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Abstract

This dissertation defends causal decision theory and argues against its main
rival, evidential decision theory. In Chapter 1, I introduce a decision prob-
lem in which evidentialists end up predictably worse off, on average, than
causalists. This result is surprising since comparisons of average welfare have
traditionally been taken to support evidential decision theory and undermine
causal decision theory. In Chapter 2, Jack- Spencer and I give a new argument
for one of causal decision theory's distinctive recommendations: two-boxing in
Newcomb's problem. Unlike arguments based on causal dominance, our argu-
ment relies on a more basic principle connecting rational choice to guidance
and actual value maximization. In Chapter 3, I take up the issue of rational-
ization. Is it possible to manipulate the demands of rationality in predictable
ways? I argue that it is not. Then I show that if evidential decision theory is
true, rationalization is not only possible but sometimes advisable.

Thesis Supervisor: Roger White
Title: Professor of Philosophy
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Chapter 1

Equal Opportunity and
Newcomb's Problem

1.1 Welfare and Rationality

There is a difference between doing well because of the opportunities you have,
on the one hand, and doing well because of the decisions you make, on the
other. Consider:

Bluecomb. There is a transparent box and an opaque box. You
have two options: you can take just the opaque box (one-box) or
you can take both boxes (two-box). The transparent box contains
$1,000. The opaque box contains either $1,000,000 or nothing,
depending on a judgment made yesterday by a highly reliable ob-
server. The observer looked at you. If the observer judged that
you have blue eyes, the opaque box contains $1,000,000. If the
observer judged that you do not have blue eyes, the opaque box
contains nothing.

Two agents, Blue and Green, face Bluecomb once a month for many months
on end. Each month, blue-eyed Blue one-boxes and green-eyed Green two-
boxes. Month after month, Blue makes $1,000,000 while Green makes $1,000.
(Occasionally, when the observer misjudges, Blue makes nothing and Green
makes $1,001,000. But these occasions are few and far between.) In the long
run, Blue's bankroll dwarfs Green's.

Blue does well because of the opportunities Blue has and in spite of the
bad decisions Blue makes. Blue does well but could have done better, had
Blue not left behind $1,000 every month. Green does poorly because of the
opportunities Green lacks and in spite of the good decisions Green makes.
Green does poorly but could not have done any better than Green did. Green
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is poor but rational. Blue is irrational but rich. When the opportunities are
unevenly distributed, the link between welfare and rationality is compromised.

1.2 'Why ain'cha rich?'

The foregoing exposes the mistake in a common argument for one-boxing in
Newcomb's problem.1 The problem:

Newcomb. There is a transparent box and an opaque box. You have
two options: you can take just the opaque box or you can take both
boxes. The transparent box contains $1,000. The opaque box con-
tains either $1,000,000 or nothing, depending on a prediction made
yesterday by a highly reliable predictor. If the predictor predicted
that you would one-box, the opaque box contains $1,000,000. If
the predictor predicted that you would two-box, the opaque box
contains nothing.

Two agents, Eva and Casey, face Newcomb once a month for many months on
end.2 Each month, Eva one-boxes and Casey two-boxes. Month after month,
Eva makes $1,000,000 while Casey makes $1,000. (Occasionally, when the
predictor mispredicts, Eva makes nothing and Casey makes $1,001,000. But
these occasions are few and far between.) In the long run, Eva's bankroll
dwarfs Casey's.

Evidential decision theory commends Eva's decisions to one-box and con-
demns Casey's decisions to two-box.3 Causal decision theory commends
Casey's decisions and condemns Eva's. Many evidentialists appeal to the wel-
fare gap between Eva and Casey to argue that Eva's decisions are rational and
Casey's are irrational. 4 This is the so-called 'Why ain'cha rich?' argument for
one-boxing in Newcomb.

'This section expounds the standard causalist response to the 'Why ain'cha rich?' ar-
gument. The response is due to Gibbard and Harper (1978), endorsed by Lewis (1981b)
and Joyce (1999), and criticized by Ahmed (2014a). Newcomb's problem is introduced in
Nozick (1969).

2Throughout this essay, I consider agents facing decision problems repeatedly over a large
span of time. To forestall confusion, let it be understood that (i) the agent always believes
that she is making a one-off decision and (ii) the agent's memory of past decisions and their
outcomes is erased between rounds.

'Here and throughout, I assume for simplicity that the agent's values are linear in dollars.
Some authors try to reconcile evidential decision theory with two-boxing. See, for example,
Jeffrey (1965), Eells (1982), Price (1986) and Burgess (2004). For criticism of these attempts,
see Joyce (1999).

4For example, Ahmed says that the 'Why ain'cha rich?' argument 'seems to me to be
a strong argument for one-boxing in the standard Newcomb case' (Ahmed 2014a, p. 194).
Hare and Hedden (2016) appeal to a similar argument against causal decision theory based
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Sometimes the argument is put in terms of expected returns. Supposing
for concreteness that the predictor is believed to be 90% reliable, the expected
return on one-boxing is $900,000 while the expected return on two-boxing is
only $101,000. The argument then proceeds as follows:

(Al) In Newcomb, one-boxing uniquely maximizes expected return.

(A2) Choosing an option is rational if and only if the option maximizes ex-
pected return.

(A3) Therefore, in Newcomb, one-boxing is the uniquely rational option.

The problem with this way of putting the argument is that (A2) begs the
question against the causalist. The expected return on an option just is the
evidential expected value of the option. Hence, (A2) amounts to the claim
that rational decision-making is a matter of maximizing evidential expected
value-precisely what the causalist denies.

The argument is better framed as an inference to the best explanation. The
fact to be explained is that Eva does better than Casey in the long run, or,
more generally, that agents who follow the advice of evidential decision theory
in Newcomb are richer, on average, than agents who follow the advice of causal
decision theory.5 The best explanation of this fact, so the argument goes, is
that evidential decision theory gives rational advice and causal decision theory
does not.

Why Ain'cha Rich? (Newcomb)

(B1) In Newcomb, agents who follow the advice of evidential decision the-
ory are-richer, on average, than agents who follow the advice of causal
decision theory.

(B2) The best explanation of (B1) is that evidential decision theory gives
rational advice and causal decision theory gives irrational advice.

(B3) Therefore, in Newcomb, evidential decision theory gives rational advice
and causal decision theory gives irrational advice.

If sound, the argument spells the end of causal decision theory.
But the argument is not sound. Recall Bluecomb and suppose that agents

who one-box in Bluecomb tend to have blue eyes while agents who two-box

on a non-standard Newcomb case. My criticism of the standard argument applies to their
argument as well.

5 There is no need to empirically test this claim. Insofar as we are justified in believing
the description of Newcomb, we are justified in believing (B1).
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tend to have non-blue eyes. Consider two fictitious decision theories: the sane
theory and the insane theory. Let the sane theory advise two-boxing in Blue-
comb and let the insane theory advise one-boxing.6 We can now manufacture
a clearly unsound inference to the best explanation that mirrors Why Ain'cha
Rich? (Newcomb).

Why Ain'cha Rich? (Bluecomb)

(CI) In Bluecomb, agents who follow the advice of the insane theory are richer,
on average, than agents who follow the advice of the sane theory.

(C2) The best explanation of (Cl) is that the insane theory gives rational
advice and the sane theory gives irrational advice.

(C3) Therefore, in Bluecomb, the insane theory gives rational advice and the
sane theory gives irrational advice.

It is true that agents like Blue who follow the advice of the insane theory
are richer, on average, than agents like Green who follow the advice of the
sane theory. But the best explanation of this fact is not that the former
choose rationally and the latter choose irrationally. It is rather that agents
who follow the advice of the insane theory tend to have blue eyes while agents
who follow the advice of the sane theory tend not to, and blue-eyed agents
are frequently afforded the opportunity to win $1,000,000 while non-blue-eyed
agents are frequently denied that opportunity. (C2) is false.

Returning to Newcomb, suppose that the predictor's prediction is based on
a brain scan: the predictor predicts that the agent will one-box if and only if
the scan says that the agent has a certain neural property E. The predictor
is reliable because one-boxers tend to have E and two-boxers tend to lack E.

The mistake in Why Ain'cha Rich? (Newcomb) is now laid bare. It is
true that agents like Eva who follow the advice of evidential decision theory
are richer, on average, than agents like Casey who follow the advice of causal
decision theory. But the best explanation of this fact is not that the former
choose rationally and the latter choose irrationally. It is rather that agents
who follow the advice of evidential decision theory tend to have E, while agents
who follow the advice of causal decision theory tend to lack E, and those who
have E are frequently afforded the opportunity to win $1,000,000 while those
who lack E are frequently denied that opportunity. Like (C2), (B2) is false.

6The insane theory is not evidential decision theory. For someone who does not know
the eye color of the agent, one-boxing is evidence of blue eyes. But I assume that the agent
facing Bluecomb knows her own eye color. Such knowledge screens off the evidential impact
of her decision on her eye color. Hence, unlike the insane theory, evidential decision theory
correctly recommends two-boxing in Bluecomb.
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The predictor's policy of pre-rewarding E-bearers in Newcomb is analogous
to the observer's policy of pre-rewarding bearers of blue eyes in Bluecomb. In
both cases, the link between welfare and rationality is compromised by an
uneven distribution of opportunity.

1.3 Equal Opportunity

Let a WAR argument be an argument in the mold of those above: an inference
to the best explanation from a premise about the average welfare of agents to
a conclusion about the rationality of their decisions. The preceding may seem
to suggest that WAR arguments fail across the board-that there is just no
connection between doing well and deciding rationally. But that suggestion
should be resisted. There is a connection, even if it breaks on occasion. Con-
sider:

Coin Toss. A box contains either a $6,000 check or a $4,000 invoice.
The content of the box was determined by a distributor, who tossed
a fair coin. If the coin landed heads, the box contains the check. If
the coin landed tails, the box contains the invoice. You have two
options: you can buy the box for $3,000 or you can take it for free.

Two agents, Watson and Dudley, face Coin Toss once a month for many
months on end. Each month, Dudley buys the box and Watson takes it for
free. Dudley loses an average of $2,000 per month, winning $3,000 half of
the time and losing $7,000 the other half. Watson gains an average of $1,000
per month, winning $6,000 half of the time and losing $4,000 the other half.
Watson's savings steadily grow while Dudley's dwindle. As the years pass, the
welfare gap between Watson and Dudley widens.

Watson does well. Dudley does poorly. Crucially, the relative welfare of
the agents reflects the rationality of their decisions. Watson does well because
he chooses rationally and Dudley does poorly because he chooses irrationally.
We do not blame Dudley's poverty on an uneven distribution of opportunity
because there is no such distribution to blame. Unlike the policy of the ob-
server in Bluecomb or the policy of the predictor in Newcomb, the policy of the
distributor in Coin Toss is perfectly impartial. Dudley is afforded the oppor-
tunity to win $6,000 just as frequently as is Watson. But Dudley squanders
the opportunities while Watson seizes them. Dudley is poor and irrational.
Watson is rational and rich.

Coin Toss furnishes a sound WAR argument. Recall the sane theory and
the insane theory. Let the sane theory advise taking the box for free and let
the insane theory advise buying it.

13



Why Ain'cha Rich? (Coin Toss)

(D1) In Coin Toss, agents who follow the advice of the sane theory are richer,
on average, than agents who follow the advice of the insane theory.

(D2) The best explanation of (D1) is that the sane theory gives rational advice
and the insane theory gives irrational advice.

(D3) Therefore, in Coin Toss, the sane theory gives rational advice and the
insane theory gives irrational advice.

Unlike (B2) and (C2), (D2) is true. The best explanation of the success of
those who follow the advice of the sane theory is that they choose sanely.

