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Abstract

Recent advances in acoustic navigation methodologies are enabling the way for AUVs to ex-
tend their submerged mission time and maintain a bounded XY position error. Additionally,
advances in inertial sensor technology have drastically lowered the size, power consumption,
and cost of these sensors. Nonetheless, these sensors are still noisy and accrue error over
time. This thesis builds on the research and recent developments in single beacon one-way-
travel-time (OWTT) acoustic navigation and investigates the degree of bounding position
error for small AUVs with a minimal navigation strap-down sensor suite, relying mostly on a
consumer grade microelectromechanical system (MEMS) inertial measurement unit (IMU)
and a vehicle's dynamic model velocity. An implementation of an Extended Kalman Filter
(EKF) that includes IMU bias estimation and coupled with a range filter, is obtained in the
field on two OceanServer Technology, Inc. Iver2 AUVs and one Bluefin Robotics SandShark
piAUV. Results from these field trials on Ashumet Pond of Falmouth, Massachusetts, the
Charles River of Cambridge, Massachusetts, and Monterey Bay near Santa Cruz, California
show a navigation solution accuracy comparable to current standard navigation techniques.
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Chapter 1

Introduction

1.1 Motivation

Progress in underwater robotic systems brings both the scientific research and military com-

munities a reality that is reachable in deploying multiple autonomous underwater vehicles

(AUVs) throughout the entirety of the water column. With this capability, the scientific

community's surveys can extend both their spatial and temporal scales, leading to fur-

ther investigation and understanding of biochemical exchange between the ocean and the

atmosphere coming from hydrothermal vent activity[43]. Likewise, the military defense

community can both extend mission coverage and minimize time on station for a variety of

intelligence missions and mine clearance operations. Additionally, a navigation methodology

that yields accurate navigation and localization within a certain threshold will benefit both

communities. Although these methods exist, however, higher accuracy is traditionally at the

expense for higher costs platforms. This trade-off limits the ability for these communities

to deploy multiple vehicles on a single mission and limits the operational areas in the water

column. In order for these communities to expand their operations with multiple robotic

platforms (either homogeneous or heterogeneous), a means of inexpensive, yet precise and

accurate, navigation will help enable missions throughout the water column. This thesis ad-

dresses this problem by researching a navigation solution based on a microelectromechanical

systems (MEMS) inertial measurement unit (IMU), a vehicle's dynamic model velocity, and

acoustic positioning.
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1.2 AUV Navigation - A Short Literature Review

1.2.1 Acoustic Navigation

Global Positioning Systems (GPS) provide land, air, and sea surface robots with highly ac-

curate, absolute position measurements, thus enabling highly accurate navigation solutions.

However, for robots operating underwater, the lack of GPS signals pose unique challenges.

AUVs typically navigate by means of various sensors to compute a dead-reckoned odometry

[33, 381. However, without external aiding, position error grows unbounded over time.

AUVs can surface periodically to obtain GPS measurements, thus updating position

estimates and reducing its error. However, periodic surfacing limits the energy consump-

tion efficiency (thus reducing its overall mission time) and prevents covert missions needed

for military applications and, for deep AUVs, periodic surfacing requires they leave the

areas of interest. One such solution for providing absolute position measurements while

the vehicle remains submerged is acoustic time of flight (TOF) navigation. Long Baseline

(LBL) navigation [29], in which an AUV triangulates its position to fixed surveyed acoustic

transponders. LBL systems require time-consuming transponder surveys, require expensive

ship time, and limit the mission coverage area. Ultra-Short Baseline (USBL) navigation [391

is an alternative method that does not require fixed transponders on the ocean bottom, but

it still requires the ship, with its expensive operational time, to remain on station and not

conduct other simultaneous missions in different areas. Additionally, USBL systems require

the AUVs to transmit acoustic packets to the ship's array, making this scheme less desirable

due to the energy consumption costs. Also, for USBL systems equipped with an acoustic

modem, the vehicle can receive position updates from the topside beacon, but these updates

are time delayed.

Advances in single beacon acoustic navigation over the past decade present an alternative

means for bounding XY navigation error since depth is easily bounded by pressure depth

sensors. In this method, a surface beacon, which has access to GPS, transmits its position

to a submerged vehicle in an acoustic packet. Highly accurate and synchronized clocks (a

chip-scale atomic clock or a temperature compensated crystal oscillator coupled with a pulse-

per-second clock) [25, 26] on both the beacon and the receiving vehicle accurately measure the

acoustic packet's one-way-travel-time (OWTT) TOF. Prom this TOF calculation, a range

between the surface beacon and the vehicle is determined using the water column's sound

14



speed, and this range is used to constrain the AUV's position estimate, thus bounding

its XY position error. Many successful experimental results using single beacon OWTT

range measurements over the past decade prove this capability of bounding position error

[16, 17, 18, 51, 53, 56, 54]. More recently, a moving short baseline navigation solution that

incorporated two transducers on the surface beacon made use of OWTT range constraints

[57]. For this method, when the AUVs are distant from the surface ship, the two surface

beacons act as a single beacon providing OWTT range measurements. However, when the

AUVs are near the surface beacon, navigation and localization improve due to the two

transponders. These results incorporate a variety of state estimation algorithms, primarily

consisting of position displacement odometry determined by a Doppler Velocity Log (DVL),

which is constrained by the OWTT range measurements. The major advantage for single

beacon OWTT navigation, in addition to submerged XY position constraints, is the ability

to deploy multiple vehicles that each simultaneously receive position data acoustic packets

from the same surface beacon, and hence, the position update rate for each vehicle remains

constant.

Observability is important with range only measurement methods. Since a range mea-

surement only provides a constraint and not an absolute position measurement, only certain

AUV trajectories using inertial measurement sensors are observable. Previous work proved

that a system is observable by analysis of the Fisher Information Matrix [421. Others proved

trajectories are observable except those that are straight line segments passing through the

origin (i.e. the beacon) [22, 231. Other developments include a belief space planning algo-

rithm to optimize trajectories of a team of AUVs in order to enhance observability and thus

make the navigation solutions from these inter-vehicle ranges more accurate [49].

With the success of using OWTT range measurements from a single beacon to constrain

XY position error, multiple vehicle navigation algorithms are using OWTT inter-vehicle

range measurements to further constrain error. The main challenge in using inter-vehicle

ranges for position estimates is overconfidence in the solution. Prior work in this area

includes development of an algorithm in which the broadcasting vehicles share their pose

and covariance estimates. This information is then used in a filter on a receiving vehicle to

ensure conservative covariance estimates by preventing the use of measurements from the

same origin more than once [3]. Another approach is an algorithm that computes odometry

factors from the transmitting vehicle to prevent overconfidence in the receiving vehicle's

15



solution based on inter-vehicle range measurements [50].

1.2.2 Navigation with Inertial Measurement Units (IMU)

IMUs most commonly contain three orthogonal accelerometers, gyroscopes, and magnetome-

ters that respectively measure linear acceleration, angular rates, and magnetic field strength.

Thus, IMUs serve as a navigation sensor to determine a vehicle's attitude as well as serve

as an odometry input by integrating the linear accelerations to obtain velocity and posi-

tion. While reductions in size, power consumption, and cost of MEMS IMUs are occurring,

their higher sensor noise levels and inaccuracy make them insufficient for many navigation

applications compared to other high-end inertial navigation systems (INS). For example,

compared to a commercial grade INS (that costs on the order of tens of thousands of dol-

lars, power consumption on the order of tens of watts, exhibits a drift of 0.001 - 1 '/hr for

a fiber optic gyroscope, and 0.001 - 1 mg of acceleration bias for a pendulus accelerometer),

a MEMS IMU gyroscope drifts greater than 600/hr, and its accelerometer exhibits 0.01 - 1

mg of bias [12], but it only costs on the order of tens of dollars and consumes power on the

order of tens of milliwatts.

Many methods and algorithms reduce the errors of MEMS IMUs to make them suitable

for underwater vehicle navigation. One such method is assessing an IMU's error statistics

and then determining how best to select an IMU for a particular application [131. Other

methods consist of an Extended Kalman Filter (EKF) to estimate attitude in a quarternion

representation with depth measurements for improving accuracy [341. Further, double in-

tegration of IMU linear accelerations provide a measurement for odometry in a navigation

solution. A fused Kalman Filter consisting of GPS as well as IMU linear accelerations showed

acceptable accuracy of a remotely operated vehicle but only consisted of a trial run of ten

seconds 135]. Better results of IMU accelerations as an odometry input are provided by an

on-line EKF that fused IMU sensor measurements and GPS speed-over-ground measure-

ments on a terrain vehicle that resulted in a root-mean-square (RMS) error of 17.4 meters

over a distance traveled of approximately 8.75 kilometers in 51 minutes [41]. Additionally,

in simulation, a combined translational and attitude observer, that used an IMU for both

attitude and odometry, fused with DVL speed measurements, resulted in a RMS position

error of 0.5 meters over 250 seconds of mission time [14].

Due to higher noise levels, bias errors, and drift errors from the accelerometers and gy-
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roscopes, the double integration of the linear accelerations can lead to quite large position

errors over time [45]. Since bias errors are known to drift over time, continuously updat-

ing and subtracting this bias error from a measurement can improve performance. Three

angular-rate aided estimators [46] improved bias estimation over previous methods of the

TWOSTEP [2] and the attitude-independent EKF [10]. Others have improved performance

by using an EKF to estimate bias and scale factor errors for both accelerometers and gy-

roscopes after a calibration procedure [5]. Lastly, a first order Gauss-Markov process, used

to model bias estimation in a Kalman Filter, showed convergence within 60 seconds for the

gyroscopes and within 1 second for the accelerometers [47].

1.3 Contribution

This thesis builds upon the research in single beacon OWTT acoustic navigation and the use

of MEMS IMUs for measurements to determine AUV odometry and attitude. This research

contributes the following:

(1) A navigation solution (referred to herein as the IMU EKF) determined by an EKF that

incorporates a MEMS IMU, a vehicle's dynamic model velocity (based on propeller turn

count) for speed measurements, and acoustic TOF range measurements and is comparable

to current standard navigation solutions.

(2) Accelerometer bias estimation in the IMU EKF to reduce the inherent MEMS IMU

accelerometer error.

(3) A coupled range filter to the IMU EKF in order to preclude processing faulting acoustic

range measurements from hardware defects or environmental variability.

Field data from three different controlled-environment experiments in local waters and

one open ocean experiment are presented proving this concept with a comparison of dif-

ferent navigation solutions. Items 1 and 2 along with results from the October 2016 field

experiments are presented in a prior work [32].

The remainder of this thesis is organized as follows: Chapter 2 describes the EKF model

used in this navigation solution. Chapter 3 describes the platforms used and the field

experiment configurations conducted in Ashumet Pond of Falmouth, MA, the Charles River

of Cambridge, MA, and Monterey Bay, CA. Chapter 4 discusses the field results, and Chapter

5 closes with conclusions and recommendations for future work.
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Chapter 2

Navigation Model

2.1 Kalman Filter - A Brief Overview

The Kalman Filter [31] is a benchmark state estimator in current navigation solution meth-

ods. Its wide use and applicability in this field are the reasons for choosing the Extended

Kalman Filter (EKF) [37], a nonlinear variant of the Kalman Filter, to serve as the state

estimator for this thesis.

The Kalman Filter estimates a state by propagating a linear dynamic system's state

perturbed by white noise and infers updates to the state by related measurements also

perturbed by white noise as seen in the equations below:

x(t) = Ax(t) + Dw(t) (2.1)

z(t) = Hx(t) + v(t) (2.2)

In Equations (2.1 - 2.2), x(t) is the system's state vector, A is the system transition matrix,

D is the noise coefficient matrix, w(t) is the system's white dynamic process noise, z(t) is the

measurement, H is the measurement-to-state mapping matrix, and v(t) is the measurement

white noise. The plant process noise, w(t), and measurement noise, v(t), are considered

zero-mean, Gaussian white noise, such that,

w(t) ~ A(O, Q) , v(t) ~ X(0, R)

where Q is defined as the system process-noise variance matrix, and R is the measurement

19



noise variance matrix.

