
Tracking Working Set Sizes of Virtual
Machines Using Miss Ratio Curves

by

Sarandeth Reth

Submitted to the
Department of Electrical Engineering and Computer Science
In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

May 2017

C 2017 Massachusetts Institute of Technology. All rights reserved.

Author: Signature redacted
Department of Electrical Engineering and Computer Science

y/ fay 26, 2017

Signature redacted
Certified by:

Xaman Amarasinghe
Professor

Thesis Supervisor
May 26, 2017

Certified by: Signature redacted
Yuri Baskakov

Thesis Co-Supervisor
May 26, 2017

Accepted by: _Signature redacted
MASSACHUSETTS INSTITUTE Chii~~l~r Terman

OF TECHNOLOGY Chairman, Masters of Engineering Thesis Committee

AUG 14 2017

LIBRARIES
ARCHIVES

Tracking Working Set Sizes of Virtual Machines Using Miss Ratio Curves

by

Sarandeth Reth

Submitted to the
Department of Electrical Engineering and Computer Science

May 26, 2017
In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract
Working sets are sets of pages that have been most recently accessed by virtual machines

(VMs). They are often used within the memory scheduler of a hypervisor to estimate the memory
demands of VMs running on the hypervisor. In order to manage the memory resources of the
hypervisor efficiently, it is essential that these working set sizes be estimated accurately at any
given point in time.

Currently, a statistical sampling strategy is used within VMware ESX hypervisors to
estimate the working set sizes of VMs. Using this technique, a small number of random pages is
selected to form a sample set. Access to these sampled pages is then tracked and the percentage
of sampled pages that are accessed is used to estimate the working set size of a VM. This
technique, though simple, does not provide a very accurate estimation of the working set size.

A more promising tool that can be used to accurately estimate the working set size of a
VM is a miss ratio curve (MRC). An MRC is a curve that plots the predicted miss ratio of a VM
against the total available memory given to the VM. Even though MRCs can estimate working
set sizes of VMs with much better accuracy, they are still not widely used in practice because
building these curves incurs too much overhead, thus affecting the overall system performance.
However, a recent study has found a way to reduce the cost of building these curves, making
them a promising tool that can be used to estimate working set sizes. In this thesis, I propose that
MRCs be used as an alternative to the statistical sampling strategy currently employed within
VMware ESX. I will demonstrate how to apply the state of the art technique found in the recent
study to construct accurate MRCs without incurring too much overhead, and use these curves to
track working set sizes of VMs. I will also show that these curves can estimate working set sizes
of VMs with much better accuracy than the statistical sampling strategy.

Thesis Supervisor: Saman Amarasinghe
Title: Professor

Thesis Co-Supervisor: Yuri Baskakov

3

Acknowledgements

Professor Saman Amarasinghe for serving as my supervisor and for providing me with his advice
and discussions about this project.

Yuri Baskakov for being an awesome mentor while I was at VMware. I am indebted to him for
providing me with so much help and many suggestions about the implementation of this work.
This project would not be possible without his support and guidance.

My mother, Sokcheun Kov, my father, San Lim, and my younger brother, Darasy Reth, for their
unwavering support throughout my life.

4

Contents

1. Introduction 7
1.1 Related Work 11

2. MRC Construction 13
2.1 Stack Implementation 15
2.2 Randomized Spatial Sampling 17

2.2.1 Sampling Condition 17
2.2.2 Fixed-Size Implementation 18

3. Memory Tracing 23
3.1 Sampled Pages Collection 23

3.2 Sampled Pages Tracking 24

4. Overhead Measurement 25

4.1 Time Overhead 25

4.1.1 Experimental Setup 25

4.1.2 Experimental Results 26

4.2 Space Overhead 27

5. Sample Set Size 29

5.1 Small Virtual Machine 30

5.1.1 Experimental Setup 30

5.1.2 Experimental Results 30

5.2 Large Virtual Machine 34

5.2.1 Experimental Setup 34

5.2.2 Experimental Results 34

6. Bucket Size 39

6.1 Small Virtual Machine 39

6.1.1 Experimental Setup 39

6.1.2 Experimental Results 39

6.2 Large Virtual Machine 40

6.2.1 Experimental Setup 40

6.2.2 Experimental Results 41

7. Evolution of Sampling Rate 43

7.1 Intensive Workloads 43

7.1.1 Small Virtual Machine 43
7.1.1 1 Experimental Setup 43
7.1.1.2 Experimental Results 44

7.1.2 Large Virtual Machine 46
7.1.2.1 Experimental Setup 46
7.1.2.2 Experimental Result 47

7.2 Light Workloads 48
7.2.1 Experimental Setup 48
7.2.2 Experimental Results 48

7.3 Implication 50

8. Working Set Size Tracking 57
8.1 Small Virtual Machine 57

8.1.1 Experimental Setup 57
8.1.2 Performance Graph 58
8.1.3 Working Set Estimated by MRC 59

8.2 Large Virtual Machine 61
8.2.1 Experimental Setup 61
8.2.2 Performance Graph 62
8.2.3 Working Set Estimated by MRC 63
8.2.4 Importance of Stable Sampling Rate 65

8.3 Mixed Workloads 67
8.3.1 Experimental Setup 67
8.3.2 Experimental Results 68

9. Modified Version of SHARDS 71
9.1 Experimental Setup 72
9.2 Experimental Results 72

9.2.1 First Workload (xml.validation) 72
9.2.2 Second Workload (serial) 73

6

1. Introduction

Large companies like Microsoft, Google, and Facebook deploy hundreds of thousands of

servers to serve their users around the world. Each server needs to be kept constantly running in

order to provide non-disruptive services to the users. As a result, it costs these companies

millions of dollars each year just to operate their servers. It is, therefore, important that each

server is utilized efficiently in order to reduce their operating costs.

Virtualization has emerged as one of the most promising solutions to this cost cutting

problem. Virtualization is a process that creates a virtual machine (VM) by simulating physical

hardware resources in a server. With virtualization, multiple VMs can run on the same server at

the same time. This is very beneficial because workloads that need to be distributed among

multiple servers can now be run on multiple VMs running on just one server. This ability to run

multiple VMs on the same server leads to a more efficient usage of resources by reducing the

number of servers that need to be kept running at any point in time.

Running multiple VMs on the same server, though desirable, is a challenge. These VMs

need to share and compete for the same computing resources, such as memory and disk space,

available on the server that they run on. Without proper management, some greedy VMs might

take all the available resources, leaving others to starve. The performance of some VMs might,

therefore, be compromised if they are not given enough computing resources and the benefits

gained from running multiple VMs on the same server no longer hold. Therefore, in order for

virtualization to work, efficient allocation techniques and policies are required to distribute these

limited resources among VMs.

Memory is one of the most crucial computing resources inside a server. To achieve an

efficient usage of memory resources, a VMware ESX server overcommits by assigning more

total available memory to VMs than is physically available on the host machine [1]. This is

beneficial in practice because VMs do not use all their assigned total available memory at all

times. In such an ESX host with multiple VMs, the goal of a memory scheduler is to provision

memory resources among the VMs efficiently in order to achieve the optimal performance of the

7

overall system. At the same time, the memory scheduler also has to respect the memory

allocation priorities of those VMs. Ideally, under memory pressure, memory can be claimed from

a VM to improve the overall system performance as long as the performance of that VM is not

compromised. The claimed memory should then be distributed among other VMs where extra

memory matters the most.

Working sets are often used by the memory schedulers of hypervisors to estimate the

memory demands of VMs in order to provision memory resources among them [2]. The working

set of a VM is defined as the set of pages that are most recently accessed by the VM [3]. In order

to manage memory resources efficiently, it is important that the size of each VM's working set is

accurately approximated at any given point in time [4).

Currently, a statistical sampling strategy is used within the memory scheduler of a

VMware ESX hypervisor to estimate the working set size of each VM running on the hypervisor.

Using this technique, a small number of random pages is selected to form a sample set for each

sampling period. Access to these sampled pages is then tracked and the percentage of sampled

pages that are accessed is used to estimate the working set size of the VM [2]. An example of

how this statistical sampling strategy is used to estimate the working set size of a VM is

illustrated in Figure 1. This technique, though simple, does not provide a very accurate

estimation of the working set size.

8

Nonsampled page

- ~~ ---------- Sanm~ page

AccsedMed page

WIth 16 sampled pages and 6 maess sampled
pages ->WS - (6l6) sIe of vRAM

VRAM
FIgure 1: Sad sicalmp stategy used to sdame the woddag set size of a VM. In this
example. 16 pages ant of an pages In the enire vRAM of the VM are selected to *urm a sample
set. Access to these sampled pages is tracked. Since 6 out of 16 sampled pages ae accessed, the
wtdkng se sin of theVM is estimmed to be W16 of the size ofthe entire vRAM.

A more promising tool that can be used to accurately estimate the working set size of a

VM is a miss ratio curve (MRC). An MRC is a graph that plots the predicted miss ratio of a VM

against the total available memory given to that VM [5], as shown in Figure 2.

Ms rado

0
Tota available memory

Figure 2: An example of a miss rato cuve (MRC).

9

A miss ratio is defined as the fraction of page accesses of a VM that result in page faults.

For each page fault, a page is often retrieved from a swap file that is usually stored in secondary

storage, such as a disk. This significantly slows down the execution of the VM. The number of

page faults is therefore one of the main factors that determine the execution time of the workload

running in the VM, and the MRC can thus be used to explain how performance of the VM

changes with its total available memory [4].

The change in the miss ratio around the current total available memory given to a VM

can be used to determine when memory can be claimed from the VM without affecting its

performance, as well as when memory should be given to the VM to improve its performance.

For example, in Figure 3, if the current total available memory given to the VM is less than X,

then giving this VM more memory would result in better performance as it leads to a reduction

in the miss ratio. However, if the current total available memory is at X, then giving the VM

more memory would not result in performance gain since the number of page faults is zero either

way. The tail of the curve, point X, indicates the minimum total available memory that would

result in the optimal performance of the VM. This point X therefore corresponds to the working

set size of the VM. In this case, the working set size of the VM can be tracked simply by looking

at how the tail of the curve evolves.

Mn mtio

0 _____p lop__

x Toal avaifable memoy
FigR 3: An inciuse in the cwmrem toWa avaIlIable memoty leads to better
performance of the VM when ft is las thn X whHe flihrer increase beyond X
does not affect the VM4s performance. Point Xis the VMs working set size.

