieves

the broadcast capacity A* in any wireless Directed Acyclic Graph.

Proof See Appendix 2.9.1.

2.3.4 Number of disjoint spanning trees in a DAG

As a corollary, Theorem 2.3.4 yields an interesting combinatorial result that relates

the number of disjoint spanning trees in a DAG to the in-degrees of its nodes.

Lemma 2.3.5 Consider a directed acyclic graph G = (V, E) that is rooted at a

node r, has unit-capacity links, and possibly contains parallel edges. The maximum
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Proof See Appendix 2.9.2.

2.4 An Efficient Algorithm for Computing the Broad-

cast Capacity of a Wireless DAG

In this section we exploit Eqn. (2.8) and develop an LP to compute the broadcast

capacity of any wireless DAG network under the primary interference constraints.

Although this LP has exponentially many constraints, using a well-known separation

oracle, it can be solved in strongly polynomial time utilizing the ellipsoid algorithm

[37].

Under the primary interference constraint, the set of feasible activations of a graph are

its matchings [4]. For a subset of edges E' c E, let XE' {0, 1}LE where XE'(e)

if e E E' and is zero otherwise. Let us define

Pmatching(g) = convexhull({x M IM is a matching in G}) (2.18)

We have the following classical result from Edmonds [38].

Theorem 2.4.1 The set Pmatching( 9 ) is characterized by the set of all/3 E RJEJ

51

number k* of edge-disjoint spanning trees in G is given by

k= min di,(v),
vGV\{r}

where din(v) denotes the in-degree of the node v.



such that:

fe > 0 VecE (2.19)

| -VVEV
eEGrn (v)UJ0 "t (v)

e 2 ; U c V, |UI odd,
es E[U]

where E[U] is the set of edges (ignoring their directions) with both end points in

the subset U c V.

Hence following Eqn. (2.8), the broadcast capacity of a DAG can be obtained by

the following LP

max A (2.20)

Subject to,

A 5 ce/e Vv E V\{r} (2.21)
eES~i (v)

3 E 'Pmatching(
9 ) (2.22)

From the equivalence of optimization and separation (via the ellipsoid method),

it follows that the above LP is poly-time solvable if there exists an efficient separator

oracle for the constraints (3.16), (3.17). Since there are only linearly many constraints

(|VI-1, to be precise) in (3.16), the above requirement reduces to an efficient separator

for the matching polytope (3.17). We refer to a classic result from the combinatorial-

optimization literature which shows the existence of such an efficient separator for

the matching polytope.
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This directly leads to the following theorem.

Theorem 2.4.3 There exists a strongly poly-time algorithm to compute the broad-

cast capacity of any wireless DAG under the primary interference constraints.

The following corollary implies that, although there are exponentially many match-

ings in a DAG, to achieve the broadcast capacity, randomly activating (with appro-

priate probabilities) only JEj + 1 matchings suffice.

Corollary 2.4.4 The optimal broadcast capacity A* in a wireless DAG, under

the primary interference constraints, can be achieved by randomly activating (with

positive probability) at most E + 1 matchings.

Proof Let (A*,/3*) be an optimal solution of the LP (3.15). Hence we have 0* E

Pmatching(G) ~ convexhull({x M IM is a matching in G}). Since the polytope Pmatching( 9 )

is a subset of RIEI, by Carath6odory's theorem [39], the vector 3* can be expressed as

a convex combination of at most E| + 1 vertices of the polytope Pmatching(G), which

are matchings of the graph G. This concludes the proof.
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Theorem 2.4.2 [38] There exists a strongly poly-time algorithm that, given g =
(V, E) and /3 F -+ IRIEI determines if / is feasible for (3.3.4) or outputs an

inequality from (3.3.4) that is violated by 3.



2.5 Broadcasting on Networks with Arbitrary Topol-

ogy: A Multiclass Algorithm

In this section we extend the above broadcast policy for DAGs to arbitrary networks,

which may possibly contain directed cycles. From the negative result of Lemma

2.2.5, we know that any policy ensuring in-order packet delivery at every node, can-

not achieve the broadcast capacity in arbitrary networks in general. To get around

this difficulty, we introduce the notion of broadcasting using multiple classes K of

packets. The idea is as follows: each class k E K has a one-to-one correspondence

with a given permutation -< of the nodes; for an edge (a, b) E E if the node a appears

before the node b in the permutation -<k (we denote this condition by a -<k b), then

the edge (a, b) is included in the class k, otherwise the edge (a, b) ignored by the class

k. The set of all edges included in the class k is denoted by Ek C E. It is clear that

each class k corresponds to a unique embedded DAG topology gk(V, Ek), which is a

subgraph of the underlying graph g(V, E). Different classes correspond to different

permutations of nodes.

An incoming packet at the source node is admitted to some class k E KC, according to

some admission-policy. All packets admitted in a given class k E C are broadcasted

while maintaining the in-order delivery restriction within the class k, however there

is no such inter-class constraint for delivering packets from different classes. Hence

the resulting multi-class policy does not belong to the space H* but belongs to the

general policy-space H. This new multi-class policy keeps the best from both worlds:

(a) its state-space complexity is E(IK|VI), where for each class we have the same

state-representation as in lr* and (b) by relaxing the inter-class in-order delivery con-

straint, it has the potential to achieve the full broadcast capacity of the underlying

graph with sufficiently many classes.

Hence the broadcasting problem reduces to construction of multiple classes (equiva-

lently, permutations of the vertices V) in G such that they cover the graph efficiently,

from a broadcast-capacity point of view. In Algorithm-8, we choose the permutations

uniformly at random with the condition that the source r always appears at the first
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position of the permutation.

Algorithm 2 A Multiclass Broadcast Algorithm for Arbitrary Topology
Require: Graph g(V, E), total number of classes K

1: Generate K permutations {-<i}&% of the nodes V uniformly at random (with the
source {r} at the first position) and obtain the induced DAGs Gk(V, Ek), where
e = (a, b) E Ek if a -<k b.

2: For each permutation --<k, maintain a class k and the packet-counter variables
{R k)} at every node i = 1, 2,..., IV.

3: Each class observes intra-class packet forwarding constraints (1), (2) and (3)
described in sections 3.3 and 2.3.

4: Define the state variables {Qk(t), Xk(t)} and compute the weights {W (t)}, for
each class k = 1, 2, ... , K exactly as in Eqn. (2.16), where each class k considers
the edges Ek only for Eqns. (2.15) and (2.16).

5: An incoming packet to source r at time t joins the class k corresponding to

arg min MX(t) (2.23)
jEKk (t)

6: The overall weight for an edge e (taken across all the classes) is computed as

We(t) = max Wk(t) (2.24)
k:eEEk

7: Activate the edges corresponding to the max-weight activation, i.e.,

s(t) c arg max ceseWe(t). (2.25)
sESeEeEE

8: For each activated edge e E s(t), forward packets corresponding to a class achiev-
ing the maximum in Eqn. (2.24).

Theorem 2.5.1 The multiclass broadcast Algorithm-8 with K classes supports a

broadcast rate of

K

AK = max min cj (2.26)
k kEconv(S) k r

where we use the convention that -k = 0 if (zj) $ E(k).
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The right hand side of Eqn. (2.26) can be understood as follows. Consider a

feasible stationary activation policy 7rSTAT which activates class k on the edge (i, j)
fraction of time. Since, by construction, each of the class follows a DAG, lemma

(2.3.5) implies that the resulting time-averaged graph has a broadcast capacity of

Ak = min > cry 3# for the class k. Thus the total broadcast rate achievable by rsTAT

is simply AK K A k Ek m im Cj ci Given these K classes, following the

same line of argument as in (3.15), we can develop a similar LP to compute the

broadcast-rate achievable (2.26) by these K classes by maximizing over all feasible

{jk}{, in strongly poly-time.

The proof of Theorem (2.5.1) follows along the exact same line of argument as in

Theorem (2.3.4), where we now work with the following Lyapunov function L(Q(t)),
which takes into account all K classes:

K

L(Q(t)) = (Xc(t))2  (2.27)
k=1 jfr

We then compare the drift of multiclass broadcast algorithm 8 with the stationary

randomized policy 7rsTAT above to show that the Multiclass broadcast algorithm is

stable under all arrival rates below A. The details are omitted for brevity.

Since the broadcast-rate AK achievable by a collection of K embedded DAGs in a

graph 9 is always upper-bounded by the actual broadcast capacity A* of 9, we have

the following interesting combinatorial result as a corollary of Theorem (2.5.1)

Corollary 2.5.2 Consider a wire line network, represented by the graph 9(V, E). For

a given integer K > 1, consider K arbitrary classes (i.e., permutations of vertices) as

in Theorem (2.5.1), with {B k}K 1 being their corresponding edge-sets. Then, for any

set of non-negative vectors { 13 k}( 1 with >k #' < 1, V(i, j), the following lower-bound

for the broadcast capacity A* holds:

K

A* > E min cij k (2.28)
k=1 s hi= i

where we use the convention that k=0 if (i, J) E Bk.
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The above corollary may be contrasted with Eqn. (2.7), which provides an upper

bound to the broadcast capacity A*. We also note that, the lower-bound in Eqn.

(2.28) is tight when the classes are chosen corresponding to the maximum number of

edge-disjoint spanning trees, obtained from Edmonds' Theorem [141.

2.6 Simulation Results

We present a number of simulation results concerning the delay performance of the

optimal broadcast policy r* in wireless DAG networks with different topologies. For

simplicity, we assume primary interference constraints for wireless networks through-

out this section. Delay for a packet is defined as the number of slots required for it

to reach all nodes in the network, after its arrival to the source r.

Diamond topology

Consider a 4-node wireless network as shown Fig. 2-5 (a). Link capacities are indicated

alongside the links. The broadcast capacity of the network is upper bounded by the

total capacity of incoming links to node c, which is 1. This is because at most one

of its unit-capacity incoming links to node c may be activated at any slot, under the

primary interference constraint. To determine the broadcast-capacity of the network,

consider three spanning trees { 1 , 2, 3} rooted at the source node r, as shown in

Fig. 2-5 (b),(c),(d). By finding an optimal time-sharing of all feasible link-activations

over a subset of spanning trees using linear programming and using Eqn. (2.26), we

can show that the broadcast-rate achievable using the tree T only is 3/4, using the

trees {T1, T2} only is 6/7, and using the trees {T, 72, T3} together is 1. Thus, the

upper-bound is achieved and the broadcast capacity of the network is A* = 1.

We compare the performance of our throughput-optimal broadcast policy 7r* with

the tree-based policy 7rtr, proposed in [2]. While the policy 7rtree is originally proposed

to transmit multicast traffic in a wired network by balancing traffic over multiple

trees, we generalize their policy 7rtre for broadcasting packets over spanning trees in

the wireless setting. Fig. 2.3.3 shows a comparison of the average delay performance
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Figure 2-5: A wireless DAG network and its three embedded spanning trees.

under the policy 7r* and the tree-based policy rtree over different subset of trees. The

simulation duration is 105 slots. We observe that the policy 7r* achieves the broadcast

capacity and, in general, has better delay performance than the tree-based scheme in

the high traffic regime.

Mesh topology

Since the throughput-optimal broadcast policy 7r* does not rely on limited number

of tree structures, it has the potential to exploit all degrees of freedom in the net-

work. Such freedom leads to better delay performance as compared to the tree-based

broadcast policies [2]. To illustrate this effect, consider the 10-node DAG network in

Fig. 2-7 (a). For every pair of node {i, j}, 1 < i < J < 10, the network has a directed

link from node i to j with capacity (10 - i). By induction, the number of spanning

trees rooted at the source node 1 can be calculated to be 9! ~ 3.6 x 10 5 . Among

them, we choose five arbitrary spanning trees {'Ti, 1 < i < 5}, shown in Fig. 2-7

(b),(c),(d),(e),), over which the tree-based algorithm 7rtree is simulated. Table 2.1

demonstrates the superior delay performance of our throughput-optimal broadcast

policy 7r*, as compared to that of the tree-based algorithm 7rtree. The table also shows

that a tree-based algorithm that does not use enough number of trees might result in

degraded broadcast throughput.
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Figure 2-6: Average delay performance of the optimal broadcast policy 7r* and the tree-
based policy 7tre that balances traffic over different subsets of spanning trees.
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network and a subset of spanning trees.

Multiclass Simulation for Arbitrary Topology

To simulate the multiclass broadcast algorithm of section 2.5, we randomly generate

an ensemble of 500 wire line networks (not necessarily DAGs), each consisting of

N = 10 nodes and unit capacity links. By solving the LP corresponding to Eqn.

(2.26), we compute the average fraction of the total broadcast capacity achievable

using K randomly chosen classes by the Multiclass Algorithm 8 of section 2.5. The

result is plotted in Figure 2-8. It follows that a sizeable fraction of the optimal capacity

may be achieved by using a moderately many classes. However, it also shows that the

required number of classes for achieving a certain fraction of the capacity increases as
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Tree-based policy lrtree over the spanning trees Broadcast
A T T~ -T 2 3 ~ ->T4  T-T5  policy7r*

0.5 12.90 12.72 13.53 16.14 16.2 11.90
0.9 1.3 x 104 176.65 106.67 34.33 28.31 12.93
1.9 3.31 x 104 1.12 x 104 4.92 x 103 171.56 95.76 14.67
2.3 3.63 x 104 1.89 x 104 1.40 x 104 1.76 x 103 143.68 17.35
2.7 3.87 x 10 4 2.45 x 104 2.03 x 104 1.1 x 10 4  1551.3 20.08
3.1 4.03 x 104 2.86 x 104 2.51 x 104 1.78 x 104 9788.1 50.39

Table 2.1: Average delay performance of the tree-based policy
of spanning trees and the broadcast policy 7r*.

0.8

0.7

0.6

0.4

0.3

0.2

0.1 1 2 3 4 5 6 7 8( 9 10 11 12

7rtree over different subsets

Figure 2-8: Fraction of optimal broadcast rate A achievable by the multiclass broadcast
algorithm with randomly chosen K classes for randomly generated wired networks with
N = 10 nodes.

the broadcast capacity of the network increases. This is due to the fact that increased

broadcast capacity of a network would warrant an increased number of DAGs to cover

it efficiently.

2.7 Conclusion

In this chapter we initiated our study of the problem of broadcasting in a static

wireless network under general interference constraints. When the underlying network

topology is a DAG, we proposed a dynamic algorithm that achieves the broadcast

capacity of the network. Our novel algorithm, based on packet deficits and the in-

order packet delivery constraint, is promising for application to other systems with

packet duplications, such as multicasting and caching systems. We also propose

a heuristic extension of our DAG broadcast algorithm to networks with arbitrary
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topology. In the next chapter we will extend some of the methodologies introduced in

this chapter to design a throughput-optimal broadcast policy for time-varying wirless

DAG networks.

2.8 Appendix

2.8.1 Proof of Theorem 2.2.3

Fix an c > 0. Consider a broadcast policy 7r E 1- that achieves a broadcast rate

of at least A* - e, as defined in (4.1); this policy 7r exists by the definition of the

broadcast capacity A* in Definition 4.2.2. Consider any proper cut U of the network

g. By definition of a proper-cut, there exists a node i U. Let s"(t) = (se"(t), e E E)

be the link-activation vector chosen by policy 7r in slot t. The maximum number of

packets that can be transmitted across the cut U by any policy in slot t is at most

ZecEu ces"(t), which is the total capacity of all activated links across the outgoing-

edges from the cut U, where the link subset EU has been defined in Eqn. (2.3).

Thus, the number of distinct packets R'(T) received by a node i by time T can be

upper-bounded as follows

T T

R7 (T) < cese(t) u= U - s'(t), (2.29)
t=1 eEEu t=1

where we define the |El-dimensional cut-vector u = (Ue, e c E), such that ue

cel[eEu], and a - b is the inner product of two vectors.5 Dividing both sides by T

yields

R7'(T) < \

T T s7(t).t=1

5Note that Eqn. (3.6) remains valid even if the network coding operations are allowed.
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Hence,

(a) R(T) R;(T)
A- e < minliminf - < liminf

jEV T-+oo T - T-oo T

< lim inf U ( sw(t)), (2.30)
T-+oo (T

where (a) follows because 7r is assumed to be a broadcast policy of rate at least A* - E.

Since the above holds for any proper-cut u c U, we have

A- E min liminf u E ( s" (t) (2.31)
uEU T-+oo T t=1

Now consider the following lemma.

Lemma 2.8.1 For any policy 7r E Hl, there exists a vector f' c conv(S) such that

min lim inf u ( 1 s7(t) =min u -) 7
uEU T-+oo (TE u

Proof Consider a sequence of vectors (7 d - s_1 s"(t), indexed by T > 1. Since

s(t) E S for all t > 1, we have z E conv (S) for all T > 1. Since |UI is finite,

by the definition of liminf, there exists a sub-sequence {u . }k>1 of the sequence

{u -T}T 1 such that

min lim u -Cj = min lim infu - . (2.32)
uEU k-+oo uEU T-+oo

Since the set conv (S) C REI is closed and bounded, by the Heine-Borel theorem, it

is compact. Hence any sequence in conv(S) has a converging sub-sequence. Thus,

there exists a sub-sub-sequence {'.}i 1 and W E conv(S) such that

(Ck -4 3', as - o.
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It follows that

min u - 3'
uGU

(a)

(b)

(c)

(d)

min lim u -
UEU i-+o0

min lim u
uEU k-+oo

min lim inf u
uEU T- oo

min lim inf u
uEU T-+oo ( I T

t=

where (a) uses the fact that if x, -- x then c - x+ a c - x for any c, x, and x c RI,

1 > 1; (b) follows from the fact that if the limit of a sequence {Zk- u - C ,} exists

then all sub-sequences {zk 1 a u -(k } converge and limii Z =- limk zk; (c) follows

from Equation (3.38) and (d) follows from the definition of the sequence C".

completes the proof of the lemma.

This

Combining Lemma 3.3.1 with Eqn.

07 E conv(S) such that

(3.8), we have that there exists a vector

A* - < min u.Y.
UEU

(2.33)

Maximizing the right hand side of Eqn. 3.9 over all 3' c conv(S), we have

max min u-
iEconv(S) UEU

,3) (2.34)

Since the above inequality holds for any c > 0, by taking E \ 0 and expanding the

dot product, we have

max min
OEconv(S) U:a proper cut

CeAe . (2.35)
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(a) A wired net- (b) Tree 71  (c) Tree T2
work with a di-
rected cycle a -
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Figure 2-9: A wired network and its two edge-disjoint spanning trees that yield the
broadcast capacity A* = 2.

2.8.2 Proof of Lemma 2.2.5

2.9 Proof of Lemma 1

Consider the non-DAG wire line network of Fig. 2-9(a), where all edges have unit

capacity and there is no interference constraint. Since the sum of edge-capacities of

the links incoming to node a is 2, its throughput, and hence the broadcast capacity

of the network is upper bounded by 2. In fact, the network has two edge-disjoint

directed spanning trees rooted at the source r, as shown in Figures 2-9(b) and 2-9(c).

Hence, we can achieve the broadcast capacity A* = 2, e.g., by broadcasting the odd-

numbered and even-numbered packets along the trees T1 and T2 , respectively.

Consider a broadcast policy 7 E flin-order that ensures in-order delivery of packets to

all nodes. Let Ri(t) be the number of distinct packets received by node i up to time

t. Hence, the node i has received the set of packets {1, 2, . .. , Ri(t)} by time t, due

to the property of in-order delivery. Consider the directed cycle a -+ b -+ c -+ a in

Fig. 2-9(a). A necessary condition for all links in the cycle to forward (non-duplicate)

packets in slot t is Ra(t) > Rb(t) > Rc(t) > Ra(t), which is clearly impossible. Thus,

there must exist an idle link in the cycle at every slot. Define the indicator variable

Xe(t) = 1 if link e is idle in slot t under the policy 7r, and Xe(t) = 0 otherwise. Since

at least one link in the cycle is idle in every slot, we have

X(a,b)(t) + X(b,c)(t) + X(c,a) (t) > 1.
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Taking the time average of the above inequality yields

T 1 (X(a,b)(t) + X(b,c)(t) + X(c,a)(t)) > 1.

Taking the lim sup at both sides, we obtain

IT
limsup Ze(t)

eC{(a,b),(b,c),(c,a)} T-o t=1

The above inequality implies that

max
eE{(a,b),(b,c),(c,a)}

> limsup
T-+oo eE{(a,b),(b,c),(c,a)}

T

lim sup Ze(t) >
T+oo t=1 3

Since the nodes {a, b, c} are symmetrically located (i.e., the graph obtained by per-

muting the nodes {a, b, c} is isomorphic to the original graph), without any loss of

generality, we may assume that the link e = (a, b) attains the maximum in the LHS

of the inequality (2.36), i.e.,

lim sup4Z(a,)(t) >! .
T-oo =3

(2.37)

Noting that Xe(t) = 1 if link e is idle in slot t and that node b receives packets only

from nodes r and a, we can upper bound Rb(T) by

T T

Rb(T) _< E (1 - X(r,b)(t) + 1 - X(a,b)(t) < E (2 - x(a,b) (t).
t=1 t=1

From the above it follows that,

.Rb(T)15
lim inf < 2 - limsup I: X(a,b)(t) ,T-*oo T - T- Tt=13
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where the last inequality uses (2.37). Thus, we have

Pi(T) .. Rb(T) 5
min lim inf < lim inf <
iEV T-*oo T ~ T-oo T 3'

which holds for all policies 7r c Hin-oder. Taking supremum over the policy class

Hin-rder shows that the broadcast capacity A* subject to the in-order deliveryin-order

constraint satisfies

Ri (T) 5
Ain-order sup min lim inf < - < 2 = A*.

fErlin-order iEV T-+oo T 3

i.e., the broadcast capacity of the network is strictly reduced by the in-order packet

delivery constraint in the non-DAG network of Fig. 2-9(a).

2.9.1 Proof of Theorem 2.3.4

We complete the proof in four steps. 'First, using the dynamics of Xj(t) in the

space 11* (Eqn. (2.14)), we derive an expression of one-slot drift of an appropriately

defined Quadratic Lyapunov function L(X(t)). Second, we design an auxiliary sta-

tionary randomized policy 7r RAND for link-activations that yields optimal broadcast

throughput. Third, this randomized policy is used to show that the system X(t)

is strongly stable for all arrival rates A < A*, under the optimal broadcast policy

r* E I1*. Finally, based on the above analysis, we finally show that the policy lr* is a

throughput-optimal broadcast policy for any wireless DAG network.

(a) An Upper-bound on the drift of the policy 7r*

Lemma 2.9.1 For the dynamics

Q(t + 1) < (Q(t) - pt(t))+ + A(t) (2.38)

where all variables are non-negative and (x)+ V max{x, 0}, we have,

Q2 (t + 1) - Q2 (t) ; [t2 (t) + A 2 (t) + 2Q(t)(A(t) - p(t)).
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Proof Squaring both sides of Eqn. (3.41), we have

Q 2 (t + 1) < ((Q(t) - +)2 + A 2 (t) + 2A(t)(Q(t) - p(t))+

K (Q(t) - P(t))2 + A 2 (t) + 2A(t)Q(t),

where we use the fact that x 2 > (X+) 2 , Q(t) > 0, and p(t) > 0. Rearranging the

above inequality finishes the proof.

Applying Lemma 3.8.1 to the dynamics (2.14) of Xj(t) yields, for each node j , r,

X2(t + 1) - Xj(t) Y(t) + 2X3 (t)( A [t' (t) - Z plk(t)), (2.39)

meV kcV

where Y(t) de (ZmEVP .i (t)) 2 + (EkEV Pkj (t)) 2

Let C = e Ce, the sum of the capacities of all links in the network. Now the

node i* could be the source node r or a non-source node in the network. In ei-

ther case, since Ipe(t) < ce,Ve c E, the first term in Y(t) above is upper-bounded

by max{A 2 (t), C2} and the second term is upper-bounded by C2. Hence, Y(t)

max{A 2 (t), C2} + C2 < A 2 (t) + 2C2. Since the number of arrivals per slot A(t) is

assumed to have bounded second moment, there exists a finite constant B > 0 such

that E[Y(t) 5 E(A2 (t)) + 2C2 < B.

Now define a Quadratic Lyapunov function L(X(t)) d' ZJg X (t). From Eqn. (3.42),

the one-slot drift A(X(t)) of L(X(t)) may be computed to be

A(X(t)) - E [L(X(t + 1)) - L(X(t)) I X(t)|

=lEES (X(t + 1) - X (t)) | X(t)]
jfr

B|V|+25X3 (t)E (3 /ir pj(t) - p11kj(t) I X(t)]
j4r mEV kEV

= BIVI 2 E E[Pij(t) I X(t)](Xj(t) - 3 Xk(t))
(ij)EE kEKj(t)

= BIVI - 2 5 E[/pi(t) I X(t)] Wij(t), (2.40)
(ij)EE
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where (a) follows from changing the order of summation and K (t) and W (t) are as

defined in Eqn. (2.15) and (2.16), respectively. To emphasize the fact that the drift

upper-bound (3.44) depends on the control policy ir E H*, we attach a superscript 7r

to the control variables p(t) as follows:

As(X(t)) BjV| - 2 E [/p7'(t) I X(t) IWi (t). (2.41)
(ij)EE

Our optimal broadcast policy 7r* E 1l* is chosen to minimize the upper-bound on the

drift expression, given by the right-hand side of Eqn. (2.41), among all policies in the

space H*.

(b) Construction of a Stationary Randomized Policy 7rRAND : Next, we construct an

auxiliary randomized link-activation policy 7FRAND, which will be useful later in the

proof. Let the vector 3* E conv (S) attain the upper-bound in Eqn. (2.5):

,3* c arg max min E Ce0e.
/3Econv(S) U: a proper cut eEEU

From Caratheodory's theorem [39], there exist at most (IE 1+1) link-activation vectors

{Sk C S} and associated non-negative scalars {Pk > 01 with ZIt1 
Pk =1, such that

|Ej+1

/3* S PkSk. (2.42)
k=1

Hence, from Theorem 2.2.3 we have,

A* min * (2.43)
U: a proper cut eE Eo

Consider an exogenous packet arrival rate A at the source, which is strictly less than

the broadcast capacity A*. Thus, there exists an e > 0 such that A + e < A*. From

Eqn. (3.49),

A + c < mi Ce e*. (2.44)
U: a propeer cut 

rY
For any node v 7 r other than the source, consider the specific proper cuts U,
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V \ {v}, defined earlier in Eqn. (2.6). From Eqn. (3.50), we have

A + c < ce/*, Vv 4 r. (2.45)

Since the underlying network topology g = (V, E) is a DAG, there exists a topological

ordering of the nodes such that: (i) the nodes can be labelled serially as {vi, ... , vIvI },
where v, = r is the source node with no in-neighbours and the node vIvi has no

outgoing neighbours and (ii) all edges in E are oriented from vi -* vj, i < j [40];

From Eqn. (3.51), we define probabilities qj c [0, 1] for each node vj such that

qg C * = A + e j=2, .. .,IVI. (2.46)
E Ee~eC=Eu,,j.V

Consider a randomized link-activation policy 7rRAND defined as follows: at every slot

t (i) it randomly selects a feasible link-activation vector s(t) = sk with probability

Pk, given in Eqn. (3.47), k = 1, 2,... , jE + 1; (ii) for each selected link e = (vi, vj),

incoming to the node v3 with Se(t) = 1, the link e is activated independently with

probability qg, given by Eqn. (3.52). The activated links are used to forward packets,

subject to the constraints that define the policy class H* (i.e., in-order packet delivery

and that a network node is only allowed to receive packets that have been received

by all of its in-neighbors). Note that this randomized policy is independent of the

state X(t). Since each node j E V is relabeled by the topological ordering as v, E V

for some 2 < I < IVI, from Eqn. (3.52) we conclude that, for each node j # r, the

total expected incoming transmission rate to node j is given by

E[pAND (t) I X(t)] = E[,t,RAND)
i:(ij) E E i:(ij)GE

q, Ce* = A + e 1 (2.47)
e EEuv

Equation (3.53) shows that under the randomized policy 7rRAND, the total expected

incoming capacity to each node j f r is strictly larger than the packet arrival rate A.
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According to the abuse of notation in (2.14), at the source node r we have

7RAND ,,RAND ()S E[prAN (t) I X(t)] = E[ p (RAN A.

i:(i,r)EE i:(i,r)EE

(2.48)

From Eqns. (3.53) and (3.54), if node i appears prior to node j in the aforementioned

topological ordering, i.e., if i =- v < v, 3 j for some 1i < lj, then

RE[pg"rAND R(t)]- E E [p " AND X

k:(k,i)EE k:(k,j)EE

(2.49)

(c) Stochastic Stability of {X(t)}to under 7r* : The drift inequality (2.41) holds

for any policy 7r E 1*. Our broadcast policy 7r* observes the system state X(t) and

minimizes the upper-bound on drift at every slot. Comparing the activations selected

by the policy r* with 7rRAND in slot t, we have

A* (X(t)) B|V|-2 5 E[p(t) IX(t)]W

BIVI - 2 (E E [p RAND (t) |
(ij)EEBII-2E E[7R( t I~T r~tRAND N

B|V|+2E X(t) ( E pRAND(t) X(t)] - , (t) I X(t)

jor mEV kEV

B|V| 2 Xj (t). (2.50)

Since node i* is an in-neighbour of node j (2.10), the node i'* must appear before

j in any topological ordering of the DAG g. Hence, the inequality in (3.59) follows

directly from (3.55). Taking expectation of both sides in (3.59) with respect to X(t),

E [L(X(t + 1))] - E [L(.X(t))] BIVI - 2 E||X (t)|i,

where |I 1 1 is the 1-norm. Summing the above inequality over t = 0, 1, 2,. . . T - 1

yields
T-1

E [L(X(T))] - E [L(X(0))] BIVIT - E E||X (t)||1.
t=o
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Dividing the above by 2TE/IVI and using L(X(T)) > 0,

1 - BIV| 2  |VI E[L(X(O))]
S E||IX(t||1 2e 2T+Tt=0 c T

Taking a lim sup of both sides as T -* oo, we have

1 T-1 BV2
lim sup - VE[X (t)] 2e (2.51)

T-+oo T z-d z 2e
t0O j:, r

which implies that the virtual-queue process {X(t)}JO 0 is strongly stable [33] under

the policy lr* E l*.