Performing a discretization of the continuous time system expressed in equations (2.1)

and (2.2), the following discrete-time dynamic system is presented:

Xk+1 = FXk + Vk (2.3)

The discrete time transition matrix, F, and discrete-time process noise, v, are defined as

follows for time step, dt: [4]

F = eAdt (2.4)

dt

v(k) = eA(d-T)Dw(kdt + T)dT (2.5)

During each time step in the Kalman Filter process, a prediction step is processed that

propagates the system model followed by a measurement update step. This update step

incorporates a measurement, which is related to the system's state, and updates the pre-

dicted state value with a gain factor (weighted by system statistics) and the measurement

innovation (i.e., the difference between the actual and the predicted measurements). The

discrete-time Kalman Filter prediction step equations are as follows:

F + BUk (2.6)

Pk+1 =FPF FT + Q (2.7)

where u is a discrete-time control input function, B is the coefficient matrix, P is the

system's covariance matrix, and Q is the system's process noise covariance matrix defined

as

Q = E [v(k)v(k) T] (2.8)

The measurement update equations are as follows, where K is the Kalman gain matrix:

Kk = P-HT(Rk + HkPAHT)- 1  (2.9)

:k+ = k + Kk(zk - H k-) (2.10)

P = (I - KkHk)P-J(I - KkHk)T -+ KkRkKT (2.11)
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The "Joseph form" of the Riccati equation (2.11) is used to ensure positive definiteness [7].

2.2 IMU EKF Model for AUVs

A summary of the entire IMU EKF algorithm used in this research is presented in Algorithm

1. An overview block diagram of this EKF implemented in real time on the AUVs is displayed

Algorithm 1 IMU EKF with Bias Estimation & a Coupled Range Filter

1:

2:

3:

4:

5:

6:

7:
8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

loop
Process Kinematic Plant Model Prediction Step at each time step
if Receive Model-Velocity Measurement then

Process Model-Velocity measurement in EKF measurement update step
else if Receive Linear Acceleration Measurement then

Process Linear Acceleration measurement in EKF measurement update step
else if Receive OWTT Range measurement then

Process Range-threshold Filter:
if OWTT range < range threshold then

Augment State Vector & Augment Covariance Matrix with beacon position and
variance
Linearize range equation to process range observation matrix, Hrng
Process range measurement in EKF measurement update step

else
Use predicted state.

end if
Process State-Acceptance Gate:
if Updated state passes the acceptance gate then

Determine acceleration bias measurement
else

Use predicted state.
end if

else if Receive Accelerometer Bias Measurement then
Process Accelerometer bias measurement in EKF measurement update step

end if
25: end loop

in Figure 2-1. This block diagram portrays all of the different measurements and processes

that are incorporated in this navigation model. The details of each block are discussed in

the following sections.

2.2.1 Plant Model

Since the OWTT range measurements are non-linear, the Kalman Filter variant used is an

EKF, in which the nonlinear processes and/or measurements are linearized by a first order
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OWT Range
(Topside, AUV)

Range
State XY
XY Error

NO Range
Threshold

Filter

YES

Augmentation
x-aug,P--aug

IMU

Initialization Linear Acceleration
x0,P0 Gyro

J ~Magnetometejr

Complementary
Prediction/Model Filter

xC= Ax+
P= AP+AT + Q HPR

Measurement/Update
K = P~HT(HP-HT + R)- -

+ x- + K(z - Hx~) Velocity
P+ = (I - KH)P~(I - KH)T + KRKT 4 Dynamic Model

4 ,DVL
If OWTT Range: Bias

Measurement
Linearization _

Hrng Process OWTT Rangg:
Calculate Accelerometer Bias

State YES x+ = x*_-aug(1:8)
Acceptance YlP+ =p+_aug(1:8,1:8)

Gate

NO
Use Predicted State, x-

Figure 2-1: Block Diagram for the IMU EKF with a coupled range filter. This block diagram

shows the start (rounded box), the processes (square), the input measurements (trapezoid),
and the decision points by the coupled range filter (diamond).

Taylor Series Expansion and evaluated at the state's value for that time step. Using the

linear Kalman Filter discussion presented in Section 2.1, the IMU EKF model is detailed in

this section.

The vehicle's state vector, xV, is defined as follows:

Xv = [x, y, u, v, ax, ay, bX, by]T (2.12)

where each x, y pair is the vehicle's XY position in the world frame (i.e., positive x is East,

positive y is North, and positive z is down), each u, v pair is the vehicle's XY velocities in the

world frame, and each ax, ay pair is the vehicle's XY linear accelerations in the world frame.

The b, by elements are the respective XY acceleration bias terms in the world frame. Since

attitude and depth are adequately instrumented, the z dimension parameters can be easily
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measured and estimated. Thus, the three-dimensional OWTT range is projected into the

horizontal plane, and only the XY position, velocity, acceleration, and biases are estimated.

The system model used for this EKF is a Continuous Wiener Process Constant Accel-

eration model [4] combined with an accelerometer bias model. The constant acceleration

model is used for several reasons. This model allows use of the IMU linear accelerations

as measurement in the EKF. Also, this kinematic model is applicable to any type of AUV

since it does not incorporate vehicle dynamics, such as drag, thrust, or steering models.

Additionally, since many AUV missions consist of long, straight, constant-velocity tracks,

linear accelerations are approximately constant at zero. The disadvantage to this model is

its inaccuracy during turns. However, this issue is mitigated when the EKF error returns

to convergence once the vehicle's motion has returned to a constant straight line path [221.

The system transition matrix, A, and the noise coefficient matrix, D, from Equation (2.1)

are defined as follows:

0 0

0 0

-1 0

0 -1

0 0

0 0

0 0

0 0

(2.13)

(2.14)D = 0 0 0 0 1 1 0 0 ]T

Conducting a normal discretization of the continuous system using Equation (2.4) with

23



sampling period, dt, the discrete time transition matrix, F, is determined:

dt

0

1

0

0

0

0

0

0

dt

0

1

0

0

0

0

1 dt22

0

dt

0

1
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0

0

0
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(2.15)

A first-order Gauss-Markov (GM) process is used to model the accelerometer bias as a

random process. This model is chosen to model the slowly time varying accelerometer bias

because of its bounded uncertainty characteristic [15, 20, 47]. In discrete time, the bias, b,

is written as
dt

bk =e -bk-1 + Wb,k (2.16)

where dt is the sampling period, T, is the correlation time constant, and Wb is zero-mean

bias model process white noise with variance, or2 with a tunable parameter, o2.varanc , b wtatualprmercb.

2 - 1 - 2dt

Cr-w,b = 0~b (1- e T ) (2.17)

The discrete time GM process model in Equation (2.16) for the bias terms are substituted

in the appropriate elements of the discrete system transition matrix, F, resulting in

1 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0

dt

0

1

0

0

0

0

0

0

dt

0

1

0

0

0

0

1dt2
2

0

dt
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0

0
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-dt 2

0

dt

0

1

0

0

- .1dt2

0

-dt

0

0

0
dt

e T

0

0

-- ldt22

0

-dt

0

0

0
dt

e- Te

(2.18)
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To derive the discrete time process noise matrix, Q, recall the discrete time process noise

from Equation (2.5):
dt

v(k) = eA(dr)Dw(kdt + T)dT (2.19)

Initially, for the derivation, the transition matrix, A, and the noise coefficient matrix, D,

are based on the two-dimensional constant acceleration model only. In other words, these

two matrices do not contain the acceleration bias terms. Therefore, for the purpose of using

Equation (2.19), the A and D matrices are as follows:

A =

0 0

0 0

0 0

0 0

0 0

0 0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

D = 0 0 0 0 1

0

0

0

1

0

0

(2.20)

1T (2.21)

The discrete time process noise matrix, Q, with gain parameter, 4, is then derived:

Q = E [v(k)v(k)T ] = j

1dt5

-dt520
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terms, Q, as defined in Equation (2.22) is expanded from
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6x6 to 8x8 to include the discrete time GM noise variance, UWb, presented in Equation

(2.17):

1dt
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(2.23)

Assuming position, velocity, and acceleration in the different x, y

correlated, and bias is not correlated with any other parameter, the

matrix, Q, reduces to the following:

Q = q
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(2.24)

Because the system is modeled with constant acceleration, the control input function,

u, in Equation (2.6) is 0.

2.2.2 Observation Models

The velocity, linear acceleration, and bias observation measurements are linear. Conversely,

the OWTT range measurement is nonlinear, thus the measurement Equation (2.2) becomes

z(t) = h(x(t)) + v(t) (2.25)
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where h(x(t)) is the nonlinear range function, discussed in more detail in the section below

titled, "Range Measurement and Augmentation." In discrete time, the measurement model

becomes

Zk = HkXVk + k. (2.26)

As shown in Equation (2.26), the observation noise, Vk, is zero-mean, Gaussian white noise,

such that,

6k .A(O, Rk). (2.27)

For the measurement variance noise matrix, R, the matrix is diagonal with the respective

measurement (model velocity, acceleration, bias,or range) variance values:

Rve = [ (2.28)

2

Race = acC 0 (2.29)
0 Oacc

U.2 0
Rbias bias 2 (2.30)

0 Orbias-

Ri [O-,2 (2.31)

Range Measurement and Augmentation

For each OWTT range measurement, from either the surface beacon or another vehicle, the

receiving vehicle's state vector and covariance P matrix are augmented with the required

information from the transmitting beacon. The vehicle's state vector is augmented with the

transmitting beacon's pose, [Xb, Yb], such that

Xaug = [x, y, u, v, ax, a, bx, by, xb, yb]T (2.32)

The P matrix is augmented with the transmitting beacon's position uncertainty values, sim-

ilar to the Naively Distributed Extended Kalman Filter (NEKF) [51]. Therein, the authors

show that a geometry that consists of a single surface transmitting node with multiple sub-

merged transmitting nodes (which mirrors the geometry in some of the field experiments
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presented in this thesis), the NEKF closely follows the lo uncertainties of the benchmark

Centralized EKF. A similar method is found in the Egocentric Extended Kalman Filter, in

which the inter-vehicle ranges are assumed to be independent, and, thus the off-diagonals

of the covariance matrix are zero [361. Due to these results, algorithmic simplicity, and

low acoustic bandwidth necessity, a similar comparable method for passing the transmitting

beacon state uncertainties is a viable option, in which the P matrix is augmented in the

following manner:

P o 0 0

Paug = o deacon 0 (2.33)

L 0 0 obeacon_

P, is the vehicle's predicted 8X8 covariance matrix at time, k, of the range measurement.

U beacon is the sum of the X and Y position variances of the vehicle beacon transmitted in

the acoustic packet. Transmitting the vehicle beacon uncertainties in this manner is more

conservative than the true NEKF method and thus minimizes the potential for overconfident

solutions. For the surface beacon, the GPS uncertainty is transmitted as a single value and

is used as the value of a2 beacon in the matrix, Paug.

Once this augmentation process is complete, the measurement matrix, Hrng is determined

to map the vehicle's state vector to the OWTT range. The OWTT range update is based

upon the model presented in previous field experiments [54]. xb is the state vector of the

beacon (either a surface beacon with access to GPS or another submerged AUV), such that

Xb = [X y]T (2.34)

The range between the vehicle at time of arrival (TOA) and the beacon at time of launch

(TOL) is modeled as the following:

Zrng = (xv. - xbXy)T(XvX, - xb.,) + Vrng (2.35)

xvxy and xb., are the XY position values of the vehicle's state at TOA and the beacon's

state at TOL, respectively, and Vrng is the time invariant measurement noise. Equation

(2.35) rewritten in state vector form becomes

Zrng = (xTMTMx)1/ 2 + Vrng (2.36)
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where

M = Jv -Jb] , Vrng ' A(0, Rrng) (2.37)

Jv = [I2x2 02x6] (2.38)

b 12x2] (2.39)

Jv and Jb are defined to capture the pose information of the vehicle and the beacon at TOA

and TOL, respectively. Since the range measurement is nonlinear, a Jacobian matrix of the

range, evaluated at the vehicle's augmented predicted state becomes

Hrnge = - [aug)T (MT) (M) (aug - 1/2 (aug )T (MT) (M) (2.40)
X-Xaugk

The Kalman Filter measurement update equations (2.9-2.11) are then processed to update

the vehicle's state with the new range measurement. The elements in the augmented state

vector and augmented P matrix corresponding to the receiving vehicle's state variables are

then saved and processed in the Kalman Filter prediction equations (2.6-2.7) for the next

time step.