10

Although MRCs can give accurate estimations, they are still not widely used in practice

because building these curves incurs too much overhead, thus affecting the overall system

performance. However, a recent study has found a way to reduce the cost of building these

curves, making them a promising tool that can be used to support virtualization. In this thesis, I

will demonstrate how to apply the state of the art technique found in the recent study to construct

accurate MRCs without incurring too much overhead, and use these curves to track working set

sizes of VMs running on a hypervisor. I will also show that MRCs can estimate working set sizes

of VMs with much better accuracy, thus proving that they can be used as an alternative to the

statistical sampling strategy currently employed within VMware ESX hypervisors.

1.1 Related Work

With regard to the recent memory management techniques used inside VMware ESX, [2]

details how the statistical sampling strategy is used to estimate a VM's working set. A recent

study shown in [5] attempts to use MRCs in memory management. However, this study was

done in the context of operating systems, while my research project is about memory

management inside VMware ESX hypervisors. Another study, shown in [4], details the use of an

MRC to estimate the size of a working set. It also shows useful examples of how MRCs are used

to balance memory resources among VMs. However, the implementation of that MRC

construction has more overhead than the one presented in my research project. The SHARDS

technique presented in [6] is the most efficient implementation of MRC construction. It models

cache utility curves by scanning through block I/O traces collected from data centers. Many of

the implementation details presented in my research project are inspired by the ones used in [6].

However, the SHARDS technique concerns itself mainly with cache analysis. An MRC produced

by this technique is used to estimate the cache size that would result in a desired I/O latency. In

contrast, my research project is mainly about using MRCs to provision memory among VMs.

11

12

2. MRC Construction

An MRC can be constructed using Mattson's stack algorithm [7]. This algorithm

computes the fraction of page accesses that are misses for each total available memory size given

to a VM by building a histogram of reuse distances out of the memory trace [6]. The histogram

of reuse distances records the number of page references for each reuse distance as shown in

Figure 4.

1800

I
sj

S.

I

1600

1400

1200

1000

800-

600

400

2001

0I
C 100 2000 3000 4C

RMn d*ace (MB)
Figu 4: HistnmuOrev dimse records the uont
oumber of pope rmfenme for eb munse dhoonme

I
5000

The reuse distance of a page access can be computed by counting the number of distinct

pages that have been accessed since its last access [6]. For example, the reuse distance for an

access to page X in Figure 5 is 2, since there are only two other distinct pages, Y and Z, that have

been accessed between the two consecutive accesses to page X.

13

1
U s-

WO

Y x z Y Y x Y z

Rowse dIstance = 2
Flpre 5: This igure shows he nice of memory access what each block represents a
page. The reuse dismance for an access to page X is 2 since there ae only 2 other distinct
pages r and z, that have been accessed between the two consecutve accesses to pge X.

An LRU stack is used to compute these reuse distances. Accessed pages are arranged in

this stack such that the most recently accessed page is at the top of the stack and the least recent

one is at the bottom [6]. When a page is accessed, the stack distance of that page is computed by

counting the number of other pages inside the stack that are above this page, as shown in Figure

6. This stack distance is then assigned to be the reuse distance of that page [6].

Top 04rthestck C
Reuse distance of page A

A

FIgure 6: Each box in this igure represens a smpled page. The reuse
disne of page A is 2 sime there are2 pages that stack on top of it.

The counter of the histogram bucket that corresponds to the computed reuse distance is

then incremented. The accessed page becomes the most recent one and is moved from its initial

position inside the stack to the top of the stack [6]. Subsequently accessed pages in the memory

trace are then processed similarly to collect their reuse distances. After some interval of time the

histogram of reuse distances is converted to an MRC, as described in Figure 7.

14

= 2

(TW avad" aenny (MB)

a) Hisman aiof resse dsax b).MRC

Figure 7: The hbistogm of reuse distances cm be converted to an MRC by computing the miss
ratio fr each reuse distam The miss rado of a reuse distance d can be computed as ilows:

ma 'wa (4) -= ,

Tbe amerator represams the total rmbAer of poge misses if the size of total available memory
of the VM is set to , while the denotomtor represents the total number of page misses if the
VM is given no oemrny at au.

MRCs, though very useful, are not widely used inside memory schedulers because

tracking these curves dynamically incurs too much overhead. To construct a perfect MRC, an

interception of every page access is required. As a result, the latency of each page access

increases and the performance of the VM is compromised. Much space is also required to record

these page accesses [6]. This overhead becomes even more problematic for large VMs with

terabytes of memory. To reduce this overhead, efficient implementation of MRCs is required.

2.1 Stack Implementation

Locality of page references is a situation where recently accessed pages are the most

likely to be accessed again [8]. Due to most programs' locality of page references, efficient

implementation of the LRU stack can be achieved using a splay tree [6] since such a tree permits

recently accessed nodes to be easily accessed again. Using a splay tree, most stack operations

can be done efficiently in most practical cases. (O(log N) is the amortized time where N is the

number of nodes inside the splay tree.) Each node inside the splay tree can be represented by the

Node struct shown below:

15

unsigned counter = UINTMAX; // used for ordering nodes

struct Node {
Node *parent; // pointer to parent node
Node *left; // pointer to left child node
Node *right; // pointer to right child node
unsigned key; // key value used for sorting
unsigned lefttree size; // the number of nodes in

// left subtree

In this struct, the parent, left and right fields are used for tree traversal. The key field is

used for ordering nodes where the node with the smallest key corresponds to the most recently

accessed page, the one at the top of the stack. The global variable counter is used to assign a

unique key to each node. This variable is initially set to some maximum value and is

decremented after every time it is assigned as the key of a newly inserted node. Later nodes

inserted into the tree would have smaller keys, thus corresponding to more recently accessed

pages. Each node also stores the total number of nodes in its left subtree, the left treesize field,

in order to support stack distance computation. The stack distance of a page is the number of

nodes that have smaller keys than the key of the node of that page. For a given page, its

corresponding node can be efficiently searched for by using a hash table to map each page to its

node, as shown in Figure 8 [6]. Each page can be hashed using its physical page number (PPN)

and doubly linked lists are used to avoid collisions inside the hash table.

~A

a) Hash tae b)Splay trs

Figurt 8: The hash table maps each page to its comrsponding node. Each page is bashed using its
physical page number (PN) and doubly linked ists are used to avoid collisions insie the bash able.

16

With these efficient data structures, the algorithm performed to collect a histogram of

reuse distances has the time complexity of O(M log(N)) and the space complexity of 0(N) where

M is the size of the memory trace in pages and N is the number of unique pages [6]. For online

MRCs that are built every T time interval, M would be the maximum number of non-distinct

pages that can be accessed during this T period and N would be the total number of pages that

can fit into memory. As a result, for large VMs with terabytes of memory, the time and space

overhead is still great. Extra measures therefore need to be taken to reduce this overhead.

2.2 Randomized Spatial Sampling

The randomized spatial sampling technique, to be discussed here, is inspired by the

SHARDS technique described in [6]. It can be added to the existing implementation to reduce

the overhead of MRC construction. It incurs minimal overhead and still produces very accurate

MRCs. Using this technique, only the pages included in a sample set are monitored. The hash

value of a page's PPN is used to determine whether that page should be sampled. The idea is to

keep the number of monitored pages small in order to reduce the overhead, but these sampled

pages still accurately represent all accessed pages, so that an accurate MRC can still be

constructed using a small sample set [6].

2.2.1 Sampling Condition

When a page is accessed, it is put into the filter to determine whether it should be

included inside the sample set. An overview of the sampled page selection process is shown in

Figure 9. The sampling condition is that the hash value of the PPN of a sampled page must be

less than the threshold T. As shown in Figure 9, since T out of P possible hash values are

accepted, the size of the sample set is approximately T/P percent of the entire memory space.

This value, TIP, is also the value of the sampling rate R and every J/R = PIT accessed pages are

therefore represented by a sampled page. This means that the stack distance is no longer equal to

the reuse distance. Each reuse distance is 1/R of the computed stack distance [61, as shown in

Figure 10.

17

thasb(X) modP

X t<T

Accesed page wh ades X

7
Lvi

Figure 9: An overview of the sampled page selectIon process. The PPN of the accessed
page, X, is hashed to a valuer that falls with equal probability between 0 and an upper
lim P. If the hash value f maddles the sampintg condfkm, If it is less than the
threshold T, then the accessed page is port ofthe sample set, otherwise it is ignored [9).

Re/Rs I pages%

Replse / R pages%

C

a

A

A A7

S

Reuse distance stack distance l/f R

Figure 10: Each box in this figure represents a sampled page. Each
rese distance is qpproxiomely IM of the computed stack distance
sitcm each sampied page rqepwft pages.

2.2.2 Fixed-Size Implementation

With the filter described in Figure 9, accessed pages that do not satisfy the sampling

condition are not processed. Therefore, the size of the memory trace that needs to be processed is

only about RM pages and the number of unique pages that are processed is only about RN pages.

With a small sampling rate R, the overhead can be reduced significantly. However, there is still

18

slowle
set

no definite upper limit on this overhead. The sample set size can still increase indefinitely. This

leads to a need for a fixed-size implementation that limits the sample set size. This fixed-size

implementation would reduce the space overhead further to 0(1) and time overhead to O(M).

However, when an upper limit is placed on the sample set size, it is necessary that there be a

sample replacement policy to update the sample set once it is full. The policy used is again

inspired by the SHARDS technique presented in [6]. It requires a dynamic adjustment of the

sampling rate in order to fix the sample set size. This policy is made possible by exploiting the

subset-inclusion property of the sampling condition described in Figure 11 [6].

A sampled page that satisfies the
0 new samt condition aftr the

threshold is lowered fom T to T' T

A sampled pope x doe s od
f t new sampftg condition aftr fth r----T
threshold is lowered hm T to T'

O 0

Fipre 11: Since the samping rae is propornocal to ahe threshold, A = TIP, when the
niue of the threshold is lowend orn to T, the sampling rate is also lowered om
A wA by the same t . Since T> r. the subses-Inclnslo pmopety is presenved:
sampled pages that satisfy the new sampling condition ha.f} mod P < r after the
threshold is lowered (all whke bas shown abow) also sadstled the old sampling
conditionUh6 A modP< Tbefore the threshold was lowered.

Before the memory trace is processed, the sampling rate is set to some initial value R by

assigning the threshold to some value T. While the memory trace is being scanned, the sampling

rate does not change if the sample set is not yet full. The threshold is still fixed at T and the

accessed pages are added to the sample set as long as they satisfy the sampling condition.