It is no mystery why WAR (Coin Toss) succeeds but WAR (Bluecomb)
and WAR (Newcomb) fail. WAR arguments try to draw a conclusion about
the rationality of a decision from a premise about the welfare of agents who
make that decision. But how well an agent fares does not just depend on what
decision the agent makes. It also depends on the circumstance in which the
agent makes the decision.' And the circumstance in which the agent makes the
decision-being outside of the agent's control-plays no role in our evaluation
of the rationality of the decision. We do not blame people for being dealt
a bad hand, nor do we praise them for being dealt a good one. So if we
are to trust the conclusion of a WAR argument, we must be assured that the
measurements of welfare under comparison do not reflect systematic differences
in the circumstances in which the decisions were made. We must be assured,
in other words, that the agents whose welfare we are comparing were given an
equal opportunity to succeed. Coin Toss provides such assurance. Bluecomb
and Newcomb do not.

My aim in what follows is to present a problem that provides the requi-
site assurance while prising apart the advice of evidential and causal decision
theory. I will use the problem to give a new 'Why ain'cha rich?' argument.
Unlike the old argument, the new argument targets evidential decision theory.
And unlike the old argument, the new argument is sound.8

7By 'circumstance', I mean what Lewis meant by 'dependency hypothesis': 'a maximally
specific proposition about how the things [the agent] cares about do and do not depend
causally on [the agent's] present actions' (Lewis 1981, p. 11). As Lewis showed, the depen-
dency hypotheses for an agent are causally independent of the agent's present actions. In
other words, the agent has no control over which dependency hypothesis obtains.

8Arntzenius (2008) also gives a WAR argument against evidential decision theory. The
argument is ingenious but, as others have observed, subtly unsound. I discuss Arntzenius'
argument and its relation to mine in Appendix B.
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1.4 Interlude

By way of building up to the problem, I will begin with a similar, simpler
problem. 9

Viewcomb. The setup is the same as Newcomb, only now you can
look inside the opaque box before making your decision. However,
if you wish to make your decision straightaway, without first look-
ing in the box, you must pay a small fee. As before, the predictor
predicted only whether you will one-box or two-box.

From a causalist perspective, the difference between Viewcomb and Newcomb
is immaterial. In Viewcomb, the causalist simply looks inside the box and then,
no matter what she sees, takes both boxes, just as she would in Newcomb.

However, from an evidentialist perspective, the difference between View-
comb and Newcomb is significant. A reflective evidentialist reasons as follows:

Looking in the box brings bad news. For if I look then, no mat-
ter what I see, I will two-box.1 0 But if I two-box, the predictor
probably predicted as much, in which case I will see an empty box
and make only $1,000. On the other hand, paying the fee brings
good news. For if I pay then, not knowing what is inside the box,
I will one-box. And if I one-box, the predictor probably predicted
as much, in which case I will make $1,000,000. So I should pay the
fee.

In fact, the fee need not be small for the evidentialist to pay it. Supposing
that the predictor is believed to be 90% reliable, the evidentialist will pay up
to $799,000 to avoid looking in the box!"

Evidential decision theory's treatment of Viewcomb may raise some eye-
brows. But the problem does not furnish a sound WAR argument against
the theory. First, evidentialists are actually richer, on average, than causal-
ists, even though evidentialists pay the fee. So causalists cannot exploit the

9 Versions of the simpler problem are discussed in Gibbard and Harper (1978), Skyrms
(1990), Arntzenius (2008), Meacham (2010), Ahmed (2014a) and Hedden (2015b).

10Why? If the evidentialist sees that the box is empty, the evidential expected value of
one-boxing is 0 and that of two-boxing is 1,000. If she sees that the box is full, the evidential
expected value of one-boxing is 1,000,000 and that of two-boxing is 1,001,000. Either way,
evidential decision theory recommends two-boxing.

"This consequence dramatizes evidential decision theory's violation of Good (1967)'s
theorem, the claim that it is always rational to gather more evidence before making a
decision, provided that the cost of so doing is negligible. For more on violations of Good's
theorem, see Skyrms (1990), Buchak (2010), Buchak (2012) and Hedden (2015b).
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problem in a sound WAR argument against evidential decision theory. Can
anyone else? Consider the insane theorist, who looks in the box but never-
theless one-boxes thereafter. (This is insane behavior. Everyone agrees that
if you see, for example, that the opaque box is empty, you should not take
only the empty box. You should rather take the $1,000 too.) Insane theorists
are richer, on average, than evidentialists, since they reap the benefits of the
predictor's partiality without paying the fee. Still, they cannot exploit the
problem in a sound WAR argument against evidential decision theory. After
all, in Viewcomb as in Bluecomb, the best explanation of the insane theorists'
success is not that they choose rationally but rather that they are frequently
afforded golden opportunities. 1 2

Ruminating on the success of insane theorists in Viewcomb helps extinguish
any lingering sympathy for WAR (Newcomb). But if we seek a sound WAR
argument against evidential decision theory, we must look elsewhere.

1.5 The Problem

The problem I will present resembles Viewcomb in three respects.
First, it is a sequential problem: there are two stages at which the agent

must make a decision and the prospects of the options at the first stage depend
on what the agent believes she will do at the second stage. Second, the problem
involves evidence gathering. Specifically, the choice at the first -stage is a
choice of whether to gather evidence at no cost or to pay to keep the evidence
away. Third, the probabilistic relations in the problem are such that if the
evidentialist gathers the evidence then, no matter what she learns, evidential
decision theory will require her to make a decision that she antecedently hopes
she will not make. For this reason, the evidentialist pays to keep the evidence
away.

I will begin by describing the problem in words. Parts of the description
are tedious. Those parts are represented more perspicuously below, in figure
1-1.

Newcomb Coin Toss. The basic setup is the same as Coin Toss. A
box contains either a $6,000 check or a $4,000 invoice. The content
of the box was determined by a distributor, who tossed a fair coin.
If the coin landed heads, the box contains the check. If the coin

1
2 Reflective evidentialists are also frequently afforded golden opportunities in Viewcomb,

so it is not as if the insane theorists have a leg up in this respect. But I am inclined to
think that so long as some decision is disadvantaged, as is two-boxing in Viewcomb, no
conclusions about rationality can be drawn from facts about average welfare.
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landed tails, the box contains the invoice. You have two options:
you can buy the box for $3,000 or you can take it for free.

But there are some additional details involving a predictor and
a light. After the distributor determined the content of the box,
the predictor predicted whether you would buy the box. So there
are four possible cases. In the case in which the box contains the
check and the predictor predicted that you would take the box
for free, the predictor turned the light on. In the case in which
the box contains the invoice and the predictor predicted that you
would buy the box, the predictor turned the light off. In the other
two cases, the predictor tossed a fair coin, turning the light on if
the coin landed heads and off if it landed tails.

You can look at the light before deciding whether to buy the
box. However, if you wish to make your decision straightaway,
without first looking at the light, you must pay a fee of $2,000. So
your options at stage one are to look at the light or pay the fee.
And your options at stage two are to buy the box or take it for
free.

Turns light OFF.

Predictor
tosses coin.

Turns light ON.

Puts $4K invoice
in box. Predictor Pre

makes prediction. Turns light OFF.

Distributor
tosses coin.

Puts $6K check Predicts Turns light ON.

in box. Predictor Take
makes prediction. I

Turns light OFF.

Predictor
tosses coin.

Turns light ON.

Figure 1-1: The Newcomb Coin Toss protocol.

Notice that the content of the box is settled, once and for all, before the
predictor arrives on the scene. Moreover, the content of the box is determined
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entirely by the toss of a fair coin, just as it is in Coin Toss. So we can be
assured that everyone who faces the problem is given an equal opportunity to
succeed.

The remainder of this section draws out the consequences of evidential and
causal decision theory in Newcomb Coin Toss. The discussion is informal.
Those who wish to confirm the claims of this section may consult Appendix
A, wherein all of the relevant expected values are calculated.

Let us begin with evidential decision theory. Recall Eva, the one-boxer in
Newcomb. Let us assume that Eva is a reflective evidentialist in the following

sense: at each stage of the problem she follows the advice of evidential deci-

sion theory and, at stage one, she believes that she will follow the advice of

evidential decision theory at stage two. What does Eva do at stage one? Does

she pay the fee or save her money and look at the light?

What Eva does at stage one depends on what she believes that she will do
at stage two. Now, she knows that if she pays the fee, then at stage two she
will take the box for free. After all, at stage one, she prefers that she takes the
box for free at stage two, and she knows that if she pays the fee, her beliefs
and desires will not change in any relevant way between the two stages. But
what if she does not pay the fee? In that case, either she will learn that the
light is on or she will learn that it is off.

Suppose that she learns that the light is on. Then her epistemic perspective
on the outcome of the protocol is as pictured in figure 1-2. Let us assume
for simplicity that Eva believes the predictor to be perfectly reliable. (This
assumption is not essential to the problem, but it simplifies the presentation.
It is relaxed in Appendix A.) We can imagine Eva reasoning evidentially as

follows:

Buying the box brings great news: a certain $3,000 gain. After
all, buying the box signals that the predictor predicted as much,
and the only open possibility in which the predictor made that
prediction is one in which the box contains the check. Taking the
box for free brings worse news: a possible $4,000 loss. After all,
taking the box for free signals that the predictor predicted as much,
and there is an open (1/3 likely) possibility in which the predictor
made that prediction and put the invoice in the box. So I should
buy the box.

Hence, if Eva learns that the light is on, she buys the box.

Suppose, on the other hand, that Eva learns that the light is off. Then her
epistemic perspective on the outcome of the protocol is as pictured in figure

1-3. We can imagine Eva reasoning evidentially as follows:

18
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Predictor
tosses coin.

Turns light ON.

Puts $4K invoice
in box. Predictor Predicts

makes prediction. Buy

Distributor
tosses coin.

P Puts $6K check predicts Turns light ON.

in box. Predictor Take
makes prediction. 4

Predictor
tosses coin.

Turns light ON.

Figure 1-2: The agent's perspective on the Newcomb Coin Toss

protocol after learning that the light is on. Grayed out nodes rep-
resent eliminated possibilities.

Taking the box for free brings bad news: a certain $4,000 loss.
After all, taking the box for free signals that the predictor predicted
as much, and the only open possibility in which the predictor made
that prediction is one in which the box contains the invoice. Buying
the box brings better news: a possible $3,000 gain. After all,
buying the box signals that the predictor predicted as much, and
there is an open (1/3 likely) possibility in which the predictor made
that prediction and put the check in the box. So I should buy the
box.

Hence, if Eva learns that the light is off, she buys the box.

So if Eva does not pay the fee then, no matter what she learns about the
light, she buys the box at stage two. Moreover, being reflective, Eva is in a
position to know this about herself by reasoning in the way just described.

Since at stage one Eva prefers that she does not buy the box at stage two, she
believes that if she does not pay the fee, she will end up doing something that

she hopes she will not do. So she has reason to pay the fee. The upshot: Eva

pays $2,000 so that she will not fork over even more later.
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Turns light OFF.

Predictor
tosses coin.

Puts $4K invoice
in box. Predictor Predicts
rmakes prediction. 1 3uy Turns light OFF.

Distributor
tosses coin.

Puts $6K check Predicts
in box. Predictor Take
makes prediction.

Turns light OFF.

Predictor
tosses coin.

Figure 1-3: The agcnt's perspective on the Newconb Coin Toss

protocol after learning that the light is off.

Turn now to causal decision theory. Recall Casey, the two-boxer in New-

comb. Let us assume that Casey is a reflective causalist. What does Casey do

at stage one?
What Casey does at stage one depends on what she believes that she will

do at stage two. Like Eva, she knows that if she pays the fee, then at stage

two she will take the box for free. After all, at stage one, she prefers that she

takes the box for free at stage two, and she knows that if she pays the fee, her

beliefs and desires will not change in any relevant way between the two stages.
But what if she does not pay the fee? In that case, either she will learn that

the light is on or she will learn that it is off.