Acceleration Bias Measurement

With each range measurement at the TOA of an acoustic packet, the IMU EKF processes

an updated state estimate, kc+, from the predicted state, k-. Prom this update in position,

an accelerometer bias in the world frame is determined as

biasac ( = 2 '" 2y t (2.41)cc 2 At2

where At is the time between the current range measurement and the previous range mea-

surement, and x, y refer to the position variables in the vehicle's state. This bias measurement

is then processed in the Kalman Filter measurement update equations (2.9-2.11) to update

the state's bias terms.
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2.2.3 Coupled Range Filter

The IMU EKF is coupled with a range filter to prevent processing a range measurement

due to inaccurate clock timing or a beacon's inaccurate state estimate. A faulty range can

result from poor clock synchronization between the transmitter and the receiver or from

acoustic environmental variability. A small amount of drift on either clock can change the

TOL or TOA of the acoustic packet and thereby change the range calculation. Additionally,

acoustic environments that contain multipath propagation or reflection can result in TOF

measurements that do not resemble the slant range between the transmitting beacon and

receiving vehicle, thus making the OWTT range measurement inaccurate.

When processing a range measurement, the subsequent updated state estimate can be

unreliable if the transmitting beacon's state, as encoded in the acoustic packet, is inaccurate.

The Jacobian OWTT range measurement-to-state mapping matrix, Hng (Equation (2.40)),

uses the transmitting beacon's state in its calculation, and this matrix is then used to

update the receiving vehicle's state with the innovation in Equation (2.10). Therefore, any

inaccuracy in the transmitting beacon's state estimate can easily contribute to an error in

the receiving vehicle's state estimate as soon as the OWTT range is processed. To address

these issues, the coupled range filter in the IMU EKF uses two different processes to prevent

the IMU EKF from processing a faulty range measurement.

The coupled range filter in the IMU EKF uses two different processes to prevent the IMU

EKF from processing a faulty range measurement or an inaccurate beacon's position. These

two processes are a range threshold filter and a state acceptance gate, both summarized in

Algorithm 2.

The first decision point of the coupled range filter is the range threshold filter, which

prevents the IMU EKF from processing the measurement update Equations (2.9 - 2.10)

on a faulty range. Simply, if the OWTT range is less than the set maximum threshold

value, the range is discarded, and the measurement update equations (2.9-2.11) are not

processed. The range threshold value can be determined in a variety of methods. Examples

include geographic constraints or known acoustic range limitations based on environment or

equipment.

After the vehicle's updated state is determined, a state acceptance gate (analogous to a

velocity filter) is applied to prevent processing a receiving vehicle's updated state estimate
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Algorithm 2 IMU EKF Range Filter Applied to OWTT Range Measurements

1: while Processing IMU EKF do
2: if Receive OWTT Range measurement then
3: Process range-threshold Filter:

4: if OWTT Range < range threshold then
5: Process range measurement in EKF measurement update step

6: else
7: Use predicted state.
8: end if
9: Process State Acceptance Gate by Equation (2.42)

10: if Updated state passes acceptance gate then
11: Use updated state and continue processing IMU EKF
12: else
13: Use predicted state.
14: end if
15: end if
16: end while

because of an inaccurate beacon's state estimate. The IMU EKF tracks its previous state

estimated position and time of the last OWTT range measurement from any beacon. After

determining the updated state, the IMU EKF calculates a distance from the vehicle's state

position at the time of the last range measurement to the current vehicle's updated state

position. This distance is then divided by the time since the last OWTT range update.

This calculation results in a speed, which is then compared to predetermined speed value.

If the calculated speed is less than this maximum value, the updated state is processed and

an acceleration bias measurement is determined. If the calculated speed is greater than

predetermined speed value, the updated state estimate is disregarded, and the vehicle's

predicted state is propagated forward. Equations (2.42-2.43) show the speed calculation,

where x, y are the vehicle's estimated position coordinates in the world frame, and k, t are

the current time and last range update time, respectively.

- Xt) 2 + (Yk yt) 2 <Speed Value (2.42)
A~t

At =k - t (2.43)

The speed value used can be determined by the vehicle's maximum rated speed or the

mission's maximum commanded speed with a deviation. For example, if the mission's com-

manded speed is 2.5 knots, and the vehicle is using its DVL for speed measurements, the
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speed value for the state acceptance gate could be set to 3.0 knots, which provides a 20%

deviation to allow for any variability in the DVL measurements.

2.3 Attitude Complementary Filter

The MEMS IMU not only provides odometry input from its linear accelerations, but it also

provides measurements for attitude estimation. Roll, pitch, and yaw are determined from the

IMU's accelerometer, gyroscope, and magnetometer measurements. The accelerometer and

magnetometer measurements provide a high frequency source of attitude determination,

and the gyroscope measurements determine a low frequency source of attitude. In this

case, since attitude measurements can be considered a signal determined by two different

noisy measurements (one that is high frequency and the other that is low frequency), a

complementary filter can be used to reduce the error [6].

The complementary filter uses a combination of a low-pass filter and high-pass filter

to refine the attitude estimation. The low-pass filter allows the low frequency components

to pass through, while the high-pass filter allows the high frequency components to pass

through. In essence, the complementary filter cancels the long-term (low-frequency) drift

from the gyroscope measurements to get a more accurate determination of attitude.

As noted before, attitude is determined from two sources: (1) accelerometer and mag-

netometer, and (2) gyroscopes. From the accelerometer and magnetometer measurements,

roll (0), pitch (0), and yaw (4), are determined:

atan2(-ay, -az) (2.44)

= atan2(az, ay + a) (2.45)

= atan2(-my, -- mM) - 00 (2.46)

where a is the respective accelerometer measurement, Oo is the local magnetic declination,

and 'm is the respective magnetometer measurement rotated to the local frame [34].

The model for the complementary filter is as follows:

E)= a * ( + w * dt) + (1 -a) * M ag/A (2.47)
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E is the vector of roll, pitch, and yaw, that is, 0 = [0',OJT, w is the angular velocity

measured by the IMU gyroscopes, 0 Mag/Acc is the attitude vector calculated by equations

(2.44-2.46), and a is the filter coefficient [27].

The IMU's magnetometer was calibrated by the nominal geometric calibration procedure

[8], and the complementary filter was adjusted by comparing the output to the onboard

OceanServer compass that was used by the vehicle when the data sets were recorded. The

complementary filter was not used for attitude estimation for the SandShark field trials due

to the inability to calibrate the IMU magnetometer.
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Chapter 3

Experiment Configuration

3.1 Vehicles

OceanServer Technology, Inc. Iver2 vehicles and a Bluefin Robotics SandShark micro-autonomous

underwater vehicle (jiAUV) were used during the field trials reported in this thesis. Details

of these two platforms as well as instrumentation are discussed in detail in this chapter.

3.1.1 OceanServer Technology, Inc. Iver2 AUV

Two Iver2 AUVs [11], Iver-106 and Iver-136, were used during the field trials conducted

for this research. These two vehicles are featured in Figure 3-1 on board the R/V Shana

Rae for the "Satellites to the Ocean Floor" research project [441. Iver-106 was equipped

with a Woods Hole Oceanographic Institution (WHOI) 25-kHz acoustic micro-modem [241,

a SonTek Doppler Velocity Log (DVL) for speed estimation, a MEMS OceanServer compass

for attitude estimation, a depth sensor, a GPS receiver, and a Pololu AltIMU-10 v5 MEMS

IMU. This IMU consisted of a triaxial gyroscope, accelerometer, compass, and altimeter

(LSM6DS33, LIS3MDL, and LPS25H Carrier). The other vehicle, Iver-136, had a similar

equipment configuration with a WHOI acoustic modem, compass, a GPS receiver, and depth

sensor. Additionally, the vehicle was equipped with a dual upward/downward tracking 600

kHz RDI DVL and a Microstrain 3DM-GX3-25 MEMS IMU. Figure 3-2 shows the systems

configuration layout on the vehicles. Each of the vehicles' software was modified to run Linux

Ubuntu (Version 14.04) with the vehicle's original Windows based computer operating as a

virtual machine. This modification enabled compatibility with WHOI's Deep Submergence
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Figure 3-1: OceanServer Iver2 AUVs onboard the R/V Shana Rae. Front to Back: Iver-136,
Iver-107, Iver-106. Photo courtesy of Dr. David Fratatoni during the KISS Field Project

[44] in 2016.
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Figure 3-2: Iver2 AUV Systems Configuration Layout: Displays the main components and

sensors necessary for the IMU EKF navigation method.

Lab acoustic communications (ACOMMS) software.

Bench tests were conducted to determine the IMU's static accelerometer and gyrocom-

pass biases. Each vehicle operated its normal operating hotel load throughout the duration

of the test; Iver-106 ran for approximately 19.1 hours, and Iver-136 ran for 15.6 hours. Table

3.1 summarizes the statistics for both IMUs. In this table, acc is defined as the respective

accelerometer, and gyro is defined as the respective gyroscope. The accelerometer and gy-

roscope biases were subtracted from the raw measurements prior to being infused into the

IMU EKF and the complementary filter. The accelerometer standard deviations were used

in the measurement noise matrix, R.

3.1.2 Bluefin Robotics SandShark AUV

The Bluefin Robotics SandShark used in these field experiments was a small, low-pAUV that

was configured with a payload suitable for acoustic navigation [481. Specifically, this vehicle

36

J.



Table 3.1: Pololu & Microstrain IMU Accelerometer and Gyrocompass Statistics

(a) Iver-106 Pololu IMU

Sensor Static Bias, yi Standard Deviation, a
accx 29.95 mg 0.945 mg
accy 5.744 mg 0.967 mg

accz 19.45 mg 1.204 mg

gyrox 2.129582 deg/s 0.030719 deg/s
gyroy -2.882762 deg/s 0.033401 deg/s

gyroz -5.167089 deg/s 0.042471 deg/s

(b) Iver-136 Microstrain IMU

Sensor Static Bias, /u Standard Deviation, o

accx 17.587 mg 0.631 mg
accy 15.473 mg 0.682 mg
accz 4.782 mg 0.707 mg

gyrox 0.001032 deg/s 0.002490 deg/s
gyroy -0.000384 deg/s 0.002270 deg/s
gyroz 0.004779 deg/s 0.002408 deg/s

was equipped with a 9 degrees of freedom MEMS IMU collocated on an Android phone

device computer board, an altimeter, a depth sensor, an acoustic micro-modem, and a GPS

receiver. A unique payload configuration for this particular SandShark was the tetrahedral

hydrophone array used for its acoustic communications, as shown in Figure 3-3.

(a) SandShark pLAUV (b) SandShark Tetrahedral hy-
drophone array.

Figure 3-3: Bluefin Robotics SandShark pAUV. [Left] SandShark MAUV before field trials
conducted on the Charles River in Cambridge, Massachusetts. [Right] Nose cone removed

to display the acoustic tetrahedral hydrophone array. Pictures from proof of concept trails

of the acoustic navigation payload [481.
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3.2 Acoustic Communications

3.2.1 Iver2 AUVs Communications

For the acoustic communications (ACOMMS) with the Iver2 vehicles, both the topside node

and submerged nodes ran their own separate software on Ubuntu Linux computers, similar

to the network in previous successful experiments [52]. Figure 3-4 shows an overall block

diagram of the acoustic communications network for both the topside and vehicle nodes.

PPS Signal ACOMMS SYSTEM
GARMIN GPS

- r GPS NMEA
GPS NMEA

PPS BOARD LINUX COMPUTER

PPS Signal TPLCM
SERVER DRIVERS

ACOMMS BOARD

xrocsse

Figure 3-4: Acoustic Communication System Block Diagram: Displays the acoustic com-
munications system configuration for both the topside and vehicle nodes.

Each of the nodes used a PPSBOARD [17, 18], which included a SeaScan, Inc. temperature-

compensated crystalline oscillator to serve as a precision clock reference. The PPSBOARD

processed both the PPS signal and the GPS National Marine Electronic Association (NMEA)

strings and transmitted a PPS signal to the node's computer to serve as the network time

protocol (NTP) server. Additionally, the PPSBOARD sent a PPS signal to the ACOMMS

acoustic modem board for precision timing of transmission or reception of acoustic packets.