However, if the size of the sample set exceeds its upper limit when a new sampled page is added,

a sampled page needs to be removed from the sample set to limit the sample set size, and both

the threshold and the sampling rate need to be adjusted, as described in Figure 12. The hash

value of the PPN of a sampled page can be considered as the threshold of that sampled page [6].

19

. P

Removed sampled page

New-papage
T

rTO0

00

0
FIgure 12: If the size of the sample set exceeds its upper limit when a new sampled page Is
added, the sampled page with the PPN that has the maximw bash vak, flux, is removed
from the sample set to bring the size of the sample set back to its upper limit. The bash value
7*ir becomes the new tesbold and the new sampling rate becomes XAew - Thm/P [61.

With the sample replacement policy shown in Figure 12, a priority queue is required to

determine the sampled page with the maximum threshold [6]. This priority queue can be

implemented using a max heap, as described in Figure 13.

E SapW page X wfthreshold Tx

NOde of Te he that points to page X with
Tx vasold Tx

Th

A

C

E

Max beap Saaple set

Figure 13: A pdority queue can be implemented efficiently using a max heap, where each sampled page is pointed to
by an elemem in the bep. All elements in the heap are compared using the thresholds of the sampled pages that they
point to [6). The top element of the heap therfore points to the sampled page with the maximum threshold. In this
example, sampled page A has the maximum threshold since it is pointed to by the top element of the heap.

20

Since the threshold is lowered as additional sampled pages are added to the full sample

set, the sampling rate decreases and each sampled page represents more pages. As a result, the

histogram counts collected when the threshold was at T are considered to have lower values than

when the threshold is lowered to T' [9]. Each of these histogram counts needs to be rescaled, as

described in Figure 14, to reflect the new threshold. Ideally, every time the threshold value is

lowered, rescaling should be done on all buckets. To avoid this costly process, further

optimization can be done by performing rescaling on only the bucket that needs to be updated,

leaving other buckets unaffected. In this case, each bucket needs to associate itself with its own

threshold Ts,,e, which is the threshold used in the sampling condition the last time the histogram

count of that bucket was rescaled. Therefore, the scale factor of each bucket is different and

equal to TT,,,,,, where T is the most recent threshold used in the sampling condition and T,,,,, is

the threshold of the bucket. When the MRC is constructed, the histogram count of each bucket

needs to be scaled by the bucket's scale factor T/4,k,,, before it can be added to compute miss

ratios [6].

me

I-

I:
-* _______

glw

I-

o is - OAOMee me *MU akef ON*iw e u e su

a) Histogram with threshold T b) Histogram with threshold T
Figure 14: What the threshold is owered fom Tto T', each histogram
count needs to be resealed by the scale hector - M/.

21

T'a

=77 W,

2')

3. Memory Tracing

3.1 Sampled Pages Collection

Sampled pages can be collected during the page fault handling process. When a page is

accessed for the very first time by a VM, it only exists inside the virtual address space of the VM

and is not yet loaded into the vRAM of the VM. There is no mapping, inside either page tables or

TLBs, between the virtual address and the PPN. As a result, every accessed page must go

through the page fault handler at least once and all sampled pages can therefore be collected by

the page fault handler.

During the page fault handling process, after the VMkernel successfully establishes the

mapping between the virtual address and the PPN of an accessed page, the mapped PPN is used

to determine whether that page should be sampled, as described in Figure 9. If the page is

sampled, then there are two cases to consider:

1. The page is not yet inside the sample set. This can be quickly checked using the hash

table, as shown in Figure 8. In this case, the page is added to the sample set and both the

threshold and the sampling rate must be adjusted as described in Figure 12. Rescaling of

histogram counts must also be performed accordingly [6], as described in Figure 14.

2. The page is already part of the sample set. This can happen when the page was evicted to

the disk, causing the old mapping between its virtual address and its PPN to be lost. In

this case:

- The splay tree is used to compute the stack distance of the page

- The page is moved from its initial position to the top of the stack

- The stack distance is scaled by /R to get the reuse distance

- The histogram count of the bucket that corresponds to the computed reuse

distance is scaled by the bucket's scale factor before it is incremented [6].

23

3.2 Sampled Pages Tracking

A simple approach to tracking sampled pages accessed by a VM is to intercept access to

every sampled page [6]. This can be done by removing the mappings between the virtual

addresses and the PPNs of all sampled pages in both page tables and TLBs, so that there are

always page faults when sampled pages are accessed. When a page fault occurs, the control of

execution is transferred to the kernel of VMware ESX, the VMkemel. Inside the page fault

handler of the VMkernel, the accessed page can then be inspected and recorded. However,

tracking memory access this way would slow down the execution of the VM significantly,

especially when the VM runs memory-intensive workloads. The cost associated with tracking

accessed sampled pages would outweigh the performance gain obtained from using MRCs.

An alternative approach is to periodically scan all sampled pages, to determine whether

they have been accessed, by walking a page table to check the accessed bits of those pages. For

processors that support accessed bits, the accessed bit of a page is automatically set when that

page is accessed. When a sampled page is accessed:

- Its stack distance is computed using the splay tree

- It is then moved from its initial position to the top of the stack

- The computed stack distance is then scaled by 1/R to get the reuse distance

- The histogram count of the bucket that corresponds to the reuse distance is scaled by the

bucket's scale factor before it is incremented [6]

- The accessed bit of the page is then clear for the next access

After all sampled pages are scanned, TLBs are then flushed so that the next time a

sampled page is accessed, there is a TLB miss. This causes the page fault handler to walk the

page table and the accessed bit of the sampled page is then set. The accessed sampled page can

then be recorded during the next scanning process. This approach can construct approximate

MRCs with very little overhead since it does not cause a page fault for every access to a sampled

page, and it only periodically interferes with the execution of the VM.

24

4. Overhead Measurement

4.1 Time Overhead

As a result of the accessed bits scanning process, the execution of a VM is interrupted at

regular intervals. The more frequently the scanning process is invoked, the greater the time

overhead imposed on the system. Each scanning process involves many page walks to check the

accessed bit of each sampled page. The larger the sample set size, the more page walks are

required. Therefore, the time overhead imposed by the scanning process depends on both the

sample set size and the scanning frequency. Their impacts can be determined by looking at the

change in the percentage of the total execution time the VM spends on the scanning process

when different scanning frequencies and sample set sizes are used.

Each scanning process also imposes an adverse side effect on the overall time overhead.

Since TLBs are flushed after each scanning process, all mappings inside TLBs are lost each time

the scanning process is done. As a result, there is an increase in the number of TLB misses when

the scanning process is done frequently. Handling a TLB miss requires a page walk to fetch the

lost address translation from a page table, thus incurring some time overhead. The cost

associated with these TLB misses can be determined by looking at the change in the execution

time of the workload when the scanning frequency is high.

The following experiments were conducted to determine how the time overhead changes

with the sample set size and the frequency of the scanning process.

4.1.1 Experimental Setup

The host machine ran VMware ESXi 6.1.0 and was configured with 512GB RAM and 8

six-core 2.0 GHz AMD Opteron(tm) processors. The VM that ran on this host machine ran the

Ubuntu 14.04 operating system and was configured with 128GB vRAM and 48 vCPUs. The

fixed size Compiler workload of the SPECjvm2008 benchmark was used to analyze the time

overhead. The number of benchmark threads used was 4 and the number of iterations of the

25

workload was 30. The maximum Java heap size, the minimum Java heap size, and the initial

Java heap size were set to 128GB, 116GB, and 128GB, respectively. Three different scanning

frequencies were tested: 10 Hz, 100 Hz, and 1000 Hz. Four different sample set sizes were tested

for each frequency: 1024, 2048, 4096, and 8192. The average execution time spent on the

scanning process was measured at the end of each experiment.

4.1 2 Experimental Results

Table I shows results of experiments conducted using different combinations of scanning

frequencies and sample set sizes. Without incorporating the MRC implementation into VMware

ESX, the total execution time of the Compiler workload, the base execution time, was 1959s. As

Table I shows, based on the percentage of the total execution time the VM spent on the scanning

process (%Total), the time overhead imposed by the scanning process is nearly negligible, close

to 0%, for all chosen frequencies and sample set sizes. This minimal overhead suggests that all

the implemented algorithms and data structures used to construct MRCs are very efficient.

Table 1: Time overhead imposed by the accessed bits scanning process for different sample set
sizes and scanning frequencies. %Total is the percentage of the total execution time (not the
workload execution time) the VM spent on the scanning process.

Frequency Sample set size Workload execution %Total
time (s)

1024 1916 0.0

2048 1933 0.0
10 Hz

4096 1999 0.0

8192 1943 0.0

1024 2080 0.0

2048 2261 0.0
100 Hz

4096 2008 0.0

8192 2301 0.0

1024 2217 0.0

2048 2263 0.0
1000 Hz

4096 2411 0.0

8192 2451 0.0

26

For the 10 Hz frequency, the total execution times of the Compiler workload for all

sample set sizes are very close to the base execution time. This indicates that TLB misses have

very little impact on the execution of the workload at this frequency. However, for higher

frequencies, 100 Hz and 1000 Hz, the total execution times of the workload for all sample set

sizes are higher than the base execution time. This suggests that even though the total execution

time spent on the scanning process might be negligible, the cost associated with the increased

number of TLB misses due to a high frequency of TLB flushes is no longer trivial. Therefore, the

scanning process should not be done at high frequencies since the increased number of TLB

misses can interfere with the execution of the VM. To construct all subsequent MRCs, the 10 Hz

scanning frequency was chosen because, regardless of the sample set size, this frequency results

in trivial overall time overhead.

4.2 Space Overhead

Data structures such as splay trees, hash tables, max heaps, and arrays used to represent

histograms all take up some memory space. The sizes of some of these data structures are

dependent on the sample set size since they are used to store information related to sampled

pages. With an upper limit on the sample set size, these data structures can all be statically

allocated since their maximum sizes are known at compile-time. Therefore, since no data

structures are created dynamically, the space overhead introduced by the MRC implementation

can be determined by looking at the change in the size of the compiled code. Table 2 shows the

space overhead imposed by the MRC implementation for different sample set sizes (number of

samples) and histogram sizes (number of buckets). As this table shows, the total space overhead

is less than 1 MB for all chosen sample set sizes and histogram sizes. This small space overhead

suggests that the MRC implementation is efficient and can be incorporated into the memory

scheduler of a hypervisor.

27

Table 2: Space overhead imposed by the
the uninitialized data segment, rodata is
data segment that can be modified.