(d) Throughput-optimality of rr* : Finally, we show that the strong stability of the

virtual queues Xj(t) implies that the policy 7r* achieves the broadcast capacity A* in

a DAG, i.e., for all arrival rates A < A*, we have

Rj(T)
lim = A, Vj.

T-oo T

Equation (2.14) shows that the virtual queues Xj(t) have bounded departures (due to

the bounded link capacities). Thus, strong stability of X,(t) implies that all virtual

queues Xj(t) are rate stable [33, Theorem 2.8], i.e., limTo X(T)/T = 0, w.p.1 for

all j. Using union-bound, it follows that,

lim I ZXj(T) = 0, w.p. 1 (2.52)
T-+oo T

j7r

Now consider any node j 7 r in the network. We can construct a simple path
def def

-(r = U- k U1... - u1 = j) from the source node r to the node j by running

Algorithm 3 on the DAG g(V, E).

Algorithm 3 chooses the parent of a node ui in the path o as the one that has the

least relative packet deficit as compared to ui. Since the underlying graph !(V, E)

is a connected DAG (i.e., there is a path from the source to every other node in

the network), the above path construction algorithm always terminates with a path
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Algorithm 3 r -÷ j Path Construction Algorithm
Require: Graph g(V, E), node j E V

1: i +- 1
2: u% <- j
3: while ui = r do
4: ui+1 <-arg minmESin Ui) mnui()
5: i+-i-+ 1
6: end while

o-(r - j). The number of distinct packets received by node j up to time T can be

written as a telescoping sum of relative packet deficits along the path a,

Rj(T) =RuI(T )

k- T

= Ju(T) - Ru,+1(T)) + RUk (T)

k-1

- X (T) + Rr(T)
2=1

k-1 T-1

Xu, (T) + E A(t),
i=1 t=O

where the equality (*) follows the observation that (see (2.10))

Xu,(T) = Qu,+u (T) = R,+, (T) - Rui(T ).

Using the bound E$k-I Xui (t) <_'jo Xi(t) (since Xj(t) > 0) and Eqn. (3.40), we

conclude that for every node j $ r,

T-1

T A(t) - T X3 (T)
t=O jor

t-1
< R3 (T ) < - At.

t=O

Finally, using the Strong Law of Large Numbers for the arrival process {A(t)};>o and

Eqn. (3.39), we conclude

R4(lim =(T) - A, Vj.
T--+oo T w.p. 1
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This concludes the proof.

2.9.2 Proof of Lemma 2.3.5

We regard the DAG g as a wire line network in which all links can be activated

simultaneously at a slot. Theorem 2.3.4 and Eqn. (2.8) show that the broadcast

capacity of the network g is

A* = ADAG min m ce
U: a proper cut E {U,vr} ,

eEEU U,: eEEuv

min din(v), (2.54)
vEV\{r}

where the sets Uv and Eu, are defined in Eqns. (2.6) and (2.3) respectively. The

equality (*) follows from the assumption that ce = 1, Ve G E. Edmond's Theorem [14

states that the maximum number of disjoint spanning trees in the graph g is

k* = Min c.(2.55)
U: a proper cut EE.

Combining (2.54) and (2.55) completes the proof of the Lemma.

73



74



Chapter 3

Throughput-Optimal Broadcast on

Time-Varying Wireless DAGs

3.1 Overview of the Results

In this chapter, we build upon the results of Chapter 2, and consider the problem

of throughput-optimal broadcasting in a wireless DAG network with time-varying

connectivity. Extending the results from the previous chapter, we characterize the

broadcast capacity of time-varying wireless DAGs and propose an exact and an ap-

proximation algorithm to compute it efficiently. Next, we propose a dynamic link

activation and packet scheduling policy, which obviates the need to maintain any

global topological structures, such as spanning trees, yet achieves the capacity in a

time-varying setting. In addition to throughput-optimality, the proposed algorithm

enjoys the attractive property of in-order packet-delivery, which makes it particularly

useful in various online applications, e.g., VoIP and live multimedia communication

[411. The proposed broadcast policy is model-oblivious, in the sense that its operation

does not depend on detailed statistics of the random packet arrival or the network

connectivity processes. We also show that the throughput-optimality of our algorithm

is retained when the control decisions are made using locally available and possibly

delayed state information.

The main technical contributions of this chapter are as follows:
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" We define and characterize the broadcast capacity for wireless networks with

time-varying connectivity. We show that the broadcast capacity of time-varying

wireless directed acyclic networks can be computed efficiently in some settings.

We then derive tight upper and lower bounds on broadcast capacity and utilize

it to propose an efficient approximation algorithm to estimate the capacity in

a general setting.

" We propose a throughput-optimal dynamic routing and scheduling policy for

broadcasting in a wireless DAG with time-varying connectivity. This algorithm

is of Max-Weight type and critically uses the idea of in-order packet delivery.

To the best of our knowledge, this is the first throughput-optimal dynamic

algorithm proposed for broadcasting in time-varying wireless networks.

" We extend our algorithm to the practical scenario when the nodes have access

only to delayed state information. We show that the throughput-optimality of

the policy is retained even when the rate of inter-node communication is made

arbitrarily small.

" We illustrate our theoretical findings with extensive numerical simulations.

The rest of the chapter is organized as follows. Section 3.2 introduces the notion of

time-variation into our usual static wireless network model. Section 3.3 defines and

characterizes the broadcast capacity of a time-varying wireless DAG. It also provides

an exact and an approximation algorithm to compute its broadcast capacity. Section

3.4 describes our capacity-achieving broadcast algorithm. Section 3.5 extends the al-

gorithm to the setting of imperfect state information. Section 4.7 provides numerical

simulation results to illustrate our theoretical findings. In section 6.7 we summarize

our results and conclude this chapter.
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3.2 Network Model

3.2.1 Model of Time-varying Wireless Connectivity

In this section, we incorporate time-variation into our basic static network model,

described in Chapter 1. In a wireless network, the channel-SINRs vary with time

because of fading, shadowing and node mobility [42]. To take this random variation

into account, we consider a simple ON-OFF channel model, where at each slot an

individual link can be in either one of the two states, ON and OFF. In the ON state,

a link (i, j), if activated, can transmit cij packets per slot, while in the OFF state it

can not transmit any packet 1. In other words, at any slot, the entire network can

be in any one configuration, out of finitely many possible configurations, denoted by

the set E. Each element o- E corresponds to a sub-graph g(V, E,) C 9(V, E), where

E, C E denotes the set of links that are ON at that slot. At every time-slot t, one

of the configurations in the set E is randomly realized. The network configuration

at time t is represented by the vector o-(t) E {O, 1}IE, where

-(e,t) = 1, if e E E,(t)

0, otherwise.

At the time-slot t, the network controller can only activate a set of non-interfering

links from the set E,(t) that are ON.

The network configuration {o-(t)}t>1 evolves according to a stationary ergodic process

with the stationary distribution {p(o-)}E [43], where

E p(-) = 1, p(-) > 0, Vu E B. (3.1)

Since the underlying physical processes responsible for time-variation are often

spatially-correlated [44], [451, the distribution of the link states is assumed to possess

an arbitrary joint distribution. The detailed parameters of this process depend on the

'Generalization of the ON-OFF model, to a multi-level discretization of link-capacity is straight-
forward.
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ambient physical environment, which is often difficult to measure. In particular, it is

unrealistic to assume that the controller has knowledge of the statistical parameters

of the process {-(t)}>1 . Fortunately, our proposed dynamic throughput-optimal

broadcast policy does not require the statistical characterization of the configuration

process or its stationary distribution p(o-). This makes the policy robust and suitable

for use in a dynamic setting.

Notations and Nomenclature:

In this section, we briefly discuss the notations and conventions used throughout the

chapter. All vectors are assumed to be column vectors. For any set X c Rk, its

convex-hull is denoted by conv(X). Let (U, V \ U) be a disjoint partition of the set

of vertices of the graph, such that the source r E U and U ; V. Such a partition will

be called a proper-partition. To each proper partition corresponding to the node set

U, associate the proper-cut vector u E R', defined as follows:

Uj = cij, if i E U, j E V \ U, (i, j) E E (3.2)

= 0 otherwise

Denote the special, single-node proper-partitions by U = V \ {j}, and the corre-

sponding proper-cut vectors by uj, Vj E V \ {r}. The set of all proper-cut vectors in

the graph g is denoted by U.

The in-neighbour set gi"(j) of a node j is defined to be the set of all nodes i c V

such that there is a directed edge (i, j) E E. i.e.,

ai"(I)= {i C V : (i, j) C E} (3.3)

Similarly, we define the out-neighbour set of a node j as

out (j) = {i V: (j, i) c E} (3.4)
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For any two vectors x and y in R', define the coordinate-wise product z = x 0 y to

be a vector in R' such that zi = xiyi, 1 < i m.

For any set S C R" and any vector v E R', the symbol v G S denotes the set of

all vectors obtained by the coordinate-wise product of the vector v and the elements

of the set S, i.e.,

V G S = {y E R" : y = v 0 s, s E S} (3.5)

The usual dot product between two vectors x, y E R' is defined as: x y =

3.3 Characterization of the Broadcast Capacity in a

Time-Varying DAG

In this section, we derive a cut-set characterization of the broadcast capacity in a

time varying DAG.

3.3.1 An Upper-bound on Broadcast Capacity

Consider a policy 7r E H that achieves a broadcast rate of at least A* - E, for an c > 0.

That such a policy exists, follows from the definition of the broadcast capacity A*.

Now consider any proper-cut U of the network g. By the definition of a proper-

cut, there exists a node i V U. Let sw(t, a(t)) = (s"(t, o(t)), e E E) be the link

activation vector chosen by policy 7r in slot t, upon observing the current network

configuration o-(t). The maximum number of packets that can be transmitted across

the cut U in slot t is upper bounded by the total capacity of all activated links across

the cut-set U, given by EeEEU ces"(t, a(t)). Hence, the number of distinct packets

received by node i by time T is at most the total available capacity across the cut U

up to time T, subject to link activation decisions of the policy 7r. In other words,
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T T

Rf (T) ~ ~ces5(t, 0(t)) = U - s"(t, 0(t))
t=1 eEEu t=1

t=1

where the cut-vector u E R", corresponds to the cut-set U, as in Eqn.(3.2). It follows

that,

(a) R (T)
A- e min lim inf -

jEV T-*xo T

< lim inf u -
T oo (t=1

R'f(T)
< lim inf

T-+xo T

s'(t, a(3)) ,I

where the inequality (a) follows from the fact that 7 is a broadcast policy of rate at

least A* - e. Since the above inequality holds for all proper-cuts u, we have

A- e min lim inf u-
uEU T-+oo

( =s (t, )
Tt=1

The following technical lemma will prove to be useful for deriving an upper-bound

on the broadcast capacity.

Lemma 3.3.1 For any policy 7r E U, and any proper-cut vector u, there exist a

collection of vectors (0" E conv(Me)) , such that, the following holds a.s.
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(3.6)

Ry(T)
T

(3.8)

m i T .7 
)

- t ,
min lim inf u
uCU T+oo

= min u ( P(O-)/i)
UEU

(3.7)

0'(0))



See Section 3.8.1 for the proof of this lemma. The above lemma essentially re-

places the minimum cut-set bound of arbitrary activations in (3.8), by the minimum

cut-set bound of a stationary randomized activation. Combining Lemma 3.3.1 with

Eqn. (3.8), we conclude that for any policy 7r E H of rate at least A* - e, there exists

a collection of vectors {,3" c conv(M,.)},,E such that

A* - e < min u- P(u)/ (3.9)

Maximizing the RHS of Eqn. (3.9) over all vectors {3, c conv(M,), a E 3} and

letting e \ 0, we have the following universal upper-bound on the broadcast capacity

A*

A* < max min u (p(O,) , (3.10)
fOEconv(M,) uEU /

Specializing the above bound for single-node cuts of the form Uj = (V \ {j}) -+

{j}, Vj c V \ {r}, we have the following upper-bound

A* < max min uj - (Ep()3) (3.11)
0,Econv(M,) jEV\{r}

It will be shown in Section 3.4 that in a DAG, our throughput-optimal policy 7r*

achieves a broadcast-rate equal to the RHS of the bound (3.11). In particular, we

have the following theorem

Theorem 3.3.2 The broadcast capacity ADAG of a time-varying wireless DAG is

given by:

ADAG max min Uj -( p(o),) (3.12)
v, Econv(M),E E jV\{r} E

The above theorem shows that for computing the broadcast capacity of a wireless
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DAG, the minimum in the bound in (3.10) is attained by the single-node cuts uj.

3.3.2 An Illustrative Example of Capacity Computation

In this section, we work out a simple example to illustrate the previous results.

Wireless network

Consider the simple wireless network shown in Figure (3-1), with node r being

the source. The possible network configurations oa, i = 1, 2, 3, 4 are also shown.

One packet can be transmitted over a link if it is ON. Moreover, since the links are

assumed to be point-to-point, even if both the links ra and rb are ON at a slot t (i.e.,

c-(t) = -3), a packet can be transmitted over one of the links only. Hence, the sets of

feasible activations are given as follows:

1 0 1 0
M0' = 1} M0_ ={ },1 MO {3} MO = 0

0 )(1 )0 1

In the above vectors, the first coordinate corresponds to the edge ra and the second

corresponds to the edge rb.

To illustrate the effect of link-correlations on broadcast capacity, we consider three

different joint distributions p(o-), all of them having the identical marginal:

1
p(ra = ON) = p(ra = OFF) 2 -

2

p(rb = ON) = p(rb = OFF) = 2
2

Configuration osl Configuration o2
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Configuration -3 Configuration 0-4

Figure 3-1: A Wireless Network and its four possible configurations

Case 1: Zero correlations In this case, the links ra and rb are ON w.p. 12

independently at every slot, i.e.,

p(oa) = 1/ 4, i = 1, 2, 3, 4 (3.13)

It can be easily seen that the broadcast capacity, as given in Eqn. (3.12), is

achieved when in configurations o-1 and 0-2 , the edges ra and rb are activated w.p.

1 respectively and in the configuration -3 the edges ra and rb are activated with

probability . and !. In other words, an optimal activation schedule of a corresponding

stationary randomized policy is given as follows:

1*0=1(1 0)',3*2 = (0 1)',3 (. 2 )'

The optimal broadcast capacity can be computed from Eqn. (3.12) to be A*

1+0 + x 1 3
4114 2 8

Case 2: Positive correlations In this case, the edges ra and rb are positively

correlated, i.e., we have

1
P(Q1) = P(02) = 0; P(03) = P(o4) = -

2

Then it is clear that half of the slots are wasted when both the links are OFF (i.e.,

in the configuration O-4). When the network is in configuration 0'3 , an optimal ran-

domized activation is to choose one of the two links uniformly at random and send
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packets over it. Thus

1 If,

2 2)

The optimal broadcast capacity, as computed from Eqn. (3.12) is A* =

Case 3: Negative correlations In this case, the edges ra and rb are negatively

correlated, i.e., we have

1
P(0i1) = P(0'2) - P(0'3) = P(o4) 0

It is easy to see that, a capacity-achieving activation strategy, in this case, is to send

packets over the link whichever is ON. The broadcast capacity in this case is A* = 12'

the highest among the above three cases.

As apparent from the above example, with an arbitrary joint distribution of network

configurations {p(o-)}, it is a matter of simple calculations to obtain the optimal

activations 3,. in Eqn. (3.12). However, it is clear that for an arbitrary network with

arbitrary activations M and configuration sets E, evaluating (3.12) is non-trivial.

The following section deals with this computational problem.

3.3.3 Efficient Computation of the Broadcast Capacity

In this section, we study the problem of efficient computation of the Broadcast Ca-

pacity A* of a wireless DAG, given by Eqn. (3.12). In particular, we show that when

the number of possible network configurations 1E(n) grows polynomially with n (the

number of nodes in the network), there exists a strongly polynomial-time algorithm

to compute A*, under the primary interference constraint. Polynomially-bounded

network configurations arise, for example, when the set E(n) consists of subgraphs of

the graph 9 with at most d number of edges, for some fixed integer d. In this case
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1:(n)I can be bounded as follows

IBI(n) < ( = O(n2d),
k=O M

where m(= O(n2)) is the number of edges in the graph g.

Theorem 3.3.3 (Efficient Computation of A*) Suppose that for a wireless

DAG 9 with n nodes, the number of possible network configurations |2I|(n) is

bounded polynomially in n. Then, there exists a strongly polynomial - time algo-

rithm to compute the broadcast capacity of the network under the primary inter-

ference constraints.

Although only polynomially many network configurations are allowed, we empha-

size that Theorem (3.3.3) is highly non-trivial. This is because each network con-

figuration o E E itself contains exponentially many possible activations (matchings)

under the primary interference constraints. The key combinatorial result that leads

to Theorem (3.3.3) is the existence of an efficient separator oracle for the matching-

polytope for any arbitrary graph [38]. The detailed proof of Theorem 3.3.3 is provided

below.

Proof Under the primary interference constraint, the set of feasible activations of

the graphs are matchings [4]. To solve for the optimal broadcast capacity in a time-

varying network, we first rewrite the optimization problem involved in Eqn. (3.12) as

a Linear Program (LP). Although this LP has exponentially many constraints, using

a well-known separation oracle for matchings, we show that it is possible to solve this

LP in strongly polynomial time via the ellipsoid algorithm [37].

For a subset of edges E' C E, let XE' be the incidence vector, where XE(e) = 1 if
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e E E' and is zero otherwise. Let

Pmatching(g(V, E)) =

convexhull({x M IM is a matching in G(V, E)})

We have the following classical result by Edmonds [38].

Theorem 3.3.4 The set Pmatching(g(V, E)) is characterized by the set of all 3 E

R|JE| such that :

Oe > 0 Ve E E (3.14)

Ee
eeain(v)Uaout(v)

E 3e

eEE[U]

< 1 VV E V

Ju2 ; U c V, |UI odd

Here E[U] is the set of edge with both end points in U.

Thus, following Eqn. (3.12), the broadcast capacity of a DAG can be obtained by

the following LP :

max A (3.15)

Subject to,

A < S ce(Ep(o-),,e),VvEV\{r}
eCOin(v) aEE

1a E Pmatching(g(V, E,)), VU E E

(3.16)

(3.17)

The constraint corresponding to a E E in (3.17) refers to the set of linear constraints

given in Eqn.(3.14) corresponding to the graph G(V, E,), for each a E

Invoking the equivalence of optimization and separation due to the ellipsoid algorithm
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[37], it follows that the LP (3.15) is solvable in poly-time if there exists an efficient

separator-oracle for the set of constraints (3.16) and (3.17). With our assumption

of polynomially many network configurations JEE(n), there are only linearly many

constraints (n - 1, to be precise) in (3.16) with polynomially many variables in each

constraint. Thus the set of constraints (3.16) can be separated efficiently. Next, we

invoke a classic result from the combinatorial optimization literature which shows the

existence of efficient separators for the matching polytopes.

Theorem 3.3.5 [38] There exists a strongly poly-time algorithm, that given g =

(V, E) and /3: E - R\EI determines if/3 satisfies (3.14) or outputs an inequality

from (3.3.4) that is violated by 3.

Hence, there exists an efficient separator for each of the constraints in (3.3.4).

Since there are only polynomially many network configurations, this directly leads to

Theorem 3.3.3.

3.3.4 Simple Bounds on A*

Using Theorem (3.3.3) we can, in principle, compute the broadcast capacity A* of

any wireless DAG with polynomially many network configurations. However, the

complexity of the exact computation of A* grows substantially with the number of

the possible configurations E71(n). Moreover, Theorem (3.3.3) does not apply when

|Ef(n) can no longer be bounded by a polynomial in n. A simple example with

exponentially large jEj(n) is the case when any link e is ON w.p. pe > 0 i.i.d. at

every slot.

To address this issue, we obtain bounds on A*, whose computational complexity is

independent of the size of JEE. These bounds are conveniently expressed in terms

of the broadcast capacity of the static network 9(V, E) without time-variation, i.e.

when IEl = 1 and E, = E, o- E E. Let us denote the broadcast capacity of the static
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network by A*tat- Specializing Eqn. (3.12) to this case, we obtain

Astat = max min u3 -.
f3Econv(M) jEV\{r}

(3.18)

Using Theorem (3.3.3), A*tat can be computed in poly-time under the primary inter-

ference constraint.

Now consider an arbitrary joint distribution p(o-) such that each link is ON uniformly

with probability p, i.e.,

Ve c E. (3.19)EE o-) = P,)
0rE=_:c(e)=1

We have the following bounds on A* for this case:

Proof The proof consists of the following two parts:

Proof of the Upper-bound

Note that, for all o- E E, we have E, c E. Hence, it follows that

MA c M, V- EE

This, in turn, implies that

3- E conv(M,) -* /3 E conv(M)
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Let an optimal solution to Eqn. (3.12) be obtained at (0*3, o- E E). Then from Eqn.

(3.20), it follows that

aEE
p(a-),3* c conv(M)

Hence we have,

max
0 Econv(M,) j(

Using Eqn. (3.18), this shows that

min uj . (j p(a)#*)
EV\{r}

max min uj -)3
f3Econv(M) jEV\{r}

A* < A*-stat

This proves the upper-bound.

Proof of the Lower-bound

Since Ma C M, the expression for the broadcast capacity (3.12) may be re-written

as follows:

A= max min
03E0M jCV\{r} E

eCO'n(j)

ce ( p(), (e)1(e C o))
CE=

Let 3* C conv(M) be the optimal activation, achieving the RHS of (3.18). Hence we

can lower-bound A* as follows

A* > min Ce
jEV\{r} E

eEain(j)

(a) p m
p min

jEV\{r}
eE~1"(j)

p min u,./*
jEV\{r}

(b)
= pAstat

/3*(e)(p(a)1I(e E ))

EE

ce/3*(e)
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Equality (a) follows from the assumption (3.19) and equality (b) follows from the

characterization (3.18). This proves the lower-bound.

Generalization of the above Lemma to the setting, where the links are ON with non-

uniform probabilities, may also be obtained in a similar fashion.

More importantly, as the example 3.3.2 shows, the simple bounds in Lemma 3.3.6

are tight. In this example the value of the connectivity parameter p = 1, the lower-

bound is attained in case (2) and the upper-bound is attained in case (3).

The above lemma immediately leads to the following corollary:

Corollary 3.3.7 (APPROXIMATION-ALGORITHM FOR COMPUTING A*). As-

sume that, under the stationary distribution p(o-), the probability that any link is

ON is p, uniformly for all links. Then, there exists a poly-time p-approximation

algorithm to compute the broadcast capacity A* of a DAG, under the primary

interference constraints.

Proof Consider the optimal randomized-activation vector /* E conv(M), corre-

sponding to the stationary graph 9(V, E) (3.18). By Theorem (3.3.3), 3* can be

computed in poly-time under the primary interference constraint. Note that, by

Caratheodory's theorem [39], the optimal )3* may be expressed as a convex combi-

nation of at most |E| - 1 matchings. Thus it follows that A*tat (3.18) may also be

computed in poly-time.

From the proof of Lemma 3.3.6, it follows that by randomly activating j3* (i.e.,

3, (e) = /3*(e)1(e E a), Va- E E) we obtain a broadcast-rate equal to pA*at where

A*tat is shown to be an upper-bound to the broadcast capacity A* in Lemma (3.3.6).

Hence it follows that ptat constitutes a p-approximation to the broadcast capacity

A*, which can be computed in poly-time.

This concludes our discussion the computational aspect of the broadcast capacity. In

the rest of this chapter, we are concerned with designing a dynamic and throughput-

optimal broadcast policy for a time-varying wireless DAG network.
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3.4 Throughput-Optimal Broadcast Policy for Time-

Varying Wireless DAGs

In this section, we propose an online, dynamic, throughput-optimal broadcast pol-

icy for time-varying wireless DAGs, that does not need to compute or maintain any

global topological structures, such as spanning trees. Interestingly, we show that the

broadcast-algorithm that we proposed in Chapter 2 for static wireless networks, gen-

eralizes well to the time-varying setting. As in the previous algorithm for the static

network, this algorithm also enjoys the attractive operational property in-order packet

delivery. The key difference between the algorithm in [46] and our dynamic algorithm

is in link-scheduling. In particular, in our algorithm, the activation sets are chosen

based on current network configuration or(t).

3.4.1 Throughput-Optimal Broadcast Policy 7r*

Any admissible broadcast policy 7r E 1 comprise of the following two sub-modules

that are executed at every slot t:

" 7(A) (Activation module): activates a subset of links s(t) c M,(t), subject

to the interference constraint and the current network configuration o(t).

" r(S) (Packet Scheduling module): schedules a subset of packets over the

activated links.

Following our development in Chapter 2, we first restrict our attention to the policy

sub-space -o ,in which the admissible policies are required to follow the so-called

in-order delivery property, defined as follows

Definition 3.4.1 (Policy-space yin-Order) A policy 7r belongs to the space H inorder

if all incoming packets are serially indexed as {1, 2, 3,.. .} according to their order

of arrival at the source r and a node can receive a packet p at time t, only if it has

already received the packets {1, 2,,... ,p - 1}.
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As an immediate consequence of the in-order delivery property, the state of the

received packets in the network at time-slot t may be succinctly represented by the

n-dimensional vector R(t), whose i th component denotes the index of the latest

packet received by node i by time t. We emphasize that this succinct network-

state representation by the vector R(t) is valid only in the restricted policy-space

fin-order. This compact state-representation results in substantial simplification of

the overall state-space description. As a comparison, to completely specify the packet-

configurations in the network at slot t in the general policy-space H, we need to specify

the sets of packets received by different nodes at slot t, which is quite unwieldy.

To effectively exploit the special structure of a DAG in designing our throughput-

optimal broadcast policy, it will be useful to restrict our packet scheduler 7r(S) further

to the following policy-space 1* C r1 in-order

Definition 3.4.2 (Policy-space 11* C Hin-order ) A broadcast policy 7r belongs to

the space fI* if (1) 7r E lin-order and in addition (2) a packet p can be received

by a node j at time t, only if all in-neighbours of the node j (i.e., nodes in Qin(j))

have received the packet p by the time t.

The above definition is illustrated in Figure 3-2. The variables Xj(t) and iZ*(j) ap-

pearing in its description are defined subsequently in Eqn. (3.23).

It is easy to see that for all policies 7r E f*, the packet scheduler 7r(S) is completely

.Ra (t) =18 ..

--------- a b c j Rj(t) =10

Rb(t ) = 15 Rc(t ) =14-.

Figure 3-2: Under a policy7r E *, the set of packets available for transmission to node j
at slot t is {11, 12, 13, 14}, which are available at all in-neighbors of node j. The in-neighbor
of j inducing the smallest packet deficit is i*(j) = c, and Xj(t) = 14 - 10 = 4.

specified. Hence, to specify a policy in the space 1*, we need to define the activation

module r(A) only.
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Towards this end, let pij(t) denote the rate (in packets per slot) allocated to the edge

(i, j) in the slot t by a policy 7r E [*. Note that, the allocated rate 1p(t) is constrained

by the current network configuration o-(t) at slot t. In other words, we have

p(t) E c O M, (t). (3.21)

This implies that, under any randomized activation

E G(t) c O conv(M,(t)). (3.22)

In the following lemma, we show that for all policies 7r E 11*, certain state variables

X(t), derived from the state-vector R(t), satisfy the Lindley recursions [471 of queue-

ing theory. Hence these variables may be thought of as virtual queues. This technical

result will play a central role in deriving a Max- Weight type throughput-optimal pol-

icy 7*, which is obtained by stochastically stabilizing these virtual-queues.

For each j E V \ {r}, define

Xj (t) = min (Ri(t) - Rj (t)) (3.23)
,Eain(j)

it(j) = arg min (Ri(t) - Rj (t)), (3.24)
iEain(j)

where in Eqn. (3.24), ties are broken lexicographically. The variable Xj (t) denotes

the minimum packet deficit of node j with respect to any of its in-neighbours. Hence,

from the definition of the policy-space 1*, it is clear that Xj(t) is the maximum

number of packets that a node j can receive from its in-neighbours at time t, under

any policy in 1*.

The following lemma, established in Chapter 2, proves a "queue-like-dynamics" of the

variables Xj(t), under any policy 7r E I*.
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Lemma 3.4.3 Under any policy 7r E 1*, we have

Xj(t + 1) < (X(t) - E Pkj(t)) + pmi(j)(t) (3.25)
keain(j) megin(i*(j))

Lemma (3.4.3) shows that the variables (X3 (t), j E V \ {r}) satisfy Lindley recur-

sions in the policy-space f*. Interestingly, unlike the corresponding unicast problem

[1], there is no "physical queue" in the system.