The timing synchronization between all of the node's NTP servers was less than 1 millisec-

ond and was not observed to drift beyond this error throughout the field trials. Therefore,

assuming a sound speed of 1500 m/s, the timing error resulted in range errors of less than

1.5 meters.
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For these field experiments, a 20 foot rigid hull inflatable skiff served as the topside

beacon carrying the necessary software and hardware for ACOMMS. The necessary software

ran on its own independent laptop computer, which was connected to the hardware interfaces

and to a transducer. This transducer was lowered over the side for the duration of the

experiments.

All three of the nodes operated on a fixed time division multiple access (TMDA) cycle

period of 60 seconds. The topside node transmitted at the top of each minute (:00), Iver-106

transmitted at time :10, and Iver-136 transmitted at time :30. Thus, each vehicle received

two OWTT ranges in a one minute timing window assuming perfect ACOMMS message

receipt.

3.2.2 SandShark gAUV Acoustic Communications

The original intent of this SandShark configuration with the tetrahedral array was for in-

verted ultra-shortbase-line OWTT navigation [30, 401. However, for the purpose of this

thesis, this platform used the tetrahedral array for OWTT range measurements. Instead of

a PPSBOARD, the SandShark contained a Microsemi SA.45 chip scale atomic clock (CSAC)

for precision time keeping and synchronization [19, 25]. Each of the four elements of the

acoustic array processed a range estimate by a matched filtering process, and these result-

ing ranges were the raw measurements for the IMU EKF. Because each element processed

a range, the median of these four ranges was used as the range measurement in the IMU

EKF.

A topside acoustic source was lowered dock side in the Charles River during these exper-

iments. This source transducer was syncrhonized with a GPS PPS signal and transmitted

its GPS location and TOL, which was then decoded by the SandShark. During these exper-

iments, the topside source transmitted at a frequency of 1 Hz.

3.3 IMU EKF Implementation

During the field experiments for this thesis, the Lightweight Communications and Mar-

shalling (LCM) [28] system for the Iver2 vehicles and a similar system on the SandShark

vehicle recorded data from all of the various sensors. Using Matlab, the IMU EKF navi-

gation method (described in detail in Chapter 3) processed the time-sequential data from
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the field experiments. The results from this real-time implementation of the IMU EKF in

Matlab are those used for analysis in this thesis.
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Chapter 4

Field Results

A series of trials were conducted to validate the IMU EKF navigation solution. These

trials consisted of different platforms, distinct acoustic environments, and diverse mission

trajectories and configurations in order to present performance summaries with experimental

diversity. The first three experiments were conducted in controlled environments of local

waters, and the last experiment provides results from an open ocean environment.

The first analysis of the October 2016 Iver2 field experiments proves the effectiveness of

the bias estimation in the IMU EKF and the use of multiple transmitting OWTT beacons.

The second field experiment, consisting of the SandShark [AUV on the Charles River,

offered a distinct platform and mission configuration and demonstrates the capability of the

coupled range filter. The third experiment conducted on the Iver2 vehicles in April 2017 in

Ashumet Pond confirms the capability of the coupled range filter in a multi-vehicle trajectory

that is indicative of current real-world AUV missions. Lastly, the open water experiment

was conducted with one of the Iver2 vehicles in Monterey Bay, CA, providing performance

results of this navigation method in open ocean currents. Details of these experiments and

the associated analyses are discussed in this chapter.

A variety of navigation solutions are presented for comparison in all of the following

analyses. Details of the solutions are discussed in each individual experiment section, and

Table 4.1 provides a summarized description for each solution. Optimization of the CL EKF

was not analyzed for this thesis.
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Table 4.1: Navigation Solution Description Summary

Solution Type Description Inputs
Constant acceleration model, Linear accelerations,

IMU EKF Includes bias estimation, Model Velocity or DVL,
Includes coupled range filter TOF measurements

DR EKF Constant acceleration model, Linear accelerations,
No bias estimation, No TOF measurements Model Velocity or DVL

Constant velocity model, Model Velocity or DVL,
CL EKF (Iver2) Includes TOF measurements, TOF measurements,

No range filtering GPS (April 2017 Only)

SS CL (SandShark) Model-velocity aided dead-reckoned, Dynamic model-velocity,
No TOF measurements GPS

4.1 Ashumet Pond Trials - October 2016

The first set of field experiments used Iver-106 and Iver-136 on Ashumet Pond in Falmouth,

MA on October 25, 2016. Ashumet Pond is a small, local, 203 acre natural kettle-hole pond

with a maximum depth of approximately 20 meters and an average depth of approximately

7 meters [1J.

The closed-loop navigation solution (referred to as the CL EKF) used onboard the ve-

hicles during the execution of these field trials was a continuous white noise acceleration

model [41 (i.e., a kinematic constant-velocity model) EKF that processed OWTT range

measurements from both the topside beacon and the other vehicle. For the CL EKF speed

measurements, Iver-106 used its DVL, and Iver-136 used its dynamic model velocity - its

DVL was not operational during these experiments. The IMU EKF presented in this thesis is

a real-time implementation of the data gathered during this field experiment, and the speed

measurements are defined specifically for each analysis. Also presented is a dead-reckoned

EKF (referred to as the DR EKF), which is the same solution as the IMU EKF but did not

incorporate any of the OWTT ranges nor the bias estimation.

4.1.1 Trajectory Summary

For these field experiments, both of the AUVs operated on the surface throughout the

trials to allow for GPS to serve as the source of ground-truth position, but GPS was not

implemented into any of three navigation solutions except for initialization. After both

vehicles executed their initialization sequences, Iver-136 was deployed first, then Iver-106
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was deployed, followed by the surface beacon skiff getting underway. Both of the vehicles

executed a square pattern trajectory consisting of cardinal headings with Iver-106 operating

to the north of Iver-136. Data was trimmed to the time line of the experiment, and no OWTT

range measurements were removed from the field data for the real-time implementation of

the IMU EKF except for the initial two ranges to Iver-106 to prevent a singularity (details

discussed in Section 4.4.2). Iver-106 experienced approximately 26.5% acoustic packet loss,

and Iver-136 experienced 32.6% acoustic packet loss.

4.1.2 Performance Analysis

The IMU EKFs for both vehicles contained parameter values that are presented in Table

4.2.

Table 4.2: Vehicle IMU EKF Parameter Values

(a) Iver-106 IMU EKF (b) Iver-136 IMU EKF

The overall mission trajectory for both vehicles is presented in Figure 4-1. Iver-106

started on an easterly heading, turned north, east, south, and then headed west back towards

the start point. Similarly, Iver-136 proceeded easterly, then turned to the south, then

westerly, and made its final turn to the north to complete the box trajectory before heading

west towards its start point.

On both plots, the IMU EKF (green) closely tracked the GPS position (blue) and out-

performs the CL EKF solution (light blue). As stated earlier, the Iver-106 CL EKF used its

DVL as the means of speed estimation, and the IMU EKF (with a dynamic model velocity

for speed estimation) still outperformed the CL EKF by an average error from GPS position
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Parameter Value

dt .037 s

4 1.0

Ub 1.0 M s2

Uvel 1.0 m/s

0-accX 0.945 mg
UaccY 0.976 mg
OTbias 1.0 M/s 2

0'rng 10 m

Te, 100 S

TCY 500s

Parameter Value

dt 0.039 s

4 1.0

7b 1.0 m s2

07veI 1.0 m/s
UaccX 0.631 mg
Uaccy 0.682 mg

47bias 1.0 m/s 2

0rng 10 m

Tc 100 s

TCY 500 s
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(a) Iver-106 Position Summary (b) Iver-136 Position Summary

Figure 4-1: Iver2 Position Summary. [Left] Iver-106 Trajectory. [Right] Iver-136 Trajectory.
For both plots: GPS (Blue), IMU EKF (Green), CL EKF (Light Blue), DR EKF (Magenta).
Black lines are ranges from the topside beacon, and blue dashed lines are ranges from the
other AUV. Red ellipses are IMU EKF position uncertainties associated with a topside
range, and block ellipses are IMU EKF uncertainties associated with a range from the other
AUV. The IMU EKF for both vehicles is model velocity-aided. For Iver-106, the CL EKF
is DVL-aided. For Iver-136, the CL EKF is model velocity-aided.

of 10.26 meters to 20.8 meters, respectively. For Iver-136, the CL EKF used a model velocity

for speed estimation, and, as Figure 4-1b depicts, the IMU EKF outperformed the other

solutionass well. Iver-136 possesses the large initialization error that was due to the vehicle

receiving a OWTT range measurement from Iver-106 prior to both vehicles commencing

their missions. Additionally, Iver-136 used a model velocity of 1.23 m/s versus 1.03 m/s

(used in the IMU EKF), which more accurately matched the actual speed of the vehicle

during the field trials. These two discrepancies account for the majority of the error in the

Iver-136 CL EKF solution. A summary of the average errors for all three solutions for both

vehicles is presented in Table 4.3.

Time series plots of the EKF error summaries are presented in Figures 4-2 and 4-3 for

both vehicles. As shown for both vehicles, the IMU EKF error outperforms the other EKF

methods throughout the majority of the field trials. On Iver-106 from 1200 to 1400 seconds,

the steady rise in the error was due to its northern leg trajectory. On this leg, Iver-106

received three range updates only from the surface beacon and no range measurements from
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Table 4.3: Vehicle EKF Average Error from GPS Summary

Solution Iver-106 Iver-136
IMU EKF 10.26 m 12.95 m
CL EKF 20.82 m 50.21 m
DR EKF 42.03 m 36.33 m

Distance Traveled 1.73 km 1.91 km
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(a) Iver-106 Error Summary
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10
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(b) Iver-106 IMU EKF Error

Figure 4-2: Iver-106 EKF Performance. [Top] Time series error plots of DR EKF (magenta),
CL EKF (Blue), and IMU EKF (Black). [Bottom] Time series error plot of IMU EKF with
associated la uncertainty (blue) and 2o- uncertainty (red) lines. Error is the distance of the

solution's estimated position from the GPS position.

Iver-136. Since the surface beacon was mostly to the south of Iver-106, only the Y position

of Iver-106 was constrained, and its X position continued to grow. However, after Iver-

106 turned to its easterly leg, the IMU EKF quickly reconverged after receiving additional

OWTT ranges and maintained its error below the 2a- line for the rest of the field trial. Iver-

136 IMU EKF exhibited similar performance with respect to the other EKF solutions. Even

though the CL EKF has poor initialization due to it processing the poor quality range from

Iver-106, the IMU EKF still displayed better performance after the CL EKF reconverged at

1800 seconds.
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Figure 4-3: Iver-136 IMU EKF Performance. [Top] Time series error plots of DR EKF

(magenta), CL EKF (Blue), and IMU EKF (Black). [Bottom] Time series error plot of IMU
EKF with associated lo, uncertainty (blue) and 2o- uncertainty (red) lines. Error is the
distance of the solution's estimated position from the GPS position.

IMU EKF DVL & Model Velocity Comparison

A useful criterion to determine the accuracy of the dynamic model velocity-aided solution

is to compare the IMU EKF solution with DVL as the input for speed estimation versus

the model velocity. To achieve this comparison, the IMU EKF for Iver-106 was reprocessed

with DVL measurements, and all parameters shown in Table 4.2 remained the same except

the parameters presented in Table 4.4. These parameters were changed to properly tune the

IMU EKF with the DVL input.

Table 4.4: DVL-aided IMU EKF Parameter Values

Parameter Value

q 0.1

07vel 1.0 m/s

As expected, the DVL-aided IMU EKF reduced the average position error by approxi-

mately 12.9%. Additionally, the DVL-aided IMU EKF exhibited a la position uncertainty

of about one-third the value of the model velocity-aided IMU EKF, as shown by comparing
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the lo, cure in Figure 4-5 to the model velocity-aided IMU EKF 10- curve presented in Figure

4-2b. Also, as expected, the DVL-aided IMU EKF DR solution reduced its average error

by 16.4% from the model velocity-aided IMU EKF error. Both of the IMU EKFs (with and

without the DVL) exhibited good performance since both of the error lines remained under

the 2- position uncertainty curves the entire length of the field trials. Figure 4-4 shows the

position summary plot for the EKFs using the DVL, and Figure 4-5 shows the time series

error performance. The average error results comparing the various EKFs with and without

the DVL are summarized below in Table 4.5. The "N/A" result for the CL EKF using the

model velocity is because the CL EKF used the DVL for its speed measurement during these

field trials.