MRC implementation. text is the code segment, bss is
the read-only data segment and data is the initialized

28

Sample set Histogram Change in size (bytes)
size size text bss rodata data total

512 4868 0 248 56k 61k

1024 4868 0 248 68k 73k
512 2048 4868 0 248 92k 97k

4096 4868 0 248 140k 145k

8192 4868 0 248 236k 241k

512 4868 0 248 100k 105k

1024 4868 0 248 112k 117k
1024 2048 4868 0 248 136k 141k

4096 4868 0 248 184k 189k

8192 4868 0 248 280k 285k

512 4868 0 248 188k 193k

1024 4868 0 248 200k 205k
2048 2048 4868 0 248 224k 229k

4096 4868 0 248 272k 277k

8192 4868 0 248 368k 373k

512 4868 0 248 364k 369k

1024 4868 0 248 376k 381k
4096 2048 4868 0 248 400k 405k

4096 4868 0 248 448k 453k

8192 4868 0 248 544k 549k

512 4868 0 248 716k 721k

1024 4868 0 248 728k 733k
8192 2048 4868 0 248 752k 757k

4096 4868 0 248 800k 805k

8192 4868 0 248 896k 901k

5. Sample Set Size

The sample set size is one of the main factors that determines the accuracy of MRC

construction. With a large sample set, more pages are required to be tracked and each sampled

page therefore represents only a small number of accessed pages, thus leading to more accurate

MRC construction. For example, an exact MRC can be constructed if the sample set size is equal

to the total number of unique accessed pages, assuming that the cost of exact MRC construction

can be ignored. However, the study presented in [6] showed that only a small sample set is

enough to produce a good approximate MRC. The following experiments were conducted to

study how the shape of an MRC changes when different sample set sizes were used in MRC

construction, and to determine the minimum sample set sizes that would result in good

approximate MRCs of small and large VMs. In these experiments, for each VM, MRCs were

constructed using sample sets of different sizes. These MRCs were then combined to show how

the shape of the MRC changes with the sample set size.

Since constructing an exact MRC would drastically slow the execution of the VM, it

would be difficult to determine the shape of the exact MRC and hence to assess whether the

constructed MRCs are close to the exact MRC. However, since a larger sample set size leads to

more accurate MRC construction, as claimed in [6], the tail of the constructed MRC is expected

to converge to the actual working set size as the sample set size increases. Furthermore, even

though the shape of the exact MRC is not known, the tail of the exact MRC can be determined

using a performance graph, a graph that plots the execution time of a workload running in the

VM vs total available memory given to the VM. The tail of the exact MRC corresponds to the

minimum total available memory size, found in the performance graph, that leads to the optimal

performance of the VM. This is the actual working set size of the VM. In this case, as the sample

set size increases, the tail of the constructed MRC is expected to approach the actual working set

size obtained from the performance graph.

29

5.1 Small Virtual Machine

For a small VM with 4GB vRAM and sampled pages of size 2MB each, a sample set of

size 4GB/2MB= 2048 is enough to represent every page in the VM's vRAM.

5.1.1 Experimental Setup

The host machine ran VMware ESXi 6.1.0 and was configured with 24GB RAM and 2

quad-core 2.3 GHz AMD Opteron(tm) processors. The VM that ran on this host machine ran the

Ubuntu 14.04 operating system and was configured with 4GB vRAM and 4 vCPUs. The fixed

size xml.transform workload of the SPECjvm2008 benchmark was chosen to run on this VM.

The number of benchmark threads used was 4 and the number of iterations of the workload was

50. The maximum Java heap size, the minimum Java heap size, and the initial Java heap size

were set to 4GB, 2GB., and 4GB, respectively. The frequency of accessed bits scanning process

was 10 Hz. The sample set sizes used for MRC construction were 64, 128, 256, 512, 1024, and

2048.

5.1.2 Experimental Results

Without incorporating the M.RC implementation into VMware ESX, the execution time

of the xml.transform workload, the base execution time, was 520 seconds. The execution time of

the workload for each sample set size used in MRC construction is shown in Table 3. This table

suggests that with a 10 Hz scanning frequency, regardless of the sample set size, the scanning

process does not interfere with the execution of the small VM since the execution time of the

workload for each sample set size is very similar to the base execution time. This table also

suggests there is little overhead imposed by the MRC implementation, regardless of the sample

set size.

30

Table 3: Different sample set sizes used in MRC construction and the corresponding execution
times of the xmLtransform workload.

Sample set size Execution time (s)

64 509

128 512

256 496

512 511

1024 511

2048 520

Table 4 shows the execution time of the xml.transform workload for each total available

memory size given to the small VM. The performance graph of this VM is plotted in Figure 15.

This performance graph shows that the minimum total available memory size that led to the

optimal performance of the VM, the actual working set size, was approximately 3GB.

Table 4: Different total available memory sizes given to the small VM, with 4GB vRAM, and the
corresponding execution times of the xml.transform workload running in the VM.

Total available Memory (GB) Execution time (s)

4.0 498

3.5 498

3.0 502

2.9 557

2.8 636

31

620 WS - 3.0GB

600

1580

*5s60

I

1540 V

4001
60 200 30400 3M0 3400 360 3000 4000

Tol avalable memmy (MB)
Figtwe 15: Perftrmance graph of die smal VM running the fixed size
xmLunnsfbrm wowkload of the SPECjvm2008 benebmaL Ibis gaph
shows that the actual woking set size of the VM is 9ppr iwatey303.

Snapshots of MRCs, built using sample sets of different sizes, were taken 5 minutes after

the workload started. A combination of these snapshots is shown in Figure 16. The shape of the

MRC started to converge once the sample set size exceeded 256. Furthermore, the tail of the

MRC also started to approach the actual working set size, 3GB, once the sample set size

exceeded 256. Snapshots of MRCs, built using only sample sets of sizes greater than 256, are

shown in Figure 17. Both Figure 16 and Figure 17 suggest that even though a large sample set

with 2048 sampled pages is required to construct an exact MRC for this small VM, a small

sample set with only 512 sampled pages is more than enough to produce an approximate MRC

that is very close to the exact MRC.

32

20w
64
25
51

S - 12- -- - 25

*1

V*

k -- I 0O
W- W- V-ft

t4

-o Soo UMo Loo 2oo0 2500 3000 3500 MM0
TotalMavailas memwry (MB)

Figure 16: Snapshots of MRC constructed using sample nm of difftrent
siems. Each snapshot was taken 5 mInutes aler the woload started.

- 2048
-- 1 512

-- 1024

WS -3008

0 ~ I 30 10 10 200 250 300 350 4M0

T'W avalabe umwnry (MB)

Figure 17: Snapshots of MICe constructed using only sample sets of
sizes greater than 256. Tbs fgure suggests that a sample set of size 512
was enough to produce good approximate MRCs for this small VTM.

33

.2

as

04

as

CAUr.

U-9 1-1- - - -1-4 I 1-- 1, mow WvAWwMw-h"

0.8

5.2 Large Virtual Machine

For a large VM with 128GB vRAM and sampled pages of size 2MB each, a sample set of

size up to 128GB/2MB = 65536 is required to represent every page in the VM's vRAM.

5.2.1 Experimental Setup

The host machine ran VMware ESXi 6.1.0 and was configured with 512GB RAM and 8

six-core 2.0 GHz AMD Opteron(tm) processors. The VM that ran on this host machine ran the

Ubuntu 14.04 operating system and was configured with 128GB vRAM and 48 vCPUs. The

fixed size compiler.sunflow workload of the SPECjvm2008 benchmark was chosen to run on this

VM. The number of benchmark threads used was 4 and the number of iterations of the workload

was 3. The maximum Java heap size, the minimum Java heap size, and the initial Java heap size

were set to 128GB, 116GB, and 128GB, respectively. The frequency of the accessed bits

scanning frequency was 10 Hz. The chosen sample set sizes were 256, 512, 1024, 2048, 4096,

and 8192.

5.2.2 Experimental Results

Without MRC implementation incorporated into VMware ESX, the execution time of the

compiler.sunflow workload, the base execution time, was 207 seconds. Table 5 shows the

execution time of the compiler.sunflow workload for each sample set size used in MRC

construction. This table shows that with a 10 Hz scanning frequency, regardless of the sample set

size, the scanning process does not interfere with the execution of the large VM and the time

overhead imposed by the MRC implementation is minimal since the execution time of the

compiler.sunflow workload for each sample set size is similar to the base execution time.

34

Table 5: Different sample set sizes used in MRC construction and the corresponding execution
times of the compiler.sunflow workload.

Sample set size Execution time (s)

256 206

512 208

1024 222

2048 217

4096 209

8192 226

Table 6 shows the execution times of the compiler.sunflow workload for different total

available memory sizes given to the large VM. The performance graph of the large VM is plotted

in Figure 18. This performance graph shows that the execution time of the compiler.sunflow

workload started to increase once the total available memory size fell below 87.5GB. As a result,

the minimum total available memory size that led to the optimal performance of the VM, the

actual working set size of the VM, was approximately 87.5GB.

Table 6: Different total available memory sizes given to the large VM, with 128GB vRAM, and
the corresponding execution times of the compiler.sunflow workload running in the VM.

Total available Memory (GB) Execution time (s)

128 220

120 220

110 221

100 218

88 223

87.5 217

87.4 281

87.3 303

87.2 315

35

300 s

280

220

200-

ToWi avaibe ammy (MB)

Figure Is: Ir'rma'ce graph of the large VM ruofing the copcrsAnftow workload.
This graph shows &hal the acuwl working set size of the VM is approximately 87.50B.

Snapshots of MRCs, built using sample sets of different sizes, were taken 5 minutes after

the workload started. The combination of these snapshots is shown in Figure 19. As this figure

shows, the shape of the MRC started to converge once the sample set size exceeded 512.

Furthermore, the tail of the MRC also started to approach the actual working set size, 87.5GB,

once the sample set size exceeded 512. In this case, a sample set of size 1024 was more than

enough to produce good approximate MRCs for this large VM. The combination of snapshots of

MRCs, built using only sample sets of sizes greater than 512, is shown in Figure 20.

36

SWS - 47 SGB

as

06

02

0 20000 40000 60000 800 100000 U20000

Total avaishle wmemory (MB)

FIgure 19: Snapshos of MRCs contructed using sample sets of differem sins.
Each snapsbot was taken 5 minutes afer the compler.sem ow wordload started.

as

2048
4096
$192
1024

200M0 400 600 wy)
ToW invaale ammary (MB)

* WS-6750

loom000"

Figure 20: Smapahom of MRCs cosrcted using only sample set of sizes greater than
512. The relative shapes of these !RCs were very shnilar to each ohet. The tails of these
MACs were also very close to the actual working set sizn of the VM. This suggests that a
sample set of size 1024 was enough to produce good approxinnte MRCs for this largo VM.