Similar to the unicast problem [1], the next lemma shows that any activation module

r(A) that "stabilizes" the virtual queues X(t) for all arrival rates A < A*, constitutes

a throughput optimal broadcast-policy for a wireless DAG network.

Lemma 3.4.4 If under the action of a broadcast policy 7 C fl*, for all arrival

rates A < A*, the virtual queue process {X(t}0 is rate-stable, i.e.,

lim sup X (T) = 0, w.p. 1,
T-40o T :

then the policy 7r E Y* is a throughput-optimal broadcast policy for a wireless DAG

network.

Proof See Section 3.8.2.

Equipped with Lemma (3.4.4), we now set out to derive a dynamic activation module

r*(A) to stabilize the virtual-queue process {X(t)}O for all arrival rates A < A*.

Formally, the structure of the module 7r*(A) is defined by a mapping of the following

form:

7r*(A) : (X(t), o-(t)) -+ A4(t)
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Thus, the module lr* (A) is stationary and dynamic as it depends on the current value

of the state variables and the network configuration only. This activation module is

different from the policy described in [46] as the latter is meant for static wireless

networks and hence, does not take into account the time-variation of network config-

urations, which is the focus of this chapter.

To describe 7r*(A), we first define the following node-set

Kj(t) = {m E QOu
t (j) : j - i*(m)} (3.26)

where the variables iZ*(m) are defined earlier in Eqn. (3.24). The activation module

ir*(A) is given in Algorithm 1. The resulting policy in the space I* with the activation

module 7r*(A) is called lr*.

Algorithm 4 A Throughput-optimal Activation Module 7r*(A)

1: To each link (i, j) C E, assign a weight as follows:

VVj (t) X(t) - EkEKj(t) Xk(t), if Oa(i,)(t) 1 (3.27)

2: Select an activation s*(t) E M,(t) as follows:

s*(t) E arg max s - (c D W(t)) (3.28)
SEM,()

3: Allocate rates on the links as follows:

A*(t) = c G s*(t) (3.29)

Note that, in steps (1) and (2) above, the computation of link-weights and link ac-

tivations depend explicitly on the current network configuration 0-(t). As anticipated,

in the following lemma, we show that the activation module r*(A) stochastically sta-

bilizes the virtual-queue process {X(t)} .
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Lemma 3.4.5 For all arrival rates A < A*, under the action of the policy 7r* in

a DAG, the virtual-queue process {X(t)} is rate-stable, i.e.,

lim sup- Xj (T) = 0, w.p. 1
T-4oo T r

The proof of this lemma is based on a Lyapunov-drift argument [33]. Please refer

to Section 3.8.3 for the complete proof.

Combining the lemmas (3.4.4) and (3.4.5), we immediately obtain the main result of

this section:

Theorem 3.4.6 The policy lr* is a throughput-optimal broadcast policy in a time-

varying wireless DAG network.

3.5 Throughput-Optimal Broadcasting with Infrequent

Inter-node Communication

In practical mobile wireless networks, it is unrealistic to assume that every node has

perfect network-wide packet state information at every slot. This is especially true

in the case of time-varying dynamic networks, where network connectivity changes

frequently. In this section, we extend the main results of section 3.4 by considering

the setting where the nodes make control decisions with imperfect packet state infor-

mation that they currently possess. We will show that the dynamic broadcast-policy

r * retains its throughput-optimality even in this scenario.

State-Update Model We assume that two nodes i and j can mutually update their

knowledge of the set of packets received by the other node, only at those slots with

96



positive probability, when the corresponding wireless link (i, J) is in ON state. Oth-

erwise, it continues working with the outdated packet state information. Throughout

this section, we assume that the nodes have perfect information about the current

network configuration o(t).

Suppose that, the latest time prior to time t when the packet state update was made

across the link (ij) is t - T(jj)(t). Here T(jj)(t) is a random variable, supported

on the set of non-negative integers. Assume that the network configuration process

{o-(t)}0 evolves according to a finite-state, positive recurrent Markov-Chain, with

the stationary distribution {p(o-) > 0, o- E E}. Using standard theory [48], it can be

shown that the random variable T(t) = (ij)EE T(i,j)(t) has bounded expectation for

all time t .

Analysis of 7r* with Imperfect Packet State Information Consider running

the policy 7r*, where each node j now computes the weights W'(t), given by Eqn.(3.27),

of the incoming links (i, j) E E, based on the latest packet state information available

to it. In particular, for each of its in-neighbour i E gi"(j), the node j possess the

following information of the number of packets received by node i:

RI (t) = Ri(t - T(j)(t)) (3.30)

Now, if the packet scheduler module 7'(S) of a broadcast-policy 7r' takes scheduling

decision based on the imperfect state information R'(t) (instead of the true state

R(t)), it still retains the following useful property:

Lemma 3.5.1 7r' E l*.

Proof Due to space constraints, the proof of this lemma has been included in the

accompanying supplementary material.
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The above lemma states that the policy r' inherits the in-order delivery property and

the in-neighbour packet delivery constraint of the policy-space HI*.

From Eqn. (3.27) it follows that, computation of link-weights {Wij(t), i C 09"(j)}

by node j requires packet state information of the nodes that are located within 2-

hops from the node j. Thus, it is natural to expect that with an ergodic state-update

process, the weights W/i(t), computed from the imperfect packet state information,

will not differ too much from the true weights Wij(t), on the average. Indeed, we can

bound the difference between the link-weights W 2g(t), used by policy ir' and the true

link-weights Wij(t), as follows:

Lemma 3.5.2 There exists a finite constant C such that, the expected weight

W! (t) of the link (ij), locally computed by the node j using the random update

process, differs from the true link-weight Wij(t) by at most C, i.e.

JEW!'(t) - Wij(t)I < C (3.31)

The expectation above is taken with respect to the random packet state update

process.

Proof Due to space constraints, the proof of this lemma has been included in the

accompanying supplementary material.

From lemma (3.5.2) it follows that the policy 7r', in which link-weights are com-

puted using imperfect packet state information is also a throughput-optimal broadcast

policy for a wireless DAG. Its proof is very similar to the proof of Theorem (3.4.6).

However, since the policy 7r' makes scheduling decision using W'(t), instead of W(t),

we need to appropriately bound the differences in drift using Lemma (3.5.2). The

technical details are provided in Section 3.8.4.
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Figure 3-3: A 3 x 3 grid network.

3.6 Numerical Simulation

We numerically simulate the performance of the proposed dynamic broadcast-policy

on the 3 x 3 grid network, shown in Figure 3-3. All links are assumed to be of unit

capacity. Wireless link activations are subject to primary interference constraints,

i.e., at every slot, we may activate a subset of links which form a Matching [41 of

the underlying topology. External packets arrive at the source node r according to a

Poisson process of rate A packets per slot. The following proposition shows that, the

broadcast capacity *at of the static 3 x 3 wireless grid (i.e., when all links are ON

with probability 1 at every slot) is .

Proposition 3.6.1 The broadcast

network in Figure 3-3 is .5.

capacity A*t of the static 3 x 3 wireless grid

Due to space constraints, the proof of this proposition has been included in the

99

Theorem 3.5.3 The policy 7' is a throughput-optimal broadcast algorithm in a

time-varying wireless DAG.
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accompanying supplementary material.

In our numerical simulation, the time-variation of the network is modeled as follows:

link states are assumed to evolving in an i.i.d. fashion; each link is ON with probability

p at every slot, independent of everything else. Here 0 < p < 1 is the connectivity

parameter of the network. Thus, for p = 1 we recover the static network model of

the previous chapter. We also assume that the nodes have imperfect packet state

information as in Section 3.5. Two nodes i and j can directly exchange packet state

information, only when the link (i, i) (if any) is ON.

The average broadcast delay D" (A) is plotted in Figure 3-4 as a function of the

packet arrival rate A. The broadcast delay of a packet is defined as the number of

slots the packet takes to reach all nodes in the network after its arrival. Because of

the throughput-optimality of the policy 7r' (Theorem (3.5.3)), the broadcast capacity

A* (p) of the network, for a given value of p, may be empirically evaluated from the

A-intercept of vertical asymptote of the DT'(A) - A curve.

As evident from the plot, for p = 1, the proposed dynamic algorithm achieves all

broadcast rates below A*at - = 0.4. This shows the throughput-optimality of the

algorithm 7r'.

It is evident from the Figure 3-4 that the broadcast capacity A*(p) is non-decreasing

in the connectivity parameter p, i.e., A*(pi) > A*(p 2 ) for pi > P2. We observe

that, with i.i.d. connectivity, the capacity bounds given in Lemma (3.3.6) are not

tight, in general. Hence the lower-bound of pA*at is a-pessimistic estimate of the

actual broadcast capacity A*(p) of the DAG. The plot also reveals that, D"'(A) is

non-decreasing in A for a fixed p and non-increasing in p for a fixed A, as expected.

Variation of the Broadcast Capacity with increasing network

size

To investigate the variation of the broadcast capacity of a dynamic wireless network

with network size, we numerically simulate the proposed throughput-optimal broad-

cast policy ir* on three wireless grid networks with grid sizes 5 x 5, 8 x 8 and 9 x 9
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Figure 3-4: Plot of average broadcast delay D7' (A), as a function of the packet arrival
rates A. The underlying wireless network is the 3 x 3 grid, shown in Figure 3-3, with
primary interference constraints.

respectively. The edge-connectivity processes are assumed to be i.i.d. with the con-

nectivity parameter p = 0.8 uniformly over all edges. All simulated networks are

assumed to be limited by primary interference constraints.

The time-averaged broadcast delay as a function of the incoming packet arrival rate

is plotted in Figure 3-5 for the three simulated networks. The A-intercepts of the

vertical asymptotes of the delay curves indicate the broadcast capacities A*xN of the

corresponding grid networks. As expected, A*xN decreases with increasing network

size.
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Figure 3-5: Plot of average broadcast delay D'(A), as a function of the packet arrival
rates A for i.i.d. connectivity process with parameter p = 0.8. Results are shown for
5 x 5, 8 x 8 and 9 x 9 grids with primary interference constraints. Vertical asymptotes
indicate the respective broadcast capacities of the networks.
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3.7 Conclusion and Future Work

In this chapter, we studied the problem of throughput-optimal broadcasting in wire-

less directed acyclic networks with point-to-point links and time-varying connectivity.

We characterized the broadcast capacity of such networks and derived efficient algo-

rithms for computing the same, both exactly and approximately. Next, we proposed

a throughput-optimal broadcast policy for such networks. This policy does not need

to maintain any spanning tree and operates based on locally available information,

which is updated sporadically. The algorithm is robust and does not require statistics

of the arrival or the connectivity process, thus making it useful for mobile wireless

networks. The theoretical results are supplemented with illustrative numerical simu-

lations. A possible future direction of research would be to remove the requirement

of acyclic topology. It would also be interesting to extend the algorithm to wireless

networks with point-to-multi-point links.

3.8 Proofs of the Results

3.8.1 Proof of Lemma 3.3.1

Proof Fix a time T. For each configuration o E B, let {t ,'ijT be the index of the

time-slots up to time T such that o(t) = o. Clearly, we have,

ET, = T (3.32)
OE=

Hence, we can rewrite

s1 (t, 0 (t)) = s"(te,, (3.33)
Tt=1 aE= o =1

Hence,

u - s1r(t, 0(t))) .. ( + s (t",, c) (3.34)
Tt=1 OE T i=1
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Since the process o-(t) is stationary ergodic, we have

T
lim - = p(o-), w.p. 1 Vo CH (3.35)

T-*oo T

Using countability of E and invoking the union bound, we can strengthen the above

conclusion as follows

T
lim - = p(o-), Vo- E E, w.p. 1 (3.36)

T-+oo T

Hence from Eqn. (3.34) we have,

IT
min lim inf u* ( s"(t, o(t))
uEU T/oo T t-1

min p(o-) lim inf u 7sra(t ) , w.p. 1
UEU T -oo T,

,E i=1

Since p(o-) > 0, Vo- E E, the above implies that T, / o as T / ooVo, w.p.1. In the

rest of the proof, we will concentrate on a typical sample path {O-(t)}t 1 having the

above property.

For each o- E E, define the sequence {(7}T,;>1

T,

Ca,T, = T sO(tiO) (3.37)

Since s7(t,,i, o-) E M, for all i > 1, convexity of the set Ma, implies that (T C M,

for all T, > 1. Since the set M, is closed and bounded (and hence, compact) any

sequence in Ma, has a converging sub-sequence. Consider any set of converging sub-

sequences { _ k>1, - E B such that, it achieves the following

min p(O-) lim u -
uEU k-oo

= min p(O) lim inf U - '.
U EU T,-+oo
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Let us denote

urn Cor = Vo- E E (3.38)
k-+oco '" k = 7

Where 0' E M,, since Ma, is closed. Hence combining Eqn. (3.37), (3.38) and Eqn.

(3.38), we have

min lim inf u - s(t
uGU T/oo T t=1

= min p(O-)u .001UE U
aEE

= min u ( p(O-)x,) w.p. 1
uU

aEE

3.8.2 Proof of Lemma (3.4.4)

Assume that under the policy 7r E *, the virtual queues Xj(t) are rate stable i.e.,

limTI,, Xj(T)/T = 0, a.s. for all j. Applying union-bound, it follows that,

Xj X(T )
lim = 0, w.p. 1 (3.39)

T-*oo T

Now consider any node j r in the network. We can construct a simple path

p(r = Uk - Uk--... -> u = j) from the source node r to the node j by running the

following Path construction algorithm on the underlying graph 9(V, E).

Algorithm 5 r -+ j Path Construction Algorithm

Require: DAG 9((V, E), node J E V
1: i +- 1

2: ui *- j
3: while ui 7 r do
4: uj+ 1 +- it(Ui);
5: i <-i+-1
6: end while

At time t, the algorithm chooses the parent of a node ui in the path p as the

one that has the least relative packet deficit as compared to ui (i.e. u%+1 = i*(ui))-

Since the underlying graph 9(V, E) is a connected DAG (i.e., there is a path from the
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source to every other node in the network), the above path construction algorithm

always terminates with a path p(r -+ j). Note that the output path of the algorithm

varies with time.

The number of distinct packets received by node j up to time T can be written as a

telescoping sum of relative packet deficits along the path p, i.e.,

R3 (T) = Ru1(T)

k-1

S(Ru,(T) - Ru1+I(T)) + RUk(T)

k-1

- Xu,(T) + Rr(T)
i= 1

k-1 T-1

( X,, (T) + E A (t), (3.40)
i=1 t=o

where the equality (a) follows the observation that

Xu,(T) = Quw,+(T) = Rum(T) - Ru,(T).

Since the variables Xi(t)'s are non-negative, we have Ekl Xu.(t) < Ejo X(t).

Thus, for each node j

T-1 T-1

E A(t) - - X3(T) R(T) E A(t).
t=O j5pr t=0

Taking limit as T -+ oc and using the strong law of large numbers for the arrival

process and Eqn. (3.39), we have

lim R(T) - A, Vj. w.p. 1
T-+oo T

This concludes the proof.
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3.8.3 Proof of Lemma (3.4.5)

We begin with a preliminary lemma.

Lemma 3.8.1 If we have

Q(t + 1) (Q(t) - p(t))+ + A(t) (3.41)

where all the variables are non-negative and (x)+ = max{x, 0}, then

Q2(t + 1) - Q2 (t) < P2 (t) + A 2 (t) + 2Q(t)(A(t) - 1t(t)).

Proof Squaring both sides of Eqn. (3.41) yields,

Q 2 (t + 1)

((Q(t) - pi(t))+)2 + A 2 (t) + 2A(t)(Q(t) - p(t))+

< (Q(t) - p(t))2 + A2 (t) + 2A(t)Q(t),

where we use the fact that x 2 >( +) 2 , Q(t) > 0, and p(t) > 0. Rearranging the

above inequality finishes the proof.

Applying Lemma 3.8.1 to the dynamics (3.25) of Xj(t) yields, for each node j 7 r,

X( (t + 1) - Xj(t) < B(t) + (3.42)

2Xj (t)( y7 imj(t) - Z a(t)), (3.43)
mEV kEV

where B(t) c 2 a + max{A2 (t), cmax} (A 2 (t) + 2c2a), A(t) is the number of

exogenous packet arrivals in a slot, and Cmax A maxeEE Ce is the maximum capacity

of the links. Since per-slot arrival A(t) has finite second moment, there exists a finite

constant B > 0 such that E[B(t)] 5 E (A 2 (t)) + 2c2ax < B.

We define the quadratic Lyapunov function L(X(t)) = X (t). From (3.42),

the one-slot Lyapunov drift A(X(t)), conditioned on the current network configura-
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tion o(t) yields

A(X (t)|o-(t)) A E [L (X (t + 1) - L (X (t)) I X (t), o(t)]

=E [ E (Xj (t + 1) - Xj2 (t)) I X (t), 0,-(t)]

< B|V| + 2 Z X(t)E ( ,Upa*(t) (3.44)
jor mEV

-ZPkJ(t) IX (t), o-(t)]
kEV

= BVI - 2 E E[1ij (t) I X (t), o-(t)] (Xj (t) (3.45)
(ij)EE

-- S Xk(t)
kEKj(t)

= BIVI - 2 E Wjj(t)E[pjI(t)I X(t), a(t)] (3.46)
(ij)CE

The broadcast-policy r* is chosen to minimize the upper-bound of conditional-drift,

given on the right-hand side of (3.46) among all policies in H*.

Next, we construct a randomized scheduling policy 7RAND E H*. Let * E

conv(M0 ,) be the part of an optimal solution corresponding to o(t) = o given

by Eqn. 3.10. From Caratheodory's theorem [391, there exist at most (IE| + 1)

link activation vectors Sk c M, and the associated non-negative scalars {ao} with

Zk-1 a, = 1, such that
IEi+1

)*.= as. (3.47)
k=1

Define the average (unconditional) activation vector

1*= 5p(o-) O* (3.48)
UEE

Hence, from Eqn. (3.10) we have,

A* < min ce0*. (3.49)
U: a proper cut E(3

eE EU
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Suppose that the exogenous packet arrival rate A is strictly less than the broadcast

capacity A*. There exists an e > 0 such that A + e < A*. From (3.49), we have

A+e< m+ <7 * (3.50)
U: a proper cut eE e

eEEu

For any network node v $ r, consider the proper cuts Uv = V \ {v}. Specializing the

bound in (3.50) to these cuts, we have

A + e 5 ce3*, Vv , r. (3.51)
eEEu,

Since the underlying network topology G = (V, E) is a DAG, there exists a topolog-

ical ordering of the network nodes so that: (i) the nodes can be labeled serially as

{Vi, . . . , jviv}, where v, = r is the source node with no in-neighbours and vIvI has no

outgoing neighbours and (ii) all edges in E are directed from vi -÷ vj, i < j [40];

From (3.51), we define q, E [0, 1] for each node vi such that

CO * = A + E17e , l=2, ... , VI. (3.52)
eEEu,,

Consider the randomized broadcast policy rRAND E fl* working as follows:

Stationary Randomized Policy 7rRAND:

(i) If the observed network configuration at slot t is -(t) = -, the policy 7rRAND

selects 2 the feasible activation set s' with probability a';

(ii) For each incoming selected link e = (-, vi) to node vi such that s,(t) = 1, the

link e is activated independently with probability q1;

(iii) Activated links (note, not necessarily all the selected links) are used to

forward packets, subject to the constraints that define the policy class fI* (i.e.,

in-order packet delivery and that a network node is only allowed to receive packets

that have been received by all of its in-neighbors).
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Note that this stationary randomized policy 7r RAND operates independently of the

state of received packets in the network, i.e., X(t). However it depends on the current

network configuration o(t). Since each network node j is relabeled as v, for some 1,

from (3.52) we have, for each node j $ r, the total expected incoming transmission

rate to the node j under the policy 7rRAND, averaged over all network states a satisfies

[pRAND [pRANDS E{I (t) X~t]-5 E~L (t)]
i:(i,j) EE i:(ij)GE

eEEu,
1

A + f . (3.53)
|V|

Equation (3.53) shows that the randomized policy 7pRAND provides each network node

j r with the total expected incoming rate strictly larger than the packet arrival

rate A via proper random link activations conditioned on the current network config-

uration. According to our notational convention, we have

[p AND (t) I X(t)] = E[ E AND(t)] = A. (3.54)
i:(i,r)EE i:(i,r)EE

From (3.53) and (3.54), if node i appears before node j in the aforementioned topo-

logical ordering, i.e., i = v11 < Vi, = j for some 1i < 1j, then

[ AND (t)] R 
EpRAND

k:(k,i)EE k:(kj)EE

E
< - .(3.55)

|V|,

The above inequality will be used to show the throughput optimality of the policy

r*.

The drift inequality (3.44) holds for any policy 7r E H*. The broadcast policy 7r*

observes the states (X(t), o(t)) and seek to greedily minimize the upper-bound of

drift (3.46) at every slot. Comparing the actions taken by the policy 7r* with those
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by the randomized policy 7RAND in slot t in (3.44), we have

(3.56)

SBIVI - 2 E E[p*(t)|I X(t),ujt)]WJ(t)
(i,j)-E

BIVI - 2 >E [p RAND(t) | X(t), t)]WJi(t)
(ij)CE

BIVI - 2 E E[7rRAND(t) I 0(t)]Wij(t)

(ij)GE

(3.57)

Taking Expectation of both sides w.r.t. the stationary process o(t) and rearranging,

we have

A 7'(X(t))

<BIVI - 2 E E [P pRAND(t)]Wij(t)
(iJ)EE

<BIVI+ 2 : X(t) (
jr mEV

B|V| -E E Xj (t).

E [ pRAND (t)] - SEE p 7rRAND

kEV

Note that i* = arg min~iEn(j) Qij (t) for a given node j. Since node i* is an in-neighbour

of node j, i* must lie before j in any topological ordering of the DAG. Hence, the last

inequality of (3.59) follows directly from (3.55). Taking expectation in (3.59) with

respect to X(t), we have

E [L(X(t + 1))] - E [L(X(t))] < BIVI - 21E||X(t)|i 1 ,

where |1 - |1 is the fl-norm of a vector. Summing the above inequality over t =
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0, 1, 2,. . .T - I yields

T-1

E[L(X(T))] - E[L(X(0))] B|V|T - k. E||X(t|||1.
t=0

Dividing the above by 2TE/|V| and using L(X(t)) ;> 0, we have

<B|IV|2 +
2EBXT1T E~j~~j

lVi E[L(X(0))]
2TE

Taking a limsup of both sides yields

1 T-1 < BI1
lim sup - E[Xj(t)] B

T--+xj T 2E
t=O jo

4
r

(3.60)

which implies that all virtual-queues Xj(t) are strongly stable [33]. Strong stability

of Xj(t) implies that all virtual queues Xj(t) are rate stable [33, Theorem 2.8j.

3.8.4 Proof of Theorem (3..5.3)

To prove throughput-optimality of Theorem (3.5.3), we work with the same Lyapunov

function L(X(t)) = EZjr Xj2(t) as in Theorem (3.4.6) and follow the same steps until

Eqn. (3.46) to obtain the following upper-bound on conditional drift

' 

BIVI --2 W (t7(t)I)(t),X'(t),,(t))
( 

Wi3j (t.)
(i,j)EE

(3.61)
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Since the policy ir' makes scheduling decision based on the locally computed weights

W!' (t), by the definition of the policy 7r', we have for any policy 7r E l:

> Wi'(t)E( 1p7(tfX(t),X'(t),o-(t) )
(i,j)EE

> E Wi'j (t) E(p,7 (t)|IX (t), X'I(t), 0,-(t)) (3.62)
(i,j)EE

Taking expectation of both sides w.r.t. the random update process X'(t), conditioned

on the true network state X(t) and the network configuration a-(t), we have

Cn2 cma/2 + >3 Wij(t)E( pi(t)|X(t), -(t))
(ij)EE

> EW,,'j(t)E(pi(t)1X (t), o-(t))
(i,j)EE

(b)

> EWj'j(t)E(p t~(t)|X(t),o,(t))

> Wij(t)E(p (t)IX(t), a-(t)) - Cnr 2 cm/2
(i,j)EE

(3.63)

Here the inequality (a) and (c) follows from Lemma (3.5.2) and the fact that JEj <

n 2 /2 and pij(t) 5 cm. Inequality (b) follows from Eqn. (3.62). Thus from Eqn.

(3.61) and (3.63), the expected conditional drift of the Lyapunov function under the

policy 7r', where the expectation is taken w.r.t. the random update and arrival process

is upper bounded as follows:

7"'(X(t)IX (t),o(t)) < B' - 2 > Wi (t)E[IL (t) I X(t),-(t)
(i,j)EE

with the constant B' = BIVI + 2Cn 2 cm. Since the above inequality holds for any

policy 7r E L, we can follow the exactly same steps in the proof of Theorem (3.4.6)

by replacing an arbitrary 7r by 7TRAND and showing that it has negative drift.
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Chapter 4

Throughput-Optimal Broadcast

Algorithms : Networks with

Arbitrary Topology

4.1 Overview of the Results

In this chapter, we drop the acyclicity assumption of Chapter 2 and 3, and address the

problem of throughput-optimal broadcasting in arbitrary network topologies. To keep

the algorithm and its analysis simple, we will propose and analyze a slightly different

timing model (called the minislot model). However, this does not alter the essential

nature of the problem and the broadcast algorithm that we design may be applied

to the usual time-slotted model. The resulting broadcast policy has an interesting

interpretation of executing "Backpressure on Sets". Our main technical contributions

in this chapter are as follows:

(1) We first identify a convenient state-space representation of the network dy-

namics, in which the broadcast problem reduces to a "virtual-queue" stability

problem, with appropriately defined "virtual queues". By utilizing Stochastic

Lyapunov-drift techniques, we derive a broadcast policy that provably achieves

the broadcast capacitt in arbitrary networks.
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(2) Next, we introduce a multi-class heuristic policy, by combining the above policy

with in-class in-order packet delivery from Chapter 2 in a suitable way. In this

scheme, the number of classes is a tunable parameter, which offers a trade-

off between efficiency and complexity. Several interesting properties of this

heuristic scheme are also derived.

(3) Finally, we validate the theoretical ideas through extensive numerical simula-

tions.

The rest of the chapter is organized as follows. In Section 4.2 we describe the opera-

tional network model (hereby referred to as the minislot model) and characterize its

broadcast capacity. In Section 4.3 we derive our throughput-optimal broadcast pol-

icy. In Section 4.4 we propose a multi-class heuristic policy which uses the scheduling

scheme derived in Section 4.3. Section 4.5 describes an extension of the policy to wire-

less networks, while Section 4.6 discusses distributed implementation of the proposed

policy. In Section 4.7 we validate our theoretical results via numerical simulations.

Finally, in section 4.8 we conclude this chapter with some directions for future work.

4.2 The Minislot Model

We begin our study with the consideration of broadcasting in wired networks with

edge capacity constraints. This model is simpler to describe and analyze, yet it

preserves all essential ingredients of the problem. The extension of the proposed

broadcasting policy to wireless networks with activation constraints will be considered

in Section 4.5.

As in the previous chapters, we consider a graph 9(V, E), V being the set of vertices

and E being the set of directed edges, with IVI = n and |El = m. In the equivalent

slotted time model, the transmission capacity of each edge is one packet per slot.

External packets arrive at the source node r c V. The arrivals are i.i.d. at every slot

with expected arrival of A packets per slot.

To simplify the analysis, we perturb the slotted-time assumption and adopt a slightly
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different but equivalent mini-slot model. A slot consists of m consecutive mini-slots.

Our dynamic broadcast algorithms are conceptually easier to derive, analyze and

understand in the mini-slot model. However, the resulting algorithms can be easily

adapted to the usual slotted model.

Mini-slot model: In this model, the basic unit of time is called a mini-slot. At

each mini-slot t, an edge e = (a, b) e E is chosen for activation, independently and

uniformly at random from the set of all m edges. All other m - 1 edges remain idle

for that mini-slot. A packet can be transmitted over an active edge only. A single

packet transmission takes one mini-slot for completion. This random edge-activity

process is represented by the i.i.d. sequence of random variables {S(t)}0 , such that,

S(t) = e indicates that the edge e E E is activated at the mini-slot t. Thus,

P(S(t) = e) = 1/m, Ve E E, Vt

External packets arrive at the source r with expected arrival of A/m packets per

mini-slot.

The main analytical advantage of the mini-slot model is that only a single packet

transmission takes place at a mini-slot, which makes it easier to express the system-

dynamics. Moreover, we will show in Theorem (4.2.3) that the broadcast capacity

is the same in the two models.

4.2.1 Broadcast-Capacity of a Network

Informally, a network supports a broadcast rate A if there exists a scheduling policy,

under which all nodes in the network receive packets at the rate of A, for the same rate

of packet arrival at the source. The broadcast-capacity A* is the maximally achievable

broadcast rate in the network.

In the minislot model, we consider a class I of scheduling policies, which observe

the currently active edge e = (a, b) at every mini-slot t and select at most one packet

from node a and transmit it to b over the active edge e. On the other hand, in the

slotted time model, admissible policies in 1I may transmit at most one packet per
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edge simultaneously across all edges in the network at every slot. The policy-class H

includes policies that have access to all past and future information, and may forward

any packet present at node a at time t to node b.