Table 4.5: Iver-106 EKF Performance Summary

Solution DVL Aided Model velocity-aided
IMU EKF 8.94 m 10.26 m
CL EKF 20.82 m N/A
DR EKF 35.13 m 42.03 m
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Figure 4-4: Iver-106 XY Trajectory summary with DVL. IMU EKF (green) and DR EKF
(magenta), and CL EKF (light blue) are all DVL-aided. The reference GPS position fixes
(blue) are plotted for comparison.
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Figure 4-5: Iver-106 IMU EKF (DVL-aided) Error Summary. IMU EKF error (black)
plotted with the lo, (blue) and 2o (red) uncertainty lines with the average IMU EKF error
(brown). Error is the distance of the solution's estimated position from the GPS position.

Bias Estimation & Inter-vehicle Range Comparison

Another useful analysis for the IMU EKF performance is the effect of accelerometer bias

estimation and the input of OWTT range measurements from multiple beacons. In post-

processing, the IMU EKF solution was re-navigated with the different combinations of bias

estimation and numbers of beacons available for OWTT range measurements. The model

velocity was used for the speed measurement in all of these scenarios. All of the parameters

displayed in Table 4.2 remained the same for these re-navigated solutions, except the process

noise gain, 4, is equal to 100 instead of 1.0 for both Iver-106 and Iver-136 for those scenarios

with no bias estimation. A summary of the average error results for both Iver-106 and Iver-

136 is presented in Table 4.6. In this table, the "Y" indicates that the bias estimator or both

beacons were used in the solution. Conversely, the "N" indicates that the bias estimator

was not used or only the topside beacon was used for the OWTT range measurements.

Table 4.6: IMU EKF Beacon & Bias Analysis Results Summary

(a) Iver-106 IMU EKF

All Beacons Bias Estimation Average Error
Y Y 10.26 m
Y N 13.34 m
N Y 14.04 m
N N 13.86 m

(b) Iver-136 IMU EKF

All Beacons Bias Estimation Average Error
Y Y 12.95 m
Y N 17.82 m
N Y 14.26 m
N N 17.09 m
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As the results in Table 4.6 show, both the bias estimator and the use of the other vehicle

serving as a beacon aided in reducing the overall position error by significant margins.

For Iver-106, with both beacons present, the bias estimator included in the IMU EKF

improved the solution by 23.1%. Without the bias estimator, including the other vehicle as

beacon improved the solution by only 3.8%, which is considered insignificant and within the

uncertainty of the experiment. With only the surface beacon present, the bias estimator did

not improve the average error, but the average error increase was less than 1 meter, which

is considered minimal. However, the largest improvement of 26.9% was made by including

the additional beacon when bias estimation was present.

For Iver-136, similar results were observed. Bias estimation improved the solution by

27.3% with both beacons present. Unlike Iver-106, without bias estimation present and with

the additional beacon, performance decreased, but the average error increase was less than 1

meter and is considered within the experimental uncertainty. Additionally, unlike Iver-106,

with a single beacon, bias estimation lowered the error by 16.6%. Nonetheless, similar to

Iver-106, the addition of another beacon improved the solution by 9.2% with bias estimation

present. Overall, the additional beacon had less of an influence on solution improvement

than did the presence of bias estimation, but the combination of the two contributed an

overall increase in solution accuracy.

Plots of the acceleration bias estimation during the course of the field trial demonstrate

the positive effect of subtracting the estimated bias from other state variables. Figure 4-6

shows time series plots of the IMU EKF's estimated acceleration bias in both the X and Y

world frame dimensions. As the plot shows, the estimated bias (red) is plotted on top of

the raw world frame IMU acceleration measurements, which helps to show that the Gauss-

Markov model for acceleration bias processed through the IMU EKF tracks over time with

the bias exhibited by the raw IMU acceleration measurements. Table 4.7 shows a summary

of the significant improvement for both Iver-106 and Iver-136 in reducing the average error

with use of the bias estimator for both one and two beacons. As this table shows, there is

improvement in all categories except for Iver-106 when only the surface beacon was used,

which was a minimal decline. Because of these results, analysis of the subsequent field trials

all include bias estimation and multiple beacons where available.
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Figure 4-6: IMU EKF Bias Estimation Results. [Top] Iver-106 bias estimation results.
[Bottom] Iver-136 bias estimation results. Raw acceleration measurements in the world
frame (cyan), acceleration bias measurements in the world frame (block crosses), and IMU
EKF bias estimate in world frame (red) are plotted together for comparison.

4.2 Charles River Trials - October 2016

The Bluefin Robotics, Inc. SandShark ptAUV was deployed for a field trial on the Charles

River on October 17, 2016 for the Massachusetts Institute of Technology (MIT) Laboratory

for Acoustic Marine Sensing Systems. The main purpose of this field trial was to assess
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Table 4.7: IMU EKF Performance Improvement Results with Bias Estimation

(a) Iver-106 IMU EKF (b) Iver-136 IMU EKF

All Beacons Solution Improvement

Y 23.1 %
N -1.3%

All Beacons Solution Improvement

Y 27.3%
N 16.6 %

the accuracy of the IMU EKF on a different platform, acoustic environment, and mission

trajectory. Additionally, this experiment proved the the importance and necessity of the

coupled range filter to the IMU EKF to preserve solution accuracy.

The vehicle's closed-loop navigation solution that was used during this field trial was a

model velocity based dead-reckoned solution (referred to as SS CL); it used GPS measure-

ments but did not incorporate any OWTT range measurements. Both the IMU EKF and

DR EKF implementations on this field data used a model velocity for speed measurements,

but neither of these solutions used GPS. The IMU EKF did process the OWTT measure-

ments from the topside beacon, but the DR EKF did not process these measurements nor

did it incorporate any bias estimation.

The IMU EKF implemented herein on the SandShark is the same as presented in the

prior section for the Iver2 AUVs except that this IMU EKF processed a median range from

the four ranges acquired by the tetrahedral array described in Section 3.1.2. The parameters

for the SandShark IMU EKF are summarized in Table 4.8.

Table 4.8: SandShark IMU EKF Parameter Values

Parameter Value
dt 0.015 s

Tc_,_ 1000 s
TC_ 1000 s

q 0.1
Range Threshold 130 m

Max Speed 1.54 m/s

crng 3.3 m

7vel 1.0 m/s
accel 0.1 m/s2

O'bias 0.1 m/S2
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4.2.1 Trajectory Summary

The SandShark [LAUV was deployed from the sailing center dock at the MIT Sailing Pavilion

on the Charles River. The vehicle's navigation solution was initialized on the dock, hand

carried to the water, then deployed for its mission and immediately submerged. The vehicle

followed a lawnmower pattern trajectory with a mission time of 15.85 minutes, submerged

at a depth of 2 meters with a commanded speed of 1 m/s except when on the surface.

The vehicle surfaced twice during the mission: once at approximately nine minutes into the

mission and then at mission completion. The topside beacon transmitted acoustic packets

at a frequency of 1 Hz, and the vehicle experienced 28.50% acoustic packet loss over the

course of its mission.

4.2.2 Performance Analysis

Due to the high frequency of range measurements from the topside beacon at 1 Hz, the

highly reflective acoustic environment of the Charles River, and effect of self-occlusion on

the matched filtering process [40], many grossly inaccurate ranges were observed by the

tetrahedral array on the vehicle. Figure 4-7 shows the numerous erroneous ranges, both

those that were longer and shorter than the actual range of the vehicle from the beacon.
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Figure 4-7: SandShark 1pAUV received raw median OWTT ranges. This plot shows the vari-
ability in the OWTT range measurements due to the highly reflective acoustic environment
of the Charles River.

Without using the coupled range filter, the IMU EKF resulted in an unstable trajectory

(Figure 4-8) by processing of all of the raw OWTT ranges. However, by including the
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coupled range filter with the parameter values shown in Table 4.8, significant improvement

was observed in the vehicle's XY trajectory. Of the 686 OWTT raw ranges from the topside

beacon, 26 ranges were removed by the range-threshold filter, and 62 ranges were removed by

the state acceptance gate. Figure 4-9 shows the IMU EKF processed OWTT ranges against

the received raw OWTT ranges. As this figures shows, the coupled range filter prevented a

majority of the erroneous ranges from being processed by the IMU EKF.

JMUEKF

-100 - -

-4 0 -0 -20 0 2 40 0 80 1

X (in)

Figure 4-8: SandShark Position summary without the coupled range filter. SandShark IMU
EFK trajectory (blue) without the coupled range filter is unstable. The DR EKF (red) and
the SS CL Solution (gold) along with the GPS points (dark blue) are plotted for reference
and comparison. The black lines represent the OWTT ranges from the stationary topside
beacon to the updated position state of the vehicle. Every 10th OWTT range is plotted to
prevent plot clutter.

By processing the OWTT ranges given by the coupled range filter as shown in Figure

4-9, a more stable trajectory resulted as shown in Figure 4-10, which shows the IMU EKF

(blue), the DR EKF (red), and the CL SS (gold) navigation solution. As the plot illustrates,

the IMU EKF is the solution that most closely matches the GPS measurements when the

vehicle surfaces at the mission's midpoint and endpoint.

The source of ground truth for this field data was the GPS position fixes during the

two surfacing periods in the mission. Figure 4-11 displays the time series error of the three

navigation solutions compared to GPS position, and the IMU EKF exhibited an average

error of 12.23 meters, which was the smallest error of all three solutions for the SandShark.
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Figure 4-9: SandShark Processed OWTT Ranges. The raw OWTT ranges (blue) are plotted
with the processed OWTT ranges (red) by the IMU EKF. These processed ranges are a result
from passing the required conditions of the coupled range filter.
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Figure 4-10: SandShark EKF Position Summary: IMU EKF (blue), DR EKF (red), Sand
Shark CL solution (gold). The black lines indicate the OWTT ranges from the stationary
topside beacon to the vehicle's updated position. To prevent plot clutter, every 10th range
processed by the IMU EKF is plotted.
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Average errors from GPS positions for the other solutions are summarized in Table 4.9. In

order to provide a more accurate comparison, points after the SS CL solution accepted GPS

position fixes are removed from the error calculation for the average value shown in the

table.

100 200 300 400 500 600
Time (sec)

700 800 900 1000

Figure 4-11: SandShark Performance Summary. This plot displays the IMU EKF error

(black), the DR EKF error (magenta), the SandShark CL DR error (light blue) compared

to the GPS locations at the time the vehicles surfaced during the mission. The average IMU

EKF error (brown) is plotted for comparison. The SS CL solution exhibits the minimum

average error because it processed GPS twice during the mission. This metric is misleading

because the SS CL solution accrued the most error before the first surfacing with approx-

imately 40 meters of error and accrued approximately 25 meters of error before its second

surfacing. The IMU EKF accrued less error than the SS CL solution during both of these

intervals.

Table 4.9: SandShark Navigation Performance Summary

Parameter Performance Result

Amount of Filtered Ranges 12.94 %
IMU EKF Average Error 12.22 m

DR EK Average Error 27.99 m

SS CL Average Error 37.32 m

4.3 Ashumet Pond Trials - April 2017

A third field trial was conducted on Ashumet Pond on April 20, 2017 to provide additional

field data for a real-time implementation of the IMU EKF. The main purpose of this field

trial was to assess the reliability of the IMU EKF with the coupled range filter in a multiple
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vehicle mission trajectory that resembled current, real-world AUV applications. Thus, this

experiment consisted of submerged legs that were longer in length and time than those of

the previous trials.

4.3.1 Trajectory Summary

A dual-vehicle, lawn-mower type trajectory was administered for these field trials, using the

same vehicles with the same configurations and ACOMMS network as those used in the

October 2016 experiments. Both Iver-106 and Iver-136 used their constant-velocity model

EKF (i.e., CL EKF), externally aided by TOF range measurements from a surface beacon

as well as by GPS. Both vehicles were planned to run orthogonal submerged legs in order to

maximize position constraints from the TOF range measurements from each other and the

surface beacon. The planned mission for each vehicle is displayed in Figure 4-12. Periodic
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(a) Iver106 Mission (b) Iver136 Mission

Figure 4-12: AUV Planned Mission Trajectory. Iver-106 [Left] and Iver-136 [Right] planned
mission trajectories. Each vehicle was planned to run orthogonal submerged legs (blue)
with periodic surfacings (red) throughout the mission. Each point contains its respective
waypoint number.

surfacings were planned through out the course of the mission to provide periodic position

fixes from GPS. These GPS points served as the position's truth source for later analysis.