37

-2048
256

--- 512
4096
8192

- 1024

WS e 75 GB

% A

M04

02

MO

X-1i

LZ

=memo -

38

6. Bucket Size

For very large VMs, the memory space allocated for all histograms used in MRC

construction can be huge, especially when each histogram bucket accommodates only one reuse

distance. It is therefore necessary to have each bucket accommodate multiple reuse distances

when the size of the VM's vRAM is large, in order to reduce the space overhead imposed by the

MRC implementation. The following experiments were conducted to investigate how bucket size

might affect MRC construction.

6.1 Small Virtual Machine

6.1.1 Experimental Setup

The host machine ran VMware ESXi 6.1.0 and was configured with 24GB RAM and 2

quad-core 2.3 GHz AMD Opteron(tm) processors. The small VM that ran on this host machine

ran the Ubuntu 14.04 operating system and was configured with 4GB vRAM and 4 vCPUs. The

workload chosen to run on this VM was the fixed size xml.validation workload of the

SPECjvm2008 benchmark. The maximum Java heap size, the minimum Java heap, and the initial

Java heap size were set to 4GB, 2GB, and 4GB, respectively. The number of benchmark threads

used was 4 and the number of iterations was 10. The sample set size was 2048. Many

experiments were conducted to construct MRCs with different bucket sizes, ranging from 2 to

256. For each bucket size, a snapshot of the MRC was taken 5 minutes after the VM started. All

snapshots were then combined and compared to determine whether a large bucket size has any

impact on MRC construction.

6.1.2 Experimental Results

Figure 21 shows a combination of all snapshots of MRCs. This figure shows that most

MRCs were almost identical to each other. Regardless of the bucket size, the tail of the MRC

always ended at about the same total available memory size. This suggests that the bucket size

39

has little influence on the MRC construction and, if the tail of the curve is used to estimate the

working set size of the VM, a large bucket size would not affect the estimated working set size.

The next experiments were conducted to confirm whether these observations still hold true when

MRCs are constructed for a larger VM.

ToWa avadaeW awaxy (M)
Figure 2 1: Snspibots of MRCs, consoucted tsang dftm bucku sins, were norded 5
miamte afth a dvabdadm Wodldoed Startedt MOMt of these NMC5 looked abnost idenfl
to each othe. Nodce that regangems of the bucket shme, the Wa of the curve &bMy ended at
about the sume toWa availitbe mmmay sla This suggefts dwa th backm size ho little laffience
on the MRC constuction and the esdaed workdng set size.

6.2 Large Virtual Machine

6.2.1 Experimental Setup

The host machine ran VMware ESMi 6.1.0 and was configured with 512GB RAM and 8

six-core 2.0 GHz AMD Opteron(tm) processors. The large VM that ran on this host machine ran

the Ubuntu 14.04 operating system and was configured with 128GB vRAM and 48 vCPUs. The

same xml.validation workload of the SPECjvm2008 benchmark was used to run on this VM

40

aim

except that the maximum Java heap size, the minimum Java heap size, and the initial Java heap

size were increased to 128GB, 116GB, and 128GB, respectively.

6.2.2 Experimental Results

Figure 22 shows a combination of snapshots of MRCs, each constructed using a different

bucket size ranging from 16 to 512, and taken 5 minutes after the VM started. As in Figure 21,

all MRCs shown in Figure 22 looked very similar to each other and, regardless of the bucket

size, the tail of the curve always ended at about the same total available memory size. This

confirms that the bucket size has little influence on the MRC construction and, if the tail of the

MRC is used to estimate the working set size of a VM, a large bucket size would not affect the

estimated working set size.

.3e
I

aEIl

Thd nvsfl*e manmy eaS)
Figure 22: Saushots of MRCs, consmucted using different bucket sizes, were
recoded 5 minutes after the xmn.vAlidadon wodlad started. Regurdleua of the
bucket size, the tail of the MRC always ended at about the same total available
memory size. Together with Figure 21, this confirms that the bucket size has
tide infuence on the MAC consmrction and the esdmated working set size.

41

42

7. Evolution of Sampling Rate

The fixed size implementation of MRC construction requires a dynamic adjustment of the

sampling rate in order to fix the sample set size. For the sampling condition hash(A9 mod P < T,

the initial value of the threshold T is assigned to the value of the modulus P. In this case, the

initial value of the sampling rate R = T/P is 1. After a new page is added to the already full

sample set, the page with the highest threshold is removed from the sample set to restore the

sample set size to its maximum value. The value of the threshold T is then lowered to the new

value of the highest threshold. As a result, the threshold T is gradually lowered as new pages are

added to the sample set and the sampling rate R gradually decreases as more pages are accessed.

The following experiments were conducted to study the evolution of the sampling rate R and

how it affects the MRC when different workloads run in the VM.

7.1 Intensive Workloads

An intensive workload is a workload that has a high memory bandwidth requirement.

When a VM runs this type of workload, most of the pages in the VM's vRAM are touched. As a

result, the sampling rate would converge to some stable value when the entire memory space is

explored. The experiments below were conducted to study how sampling rates evolve and to

determine their stable values when VMs run this type of workload.

7.1.1 Small Virtual Machine

7. 1. 1. 1 Experimental Setup

The host machine ran VMware ESXi 6.1.0 and was configured with 24GB RAM and 2

quad-core 2.3 GHz AMD Opteron(tm) processors. The VM that ran on this host machine ran the

Ubuntu 14.04 operating system and was initially configured with 4GB vRAM and 4 vCPUs. The

chosen workload was the fixed size sunflow workload of the SPECjvm2008 benchmark. The

number of benchmark threads was 4 and the number of iterations of the workload was 10. The

maximum Java heap size, the minimum Java heap size, and the initial Java heap size were

initially set to 4GB, 2GB, and 4GB, respectively. These heap sizes were chosen to ensure that

nearly every page in the the VM's vRAM was touched when the workload ran. The sample set

size used was 64.

7.1.1.2 Experimental Results

Figure 23 shows the evolution of the sampling rate R, recorded over an hour period after

the VM started. The workload took 1949 seconds (or 32 minutes) to complete all the 10

iterations. The VM was then left to run, without running the sunflow workload, for another half

an hour. Figure 23 suggests that the sampling rate R tends to converge to a stable value as the

execution of the VM progresses. With a sampling rate R, each sampled page represents about 1/R

pages and the approximate number of represented pages is therefore (sample set size) * (1/R)

Since each represented page is a 2MB page, the size of the represented memory space is

therefore approximately 2 * (sample set size) * (1/1R) MB. As shown in Figure 23, the sampling

rate R approached a stable value equal to 0.03125. The approximate size of the represented

memory space was therefore equal to 2 * 64 * (1/0.03125)= 4096MB = 4GB. This was also the

size of the VM's vRAM. In this case, Figure I suggests that the sampling rate R converges to a

stable value R,, that allows the represented memory space to cover the entire memory space of

the VM. This stable sampling rate R,,, is equal to 2 * (sample set size) * 1/(size of vk4M in

MB) which is equivalent to the ratio of the sample set size to the total number of large pages

inside the VM's vRAM.

44

LO

*10.4

0.2

0.0
0 110 i- -

Figure 23: Evohlion of the sampling rues R when a smal VM with 4GB
vRAM ran the sunflow workload of the SPECjvm2OO6 becbmatk.

Two more experiments were conducted to confirm that the derived stable sampling rate is

correct. In these experiments, the same host machine and VM were used. However, the size of

the VM's vRAM was doubled to 8GB for the first experiment and quadrupled to 16GB for the

second experiment. The same workload was also used. However, the maximum Java heap size,

the minimum Java heap size, and the initial Java heap size were doubled to 8GB, 4GB, and 8GB,

respectively, for the first experiment and quadrupled to 16GB, 8GB, and 16GB, respectively, for

the second experiment. These heap sizes were chosen to ensure that every page in the VM's

vRAM was touched. Figure 24 plots the evolution of the sampling rates for the first and the

second experiments. For the first experiment, the workload took 1849 seconds (or 31 minutes) to

run to completion. For the second experiment, the workload took 1792 seconds (or 30 minutes)

to run to completion. As Figure 24 shows, when the VM's vRAM was doubled from 4GB to

8GB, the final sampling rate was halved from 0.03125 to 0.015625 and when the VM's vRAM

was doubled again from 8GB to 16GB, the final sampling rate was also halved again from

0.015625 to 0.0078125. This consistency suggests that the derived stable sampling rate RNa is

correct and that the sampling rate R converges to this value as the entire memory space of the

VM is explored.

45

L.

A

Tin (mdat)

FIgure 24: Evoidwon of sampling ran when a smaH VM ran the swaflow woload and
was configued with different sample set sins: 40B,8, and 1608.

The next experiment was conducted to illustrate that the derived stable sampling rate

Rae is still correct even though the VM ran a different memory-intensive workload and was

configured with a larger vRAM. A much larger sample set size was also used to confirm the

correctness of the derived stable sampling rate.

7.1.2 Large Virtual Machine

7.1.2.1 Experimental Setup

The host machine ran VMware ESXi 6.1.0 and was configured with 512GB RAM and 8

six-core 2.0 GHz AMD Opteron(tm) processors. The VM that ran on this host machine ran the

Ubuntu 14.04 operating system and was configured with 128GB vRAM and 48 vCPUs. The

46

- GO fS r a - Ofl s

$640 Set swoan rae OAflt

a

chosen workload was the workload of the SPECjbb2013-Composite benchmark. This workload

was allowed to run to completion once and the sampling rate was recorded while the workload

was running. The maximum Java heap size, the minimum Java heap size, and the initial Java

heap size were assigned to 128GB, 116GB, and 128GB, respectively. The sample set size was

8192.

7.1.2.2 Experimental Result

The workload of the SPECjbb2013-Composite benchmark took a total of 8504 seconds

(or 142 minutes) to run to completion. Figure 25 plots the evolution of the sampling rate R of the

VM. Since the size of the VM's vRAM was 128GB, the total number of large pages was 65536.

The stable sampling rate R,,,, was therefore equal to 8192/65536 = 0.125. As Figure 25 shows,

the recorded sampling rate R was 0.126037597656. This sampling rate was very close to the

predicted stable sampling rate R,,i,, This suggests that the derived stable sampling rate is correct

and that the sampling rate of the VM converges to this stable value as more pages inside the

VM's vRAM are accessed.

09

O.a.