Recall that, a slot corresponds to m consecutive mini-slots. In either model, let

R'(T) be the number of distinct packets received in common by all nodes in the

network, up to slot T, under a policy 7r C H. The time average limTr, 0o R(T)/T is

the rate at which packets are received uniformly at all nodes.

Definition 4.2.1 A policy ,r G 1 achieves a broadcast throughput A, if for a packet

arrival rate of A, we have

1
lim -R'(T) = A, in probability. (4.1)

T-+oo T

Definition 4.2.2 The broadcast capacity A* of a network is the supremum of all

arrival rates A for which there exists a broadcast policy 7r E , achieving rate A.

A policy, that achieves any rate A < A*, is called a throughput-optimal policy. In

the slotted-time model, the broadcast capacity A* of a network g follows from the

Edmonds' tree-packing theorem [14], and is given by the following:

A* = min Max-Flow(r -* t) per slot, (4.2)
tEV\{r}

where Max-Flow(r -÷ t) denotes the maximum value of flow that can be feasibly

sent from the node r to the node t in the graph g(V, E) [49]. Edmonds' tree-packing

theorem also implies that there exist A* edge-disjoint arborescences 1 or directed

spanning trees, rooted at r in the graph G. By examining the flow from the source to

every node and using (4.2), it follows that by sending unit flow over each edge-disjoint

tree, we may achieve the capacity A*.

As an illustration, consider the graph shown in Figure 4-1. It follows from Eqn. (4.2)

that the broadcast capacity of the graph is A* = 2. Edges belonging to a set of two

'An arborescence is a directed graph such that there is a unique directed path from the root to
all other vertices in it. Thus, an arborescence is a directed spanning tree. From now onwards, the
terms "arborescence" and "directed spanning tree" will be used interchangeably.
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edge-disjoint spanning trees T1 and 72 are shown in blue and red in the figure.

The following theorem establishes the equivalence of the mini-slot model and the

slotted-time model in terms of broadcast capacity.

Theorem 4.2.3 (Invariance of Capacity) The broadcast capacity of the mini-

slot model is the same as that of the slotted-time model and is given by Eqn. (4.2).

Proof See Appendix 4.9.1.

4.3 A Throughput-Optimal Broadcast Policy -r*

In this section we design a throughput-optimal broadcast policy r* E H, for networks

with arbitrary topology. This algorithm is of Max-weight type and is inspired by

the seminal back-pressure policy for the corresponding unicast problem [1}. However,

because of packet duplications, the usual per-node queues cannot be defined here. We

get around this difficulty by defining certain virtual-queues, corresponding to subsets

of nodes. We show that a scheduling policy in H, which stochastically stabilizes these

virtual queues for all arrival rates A < A*, constitutes a throughput-optimal broadcast

policy. Based on this result, we derive a Max-Weight policy 7r*, by minimizing the

drift of a quadratic Lyapunov function of the virtual queues.

4.3.1 Definitions and Notations

To facilitate the description of our proposed algorithm, we first introduce the notion

of reachable sets and reachable sequence of sets as follows:

Definition 4.3.1 (Reachable Set) A subset of vertices F c V is said to be reach-

able if the induced graph 2 F(9) contains a directed arborescence, rooted at source r,

which spans the node set F.

2For a graph G(V, E) and any vertex set F C V, the induced graph F(9) is defined as the

sub-graph containing only the vertices F with the edges whose both ends lie in the set F.
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Figure 4-1: The four-node diamond network D4 .

Equivalently, a subset of vertices F c V is reachable if and only if there is a broadcast

policy under which a packet p can be duplicated exactly in the subset F, during its

course of broadcast. Note that, the set of all reachable sets is a strict subset of the

set of all subsets of vertices. This is true because all reachable sets, by definition,

must contain the source node r.

We may completely specify the trajectory of a packet during its course of broad-

cast, using the notion of Reachable Sequences, defined as follows:

Definition 4.3.2 (Reachable Sequence) An ordered sequence of n - 1 (reachable

set, edge) tuples {(Fj, ej),j = 1, 2, ... , n - 1} is called a Reachable Sequence if the

following properties hold:

" F1 = {r} and for all j =1, 2,... , n - 1:

" F C Fj+1

" IFj+1|I=FjI+1.

" ej = (a,b) E E : a G Fj, b Fj+1\Fj

T is defined to be the set of all reachable sequences.

A reachable sequence denotes a feasible sequence of transmissions for broadcasting

a particular packet to all nodes, where the th transmission of a packet takes place
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across the edge ej, j = 1, 2..., n - 1. By definition, every reachable set must belong

to at least one reachable sequence. A trivial upper-bound on |I is n 2
n . An example

illustrating the notions of reachable sets and reachable sequences for a simple graph

is provided next.

Example: Consider the graph shown in Figure 4-1. A reachable sequence for

this graph is given by S below:

S = {({r}, rc), ({r, c}, ca), ({r,a, c}, rb)}

This reachable sequence is obtained by adding nodes along the tree with red edges

in Figure 4-1. Clearly, an example of a reachable set F in this graph is

F = {r,a,c}

For a reachable set F, define its set of out-edges O+F and in-edges 9-F as follows:

O+F {(a, b) E E: a E F, b F}

a-F {(a, b) C E: a E F, b E F}

(4.3)

(4.4)

For an edge e = (a, b) E (+F, define

F + e = F U {b} (4.5)

Similarly, for an edge e = (a, b) E -F, define

F \ {e} = F \ {b} (4.6)

Convergence of Random Variables: For a sequence of random variables {X,} _1 and

another random variable X, defined on the same probability space, by the notation

X, =9 X we mean that the sequence of random variables {Xn} _1 converges in

119



probability to the random variable X [50].

4.3.2 System Dynamics

Consider any broadcast policy 7r E 1- in action. For any reachable set F C V,

denote the number of packets, replicated exactly at the vertex-set F at mini-slot t,

by QF(t) 3 . A packet p, which is replicated exactly at the set F by time t, is called a

class-F packet. Hence, at a given time t, the reachable sets F E F induce a disjoint

partition of all the packets present in the network.

In our mini-slot model, a class-F packet can make a transition only to class F + e

(where e E +F) during a mini-slot, where e is the active edge. Let the rate allocated

to the edge e, for transmitting a class-F packet at time t, be denoted by p,F M

(naturally, Pe,F(t) = 0, if F is not a reachable set or e is inactive) '. Here Pe,F(t)

is a binary-valued control variable, which assumes the value 1 if the active edge e is

allocated to transmit a class-F packet at the mini-slot t.

In the following we argue that, for any reachable set F, the variable QF(t) satisfies

the following one-step queuing-dynamics (Lindley recursion) [47]:

QF (t+l) (QF(t)- E Pe,F(t)) -+ lle,G(t), VF # {rX4.7)
eEa+F (e,G):eEO-F,G=F\{e}

Q{r}(t + 1) {r (Q{r}(t) r} + A(t) (4.8)
eEO+({r})

The dynamics in Eqn. (4.7) may be derived as follows: in the mini-slot model,

only one packet over the currently active edge can be transmitted in the entire net-

work at any mini-slot. Hence, for any reachable set F, the value of the corresponding

state-variable QF(t) may go up or down by at most one in a mini-slot. Now, QF(t)

decreases by one when any of the out-edges e c &+F is activated at mini-slot t

and it carries a class-F packet, provided QF(t) > 0. This explains the first term in
3 1n the rest of this chapter, we define Qv(t) = 0,Vt.
4 Note that p,F(t) and consequently, QF(t) depend on the used policy 7r and should be denoted

by p',F(t) and Q1(t). Here we drop the superscript 7r to simplify notation.
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Eqn. (4.7). Similarly, the variable QF(t) increases by one when a packet in some set

G = F \ {e} (or an external packet, in case F = {r}), is transmitted to the set F over

the (active) edge e E 9-F. This explains the second term in Eqn. (4.7). In the fol-

lowing, we slightly abuse the notation by setting E(eG):eEo9-FG=F\{e} /e,G(t) A(t)7

when F = {r}. With this convention, the system dynamics is completely specified by

the first inequality in (4.7), which constitutes a discrete time Lindley recursion [47].

4.3.3 Relationship between Stability and Throughput Opti-

mality

The following lemma shows that stability of the virtual queues implies throughput-

optimality for any admissible policy.

Lemma 4.3.3 (Stability implies Throughput-Optimality) Consider a

Markovian policy ir, under which the induced Markov Chain {Q (t)} is Positive

Recurrent for all arrival rate A < A*. Then 7r is a throughput optimal broadcast

policy.

Proof Under the action of a Markovian Policy 7r, the total number of packets Rr(T)

delivered to all nodes in the network by the time T is given by

T

R'(T) = A(t) - E Q (T)
t=1 F

Hence, the rate of packet broadcast is given by

lim R1 T(T)
T-*oo T

/1 Q'(T)
=lim (- A(t) - E

T- x T t=1 F T

* A - E lim %_(T)

F T-+ T

= A

(4.9)

(4.10)
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Eqn. (4.9) follows from the Weak Law of Large Numbers for the arrival process. To

justify Eqn. (4.10), note that for any 6 > 0 and any reachable set F, we have

lim P %(T) > = lim P Q'(T) > T = 0, (4.11)
T-xoo T T- oo /

where the last equality follows from the assumption of positive recurrence of {Q (t)}.

Thus Eqn. (4.11) implies that Q(T) - 0, VF. This justifies Eqn. (4.10) and provesT

the lemma.

4.3.4 Stochastic Stability of the Process {Q(t)}t>i

Equipped with Lemma (4.3.3), we now focus on finding a Markovian policy ir*, which

stabilizes the chain {Q * (t)};>1
5 . To accomplish this goal, we use the Lyapunov drift

methodology [331, and derive a dynamic policy r* which minimizes the one-minislot

drift of a certain Lyapunov function. We then show that the proposed policy 7r* has

negative drift outside a bounded region in the state-space. Upon invoking the Foster-

Lyapunov criterion [51], this proves positive recurrence of the chain {Q(t)}

To apply the scheme outlined above, we start out by defining the following Quadratic

Lyapunov Function L(Q(t)):

L(Q(t)) = E Q (t), (4.12)
F

where the sum extends over all reachable sets. Recall that, the r.v. S(t) denotes the

currently active edge at the mini-slot t. The one-minislot drift is defined as:

At(Q(t), S(t)) = L(Q(t + 1)) - L(Q(t)) (4.13)

From the dynamics (4.7), we have

Q(t + 1) < Qi(t) + ax - 2QF(t) (e,F (t) -- 5eG(O
eEO+F (e,G):eEa-F,G=F\{e}

5The argument t denotes time in mini-slots.
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where pma = 1 is the maximum capacity of a link per mini-slot. Thus, one mini-slot

drift may be upper-bounded as follows:

At(Q(t), S(t)) 2"ma -2 ZQF(t)( I Pe,F(t) -- Pe,G(t)-
FgV eEa+F (e,G):eE-F,G=F\{e}

Interchanging the order of summation, we have

At(Q(t), S(t)) 2"pi - (eF e,F() (F(t) - QF+et-

(e,F):eEa+F

Taking expectation of both sides of the above inequality with respect to the edge-

activation process S(t) and the arrival process A(t), we obtain the following upper-

bound on the conditional Lyapunov drift At(Q(t)):

At (Q (t)) =- Es(t)At(Q(t), S(t))

< 2/n,2 - QF(t) - QF+e(t))E(e,F(t)IQ(t), S(t)14.14)
(e,F):eEa+F

Due to the activity constraint, if S(t) = e, we must have P,G(t) = 0, Vi $ e, for all

reachable sets G. In other words, a packet can only be transmitted along the active

edge for the mini-slot t.

For any reachable set F with an out-edge e E &+F, define the weight

WFe(t) QF(t) - QF+e-(t) (4.15)

Consider the following Max-weight policy lr*, which transmits a packet p* belonging

to class-F from node i, where the packet p* has the highest positive weight w*Fe(t)

maxF WF,e(t), from the set of all packets contending for the edge e at mini-slot t. The

resulting policy is presented formally in Algorithm 6.
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Algorithm 6 The Dynamic Broadcast Policy ir*
1: Select an edge e for activation independently and uniformly at random from the

set of all edges E.

2: Compute all reachable sets F such that e E (+F.

3: Transmit a class-F packet over the edge e, such that the corresponding weight

WF,e(t) = QF(t) - QF+e(t) is positive and achieves the maximum over all such

reachable sets F, computed in step 1 above. (Recall, Qv(t) = 0,Vt).

4: Idle, if no such F exists.

We now state the main theorem of this chapter.

Theorem 4.3.4 (Throughput-Optimality of ir*) The dynamic policy ir* is a

throughput-optimal broadcast policy for any network.

Proof See Appendix (4.9.2).

Discussion Note that, the policy 7r* makes dynamic routing and scheduling deci-

sion for each packet, based on the current network-state vector Q(t). In particular,

its operation does not depend on the global topology information of the network.

This robustness property makes it suitable for use in mobile adhoc wireless networks

(MANET), where the underlying topology may change frequently.

A straightforward way to extend the resulting policy to the slotted-time model (where

all edges can simultaneously transmit packets at every slot) would be to transmit a

packet pe from the class F* = arg maxF:eEa+F WF,e (t) over the edge e, Ve E E. Note

that, the weights WF,e(t) are computed based on the queue-lengths QF(t) at the be-

ginning of slot t.
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4.4 A Multi-Class Broadcasting Heuristic

A potential difficulty in implementing the policy lr* is that, one needs to maintain

a state-variable QF(t), corresponding to each reachable set F, and keep track of

the particular reachable set Fp(t), to which packet p belongs. For large networks,

without any additional structure in the scheduling policy, maintaining such detailed

state-information is quite cumbersome. To alleviate this problem, we next propose a

heuristic policy which combines 7r* with the idea of in-class in-order delivery. The

introduction of class-based in-order delivery imposes additional structure in the packet

scheduling, which in turn, substantially reduces the complexity of the state-space.

Motivation To motivate the heuristic policy, we begin with a simple policy-space

i"-order , introduced in Chapter 2 for throughput-optimal broadcasting in wireless

Directed Acyclic Graphs (DAG). Policies in nin--order deliver packets to nodes accord-

ing to their order of arrival at the source. Unfortunately, as shown in Chapter 2,

although Hi"-order is sufficient for achieving throughput-optimality in a DAG, it is

not necessarily throughput-optimal for arbitrary networks, containing directed cy-

cles. To tackle this problem, we generalize the idea of in-order delivery by proposing

a k-class policy-space rii"-order, k > 1 which generalizes the space Hin-order. In this

policy-space, the policies divide the packets into k distinct classes. The in-order de-

livery constraint is imposed within each class but not across different classes. Thus,

in oi-order, the scheduling constraint of ni-order is relaxed by requiring that pack-

ets belonging to each individual class be delivered to nodes according to their order

of arrival at the source. However, the space ni,-order does not impose any orderly

requirement for deliveries of packets across different classes. Combining it with the

max-weight scheduling scheme, designed earlier for the throughput-optimal policy 7r*,

we propose a multi-class heuristic policy 7r E Ilin-order which is conjectured to be

throughput-optimal for large-enough number of classes k. Extensive numerical simu-

lations have been carried out to support this conjecture.

The following section gives detailed description of this heuristic policy, outlined above.
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4.4.1 The In-order Policy-Space Iin-order

We recall the definition of the policy-space lin-order from Chapter 2:

Definition 4.4.1 (Policy-Space fi"-order) A broadcast policy 7r belongs to the space

frin-order if all incoming packets at the source r are serially indexed {1, 2, 3,.. .} ac-

cording to their order of arrivals, and a node i c V is allowed to receive a packet p

at time t only if the node i has received the packets {1, 2, .. . , p - 1} by time t.

As a result of the in-order delivery property of policies in the space Hin-order, it fol-

lows that the state of received packets in the network at time t may be completely

represented by the n-dimensional vector R(t), where Ri(t) denotes the highest index

of the packet received by node i E V by time t. We emphasize that this succinct

representation of network-state is valid only under the action of the policies in the

space fin-order, and is not necessarily true in the general policy-space H.

Due to the highly-simplified state-space representation, it is natural to try to find

efficient broadcast-policies in the space Hin-order for arbitrary network topologies. We

showed in Chapter 2 that if the underlying topology of the network is restricted

to DAGs, the space Hin-order indeed contains a throughput-optimal broadcast pol-

icy. However, we also proved that the space fin-order is not rich enough to achieve

broadcast capacity in networks with arbitrary topology. We re-state the following

proposition in this connection.

Proposition 4.4.2 (THROUGHPUT-LIMITATION OF THE POLICY SPACE

flin-order ) There exists a network g such that, no broadcast-policy in the space

fin-order can achieve the broadcast-capacity of g.

The above proposition is proved in Chapter 2, by showing that no broadcast policy

in the space H in-order can achieve the broadcast-capacity in the diamond-network D 4 ,

depicted in Figure 4-1.
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4.4.2 The Multi-class Policy-Space nin-order

To overcome the throughput-limitation of the space Hin-order, we propose the following

generalized policy-space "~oder, k ;> 1, which retains the efficient representation

property of the space finorder.

Definition 4.4.3 (Policy-Space Hi"-order ) A broadcast policy 7r belongs to the space

li-order if the following conditions hold:

" There are k distinct "classes".

* A packet, upon arrival at the source, is labelled with any one of the k classes,

uniformly at random. The label of a packet remains fixed throughout its course

of broadcast.

" Packets belonging to each individual class j E [1,... , k], are serially indexed

{ 1, 2, 3, . .} according to their order of arrival.

* A node i G V in the network is allowed to receive a packet p from class j at

time t, only if the node i has received the packets {1, 2,... p -1} from the class

j by time t .

In other words, in the policy-space lii"-order, packets belonging to each individual

class j E [1,..., k] are delivered to nodes in-order. It is also clear from the definition

that

in-order _ lin-order

Thus, the collection of policy-spaces {fln-order, k > 1} generalizes the policy-space

in-order

State-Space representation under l'-order Since each class in the policy-space

H in-order obeys the in-order delivery property, it follows that the network-state at time

t is completely described by the k-tuple of vectors {Rc(t), 1 < c < k}, where Rc(t)

denotes the highest index of the packet received by node i c V from class c by time
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t. Thus the state-space complexity grows linearly with the number of classes used.

Following our development so far, it is natural to seek a throughput-optimal broadcast

policy in the space Hi"-order with a small class-size k. In contrast to Proposition

(4.4.2), the following proposition gives a positive result in this direction.

Proposition 4.4.4 (THROUGHPUT-OPTIMALITY OF THE SPACE i n-order k >

n/2) For every network g, there exists a throughput-optimal broadcast policy in

the policy-space lin-order, for all k > n/2.

The proof of this proposition uses a static policy, which routes the incoming pack-

ets along a set of A* edge-disjoint spanning trees. For a network with broadcast-

capacity A*, the existence of these trees are guaranteed by Edmonds' tree packing

theorem [14]. Then we show that for any network with unit-capacity edges, its

broadcast-capacity A* is upper-bounded by n/2, which completes the proof. The

details of this proof are outlined in Appendix 4.9.5.

4.4.3 General Properties of the Multi-class Policy-Space

In this subsection we show how the intra-class in-order delivery property of the multi-

class policy-space constrains the delivery of packets per class. In particular, we show

that at any time the number of distinct subsets of nodes, where packets from any

class belong to, is at most n + 1. This should be contrasted with the unrestricted

policy-space r, where the packets at any time may be present in all subsets of nodes,

which is exponential in the size of the network.

To formally state the property, define Fp'j)(t) C V to be the subset of nodes where

the pth packet from class j belongs to at time t. We claim that,
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Proposition 4.4.5 For any 1 < pi < P2 and for any time t, we have

F () (t) C Fj )(t) (4.16)

Proof If F (t) = #, the inclusion holds trivially. Otherwise, consider a node v E

Fj (t). This implies that the node v containts the P2 th packet from class k at time t.

Since all classes in the policy-space Hin"-oder satisfies the in-order delivery property,

it follows that the node v must contain the Pith packet from class k at time t, where

P1 < P2. Thus v E F f(t). This implies that F (t) C F j)(t), which proves the

proposition.

The above proposition immediately implies the following interesting result. Let

F(i) (t) denote the family of distinct subsets of nodes where packets from class k

are present at time t, i.e.,

.F(i)(t) = {F 5)(t)Ip > 1} (4.17)

Proposition 4.4.6 For all classes 1 < j < k and all time t > 1, we have

|FjT (t)I n + 1 (4.18)

Proof Using Proposition (4.4.5), we have the following chain of set inclusions

V D Fj (t) ; F~' (t) Q ... Q F 5)(t) D ...

Since |VI = n and the sequence of sets of vertices {FFj)(t)}j>i are decreasing, there

could be at most n + 1 distinct sets in the family F(j)(t).

129



Discussions Proposition 4.4.6 suggests that each individual class is structurally

constrained in disseminating packets. Without the in-order restriction, we trivially

have I.F(i)(t)I = O(2n). On the other hand, under the action of any broadcast policy

which routes packet along a fixed spanning tree, it is easy to see that the statement of

Eqn. (4.18) holds. The surprising conclusion of Proposition 4.4.6 is that it shows that

the statement of Eqn. (4.18) holds good even when we do not restrict the individual

classes to follow a fixed spanning tree, but require them to respect a much weaker

assumption of in-order delivery only. As a consequence, it is natural to search for an

efficient broadcast policy with multiple classes, so that, the packet-delivery restriction

of each individual class may be overcome collectively.

4.4.4 A Multi-class Heuristic Policy 7rH E [ in-order

Since any policy in the class rTin-order delivers packets from the same class in-order,

the intra-class packet scheduling is fixed for the entire policy-class Ilk"rd *. Thus,

we only need to specify an inter-class scheduling policy to resolve contentions among

multiple packets from different classes to access an active edge for transmission. In this

sub-section, we propose a dynamic policy 7rk E j1 norder, which uses the same Max-

Weight packet scheduling rule, as the throughput-optimal policy 7r*, for inter-class

packet scheduling. As we will see, the computation of weights and packet scheduling

in this case may be efficiently carried out by exploiting the special structure of the

space nin-order

Motivation We observe that, when the number of classes k = oc, so that every

incoming packet to the source r joins a new class, the in-order restriction of the

space fin-order is essentially no longer in effect. In particular, the throughput-optimal

policy 7r* of Section 4.3 belongs to the space Di";order. This motivates us to consider

the following multi-class scheduling policy 7rH:
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Intra-class packet scheduling Recall that, under a policy 7r E rin-order a packet

arriving at the source r, joins one of the k classes uniformly at random. Packets

belonging to any class c = 1, 2,..., k are delivered to all nodes in-order (i.e. the

order they arrived at the source r). Let the state-variable Rc(t) denote the number

of packets belonging to the class c received by node i up to the mini-slot t, i =

1, 2, ... , n, c = 1, 2, ... , k. As discussed earlier, given the intra-class in-order delivery

restriction, the state of the network at the mini-slot t is completely specified by the

vector {Rc(t), c = 1, 2, ... , k}.

Due to the in-order packet-delivery constraint, when an edge e = (i, j) is active at

the mini-slot t, not all packets that are present at node i and not-present at node j
are eligible for transmission. Under the policy 7rH E rlin-order, only the next Head-

of-the-Line (HOL) packet from each class, i.e., packet with index R'(t) + 1 from the

class c, c = 1, 2,... , k are eligible to be transmitted to the node j, provided that

the corresponding packet is also present at node i by mini-slot t. Hence, at a given

mini-slot t, there are at most k contending packets for an active edge. This should

be compared with the policy 7r*, in which there could be E(2') contending packets

for an active edge at a mini-slot.

Inter-class packet scheduling Given the above intra-class packet-scheduling rule,

which follows directly from the definition of the policy-space ic-order, we now pro-

pose an inter-class packet scheduling, for resolving the contention among multiple

contending classes for an active edge e at a mini-slot t. For this purpose, we utilize

the same Max- Weight scheduling rule, derived for the policy 7r* (step 2 of Algorithm

6).

The main computational advantage of the multiclass policy 7r' over the throughput-

optimal policy 7r* is that, instead of computing the weights wF,e(t) in (4.15) for all

reachable sets F, we only need to compute the weights of the sets F, corresponding

to the HOL packets (if any) belonging to the class c. By exploiting the structure of

the space Il"-",der, this requires quadratic number of computations in the class-size

k (see Algorithm 7) per mini-slot. Finally, we schedule the HOL packet from the class
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c* having the maximum (positive) weight.

Keeping in mind our earlier discussion about similarity of packet forwarding capabil-

ities of the classes and trees, we put forward the following conjecture regarding the

performance of the proposed heuristic:

Conjecture 1 The multiclass policy 7rH is throughput-optimal for k = O(A*),

where A* is the broadcast capacity of the network.

Extensive numerical simulation results supporting the conjecture will be presented

in Section 4.7.3.

Pseudo code The full pseudo code of the policy 7rk is provided in Algorithm 7. In

lines 4 .. . 10, we have used the in-order delivery property of the policy rk to compute

the sets Fc, to which the next HOL packet from the class c belongs. This property

is also used in computing the number of packets in the set G = Fc, F+e in line 14

as follows: recall that, the variable QG(t) counts the number of packets that the

reachable set G contains exclusively at mini-slot t. These packets can be counted

by counting such packets from each individual classes and then summing them up.

Again utilizing the in-class in-order delivery property, we conclude that the number

of packets N,(t) from class c, that belongs exclusively to the set G at time t is given

by

N(t) min R(t) - max R'(t) .
iEG iC:V\G )+

Hence,

k

QG(t) = ZN (t),
c=1

which explains the assignment in line 19. In line 23, the weights corresponding to the

HOL packets of each class are computed according to Eqn. (4.15). Finally, in line
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25, the HOL packet with the highest positive weight is transmitted across the active

edge e. The per mini-slot complexity of the policy 7r H is ((nk).

Algorithm 7 The Multi-class Scheduling Policy 7r H

At each mini-slot t, the network-controller observes the state-variables {Rc(t), 1 G
V, c = 1, 2, ... , k}, the currently active edge S(t) = e = (i, j) and executes the
following steps:

1: for all classes c = 1 : k do
2: |* Determine the index of the next expected in-order (HOL) packet pc from the

class c for node j *
3: Pc +- Rj (t) + 1.
4: /* Check whether node i has more packets than node j belonging to class c
5: if Rc(t) < Pc then
6: WC--0
7: continue;
8: end if
9: /* Find the subset Fe C V where the packet Pc is currently present *

10: Fe -p
11: for allnodel= 1 :ndo
12: if Rc(t) > Pc then
13: Fc +-- Fc U { }
14: end if
15: end for
16: Fc+e Fc U {j}
17: |, Find Qe(t) and Qi e.>(t) *
18: for G = Fc and F+e, do

19: QG (t) MiniCG RC(t) - maxiEV\G Re(t)

20: end for

21: Qv(t) +- 0
22: ,*Compute the weight w for packet pc *
23: we +- (QFe(t) - QFc+e(t))
24: end for

25: Schedule the packet p* E arg maxc w,, when maxc we > 0, else idle.

4.5 Extending to Wireless Networks

A wireless network is modeled by a graph G(V, E), along with a set of edge-subsets

M (represented by a set of binary characteristic vectors of dimension IE| = m). The

set M is called the set of all feasible activations [1]. The structure of the set M
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depends on the underlying interference constraint, e.g., under the primary interfer-

ence constraint, the set M consists of all matchings of the graph ! [4]. Any subset

of edges s C M can be activated simultaneously at a given slot. For broadcasting

in wireless networks, we first activate a feasible subset of edges from M and then

forward packets on the activated edges.

Since the proposed broadcast algorithms in sections 4.3 and 4.4 are Max- Weight by na-

ture, they extend straight-forwardly to wireless networks with activation constraints

[33]. In particular, from Eqn. (4.15), at each slot t, we first compute the weight of

each edge, defined as we(t) = maxF:eCa+F We,F(t). Next, we activate the subset of

edges s*(t) from the activation set M, having the maximum weight, i.e.,

s*(t) = arg max we(t)se
eEE

Packet forwarding over the activated edges remains the same as before. The above

activation procedure carries over to the multi-class heuristic r H in wireless networks.

4.6 Distributed Implementation

From the description of Algorithm 2, we note that the weight for a class c at a node

i is computed based on the knowledge of the current HOL packet indices {R'(t)}

of all nodes in the network. Gathering this global state information in a centralized

fashion warrants a huge amount of control information exchanges, consuming precious

network resources. To overcome this issue, we propose the following local message-

passing algorithm for exchanging state information.

Each node maintains a n x k state-table consisting of the last known HOL packet

indices R(t) = {Rc(t)}, along with the time-stamps tj(t) of their origin. Observe

that, the entry R'(t) corresponding to a node i is locally known to the node i, and

is always fresh. However, entries corresponding to other nodes { 3 (t), j = i} may be

outdated. If an edge (i, j) is activated during a minislot, the nodes i and j exchanges

their state-table w.p. q, where 0 < q < 1 is a tunable parameter. The entry Rk(t)
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corresponding to each node k is updated at the nodes i and j with the new information

available following the exchange (if any).