Each submerged leg was conducted at depth of 3 meters for a length of approximately 250

meters or approximately 500 meters. Commanded speed for both vehicles throughout the

entire mission was 2 knots (1.03 m/s). The total planned mission length was approximately

5 kilometers for each vehicle with a mission time of approximately 1.5 hours. Iver-136
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was deployed first, shortly followed by Iver-106. Due to various difficulties with Iver-106

after first being deployed, the mission was stopped and recommenced after troubleshooting,

thus the presented Iver-106 mission does not start until about 2000 seconds after Iver-136.

However, during the first 2000 seconds of the Iver-136 mission, the vehicle did receive ranges

from Iver-106 during the troubleshooting process. The surface skiff, which provided the

surface beacon with access to GPS, drifted in the area for the entirety of the mission.

4.3.2 CL EKF Range Sensitivity Discussion

This field data provides great opportunity to assess the functionality and the importance of

the coupled range filter discussed in Section 2.2.3. As discussed prior, the navigation solution

used on the vehicles at the time of this data collection was a constant-velocity model EKF

(referred to as the CL EKF). However, this CL EKF did not incorporate any additional

filtering on the TOF range measurements, so it was susceptible to faulty ranges due to poor

clock synchronization, acoustic environment, or poor position state estimates provided by

the transmitting beacon. Figure 4-13 shows the CL EKF trajectory summaries for both

Iver-106 and Iver-136. These two plots clearly demonstrate how the absence of additional

range filtering can adversely affect the accuracy of the navigation solution. Further, Figure

4-14 shows a time series plot of the different OWTT range measurements received and

processed by the two vehicles from both beacons, and this plot shows the distinct OWTT

ranges and the clear unreliable measurements due to poor clock synchronization or a variable

acoustic environment. For Iver-106, one such range occurred at approximately 4700 seconds,

and Iver-136 observed two such faulty ranges in the beginning of the mission and at 1000

seconds.

CL EKF Narrative

The following narrative is an explanation of the odd behavior exhibited by both Iver-106 and

Iver-136 during these field trials because of the CL EKF processing faulty range measure-

ments. A detailed understanding of these events is necessary since the data collected during

this field trial (which includes the odd vehicle behavior therein) was used to implement the

IMU EKF (further discussed in section 4.3.3). All of the events are referenced to mission

time, t, as shown in the previous plots.

t = 0 sec: Both vehicles' mission commenced.
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Figure 4-13: Closed-loop EKF Trajectory Summaries. [Left] Iver-106 CL EKF trajectory
summary, and [Right] Iver-136 CL EKF trajectory. Each summary shows a time color bar
plot of the vehicle's estimated position along with its GPS position fixes (red) when the
vehicle surfaced. Iver-136 was deployed first, and Iver-106 was deployed approximately 2000
seconds after Iver-136. These plots show the significant effect of not applying additional
filtering on the TOF range measurements. Note the difference in scale between the two
plots.

t = 647 - 2000 sec: Observed odd behavior on Iver-106. Iver-106 mission stopped to

investigate and correct cause with vehicle on the surface. During various periods in this

time window, Iver-106 navigation solution transmitted its estimated position to Iver-136.

t = 167 sec: Iver-136 received faulty range (- 2100 meters) from Iver-106 (Figure 4-14b).

Iver-136 CL EKF was not affected due to receipt of GPS while transiting between waypoints

3 and 4 (Figure 4-12b).

t = 1060 sec: Iver-136 received faulty range (~ 2065 meters) (Figure 4-14b) from topside

beacon, causing the CL EKF position to jump to the northeast to position (1919,630) (Figure

4-13b).

t = 1067 sec: Iver-136 received range from Iver-106, which shifted CL EKF position to

the north to position (213,1271) (Figure 4-13b).

t = 1098 sec: Iver-136 received GPS position fix, CL EKF reconverged, and continued

to proceed between waypoints 9 and 10 (Figure 4-12b).

t = 2000 sec: Iver-106 mission restarted.

t = 3171 sec: Iver-136 retasked to repeat portion of mission to lengthen mission time

since Iver-106 was delayed in mission start. Iver-136 retasked to repeat mission starting at

waypoint 15 (Figure 4-12b).
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Figure 4-14: Closed-loop EKF Range Measurement Time Series Summaries. Iver-106 [Top]
and Iver-136 [Bottom] CL EKF OWTT range measurements. Both vehicles received and
processed OWTT range measurements from the topside beacon (blue) and from the other

vehicle (red).

t = 4451 sec: Iver-136 finished the repeated leg between waypoints 18 and 19. Iver-136

completed surfacing of the repeated leg between waypoints 19-20 and resubmerged (Figure

4-12b).

t = 4639 sec: Iver-106 received faulty range (- 1713 meters) from Iver-136 (Figure 4-

14a), causing Iver-106 CL EKF to offset position to southwest to position (158,-860) (Figure

4-13a). Iver-106 started to travel north to regain track.
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t = 4666 see: Iver-136 received range from Iver-106 when Iver-106 had faulty state esti-

mates (period between 4639 - 5300 seconds), which caused Iver-136 to offset to the east and

caused Iver-136 to drive northwest to regain track. Iver-136 received multiple other ranges

from both the topside beacon and Iver-106 while trying to regain track by driving northwest.

t = 4977 sec: Iver-106 surfaced to the north at position (490,210) (Figure 4-13a) but did

not process the GPS fix due to improper zeroing of its depth sensor. Not processing the GPS

fix at this time delayed the vehicle's position estimate in reconverging and prolonged the

instability in the navigation solution. Further range updates from Iver-136 and the topside

beacon facilitated Iver-106 to travel south to regain track. At t = -5300 sec, Iver-106

reconverged on track and proceeded easterly between waypoints 21 and 22 (Figure 4-12a).

t = 5045 sec: Iver-136 surfaced to the northwest at position (400,400) (Figure 4-13b)

and received GPS position fix.

t = 5100 - 5425 sec: Iver-136 resubmerged and transited southeast to regain track. Iver-

136 received multiple ranges from both the topside beacon and from Iver-106.

t = 5426 sec: Iver-136 received GPS fix at waypoint 23 and started southerly leg between

waypoints 23 and 24. Both Iver-106 and Iver-136 CL EKFs remained stable for remainder

of the missions.

4.3.3 Performance Analysis

Similar to the field trials conducted in October 2016, the IMU EKF, the CL EKF, and the

DR EKF are presented for analysis. For Iver-106, the CL EKF used its DVL for speed

measurements as well as GPS. However, due to the vehicle's depth sensor not properly

zeroing itself when on the surface, GPS fixes were not incorporated into the CL EKF starting

at t = 3313 seconds. At this point in the mission, the depth sensor indicated a depth of 0.33

meters and continued a linear degradation of approximately 0.03 meters per minute for the

remainder of the mission. Iver-136, on the other hand, used a vehicle model velocity for its

CL EKF's speed measurement and incorporated all GPS fixes throughout its mission. The

following analysis presents each vehicle separately with a concentration on the effect of its

coupled range filter.
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Iver-106 Performance Discussion

In this analysis, the IMU EKF was implemented both with the vehicle's model velocity and

its DVL as the speed measurement. Additionally, due to battery replacement on Iver-106,

the previous calibration for the Pololu IMU magnetometer was inaccurate, thus the manu-

facturer MEMS compass provided the attitude measurements. GPS was not incorporated

into any of the analyses of the IMU EKF nor the DR EKF. Due to the incorporation of

the coupled range filter and the manufacturer compass in this implementation, the velocity

standard deviation, O-vel, and the frequency of the IMU EKF, dt, for the IMU EKF required

different values. The parameters presented in Table 4.2 remained the same except those

identified in Table 4.10. As depicted in Table 4.10, the maximum speed value for the state

acceptance gate are different between the model velocity-aided and DVL-aided IMU EKFs.

Since the commanded speed for the mission was 1.03 m/s, the maximum speed set at 1.29

m/s gives a 25 % conservative boundary for inaccurate model velocity speed measurements.

For the DVL-aided IMU EKF, 2.06 m/s was used because the DVL provides a more accurate

speed measurement with a higher variance, and 2.06 m/s is the maximum rated speed of

the vehicle.

Table 4.10: Iver-106 IMU EKF Parameter Values

(a) Model Velocity-Aided (b) DVL-Aided

Parameter Value Parameter Value

a-vel 10.0 m/s Ovel 5.0 m/s
dt 0.085 s dt 0.085 s

Max Speed 1.29 m/s Max Speed 2.06 m/s

The trajectory summaries for the IMU EKF using both the vehicle model velocity and

the DVL are shown in Figure 4-15, and the error summaries are shown in Figure 4-16. As

the plots show, the IMU EKF tracks closely with the GPS measurements throughout the

mission for both types of speed measurements. Both types of solutions are comparable in

accuracy, but, as expected, the DVL-aided IMU EKF lowered the position uncertainty by

approximately a factor of two. These IMU EKF solutions do not exhibit the same erratic

behavior of the CL EKF, and both of these solutions show true vehicle movement to the

North as evident by the GPS fix at position (490,225) on Figure 4-15. With this more

accurate trajectory, both of the IMU EKF errors are considerably less than the CL EKF
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error, especially at time, t = 5000 seconds when the vehicle drove north, as shown in Figure

4-17.
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Figure 4-15: Iver-106 IMU EKF Trajectory Plot. The IMU EKF solution (green) and the
DR EKF (magenta) plotted against the associated GPS position fixes (blue) for comparison.
[Left] IMU EKF and DR EKF with the vehicle dynamic model velocity used as its speed
measurement. [Right] IMU EKF and DR EKF with the DVL used as the speed measurement.

Table 4.11: Iver-106 EKF Performance Summary

Solution DVL-Aided Model Velocity-Aided
IMU EKF 11.93 m 12.32 m
CL EKF 12.87 m N/A
DR EKF 283.89 m 257.45 m

Distance Traveled 5.28 km 5.28 km

Table 4.11 displays the summary of the average errors of all the EKF solutions, and

Figure 4-17 shows the time series of all the EKF solution errors. As shown, the model

velocity-aided IMU EKF is competitive with both DVL-aided IMU EKF and CL EKF

solutions. Unexpectedly, the DVL-aided DR EKF performed worse than the model velocity-

aided DR EKF for unknown reasons. This discrepancy was not observed in any other

experiment, and it does not undermine the performance of the IMU EKF solutions.
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Figure 4-16: Iver-106 IMU EKF Error Summary: [Top] IMU EKF error with model velocity.
[Bottom] IMU EKF error with DVL. These plots contain the IMU EKF error (black), its
average error (brown), and its associated lo, (blue) and 2o- (red) uncertainty lines. Note the

difference in scales between the two plots, thus showing the DVL-aided solution provided a
more accurate estimate.

Iver-136 Performance Discussion

Contrasting to the field trials conducted during October 2016, the DVL on Iver-136 was

operational. Although the model velocity was infused into the CL EKF, the DVL remained

available for the IMU EKF. Thus, the implementation of the IMU-EKF on this field data for

Iver-136 used both a model velocity and its DVL. All of the parameter values for the IMU

EKF presented in Table 4.2 remain the same for this implementation, except those identified

in Table 4.12. Experimental speed trials identified that the vehicle reaches a maximum speed

of 1.54 m/s instead of its designed rated speed of 2.06 m/s. Thus, a maximum speed value

of 1.54 m/s is used for the coupled range filter. Like Iver-106, GPS was not observed for

any of the IMU EKF or DR EKF implementations presented in this analysis.

The trajectory summaries for the Iver-136 IMU EKF, using both the model velocity and

the DVL, are displayed in Figure 4-18, and the error summaries are shown in Figure 4-19.
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Figure 4-17: Iver-106 EKF errors with respect to GPS position at time of the GPS fixes. Dis-

played in these graphs are the following solutions: model velocity-aided IMU EKF (black),
model velocity-aided DR EKF (magenta), DVL-aided CL EKF (dark blue), DVL-aided IMU
EKF (light blue), DVL-aided DR EKF (red). Note the difference in scales between the two

plots - the full view plot (top) is presented in a focused view (bottom) to highlight the

error differences between the solutions. The CL EKF only incorporated GPS until t = 3000
seconds, hence is the reason why its error is minimal during that time.