06

OA

M.4

0.3

FnaI sampng raft R- 0.126037597656

0__ 20 40 60 so 100 120 140 10
Thim (miut.)

Figure 25: Evolution of the samplng rate when the large VM ran
the workload of the SPECJbW203.ConpoIte benchmad.

47

7.2 Light Workloads

The above experiments were conducted using memory-intensive workloads, where most

pages inside the VM's vRAM are accessed. When the workload is light, however, some of the

pages might not be explored. As a result, the sampling rate R might not converge to its stable

value R,,ah,, The following experiments were conducted to illustrate this problem.

7.2.1 Experimental Setup

The host machine ran VMware ESXi 6.1.0 and was configured with 24GB RAM and 2

quad-core 2.3 GHz AMD Opteron(tm) processors. The VM that ran on this host machine ran the

Ubuntu 14.04 operating system and was configured with 8GB vRAM and 4 vCPUs. The sample

set size used was 64. A light workload, the bzip2 workload of the SPEC CPU2006 benchmark,

was chosen to run for 1 iteration.

7.2.2 Experimental Results

The bzip2 workload took 853 seconds (or 14 minutes) to run to completion. Figure 26

shows the evolution of the sampling rate R recorded over a 200-minute period. Since the VM's

vRAM was 8GB and each page was 2MB, the total number of pages was 4096 and the stable

sampling rate R, was equal to 64/4096 = 0.015625. However, the recorded final sampling rate

R (= 0.0234375) was not very close to its stable value R,,lh,,. This is because the workload was

light and, therefore, there were not many accessed pages. The threshold T no longer decreased

after those few accessed pages were put into the filter and the sampling rate could not converge

to its stable value. To illustrate that 0.0234375 was not the stable sampling rate, the bzip2

workload was then allowed to run for 10 iterations instead of 1. The workload took 8504 seconds

(or 142 minutes) to finish all the 10 iterations. The final sampling rate recorded was 0.015625, as

shown in Figure 27. This suggests that even if the workload is light, the sampling rate still

converges to its stable value if the workload is allowed to nin for multiple iterations. This is

because each iteration of the workload might not involve the same part of the memory space.

Eventually, most pages inside the VM's vRAM are touched and the sampling rate then

48

converges to its stable value. The convergence time was, however, quite long, as shown in

Figure 27. It took two hours for the sampling rate to converge to its stable value. This suggests

that the convergence of the sampling rate depends largely on the workload running in the VM.

The sampling rate should take a long time to converge if the VM runs a light workload and a

short time if the VM runs a memory-intensive workload.

A,"'

0.8

0.6

j0A

Aal sasoolma rqt ft a O.OIM4T

fMle (nge)
FIvn 26: Evolution of the samplng rae when the VM ran the biip worlad
fxr I korsdon. The sample rae did sos converge to Is sable value (0.015625).

0

49

LU t

0.8

0O

10'.

0.2

0r.
A 0.01562S

50 100 150 20

7ibe(inisuw)
Figuin 27: Evolution of the sampling rate when the VM ran the bztp2
woddoad for 10 keradons. The sampling rate converged to is stable value.

7.3 Implication

Since the reuse distance is computed by scaling the stack distance by 1/(sampling rate),

the sampling rate is one of the main factors that determine the shapes of constructed MRCs. If

the sampling rate has not yet reached its stable value, the scaling factor, 1/(sampling rate), would

be small and the shape of the constructed MRCs would be incorrect. The following experiments

were conducted to investigate this problem. In these experiments, the host machine ran VMware

ESXi 6.1.0 and was configured with 512GB RAM and 8 six-core 2.0 GHz AMD Opteron(tm)

processors. The VM that ran on this host machine ran the Ubuntu 14.04 operating system and

was configured with 128GB vRAM and 48 vCPUs. The workload chosen to run on this VM was

the xml.validation workload of the SPECjvm2008 benchmark. The number of benchmark

threads was 4 and the number of iterations of the workload was 5. The maximum Java heap size,

the minimum Java heap size, and the initial Java heap size were assigned to 64GB, 52GB, and

64GB, respectively. The sample set size used in the MRC construction was 1024. In this case,

the stable sampling rate of the VM was approximately 2*1024*1/(128*1024)= 0.015625. Table

7 shows the execution time of the xml.validation workload for each total available memory size

50

given to the VM, and the performance graph of the VM is plotted in Figure 28. This graph shows

that the minimum total available memory size that leads to the optimal performance of the VM,

the actual working set size of the VM, was approximately 44.2GB.

Table 7: Total available memory sizes given to the virtual machine and the corresponding
execution times of the xml.validation workload.

Total available Memory (GB) Execution time (s)

128 188

100 191

45 185

44.5 192

44.2 188

44 207

43.5 251

43 428

42 978

900

I
I
8~1
U

800

700

500

400

300

200

60000 80000 100000 120000
ToW) avaiabe memory (MB)

Figure 28: Performance graph of the VM iunning the fixed size
M-vadatdon workload of the SPECjvm2O0R bNchmark. This Vaph shiws

that the acUal working set size of ts VM was approximately 442B.

51

IWS - 44.2GO

I ek'Aft

The total available memory size that corresponds to the tail of an accurate MRC is

expected to be close to the actual working set size. Figure 29 plots the evolution of the sampling

rate when the VM ran the xml.validation workload and Figure 30 shows a snapshot of the VM's

MRC. The sampling rate of the VM, as shown in Figure 29, was nowhere near its stable value.

The sampling rate converged to 0.0439453125, which was nearly 3 times its stable value. This

was because the workload touched less than half the VM's memory space. As a result, many

pages were not accessed and the sampling rate could not converge to its stable value. The tail of

the MRC, as shown in Figure 30, was also nowhere near the actual working set size. The

memory size that corresponds to the tail of the MRC was about 39GB, which was about 5.2GB

less than the actual working set size. The mismatch between the tail of the MRC and the actual

working set size might be due to the high sampling rate of the VM that caused the scale factor,

1/(sampling rate), to be low.

O

M~e

a,6

02

Thic (mmict)

Figu 29: Evokaion of the Sampflg re whei the VM an the fxed
size xmLvahdatioU workload of the SPBCjvmOG benchmak. The
sampling rate did noa converge to ts stabe value, 0.015625, since
the majority ofthe VM's memory space was ": yet explorLe

52

0.6
M6

WS 44.2GO

0 20000 40000 6000 60000 100000 120000
Tota available memry (MB)

FWgpae 30: A mapbot of the MRC wheo the VM ran the fixed size
xmtvalidwion wokcload of the SPECjvm20O8 benchmauk and when
the sampling tme was not close to it stable valn. Nodce that the tal
oflhe MRC was owhem now the actual wording set size of the VM.

The experiment was repeated but the sampling rate was forced to converge to its stable

value before the VM ran the xml.validation workload. This was done by running a very

memory-intensive workload in the VM for many iterations until most pages inside the VM's

memory space were touched. The chosen workload was the fixed size sunflow workload of the

SPECjvm2008 benchmark. The number of benchmark threads was 4 and the number of iterations

of the workload was 10. The maximum Java heap size, the minimum Java heap size, and the

initial Java heap size were assigned to 150GB, 128GB, and 150GB, respectively. The heap sizes

were chosen to be larger than or equal to the VM's vRAM to ensure that most pages were

accessed by the workload. Once the sunflow workload ran to completion, the VM waited for 5

minutes before running the xml.validation workload. Figure 31 plots the evolution of the new

sampling rate and Figure 32 shows a snapshot of the new MRC.

53

Los:P0

as

o..

Ga4

GA~

0 5 10 15 20

Tlat (abutr)

Figure 31: Evolution of the sampling rue when the VM ran the sunflow
workload followed by the xmLvulariao workload. The snmflow
workload was run for multiple iterations to ensure that the sampling rate
reached its stable value before the xmLvalidation workload was run.

LO-

0

0,6

0a4

M2

0 20000 40000 0000 60000 100000 120000
Total available memory (MB)

Figure 32: A snapshot of the MRC when the VM rn the sunflow wozkload
followed by the xmLvalidatrin workload and when the sampling rate reached
its stable value. Notice that the total available memory size that correspoa to
the tai of the MRC is the same as the actual working set size of the VM.

54

SA
4M

*8

'U
I

WS 44.2GB

W.- A - - www

&Wa "am" L a - Qmvz62

Notice that the sampling rate converged to its stable value, shown in Figure 31, and the

memory size that corresponded to the tail of the MRC also matched the actual working set size

of the VM, shown in Figure 32. This suggests that it is very important that the sampling rate

reaches its stable value in order for the MRC construction to be accurate. Furthermore, it can be

inferred that the MRC construction is more accurate when VMs run memory-intensive

workloads since these workloads force the sampling rates of these VMs to converge to their

stable values much faster than light workloads.

56

8. Working Set Size Tracking

The size of a VM's working set is the minimum total available memory size given to the

VM in order for the VM to achieve its optimal performance. The tail of an MRC is the minimum

total available memory size given to the VM in order for the VM to achieve a zero miss rate.

Once the VM's total available memory size falls below this tail, the VM starts to experience

page faults and its performance starts to deteriorate. The tail of the MRC therefore corresponds

to the minimum total available memory size that leads to the VM's optimal performance and can

potentially be used to track the VM's working set size. The following experiments were

conducted to determine whether the tails of MRCs are effective tools for estimating accurate

working set sizes of both small and large VMs. In these experiments, estimated working set sizes

were assessed using the actual working set sizes of the VMs obtained from their performance

graphs. Each actual working set size corresponded to the total available memory size at which

the performance of the VM started to deteriorate. The MRC of a VM running mixed workloads

was also investigated to determine whether the working set size estimated using the tail of the

MRC stays consistent when multiple workloads run in the VM.

8.1 Small Virtual Machine

8.1.1 Experimental Setup

The host machine ran VMware ESXi 6.1.0 and was configured with 24GB RAM and 2

quad-core 2.3 GHz AMD Opteron(tm) processors. The VM that ran on this host machine ran the

Ubuntu 14.04 operating system and was configured with 4GB vRAM and 4 vCPUs. The sample

set size used in MRC construction was 1024. In this case, the stable sampling rate was

approximately 2 * 1024 * 1/(4 * 1024) = 0.5. Two workloads were used to run on this VM. The

first workload was the sunflow workload of the SPECjvm2008 benchmark. This workload was

used as a memory-intensive workload to ensure that the sampling rate of the VM reached its

stable value before the second workload started running. The number of benchmark threads used

was 4 and the number of iterations of the workload was 3. The maximum Java heap size, the

57

minimum Java heap, and the initial Java heap size were set to 4GB, 3GB, and 4GB, respectively.