Suppose that Casey learns that the light is on. Then her epistemic per-

spective on the outcome of the protocol is as pictured in figure 1-2, and she

reasons causally as follows:

Since the light is on, the box probably contains the check. So

if I were to take the box for free, I would probably gain $6,000

(and possibly lose $4,000). But if I were to buy the box, I would
probably gain only $3,000 (and possibly lose $7,000). In any case,
no matter what the box contains, I do better saving my money

than giving it away. So I should take the box for free.
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Hence, if Casey learns that the light is on, she takes the box for free.
Now suppose that Casey learns that the light is off. Then her epistemic

perspective on the outcome of the protocol is as pictured in figure 1-3, and she
reasons causally as follows:

Since the light is off, the box probably contains the invoice. So
if I were to take the box for free, I would probably lose $4,000

(and possibly gain $6,000). But if I were to buy the box, I would
probably lose $7,000 (and possibly gain only $3,000). Again, no
matter what the box contains, I do better saving my money than
giving it away. So I should take the box for free.

Hence, if Casey learns that the light is off, she takes the box for free.
So if Casey does not pay the fee then, no matter what she learns about

the light, she takes the box for free at stage two. Moreover, being reflective,
Casey is in a position to know this about herself by reasoning in the way just
described. Since at stage one Casey prefers that she takes the box for free at
stage two, she believes that if she does not pay the fee, she will end up doing
exactly what she now hopes she will do. So she has no reason to pay the fee.
The upshot: at both stages, Casey keeps her money.

1.6 The Argument

Eva and Casey face Newcomb Coin Toss once a month for many months on
end. Each month, Eva pays the fee at stage one and takes the box for free at
stage two. Casey also takes the box for free at stage two, but she keeps her
money at stage one. Eva loses an average of $1,000 per month, winning $4,000
half of the time and losing $6,000 the other half. Casey gains an average of
$1,000 per month, winning $6,000 half of the time and losing $4,000 the other
half. Casey's savings steadily grow while Eva's dwindle. As the years pass,
the welfare gap between Eva and Casey widens.

Casey does well. Eva does poorly. Eva can anticipate all of this. We can
imagine her thinking, 'If only I was a causalist like Casey, I could save my
money at stage one and turn a profit in the long run. But I am not, so I
must pay up and absorb a loss'. Eva envies Casey much as Casey envies Eva
in Newcomb. The difference is that Casey's envy of Eva in Newcomb is like
Green's envy of Blue in Bluecomb. Green wishes that she was Blue so that
she could reap the benefits of the observer's partiality, but she does not wish
that she made decisions as Blue did. Likewise, in Newcomb, Casey wishes that
she was Eva so that she could reap the benefits of the predictor's partiality,
but she does not wish that she made decisions as Eva did. The situation is
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different in Newcomb Coin Toss, where Eva envies Casey precisely because of
the decisions Casey makes.

Our problem furnishes a new WAR argument.

Why Ain'cha Rich? (Newcomb Coin Toss)

(El) In Newcomb Coin Toss, reflective agents who follow the advice of causal

decision theory are richer, on average, than reflective agents who follow
the advice of evidential decision theory.

(E2) The best explanation of (El) is that causal decision theory gives rational
advice and evidential decision theory gives irrational advice.

(E3) Therefore, in Newcomb Coin Toss, causal decision theory gives rational

advice and evidential decision theory gives irrational advice.

I see no way out of the argument, so I say goodbye to evidential decision
theory.

1.7 Binding

Objection: Evidentialists lose money in Newcomb Coin Toss only if they lack

the ability to bind themselves to a sequence of decisions. For suppose that the

following option is available: do not pay the fee and then take the box for free.

That option maximizes evidential expected value. Of course, evidentialists
who take that option are just as well off, on average, as causalists, since they

make the same decisions at every stage. So if binding is an option, (El) is
false.

Reply: Distinguish two versions of Newcomb Coin Toss: a binding version
and a non-binding version. To make the binding version vivid, let us imagine
that the agent is to write her decisions at each stage on a card, give the card
to a proxy, and then watch from within a soundproof glass holding cell as the

proxy carries out the specified decisions for her. In the non-binding version,
there is no proxy; the agent must carry out the decisions herself. Moreover,
let us imagine that the agent has powerful evidence that at stage two she will
make what she then takes to be the rational decision. For reasons articulated

in Pollock (2002), a proposition represents an option for an agent only if the

agent is certain that she will make the proposition true if she tries.13 Hence,
in the non-binding version, do not pay the fee and then take the box for free

' 3 Does any proposition meet this requirement? If not, classical decision theory is in
trouble. But this problem is orthogonal to the debate between evidentialists and causalists,
so we need not settle it here. See Pollock (2002) for a possible solution.
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is not an option for the evidentialist, since she doubts that she will make it
true if she tries. Although the binding version of Newcomb Coin Toss does
not furnish a sound WAR argument against evidential decision theory, the
non-binding version does. And one sound argument against the theory is one
too many.

Rejoinder: I concede that evidentialists who lack the ability to bind them-
selves do poorly in Newcomb Coin Toss. But that is no mark against evidential
decision theory. It is rather just a dramatization of the fact that the ability to
bind oneself is sometimes a very helpful ability to have. This is the position
of Arntzenius et al. (2004) and it is codified in the following principle:

The Binding Principle. 14 If a decision theory has counterintu-
itive consequences that only arise for agents who lack the ability
to bind themselves, these consequences are not a mark against the
theory.

The Binding Principle suggests that (E2) is false: the best explanation of why
evidentialists do poorly in the non-binding version of Newcomb Coin Toss is
not that they make irrational decisions but rather that they lack the ability
to bind themselves.

Reply: The proposed explanation strikes me as deeply unsatisfactory. The
explanandum is not the claim that evidentialists do poorly. It is the com-
parative claim that evidentialists do worse than causalists. The explanans
should therefore make reference to a difference between the two groups: e.g.
evidentialists do worse because they, unlike causalists, lack the ability to bind
themselves. But in the non-binding version of the problem causalists also lack
the ability to bind themselves. Yet they still do better. It is implausible that
the difference in welfare between the two groups is explained by a property
that both groups have in common.

What of the Binding Principle? The principle is false. A decision problem
is identified in part with a set of available options. Binding-enabled agents
have different options available to them than do binding-disabled agents. So
to say that evidential decision theory has counterintuitive consequences that
only arise for binding-disabled agents is just to say that evidential decision
theory has counterintuitive consequences in some decision problems but not
others. Why should the fact that a theory lacks counterintuitive consequences
in one problem do anything to mitigate the counterintuitive consequences of
the theory in a different problem?

1 4This statement of the principle paraphrases Meacham (2010). My discussion of the
principle follows Meacham's closely. For related discussion of binding, see Hedden (2015b).
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That said, there is a more plausible principle in the vicinity of the Binding
Principle. Suppose that we are evaluating some decision theories by examin-
ing their consequences in a variety of decision problems. And suppose that
we identify a problem in which every theory under evaluation has the same
counterintuitive consequence. In that case, it may be unreasonable to hold
one theory in particular accountable. But this consideration, rather than mo-
tivating the Binding Principle, motivates only a weaker principle:

The Weak Binding Principle.1 5 If no decision theory can avoid
a given counterintuitive consequence without invoking binding op-
tions, then, for any particular decision theory, that consequence is
not a mark against the theory.

But the Weak Binding Principle cannot save evidential decision theory from
the threat of WAR (Newcomb Coin Toss). After all, there is a decision theory
that avoids the counterintuitive consequence of evidential decision theory in
Newcomb Coin Toss without invoking binding: namely, causal decision the-
ory.16

1.8 'Why ya poor?'

In 1981, at the height of Newcombmania, David Lewis reported that one-
boxers had taken to taunting two-boxers in a now-familiar refrain: 'If you're
so smart, why ain'cha rich?' Lewis, a staunch two-boxer, searched for a

15 This is the principle that Meacham (2010) calls 'Ought Implies Can (Binding)'.
16 Binding versions of Newcomb Coin Toss and Viewcomb highlight a separate worry for

evidential decision theory: the worry that the theory is not 'self-recommending' (Skyrms
(1982)). After all, if the agent is able to ensure that she follows the advice of causal decision
theory in Newcomb Coin Toss, evidential decision theory recommends that she do so. And
if the agent is able to ensure that she follows the advice of the insane theory in Viewcomb,
evidential decision theory recommends that she do so. Now, in some cases, failures of self-
recommendation are to be expected. For example, if an agent believes that she will become
irrational, lose information, or change her values, then it may make sense for her to ensure
that she does not follow the advice of her preferred theory. Similarly, Arntzenius et al.
(2004) describe cases involving infinite sequences of decisions in which it seems rational for
the agent to ensure that she does not behave rationally. The worry for evidential decision
theory is that neither Newcomb Coin Toss nor Viewcomb is anything like these problems.
In both, the agent faces a finite sequence of decisions. And in both, the agent believes
that she will remain rational, that she will not lose any information, and that her values
will remain unchanged throughout the sequence of decisions. Therefore, evidential decision
theory's failure of self-recommendation in these cases is anomalous.

17 See Lewis (1981b). The term 'Newcombmania' is from Levi (1982).
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riposte to his hecklers-a case in which the tables were turned-but came up
empty. He regretfully concluded that there was none to be had.' 8

Lewis would be happy to hear that his conclusion was premature. Armed
with Newcomb Coin Toss, causalists have a damning reply to their evidentialist
opponents: 'You may be rich when the game is fixed, but when it's fair, why
ya poor?'

1.9 Appendix A: Calculations

This appendix confirms the claims of 1.5. I associate an agent at a time with
a probability function P, representing the agent's rational degrees of belief at
the time, and a utility function u, representing the agent's non-instrumental
desires at the time. Let A = {A1, ... , A,} be a finite partition of propositions
representing the agent's options at the time. Let K = {K1, ... , Km} be a finite
partition of propositions representing the agent's possible circumstances (i.e.
dependency hypotheses). I assume that for each Aj E A and each Ki E C the
conjunction AjKi entails a unique outcome-the outcome that would result if
the agent were to choose option Aj in circumstance Ki-and that the set of
all such outcomes is the domain of u. The evidential expected value V of an
option Aj E A can now be defined as follows:

m
V(Aj) = P(Ki I Aj )u(Aj Ki).

i=1

Evidentialists do not define V in terms of circumstances or dependency hy-
potheses, since those concepts are explicitly causal. But, as Lewis (1981)
observes and Briggs (2010) proves, the evidentialist definition is equivalent to
the one above.

The causal expected value U of an option Aj E A is defined as follows:

m
U(Aj)= P(Kiu(AK).

18More carefully, Lewis concluded that the evidentialist can never be in the same position
that the causalist is in, when she faces Newcomb: namely, the position of being certain
at the time of decision that 'the irrational choice will, and the rational choice will not, be
richly pre-rewarded'. If the evidentialist is certain that the putatively irrational choice will
be richly pre-rewarded, then, by the design of evidential decision theory, that choice is the
evidentially rational choice after all. Put this way, Lewis' conclusion is not at odds with
the conclusion of this paper, since Newcomb Coin Toss is not a problem in which any one
choice is richly pre-rewarded.
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Some abbreviations will help streamline the presentation. Let F be the

proposition that the agent pays the fee at stage one. Let B be the proposition
that the agent buys the box at stage two. Let C be the proposition that the

check is in the box. Let L be the proposition that the light is on. Let q
be the proposition that B was predicted. I will assume that learning goes by
conditionalization and that the predictor is believed to be 99% reliable.

Claim 1. After Eva learns that the light is on, her evidential expected

value of buying the box exceeds her evidential expected of taking it for free.

Proof: Let P be Eva's probability function at stage one, before she sees

the light. Let VL be Eva's evidential expected value function after she sees the

light and learns L. Then we have:

VL(B) = P(C | BL)(3000) - P(C | BL)(7000).

VL(B) = P(C | BL)(6000) - P(C | BL)(4000).

Next we calculate the probabilities.

Subclaim 1.1: P(C I BL) = .99. Proof: By the law of total conditional

probability (hereafter, TCP),

P(C I BL) = P(C I BL-)P( I BL) + P(C I BL9)P(g I BL).