Table 4.12: Iver-136 IMU EKF Parameter Values

(a) Model Velocity-Aided (b) DVL Aided

Parameter Value

-vel 1.0 m/s
dt 0.042 s

Max Speed 1.54 m/s

Parameter Value

U-vel 1.0 m/s
dt 0.042 s

Max Speed 1.54 m/s
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Figure 4-18: Iver-136 IMU EKF Trajectory Summary. [Left] IMU EKF with the vehicle
dynamic model velocity used as its speed measurement. [Right] IMU EKF with the DVL

used as the speed measurement.The IMU EKF solution (green) and the DR EKF (magenta)

plotted against the associated GPS position fixes (blue) for comparison.

of the mission (t = 300 seconds). This issue occurred both in the model velocity-aided and

DVL-aided scenarios. Iver-136 received and processed a range of 716.1 meters at time, t =

286.7 seconds, from Iver-106 when its state was not accurate, thus resulting in a position

shift of Iver-136 to the north between waypoints 2 and 4, as shown in Figure 4-18. The

coupled range filter did not prevent this range from being processed because the time and

position of the last update used in the range filter algorithm was the initialization point to

GPS at position (500,-25) at time, t = 0. A speed of 0.88 m/s was necessary to trip the state

acceptance gate equation in order to prevent the IMU EKF from processing this range. Due

to this initial offset, the position estimates remained to the east of the GPS fixes between

waypoints 6 to 11, but the IMU EKF later converged to the GPS points at approximately

1100 seconds for both the model velocity-aided DVL-aided IMU EKF. The CL EKF did not

experience this same issue because it was in constant receipt of GPS at this time and thus

was not affected by the poor state estimates from Iver-106. Nonetheless, the IMU EKF did

reconverge and maintained its error below the 2o- uncertainty line after t = 1500 seconds
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Figure 4-19: Iver-136 IMU EKF Error Summary. [Top] IMU EKF error with model velocity
as the speed measurement. [Bottom] IMU EKF error with DVL used as the speed mea-
surement. The plots contain the IMU EKF error (black), its average error (brown), and its
associated lo, (blue) and 2o- (red) uncertainty lines.

for the remainder of the mission for both scenarios. Additionally, the IMU EKF did not

process the faulty range from the topside beacon at t = 1000 seconds, which contributed to

the high error of 1600 meters for the CL EKF as shown in Figure 4-20. Likewise, the IMU

EKF did not display the erratic behavior on its repeat leg between waypoints 20 and 21 as

shown in Figure 4-13b.

Figure 4-20 shows the time series plots of all the EKF errors, and Table 4.13 displays

the summary of the average error from GPS for all the EKF solutions. The small average

error for the CL-EKF is a poor comparator due to it processing GPS, which essentially

reduces the average error close to zero meters. Excluding points from the CL EKF after it

processes the GPS fixes provides a more accurate comparison of the IMU EKF error to the

CL EKF error. With the exclusion of all error values less than 5 meters, the average CL

EKF error was 52.86 meters. The threshold of 5 meters was used based on twice the value

of the average GPS position uncertainty of approximately 2.5 meters.
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Figure 4-20: Iver-136 EKF errors with respect to GPS position at time of the GPS fixes. Dis-
played in these graphs are the following solutions: model velocity-aided IMU EKF (black),
model velocity-aided DR EKF (magenta), model velocity-aided CL EKF (dark blue), DVL-
aided IMU EKF (light blue), DVL-aided DR EKF (red). Note the difference in scales
between the two plots - the full view plot (top) is presented in a focused view (bottom) to
highlight the error differences between the solutions. As noted, the model velocity-aided CL
EFK (light blue) incorporated GPS, thus its error is minimal as expected.

Table 4.13: Iver-136 EKF Error from GPS Performance Summary

Solution DVL-Aided Model Velocity-Aided
IMU EKF 24.57 m 32.25 m
CL EKF 52.86 m N/A
DR EKF 142.44 m 190.09 m

Distance Traveled 6.91 km 6.91 km

IMU EKF Coupled Range Filter Performance

This field experiment examined the performance of the IMU EKF coupled range filter, and

this section presents a detailed analysis on its performance. For Iver-106, to provide a more

accurate comparison of the IMU EKF coupled range filter with the CL EKF, the results

from the DVL-aided IMU EKF are used herein. Similarly, with Iver-136, results from the
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model velocity-aided IMU EKF are used since the CL EKF did not use its DVL. The IMU

EKF trajectory plots in Figures 4-15b and 4-18a highlight the necessity for the coupled

range filter since these plots do not exhibit the same erratic behavior shown in the CL EKF

trajectory plots (Figure 4-13). In Figure 4-21, the raw observed OWTT ranges from both

beacons for both vehicles are displayed with those ranges processed by the coupled range

filter. The coupled range filter removed the extraneous ranges that are due to inadequate

clock synchronization or variable acoustic environment at t = 4700 seconds for Iver-106 and

t = 280 seconds and t = 1000 seconds for Iver-136. Also, this plot shows the effectiveness of

the state acceptance gate since it removed the extraneous ranges due to poor beacon state

estimates. Iver-106 exhibited the most erratic behavior with its CL EKF while transiting

between waypoints 19 to 22. As shown in Figure 4-21a, the coupled range filter prevented

Iver-106 from processing those ranges from Iver-136 from time, t = 4500 seconds, to time,

t = 5500 seconds. In similar fashion, for Iver-136, the most erratic behavior was observed

from t = 4500 - 5000 seconds while transiting from waypoints 20 to 21. These ranges from

Iver-106 were not processed from 4500 to 6000 seconds, as shown in Figure 4-21b.

Time series plots of the individual X and Y position estimates for both the IMU EKF and

CL EKF, compared to the GPS fixes provide a good assessment on the coupled range filter's

performance. These plots, shown in Figure 4-22 for both Iver-106 and Iver-136, indeed show

the effectiveness of the coupled range filter. For Iver-106, the erroneous behavior from the

CL EKF from 4700 to 5200 seconds was replaced by a more constant trajectory exhibited by

the IMU EKF during the same time period. The IMU EKF for Iver-136 showed improved

performance from the CL EKF as well. At 1000 seconds, the IMU EKF did not process the

faulty range from the topside beacon, thus its position estimate was not immediately offset

more than 1000 meters to the northeast. In addition, from 4700 to 5100 seconds, the IMU

EKF produced an improved trajectory instead of the irregular behavior demonstrated by

the CL EKF.

Statistics on the coupled range filter are summarized in Table 4.14. The vehicles observed

an acoustic packet loss of 14.22% and 23.16% for Iver-106 and Iver-136, respectively. Of

these observed ranges, the IMU EKF coupled range filter removed 6.63% of the received

ranges for Iver-106 and 11.88% received ranges for Iver-136.
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Figure 4-21: IMU EKF Range Measurement Time Series Summaries. Iver-106 (top) and

Iver-136 (bottom) raw and IMU EKF processed OWTT range measurements. These plots

show the raw observed OWTT range measurements (red) and the processed OWTT range

measurements from the coupled range filter (blue) from both the topside beacon and from

the other vehicle.

Table 4.14: IMU EKF Coupled Range Filter Performance Summary

Parameter Iver-106 (DVL) Iver-136 (M-V)
Acoustic Packet Loss 14.44 % 23.16 %

No. of Raw OWTT Ranges 166 202
No. Removed by Pre-Range Filter 1 2

No. Removed by Range Speed-Rate Filter 11 30
Total Percent of Ranges Removed 7.23 % 15.84 %

4.4 Discussion

These three controlled in-water field trials presented in the preceding sections provide an

extensive analysis of the IMU EKF with the coupled range filter by using three different
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Figure 4-22: Iver-106 & Iver-136 Coupled Range Filter Performance. Iver-106 (top) and
Iver-136 (bottom) X and Y time series plots of IMU EKF (green) plotted with the CL
EKF (red) and associated GPS position fixes (blue). These plots show the necessity of the
coupled range filter to remove the erratic behavior displayed by the CL EKF. The difference
in scales between the plots signifies the degree of erratic position estimation without the
coupled range filter.

vehicles executing three different mission trajectories in two different locations. Compared

to other navigation methods presented in this research, the IMU EKF is a competitive

alternative to the current approaches. Since the main innovation to this EKF is the use of

linear accelerations as an odometry input with OWTT range measurements, some unique
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issues were discovered to prevent instability and singularity of the IMU EKF. The following

discussion in this section pertains to the experiments discussed in Sections 4.1 - 4.3.

4.4.1 IMU Linear Acceleration Analysis

Since MEMS IMUs inherently exhibit high noise in their acceleration measurements, the

IMU EKF must utilize some form of a velocity measurement to remain stable. The vehicle's

IMU senses non-zero accelerations (because of noise) even when the vehicle is stopped or

moving at a constant velocity. These non-zero accelerations, which do not reflect the actual

dynamics of the vehicle, are then integrated and double integrated to determine velocity and

position, respectively. Therefore, without a velocity measurement, the IMU EKF estimated

position becomes unstable. A solution to the problem was to restrict linear acceleration

measurements to the IMU EKF only while velocity measurements (either model velocity

or DVL) were available. Velocity measurements of zero or non-zero value, with the linear

acceleration measurements, were sufficient for the IMU EKF to maintain stability. For the

data presented in this work, linear acceleration measurements were prevented from being

infused to the IMU EKF until the vehicle received a velocity measurement at the start of

the mission. Likewise, the IMU EKF did not process any acceleration measurements at the

end of the mission when velocity measurements were no longer available.

4.4.2 Singularity Analysis

During the measurement update step of the Kalman Filter process, an inversion of a square

matrix, (R + HP-HT), is conducted to determine the Kalman Gain, K, as shown in Equa-

tion (2.9). A valuable measure of effectiveness is a numerical analysis of how close the IMU

EKF approaches singularity, for this quantity indicates the level of robustness of the IMU

EKF. The determinant of the square matrix, (R + HP-HT), was calculated for all of the

model velocity-aided IMU EKF solutions in all three field experiments. Assessing the values

of this determinant provides insight on how close the IMU EKF comes to a singularity.

In all three field experiments presented in this work totaling 407,895 computations by

the IMU EKF, one instance of a singularity was observed, which occurred when the first

received measurement is a OWTT measurement. With certain values for initialization for

the estimated covariance matrix, P+, the standard KF equations for the predicted and

measurement steps will eventually lead to off-diagonal values in the P+ matrix approaching
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negative infinity. Thus, when the IMU EKF attempts the matrix inversion in Equation

2.9, a singularity is imminent. This issue was observed only in the Ashumet Pond trials of

October 2016 when the coupled range filter was not implemented. Thus, when implementing

the IMU EKF on that particular field data from October 2016 for Iver-106 only, the first

two range measurements (one from the topside beacon and one from Iver-136) were removed

to prevent the singularity. Both the Charles River and Ashumet Pond April 2017 field trials

utilized the coupled range filter, which removed these ranges from being processed and thus

prevented any singularity from occurring. Thus, no range measurements were removed from

those field data sets even though OWTT ranges existed as the first measurements available

to the IMU EKF.

With the exception of this one observation, the IMU EKF maintained a large margin

from a singularity as observed in all three field experiments. Figure 4-23 provides one

example of a time series summary of the determinant value of the (R + HP-HT) over

the course of the entire field trial. For the remainder of the other model velocity-aided

IMU EKF solutions, Table 4.15 provides a summary of statistics on the determinant value.

Based on these observations and results, this numerical analysis provides a necessary, but not

sufficient, conclusion that the IMU EKF maintains a considerable margin to a singularity.

As already discussed, the dead-reckoned solution (i.e., DR EKF) propagates the position

error at a mostly linear rate, which is better than having the IMU EKF processing a faulty

range and thus becoming unstable or singular.