Let Dij(t) denote the age of the state-information of node j available at node i at

time t. The following proposition gives an upper bound on the expectation of the

maximum age of any entry at any node in the network:

Proposition 4.6.1 Under the action of the above policy, for any connected net-

work graph g, we have:

E(max Dij (t)) < , Vt (4.19)
ij q

The above proposition clearly shows that the expected worst case age of state

information may be reduced by increasing the parameter q, which, in turn, controls

the rate of control information exchange. Proof of the above proposition is given in

Appendix 4.9.6.

4.7 Numerical Simulations

4.7.1 Simulating the Throughput-optimal broadcast policy r*

We simulate the policy 7r* on the network D4, shown in Figure 4-1. The broadcast-

capacity of the network is 2 packets per slot. External packets arrive at the source

node r according to a Poisson process of a slightly lower rate of A = 1.95 packets per

slot. A packet is said to be broadcast when it reaches all the nodes in the network.

The rate of packet arrival and packet broadcast by policy 7r*, is shown in Figure 4-2.

This plot exemplifies the throughput-optimality of the policy 7r* in the network D4.
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Figure 4-2: Packet Arrival and Broadcast Rate in the Diamond Network in Figure 4-1,
under the action of the throughput-optimal policy 7r*.

4.7.2 Simulating the Multi-class Heuristic Policy wr'

The multi-class heuristic policy 7r' has been numerically simulated in 400 instances

of Erd6s-R6nyi random network with sizes varying from n = 20 to n = 40 nodes and

edge-connectivity probability p = 0.8. We have obtained similar qualitative results

for all such instances. One representative sample is discussed here.

Consider running the broadcast-policy ' on the network shown in Figure 4-3, con-

taining n = 20 nodes and m = 176 edges. The directions of the edges in this network

is chosen arbitrarily. With node 1 as the source node, we first compute the broadcast-

capacity A* of this network using Eqn. (4.2) and obtain A* = 6. External packets

are injected at the source node according to a Poisson process, with a slightly smaller

rate of A = 0.95A* ~~ 5.7 packets per slot. The rate of broadcast under the multi-class

policy 7rH for different values of k is shown in Figure 4-4. As evident from the plot,

the achievable broadcast rate, obtained by the policy r is non-decreasing in the

number of classes k. Also, the policy wr 1 broadcasts 95% of the input traffic for a

relatively small value of k = 7.

4.7.3 Minimum Number of Classes for Achieving the Capacity

In this experiment, we simulate the heuristic multiclass policy 7H on two different

classes of random graphs - Erd6s-R6nyi and Random Geometric Graphs. We ran-

domly generate 400 instances of Erd6s-R6nyi graphs from the previous subsection,
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Figure 4-3: A network G with N = 20 nodes. The colors of the edges indicate their
directions (e.g., blue edge ==> i -- j : i > j and vice versa). The broadcast capacity A* of
the network is computed to be 6, with node 1 being the source node.
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Figure 4-4: Achievable broadcast-rate with the multi-class heuristic broadcast-policies 4r,
for k =1, 3, 5, 7. The underlying network-topology is given in Figure 4-3 with broadcast
capacity A* = 6.

along with 400 instances of two-dimensional Random Geometric Graphs with n= 25

nodes with varying connectivity radii [52]. For each generated graph, we first com-

pute its broadcast capacity A* using Theorem 4.2.3. Packets arrive at a randomly
selected node according to a Poisson process of rate 95% of the computed broadcast

capacity of the graph. The empirical average of the minimum number of classes k*

required so that 95% of the incoming packets get broadcasted within T= 2000 slots

is plotted in Figure 4-5, along with its coefficient of variation (shown by the little

vertical bars). The plot is in excellent agreement with our Conjecture 1, suggesting

that for a network with broadcast capacity A*, only A* classes suffice for achieving
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near-broadcast-capacity, irrespective of the size and type of the network. Figure 4-5

also suggests that the same number of classes have different performances for two

networks with different broadcast capacities.

10
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5 4

EaErd6s-Ryny
2 - Random

Geometric

1 2 3 4 5 6 7 a

Figure 4-5: Number of classes required for achieving 95% of the broadcast capacity in
Erd6s-R~nyi and Random Geometric Graphs.

4.8 Conclusion and Future Directions

In this chapter we studied the problem of efficient, dynamic packet broadcasting in

data networks with arbitrary underlying topology. We derived a throughput-optimal

Max-weight broadcast policy that achieves the capacity, albeit at the expense of using

exponentially many state-variables. To get around this problem, we then proposed a

multi-class heuristic policy which combines the idea of in-order packet delivery with

a Max-weight scheduling, resulting in drastic reduction in complexity. The proposed

heuristic with small number of classes is conjectured to be throughput-optimal. An

immediate next step along this line of work would be to formally prove this conjecture.

Another problem of practical interest is to find the minimum number of classes k*(E)

required to achieve (1 - E) fraction of the capacity.
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4.9 Appendix

4.9.1 Proof of Lemma (4.2.3)

Proof We prove this lemma in two parts. First, we upper-bound the achievable

broadcast rate of the network under any policy in the mini-slot model by the broadcast

capacity A*(9) of the network in the usual slotted model, which is given by Eqn. (4.2).

Next, in our main result in section (4.9.2), we constructively show that this rate is

achievable, thus proving the lemma.

Let C C V be a non-empty subset of the nodes in the graph 9 such that r E C. Since

C is a strict subset of V, there exists a node i E V such that i E CC. Let the set E(C)

denote the set of all directed edges e = (a, b) such that a E C and b C. Denote IE(C)I

by Cut(C). Using the MAX-FLOW-MIN-CUT theorem [49], the broadcast-capacity in

the slotted model, given by Eqn. (4.2), may be alternatively represented as

A= min Cut(C) (4.20)
CgV,rEC

Now let us proceed with the mini-slot model. Since all packets arrived at source r

that are received by the node i must cross some edge in the cut E(C), it follows that,

under any policy 7r E I, the total number of packets Ri(t) that are received by node

i up to mini-slot t is upper-bounded by

t t

Ri(t) I1(S(T) = e) = 1(S(F) = e) (4.21)
=1 eEE(C) ecE(C) r1
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Thus the broadcast-rate A - achievable in the mini-slot model is upper-bounded

by

(a) Ri (t)
Arinisiot < lim inf (4.22)

t-+oo t

(b) 1 t

Sliminf- t E1(S(T)=e)

eEE(C) T1

1 t

= lim 1(S() = e) (4.23)t--oo t
eEE(C) =

(c E( 1
1 -Cut(C), w.p.1 (4.24)
m

Where the inequality (a) follows from the definition of broadcast-rate (4.1), inequality

(b) follows from Eqn. (4.21) and finally, the equality (c) follows from the Strong Law

of Large Numbers [501. Since the inequality (6.7) holds for any cut C C C containing

the source r and any policy 7r, from Eqn. (4.20) we have

1 1
A*inisiot Amin-s0o -Cut(C) -A* per mini-slot (4.25)m m

Since according to the hypothesis of the lemma, a slot is identified with m mini-slots,

the above result shows that

A ini-slot < A* per slot (4.26)

This proves that the capacity in the mini-slot model (per slot) is at most the capacity

of the slotted-time model (given by Eqn. (4.2)). In section (4.3), we show that there

exists a broadcast policy 7r* c 1I which achieves a broadcast-rate of A* packets per-slot

in the mini-slot model. This concludes the proof of the lemma.

4.9.2 Proof of Throughput Optimality of -r*

In this subsection, we show that the induced Markov-Chain Q* (t), generated by the

policy 7r* is positive recurrent, for all arrival rates A < A* packets per slot. This

140



is proved by showing that the expected one-minislot drift of the Lyapunov function

L(Q(t)) is negative outside a bounded region in the non-negative orthant ZA, where

M is the dimension of the state-space Q(t). To establish the required drift-condition,

we first construct an auxiliary stationary randomized policy 7rRAND, which is easier

to analyze. Then we bound the one-minislot expected drift of the policy 7r* by com-

paring it with the policy 7 TRAND

We emphasize that the construction of the randomized policy 7rRAND is highly non-

trivial, because under the action of the policy 7r*, a packet may travel along an

arbitrary tree and as a result, any reachable set F c F may potentially contain non-

zero number of packets.

For ease of exposition, the proof of throughput-optimality of the policy 7r* is divided

into several parts.

Part I: Consequence of Edmonds' Tree-packing Theorem

From Edmond's tree-packing theorem [14], it follows that the graph g contains A*

edge-disjoint directed spanning trees, 6 {T}*. From Proposition (4.2.3) and Lemma

(4.3.3), it follows that, to prove the throughput-optimality of the policy 7r*, it is

sufficient to show stochastic-stability of the process {Q(t)}O for an arrival rate of

A/m per minislot, where A < A*.

Fix an arbitrarily small f > 0 such that,

A < A* -

Now we construct a stationary randomized policy 7rRAND, which utilizes the edge-

disjoint trees {Ti in a critical fashion.

6 Note that, since the edges are assumed to be of unit capacity, A* is an integer. This result
follows by combining Eqn. (4.2) with the Max-Flow-Min-Cut theorem 1491.
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Part II: Construction of a Stationary Randomized Policy 7r RAND .

The stationary randomized policy 7rRAND allocates rates ,e,F(t) randomly to different

ordered pairs (e, F), for transmitting packets belonging to reachable sets F, across

an edge e E +F '. Recall that Pe,F(t)'s are binary variables. Hence, conditioned

on the edge-activity process S(t) = e, the allocated rates are fully specified by the

set of probabilities that a packet from the reachable set F is transmitted across the

active edge e E O+F. Equivalently, we may specify the allocated rates in terms of

their expectation w.r.t. the edge-activation process (obtained by multiplying the cor-

responding probabilities by 1/rm).

Informally, the policy 7rRAND allocates most of the rates along the reachable sequences

corresponding to the edge-disjont spanning trees {T}f, obtained in Part I. However,

since the dynamic policy 7r* is not restricted to route packets along the spanning trees

{ TI}* only, for technical reasons which will be evident later, 7rRAND is designed to

allocate small amount of rates along other reachable sequences. This is an essential

and non-trivial part of the proof methodology. An illustrative example of the rate al-

location strategy by the policy 7rRAND will be described subsequently for the diamond

graph D4 of Figure 4-1.

Formally, the rate-allocation by the randomized policy 7r RAND is given as follows:

e We index the set of all reachable sequences in a specific order.

- The first A* reachable sequences are defined as follows: for each

edge-disjoint tree T', i = 1, 2,. . . , A* obtained from Part-I, recursively con-

struct a reachable sequence = {(F, e)}_in-, such that the induced sub-

graphs T(Fj) are connected for all j = 1, 2, ... , n - 1.

In other words, for all 1 < i < A* define F1 = {r} and for all 1 < j < n -2,

the set Fj+ is recursively constructed from the set FJ by adding a node

to the set Fj' while traversing along an edge of the tree T. Let the corre-

sponding edge in T' connecting the j +1 th vertex Fj+1 \ Fj, to the set Fj,

be e'. Since the trees {T} I 1 are edge disjoint, the edges e' s are distinct

71f e a +F, naturally P,,F(t) = 0, Vt.
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for all i = 1, 2,... A* and j 1, 2,... ,n - 1. The above construction

defines the first A* reachable sequences = {Fi, e} I_-, 1 i < A*.

- In addition to the above, let { j = (F], e 7)}- , A*+1 < i < B be the set of

all other reachable sequence in the graph g, different from the previously

constructed A* reachable sequences. Recall that, B is the cardinality of the

set of all reachable sequences in the graph g. Thus the set of all reachable

sequences in the graph g is given by U= 1 (i.

" To define the expected allocated rates Eye,F(t), it is useful to first define some

auxiliary variables, called rate-components Ep Zt, = 1, ... , B, correspond-

ing to each reachable sequence. The rate Ey,F(t) is is simply the sum of the

rate-components, as given in Eqn. (4.29).

At each slot t and 1 < i < A*, the randomized policy allocates ith rate-component

corresponding to the reachable sequence = {e, Fj}_-1 according to the fol-

lowing scheme:

E(e 1/m-(n-)/n,

V1 j n-1

- 0, o.w. (4.27)

" In addition to the rate-allocation (4.27), the randomized policy 7rRAND also allo-

cates small amount of rates corresponding to other reachable sequences {(i}B

according to the following scheme: For A* + 1 < i < B, the randomized policy

allocates ith rate-component to the ordered pairs (e, F) as follows:

6 c n-j
2nB 2nB n

V1 _ j < n - 1,

= 0, o.w. (4.28)
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The overall rate allocated to the pair (e, F) is simply the sum of the component-

rates, as given below:

B

Eye,F(t) EPi,F (4.29)

In the following, we show that the above rate-allocation is feasible with respect

to the edge capacity constraint.

Lemma 4.9.1 (Feasibility of Rate Allocation) The rate allocation (4.29) by the

randomized policy 7r RAND is feasible.

The reader is referred to Appendix (4.9.3) for the proof the lemma. An illustrative

example for the above randomized rate-allocation scheme is given in Appendix (4.9.4).

Part III: Comparison of drifts under action of policies 7r* and rRAND

Recall that, from Eqn. (4.14) we have the following upper-bound on the one-minislot

drift of the Lyapunov function L(Q(t), achieved by the policy 7r*:

(A *(Q(t)|S(t)) < 2 n. - S QF(t) - QF+e(t))E(i tQ"SF

(e,F):eEa+F

Since the policy 7r*, by definition, transmits packets to maximize the weight WF,e(t)

QF(t) - QF+e(t) point wise, the following inequality holds

(QFt - QF+e(t) )E(peF MtIQ tIS t)
(e,F):eEc+F

F(t) -- QF+e(t) )E(,7RAND

(e,F):eEa+F (

where the randomized rate-allocation ,,RAND is given by Eqn. (4.29). Noting that

7wRAND operates independently of the "queue-states" Q(t) and dropping the super-

script rRAND from the control variables p(t) on the right hand side, we can bound
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the one-slot expected drift of the policy 7r* as follows:

(A71*(Q(t))jS(t))

2K pi- QF (t) - QF+e (t)p) E (pe,F ( I S t)
(e,F):e~a+F

2max -EQF(t) ( E(e,F(t)IS(t)) E(peGtISt)
F ~ eEa+F (eG):eED FG=F\{e}

/ B B

2 Pmax - E QF(t) (>EpF(t)Is(t)) - E
F eEa+F i=1 (e,G):eE-9FG=F\{e} i=1

where in (a) we have used Eqn. (4.29).

Taking expectation of both sides of the above inequality w.r.t the random edge-

activation process S(t) and interchanging the order of summation, we have

A'* (Q(t)) 2 -ma QF(t) ( IE(p4,F(t)) -

F i=1 eEa+F

3 E(p',G))
(e,G):eC-F,G=F\{e}

(4.30)

where the rate-components pi of the randomized policy 7rRAND are defined in Eqns

(4.27) and (4.28).

Fix a reachable set F, appearing in the outer-most summation of the above upper-

bound (4.30). Now focus on the Zth reachable sequence = {F, e'}" 1. We have

two cases:

Case I: F

Here, according to the allocations in (4.27) and (4.28), we have

3 E(p,(t)) (a)

eEa+F (e,G):eEa-F,G=F\{e}

Where the equality (a) follows from the assumption that F ( Q and equality (b)

follows from the fact that positive rates are allocated only along the tree corresponding

to the reachable sequence ('. Hence, if no rate is allocated to drain packets outside

the set F, 7rRAND does not allocate any rate to route packets to the set F.
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Case II: F E

In this case, from Eqns. (4.27) and (4.28), it follows that

z E(,F(t ) -E(,G(0)
eCE+F (e,G):eEO-F,G=F\{e}

1 < i < A* (4.31)

{;, A*+1<i<2 ( 4.1

By definition, each reachable set is visited by at least one reachable sequence. In

other words, there exists at least one i, 1 < i < B, such that F E (. Combining the

above two cases, from the upper-bound (4.30) we conclude that

A'T(Q(t)) < 2" max 2n2BSQF(t), (4.32)
F

where, the sum extends over all reachable sets. The drift is negative, i.e., AT*(Q(t)) <

-E, when QF E BC, where

,,2n 2 B (E nt x

B= (QF 0) QF E 2n )a
F

Invoking the Foster-Lyapunov criterion [511, we conclude that the Markov-Chain

{QT*(t)} is positive recurrent. Finally, throughput-optimality of the policy 7r* fol-

lows from lemma 4.3.3. M

4.9.3 Proof of Lemma (4.9.1)

Proof The rate allocation (4.29) will be feasible if the sum of the allocated prob-

abilities that an active edge e carries a class-F packet, for all reachable sets F,

is at most unity. Since an edge can carry at most one packet per mini-slot, this

feasibility condition is equivalent to the requirement that the total expected rate,

i.e., Eie(t) = EF EIe,F(t), allocated to an edge e E E by the randomized pol-

icy 7rRAND does not exceed 1 (the expected capacity of the edge per mini-slot).
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Since an edge e may appear at most once in any reachable sequence, the total

rate allocated to an edge e by the randomized-policy 7RAND is upper-bounded by

1- + (B - A*) '; < - f < 1/m. Hence the rate allocation by the randomized

policy 7r RAND is feasible

4.9.4 An Example of Rate Allocation by the Stationary policy

FRAND

As an explicit example of the above stationary policy, consider the case of the Di-

amond network D4 , shown in Figure 4-1. The edges of the trees {TZ, i = 1, 2} are

shown in blue and red colors in the figure. Then the randomized policy allocates the

following rate-components to the edges, where the expectation is taken w.r.t. random

edge-activations per mini-slot.

First we construct a reachable sequence (1 consistent with the tree T1 as follows:

(1 = {({r}, ra), ({r, a}, ab), ({r , a, b}, bc)}

Next we allocate the following rate-components as prescribed by 7rRAND.

Eia,{r}(t) = 1/6 - 3E/4

EPab{ra}(t) = 1/6 - 2c/4

Epbc,{r,a,b}(t) = 1/6 -E/4

Ep,,F(t = 0, O.w.

Similarly for the tree T 2, we first construct a reachable sequence (2 as follows:

(2 = {({r}, rb), ({r,b}, rc), ({r ,b, c}, ca)}
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Then we allocate the following component-rates to the (edge, set) pairs as follows:

Eprb,{r(t) = 1/6 - 3c/4

Ep 2c (t) = 1/6 - 2c/4

Epca,{r,b c}(t) = 1/6 - e/4

EP,F(t) = 0, O.w.

In this example A* = 2, thus these two reachable sequence accounts for a major

portion of the rates allocated to the edges. The randomized policy 7rRAND, however,

allocates small rates to other reachable sequences too. As an example, consider the

following reachable sequence (3, given by

(3 = {({r}, ra), ({r, a}, rb), ({r , a, b}, rc}

Then, as prescribed above, the randomized policy allocates the following rate-components

8B 32BEpiia,{r}(t) = 8B -

IEpis,{ra}( 8 32B

Eprc,{r,a,b} (t) -

Ep4 F(t) = 0, o.w.

Here B is the number of all distinct reachable sequences, which is upper-bounded

by 48. The rate-components corresponding to other reachable sequences may be

computed as above. Finally, the actual expected rate-allocation to the pair (e, F) is

given by

B

E/pe,F (t) = EIt,Ft)

i=1
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4.9.5 Proof of Proposition (4.4.4)

The proof of this proposition is conceptually simplest in the slotted-time model. The

argument also applies directly to the mini-slot model.

Consider a network 9 with broadcast-capacity A*. Assume a slotted-time model. By

Edmonds' tree-packing Theorem [141, we know that there exists A* number of edge-

disjoint directed spanning trees (arborescences) {T}f* in g, rooted at the source node

r. Now consider a policy 7r E rin-order with k > A* which operates as follows:

" An incoming packet is placed in any of the classes [1, 2, 3,... , A*], uniformly at

random.

" Packets in a class i are routed to all nodes in the network in-order along the

directed tree 77, where the packets are replicated in all non-leaf nodes of the

tree T7, 1 < i < A*.

Since the trees are edge-disjoint, the classes do not conflict; i.e., routing in each

class can be carried out independently. Also by the property of T7, there is a unique

directed path from the source node r to any other node in the network along the

edges of the tree T7, 1 < i < A*. Thus packets in every class can be delivered to all

nodes in the network in-order in a pipe-lined fashion with the long-term delivery-rate

of 1 packet per class. Since there are A* packet-carrying classes, it follows that the

policy 7r E nif"order is throughput-optimal for k > A*.

Next we show that, A* < n/2 for a simple network. Since there exist A* number

of edge-disjoint directed spanning trees in the network, and since each spanning-tree

contains n - 1 edges, we have

A*(n - 1) < m (4.33)

Where m is the number of edges in the network. But we have m < n(n - 1)/2 for a

simple graph. Thus, from the above equation, we conclude that

A* < n/2. (4.34)
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This completes the proof of the Proposition.

4.9.6 Proof of Proposition (4.6.1)

Proof Consider a spanning tree T in the network (it exists, as the network is assumed

to be connected). One of the many possible ways to send its state information from

any node j to a node i would be to send this information following the unique path

Pij induced by the tree T. Thus,

Dij (t) Xe, (4.35)
e ePi 3

where Xe is the (stationary) random variable denoting the number of minislots one

has to wait until a state exchange takes place along the edge e. Hence, it follows that

(a)
max Dj (t) < max Xe 5 Xe. (4.36)

ij eE~ij eET

Where the inequality (a) follows from the fact that the r.v.s Xe's are non-negative.

Since X,'s are geometrically distributed with parameter -, we have EXe = . Taking

expectation of both sides of (4.36), we have

(a) in
E(maxDij(t)) EEX <

eET q

where the inequality (a) follows from the fact that there are exactly n - 1 edges in

the spanning tree T.
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Chapter 5

Optimal Control for Generalized

Network-Flow Problems

5.1 Overview of the Results

In this chapter we consider the Generalized Flow Problem (GNF), by proposing

a new throughput-optimal routing and scheduling policy, called Universal Max-

Weight (UMW), for an arbitrary wireless network carrying diverse flows, including

but not limited to Unicast, Broadcast, Multicast and Anycast traffic. Hence,

unlike the previous chapters which focusses on the Broadcast problem exclusively,

this chapter provides a unified framework for solving all network flow problems in

general. Shortly, we will see that, UMW provides a very different policy than the

well-known Backpressure policy, when specialized to the Unicast setting.

The proposed UMW policy uses a virtual network of queues - one virtual queue

per link in the network. We solve the routing problem dynamically using a simple

"weighted-shortest-route" computation on the virtual network and using the corre-

sponding route on the physical network. Optimal link scheduling is performed by a

max-weight computation, also in the virtual network, and then using the resulting

activation in the physical network. The overall algorithm is dynamic, cycle-free, and

solves the generalized routing and scheduling problem optimally (i.e., maximally sta-

ble or throughput optimal). In addition to this, the proposed UMW policy has the
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following advantages:

1. Generalized Solution: Unlike the BP policy, which solves only the unicast

problem, the proposed UMW policy efficiently addresses all of the aforemen-

tioned network flow problems in both wired and wireless networks in a very

general setting.

2. Delay Reduction: Although the celebrated BP policy is throughput-optimal,

its average delay performance is known to be poor due to the occurrence of

packet-cycling in the network [25] [531. In our proposed UMW policy, each

packet traverses a dynamically selected acyclic route, which drastically reduces

the average latency.

3. State-Complexity Reduction: Unlike the BP policy, which maintains per-

flow queues at each node, the proposed UMW policy maintains only a virtual-

queue counter and a priority queue per link, irrespective of the number and

type of flows in the network. This reduces the amount of overhead that needs

to be maintained for efficient operation.

4. Efficient Implementation: In the BP policy, routing decisions are made hop-

by-hop by the intermediate nodes. This puts a considerable amount of compu-

tational overhead on the individual nodes. In contrast, in the proposed UMW

policy, the entire route of the packets is determined at the source (similar to

the dynamic source routing [54]). Hence, the entire computational requirement

is transferred to the source, which often has higher computational/energy re-

sources than the nodes in the rest of the network (e.g., wireless sensor networks).

The rest of the chapter is organized as follows: In section 5.2 we discuss the basic

system model and formulate the problem. In section 5.3 we give a brief overview of

the proposed UMW policy. In section 5.4 we discuss the structure and dynamics of

the virtual queues, on which UMW is based. In section 5.5 we prove its stability

property in the multi-hop physical network. In section 5.6 we discuss implementation

details. In section 5.7 we provide extensive simulation results, comparing UMW
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with other competing algorithms. In section 5.8 we conclude the chapter with a few

directions for further research.

5.2 Network-Layer Capacity Region

In this section, we characterize the network-layer capacity region in the presence of

generalized flows.

5.2.1 Admissible Routes of Packets

Without any loss of throughput-optimality, we can concentrate on policies which de-

livers any packet p to any node in the network at most once.1 This immediately

implies that the set of all admissible routes T(c) for packets of any class c, in gen-

eral, comprises of trees rooted at the corresponding source node s(c). In particular,

depending on the type of class c traffic, the topology of the admissible routes T(c)

takes the following special forms:

" UNICAST TRAFFIC: T(c) - set of all s(c) - t(c) paths in the graph g.

* BROADCAST TRAFFIC: T(c) = set of all spanning trees in the graph Q,

rooted at s(c).

" MULTICAST TRAFFIC: T(c) = set of all Steiner trees [22] in !, rooted at

s(c) and spanning the vertices E'(c) = {tc), , ,(

* ANYCAST TRAFFIC: TVc) = union of all s(c) _ (c) paths in the graph g,
i=1, 2, ... , k.

'This should be contrasted with the popular throughput-optimal unicast policy Back-Pressure
I, which does not satisfy this constraint and may deliver the same packet to a node multiple times,
thus potentially degrading its delay performance.
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5.2.2 Characterization of the Network-Layer Capacity Region

Consider any arrival vector A c A(g, C). By definition, there exists an admissible

policy 7r E H, which supports the arrival rate A by means of storing, duplicating and

forwarding packets efficiently. Taking time-averages over the actions of the policy r,

it is clear that there exist a randomized flow-decomposition and scheduling policy to

route the packets such that none of the edges in the network is overloaded. Indeed, in

the following theorem, we show that for every A E A(!, C), there exist non-negative

scalars {A(c)} indexed by the admissible routes T(c) c T(c) and a convex combination

of the link activation vectors 17 E conv(M) such that,

A A(c) A, Vc E C (5.1)

Tc) ET(c)

Ae = ASc) < )<e, Ve c E. (5.2)

(i,c):eET T 1 rETr(c)

Eqn. (5.1) denotes decomposition of the average incoming flows into different admis-

sible routes and Eqn. (5.2) denotes the fact that none of the edges in the network is

overloaded, i.e. arrival rate of packets to any edge e under the policy 7r is at most the

rate allocated by the policy 7r to the edge e to serve packets.

To state the result precisely, define the set X to be the set of all arrival vectors

A E R', for which there exists a randomized activation vector i E conv(M) and a

non-negative flow decomposition {A(')}, such that Eqns. (5.1) and (5.2) are satisfied.

We have the following theorem:

Theorem 5.2.1 The network-layer capacity region A(g,C) is characterized by

the set X, up to its boundary.

Proof of Theorem 5.2.1 consists of two parts: converse and achievability. Proof of

the converse is given in Appendix 5.9.1, where we show that all supportable arrival

rates must belong to the set X. The main result of this chapter, as developed in
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the subsequent sections, is the construction of an efficient admissible policy, called

Universal Max-Weight (UMW), which achieves any arrival rate in the interior of

the set A.

5.3 Overview of the UMW Policy

In this section, we present a brief overview of our throughput-optimal UMW policy,

designed and analyzed in the subsequent sections. Central to the UMW policy is

a global state vector, called virtual queues Q(t), used for packet routing and link

activations. Each component of the virtual queues is updated at every slot accord-

ing to a one-hop queueing (Lindley) recursion, corresponding to a relaxed network,

described in detail in section 5.4. Unlike the well-known Back-Pressure algorithm

for the unicast problem [1], in which packet routing decisions are made hop-by-hop

using physical queue lengths Q(t), the UMW policy prescribes an admissible route

to each incoming packet immediately upon its arrival (dynamic source routing). This

route selection decision is dynamically made by solving a suitable min-cost routing

problem (e.g., shortest path, MST etc.) at the source with edge costs given by the

current virtual-queue vector Q(t). Link activation decisions at each slot are made by

a Max-Weight algorithm with link-weights set equal to Q(t). Having fixed the routing

and activation policy as above, in section 5.5 we design a packet scheduling algorithm

for the physical network, which efficiently resolves contention among multiple packets

that wait to cross the same (active) edge at the same slot. We show that the overall

policy is throughput-optimal. One significantly new feature of our algorithm is that

it is entirely oblivious to the length of the physical queues of the network and utilizes

the auxiliary virtual-queue state variables for stabilizing the former.

Our proof of throughput-optimality of UMW leverages ideas from deterministic ad-

versarial queueing theory and combines it effectively with the stochastic Lyapunov-

drift based techniques and may be of independent theoretical interest.
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5.4 Global Virtual Queues: Structures, Algorithms,

and Stability

In this section, we introduce the notion of virtual queues 2, which is obtained by

relaxing the dynamics of the physical queues of the network in the following intuitive

fashion.

5.4.1 Precedence Constraints

In a multi-hop network, if a packet p is being routed along the path T = 11 -l2. .*lk,

where li E E is the ith link on its path, then by the principle of causality, the packet

p cannot be physically transmitted over the Jth link l if it has not already been

transmitted by the first j - 1 links 11, 12, .. , lj- 1 . This constraint is known as the

precedence constraint in the network scheduling literature [561. In the following, we

make a radical departure by relaxing this constraint to obtain a simpler single-hop

virtual system, which will play a key role in designing our policy and its optimality

analysis.