By the description of the problem, P(C I BL-) = 1 and P(C I BL) = .67.
By the definition of conditional probability (hereafter, CP) and algebra,

I BL) = P(L | B)
P(L I B)

By TCP and the description of the problem,

P(4L | B) = P(9L I B )P(4 I B) + P(Y4L I Bg)P(g | B)

= (.25)(.99) + (0)(.01) = .2475.

P(L | B) =P(L I BV)P(I B)+P(L I B9)P(9j B)

= (.25)(.99) + (.75)(.01) = .255.

Hence, P(4 \ BL) = -2 = .97. Substituting values,

P(C I BL) = (1)(.97) + (.67)(.03) = .99.

Subclaim 1.2: P(C I RL) = .67. Proof: By TCP,
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P(C I BL) = P(C I BL-)P( I BL) + P(C | BL-)P(, | BL).

By the description of the problem, P(C I BL-4) = 1 and P(C I BL4) = .67.
By CP and algebra,

P (4 I _L ) = B.) .
P(L|B)

By TCP and the description of the problem,

P(L B) = P(,L I B2)P(q B9) + P(L I B9)P(Qg B)

= (.25)(.01) + (0)(.99) = .0025.

P(L B) =P(L I I )P( R|) + P(L I Rg)P(j B R)

= (.25)(.01) + (.75)(.99) = .745.

Hence, P(4 I BL) -00 = .003. Substituting values,

P(C I BL) = (1)(.003) + (.67)(.997) = .67.

Plugging in the probabilities:

VL(B) = (.99)(3000) - (.01)(7000) = 2900.

VL() =(.67)(6000) - (.33)(4000) = 2700.

Hence, VL(B) > VL(-). 0
Claim 2. After Eva learns that the light is off, her evidential expected

value of buying the box exceeds her evidential expected value of taking it for
free.

Proof: Eva's evidential expected values after learning L are:

VT(B) = P(C | BL)(3000) - P(C BL)(7000).

VL(R) = P(C I BL)(6000) - P(C BL)(4000).

The proof proceeds as before.
Subclaim 2.1: P(C I BL) = .33. Proof: By TCP,

P(C I BL) = P(C I BL 4)P(V I BL) + P(C I B19)P( I BL).

By the description of the problem, P(C I BLA) = .33 and P(C I BL-) = 0.
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By CP and algebra,

P(, I BL) = P(9L I B)
P(L I B)

By TCP and the description of the problem,

P(VL I B) = P(4L I B-)P(, I B) + P(VL | B9)P(| B)

= (.75)(.99) + (0)(.01) = .7425.

P(L | B) = P(L I Bq)P(I | B) + P(L I B-)P(I | B)

= (.75)(.99) + (.25)(.01) = .745.

Hence, P( I BL) = 7 = .997. Substituting values,

P(C I BL) = (.33)(.997) + (0)(.003) = .33.

Subclaim 2.2: P(C
the problem,

I BL) = .01. Proof: By TCP and the description of

P(C I BL) = P(C

= P(C

| HLM)P(| I
| LM)P(,q |

BL) + P(C I RL9)P( I BEL)

BL).

By CP and algebra,

P(I f*) = .L)
P(L I B)

By TCP and the description of the problem,

P(qL R B) = P(qL I B-)P(q I R) + P(VL I B4)P(4 R B)

= (.75)(.01) + (0)(.99) = .0075.

P(L | B) =P(L I B-)P(-| I) + P(L I B-)P I B)

= (.75)(.01) + (.25)(.99) = .255.

Hence, P(, I BL) = .0075 .03. Substituting values, P(C I BL) =

(.33)(.03) = .01.

Plugging in the probabilities:
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VT,(B) = (.33)(3000) - (.67)(7000) = -3700.

VL(B) = (.01)(6000) - (.99)(4000) = -3900.

Hence, VL(B) > V(). E
Claim 3. Before seeing the light, Eva prefers that she takes the box for

free at stage two.

Proof: Note that P(C I B) = P(C j B) .5. After all, by TCP and the
description of the problem,

P(C I B) = P(C B-)P(-q B) + P(C I B9)P(9 I B)

= (.5)(.99) + (.5)(.01) = .5.

Analogous reasoning shows that P(C I B) = .5 as well. Then we have:

V(B) = P(C I B)(3000) - P(C I B)(7000)

(.5)(3000) - (.5)(7000) = -2000.

V(B) = P(C 1B)(6000) - P(U | B)(4000)

= (.5)(6000) - (.5)(4000) = 1000.

Hence, V(B) > V(B). U
Claim 4. At stage one, Eva's evidential expected value of paying the fee

exceeds her evidential expected value of not paying the fee.
Proof: Since Eva is reflective, she knows that she will buy the box at

stage two if and only if she does not pay the fee at stage one. And she knows
that she will take the box for free if and only if she pays the fee. Hence,
P(C I F) = P(C I B) and P(C I F) = P(C I B). We already showed that
P(C I B) P(C I B) = .5. Hence, P(C I F) = P(C I F) = .5. So we have:

V(F) = P(C I F)(4000) - P(C I F) (6000)

= (.5)(4000) - (.5)(6000) = -1000.

V(F) = P(C I F)(3000) - P(C I F)(7000)

= (.5)(3000) - (.5)(7000) = -2000.

Hence, V(F) > V(F). E
Claim 5. After Casey learns that the light is on, her causal expected value

of taking the box for free exceeds her causal expected value of buying the box.

Proof: Let P be Casey's probability function at stage one, before she sees
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the light. Let UL be Casey's causal expected value function after she sees the
light and learns L. Then we have:

UL(B) = P(C I L)(3000) - P(U I L)(7000).

UL(B) = P(C | L)(6000) - P(C L)(4000).

It is straightforward to see that, given any probability function, UL(B) exceeds

UL(B) by exactly 3,000. Let P(C I L) = x. Then we have:

UL (B) = 3000x - (1 - x)(7000)

= 10000x - 7000.

UL(B) = 6000x - (1 - x)(4000)

= 10000x - 4000.

Hence, UL(R) > UL(B). U
Claim 6. After Casey learns that the light is off, her causal expected value

of taking the box for free exceeds her causal expected value of buying the box.

Proof: Let Ul be Casey's causal expected value function after she sees the
light and learns L. Then we have:

UL(B) = P(C L)(3000) - P(C I L)(7000).

UL(B) = P(C | L)(6000) - P(C \ L)(4000).

As before, UL(B) exceeds UL(B) by 3,000, given any probability function. N
Claim 7. At stage one, Casey prefers that at stage two she takes the box

for free.
Proof: By the description of the case, P(C) = .5. The causal expected

values follow straightforwardly:

U(B) = P(C)(3000) - P(C)(7000)

= (.5)(3000) - (.5)(7000) = -2000.

U(B) = P(C)(6000) - P(C)(4000)

= (.5)(6000) - (.5)(4000) = 1000.

Hence, U(B) > U(B). E
Claim 8. At stage one, Casey's causal expected value of not paying the

fee exceeds her causal expected value of paying the fee.

Proof: Since Casey is reflective, she knows that she will take the box for

free at stage two no matter what she does at stage one. Hence,
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U(F) = P(C)(4000) - P(C)(6000)

= (.5)(4000) - (.5)(6000) = -1000.

U(F) = P(C)(6000) - P(C)(4000)
= (.5)(6000) - (.5)(4000) = 1000.

Hence, U(F) > U(F). E

1.10 Appendix B: Arntzenius

Arntzenius (2008) poses a problem in which, he claims, causalists are richer,
on average, than evidentialists. Here is his problem:

Red Sox vs Yankees. The Red Sox and Yankees will play each other
in a long series of games. The Yankees win 90% of such games.
Before each game, you will be offered two bets, of which you must
pick exactly one: you can either bet on the Yankees at 1:2 odds
(risk $2 to win $1) or bet on the Red Sox at 2:1 odds (risk $1 to
win $2). However, before placing your bet, a perfect predictor of
your decisions and the outcomes of the games will tell you whether
you will win or lose your bet.

Consider an agent facing Red Sox vs Yankees. Let P be her probability func-
tion before the series begins and let u be her utility function at that time.
Consider some arbitrary game in the series and let 0' be the proposition
that the Yankees win that game. Let Y be the proposition that the agent
bets on the Yankees. Let W be the proposition that the agent wins her bet:
W = (Yg v Y3 ).

Let Vw be the agent's evidential expected value function after learning W.
Then we have:

Vw(Y) = P(3Y YW)u(Yg) + P(F~I YW)u(Y)
= (1)(1) + (0)(-2) = 1.

Vw (Y) = P(3( | YW) u(YW ) + P( | YW) u(Y)

= (0) (- 1) + (1) (2) = 2.

Since Vw(W) > Vw(Y), evidential decision theory advises betting on the Red
Sox.
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Let VW be the agent's evidential expected value function after learning W.
Then we have:

VW(Y) = P(3I YW)u(Yg) + P(I YW)u(Y?)

= (0)(1) + (1)(-2) = -2.

Vw(Y) = P(J IYW)u(Yg ) + P(g | YW)u(Yg)

= (1)(-1) + (0)(2) = -1.

Since V (Y) > V (Y), evidential decision theory advises betting on the Red
Sox. Hence, evidential decision theory always advises betting on the Red Sox.
But, by hypothesis, the Yankees win 90% of the games. So it seems that agents
who follow the advice of evidential decision theory lose $1 90% of the time and
win $2 10% of the time, for an average loss of 70 per game.

Turn now to causal decision theory. Arntzenius says that causal deci-
sion theory always advises betting on the Yankees. That it does depends, as
Arntzenius acknowledges in a footnote, on the assumption that the agent has
no beliefs about which bet she will make. I will return to this assumption
shortly. For now, let us take it on board.

Let U be the agent's causal expected value function after receiving the
predictor's information. On its own, the information provided by the predictor
is evidentially irrelevant to the outcome of the game. So we have:

U(Y) = P(9')u(Y3) + P(F)u(Y/)

= (.9)(1) + (.1)(-2) = .7.

U(Y) = P(O)u(YW) + P(O)u(Ye)

= (.9)(-1) + (.1)(2) = -. 7.

Since U(Y) > U(Y), causal decision theory always advises betting on the
Yankees. And since the Yankees win 90% of the games, agents who follow the
advice of causal decision theory gain $1 90% of the time and lose $2 10% of
the time, for an average gain of 70 per game. So Yankees vs Red Sox seems
to furnish a WAR argument against evidential decision theory.

Why Ain'cha Rich? (Red Sox vs Yankees)

(Fl) In Red Sox vs Yankees, agents who follow the advice of causal decision
theory are richer, on average, than agents who follow the advice of evi-
dential decision theory.

(F2) The best explanation of (Fl) is that causal decision theory gives rational

advice and evidential decision theory gives irrational advice.
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(F3) Therefore, in Red Sox vs Yankees, causal decision theory gives rational
advice and evidential decision theory gives irrational advice.

However, as Ahmed and Price (2012), Ahmed (2014a) and Hare and Hed-
den (2016) have shown, the argument breaks down on closer examination.
The advice of evidential decision theory depends on the epistemic perspective
of the agent being advised. There are two possible perspectives: that of the
agent before receiving the predictor's information and that of the agent after
receiving the information. Ex ante, the agent expects betting on the Red Sox
to fare worse than betting on the Yankees, but evidential decision theory does
not advise betting on the Red Sox. The theory only gives such advice once
the agent receives the predictor's information. Ex post, evidential decision
theory advises betting on the Red Sox, but the agent expects betting on the
Red Sox to fare better than betting on the Yankees. After all, among those
who learn that they will win their bet, those who bet on the Red Sox always
gain $2 while those who bet on the Yankees always gain $1, and among those
who learn that they will lose their bet, those who bet on the Red Sox always
lose $1 while those who bet on the Yankees always lose $2. Either way, then,
(Fl) is false. The premise only appears to be true if we illicitly assume both
perspectives at the same time.

We might try to revive Arntzenius' argument by modifying Red Sox vs
Yankees so that it more closely resembles Newcomb Coin Toss.