Table 4.15: IMU EKF Numerical Singularity Analysis Summary

det(R + HP-H"') Iver-106 Iver-136 SandShark Iver-106 Iver-136
Parameter Oct'16 Oct'16 Oct'16 Apr'17 Apr'17

Minimum 1.38e-3 1.53e-3 1.23e-4 7.35e-3 1.78e-3
Average 2.17 2.41 0.67 2.25e+3 1.47e3

Maximum 3.79e+3 5.50e+3 21.00 2.49e+4 1.77
Number of Samples 38,637 47,999 65,610 68,597 187,052

10- 46.36 55.51 1.89 5.01e+3 14.33

4.4.3 Performance Summary

A summary of the performance metrics discussed in this thesis for all of the navigation

solutions are shown in Figures 4-24a for 2016 field data and Figure 4-24b for the 2017 field
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Figure 4-23: April 2017 Iver-136 Singularity Analysis. This plot displays the value of the
determinant of (R + HP-HT), the inverted portion of the Kalman Gain Matrix, K, for
the model velocity-aided IMU EKF on Iver-136. Throughout the entire field trial, the IMU
EKF does not approach singularity.

data. These bar graphs present all of the different navigation solution average errors from the

respective GPS locations with their associated la standard deviations. In these bar charts,

for the closed-loop solutions that utilized GPS (SandShark in 2016 (Figure 4-24a) and Iver-

136 in 2017 (Figure 4-24b)), the error values after the CL solution had adjusted to GPS have

been removed to provide a more accurate comparison to other solutions. As these charts

show, the IMU EKF displayed superior performance in both the 2016 and 2017 field trials

with minimum average error and standard deviations. Even when the IMU EKF displayed

equal performance with the CL EKF in the metric of average position error, as shown with

the Iver-106 solutions in 2017, the lo error values for the IMU EKF were drastically smaller

than those of the CL EKF. The model velocity-aided IMU-EKF lo error was 33.81% lower,

and the DVL-aided IMU EKF was 82.09% lower than the Iver-106 DVL-aided CL EKF 10

value for the April 2017 field experiment.
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Figure 4-24: [Top] Year 2016 Field Trials Performance Summary. Each EKF solution (IMU,
CL, and DR) is displayed for Iver-106 (red), Iver-136 (green), and SandShark (yellow) with
associated standard deviations (blue). [Bottom] Year 2017 Field Trials Performance Sum-

mary. Each EI(F solution (IMU, CL, and DR) is displayed for Iver-106 (blue) and Iver-136

(yellow) with associated standard deviations (red). "M-V," and, "DVL," in parenthesis

represent the respective model velocity and DVL-aided solutions.
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4.5 Monterey Bay Trials - September 2016

Field data from the Keck Institute for Space Studies "Satellites to the Ocean Floor," research

field program [44] served as a final implementation of the IMU EKF. As part of this field

program, Iver-136 conducted a mission in Monterey Bay, CA (see Figure 4-25), and data

gathered during this mission provides the analysis for this thesis. Since one of the focuses

of this thesis is navigation without a DVL, this field data provides a good assessment of the

model velocity-aided IMU EKF implemented on a vehicle operating in strong currents and

in water depths where DVL bottom-lock is not available.

Monterey Bay, California

z
#0
in

S
.5
2

#0in

122.20W 122W 121.86W

Longitude (dog)

Figure 4-25: Monterey Bay, California with position of Iver-136 mission, identified by the

black triangle, during the Keck Institute for Space Studies field program.

Since ocean currents are prevalent in Monterey Bay, the addition of a velocity bias esti-

mator similar to one used in a previous work [9] was added to this IMU EKF implementation

to aid in making the model velocity input more accurate. In the previous work as well as

other work involving underwater gliders operating in the Arctic Ocean [551, the state updates

from the OWTT range measurements provided a means of calculating a water velocity mea-

surement. This water velocity measurement is then processed in a coupled Kalman Filter to

the navigation state estimator that produces an updated velocity bias. The model velocity

measurement incorporates this bias, thus updating it with ocean currents and making it
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more accurate.

4.5.1 Trajectory Summary

During this field survey, Iver-136 operated in a half-bow-tie type trajectory, as shown in

Figure 4-26. This plot shows three solutions for comparison (IMU EKF, DR EKF, and the

CL EKF) along with GPS points during the surfacings in the mission. Data was trimmed

to the time line of the vehicle's deployment. Since this mission involved a single beacon

(and similar to the analysis in the "Bias Estimation & Inter-vehicle Range Comparison,"

analysis of Section 4.1.2), all of the parameters identified in Table 4.2 remained the same

except the process noise gain factor, q, was set to 100 versus 1.0. Unlike the previous

experiments, the CL EKF solution did not incorporate any OWTT range measurements,

but it did process GPS and used the model velocity for its speed estimation. However,

similar to the implementation in Section 4.1.2, the IMU EKF in this implementation used

a more accurate model velocity than the one used for the CL EKF.
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Figure 4-26: Iver-136 trajectory summary on Monterey Bay, CA. The following navigation
solutions are displayed: IMU EKF (green), CL EKF (light blue), and the DR EKF (ma-
genta). GPS (brown) fixes are displayed for ground truth. The R/V Shana Rae, which
served as the surface beacon (red), maneuvered throughout the mission to maintain acous-
tic connectivity. The black lines illustrate the OWTT ranges from the surface beacon to the
vehicle, and the red ellipses are the position uncertainties computed by the IMU EKF.
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4.5.2 Performance Analysis

The total mission time was approximately 103 minutes with a total of 6.1 kilometers traveled.

Like the Ashumet Pond trails, the surface beacon was set to transmit at a frequency of once

every 60 seconds (~0.02 Hz). However, Iver-136 only received a total of 49 acoustic packets,

equating to an acoustic loss of approximately 52%. Reasons for the high loss rate were due to

the R/V Shana Rae repositioning during the mission as well as high background noise from

its engines, thus lowering the signal to noise ratio of the transmitted packets. Nonetheless,

since Iver-136 experienced such a high loss rate of its OWTT measurements, the vehicle

accrued significantly more error compared to the previous results discussed in the previous

sections.

Figure 4-27 shows the error with respect to the GPS position fixes for various navigation

solutions. As shown, because of the high acoustic loss rate, the IMU EKF experienced an

average error of approximately 141 meters. However, this plot does show the significant

effect of the velocity bias estimator. The IMU EKF that incorporated the velocity bias

estimator (light blue) outperforms the IMU EKF solution without it (red) by approximately

30%, particularly from t = 4000 seconds to the end of the mission. Additionally, when the

IMU EKF processed GPS (gold), it exhibited a better position reset offset as compared to

the CL EKF (purple). Particularly, at t = 5667 seconds, the IMU EKF had a position

reset of approximately 200 meters less than the CL EKF. Likewise, at t = 7770 seconds, the

IMU EKF experienced a position reset of approximately 250 meters less than the CL EKF.

Hence, overall, the IMU EKF method presents a better alternative to the CL EKF solution.
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Figure 4-27: Iver-136 Navigation Solution Error summary. Navigation solution error com-
pared to the GPS fixes are displayed: IMU EKF with velocity bias estimator (blue), IMU

EKF without the velocity bias estimator (red), IMU EKF with velocity bias estimator and

GPS (gold), and the CL EKF (purple).
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Chapter 5

Conclusion

5.1 Research Summary

The main goal of this thesis was to investigate a navigation solution for autonomous un-

derwater vehicles that used a minimal sensor suite to reduce power consumption and cost,

allow applicability throughout the water column, and perform with an acceptable threshold

of accuracy. The research presented in this paper proves a viable option exists that is de-

pendent upon a MEMS IMU for odometry and attitude, a vehicle's dynamic model velocity,

and passive acoustic aiding.

In this navigation solution, the vehicle's state was estimated by an EKF that propagated

a kinematic constant acceleration model to determine the vehicle's XY position, velocity, and

acceleration. This propagated model was augmented by processing measurements of linear

accelerations from the MEMS IMU, velocity from propeller motor speed or a DVL, and

OWTT range measurements from one or two beacons. Also, the estimated state included

IMU accelerometer bias, which incorporated bias measurements determined from the state's

updated position after a range measurement. Coupled with the EKF was a range filter that

prevented the EKF from processing erroneous OWTT range measurements either because

of inaccurate clock synchronization between the beacon and the receiver, inaccurate state

estimation from the transmitting beacon, or due to various environmental conditions that

can affect sound propagation. This range filter prevented the IMU EKF from processing

faulty ranges by two processes: (1) a range threshold filter, and, (2) a state acceptance gate.

The effectiveness of this EKF model was evaluated by real-time implementations on data

collected in three different controlled environment field experiments. These field experiments
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included two OceanServer Iver2 AUVs in two separate field trials on Ashumet Pond and one

field experiment of a Bluefin Robotics SandShark ttAUV on the Charles River. Each of these

experiments incorporated a topside beacon, transmitting its GPS position, while the two

experiments in Ashumet Pond also incorporated an assessment of inter-vehicle ranging and

multi-vehicle navigation. These experiments provided a wide spectrum of different vehicles,

different acoustic environments, and different mission trajectories that provided a valuable

means of assessing the capability of the IMU EKF navigation method. Analysis of these

experiments proves that the IMU EKF method gives an average position error on the order of

tens of meters over a time scale of about two hours and a spatial scale of approximately seven

kilometers. Additionally, the use of other vehicles in formation as a transmitting beacon

and incorporating bias estimation enhanced the navigation performance. Also, the addition

of the coupled range filter was paramount to the IMU EKF's success by preventing faulty

range measurements that cause the IMU EKF to become unstable or singular. Lastly, an

implementation of the IMU EKF in Monterey Bay, CA proved the this method outperforms

other current methods in open ocean currents.

5.2 Recommendations for Future Research

This research proves that low cost, low power, accurate navigation is attainable. The follow-

ing are recommendations for improvement and innovation in progressing this area forward:

1. Distinction between velocity bias and accelerometer bias. Due to the first three exper-

iments being performed in essentially zero-current waters, all bias was concluded to be a

result from accelerometer bias and not from any velocity bias (i.e., current). For the last

experiment in open ocean, the range updates were used to determine both acceleration and

velocity bias. Thus, further research is needed on how to distinguish velocity and accelera-

tion bias when using state updates from OWTT range measurements.

2. Long-term MEMS IMU bias assessment. Further research on behavior and modeling of

MEMS IMU accelerometer bias and drift will aid in minimizing errors from these sources

for longer duration missions (as applied to autonomous underwater gliders, for example).

Additionally, investigating other means of modeling IMU accelerometer bias to determine

optimal models will further aid in making this solution more accurate. Previous efforts on

stochastic modeling of IMU errors indicate the variety of models that can be used 115].
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3. Update a vehicle's model velocity in real time. For vehicles that contain a DVL, future

research should determine how DVL measurements can update the vehicle's propeller motor

speed to model velocity mapping table in real time. This research will also aid in determin-

ing optimal power consumption (and thus enhancing vehicle endurance) since the DVL is

only used when necessary to provide a more accurate model velocity measurement.

4. Experimental determination of a vehicle's model-velocity standard deviation. A more

accurate determination of the laT value for a vehicle's model-velocity should enhance the

navigation solution's accuracy.

5. Decision points for vehicle determining poor geometry. With the coupled range filter's

state acceptance gate, the vehicle's navigation solution now has a decision point of deter-

mining poor geometry. Future research should focus on how best for the vehicle to respond

at these decision points. Possible options are notification of human operators by the vehicle,

changing the vehicle's course and/or speed for a more optimal geometry, or obtaining a GPS

fix to ensure the navigation solution minimizes potential instability.

5.3 Future Applications

This navigation solution can be utilized in a variety of applications for underwater vehicles.

It is beneficial to the emerging ptAUV class and the longer endurance platforms, such as

autonomous underwater gliders. Additionally, this solution is attractive for future "master-

slave" heterogenous vehicle deployments, in which a large AUV with a high-end inertial

navigation system serves as the communications and navigation aid to smaller vehicles 121].

Lastly, this method serves as an additional solution for those vehicles that utilize a DVL

but are in areas where DVL bottom-lock is not available, such as diving, ascending, or

conducting mid-water column operations.

The future for autonomous underwater vehicle navigation is promising. With proof that

inexpensive, low power consumption, yet accurate, navigation methods are available, the

ability to deploy multiple vehicles for scientific research and military missions will enable

these communities to put their conceptual ideas into action.
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