5.4.2 The Virtual Queue Process {Q(t)}t,;

The Virtual queue process Q(t) = ( e(t), e E E) is an |E| = m dimensional controlled

stochastic process, imitating a fictitious queueing network without the precedence con-

straints. In particular, when a packet p of class c arrives at the source node s(c), a

dynamic policy 7 prescribes a suitable route T(c) (t) E T(c) to the packet. Denoting the

set of all edges in the route T(c)(t) by {l, 12,... , lk}, this incoming packet induces a

virtual arrival simultaneously at each of the virtual queues (Qi), i = 1, 2,. .. , k, right

upon its arrival to the source. Since the virtual network is assumed to be relaxed

with no precedence constraints, any packet present in the virtual queue is eligible for

service. See Figure 5-1 for an illustration.

The (controlled) service process allocated to the virtual queues is denoted by
2 Note that our notion of virtual queues is completely different from and unrelated to the notion

of shadow-queues proposed earlier in 1531, [231 and virtual queues proposed in [551.
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3 A13(t)

Q34(t) P~

7; = {{1, 2},{2, 3}, {3, 4}}

A Multihop Network g Virtual Queues

Figure 5-1: Illustration of the virtual queue system for the four-node network g. Upon
arrival, the incoming packet p, belonging to a unicast session from node 1 to 4, is prescribed
a path 'T = {{1, 2}, {2, 3}, {3, 4}}. Relaxing the precedence constraints, the packet p is
counted as an arrival to the virtual queues Q12 and Q23 and 034 simultaneously at the same
slot. In the physical system, the packet p may take a while before reaching any edge in its
path, depending on the control policy.

{ ti(t)}t 1 . We require the service process to satisfy the same activation constraints

as in the original system, i.e., pL'(t) E MVt > 1.

Let A'"(t) is the total number of virtual packet arrival (from all classes) to the queue

Qe at time t under the action of the policy 7r, i.e.,

Ae"(t) = A(c)(t)I(e E T(c)(t)), Ve E E.
cEC

(5.3)

Hence, we have the following one-step evolution (Lindley recursion) of the virtual

queue process {Qe(t)}t>1:

Qe(t + 1) = (e(t) + A"(t) - p i(t))+, Ve C E, (5.4)

We emphasize that A"(t) is a function of the routing tree T(c)(t) that the policy

chooses at time t, from the set of all admissible routes T(c). This is discussed in the

following.
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5.4.3 Dynamic Control and Stability of the Virtual Queues

Next, we design a dynamic routing and link activation policy for the virtual net-

work, which stabilizes the virtual queue process {Q(t)}t>i, for all arrival rate-vectors

A E int(A). This policy is obtained by minimizing the one-step drift of a quadratic

Lyapunov-function of the virtual queue lengths (as opposed to the real queue lengths

used in the Back-Pressure policy [1]). In the following section, we will show that

when this dynamic policy is used in conjunction with a suitable packet scheduling

policy in the physical network, the overall policy is throughput-optimal for the phys-

ical network.

To derive a stabilizing policy for the virtual network, consider a quadratic Lyapunov

function L(Q(t)) defined in terms of the virtual queue lengths:

L(Q(t)) = > Q(t)
eEE

From the one-step dynamics of the virtual queues (5.4), we have:

Qe(t + 1)2 < (Qe(t) - p7,(t) + A"(t))2

- Qi(t) + (Ae"(t)) 2 + (p1 4(t)) 2 + 2Qe(t)Ae"(t) - 2Qe(t) p7(t) - 2p4(t)Al"(t)

Since p/(t) 0 and A"(t) > 0, we have

QC(t + 1) -Q_(t) (A,"(t)) 2 + (p14(t)) 2 + 2Qe(t)A"(t) - 2Qe(t)p/4(t)

Hence, the one-step Lyapunov drift Ar(t), conditional on the current virtual queue

lengths Q(t), under the operation of any admissible Markovian policy 7r E H is upper-

bounded by

A (t) = E (L(Q(t + 1)) - L(Q(t))IQ (t))

< B + 2 Qe (t)E (Ar (t)IQ(t)) - 2 Qe (t) E (pI(t)IQ(t)) (5.5)
eEE eeE
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where B is a constant, bounded by E, E(AW(t)) 2 + E(p"(t))2 ) < n2 A 2 .+ m.e e mx

The upper-bound on the drift, given by (5.5), holds good for any admissible policy in

the virtual network. In particular, by minimizing the upper-bound point wise, and

exploiting the separable nature of the objective, we derive the following decoupled

dynamic routing and link activation policy for the virtual network:

Dynamic Routing Policy

The optimal route for each class c, over the set of all admissible routes, is selected by

minimizing the following cost function, appearing in the middle of Eqn. (5.5)

RoutingCost' - Qe(t)A (t),

eEE

where we remind the reader that A"(t) are the routing policy dependent arrivals to

the virtual queue corresponding to the link e at time t.

Using Eqn. (5.3), we may rewrite the objective-function as

RoutingCost' = A(c)(t) Qe(t)1(e E T(c)(t)) (5.6)
cEC eEE

Using the separability of the objective (5.6), the above optimization problem decom-

poses into following min-cost route-selection problem T( (t) for each class c:

T('m) (z) QEet)1m(e

To(t) E arg mc eT(t)1(e E T(c)) (5.7)
T~) C)\eEE

Depending on the type of flow of class c, the optimal route-selection problem (5.7) is

equivalent to one of the following well-known combinatorial problems on the graph

g, with its edges weighted by the virtual queue length vector Q:

* UNICAST TRAFFIC: Tc (t) = The shortest s(C) -t(c) path in the weighted-

graph g.
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* BROADCAST TRAFFIC: T (t) The minimum weight spanning tree

rooted at the source s(c), in the weighted-graph g.

* MULTICAST TRAFFIC: T c (t) = The minimum weight Steiner tree rooted

at the source s(c) and spanning the destinations D() {tc),I tc)..., t }
in the weighted-graph g.

* ANYCAST TRAFFIC: T c)(t) = The shortest of the k shortest s(c) - t(c)

paths, i = 1, 2, .. ., k in the weighted-graph 9.

Thus, the routes are selected according to a dynamic source routing policy [54].

Apart from the minimum weight Steiner tree problem for the multicast traffic (which

is NP-hard with several known efficient approximation algorithms [57]), all of the

above routing problems on the weighted virtual graph may be solved efficiently using

standard algorithms [49].

Dynamic Link Activation Policy

A feasible link activation schedule jI*(t) E M is dynamically chosen at each slot by

maximizing the last term in the upper-bound of the drift-expression (5.5), given as

follows:

,I*(t) c arg max ( Qe(t)Pe (5.8)
JAEM eEE '

This is the well-known max-weight scheduling policy, which can be solved efficiently

under various interference models (e.g., Primary or node-exclusive model [36]).

In solving the above routing and scheduling problems, we tacitly made the assumption

that the virtual queue vector Q(t) is globally known at each slot. We will discuss

practical distributed implementation of our algorithm in section 5.6.

Next, we establish stability of the virtual queues under the above policy, which will

be instrumental for proving throughput-optimality of the overall UMW policy:
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Theorem 5.4.1 Under the above dynamic routing and link scheduling policy, the

virtual queue process {Q(t)}};>o is strongly stable for any arrival rate A E int(A),

Z. e.,

T-1

lim sup- E ( < 00

t=0 eEE

Proof Consider an arrival rate vector A c int(A). Thus, from Eqns. (5.1) and (5.2),

it follows that there exists a scalar e > 0 and a vector [L E conv(M), such that we

can decompose the total arrival for each class c E C into a finite number of routes,

such that

Ae =) E A( Pe -e, Ve E E (5.9)

(i,c):eE7 T ,T ET~c)

By Caratheodory's theorem [391, we can write

m+1

y = pisi, (5.10)
i=1

for some activation vectors si C M, Vi and some probability distribution p.

Now consider the following auxiliary stationary randomized routing and link activa-

tion policy RAND E H for the virtual queue system {(t)}, which will be useful

in our proof. The randomized policy RAND randomly selects the activation vector

sj with probability p3 , j = 1, 2, ... , m + 1 and routes the incoming packet of class

c along the route T-(c) E T(c), with probability Ac), Vi, c. Hence the total expected

arrival rate to the virtual queue Qe at time slot t, due to the action of the stationary

randomized policy RAND is given by

EARAND Ae (c), Ve c E (5.11)

(i,c):61ET Tg(c) T
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and the expected total service rate to the virtual server for the queue Qe is given by

m +1

Ep RAND (t) pisi(e) = pc(5.12)

Since our Max-Weight policy, UMW, maximizes the RHS of the drift expression in

Eqn. (5.5) from the set of all feasible policies II, we can write

AUM w(t) < B+2 Qe(t)E(ARAND(tl t) -2 Qe(t)E(,R.AND)(t))
eEE eEE

- B + 2 Qe(t) (EA.AND(t) - EpReAND
eEE

B+ 2 Qe(t)(Ae - Pe)
eGE

(c)
< B - 2E Qe (t),

ecE

where (a) follows from the fact that the randomized policy RAND is memoryless

and hence, independent of the virtual queues 0(t), (b) follows from Eqns. (5.11) and

(5.12) and finally (c) follows from Eqn. (5.9).

Taking expectation of both sides w.r.t. the virtual queue lengths Q(t), we bound the

expected drift at slot t as

EL (Q(t + 1)) - EL(Q(t)) < B - 26E E(Qe(t)) (5.13)
eGE

Summing Eqn. (5.13) from t = 0 to T - 1 and remembering that L(Q(T)) > 0 and

L(Q(0)) = 0, we conclude that

E 1E(Qe(t)) < (514)
t=0 eE (

Taking lim sup of both sides proves the claim.

As a consequence of the strong stability of the virtual queues {Qe(t), e E E},

we have the following sample-path result, which will be the key to our subsequent
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analysis:

Lemma 5.4.2 Under the action of the above policy, we have for any A E int(A):

lim t o, Ve c E, w.p. 1.t~ot

In other words, the virtual queues are rate-stable [331.

Proof See Appendix 5.9.3.

The sample path result of Lemma 5.4.2 may be interpreted as follows: For any given

realization w of the underlying sample space Q, define the function

F(w, t) = max Qe(w, t).
eGE

Note that, for any t E Z+, due to the boundedness of arrivals per slot, the function

F(w, t) is well-defined and finite. In view of this, Lemma (5.4.2) states that under the

action of the UMW policy, F(w, t) = o(t) almost surely. ' This result will be used

in our sample pathwise stability analysis of the physical queueing process {Q(t)}t;>.

5.4.4 Consequence of the Stability of the Virtual Queues

It is apparent from the virtual queue evolution equation (5.4), that the stability of the

virtual queues under the UMW policy implies that the arrival rate at each virtual

queue is at most the service rate offered to it under the UMW routing and scheduling

policy. In other words, effective load of each edge e in the virtual system is at most

unity. This is a necessary condition for stability of the physical queues when the same

routing and link activation policy is used for the multi-hop physical network. In the

following, we make the notion of "effective-load" mathematically precise.

3g(t) = O(t) if lime,, 9(t) = 0.
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Skorokhod Mapping Iterating on the system equation (5.4), we obtain the follow-

ing well-known discrete time Skorokhod-Map representation [58] of the virtual queue

dynamics

Qe(t) = sup (A7(t - r, t) - Sef(t -T, t)) (5.15)

where At2(t, t2) 1e A'(T), is the total number of arrivals to the virtual queue

Qe in the time interval [ti, t 2) and Se7(ti, t2 ) r t{r), is the total amount of

service allocated to the virtual queue Qe in the interval [ti, t2 ). For reference, we

provide a proof of Eqn. (5.15) in Appendix 5.9.2.

Combining Equation (5.15) with Lemma 5.4.2, we conclude that under the UMW

policy, almost surely for any sample path w E Q, for each edge e E E and any to < t,

we have

Ae(W; to, t) < Se(w; to, t) + F(w, t), (5.16)

where F(w, t) = o(t).

Implications for the Physical Network Note that, every packet arrival to a

virtual queue Qe at time t corresponds to a packet in the physical network, that will

eventually cross the edge e. Hence the loading condition (5.16) implies that under the

UMW policy, the total number of packets injected during any time interval (to, t],

willing to cross the edge e, is less than the total amount of service allocated to the

edge e in that time interval up to an additive term of o(t). Thus informally, the

"effective load" of any edge e E E is at most unity.

By utilizing the sample-path result in Eqn. (5.16), in the following section we

show that there exists a simple packet scheduling scheme for the physical network,

which guarantees the stability of the physical queues, and consequently, throughput-

optimality.
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5.5 Optimal Control of the Physical Network

With the help of the virtual queue structure as defined above, we next focus our at-

tention on designing a throughput-optimal control policy for the multi-hop physical

network. As discussed in Section 5.2, a control policy for the physical network con-

sists of three components, namely (1) Routing, (2) Link activations and (3) Packet

scheduling. In the proposed UMW policy, the (1) Routing and (2) Link activations

for the physical network is done exactly in the same way as in the virtual network,

based on the current values of the virtual queue state variables Q(t), described in

Section 5.4.3. It is to be noted that, in the particular case of wireless networks, it

is possible that a particular edge with positive virtual queue length is scheduled for

transmission at a slot, even though the edge does not have any packet to transmit in

its physical queue. The surprising fact, that follows from Theorem 6.5.3 is that this

kind of wasted transmissions are rare and it does not affect the throughput.

There exist many possibilities for the third component, namely the packet scheduler,

which efficiently resolves contention when multiple packets attempt to cross an ac-

tive edge e at the same time-slot t. Popular choices for the packet scheduler include

FIFO, LIFO etc. In this chapter, we focus on a particular scheduling policy which

has its origin in the context of adversarial queueing theory [59]. In particular, we

extend the Nearest To Origin (NTO) policy to the generalized network flow setting,

where a packet may be duplicated. This policy was proposed in [601 in the context

of wired networks for the unicast problem. We appropriately extend this policy for

use in generalized flow problems, including multicast, broadcast, and anycast, even in

wireless networks. Our proposed scheduling policy is called Extended NTO (ENTO)

and is defined as follows:

Definition 5.5.1 (Extended NT0) If multiple packets attempt to cross an ac-

tive edge e at the same time slot t, the Extended Nearest To Origin (ENTO)

policy gives priority to the packet which has traversed the least number of hops

along its path from its origin up to the edge e.
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priority[p.],, = -2

priority.p 2].' = -1

PI

Figure 5-2: A schematic diagram showing the scheduling policy ENTO in action. The
packets pI and P2 originate from the sources Si and S2 . Part of their assigned routes are
shown in blue and red respectively. The packets contend for crossing the active edge e3 at
the same time slot. According to the ENTO policy, the packet P2 has higher priority (having
crossed a single edge e4 from its source) than p, (having crossed two edges ei and e2 from
its source) for crossing the edge e3 . Note that, although a copy of pi might have already
crossed the edge e5, this edge does not fall in the path connecting the source Si to the edge
e3 and hence does not enter into priority calculations.

The Extended NTO policy may be easily implemented by maintaining a single

priority queue [49 per edge. The initial priority of each incoming packet at the

source is set to zero. Upon transmission by any edge, the priority of a transmitted

packet is decreased by one. The transmitted packet is then copied into the next-

hop priority queue(s) (if any) according to its assigned route. See Figure 5-2 for an

illustration. The pseudo code for the full UMW algorithm is provided in Algorithm

8.

We next state the following theorem which proves stability of the physical queues

under the ENTO policy:

Theorem 5.5.2 Under the action of the UMW policy with ENTO packet schedul-
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Algorithm 8 Universal Max-Weight Algorithm (UMW) at slot t for the Generalized
Flow Problem in a Wireless Network
Require: Graph 9(V, E), Virtual queue lengths {Qe(t), e E E} at the slot t.

1: [Edge-Weight Assignment] Assign each edge of the graph e E E a weight
We(t) equal to Qe(t), i.e.

W(t) +- Q(t)

2: [Route Assignment] Compute a Minimum Weight Route T(c) (t) E T(C) (t) for a
class c incoming packet in the weighted graph 9(V, E), according to Eqn. (5.7).

3: [Link Activation] Choose the activation pi(t) from the set of all feasible activa-
tions M, which maximizes the total activated link-weights, i.e.

t(t) +- arg max s - W(t)
SEM

4: [Packet Forwarding] Forward physical packets from the physical queues over
the activated links according to the ENTO scheduling policy.

5: [Virtual Queue Counter Update] Update the virtual queues assuming a
precedence-relaxed system, i.e.,

Qe(t + 1) +- (Qe(t) + Ae(t) - Pe(t) , Ve E F
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ing, the physical queues are rate-stable /33] for any arrival vector A c nt(A), i.e.,

Proof This theorem is proved by extending the argument of Gamarnik [60] and

combining it with the sample path loading condition in Eqn. (5.16). See Appendix

6.8.3 for the detailed argument.

As a direct consequence of Theorem 6.5.2, we have the main result of this chapter:

Theorem 5.5.3 The UMW policy, with ENTO packet scheduling rule, is

throughput-optimal.

Proof For any class c E C, the number of packets R(c)(t), received by all nodes

i E DE(c) may be bounded as follows:

(*)
A(c)(0, t) - > Qe(t) R(c)(t) A(c)(0, t), (5.17)

eEE

where the lower-bound (*) follows from the simple observation that if a packet p of

class c has not reached all destination nodes D(c), then at least one copy of it must

be present in some physical queue.

Dividing both sides of Eqn. (6.18) by t, taking limits and using SLLN and Theorem

6.5.2, we conclude that w.p. 1

lim RAc)(t) (c)
t-*oo t

Hence from the definition (1.1), we conclude that UMW is throughput-optimal.
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5.6 Distributed Implementation

The UMW policy in its original form, as given in Algorithm 8, is centralized in

nature. This is because the sources need to know the topology of the network and

the current value of the virtual queues Q(t) to solve the shortest route and the Max-

Weight problems at steps (2) and (3) of the algorithm. Although the topology of the

network may be obtained efficiently by topology discovery algorithms [61], keeping

track of the virtual queue evolution (Eqn. (6.4)) is subtle. Note that, in the special

case where all packets arrive only at a single source node, no information exchange is

necessary and the virtual queue updates (Step 5) may be implemented at the source

locally. In the general case with multiple sources, it is necessary to periodically

exchange packet arrival information among the sources to implement Step 5 exactly.

To circumvent this issue, we propose the following class of heuristic UMW policies:

[Heuristic UMWJ Assign the edge weights to be the Physical queue lengths

Q(t), instead of the virtual queue lengths Q(t), in either step (2) or step (3) or

both in the original UMW Algorithm 8.

Routing based on physical queue lengths still requires the exchange of queue length

information. However, this can be implemented efficiently using the standard dis-

tributed Bellman-Ford algorithm. The simulation results in section 5.7.2 show that

the heuristic policy works well in practice and its delay performance is substantially

better than the virtual queue based optimal UMW policy in wireless networks. The

affirmative simulation results shown in the next section immediately prompts us to

make the following conjecture:

Conjecture 2 The Heuristic UMW policy is throughput-optimal.
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3

Figure 5-3: The wired network topology used for unicast simulation

5.7 Numerical Simulation

5.7.1 Delay Improvement Compared to the Back Pressure Pol-

icy - the Unicast Setting

To empirically demonstrate the superior performance of the UMW policy over the

Back-Pressure class of policies in the unicast setting, we consider the wired network

shown in Figure 5-3 and implement the following policies: (1) UMW (opt), (2) UMW

(heuristic), (3) Backpressure (original [1]), and (4) Shortest-Path based Backpressure

[25].

All links are assumed to have a unit capacity. We consider two concurrent unicast

sessions with source-destination pairs given by (si = 1, ti = 8) and (S2 = 5, t2 = 2)

respectively. It is easy to see that Max-Flow(si -+ t1 ) = 2 and Max-Flow(s 2 -+ t2 ) = 1

and there exist mutually disjoint paths to achieve the optimal rate-pair (A 1 , A 2) =

(2, 1). Assuming Poisson arrivals at the sources s, and S2 with intensities A, = 2p

and A2 = p, 0 < p 1, where p denotes the "load factor", Figure 5-4 shows a plot of

total average queue lengths as a function of the load factor p under the operation of

the four policies considered above.

From the plot, we conclude that both the optimal and heuristic UMW policies

unformly outperform the BP (original) and SP-based BP policy in terms of average

queue lengths, and hence (by Little's Law), end-to-end delay. The primary reason

being, the BP class of policies, in principle, explores all possible paths to route packets

to their destinations. The UMW policy, on the other hand, transmits all packets along

"optimal" acyclic routes. This results in substantial reduction in latency.
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Figure 5-4: Comparison of time-averaged queue-lengths under the BP (original and
shortest-path based) and UMW (optimal and heuristic) policies in the unicast setting of
Fig. 5-3. In terms of performance, we have UMW (opt)> UMW (heu) > BP (SP-based)
> BP (original).

5.7.2 Using the Heuristic UMW policy for Improved Latency

in the Wireless Networks - the Broadcast Setting

Next, we empirically demonstrate that the heuristic UMW policy that uses physical

queue lengths Q(t) (instead of virtual queues Q(t) as in the optimal UMW policy) not

only achieves the full broadcast capacity but yields better delay performance in this

particular wireless network. As discussed earlier, the heuristic policy is practically

easier to implement in a distributed fashion. We simulate a 3 x 3 wireless grid network

shown in Figure 5-5, with primary interference constraints [3]. The broadcast capacity

of the network is known to be A* = - [62]. The ENTO policy is used for packet

scheduling. The average queue length is plotted in Figure 5-6 as a function of the

packet arrival rate A under the operation of the (a) U MW (optimal) and (b) U MW

(heuristic) policies. The plot shows that the heuristic policy results in much smaller

queue lengths than the optimal policy. The reason being that physical queues capture

the network congestion "more accurately" for proper link activations.
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Figure 5-5: The wireless topology used Figure 5-6: Comparison of the Avg.
for broadcast simulation Queue lengths as a function of the ar-

rival rate for the optimal (in blue) and
the heuristic (in red) UMW Policy for the
grid network in Figure 5-5 in the broad-
cast setting.

5.7.3 Performance of the Optimal and Heuristic U MW Policy

in Time-varying networks- the Broadcast Setting

In this section, we take a closer look at the wireless grid network in Figure 5-5 by

numerically evaluating the broadcasting performance of the proposed policies, when

the network is time-varying. In particular, we assume that at each slot a link is

ON with probability PON, and is OFF w.p. 1 - PON, independent of everything else.

Packets can be transmitted only over the ON links at a given slot. Using similar

analysis that we did for the static network, it can be easily shown that the proposed

UMW policy remains throughput-optimal when the Max-Weight link activation at

each slot is done with respect to the ON links at that slot. The packet routing policy

remains the same as in the original UMW policy. The performance of the optimal and

heuristic U MW policy is shown in Figure 5-7 for two different values of the parameter

PON. It can be seen from the plot that the heuristic policy incurs substantially smaller

queue lengths, compared to the optimal policy, especially in the low-load regime. Also,

from the nearly identical vertical asymptotes in the queue length vs arrival rate plots,

we conclude that the heuristic policy is also throughput-optimal in this case.
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Figure 5-7: Comparison of the time-averaged total queue lengths under the optimal (solid
line) and heuristic (dashed line) UMW policy in the time-varying grid network (with param-
eter PON), for the broadcast problem.

5.8 Conclusion

In this chapter, we have proposed a new, efficient and throughput-optimal policy,

named Universal Max-Weight (UMW), for the Generalized Network Flow problem.

The UMW policy can simultaneously handle a mix of Unicast, Broadcast, Multicast

and Anycast traffic in arbitrary networks and is empirically shown to have superior

performance compared to the existing policies. The next step would be to investigate

whether the UMW policy still retains its optimality when implemented with physical

queue lengths, instead of the virtual queue lengths. An affirmative answer to this

question would imply a more efficient implementation of the policy.

5.9 Appendix

5.9.1 Proof of Converse of Theorem 5.2.1

Proof Consider any admissible arrival rate vector A E A(g, C). By definition, there

exists an admissible policy 7 E I which supports the arrival vector A in the sense

of Eqn. (1.1). Without any loss of generality, we may assume the policy 7r to be

stationary and the associated DTMC to be ergodic. Let A w(t) denote the total
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number of packets from class c that have finished their routing along the route TC) E

T(c) up to time t. Note that, each packet is routed along one admissible route only.

Hence, if the total number of arrival to the source s(C) of class c up to time t is denoted

by the random variable A(c)(t), we have

(a)

A M)(t) _ A c)(t) L_)R~c)(t). (5.18)
Ti c)ET(C)

In the above, the inequality (a) follows from the observation that any packet p which

has finished its routing along some route T.c) E T(c) by the time t, must have arrived

at the source by the time t. The equality (b) follows from the observation that any

packet p which has finished its routing by time t along some route T(c) E T(c), has

reached all of the destination nodes D(c) of class c by time t and vice versa.

Dividing both sides of equation (5.18) by t and taking limit as t -+ oo, we have w.p.1

(d) A ()1
A(C) = lim > lim inf 1 A (t)

t-ao t t-+oo t
T(c) eT(C)

lim inf R( (t)
t-+oo t

= (c),

where equality (d) follows from the SLLN, and equality (f) follows from the Definition

(1.1).

From the above inequalities, we conclude that w.p. 1

lim I A c)(t) = A(c), Vc c C (5.19)t-+00 t
7 c) GT(c)

Now we use the fact that the policy 7r is stationary and the associated DTMC is

ergodic. Thus the time-average limits exist and they are constant a.s.. For all TC) E

T and c C C, define

()def 1 )(tA lim -A() (5.20)t--oo t

174



Hence, from the above, we get

A(c) = S A c) (5.21)

Now consider any edge e E E in the graph g. Since the variable A~c) (t) denotes the

total number of packets from class c, that have completely traversed along the tree

T(c) the following inequality holds good for any time t

t

A A(t) 5De(T), (5.22)
(i,c):eET(i ,Tifc)ET(c) =

where the left-hand side denotes a lower-bound on the number of packets that have

crossed the edge e and the right hand side denotes the amount of service that have

been provided to edge e up to time t by the policy 7r.

Dividing both sides by t and taking limits of both side, and noting that the limit on

the left-hand side exists w.p. 1, we have

A ( e, (5.23)
(i'C):eET (-,T rETc

where ! = limts, t_ p(T). Since p(T) E M,VT and the set conv(M) is closed,

we conclude that j! E conv(M). Eqns. (5.21) and (5.23) concludes the proof of the

theorem.

5.9.2 Proof of the Skorokhod Map Representation in Eqn.

(5.15)

Proof From the dynamics of the virtual queues in Eqn. (6.4), we have for any t > 1

Qe(t) > Q,(t - 1) + Ae(t - 1) - Pe(t - 1). (5.24)
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Iterating (5.24) w times 1 < r < t, we obtain

Qe(t) Qe(t- T)+ Ae(t - T, t) Se(t -T, t),

where Ae(ti, t2 ) = Q_ Ae(T) and Set2) t2 ) = Z_ pe(T), as defined before.

Since each of the virtual-queue components are non-negative at all times (viz. (6.4)),

we have Qe (t - T) > 0. Thus,

Q,(t) > A,(t - T,t) - S6(t - T,t).

Since the above holds for any time 1 <T < t and the queues are always non-negative,

we obtain

Qe~t M sup (A, (t - T, t) - Sc(t -T, t)) (5.25)

To show that Eqn. (5.25) holds with equality, we consider two cases.

Case I: Qe(t) = 0

Since the RHS of Eqn. (5.25) is non-negative, we immediately obtain equality

throughout in Eqn (5.25).

Case 11: Qe(t) > 0 Consider the latest time t - T', 1 < r' < t, prior to t, at which

Qe(t - T') = 0. Such a time t - T' exists because we assumed the system to start

with empty queues at time t = 0. Hence Qe(z) > 0 throughout the time interval

z E [t - T' + 1, t]. As a result, in this time interval the system dynamics for the

virtual-queues (6.4) takes the following form

Qe(Z) = Qe(z - 1) + Ae(Z - 1) - Pe(Z - 1),
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Iterating the above recursion in the interval z E [t - T' + 1, t], we obtain

Qe (t) = A,(t - T', t) - Sc(t - T', t) (5.26)

We conclude the proof upon combining Eqns. (5.25) and (5.26).

5.9.3 Proof of Lemma 5.4.2

Proof We will establish this result by appealing to the Strong Stability Theorem

(Theorem 2.8) of [33]. For this, we first consider an associated system {Q(t)}t>o with

a slightly different queueing recursion, as considered in [33] (Eqn. 2.1, pp-1 5 ). For a

given sequence {A(t), p (t)};>o, define the following recursion for all e E E,

Qe (t + 1) =(e(t) - pe(t))+ + Ae(t), (5.27)

Qe(0) 0.

Recall the dynamics of the virtual queues (Eqn. (6.4)):

Qe (t + 1) =(e(t) + Ae(t) - pe(t))+, (5.28)

Qe(0) 0.

We next prove the following proposition:

Proposition 5.9.1 For all e C E

~ (*) (**) ~
Amax + Qe(t) Qe(t) > Qe(t), Vt > 0.

Proof We first prove the second inequality (**) by inducting on time.