Red Sox vs Yankees (Fee Version). Everything is the same as in
Red Sox vs Yankees, only now you can pay a small fee before the
series begins to silence the predictor for the duration of the series.

Consider Eva, the reflective evidentialist. Eva pays the fee and then bets on
the Yankees every game. After all, before the series begins, she expects that
if she eschews the fee she will always bet on the Red Sox, losing an average of
700 per game, while if she pays it she will always bet on the Yankees, gaining
an average of 700 per game. The one-time fee is a small price to pay to replace
a future of failure with a future of success.

Now consider Casey, the reflective causalist. If Casey could anticipate
always betting on the Yankees, even in the event that she eschews the fee,
she would eschew the fee. And if she did, a version of Arntzenius' argument
(focused on the ex ante perspective of a reflective agent) would be revived.
But, being reflective, Casey cannot anticipate always betting on the Yankees.

Proof: Suppose that Casey eschews the fee. Then there is a possibility in
which she learns that she will lose her bet. Let Uw be Casey's causal expected
value function after learning W. Suppose, for reductio, that UW(Y) > UW(Y).
It is straightforward that Uw(Y) > UW(Y) if and only if P(3( I W) > 2/3.
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Hence, P(W I W) > 2/3. Now, Casey's beliefs about the outcome of the
game are related to her beliefs about which bet she will take by the following
equation:

PpW W) = P(Y I WY)P(Y I W)+ P(g I WY)P(Y I W)

= (O)P(Y I W) + (1)P(Y I W)
= 1 - P(Y|W).

Hence, P(9 I W) > 2/3 if and only if P(Y I W) < 1/3. Hence, P(Y I
W) < 1/3. But Casey is reflective: she believes that she will choose the option
that maximizes causal expected value-which, by hypothesis, is betting on
the Yankees. So P(Y I W) is high, for a contradiction. Discharging the
assumption, UV(Y) 4 UV(Y). N

So if Casey eschews the fee, she does not always bet on the Yankees. 19

Moreover, being reflective, Casey is in a position to know this about herself
by reasoning in the way just described. So she pays the fee to ensure that she
will always bet on the Yankees. And she ends up no better off than Eva.

The reason that Arntzenius' argument cannot be made to work is that,
after the agent learns that her bet will lose, causal decision theory gives dif-
ferent advice depending on the agent's beliefs about which bet she will make.
The same problem does not arise in Newcomb Coin Toss. As we saw in Ap-
pendix A, causal decision theory advises taking the box for free no matter
what probability function the agent has after learning about the light. So the
assumption that the agent is a reflective causalist is in perfect harmony with
the claim that causal decision theory always advises taking the box for free.

"Does that mean that Casey sometimes bets on the Red Sox? Not necessarily. After
Casey learns that she will lose her bet, the advice of causal decision theory becomes unstable,
much as it does in Gibbard and Harper (1978)'s famous Death in Damascus problem: if
Casey believes that she will bet on the Yankees, causal decision theory advises betting on
the Red Sox; and if she believes that she will bet on the Red Sox, causal decision theory
advises betting on the Yankees. Perhaps, then, Casey should expect that if she eschews the
fee, she will sometimes perpetually oscillate between betting on the Yankees and betting on
the Red Sox. No such instability arises in Newcomb Coin Toss because taking the box for
free dominates buying the box.
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Chapter 2

Why Take Both Boxes?

2.1 Introduction

In the classic Newcomb problem, there is an agent, a transparent box, an
opaque box, and a predictor, known by the agent to be uncannily good: 1

Classic Newcomb. The agent has two options: she can take either
only the opaque box or both boxes. The transparent box contains
$1,000. The opaque box contains either $1,000,000 or nothing,
depending on a prediction made yesterday by the predictor. If
the predictor predicted that the agent would take both boxes, the
opaque box contains nothing. If the predictor predicted that the
agent would take only the opaque box, the opaque box contains
$1,000,000. The agent knows all of this.

One-boxing is the claim that the agent facing Classic Newcomb is rationally
required to take only the opaque box. Two-boxing is the claim that the agent
is rationally required to take both boxes. In this paper, we fortify the case for
two-boxing.

Fortification is needed because the standard argument for two-boxing-
a causal dominance argument-fails. The crucial premise of the standard
argument is a causal dominance principle that prohibits choosing causally
dominated options. The argument fails because the principle is false. As the
examples that we present below establish, it is sometimes rationally permissible
to choose a causally dominated option.

After presenting counterexamples to the causal dominance principle, we
offer a metaethical explanation for why the counterexamples arise. The expla-
nation reveals a new and superior argument for two-boxing, one that eschews

This chapter is co-authored with Jack Spencer. Section titles are my own.
'First discussed by Nozick (1969).
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the causal dominance principle in favor of a principle linking rational choice
to guidance and actual value maximization.

2.2 Actual Value

The actual value of an option (sometimes called the value, utility, or actual
utility of the option) is the value of the outcome that would result if the agent

were to choose the option. For example, imagine that there are several boxes,
each containing a sum of money. The agent is to choose one of the boxes.
The outcome that would result if the agent were to choose a particular box is

the agent receiving the sum of money contained therein. If money is all that
matters, and more money is linearly better, then the actual value of choosing
the box can be identified with the number of dollars contained therein.

The main task of decision theory is to identify the options, among those

available to the agent, that the agent is rationally permitted to choose. The
task is easy when the agent knows the actual values of her options, for then an

option is rationally permissible to choose if and only if the option maximizes

actual value.2 The task is more interesting and more difficult when the agent

does not know the actual values of her options.

2.3 Two Rules of Rational Choice

Following Savage and Jeffrey,3 many decision theorists believe that an option is
rationally permissible for an agent to choose if and only if the option maximizes
expected value, where the expected value of an option is the agent's expectation
of the actual value of the option.4 There are many well-defined expected
value quantities and there is considerable disagreement about which of them,
if any, is tied to rational choice. We will focus on two: causal expected value
(hereafter c-expected value) and evidential expected value (hereafter e-expected
value). Both can be defined in a common conceptual framework, which centers
on the concept of a decision problem.

A decision problem is characterized by a set of options, a set of possible
outcomes, and a decision-making agent. The options A = {A 1 , A 2 , .. . , A4} are
the things the agent is choosing between. We take options to be propositions

2 Cf. Ramsey (1990 [1926], p. 70): "Let us begin by supposing that our subject has no
doubts about anything, but certain opinions about all propositions. Then we can say that
he will always choose the course of action which will lead in his opinion to the greatest sum
of good."

3Savage (1954), Jeffrey (1965).
4See note 9.
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that the agent can make true by choosing.5 We assume that options are finite
in number, mutually exclusive, and jointly exhaustive. The possible outcomes

o = {01, 02,..., Om} are the objects of non-instrumental desire. We take
outcomes to be propositions that fully specify the desirable and undesirable
consequences that might result from the choice. Like options, outcomes are
assumed to be finite in number, mutually exclusive, and jointly exhaustive.
We associate the agent both with a credence function C and with a valuation
function V. The credence function, a probabilistically coherent function that
maps propositions to the unit interval, represents the agent's beliefs. The
agent's credence in P, C(P), is the degree to which the agent believes that P.
The valuation function, which maps outcomes to real numbers, represents the
agent's desires.' The value of outcome 0, V(O), is the degree to which the
agent finds 0 non-instrumentally desirable.

Given this conception of a decision problem, the e-expected value of an
option A E- A can be written as a credence-weighted sum, wherein the relevant
credences are conditional on the option in question:

eev(A) = 10 C(O I A)V(O).

The rule of e-expected value states that agents are always rationally required
to choose so as to maximize e-expected value.

Let 'a-+' be the non-backtracking counterfactual conditional. If we assume
that, for each option, there is a fact of the matter about which outcome would
result if the agent were to choose the option, 7 then the c-expected value of
an option can be written as a credence-weighted sum, wherein the relevant

5We follow Jeffrey (1965) and take options to be among the propositions to which the
agent assigns credences. Some philosophers are skeptical of assigning credences to options,
since they think that deliberation crowds out prediction. See, among others, Spohn (1977)
and Levi (1997). We are convinced by the arguments in Joyce (2002), Rabinowicz (2002)
and HAjek (2016) that deliberation does not crowd out prediction.

For reasons discussed in, among other places, Hedden (2015a) and Pollock (2002), an
agent must be certain that she will choose an option if she decides to do so. We therefore
identify options and decisions. Each option, besides the null decision, is a proposition of the
form: S decides to 0.

6 The valuation function is unique up to positive affine transformation.
7This assumption is tantamount to counterfactual excluded middle. For a discussion

of causal decision theory without counterfactual excluded middle, see, for example, Lewis
(1981), Sobel (1994, p. 141-73) and Joyce (1999).
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credences are unconditional credences in counterfactual conditionals :8

cev(A) = (O C(A E-+ O)V(O).

The rule of c-expected value states that agents are always rationally required
to choose so as to maximize c-expected value.9

It is generally agreed that, in Classic Newcomb, the rule of e-expected value
entails one-boxing, 10 and the rule of c-expected value entails two-boxing.1 1

But appealing to the rule of e-expected value or the rule of c-expected value
cannot settle the debate between one-boxers and two-boxers, for, as you might

8See, for example, Gibbard and Harper (1978) and Stalnaker (1981). Some philosophers
are suspicious of assigning probabilities to counterfactuals. (Thanks to an anonymous referee
here.) For the purposes of this paper, alternative characterizations of c-expected work
equally. We could define c-expected value using expected chance, as Skyrms (1984) does,
or using dependency hypotheses, as Lewis (1981) does, or using the epistemic (as opposed
to stochastic) probabilities of Kyburg (1980).

9So long as every option has an actual value (see note 15), both e-expected value and
c-expected value can be defined as expectations of actual value. An av(A)-level proposition
has the form [av(A) = v], and is true just if v is the actual value of A. The e-expected
value of an option is the agent's conditional expectation of the actual value of the option
and can be written EZ vC([av(A) = v] I A). The c-expected value of an option is the
agent's unconditional expectation of the actual value of the option and can be written

E vC([av(A) = v]).
10Let A1B be the option of taking only the opaque box. Let A2B be the option of taking

both boxes. Conditional on A1B, the agent is highly confident that the opaque box contains
$1,000,000, so, equating dollars and units of value, eev(AlB) - 1, 000, 000. Conditional on
A2B, the agent is highly confident that the opaque box contains $0, so eev(A2B) ~ 1, 000.
Since eev(A1B) > eev(A2B), the rule of e-expected value entails one-boxing.

"1Let Oo, OT, OM, and OM+T be the outcomes of receiving $0, $1, 000, $1, 000, 000, and
$1, 001, 000, respectively. The agent knows that either 00 or OM will result if she takes only
the opaque box and that either OT or OM+T will result if she takes both boxes. Moreover,
she knows that her choice has no causal bearing on what sum of money is contained in the
opaque box, so C([AlB [-+ Oo]) = C([A2B O+ OT]) and C([A1B E-+ OM]) = C([A 2B Db4

OM+T]). Hence, no matter what credence function she has, the c-expected value of taking
both boxes is exactly 1,000 greater than the c-expected value of taking only the opaque box:

cev(A 2 B) = 1 0 C([A 2 E-+ O])V(O)

= C([A2B 0-+ OT]V(OT) + C([A 2B D-+ OM+T])V(OM+T)

= (1 - C([A 2B Eh- OM+TI))(1, 000) + C [A2B 5-4+ OM+T])(1, 001, 000)
= 1, 000 + C([A2B [-+ OM+T])(1, 000, 000)
= 1, 000 + C([A1B E-+ Oo)(0) + C([AlB 5+ OM])(1, 000, 000)

= 1, 000 + EO C([AiB [-+ 0])V(0)

= 1, 000 + cev(AlB).
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suspect, one-boxers typically reject the rule of c-expected value, and two-
boxers typically reject the rule of e-expected value." To move the debate
forward, we need an independent argument, one that nowhere appeals to an
expected value quantity.