These heap sizes were chosen to ensure that most pages inside the VM's memory space were

touched. The second workload was the bwaves workload of the SPEC CPU2006 benchmark.

This was the main workload for which the corresponding working set size of the VM was

analyzed.

8.1.2 Performance Graph

Many experiments were conducted to plot the performance graph of the bwaves

workload. For each experiment, the workload was allowed to run for I iteration and its execution

time was measured at the end of the run. Table 8 shows the execution time of the bwaves

workload for each total available memory size given to the VM. The performance graph of the

VM running this workload is plotted in Figure 33. As this performance graph shows, the

execution time of the bwaves workload started to increase once the total available memory fell

below 1.7GB. This suggests that the actual working set size of this VM was approximately

1.7GB, since this was the minimum total available memory size at which the performance of the

VM was at its optimal value. In this case, it was expected that the working set size estimated

using the tail of the MRC was at around this value.

Table 8: Different total available memory sizes given to the VM and the corresponding execution
times of the bwaves workload.

Total available memory (GB) Execution time (s)

4,0 1572

2.0 1589

1.8 1599

1.7 1604

1.6 1649

1.5 1824

1.4 2214

1.3 3394

58

35M0

3000- 4WSW178

2s" AM V" 00

Tota avaiable memory (Ms)

FigWM 33: Performsance graph of the VM twining the bwavcs workload
bs performance grqph shows t.n e t woring set size of the VM

was approximatey 1.7 sInce Mthe perfomance of te VM staed to
deterirneonce the ftoa availabe memory size Me beo thisvaine.

8.1.3 Working Set Estimated by MRC

Figure 34 shows the evolution of the sampling rate when the VM ran the sunflow

workload followed by the bwaves workload. This figure shows that the sampling rate converged

to its stable value, since the final sampling rate recorded was 0.484375, only 3% less than its

stable value, 0.5. As a result, the requirement that the sampling rate be at its stable value in order

for MRC construction to be accurate was fulfilled. A snapshot of the MRC of the VM is shown

in Figure 35. This figure shows that the tail of the MRC was approximately 1.7GB. The

evolution of the working set size of the small VM estimated using the tail of the MRC when the

VM ran the bwaves workload is shown in Figure 36. Notice that the estimated working set size

matched the actual working set size obtained from the performance graph quite well. This

suggests that MRCs are highly effective tools for estimating the working set sizes of small VMs

very accurately.

59

tUrg

0a9

03

0.4
0 10 20 30 40 s0

Tine (mIMm)

Figure 34:: Evoluton of the sampling rate when the VM ran the snflow workload
of the SPECjvm2O benchmark followed by the bwaves workload of the SPEC
CPUX6 benchmark. The final samptng re was close to its stable vak 0.5.

LO.

0.0

A.4t

0 Soo 1000 1500 2000 2500
Total available memory (MB)

3000 3500

Figure 35: A snapshot of the MRC when the VM ran the bwaves
workload ofthe SPEC CPU2006 benchmart Using the tal ofthe MRC,
the working set size was adwated to be amund 1.700B. This matched
dte setual wordg set size obtained fom the performance -

60

:17I
U

I.
final somwvk rat R a OA#4375

I
.3

I
a
I
I

I
I
I
I
I

I
I

I

I

*ws- IIGS

ft

1600

v1400-

1200

1000

800

Figure 36: Evolut*o of Me working set size of the smail VM esdtmswd using the
tail of the MRC when the VM ran the bwaves workload of the SPEC CPU2006
benchmark. This igure shows that the estimaed woddng set size marched the
actual workig set size obtained frem e performance gaph very wen.

8.2 Large Virtual Machine

8.2.1 Experimental Setup

The host machine ran VMware ESXi 6.1.0 and was configured with 512GB RAM and 8

six-core 2.0 GHz AMD Opteron(tm) processors. The VM that ran on this host machine ran the

Ubuntu 14.04 operating system and was configured with 128GB vRAM and 48 vCPUs. The

sample set size used in MRC construction was 1024. In this case, the stable sampling rate was

approximately 2*1024*1/(128*1024) = 0.015625. Two workloads were chosen to run on these

VMs. The first workload was the fixed size sunflow workload of the SPECjvm2008 benchmark.

This workload was used as a memory-intensive workload that forced the sampling rate of the

VM to converge to its stable value. For this workload, the number of benchmark threads used

was 4 and the number of iterations was 10. The maximum Java heap size, the minimum Java

heap size, and the initial Java heap size were set to 150GB, 128GB, and 150GB, respectively.

61

These heap sizes were chosen to be greater than the VM's vRAM to ensure that most pages

inside the VM's vRAM were explored by the workload. The second workload was the fixed size

serial workload of the SPECjvm2008 benchmark. This was the main workload for which the

corresponding working set size of the VM was analyzed. For this workload, the number of

benchmark threads used was 4 and the number of iterations was 3. The maximum Java heap size,

the minimum Java heap size, and the initial Java heap size were set to 128GB, 116GB, and

128GB, respectively.

8.2.2 Performance Graph

Many experiments were conducted to plot the performance graph of the serial workload.

For each experiment, the VM was given a different total available memory size to run the serial

workload, and the execution time of the workload was measured at the end of the run. Table 9

shows the execution time of the serial workload for each total available memory size given to the

VM. The performance graph of the serial workload is plotted in Figure 37. As this performance

graph shows, the execution time of the serial workload started to increase once the total available

memory size fell below 92.8GB. Therefore, the actual working set size of the VM was

approximately 92.8GB, since this was the minimum total available memory size that led to the

optimal performance of the VM.

Table 9: Different total available memory sizes given to the VM and the corresponding execution
times of the serial workload.

Total available memory (GB) Execution time (s)

128 275

95 279

94 275

93 277

92.8 273

92.7 286

92.5 310

92 367

91 569

550,

Soo MWS -WAGS

40:

300

95000 100000 15000 000 115000 20000 125000 130000

Total avalhable memory (MB)

Figm 37: Performance gaph of the VM running the serial wdosakd.
This graph shows tha the actual woddng s size of the VM was
approximaely 92.0GB, since the performance of the VM started to
eterioratc oce te OtaW availsae memory M below ts vale

8.2.3 Working Set Estimated by MRC

Figure 38 shows the evolution of the sampling rate when the VM ran the sunflow

workload followed by the serial workload. This figure shows that the sampling rate converged to

its stable value, since the final sampling rate recorded was 0.0 15625. As a result, the requirement

that the sampling rate must be at its stable value in order for MRC construction to be accurate

was fulfilled. A snapshot of the MRC of the serial workload is shown in Figure 39. This figure

shows that the tail of the MRC was approximately 92.8GB. The evolution of the working set size

of the large VM estimated using the tail of the MRC when the VM ran the serial workload is

shown in Figure 40. Notice that the working set size estimated using the tail of the MRC

matched the actual working set size obtained from the performance graph very well. This

suggests that MRCs are effective tools for accurately estimating working set sizes of large VMs.

63

0.8

I

1~

-,-0 10 30 46 so to

The (Mm)

Figure 38: Evolution ofthe sampling raw when fte VM ran the sunlow woddoad of
the SPECvm2008 behmark followed by the serial wokload of the SPEqvm2008
benclmadk The sampling raw converged to its stabie value, 0.01562.

as

0.6

0.4

0.2.

&o L
0 A20000 40000 60000 60000 100000 120000

Total avanUS memory (US)

ilpn 39: A sapaot of fue MtC when the VM ran the seral
workoad of dfe SPECjvmZ0OR benchmark. Using the ta of the MRC,
the wvoking set size was esdmaed to be around 92.8GB. This was
also the nil working set size obtained from the performance graph.

64

F4

OL2

an "WmOrf a 0*5IU2

.1

ws -92.8GD

I'M

X-11

1000 -ws --- - -

20000

00f

02 4 6 $ 10

Tume (mimne)

Figure 40: Evoluion of the woddig set sie of the large VM esdmated using
the tad ofthe MRC when the VM ran the seial workiwad of the SPjvm2006
benchmark. Bere is workload staed rnamingte danflow wokload of fe
SPCjvm2OR benchmark was used to force the samplng rat to converge to
its stable value. Notice that the esimated working set size matched the actual
workig set size obtained *om the performance graph vay wel.

8.2.4 Importance of Stable Sampling Rate

To illustrate the importance of having the sampling rate be close to its stable value, the

experiment was repeated without running the sunflow workload. Without having a

memory-intensive workload running first, the sampling rate is no longer guaranteed to converge

to its stable value. Figure 41 plots the evolution of the sampling rate when the large VM ran only

the serial workload and Figure 42 plots the evolution of the working set size estimated using the

tail of the MRC. As Figure 41 shows, the sampling no longer converged to its stable value. The

final sampling rate recorded was 0.021484375, 37.5% greater than the value of the stable

sampling rate. Notice that the working set size predicted using the tail of the MRC, as shown in

Figure 42, was below the actual working set size. This was because the scale factor, 1/(sampling

rate), used to convert each stack distance to a reuse distance was low, since the sampling rate

was above its stable value. This suggests that in order to accurately track the working set size of

65

100000

the VM using the tail of the MRC, it is essential that the sampling rate first be very close to its

stable value.

0cal

CLW
j

*1
U
M

UI

M6

0-2

w0 20 0 40 so 6

FIgure 41: Evoltion of the sampling rate when the VM an only
the serial wodload of the SPECJVM2008 bnchmarL The final
sampling rate was 37.5% geser than its stable value, 0.015625.

100000-

.0OM I

wot<

20W0

2 4 6

ThD (naMAn)
a 10

Figure 42: Evolution of the woddng set size of the large VM estimated using the tal of
the MRC when the VM ran the serial workload of the SPEC CPU2006 benchrmark only.
The sampling rate was not close to its stable value. Notce that the esdmated wodng set
size was nowhere near the actual working set size obtained flm the performance graph.

66

7%

WS -#2.800

A-IH

8.3 Mixed Workloads

The following experiment was conducted to assess whether the working set size

estimated using the tail of the MRC stays consistent when multiple different workloads run in the

VM.