Base Step t = 0:

Holds with equality since Qe(0) = Qe(0) = 0.

Induction Step:
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Assume that Qe(t) > Qe(t) for some t > 0. From the dynamics (5.27), we can write

Qe(t + 1) =

(a)

(b)

(C)

max (p(t) - pe(t) + Ae(t), Ae (t))

max ( p(t) - Ie(t) + Ae(t), 0)

max (e(t) - pe(t) + Ae(t), 0)

Qe(t + 1),

where Eqn. (a) follows from the fact that Ae(t) > 0, Eqn. (b) follows from the

induction assumption and Eqn. (c) follows from the dynamics (5.28). This completes

the induction step and the proof of the second inequality (**) of the proposition.

Proof of the first inequality (*) may also be carried out similarly.

Taking expectation throughout the first inequality (*) of Proposition 5.9.1 for any

e c E, we have for each t > 0

E(Qe(t)) < IE(Qe(t)) + Ama

Thus,

1 T-1 
1 T-1

lim sup E(QE(t)) < lim sup E(Q,(t)) + Amax
T-oo t=o T+o t=o

(a)
00,

where (a) follows from the strong stability of the virtual queues under UMW. This

shows that, the associated queue process {Q(t)}t>o is also strongly stable under

UMW.

Since the total external arrival A(t) = e Ae(t) at slot t is assumed to be bounded

w.p. 1, applying Theorem 2.8, part (b) of [33], we conclude that for any e E E

Qe(t)
lim =0, w.p.1
t-+oo t
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Using the second inequality (**) of Proposition 5.9.1 and the non-negativity of the

virtual queues, we conclude that for any e E E

Qe(t)
lim =0, w.p.1
t-*oo t

Finally, using the union bound we conclude that

lim =0, Ve Ez E w.p.1t-+oo t

5.9.4 Proof of Theorem 6.5.2

Throughout this proof, we will fix a sample point w E Q, giving rise to a sample

path satisfying the condition (5.16). All random processes 4 will be evaluated at

this sample path. For the sake of notational simplicity, we will drop the argument W

for evaluating any random variable X at the sample point w, e.g., the deterministic

sample-path X(w, t) will be simply denoted by X(t). We now establish a simple

analytical result which will be useful in the main proof of the theorem:

Lemma 5.9.2 Consider a non-negative function {F(t), t > 1} defined on the set

of natural numbers, such that F(t) = o(t) . Define M(t) = supo,, F(T). Then

1. M(t) is non-decreasing in t.

2. M(t) = o(t)

Proof That M(t) is non-decreasing follows directly from the definition of M(t)

supo<7< F(t). We now prove the claim (2).

Case I: The function F(t) is bounded

In this case, the function M(t) is also bounded and the claim follows immediately.

Case II: The function F(t) is unbounded

4Recall that, a discrete-time integer-valued random process X(w; t) is a measurable map from
the sample space Q to the set of all integer-sequences Z 1501, i.e., X : -+ Z .
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Define the subsequence {rk}k>1, corresponding to the time of maximums of the func-

tion M(t) up to time t. Formally the sequence {rk}k>1 is defined recursively as

follows,

1 (5.29)

rk {mint > rk_1 : F(t) > max F(T)} (5.30)
rst-1

Since the function F(t) is assumed to be unbounded, we have rk -+ 00 as k -+ oc. In

the literature [63], the sequence {rk} is also known as the sequence of records of the

function F(t). With this definition, for any t > 1 and for rk < t corresponding to the

latest record up to time t, we readily have

M(t) = F(rk) (5.31)

Hence,

M(t) F(rk) (a) F(rk)
t t rk

where Eqn. (a) follows from the fact that rk < t. Thus for any sequence of natural

numbers {tj} , we have a corresponding sequence {rki}ii such that for each i, we

have

M(ti) _ F(rk) (a) F(r__)
ti t - rk

This implies,

imspM(t) F(t) (b)
lim sup < lim sup = 0, (5.33)

t--+C t t- 00 t

where Eqn (b) follows from our hypothesis on the function F(t). Also since M(t) ;

F(t), from Eqn. (5.33) we conclude that

M(t)
li= 0 (534)
t *Cc t
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As a direct consequence of Lemma 6.8.6 and the property of the sample-point w

under consideration, we have:

Ae(to, t) < Se (to, t) + M (t), Ve E E, Vto <; t (5.35)

for some non-decreasing non-negative function M(t) = o(t). Equipped with Eqn.

(6.24), we return to the proof of the Theorem 6.5.2.

Proposition 5.9.3 ENTO is rate-stable.

Proof We generalize the argument by Gamarnik [60] to prove the proposition. We

remind the reader that we are analyzing the time-evolution of a fixed sample point

W E , which satisfies Eqn. (6.24).

Let Re(0) denote the total number of packets waiting to cross the edge e at time t = 0.

Also, let Rk(t) denote the total number of packets at time t, which are exactly k hops

away from their respective sources. Such packets will be called "layer k" packets in

the sequel. If a packet is duplicated along its assigned route T (which is, in general,

a tree), each copy of the packet is counted separately in the variable Rk(t), i.e.,

Rk(t) = R(e ,T)(t), (5.36)

where the variable R(e,T)(t) denotes the number of packets following the routing tree

T, that are waiting to cross the edge e C T at time t. The edge e T is an edge located

kth hop away from the source in the tree T. If there are more than one such edge

(because the tree T has more than one branch), we include all these edges in the

summation (6.25). We show by induction that Rk(t) is almost surely bounded by a
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function, which is o(t).

Base Step k = 0: Fix an edge e and time t. Let to t be the largest time at which

no packets of layer 0 (packets which have not crossed any edge yet) were waiting to

cross e. If no such time exists, set to = 0. Hence, the total number of layer 0 packets

waiting to cross the edge e at time to is at most Q,(0). During the time interval [to, t],
as a consequence of the UMW control policy (6.24), at most S,(to, t) +M(t) external

packets have been admitted to the network, that want to cross the edge e in future.

Also, by the choice of the time to, the edge e was always having packets to transmit

during the entire time interval [to, t]. Since ENTO scheduling policy is followed, layer

0 packets have priority over all other packets. Hence, it follows that the total number

of packets at the edge e at time t satisfies

E R(e,T)(t) Re(0) + Se(to,t) + M(t) - Se(tot)
T:e~eT

< Re (0) + M(t) (5.37)

R ~ ~~defER(0
As a result, we have Ro(t) < Ee Re(0) + E|M(t), for all t. Let Bo(t) =e Re(0) +

|EIM(t). Since M(t) = o(t), we have Bo(t) = o(t). Note that, since M(t) is mono-

tonically non-decreasing by definition, so is Bo(t).

Induction Step: Suppose that, for some monotonically non-decreasing functions

B1 (t) = o(t),j = 0,1,2,...,k - 1, we have R3 (t) Bj(t), for all time t. We next

show that Rk(t) Bk(t) for all t, where Bk(t) = o(t).

Again, fix an edge e and an arbitrary time t. Let to < t denote the largest time before

t, such that there were no layer k packets waiting to cross the edge e. Set to = 0 if

no such time exists. Hence the edge e was always having packets to transmit during

the time interval [to, t] (packets in layer k or lower). The layer k packets that wait to

cross edge e at time t are composed only of a subset of packets which were in layers

0 < j < k -1 at time to or packets that arrived during the time interval [to, t] and have

edge e as one of their kth edge on the route followed. By our induction assumption,

the first group of packets has a size bounded by E _-31 By(to) Zi B1 (t), where

we have used the fact (from our previous induction step) that the functions Bj(-)'s
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are monotonically non-decreasing. The size of the second group of packets is given

by ZT:eeT AT(to, t). We next estimate the number of layer k packets that crossed

the edge e during the time interval [to, t]. Since ENTO policy is used, layer k packets

were not processed only when there were packets in layers up to k - 1 that wanted

to cross e. The number of such packets is bounded by EZ_~ By(to) EZ_-I Bj(t),

which denotes the total possible number of packets in layers up to k - 1 at time to,

plus -~ Zerek1T AT(to, t), which is the number of new packets that arrived in the

interval [to, t] and intend to cross the edge e within first k -1 hops. Thus, we conclude

that at least

k-I k-1

max 0,S(to,t) - ZB(t) - E AT(tot) (5.38)
j=o j=O T:eEeT

3

packets of layer k crossed e during the time interval [to, t]. Hence,

k-i

ZT:e~eTR(e,T)(t) Bj(t) + E AT (to, t)
=o T:eEeT

k-i k-1

- (Se(to,t) - E B(t) - E E AT(to,t))
j=o j=O T:eEeT

k-1 k

= 2Z Bj(t)+Z E Z AT(to,t) - Se(to,t)
j=o j=O T:eEeT

(a) k-i
< 2Z Bj (t) + M(t),

j=o

where Eqn. (a) follows from the arrival condition (6.24). Hence the total number of

layer k packets at time t is bounded by

k-i

Rk(t) < 21E| E Bj(t) + M(t)|E (5.39)
j=o
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Define Bk(t) to be the RHS of the above equation, i.e.

k-i

Bk(t) = 2jE Bj(t) + M(t)IEI (5.40)
j=0

Using our induction assumption and Eqn. (6.28), we conclude that Bk(t) = o(t) and

it is monotonically non-decreasing. This completes the induction step.

To conclude the proof of the proposition, notice that total size of the physical queues

at time t may be alternatively written as

n-i

Qe(t) = Rk(t) (5.41)
eEE k=1

Since the previous inductive argument shows that for all k, we have Rk(t) ; Bk(t)

where Bk(t) = o(t) a.s., we conclude that

EeEE Qe(t)
lim = 0, w.p. 1, (5.42)

This implies that the physical queues are rate stable [33], jointly under the operation

of UMW and ENTO.
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Chapter 6

Throughput-Optimal Broadcast in

Wireless Networks with

Point-to-Multipoint Transmissions

6.1 Overview of the Results

A fundamental feature of the wireless medium is the inherent point-to-mutipoint

nature of wireless links, where a packet transmitted by a node can be heard by all

its neighbors. This feature, also known as the wireless broadcast advantage [20], is

especially useful in network-wide broadcast applications, where the objective is to effi-

ciently disseminate the packets among all nodes in the network. Additionally, because

of inter-node interference, the set of simultaneous transmissions in a wireless network

is restricted to the set of non-interfering feasible schedules. In the previous chapters,

we designed a number of throughput-optimal broadcasting policies for wireless net-

works with point-to-point links. Designing a broadcast algorithm which efficiently

utilizes the broadcast advantage, while respecting the interference constraints is a

more challenging problem. In this chapter we solve this problem by leveraging the

tools and algorithmic techniques developed in Chapter 5.

The main contributions of this chapter are as follows:
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* We propose an online dynamic policy for throughput-optimal broadcasting in

wireless networks with point-to-multipoint links.

" We prove the NP-completeness of the corresponding finite horizon wireless

broadcast problem.

" We introduce a new control policy and proof technique by combining the stochas-

tic Lyapunov drift theory with the deterministic adversarial queueing theory.

This essentially enables us to derive a stabilizing control policy for a multi-hop

network by solving the problem on a simpler precedence-relaxed virtual single-

hop network.

The rest of the chapter is organized as follows. In section 6.2 we describe the

system model and formulate the problem. In section 6.3 we prove the hardness of

the finite-horizon version of the problem. Next, in section 6.4 we derive an optimal

control policy for a related relaxed version of the wireless network. This control

policy is then applied to the original unrelaxed network in section 6.5, where we show

that the resulting policy is throughput-optimal, when used in conjunction with a

priority-based packet scheduling policy. In section 6.6, we demonstrate the efficacy

of the proposed policy via numerical simulations. Finally, we conclude the chapter in

section 6.7.

6.2 System Model and Problem Formulation

We consider the problem of efficiently disseminating packets, arriving randomly at

source nodes, to all nodes in a wireless network. The system model and the precise

problem statement are described below.

6.2.1 Network Model

Consider a wireless network with its topology given by the directed graph G(V, E).

The set V denotes the set of all nodes, with IVI = n. If node j is within the
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transmission range of node i, there is a directed edge (i, J) C E connecting them.

Due to the inherent point-to-multi-point broadcast nature of the radio channel, a

transmitted packet can be heard by all out-neighbors of the transmitting node. In

other words, the packets are transmitted over the hyperedges, where a hyperedge is

defined to be the union of all outgoing edges from a node. The system evolves in a

slotted time structure. External packets, which are to be broadcasted throughout the

network, arrive at designated source nodes. Total number of external packet arrivals

at any slot is assumed to be bounded by a finite constant.

For simplicity of exposition, we consider only static networks with a single source

node r. However, the algorithm and its analysis presented in this chapter extend

to time-varying dynamic networks with multiple source nodes in a straightforward

manner. We will consider time-varying networks in our numerical simulations.

6.2.2 Wireless TrIansmission Model

When a node i E V is scheduled for transmission, it can transmit any of its received

packets at the rate of ci packets per slot to all of its out-neighbors over its outgoing

hyperedge. See Figure 6-1. Due to the wireless interference constraint, only a selected

subset of nodes can feasibly transmit over the hyperedges simultaneously without

causing collisions. The wireless channel is assumed to be error-free otherwise. The

set of all feasible transmission schedules may be described concisely using the notion

of a Conflict Graph C(g). The set of vertices in the conflict graph is the same as the

set of nodes in the network V. There is an edge between two nodes in the conflict

graph if and only if these two nodes cannot transmit simultaneously without causing

collision. Note that our node-centric definition of conflict graphs is a little different

from the traditional edge-centric definition of conflict graph, which concerns point-

to-point transmissions [641 [651.

As the simplest example of the interference model, consider a wireless network where

each node transmits on a separate channel, causing no inter-node interference. Hence,

any subset of nodes can transmit at the same slot, and the conflict graph does not

contain any edges. For another example, consider a wireless network subject to
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Figure 6-1: An example of packet transmission over hyperedges - when the node 1 transmits
a packet, assuming no interference, it is received simultaneously by the neighboring nodes
2, 3 and 4.

primary interference constraints. In this case, the edge (i, j) is absent in the conflict

graph C(9) if and only if nodes i and j are not in the transmission range of each other

and their out-neighbor-sets are disjoint. The set of all feasible transmission schedules

M consists of the set of all Independent Sets in the conflict graph.

Note that the above definition of feasible schedules and conflict graph, does not allow

any collision in the network. The same assumption was also used in [21], where such

schedules were called "interference-free". However, due to the point-to-multi-point

nature of the wireless medium, it is possible (and sometimes benefitial) to consider

schedules that allow some collisions, so that a transmitted packet may be correctly

received only by a strict subset of neighbors. As it will be clear in what follows, it is

straightforward to extend our algorithm to allow such general schedules, albeit at the

expense of additional computational complexity. In order to present the main ideas

in a simplified setting, in the following, we stick to the "interference-free" schedules,

as defined above.

6.2.3 The Broadcast Policy-Space U

We first recall the definition of a connected dominating set of a graph g [4].

Definition 6.2.1 (Connected Dominating Set) A connected dominating set

D of a graph 9(V, E) is a subset of vertices with the following properties:
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* The source node r is in D.

e The induced subgraph 9(D) is connected.

& Every vertex in the graph either belongs to the set D or is adjacent to a

vertex in the set D.

A connected dominating set D is called minimal if D \ {v} is not a connected

dominating set for any v E D. The set of all minimal connected dominating set is

denoted by D.

A packet p is said to have been broadcasted by time t if the packet p is present at

every node in the network by time t.

It is evident that a packet p is broadcasted if it has been transmitted sequentially by

every node in a connected dominating set D. An admissible broadcast policy 7r is a

sequence of actions {7rt}t>o executed at every slot t. The action at time slot t consists

of the following three operations:

1. Route Selection: Assign a connected dominating set D C D to every incoming

packet at the source r for routing.

2. Node Activation: Activate a subset of nodes from the set of all feasible acti-

vations M.

3. Packet Scheduling: Transmit packets from the activated nodes according to

some scheduling policy.

The set of all admissible broadcast policies is denoted by H. The actions executed at

every slot may depend on any past or future packet arrival and control actions.

Assume that under the action of the broadcast-policy ir, the set of packets received

by node i at the end of slot T is N[(T). Then the set of packets B(T) received by

all nodes, at the end of time T is given by

B"r(T) =n0NiT(T). (6.1)
iGV
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6.2.4 Broadcast Capacity A*

Let R'(T) = IB7(T)l denote the number of packets delivered to all nodes in the

network up to time T, under the action of an admissible policy 7r. Also assume that

the external packets arrive at the source node with expected rate of A packets per

slot. The policy 7r is called a broadcast policy of rate A if

lim R =(T) -A, w.p.1 (6.2)
T-*oo T

The broadcast capacity A* of the network is defined as

A sup{A : 7r is a broadcast policy of rate A} (6.3)
7rG1l

The Wireless Broadcast problem is defined as finding an admissible policy 7r that

achieves the Broadcast rate A*.

6.3 Hardness Results

Since a broadcast policy, as defined above, continues to be executed forever (com-

pared to the finite termination property of standard algorithms), the usual notions of

computational complexity theory do not directly apply in characterizing the complex-

ity of these policies. Nevertheless, we show that the closely related problem of finite

horizon broadcasting is NP-hard. Remarkably, this problem remains NP-hard even

if the node activation constraints are relaxed (i.e., all nodes can transmit packets at

the same slot, which is valid e.g., when each node transmits over a different channel).

Thus, the hardness of the problem arises from the combinatorial nature of distributing

the packets among the nodes. This is in sharp contrast with the polynomially solvable

WIRED BROADCAST problem where the broadcast nature of the wireless medium is

non-existent and different outgoing edges from a node can transmit different packets

over wire or directional antenna [14] [46] [66].

Consider the following finite horizon problem called Wireless Broadcast, with
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the input parameters g, P, T.

* INSTANCE: A Graph g(V, E) with capacities C on the nodes. A set P of P

packets, located initially at the source, and a time horizon of T slots.

" QUESTION: Is there a scheduling algorithm rr which routes all of these P

packets to all nodes in the network by time T, i.e. B'(T) = ?

We prove the following hardness result:

Theorem 6.3.1 Wireless Broadcast is NP-complete.

Proof of Theorem 6.3.1 is based on reduction from the the NP-complete problem

Monotone Not All Equal 3-SAT [67] to the Wireless Broadcast problem. Due to space

limitations, we provide the proof of the Theorem in Appendix 8.1 of the techreport

[681.

Note that the problem for T = 1 is trivial as only the out-neighbors of the source re-

ceive min(C, P) packets at the end of the first slot. The problem becomes non-trivial

for any T > 2. In our reduction, we show that the problem is hard even for T = 2.

This reduction technique may be extended in a straightforward fashion to show that

the problem remains NP-complete for any fixed T > 2.

The above hardness result is in sharp contrast with the efficient solvability of the

broadcast problem in the setting of point-to-point channels. In wired networks, the

broadcast capacity can be achieved by routing packets using maximal edge-disjoint

spanning trees, which can be efficiently computed using Edmonds' algorithm [14]. In a

recent series of papers [46] [69], we proposed efficient throughput-optimal algorithms

for wireless DAG networks in the static and time-varying settings. In a follow-up

paper [66], the above line of work was extended to networks with arbitrary topology.

In contrast, Theorem 6.3.1 and its corollary (see Appendix 8.1 of [68]) establishes

that achieving the broadcast capacity in a wireless network with broadcast channel

is intractable even for a simple network topology, such as a DAG. Also notice that
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this hardness result is inherently different from the hardness result of [70}, where the

difficulty stems from the hardness of max-weight node activations, which is an Inde-

pendent Set problem. The above result should also be contrasted with the hardness

of the minimum energy broadcast problem [71].

6.4 Throughput-Optimal Broadcast Policy for a Re-

laxed Network

In this section, we give a brief outline of the design of the proposed broadcast pol-

icy, which will be described in detail in the subsequent sections. As in Chapter 5,

the proposed policy consists of two interdependent modules - a control policy for a

precedence-relaxed virtual network described below, and a control policy for the actual

physical network, described in Section 6.5. Although, from a practical point of view,

we are ultimately interested in the optimal control policy for the physical network,

as we will soon see, this control policy is intimately related to, and derived from the

dynamics of the relaxed virtual network.

6.4.1 Virtual Network and Virtual Queues

In this section we define and analyze the dynamics of an auxiliary virtual queueing

process {Q(t)}to. Our throughput-optimal broadcast policy 7r* will be described

in terms of the virtual queues. We emphasize that virtual queues are not physical

entities and they do not contain any physical packet. They are constructed solely

for the purpose of designing a throughput-optimal policy for the physical network,

which depends only on the value of the virtual queue lengths. More interestingly,

the designed virtual queues correspond to a fairly natural single-hop relaxation of the

multi-hop physical network, as detailed below.
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A Precedence-relaxed System

Consider an incoming packet p arriving at the source, which is to be broadcasted

through a sequence of transmissions by nodes in a connected dominating set Dp E D.

Appropriate choice of the set D, is a part of our policy and will be discussed shortly.

In reality, the packet p cannot be transmitted by a non-source node v E DP at time

t if it has not already reached the node v by the time t. This causality constraint

is known as the precedence constraint in the literature [561. We obtain the virtual

queue process Q(t) by relaxing the precedence constraint, i.e., in the virtual queuing

system, the packet p is made available for transmission by all nodes in the set DP

when the packet first arrives at the source. See Figure 6-2 for an illustration.

Qp1(t)

Q, (t) P2 (t)

S(t) 3(t)

(t)4(t)

Dp = {1, 2} 4 t

A Wireless Network g Virtual Queues

Figure 6-2: Illustration of the virtual queue system for the four-node wireless network g.
Upon arrival, the incoming packet p is prescribed a connected dominating set Dp = {1, 2},
which is used for its broadcasting. Relaxing the precedence constraint, packet p is counted
as an arrival to the virtual queues Q1 and Q2 at the same slot. In the physical system, the
packet p may take a while before reaching node 2, depending on the control policy.

Dynamics of the Virtual Queues

Formally, for each node i E V, we define a virtual queue variable Qi(t). As described

above, on the arrival of an external packet p at the source r, the packet is replicated

to a set of virtual queues {Q(t), i E Dp}, where Dp E D is a connected dominating set

of the graph. Mathematically, this operation means that all virtual queue-counters in

the set DP are incremented by the number of external arrivals at the slot t. We will
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use the control variable Ai(t) to denote the number of packets that were routed to

the virtual queue Q, at time t. The service rate p(t) allocated to the virtual queues

is required to satisfy the same interference constraint as the physical network, i.e.

z(t) E M,Vt. Hence, we can write the one step dynamics of the virtual queues as

follows:

Q2(t + 1) = (Qj(t) + Ai(t) - piu(t))-, Vi E V (6.4)

6.4.2 Dynamic Control of Virtual Queues

In this section, we design a dynamic control policy to stabilize the virtual queues for

all arrival rates A < A*. This policy takes action (choosing the routes of the incom-

ing packets and selecting a feasible transmission schedule) by observing the virtual

queue-lengths only and, unlike popular unicast policies such as Backpressure, does

not require physical queue information. This control policy is obtained by minimiz-

ing one-step expected drift of an appropriately chosen Lyapunov function as described

below. In the next section we will show how to combine this control policy for the

virtual queues with an appropriate packet scheduling policy for the physical networks,

so that the overall policy is throughput-optimal.

Consider the Lyapunov function L(.) defined as the Eucledian 2-norm of the virtual

queue lengths, i.e.,

L(Q(t)) = IIQ(t)11 2 = t (t) (6.5)

The one step drift A(t) of the Lyapunov function may be bounded as follows:

A(t) L(Q(t + 1)) - L (Q (t))

- QP (t + 1) - ZQ (t) (6.6)
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To bound this quantity, notice that for any x > 0 and y > 0, we have

- - VY : (6.7)
25

The inequality above follows by noting that RHS minus LHS is non-negative. Substi-

tuting x = ||Q(t+1)112 and y = IIQ(t)I|2 in the inequality (6.7), we have the following

bound on the one-step drift (6.6) for any IIC(t)I > 0

A(t) ! - (C22(t + 1) - C22(t)) (6.8)
2||Q (t)II|

From the virtual queue dynamics (6.4), we have:

Qj(t + 1)2 (Qj(t) - pi(t) + Ai(t)) 2

= Q2(t) + A2(t) + pI (t) + 2Qj(t)Aj(t) - 2Qj(t)pa(t) - 2pa(t)Ai(t)

Since pi(t) > 0 and Ai(t) > 0, we have

Qi~t+1 Qi~ : Ai (t p t + 2Qj(t)Aj(t) - 2Qj(t)pj(t) (6.9)

Hence, combining Eqns. (6.8) and (6.9), the one-step Lyapunov drift, conditional on

the current virtual queue-length Q(t), under the action of an admissible policy 7r is

upper-bounded as:

E-(,A'(t) I#2(t) = Q )
E(L(C(t + 1)) - L(C(t))1Q(t) = C)

< 2Q B+2 Qi(t)E(A(t)I(t) = )

(a)

- 2EQ%(t)E(p7(t)|Q(t) = C) (6.10)

(b)
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where the constant B = E(EA (t) + Ept(t)) < n(EA 2 + c2 .). By minimizing the

upper-bound on drift from Eqn. (6.10), and exploiting the separable nature of the

objective, we obtain the following control policy for the virtual queues:

Universal Max Weight (UMW) policy for the Virtual Queues

1. ROUTE SELECTION: We minimize the term (a) in the above with respect to

all feasible controls to obtain the following routing policy: Route the incoming packet

at time t along the minimum-weight connected dominating set (MCDS) DUMw(t),

where the nodes are weighted by the virtual queue-lengths Q(t), i.e.,

DUMw(t) = arg min Q(t)1(i E D) (6.11)
DeD

iEV

2. NODE ACTIVATIONS: We maximize the term (b) in the above with respect to all

feasible controls to obtain the following node scheduling policy: At time t activate a

feasible schedule ptUMw(t) having the maximum weight, where the nodes are weighted

by the virtual queue-lengths Q(t), i.e.,

MUMw(t) = arg max aQ(t)c1(i E M) (6.12)
MEM

iEV

In connection with the virtual queue systems Q(t), we establish the following

theorem which will be essential in the proof of the throughput-optimality of the

overall algorithm involving physical queues.

Theorem 6.4.1 For any arrival rate A < A* the virtual queue process {Q(t)}}t0
is positive recurrent under the action of the UMW policy and

max Qi(t) = O(log t)1, w.p. 1.
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The proof of Theorem 6.4.1 involves construction of an efficient randomized policy

and using it with a sharper form of the Foster-Lyapunov theorem by Hajek [72]. This

leads to the desired sample path result. The proof is provided in Appendix 6.8.2.

Discussion of the Result Even though the virtual queue process is positive re-

current under the action of the UMW policy, it is not true that they are uniformly

bounded almost surely. Theorem 6.4.1 states that, instead, the virtual queue lengths

increase at most logarithmically with time almost surely. Theorem 6.4.1 also strength-

ens the result of Theorem 2.8 of [33], where an almost sure o(t) bound was established

for the queue lengths2 .

In the rest of this chapter, we will primarily focus on the typical sample paths S of

the virtual queue process satisfying the above almost sure bound. Formally, we define

the set E to be

maxQi(w,t) = O(log(t)), Vw C S, (6.13)

where P(S) = 1 from Theorem 6.4.1.

6.4.3 Bounds on the Virtual Queue

Recall that the random variable Ai(t) denotes the total number of packets injected

to the virtual queue Qi at time t. Similarly, the random variable pi(t) denotes the

service rate from the virtual queue Qi at time t. Hence, the total number of packets

that have been injected into any virtual queue Qi within the time interval [ti, t2 ),

ti < t2 is given by

t2-1
Ai(t 1 , t2 ) = Ai(T). (6.14)

r=tl

'Recall that, f(t) = O(g(t)) if there exist a positive constant c and a finite time to such that
f(t) < cg(t), Vt > to.

2 We say f(t) = o(g(t)) if iMt"o 9 = 0.
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Similarly, the total amount of service offered to the virtual queue Q. within the time

interval [ti, t 2 ) is given by

2-1

Si(t1, t2 ) = Z pt(T). (6.15)
T=tj

Using the well-known Skorokhod representation theorem [73] of the Queueing recur-

sion (6.4), we have 3

Qj(t) = sup (Ai(T, t) - Si(T, t))+. (6.16)
1<-r<t

Since the virtual queues Q are controlled by the UMW policy, combining Eqn. (6.13)

with (6.16), we have for all typical sample paths w E S:

Ai(w; T, t) Si(w; r, t) + F(w, t), Vr < t, i E V, (6.17)

where F(w, t) = O(log t). In other words, equation (6.17) states that under the U MW

policy, for any packet arrival rate A < A*, the total number of packets that are routed

to any virtual queue Qj may exceed the total amount of service offered to that queue

in any time interval [T, t) by at most an additive term of 09(log t) almost surely. In

the following section, we will show that this arrival condition enables us to design a

throughput-optimal broadcast policy.