Many two-boxers believe that they have an independent argument: namely,
a causal dominance argument.1 3

2.4 Causal Dominance

A natural way to argue for two-boxing is by disjunctive syllogism. We can
imagine running through the argument from the agent's point of view:

The opaque box contains either $1,000,000 or nothing. If it con-
tains $1,000,000, then both boxes together contain $1,001,000, and
hence I would make more money if I took both boxes. If it con-
tains nothing, then both boxes together contain $1,000, and hence
I would make more money if I took both boxes. Either way, I
would make more money if I took both boxes. So I should take
both boxes.

This argument, although unregimented, seems compelling and nowhere invokes
an expected value quantity.

A preliminary attempt to regiment the argument appeals to states and

(strict) dominance. A set of propositions S = {S,, S2 , ... , S,} is a set of states
if its members are mutually exclusive and jointly exhaustive, and each S E S
is compossible with each A E A. Let AS be the conjunction of option A and
state S. If the options and states are sufficiently fine-grained (and let us choose
them so that they are), then every AS necessitates a unique outcome. If AS
necessitates 0, we set V(AS) equal to V(O). Option Ai dominates option Aj,
then, if and only if there is a set of states S such that, for every S E S, V(AiS)
exceeds V(AjS).

One might allege the following connection between dominance and rational
choice:

Dominance: If option Ai dominates option Aj, then it is not
rationally permissible for the agent to choose Aj.

1
2 Heterodoxically, Eells (1982) argues that the rule of e-expected value entails two-boxing,

and Spohn (2012) argues that the rule of c-expected value entails one-boxing.
1
3 See, for example, Joyce (1999, p. 152-54), Lewis (1981, p. 309-12), Skyrms (1984, p.

67) and Sobel (1994).
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But it is common ground between one-boxers and two-boxers that Dominance

is false. It is sometimes rationally permissible to choose dominated options,
as cases like the following make vivid:14

The Extortionist. A moviegoer parks her car in the lot. An extor-
tionist, who the moviegoer has excellent reason to trust, says to the

moviegoer, "If you pay me $10, I'll ensure that your windshield is

unbroken when you return. But I'll smash your windshield if you
don't pay me."

Let the set of states be {SB, Sg}, where SB is the proposition that the wind-

shield is broken when the moviegoer returns and Sg is the proposition that

the windshield is not broken when the moviegoer returns. Let Ap be the

option of paying the extortionist and let A5 be the option of not paying.

V(ApSg) > V(ApSU), since it would be better by the moviegoer's lights not

to pay the extortionist and return to an unbroken windshield than to pay the

extortionist and return to an unbroken windshield. V(Ap;SB) > V(APSB),
since it would better by the moviegoer's lights not to pay the extortionist and

return to a broken windshield than to pay the extortionist and return to a

broken windshield. Dominance therefore entails that the agent is rationally

required to not pay the extortionist-which is absurd. The moviegoer is ratio-

nally required to pay the extortionist: paying $10 is much better than paying

$1,000 for a new windshield.
A bit of reflection reveals why Dominance fails. Reasoning by Dominance

is supposed to put the agent in a position to conclude a fact about the ordinal

ranking of options vis-h-vis actual value. The disjunctive syllogism mentioned

at the outset of this section, for example, is supposed to put the agent in a

position to conclude that the actual value of taking both boxes exceeds the

actual value of taking only the opaque box. But actual value does not respect
dominance: the fact that Ai dominates A3 does not entail that the actual

value of Ai exceeds the actual value of A,. Since we are assuming that, for

each option, there is a fact of the matter about which outcome would result

if the agent were to choose the option, we can characterize actual value as a

sum. Where T is an indicator function that assigns one to truths and zero to

falsehoods, the actual value of an option, av(A), can be written:

av(A) = ZO T(A a-+ O)V(O).

Given our assumptions, there is exactly one 0 E 0 for which [A [1-+ 0] is
true. If [A ri-+ 0] is true, then 0 is the outcome that would result if the agent

4 An adaptation of an example from Joyce (1999, p. 114-19). Jeffrey (1965, p. 9-10) uses
the example of nuclear disarmament.
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were to choose A, and hence av(A) equals V(O). 5 Let S@ be the state that
actually obtains. The fact that Ai dominates Aj entails that V(AiS@) exceeds
V(AjS@). It might be tempting to identify the actual values of Ai and Aj with
V(AjSq) and V(AjS@), respectively. But that temptation must be resisted.
The actual value of A is equal to V(AS) only if S would have obtained had
the agent chosen A. If the agent chooses Aj, then the actual value of Ai is
equal to V(AjSa). But the actual value of an unchosen option Aj need not be
equal to V(AjS@).

To illustrate, return to The Extortionist, and suppose that the extortionist
is trustworthy. The moviegoer irrationally chooses to not pay the extortionist
and returns to a broken windshield. SB is true, and the actual value of not
paying is equal to V(A5SB). V(ApSB) exceeds V(ApSB), of course, since not
paying dominates paying. But the actual value of paying is not V(ApSB);
rather, the actual value is V(ApSR), since the outcome that would result if
the agent were to pay the extortionist is that she would have $10 fewer and
an unbroken windshield. Moreover, V(ApSR) exceeds V(ApSB).

But, importantly, while actual value does not respect dominance, it does
respect causal dominance. A state is causally act-independent for an agent if
and only if the agent knows that she has no causal influence over whether the
state obtains. (More formally, S is causally act-independent for an agent if and
only if the agent knows, for each A E A, S -+ [A Ei-+ S].) If there is a set of
causally act-independent states S such that, for every S E S, V(AiS) exceeds
V(AjS), then option Ai causally dominates option A3 .16 The alleged connec-
tion between causal dominance and rational choice is structurally identical to
the alleged connection between dominance and rational choice:

Causal Dominance: If option Ai causally dominates option Aj,
then it is not rationally permissible for the agent to choose A3 .

But Causal Dominance is more plausible than Dominance. Causal Dominance
avoids the absurd recommendation, in The Extortionist, that the moviegoer
rationally ought to not pay.17

1If counterfactual excluded middle fails, unchosen options might fail to have actual values.
When [A o-- 0] is true, the chance of 0 conditional on A, i.e. Ch(O I A), is one, so we
could broaden the notion of actual value by setting av(A) equal to EO Ch(O I A)V(0).
But it is unclear whether the broadened notion of actual value can do the metaethical work
done by the narrower notion.

16If Ai causally dominates Aj, then V(AiSo) > V(AjSa). Since So is causally act-
independent, [A, Ei-+ AiSa] and [Aj D-+ AjSo] both are true, so av(Ai) = V(AiSo) and
av(Aj) = V(AjSo). Hence, av(Ai) > av(Aj).

17The moviegoer knows that she exerts causal influence over the future state of her wind-
shield, so neither SB nor Sg is causally act-independent.
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Causal Dominance is weaker than Dominance but still strong enough to
entail two-boxing. Let the set of states be {S$o, S$M}, where S$o is the propo-
sition that the opaque box contains $0 and S$M is the proposition that the
opaque box contains $1,000,000. Since

V(A 2BS$o) = 1, 000 > 0 - V(AlBS$o), and

V(A2BS$M) = 1, 001, 000 > 1, 000, 000 = V(AlBS$M),

A2B dominates A1B. Moreover, the agent knows that she has no causal influ-
ence over the amount of money in the opaque box, so S$o and S$M are causally
act-independent states. Hence, taking both boxes causally dominates taking

only the opaque box, a fact exploited in the Causal Dominance Argument for
two-boxing:

(P1) If option Ai causally dominates option Aj, then it is not rationally per-

missible for the agent to choose Aj.

(P2) In Classic Newcomb, taking both boxes causally dominates taking only

the opaque box.

(C) Therefore, an agent facing Classic Newcomb is rationally required to take
both boxes.

The Causal Dominance Argument is the aforementioned standard argument
for two-boxing. 18

Note the intimate relation between Causal Dominance and the rule of
c-expected value. Given a set of causally act-independent states S, the c-

expected value of an option can be characterized as a function of the agent's
unconditional credences in the members of S:

cev(A) = E, C(A Eu-+ O)V(O) => C(S)V(AS).

As the last sum in the equation makes clear, a causally dominated option

cannot maximize c-expected value: the rule of c-expected value entails Causal

Dominance.

18Some prefer an informational variant; see, for example, Pollock (2010, p. 57-82). Not
every two-boxer relies on dominance reasoning. See, for example, Levi (1975).

42

I 1 111.11 - - "I", - , , 111.111, 11, 11,11, 11111111 IN



2.5 Two Counterexamples to Causal Domi-
nance

We believe that Causal Dominance is false, and hence that the Causal Dom-
inance Argument is unsound. We will offer two counterexamples to the rule
of c-expected value, and then transform them into counterexamples to Causal
Dominance.

The first counterexample is non-ideal. An ideal agent is both
introspective-she knows all of the facts about her own beliefs and desires-
and logically omniscient. A non-ideal agent is introspective but not logically
omniscient. An ideal counterexample features an ideal agent, and a non-ideal
counterexample, like the following, features a non-ideal agent:

The Fire. The fire alarm rings and the agent, a firefighter, hurries
onto the truck. On the ride over she deliberates. She has three op-
tions: she can enter the building through the left door, the middle
door, or the right door. Since she does not know the exact distri-
bution of residents in the building, she does not know which option
will result in the most rescues. Based on her credences about the
distribution of residents, she calculates the c-expected value of each
option and writes the value on a notecard. After exiting the truck
and attaching the water hose, she races toward the building. She
reaches into her pocket, but the notecard is gone! Time is of the
essence. She knows that all of the residents will die in the time it
would take her to recalculate the c-expected values. Her credences
about the distribution of residents are unchanged, so she knows
that her current c-expected values are what they were when she
calculated them. But she cannot fully remember the results of her
calculations. She remembers that the c-expected value of entering
through the middle door is 9. Of the other two options, she remem-
bers that one has a c-expected value of 0 and that the other has a
c-expected value of 10, but she cannot remember which c-expected
value goes with which option. (In fact, entering through the right
door has a c-expected value of 10, as the lost notecard attests.)19

19 The Fire is an elaboration of a case discussed by Kagan (MS). The fact that non-ideal
agents are not always able to access expected value is also discussed in, among other places,
Feldman (2006) and Weirich (2004, ch. 5). Some philosophers believe that decision theory
applies only to ideal agents, and hence that examples like The Fire cannot be relevant to
decision theory. We think that decision theory should extend to non-ideal agents. But, even
if decision theory applies only to ideal agents, we think that non-ideal cases, such as The
Fire, help shed light on how an agent must be related epistemically to a value quantity in
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We say that the agent facing The Fire is rationally required to enter through
the middle door, even though it is true, by hypothesis, that the option that
uniquely maximizes c-expected value is entering through the right door. 20

The second counterexample is ideal.

The Frustrater. There is an envelope and two opaque boxes, A
and B. The agent has three options: she can take box A, box B, or
the envelope. (The three options may be labeled AA, AB, and AE,
respectively.) The envelope contains $40. The two boxes together

contain $100. How the money is distributed between the boxes de-

pends on a prediction made yesterday by the Frustrater, a reliable
predictor who seeks to frustrate. If the Frustrater predicted that
the agent would take box A, box B contains $100. If the Frustrater

predicted that the agent would take box B, box A contains $100.
If the Frustrater predicted that the agent would take the envelope,
each box contains $50. The agent knows all of this.2 1

We say that an ideal agent facing The Frustrater is rationally required to
choose the envelope. But the options that maximize c-expected value are AA
and/or AB, depending on the agent's credences.2 2 (Proof: No matter what

credence function the agent has, cev(AE) = 40 and cev(AA) + cev(AB) 100-
Two numbers smaller than 40 cannot sum to 100.)23

order to be rationally required to maximize that value quantity, an issue that we discuss in
more detail in 2.5, 2.6, and 2.7.

20We think that the intuition in this case speaks for itself. But we offer a theoretical
account of why the agent facing The Fire is rationally required to enter through the middle
door in note 31.