8.3.1 Experimental Setup

The host machine ran VMware ESXi 6.1.0 and was configured with 512GB RAM and 8

six-core 2.0 GHz AMD Opteron(tm) processors. The VM that ran on this host machine ran the

Ubuntu 14.04 operating system and was configured with 128GB vRAM and 48 vCPUs. The

sample set size used in MRC construction was 1024. In this case, the stable sampling rate was

approximately 2 * 1024 * 1/(128 * 1024) = 0.015625. Three fixed-size workloads of the

SPECjvm2008 benchmark were used to run in the VM. The number of benchmark threads used

for all these workloads was 4. The first workload, the sunflow workload, was used as a

memory-intensive workload to force the sampling rate to converge to its stable value. For each

run of the sunflow workload, the number of iterations was 10. The maximum Java heap size, the

minimum Java heap size and the initial Java heap size were set to 150GB, 128GB, and 150GB,

respectively. These heap sizes were chosen to be greater than the VM's vRAM to ensure that

most pages inside the VM's vRAM were touched. The other two workloads were the previous

serial workload and the previous xml.validation workload. These two workloads were chosen

because they were configured with different heap sizes, thus ensuring that the working set size of

the VM changed when the VM switched from running one workload to the other. For each run of

the serial workload, the number of iterations was 3. The maximum Java heap size, the minimum

Java heap size and the initial Java heap size were set to 128GB, 116GB, and 128GB,

respectively. The actual working set size of the VM that corresponded to this workload was

92.8GB, as shown in Figure 37. For each run of the xml.validation workload, the number of

iterations was 5. The maximum Java heap size, the minimum Java heap size and the initial Java

heap size were set to 64GB, 52GB, and 64GB, respectively. The actual working set size that

corresponded to this workload was 44.2GB, as shown in Figure 28.

67

8.3.2 Experimental Results

Figure 43 shows the evolution of the sampling rate when the VM ran the sunflow

workload, the serial workload and the xml.validation workload.

LO

0.5

02

_0 10 20 TO" 0 so0 s

The (M-ut)

Figure 43: Evolution of the sampling rae when the VM ran the
swifow wokloed followed by the serial workload and the
mLvalidation workload of the SPECjvm2008 benchmark. Notice

that the sampfng ste converged to Its stable value, 0.015625.

The sunflow workload was run thrice to force the sampling rate to converge to its stable

value before the serial workload and the xml.validation workload started running. As Figure 43

shows, the sampling rate indeed converged to its stable value, 0.015625. This convergence

ensures that the scale factor, 1/(sampling rate), used to convert each stack distance to a reuse

distance, was at its right value, leading to more accurate MRC construction. Once the sunflow

workload finished running, the serial workload was run thrice, followed by another 3 runs of the

xml.validation workload before the serial workload was run 3 times again. This sequence of

workloads was chosen so that one workload was followed by the other, and vice versa. The idea

was to determine whether the estimated working set size is compromised if one workload is run

after the other. After each run of these workloads, the VM was given 5 minutes to rest before

68

moving on to run the next workload. The evolution of the working set size estimated using the

tail of the MRC is shown in Figure 44. As this figure shows, when the VM ran the serial

workload, the estimated working set size was very close to 92.8GB and when the VM switched

to running the xml.validation workload, the estimated working set size was very close to

44.2GB. This suggests that the estimated working set size was accurate and consistent and that

the MRC is an effective tool for accurately tracking the VM's working set size.

$*owl
__ __ __

sanow

Krr~1iFtJYvfl

Li

Asew WmaS nCtenaspe* to un Wnb - - urn

9

sedial

LA NJ) rnf

11~~ f~
4 U di

n 1tvS Nd n

LI
SW

Pigute 44: Eveian of the waddAg sa size oft large VM etmat using the MO of the
MRC when the VM a both the sedal weddod and e t valldadin woddoad of the
SPEqv oo b2twai. Betbte Oese two wOkids Sated nMiMng. the sufiow
wedded of the SPEqvm200 becma* was ud to fce the sampling rate to converge
to is stable vaue. Notice that dhe esuimaed woddng set size mame the acte! weang
set sizes that corespond to the sedid wokload and the Xmivaldtkon WaddOet very weIt

69

a10

I ""~

M

UI-
40u.

I

saw

70

9. Modified Version of SHARDS

The original version of the SHARDS technique was designed to construct cache utility

curves by scanning through very long block 110 traces collected from data centers over

extremely protracted periods, more than 100 weeks [6]. In this case, more than enough time was

available for the sampling rate to converge to its stable value, making the original SHARDS

technique suitable for constructing accurate cache utility curves. However, this technique is not

suitable for constructing an MRC to track a VM's working set size because, in the case of the

VM, the time taken for the sampling rate to converge depends on the workload running in the

VM and the size of the VM's vRAM. Since the accuracy of MRC construction depends greatly

on the sampling rate being near its stable value, it is desirable that the convergence time of the

sampling rate be short, so that the MRC can be used to estimate the VM's working set size as

soon as the VM starts running. As a result, a modified version of the SHARDS technique is

introduced in this thesis to shorten the convergence time of the sampling rate, making this

technique more suitable for online tracking of the VM's working set size. In this modified

version, all sampled pages are preselected, before the VM boots up, by iterating over addresses

of all pages in the entire VM's memory space and selecting the ones that satisfy the sampling

condition. For a large VM with large vRAM and many vCPUs, the work done to select sampled

pages can be distributed among all vCPUs by having each vCPU be responsible for a portion of

the VM's memory space. Preselecting all sampled pages ensures that all pages are explored, thus

forcing the sampling rate to converge to its stable value before the VM even starts. As a result,

accurate MRC construction can be achieved early without having to rely on running

memory-intensive workloads. The following experiments were conducted to illustrate the

effectiveness of using the modified version to track a VM's working set size online. The working

set sizes estimated using tails of MRCs were compared with the working set sizes estimated by

the statistical sampling strategy of VMware ESX to detenrine which of the two techniques is

more effective in tracking the VM's working set size.

71

9.1 Experimental Setup

The host machine ran VMware ESXi 6.1.0 and was configured with 512GB RAM and 8

six-core 2.0 GHz AMD Opteron(tm) processors. The VM that ran on this host machine ran the

Ubuntu 14.04 operating system and was configured with 128GB vRAM and 48 vCPUs. The

sample set size used in MRC construction was 2048. In this case, the stable sampling rate was

approximately 2*2048*1/(128*1024) = 0.03125. Two previous workloads with different

memory demands were chosen to run on this VM. These two workloads were the serial workload

and the xml.validation workload of the SPECjvm2008, where the corresponding actual working

set sizes of the VM were known. The actual working set size that corresponded to the serial

workload was 92.8GB, as shown in Figure 37, and the actual working set size that corresponded

to the xml.validation workload was 44.2GB, as shown in Figure 28. Each workload was run

multiple times and after each run the VM was allowed to rest for 5 minutes.

9.2 Experimental Results

9.2. 1 First Workload (xml.validation)

Figure 45 shows the evolution of the two working set sizes, one estimated using the tail

of the MRC (MRC predicted WS) and the other one estimated by the statistical sampling strategy

of VMware ESX (ESX instantaneous WS). Notice that when the VM ran the xml.validation

workload, the working set size estimated using the tail of the MRC was much closer to the actual

working set size, 44.2GB, than the working set size estimated by the statistical sampling strategy

of VMware ESX. Furthermore, the working set size estimated using the tail of the MRC was also

more consistent and adapted more quickly to the changing workload.

72

1.

I
J-g.

U
I

Th (MminM)

Figum 45: Evoltnion of the working set sie estimated using the tail of the MRC
(MRC pvdicasd WS) and the working set sie eumaxed by the stadsucal sanpling
staegy of ESX (EMt WstaMsamow5 It) when the VM ran the xmivaltdetlon
workloed of the SPECjvm2008 benchmak.

9.2.2 Second Workload (serial)

Like Figure 45, Figure 46 shows the evolution of two working set sizes, one estimated

using the tail of the MRC (MRC predicted WS) and the other one estimated by the statistical

sampling strategy of VMware ESX (ESX instantaneous WS). Notice that when the VM ran the

serial workload, the working set size estimated by the statistical sampling strategy was nowhere

near the actual working set size, 92.8GB, obtained from the performance graph. The difference

between the two working set sizes was much greater for this workload than for the previous

workload, the xml.validation workload. On the other hand, the working set size estimated using

the tail of the MRC was much closer to the actual working set size. The estimated working set

size was also more consistent and adapted more quickly to the changing workload.

73

tI~ -~ WI
'mc ~ mfl ~ WI ~mpinv~ t V 44

Aws

------ - --- -------

...................... .

1200.

wow

a nlo

00

Tme (-iMM)

Figure 46: Evoluton of the working set size estimaed using the tail of the MRC
(MRCpvdited WS) and the working set size estimated by due statistiesi sampling
stategy of VMware ESX (EMK bunvswmour WS) when the VM ran the serial
workload ofthe SPECjvm2OOS beduna

The experimental results collected for both workloads, the xml.validation workload and

the serial workload, suggest that the modified version of the SHARDS technique can estimate a

VM's working set size with much better accuracy than the statistical sampling strategy currently

implemented inside VMware ESX. Therefore, MRCs are an effective tool that should be used

inside the memory scheduler of VMware ESX to track the working set sizes of VMs.

74

lIZ Swtmf WI
-^ sac wt Ws
-ActUAl WS comwp'a~ to %WW unloiad - fl *)#J

F

Bibliography

[1] Banerjee, Ishan et al. "Memory overcommitment in the ESX server." Vfware Technical
Journal 2 (2013).

[2] Waldspurger, Carl A. "Memory resource management in VMware ESX server." A CM
SIGOPS Operating Systems Review 36.Sl (2002): 181-194.

[3] Denning, Peter J. "The working set model for program behavior." Communications of the
ACM 11.5 (1968): 323-333.

[4] Zhao, Weiming et al. "Efficient LRU-based working set size tracking." Michigan
Technological University Computer Science Technical Report (2011).

[5] Zhou, Pin et al. "Dynamic tracking of page miss ratio curve for memory management."
AC.M SIGOPS Operating Systems Review 7 Oct. 2004: 177-188.

[6] Waldspurger, Carl A et al. "Efficient MRC construction with SHARDS." 13th USENIX
Conference on File and Storage Technologies (FAST 15) 16 Feb. 2015: 95-1 10.

[7] Mattson, Richard L. et al. "Evaluation techniques for storage hierarchies." IBM Systems

journal 9.2 (1970): 78-117.
[8] Denning, Peter J. "The locality principle." Communications of the A CM 48.7 (2005):

19-24.
[9] Waldspurger, Carl A. "Efficient MRC Construction with SHARDS." 13th USENX

ConAfrence on File and Storage Technologies (FAST 15). Santa Clara, CA, USA. 17 Feb.
2015. Conference Presentation.

75