6.5 Control of the Physical Network

With the help of the one-hop virtual queue structure designed in the previous section,

we now focus our attention on designing a throughput-optimal control policy for the

multi-hop physical network. Recall from Section 6.2 that a broadcast policy for the

physical network is specified by the following three components: (1) Route Selection,

(2) Node Activation, and (3) Packet Scheduling. In our proposed broadcast policy,
3Note that, for simplicity of notation and without any loss of generality, we have assumed the

system to be empty at time t = 0.
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components (1) and (2) for the physical network are identical to the corresponding

components in the virtual network. In other words, an incoming packet p at time t

is prescribed a route (i.e., a connected dominating set) given by Eqn. (6.11) and the

set of nodes given by Eqn. (6.12) are scheduled for transmission in that slot. Note

that, both these decisions are based on the instantaneous virtual queue lengths Q(t).
In particular, it is possible that a particular node, with positive virtual queue length,

is scheduled for transmission in a slot, even though it does not have any packets to

transmit in its physical queue. The surprising fact, that will follow from Theorem

6.5.3, is that this kind of wasted transmissions are rare and do not affect throughput.

Packet Scheduling: There are many possibilities for the component (3), i.e. Packet

scheduling in the physical network. Recall that, the packet scheduling component

selects packet(s) to be transmitted (subject to the node capacity constraint) when

multiple packets contend for transmission by an active node and plays a role in de-

termining the physical queuing process. In this chapter, we consider a priority based

scheduler which gives priority to the packet which has been transmitted by the nodes

the least number of times. We call this scheduling policy Least Transmitted First

or LTF. The LTF policy is inspired from the Nearest To Origin policy of Gamarnik

[60], where it was shown to stabilize the queues for the unicast problem in wired

networks in a deterministic adversarial setting. In spite of the high level similarities,

however, we emphasize that these two policies are different, as the LTF policy works

in the broadcast setting with point-to-multi-point transmissions and involves packet

duplications.

Definition 6.5.1 (The policy LTF) If multiple packets are available for trans-

mission by an active node at the same time slot t, the LTF scheduling policy gives

priority to a packet which has been transmitted the smallest number of times among

all other contending packets.

See Figure 6-3 for an illustration of the LTF policy.
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V5 priority[pl], = -3

priority [g],, = -2

Figure 6-3: A schematic diagram depicting the scheduling policy LTF in action. The packet
pl's broadcast route consists of the nodes {vi, V2, V3, V4, .. .} and the packet p2's broadcast
route consists of the nodes {v 1 , v 5 , V4,.. .} as shown in the figure. At node V4, according to
the LTF policy, the packet P2 has higher priority than the packet p1 for transmission.

6.5.1 Stability of the Physical Queues

Let us denote the length of the physical queue at node i at time t by Qi(t). Note

that the number of packets which arrive at the source in the time interval [T, t) and

whose prescribed route contains the node i, is equal to the corresponding arrival in

the virtual network Ai(r, t), given by Eqn. (6.14). Similarly, total service offered by

the physical node i in the time interval (r, t] is given by Si(r, t), defined in Eqn. (6.15).

Thus, the bound in Eqn. (6.17) may be interpreted in terms of the packets arriving

to the physical network. This leads to the following theorem:

Theorem 6.5.2 Under the action of the UMW policy with LTF packet scheduling,

we have for any arrival rate A < A*,

YQ (t) =O(log t), w.p.1.
iEV

This implies that,

lim iVit= 0, w.p.1,t-+oC t

i.e., the physical queues are rate-stable [33].
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Theorem 6.5.2 is established by combining the sample path property of arrivals

and departures from Eqn. (6.17), with an adversarial queueing theoretic argument

[60]. Due to space limitations, we include the complete proof in Appendix 8.3 of the

techreport [681.

As a direct consequence of Theorem 6.5.2, we have the main result of this chapter:

Theorem 6.5.3 UMW is a throughput-optimal wireless broadcast policy.

Proof The total number of packets R(t), received by all nodes in common up to time

t may be bounded in terms of the physical queue lengths as follows

(*)
A(0, t) - Qj(t) < R(t) < A(0, t), (6.18)

iEV

where the lower-bound (*) follows from the simple observation that if a packet p has

not reached at all nodes in the network, then at least one copy of it must be present

in some physical queue.

Dividing both sides of Eqn. (6.18) by t, taking limits and using the Strong Law of

Large Numbers and Theorem 6.5.2, we conclude that

R(t)
lim R)= A, w.p.1.
t+oo t

Hence, from the definition (6.2.4), we conclude that UMW is throughput-optimal.

Efficient Implementation

We remind the reader that the routing and node activation decisions in UMW are

made using the virtual queue lengths Q(t), whereas the physical packet scheduling

decisions are based on the contents of the physical queues at each node. In the

following, we discuss efficient implementation of each of the three components in

detail.
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Routing

A broadcast route (MCDS) is computed for each packet immediately upon its ar-

rival according to Eqn. (6.11), and copied into its header field. The route selection

involves solving an MCDS problem with the nodes weighted by the corresponding

virtual queue lengths, which is NP-hard [741. This is consistent with the hardness

of the WIRELESS BROADCAST problem, established in Theorem 6.3.1. Assuming

bi-directional wireless links, a polynomial time O(log n) approximation algorithm for

the MCDS problem is available for general graphs [75]. Furthermore, constant factor

approximation algorithms for this problem are available for unit disk graphs [76].

Node Activation

At every slot a non-interfering subset of nodes is activated by choosing a maximum

weight independent set in the conflict graph C(9), where the nodes are weighted by

their corresponding virtual queue lengths, see Eqn. (6.12). The problem of finding a

maximum weight independent set in a general graph is known to be NP-hard [74].
However, for the special case, such as unit disk graphs, constant factor approximation

algorithms are available [771. Note that, the same issue arises in the classical max-

weight policies [1].

By a similar analysis, it can be shown that using an a > 1 approximation algorithm

for routing and 3 > 1 approximation algorithm for node activation, we can achieve

1 fraction of the optimal broadcast capacity of the network.max (a,0l)

Packet Scheduling

The LTF policy can be efficiently implemented by maintaining a min-heap data-

structure per node. The initial priority of each incoming packet at the source is set

to zero. Once a packet p is received at a node i and the node i is included in its

list of required transmitting node, its priority is decreased by one and it is inserted

to the min-heap maintained at node i. Naturally, a node simply discards multiple

receptions of the same packet.
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6 T 910

Figure 6-4: A wireless network with non-interfering channels. The broadcast capacity of
the network is A* = 2.

6.6 Simulation Results

6.6.1 Interference-free Network

As a proof of concept, we first simulate the UMW policy in a simple wireless network

with known broadcast capacity. Consider the network shown in Figure 6-4. Here node

1 is the source having a transmission capacity C1 = 2. All other nodes in the network

have unit transmission capacity. Assume that the channels are non-interfering, i.e.,

all nodes can transmit in a slot (this holds, e.g., if the nodes transmit on different

frequencies). Since the broadcast capacity of any wireless network is upper-bounded

by the capacity of the source, we readily have A* < 2. Also, it can be seen from Figure

6-4 that by transmitting the even numbered packets from nodes 2 and 5 (shown in

blue) and the odd numbered packets from nodes 3 and 4, a broadcast rate of 2 packets

per slot can be achieved. Hence, the broadcast capacity of the network is A* = 2.

Figure 6-5 shows the average broadcast delay with the packet arrival rate A in this

network under the action of the proposed UMW policy. Note that the minimum delay

is at least 2 as it takes at least two slots for any arriving packet to reach the nodes in

the third layer. The plot confirms that the dynamic policy achieves the full broadcast

capacity.
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Figure 6-5: Plot of the broadcast delay incurred
arrival rate A in the network shown in Fig. 6-4.

Source

Figure 6-6: A 3 x 3 wireless grid network with primary
broadcast capacity (A*) of the network is at most 1

3.

by the UMW policy as a function of the

interference constraints. The wireless

6.6.2 Network with Interference Constraints

Consider the 3 x 3 wireless grid network, shown in Fig. 6-6. Assume that the transmis-

sions are limited by primary interference constraints, i.e, two nodes cannot transmit

together if the transmissions interfere at any node in the network. Assume that any

node, if activated, has a transmission rate of one packet per slot. In this setting we

have the following upper-bound on the broadcast capacity of the network.

Lemma 6.6.1 The broadcast capacity of the 3 x 3 grid network is at most .

The proof of the lemma is provided in Appendix 8.4 of the techreport [68].
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Figure 6-7: Plot of the broadcast delay incurred by the UMW policy as a function of the
arrival rate A in the 3 x 3 wireless grid network shown in Fig. 6-6.

In Figure 6-7 we show the broadcast delay as a function of the packet arrival rate, un-

der the action of the UMW policy on the right most curve marked (a). From the plot,

we observe that the delay-throughput curve has a vertical asymptote approximately

along the straightline A =. This, together with lemma 6.6.1, immediately implies3.

that the broadcast capacity of the network is A* = 1 and confirms the throughput-3

optimality of the UMW policy.

Broadcasting in a Time Varying Network

Next, we simulate the UMW broadcast policy on a time-varying wireless grid network

of Figure 6-6, in which the nodes are not always available for transmission (e.g., they

are sensors in sleep mode). In particular, we assume a simplified model where each

node is active for potential transmission at a slot independently with some fixed but

unknown probability PON. The delay performance of the proposed UMW broadcast

policy is shown in Figure 6-7 (b) and (c) for two cases, PON = 0.6 and PON = 0.4

respectively. Following similar analysis as in the preceding sections, it can be shown

that the UMW policy is also throughput-optimal for time-varying networks. Hence,

from the plot it follows that the broadcast capacities of the time-varying 3 x 3 wireless

grid network are ~ 0.26 and ~ 0.22 packets per slot, for the activity parameter

PON = 0.6 and PON = 0.4 respectively.
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6.7 Conclusion

In this chapter we obtained the first throughput-optimal broadcast policy for wire-

less networks with point-to-multi-point links and arbitrary scheduling constraints.

The policy is derived using the powerful framework of precedence-relaxed virtual net-

work, which we used earlier for designing throughput-optimal policies for networks

with point-to-point links. Packet routing and scheduling decisions are made by solv-

ing standard optimization problems on the network, weighted by the virtual queue

lengths. The policy is proved to be throughput optimal by a combination of Lyapunov

method and a sample path argument using adversarial queueing theory. Extensive

simulation results demonstrate the efficiency of the proposed policy in both static

and dynamic network settings. There exist several interesting directions to extend

this work. First, in our simplified model, we assumed that interference-free wireless

transmissions are also error-free. A more accurate wireless channel model would in-

corporate the possibility of packet losses associated with each individual receiving

nodes, due to fading and receiver noise [69]. Second, it remains unknown whether the

UMW policy is still throughput optimal if the routing and node activations are made

using the corresponding physical queue lengths as compared to the virtual queues. A

positive result in this direction would lead to a more efficient implementation.

6.8 Appendix

6.8.1 Proof of Hardness of the WIRELESS BROADCAST Prob-

lem

We start with the following lemma

Lemma 6.8.1 Wireless Broadcast is in NP.

Proof From the formulation, the problem Wireless Broadcast is a Decision Problem.
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Cr 2

Figure 6-8: The Gadget used for the hardness proof

Also, if it has a Yes answer then there is a scheduling algorithm which serves as a

certificate. Hence the problem belongs to NP.

Next we show that an NP-complete problem, named MONOTONE NOT ALL

EQUAL 3-SAT (MNAE-3SAT) reduces to the problem WIRELESS BROADCAST in

polynomial time. This will complete the reduction.

We begin with the description of the problem MNAE-3SAT:

The problem MNAE-3SAT

" INSTANCE: Set U of boolean variables, collection C of clauses over U

such that each clause c E C has Icl = 3 variables and none of the clauses

contain complemented variables (Monotonicity).

" QUESTION: Is there a truth assignment for U such that each clause in C

has at least one true literal and at least one false literal ?

It is known that the problem MNAE-3SAT is NP-complete [67].

Reduction: MNAE-3SAT 9 WIRELESS BROADCAST

Suppose we are given an instance of the problem MNAE-3SAT (UC). Let jUI = n

and |CJ = m. Denote n boolean variables by {xi, i = 1, 2,. . . , n}. For this instance of

MNAE-3SAT, we consider the following instance g(V, E) of WIRELESS BROADCAST

as shown in Figure 6-8. The construction is done as follows:
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" There are a total of n + m + 1 nodes. The nodes are divided into three layers

as shown in Fig. 6-8.

* Let r E V be the source node in the first layer. The capacity of the source node

is 2. This means that, the source node can transmit 2 packets per slot to its

out-neighbours.

" There are n nodes in the second layer of the figure 6-8, all of which are out-

neighbors of the source node r. Each of these nodes correspond to a variable xi

in MNAE-3SAT instance. Capacity of each of these nodes in the second layer

is one.

" There are m nodes in the third layer, each corresponding to a clause c E C in

the MNAE-3SAT instance. The edges incoming to a node cj are defined as

follows: if the clause cj is expressed as cj Xil V Xi2 V Xi 3 , then we add three

edges (Xi 1 , c1 ), (Xi 2 , cs), (Xi 3 , cj) in the graph 9(V, E). Capacities of each node

in the third layer is taken to be 1.

Now consider the following instance of Wireless Broadcast on the constructed graph

g(V, E). There are M = 2 packets at the source with a deadline of T = 2 slots.

We claim that the following two questions are equivalent, i.e. Question 1 has a YES

answer iff the Question 2 has an YES answer.

" Question 1: Is the MNAE-3SAT instance (U, C) satisfiable ?

" Question 2: Does the constructed Wireless Broadcast instance have a Yes So-

lution?

To show this, let us denote the packets sent by the source r at the beginning of the

slot by {0, 1}. Since the capacity of the source r is 2, all nodes x 1 , X 2 ,.. ., x,, receive

this packet at every slot. Since the capacities of the nodes xi is only unity, they can

only transmit either packet 0 or the packet 1 at that slot. We can denote this choice

by the binary variable xi, i.e. xi = 0 if the node xi sends packet 0 and is 1 if it sends
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packet 1.

Note that the node c3 will receive both the packets if the corresponding clause contains

at least one 0 and at least one 1. For a broadcast capacity of 2, all nodes must receive

both packets at every slot. This is exactly the condition for the existence of a satisfying

assignment of the MNAE-3SAT instance. This proves the intended hardness result.

U

Corollary:

As a direct consequence of the above reduction, it follows that the problem Wireless

Broadcast remains NP-complete even with the following additional restrictions:

1. The wireless transmissions are non-interfering.

2. The graph 9(V, E) is a DAG (c.f. [46], [661).

3. The node capacities may take at most two values.

4. The in-degree of each node is at most 3.

6.8.2 Proof of Stability of the Virtual Queues

The proof of positive-recurrence and the sample path result is divided into several

parts. First we describe and develop some general tools and then apply these tools

to the virtual-queue Markov Chain {Q(t)} 1 .

Mathematical Tools

The key to our proof is a stronger version of the Foster-Lyapunov drift theorem,

obtained by Hajek [72] in a more general context. The following statement of the

result, quoted from [78], will suffice our purpose. First, we recall the definition of a

Lyapunov function:
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Definition 6.8.2 (Lyapunov Function) Let X denote the state space of any pro-

cess. We call a function L : X --+ R a Lyapunov function if the following conditions

hold:

* (1) L(x) > 0,Vx X and,

* (2) the set S(M) {x E X : L(x) M} is finite for all finite M.

Theorem 6.8.3 (Hajek '82) For an irreducible and aperiodic Markov Chain {X(t)}}t>0

over a countable state space X, suppose L : X -+ R+ is a Lyapunov function. Define

the drift of L at X as

AL(X) A (L(X(t + 1)) - L(X(t)))I(X(t) = X)

where I(.) is the indicator function. Thus, AZ(X) is a random variable that mea-

sures the amount of change in the value of Z in one step, starting from the state X.

Assume that the drift satisfies the following two conditions:

" (Cl) There exists an e > 0 and a B < oo such that

E(AL(X)IX(t)= X) -e, VX E X with Z(X) > B

" (C2) There exists a D < o such that

|AL(X)I < D, w.p. 1, VX E X

Then, the Markov Chain {X(t)}t>o is positive recurrent. Furthermore, there

exists scalars 0* > 0 and a C* < 00 such that

lim sup E(exp(0*L(X(t))) < C*
t-+oo

We now establish the following technical lemma, which will be useful later.
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Proof Define the positive constant q* = '. We will show that

i.o. 4 ) = 0.

For this, define the event Et as

Et = {Y(t) > 77*log(t)} (6.20)

From the given condition (6.19), we know that there exists a finite time t* such that

E(exp(O*Y(t))) < C* + 1, Vt > t* (6.21)

We can now upper-bound the probabilities of the events Et, t > t* as follows

P(Et) = P(Y(t) > 17* log(t))

= P(exp(O*Y(t)) > exp(0*7* log(t)))

(a)

(b)

E(exp(9*Y(t)))

t2

c* + 1

211

Lemma 6.8.4 Let {Y(t)}t>0 be a stochastic process taking values on the non-

negative real line. Supppose that there exists scalars 0* > 0 and C* < oo such

that,

limsupE(exp(O*Y(t))) C* (6.19)
t-*oo

Then,

Y(t) = O(log(t)), w.p.1

P(Y(t) ! 7* 10g(t),7



The inequality (a) follows from the Markov inequality and

The inequality (b) follows from Eqn. (6.21). Thus, we have

00

E P(Et)
t=1

t*-1 00

= P(Et) + EP(Et)
t=1 t=t*

t* +(C* +l)Zi<
t=t*

the fact that 0*r/* = 2.

S t* +(C * +1) <o
6

Finally, using the Borel Cantelli Lemma, we conclude that

P(lim sup Y ;> r* log t) = P(Et i.o.) = 0

This proves that Y = 0(log t), w.p.1.

Combining Theorem 6.8.3 with Lemma 6.8.4, we have the following corollary

Corollary 6.8.5 Under the conditions (Cl) and (C2) of Theorem 6.8.3, we have

L(X (t)) = O(log t), w.p. 1

Construction of a Stationary Randomized Policy for the Virtual Queues

{Q(t)}t;>1

Let D denote the set of all Connected Dominating Sets (CDS) in the graph g con-

taining the source r. Since the broadcast rate A < A* is achievable by a stationary

randomized policy, there exists such a policy r* which executes the following:

* There exist non-negative scalars {a*, i = 1, 2,. . ., IDI} with E> a* = A, such

that each new incoming packet is routed independently along a CDS Di E D

with probability "A, Vi. The packet routed along the CDS Di corresponds to an
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arrival to the virtual queues {Qj, j E Di}.

As a result, packets arrive to the virtual queue Qj i.i.d. at an expected rate of

i:jED aVj per slot.

* A feasible schedule sj E M is selected for transmission with probability p3

j = 1, 2,. .. , k i.i.d. at every slot. By Caratheodory's theorem, the value of k

can be restricted to at most n + 1. This results in the following expected service

rate vector from the virtual queues:

n+1

A*= E pjcSs,
j=1

Since each of the virtual queues must be stable under the action of the policy 7r*,

from the theory of the GI/GI/1 queues, we know that there exists an E > 0 such that

P* - E a > c, Vi G V (6.22)
j:iEDj

Next, we will verify that the conditions C1 and C2 in Theorem 6.8.3 holds for

the Markov Chain of the virtual queues {Q(t)} 1 under the action of the UMW

policy, with the Lyapunov function L(Q(t)) = IIQ(t)I| at any arrival rate A < A*.

Verification of Condition (CI)- Negative Expected Drift

From the definition of the policy UMW, it minimizes the RHS of the drift upper-

bound (6.10) from the set of all feasible policies l. Hence, we can upper-bound the

conditional drift of the UMW policy by comparing it with the stationary policy 7r*

described in 6.8.2 as follows:

E(AUM W(t)IQ(t) = Q)

< 2I (B + 2 Z (t)E(AUMW(t)10(t) =
211011 EV
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- 2ZQZ(t)E(pJ MW(t)IQ(t)
ECV

(a) 1
< 21 ClI(B + 2 Qi(t)E ( Ai't|~)=

iV

- 2 EQ (t)E(pY (t)IQ(t)

21 (B - 2 Q (t)(Ep'(t) - EA*(t))
211 C211iEV

2 B- 2 11 C 11 (

(b) B
< Q -
211QI|

- 2 Q (t)(Pi -
iEV

E|V Qi( '

li Ih I

where inequality (a) follows from the definition of the UMW policy and inequality

(b) follows from the stability property of the randomized policy given in Eqn. (6.22).

Since the virtual-queue lengths Q(t) is a non-negative vector, it is easy to see that

(e.g. by squaring both sides)

EQI(t)
i ev

Hence, from Eqn. (6.23) in the above chain of inequalities, we obtain

E(AU M W(t)IQ(t) = 2) <

E(AUM W(t)Q(t)) <- 2' VIIQII > B/c

This verfies the negative expected drift condition C1 in Theorem 6.8.3.
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Thus,

B
- - C

211QII
(6.23)

>2(t)=|Q|



Verification of Condition (C2)- Almost Surely Bounded Drift

To show that the magnitude of one-step drift IAL(Q)l is almost surely bounded, we

compute

IAL(Q(t))l = L(Q(t + 1)) - L(Q(t))j

I Q(t + 1)11 - I|!(t))I I

Now, from the dynamics of the virtual queues (6.4), we have for any virtual queue

IQj(t + 1) - Qi(t)I < |Ai(t) - pi(t)l

Thus,

I|Q(t + 1) - Q(t)II < IA(t) - Ii(t)II vHn(Amax + Cma)

Hence, using the triangle inequality for the 2 norm, we obtain

|AL(Q(t)) = II(t + 1)1 - |IQ(t))I| < v/n(Ama + cmax),

which verifies the condition C2 of Theorem 6.8.3.

Almost Sure Bound on Virtual Queue Lengths

Finally, we invoke Corollary 6.8.5 to conclude that

w.p.1

This implies that,

w.p.1 M
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6.8.3 Proof of Theorem 6.5.2

Throughout this proof, we will consider only the typical sample point w E S defined

in Eqn. (6.13). For the sake of notational simplicity, we will drop the argument W for

evaluating a random variable X at w, i.e., the deterministic sample path X(w, t), w G

S will be simply denoted by X(t). We now make a simple observation which will be

useful in the proof of the theorem:

Lemma 6.8.6 Consider a function F : Z+ -+ Z+, where Z+ is the set of non-

negative integers. Assume that F(t) = O(logt). Define M(t) = supo<,T< F(T).

Then,

1. M(t) is non-decreasing in t and M(t) > F(t).

2. M(t) = O(log t).

Proof Clearly, M(t) supo0 ,<t F(r) > F(t) and

M(t + 1) = sup F(T) > sup F(T) = M(t).
O<r<t+1 O<-<t

To prove the second claim, let tma(t) = arg maxo<,<t F(T). Clearly, tmax(t) t.

Hence, for large enough t, we have

M(t) = F(tmax(t)) = O(log tmax(t)) = O(log t).

As a consequence of Lemma 6.8.6 applied to Eqn. (6.17), we have almost surely

Ai(to, t) < Si(to, t) + M(t), Vi E V, Vto < t, (6.24)
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for some non-decreasing function M(t) = O(log t). We now return to the proof of

the main the main result, Theorem 6.5.2.

of the main result Our proof technique is inspired by an adversarial queueing the-

ory argument, given in [601. We remind the reader that we are analyzing a typical

sample path satisfying Eqn. (6.24), which holds almost surely. In the following argu-

ment, each copy of a packet is counted separately.

Without any loss of generality, assume that we start from an empty network at time

t = 0. Let Rk(t) denote the total number of packets waiting to be transmitted further

at time t, which have already been forwarded exactly k times by the time t. We call

such packets "layer k" packets. As we have mentioned earlier, if a packet is duplicated

multiple times along its assigned route D (which is a connected dominating set (or

CDS, in short)), each copy of the packet is counted separately in the variable Rk(t),

i.e.,

Rk(t) = 7 [ RiD(t), (6.25)
DED iEDk

where the variable R(i,D) (t) denotes the number of packets following the CDS D, that

are waiting to be transmitted by the node i E D at time t and Dk is the set of nodes

in the CDS D, which are exactly kth hop away from the source along the CDS D. We

show by induction that Rk(t) is almost surely bounded by a function, which is O(log t).

Base Step k = 0: Consider the source node i = r and an arbitrary time t.

Let to < t be the largest time at which no packets of layer 0 (packets which are

present only at the source and have never been transmitted before) were waiting to

be transmitted by the source. If no such time exists, set to = 0. During the time

interval (to, t], as a consequence of the property in Eqn. (6.24) of the UMW policy, at

most Sr(to, t) + M(t) external packets have arrived to the source r for broadcasting.

Also, by the choice of the time to, the source node r was always having packets to

transmit during the entire time interval (to, t]. Since LTF packet scheduling policy is

followed in the physical network, layer 0 packets have priority over all other packets
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(in fact, there is packet of other layers present only at the source, but this is not the

case at other nodes which we will consider in the induction step). Hence, it follows

that the total number of layer 0 packeis at time t satisfies

Ro(t) = >1 R(i,D)(t) Sr(to, t) + M(t) - Sr(to, t)
DE'DiEDO

< M(t) (6.26)

def
Define Bo(t) M(t). Since M(t) = O(logt), we have BO(t) = O(logt). Note that,

since M(t) is non-decreasing from Lemma (6.8.6), so is Bo(t).

Induction Step: As our inductive assumption, suppose that, for some non-decreasing

functions Bj(t) = O(logt),3j = 0, 1, 2,. . . , k - 1, we have Rj (t) < Bj (t), for all time t.

We next show that there exists a non-decreasing function Bk(t) = O(log t) such that

Rk(t) Bk(t) for all time t.

To prove the above assertion, fix a node i and an arbitrary time t. Let to t de-

note the largest time before t, such that there were no layer k packets waiting to be

transmitted by the node i. Set to = 0 if no such time exists. Hence the node i was

always having packets to transmit during the time interval (to, t] (packets in layer k

or lower). The layer k packets that wait to be transmitted by the node i at time t are

composed only of a subset of packets which were in layers 0 < j < k - 1 at time to or

packets that arrived during the time interval (to, t] and include the node i as one of

their k h transmitter along the route followed. By our induction assumption, the first

group of packets has a size bounded by >i_- Bj (to) 5 E_- B (t), where we have

used the fact (using our induction step) that the functions Bj(.)'s are monotonically

non-decreasing. The size of the second group of packets is given by ED:iEDk AD(to, t)-

We next estimate the number of layer k packets that crossed the edge e during the

time interval (to, t]. Since the LTF packet scheduling policy is used in the physical

network, layer k packets were not processed only when there were packets in layers

up to k - 1 that included the node i in its routing CDS. The number of such packets

is bounded by EZ _- Bj(to) Ej-e Bj(t), which denotes the total possible number
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of packets in layers up to k - 1 at time to, plus E,9~0 ED:iEDj AD(tO, t), which is the

number of new packets that arrived in the interval (to, t] and includes the node i as

a transmitter within their first k - 1 hops. Thus, we conclude that at least

k-1 k -1

Max 0, Si-(t t) Bj(t) - E AD(to, t) (6.27)
j=o j=O D:i Dj

packets of layer k have been transmitted by the node i during the time interval (to, t].

Hence, the total number of layer k packets present at node i at time t is given as

k-1

ZD:icDkR(i,D)(t) < E B (t) + AD(to, t)
j=o D:iEDk

k-1 k-1

-- (s(t0, t) - E Bj(t) - E E AD (to, t)
j=o j=O D:iEDj

k-1 k

= 2Z B,(t)+ Y , AD(to, t) - Si(to, t)
j=0 j=O D:iEDj

(a) k-i
< 2 Bj(t) + Ai(to,t) - Si(to,t)

j=0

(b) k-1

< 2 E Bj(t) + M(t),
j=O

where the inequality (a) follows from the fact that each packet gets routed to a node

i for transmission only once and hence

n-i

Ai(t 0, t) = AD(to, t), Vi E V.
j=0 D:iEDj

The inequality (b) follows from the property of the typical sample paths, stated in

Eqn. (6.24). Hence, the total number of layer k packets at time t is bounded as

Rk(t) = R(i,D)(t) 2r k-1 Bj(t) + nM(t)
i D:iEDk
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Define Bk(t) to be the RHS of the above equation, i.e.

k-1

Bk(t) = 2n Bj(t)+nM(t) (6.28)
j=0

Using our induction assumption and Eqn. (6.28), we conclude that Bk(t) =

O(log t), and it is easily seen to be non-decreasing. This completes the proof of

the induction step.

To conclude the proof of the theorem, observe that the sum of the lengths of the

physical queues at time t may be alternatively written as

n-1

EQj(t) = ERkM) (6.29)
iEV k=1

Since the previous inductive argument shows that for all k, we have Rk(t) < Bk(t)

where Bk(t) = ((log t) a.s., we have EiEV Qi(t) = O(log t), and hence

iv Qi W)lim = 0, w.p. 1. (6.30)t-+oo t

6.8.4 Proof of Lemma 6.6.1

Proof Observe that, due to the primary interference constraints, the nodes r, a and d

can not be activated at the same slot. Consider any arbitrary policy, which activates

the node i for a fraction fi, i E V times. Hence, we have the constraint that

fr + fa + fc < 1 (6.31)

On the other hand, if the policy 7r achieves a broadcast rate of A, it must be that

A < fr, (considering broadcast rate at node a)

A < fa, (considering broadcast rate at node b)

A < fc, (considering broadcast rate at node f).
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Adding the above three equations, we have

(a)
3A < fr + fa + fc 1, (6.32)

where the inequality (a) follows from the constraint (6.31). Since the policy 7r is

assumed to be arbitrary, we conclude that the broadcast capacity of the 3 x 3 grid

network is at most }
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