21This example is inspired by other purported counterexamples to the rule of c-expected
value: Bostrom (2001), Egan (2007) and especially Ahmed (2014b). Lewis (1981) shows
that there are realistic cases that have the same structure as Classic Newcomb. There are
also realistic cases that have the same structure as The Frustrater. A commuter wants to
get home as soon as possible. There are three routes home: highway A, highway B, and the
ferry. The commuter knows that the ferry is second-fastest. The commuter does not know
which highway is faster-that varies depending on the day-but the commuter knows that
one of the highways is slightly faster than the ferry and that the other is much, much slower.
Moreover, the commuter reasonably believes that commuters are like-minded. Conditional
on taking highway A/B, the commuter is highly confident that highway B/A is the fastest
route.

22We assume that the agent facing The Frustrater cannot play a mixed strategy. Perhaps
the agent is unable to randomize her choice, or perhaps it is simply unwise to play a mixed
strategy, since the Frustrater is very good at detecting whether an agent is playing a mixed
strategy and punishes the agent severely for doing so.

231f we transform The Frustrater into a sequence of choices-first a choice between AE
and eliminating AE, and then a choice, if AE is eliminated, between AA and AB-the rule
of c-expected value as applied to the sequence recommends AE. We note three things. First,
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With a few alterations, both The Fire and The Frustrater can be trans-
formed into counterexamples to Causal Dominance. Start with a variation on
The Fire:

The Dominating Fire. Everything is the same as in The Fire, ex-
cept that, unbeknownst to the agent, the option of entering through
the right door causally dominates the other two options.

From the standpoint of rationality, The Dominating Fire is no different than
The Fire. A non-ideal agent might not be in a position to know which options
causally dominate which others. (We can imagine that the V(AS)'s are stored
in the agent's brain, in the form of a payoff matrix, and that it takes the agent
a non-trivial amount of time to survey the matrix.) If an agent is not in a
position to know that an option is causally dominated, then the fact that the
option is causally dominated is not relevant to what the agent rationally ought
to choose. Therefore, as in The Fire, an agent facing The Dominating Fire
is rationally required to enter through the middle door, even though entering
through the middle door is causally dominated by entering through the right
door.

Causal Dominance is an elimination principle, which marks options as ra-
tionally impermissible to choose. But it entails the following selection princi-
ple:

Causal Dominance Selection: If option Ai causally dominates
all other options, then the agent is rationally required to choose
Ai.

The Dominating Fire is a counterexample not just to Causal Dominance, but
also to Causal Dominance Selection.

There are no ideal counterexamples to Causal Dominance Selection, a fact
that we will return to, and explain, later. But there are ideal counterexamples
to Causal Dominance:

The Semi-Frustrater. There are two buttons, a white button and
a black button. The agent has four options: she can press either
button with either hand. (The four options may be labeled ARH:W,

this is a different decision problem. The Frustrater remains a counterexample to the rule
of c-expected value. Second, it may not be rationally permissible for the agent to choose
between AE and eliminating AE-perhaps because the Frustrater punishes agents who do
so. Third, not all of the counterexamples to the rule of c-expected value can be transformed
into a sequence of choices, cf. Egan (2007). Thanks to Bernhard Salow and Caspar Hare
for discussion on this point.
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ALH:W, ARH:B, and ALH:B.) The white button connects to the

white box, the black button connects to the black box, and the

agent will receive the contents of whatever box is connected to

the button she presses. One of the boxes contains $0 and the

other contains $100. Which box contains which sum depends on

a prediction made yesterday by the Semi-Frustrater. The Semi-

Frustrater seeks to frustrate. If the Semi-Frustrater predicted that

the agent would press the black button, the white box contains

$100. If the Semi-Frustrater predicted that the agent would press

the white button, the black box contains $100. There are two

left-right asymmetries. First, the agent will receive an extra $5 if

she presses a button right-handedly. Second, because the Semi-

Frustrater bases her prediction on a scan of merely half of the

agent's brain, the Semi-Frustrater is a 90% reliable predictor of

right-handed button pressings but only a 50% reliable predictor of

left-handed button pressings. The agent knows all of this.

We say that The Semi-Frustrater, like The Frustrater, is an ideal counterex-

ample to the rule of c-expected value. In our view, an ideal agent facing

The Semi-Frustrater is rationally required to choose ALH:W or ALH:B, and

rationally permitted to choose either, even though the options that maxi-

mize c-expected value are, depending on the agent's credences, ARH:W and/or

ARH:B. 2 4 What is more surprising is that we have an ideal counterexample to

Causal Dominance. The claim that an (ideal) agent is never rationally per-

mitted to choose a (strictly) causally dominated option is a staple of game

theory, where it appears in textbooks as the injunction against playing strate-

gies that can be iteratively eliminated by (strict) causal domination,2 5 and

is regarded as sacrosanct by many expert decision theorists. But ARH:W

causally dominates ALH:W, and ARH:B causally dominates ALH:B, so an ideal

24Either Sw, the white box contains $100, or SB, the black box contains $100. Since
the agent knows that her choice has no causal influence over the contents of the boxes,
{ Sw, SB} is a set of causally act-independent states. Equating dollars and units of value,
V(SwARH:W) = 105 = 5 + V(SwALH:W); V(SBARH:W) 5 = 5 + V(SBALH:w);
V(SwARH:B) = 5 = 5 + V(SwALH:B); and V(SBARH:B) = 105 = 5 + V(SBALH:B)-
So cev(ARH:w) maximizes if C(Sw) 0.5, and cev(ARH:B) maximizes if C(SB) 0.5.

25See, for example, Fudenberg and Tirole (1991, ch. 2) and Myerson (1991, s. 3.1).
26Briggs (2015, p. 836): "The following is an independently compelling claim about

rationality: if it is knowable a priori that strategy a yields a better result than strategy
b, then it is pragmatically irrational to choose strategy b when strategy a is available."
Pettigrew (2015, p. 806): "the so-called Dominance Principle, which says that an option
is irrational if there is an alternative that is guaranteed to be better than it, and if there
is nothing that is guaranteed to be better than that alternative [...] is an uncontroversial
principle of decision theory." Also see, for example, Buchak (2015), Briggs (2010), Gibbard
and Harper (1978), Lewis (1981), Joyce (1999), Nozick (1969), Sobel (1994) and Skyrms
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agent facing The Semi-Frustrater is rationally required to choose a causally
dominated option.

One might object that The Semi-Frustrater is really no different than Clas-
sic Newcomb. In both examples there is some intuitive pull toward choosing
a causally dominated option, since in both examples consistently choosing
a causally dominated option results in greater long run wealth. Consistent
one-boxers end up wealthier than do consistent two-boxers. Consistent left-
handers end up wealthier than do consistent right-handers. Two-boxers resist
the one-boxing intuition, so, if the intuition that an agent rationally ought to
press a button left-handedly in The Semi-Frustrater is really no different than
the intuition that an agent rationally ought to take only the opaque box in
Classic Newcomb, two-boxers should also resist the left-handed intuition.

But, in at least two respects, The Semi-Frustrater and Classic Newcomb are
importantly different. The first and most important difference is metaethical-
that is, it concerns how the agent is epistemically related to the relevant value
quantities. For an agent facing Classic Newcomb, maximizing c-expected value
is non-accidentally doable. If the agent seeks to maximize c-expected value,
she can be confident both about which option she will choose and that she
will choose an option that maximizes c-expected value. She will be confident
that she will take both boxes and confident that by doing so she will choose an
option that maximizes c-expected value. By contrast, for an agent facing The
Semi-Frustrater, maximizing c-expected value is doable only accidentally. An
agent facing The Semi-Frustrater, who seeks to maximize c-expected value,
cannot be confident both about which option she will choose and that she will
choose an option that maximizes c-expected value. If she is confident about
which option she will choose, then she is confident that by choosing that option
she will fail to maximize c-expected value. As we say in more detail below, in
our view, the fact that the c-expected value of an option exceeds the c-expected
value of another option is relevant to what an agent rationally ought to choose
only if the agent is appropriately related to c-expected value maximization.
An agent facing Classic Newcomb is appropriately related to c-expected value
maximization, but an agent facing The Semi-Frustrater is not. Ultimately it
is this epistemological and metaethical difference that marks the crucial divide
between The Semi-Frustrater and Classic Newcomb.

But even before we get into metaethics, there is a simple descriptive differ-
ence between The Semi-Frustrater and Classic Newcomb. In Classic Newcomb,
there is unequal environmental fortune. Imagine that the choices are made in
a room containing only the agent and the boxes. Consistent one-boxers al-
most always make their choices in lucrative rooms: they almost always choose

(1984). In epistemic decision theory, too, the claim that (strictly) dominated options are
ipso facto irrational is relied upon heavily. See, for example, Joyce (1998).
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between two options, each worth $1,000,000 or more, in a room that contains
more than $1,000,000. Consistent two-boxers almost always make their choices
in impoverished rooms: they almost always choose between two options, each
worth no more than $1,000, in a room that contains $1,000. The argument
for one-boxing, based on the claim that consistent one-boxers are wealthier
than consistent two-boxers, is undermined by the unequal environmental for-
tune. What explains why consistent one-boxers are wealthier than consistent
two-boxers is that one-boxers make their choices in lucrative rooms, not that
one-boxers choose more wisely." Consistently choosing unwisely in lucrative
rooms leads to greater long run wealth than does consistently choosing wisely

in impoverished rooms. Notice, in The Semi-Frustrater, however, that there is

no difference in environmental fortune. Like consistent left-handers, consistent
right-handers always make their choices in rooms that contain exactly $105.
What explains why consistent left-handers are wealthier than consistent right-
handers is a difference of rationality, not a difference of environmental fortune.
Consistent right-handers end up poorer than do consistent left-handers be-
cause they choose irrationally.

2.6 Guidance

Although the Causal Dominance Argument is unsound, a successful, indepen-
dent argument for two-boxing is in the nearby vicinity. The successful argu-
ment relies on a metaethical principle connecting guidance and actual value

maximization to rational choice.
There are two 'ought's of decision-making, an objective 'ought' and a ra-

tional 'ought'. Decision theory, being consequentialist in nature, takes both
to be reducible to value quantity maximization.

The objective 'ought' reduces to actual value maximization: agents are
always objectively required to choose so as to maximize actual value.

The objective 'ought' is not our main concern. Our main concern is the
rational 'ought', which can, and often does, come apart from the objective
'ought'. For example:

Boxes like Miners. There are three opaque boxes: the left box, the
middle box, and the right box. The agent must choose exactly one
box. The agent knows that the middle box contains $9. Of the
other two boxes, the agent knows that one contains $0 and that the

other contains $10, but does not know which box contains which

sum. (In fact, the right box contains $10.)

2 7 For more on this point, see Wells (Forthcoming).
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An agent facing Boxes like Miners is, though objectively required to choose
the right box, rationally required to choose the middle box.

At the metaethical level, the most important difference between the objec-
tive 'ought' and the rational 'ought' is a difference of guidance. The objective
'ought' is not always capable of guiding the agent's choice. Actual value is the
value quantity the maximization of which makes options objectively permissi-
ble for the agent to choose, but agents are not always capable of being guided
by actual value. A necessary condition on being capable of being guided by
actual value is being in a position to know of some option that it maximizes
actual value, and agents often are in no such position. An agent facing Boxes
like Miners, for example, is in no such position.

The rational 'ought', by contrast, is always capable of guiding the agent's
choice. An agent is always capable of being guided by the value quantity the
maximization of which makes options rationally permissible for the agent to
choose.

It is here that we break with the metaethical orthodoxy. The orthodoxy has
it that a value quantity is choice-guiding if and only if the facts about which
options maximize the value quantity supervene on the facts about the agent's
beliefs and desires.28 Actual value fails this supervenience test. The actual
value of an option is a function of the truth-values of certain counterfactual
claims, and such truth-values float free of the agent's psychology. By contrast,
e-expected value and c-expected value pass the supervenience test. Both are
functions of the agent's beliefs and desires.

In our view, the orthodoxy is mistaken twice over. First, it is a mistake to
try to divide value quantities into those that are, and those that are not, choice-
guiding. Whether a value quantity is capable of guiding an agent's choice is
settled, in our view, occasion by occasion, not once and for all. Second, it
is a mistake to identify choice-guidance with supervenience on the agent's
beliefs and desires. On some occasions an agent is capable of being guided by
a value quantity that does not supervene on her beliefs and desires, and on
some occasions an agent is incapable of being guided by a value quantity that
supervenes on her beliefs and desires.

We claim that a value quantity is capable of guiding an agent's choice on
an occasion if and only if the agent has stable access to the value quantity
on that occasion. Stable access is defined in terms of being in a position to
know. An agent is in a position to know a proposition if and only if there is
no obstacle blocking her from knowing the proposition.2 9 An agent has access
to a value quantity Q if and only if there is an option A E A such that the

28 0r, more generally, supervene on the agent's internal mental states. See, for example,
Conee and Feldman (2004).

29 Cf. Williamson (2000, p. 95).
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agent is in a position to know of A that it maximizes Q. An agent has stable

access to Q if and only if there is an option A c A such that (i) the agent is
in a position to know of A that it maximizes Q, and (ii) conditional on A, the
agent still is in a position to know of A that it maximizes Q.30 If an agent
has stable access to Q, then the agent is stably in a position to know of some
option A that it maximizes Q.

The stability is crucial. An agent who chooses option A is guided by Q only
if she can know both that she will choose A and that A is Q-maximizing. It is
for this reason that access alone is not sufficient for guidance. An agent who
has access but lacks stable access to Q cannot know both which option she will
choose and that the option she will choose is Q-maximizing. Such an agent
either is surprised by which option she chooses, in which case her choice is not
guided at all, or she anticipates choosing an option that is not Q-maximizing,
in which case her choice is not guided by Q. Stability plugs this gap. An agent
who has stable access to Q is capable of being guided by Q because she can
know both that she will choose A and that A is Q-maximizing.3

2.7 Ratificationism

If an agent is incapable of being guided by a value quantity, then the maximiza-
tion of that value quantity is not what makes options rationally permissible
for the agent to choose. In our view, this is the fact that explains why the rule
of c-expected value admits of counterexamples. Agents are not always capable
of being guided by c-expected value-that is, agents do not always have stable
access to c-expected value. An agent facing The Fire or The Dominating Fire
does not have access, let alone stable access, to c-expected value, since the
external time constraints, together with the agent's limited powers of deduc-
tion, form an obstacle blocking her from knowing that entering through the
right door maximizes c-expected value.3 2 An agent facing The Frustrater or

30By "conditional on A," we have the following in mind. Take the agent's credence
function and conditionalize it on A. Then ask whether the agent still is in a position to
know that P, relative to her updated credence function. If she is, then she is stably in a
position to know that P. If not, not.

31 Question: Does choice-guidance supervene on the agent's mental states? Answer: If
being in a position to know is a mental state, then yes. Otherwise, no.

32 Question: What value quantity is an agent facing The Fire rationally required to maxi-
mize? Answer: A value quantity that stands to c-expected value as c-expected value stands
to actual value; we might call it c-expected 2 value. A cev(A)-level proposition is of the form

[cev(A) = v]. Just as the c-expected value of an option is a credence-weighted average of the
agent's hypotheses about the actual value of the option (see note 9), the c-expected 2 value
of an option is a credence-weighted average of the agent's hypotheses about the c-expected
value of the option: cev2 (A) = Ev vC([cev(A) = v]). There is also a value quantity that
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The Semi-Frustrater has access but lacks stable access to c-expected value,
since there is no option available in either decision problem that maximizes
c-expected value conditional on itself." We claim that the rule of c-expected
value admits of counterexamples only when agents lack stable access to c-
expected value. In other words, we accept the guiding rule of c-expected value:
that agents who have stable access to c-expected value are rationally required
to choose so as to maximize c-expected value.

In spirit, the guiding rule of c-expected value is similar to the ratifica-
tionisms defended by Harper, Jeffrey, Sobel, and others." But at the level of
detail, the views differ in important ways, and we think that the guiding rule
of c-expected value is an improvement upon the more familiar ratificationisms.

The key notion for any ratificationism is that of an option being ratifi-
able. An option A is ratifiable if and only if, conditional on A, A maximizes
c-expected value, and nonratifiable, otherwise. There are two sorts of ratifica-
tionisms. According to principled ratificationism, it is never rationally permis-
sible to choose nonratifiable options. Principled ratificationism is implausible:
The Frustrater and The Semi-Frustrater are counterexamples. According to
lexical ratificationism, the more plausible version of the view, options are lex-
ically ordered by ratifiability: ratifiable options are infinitely more choicewor-
thy than are nonratifiable options; hence it is rationally permissible to choose
nonratifiable options only if none of the available options are ratifiable. Lexi-
cal ratificationists can disagree with one another about how to choose among
options at the same lexical order. Some lexical ratificationists use e-expected
value to choose among options at the same lexical order.3" They claim that
an agent is rationally required to choose a ratifiable option the e-expected
value of which is not exceeded by that of any other ratifiable option, unless
there are no ratifiable options, in which case the agent is rationally required to

stands to c-expected 2 value as c-expected value stands to actual value; we might call it
c-expected3 value. In general, for any n > 1,

cev (A) = x: vC([cevni (A) = v]).

"Question: What value quantity is an agent facing The Frustrater rationally required
to maximize? Answer: The most causally fine-grained expected value quantity to which
the agent has stable access. See Spencer and Wells (MS), in which we develop a theory
of rational choice in the face of decision instability. Much of decision theory rests on the
assumption that there is a single value quantity that any agent facing any decision problem
is rationally required to maximize. We reject this claim. We explore the prospects for a
unified decision theory that rejects this assumption.

34For discussion of ratificationism, see, among others, Eells (1982), Egan (2007), Gustafs-
son (2011), Hare and Hedden (2016), Harper (1986), Jeffrey (1983), Joyce (2007), Rabinow-
icz (1988), Sobel (1994), Skyrms (1984), and Weirich (1988, 2004).

"Cf. Jeffrey (1983).
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choose a nonratifiable option that maximizes e-expected value. Other lexical
ratificationists use c-expected value to choose among options at the same lex-
ical order." Note that both forms of lexical ratificationism entail two-boxing,
since, in Classic Newcomb, taking both boxes is the only ratifiable option.

The fatal flaw in lexical ratificationism is the lexical ordering of options. By
treating ratifiable options as infinitely more choiceworthy than nonratifiable
options, lexical ratificationists effectively claim that ratifiability is an infinite

value. But ratifiability is not a value, let alone an infinite one. An option is not
made more choiceworthy by being ratifiable. The counterexamples to lexical

ratificationism, like the following, due to Skyrms (1984), exploit precisely this
flaw:

Three Shells. The agent has three options: there are three shells,
shell J, shell K, and shell L, and the agent can choose any one of

them. How much money is contained in each shell depends on a
prediction made yesterday by a reliable predictor. If the predictor

predicted that the agent would choose shell J, then shell J contains

$1, shell K contains $0, and shell L contains $0. If the predictor
predicted that the agent would choose shell K, then shell J contains

$0, shell K contains $9, and shell L contains $10. If the predictor

predicted that the agent would choose shell L, then shell J contains

$0, shell K contains $10, and shell L contains $9.

Choosing shell J is the only ratifiable option. Hence, according to any lexical
ratificationism, an agent facing Three Shells is rationally required to choose
shell J, no matter what credence function the agent has. Lexical ratificationism
is thereby refuted. An agent facing Three Shells is rationally required to choose
shell J only if, at the time of decision, she is highly confident that she will. If
she is highly confident that she will choose shell J, then she is highly confident
that shell J contains $1 and that the other two shells contain nothing. But
if the agent is not highly confident that she will choose shell J, then it is not
even rationally permissible for her to choose shell J. In the extreme case, in
which the agent is highly confident that she will not choose shell J, the agent
regards shell J as the worst of her three options by far. The claim, made

by lexical ratificationists, that the agent is nevertheless rationally required to

choose shell J is clearly false.
The guiding rule of c-expected value avoids the counterexamples to lexi-

cal ratificationism by rectifying the fatal flaw. The guiding rule of c-expected

value is not built on the notion of ratifiability. It is built on the notion of

having stable access to a value quantity-specifically, having stable access to
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c-expected value. Whereas ratifiability operates at the ethical level, affecting
the choiceworthiness of options, stable access operates at the metaethical level,
affecting the relevance of value quantities. Stable access is a necessary condi-
tion for rational relevance: facts about which options maximize a given value
quantity can be relevant to what an agent rationally ought to choose only if
the agent has stable access to that value quantity.

The guiding rule of c-expected value thus can handle cases like Three Shells
correctly. If an agent facing Three Shells is highly confident that she will choose
shell J, then she has stable access to c-expected value, and the guiding rule of
c-expected value correctly entails that she is rationally required to choose shell
J. If the agent is not highly confident that she will choose shell J, then she
lacks stable access to c-expected value, and the guiding rule of c-expected value
is silent. When an agent, ideal or nonideal, lacks stable access to c-expected
value, the facts about the c-expected values of options are not relevant to what
the agent rationally ought to choose.

Since we accept the guiding rule of c-expected value, we think that there
is a sound argument from c-expected value to two-boxing. A competent agent
facing Classic Newcomb has stable access to c-expected value because (i) she
is in a position to know that A2B (uniquely) maximizes c-expected value, and
(ii) conditional on A2B, she still is in a position to know that A2B (uniquely)
maximizes c-expected value. Hence, by the guiding rule of c-expected value,
she is rationally required to take both boxes.

But, as noted above, arguing from c-expected value to two-boxing fails
to move the debate forward. What we need is an independent argument for
two-boxing.

2.8 The Objective Argument

We think that the best independent argument for two-boxing goes through
the guiding rule of actual value.

According to the rule of actual value, agents are always rationally required
to choose so as to maximize actual value. Everyone rejects the rule of actual
value, and for good reason. Counterexamples abound. Rational permission
and actual value maximization often come apart. But the rule of c-expected
value also fails: rational permission and c-expected value maximization also
come apart. An agent is rationally required to choose so as to maximize
c-expected value only when she has stable access to c-expected value. We
think that the same holds for actual value. We accept the guiding rule of
actual value: that agents who have stable access to actual value are rationally
required to choose so as to maximize actual value.
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The guiding rule of actual value entails the uncontroversial claim that ra-
tional permission and actual value maximization can come apart when agents
lack access to actual value. In Boxes like Miners, for example, the agent is
rationally required to choose the middle box, even though choosing the right
box uniquely maximizes actual value.

The guiding rule of actual value also entails that rational permission and
actual value maximization can come apart when an agent has access but lacks

stable access to actual value. Not much attention has been paid to the question

of whether rational permission and actual value maximization can come apart

in such cases, in part because it requires some fancy footwork to devise an

example. Here is one:

Unstable Boxes like Miners. There are four boxes, the outside-left

box, the middle-left box, the middle-right box, and the outside-

right box. The outside boxes are opaque and the middle boxes are

transparent. The middle-left box and the middle-right box each

contain $9. One of the outside boxes contains $0 and the other

contains $10. Which outside box contains which sum depends on a

prediction made yesterday by a reliable predictor. If the predictor

predicted that the agent would choose either the middle-left box

or the outside-left box, the outside-right box contains $10. If the

predictor predicted that the agent would choose either the middle-

right box or the outside-right box, the outside-left box contains

$10. The agent knows all this. The agent also believes that she

will choose the middle-left box.

Since the agent believes that she will choose the middle-left box and believes
that the predictor is extremely reliable, she believes that the outside-right box
contains $10. Moreover, let us suppose that it is true that the outside-right

box contains $10. Presumably, then, if the predictor is reliable enough, the

agent knows that choosing the outside-right box uniquely maximizes actual

value. But her epistemic position is unstable. Conditional on choosing the
outside-right box, she ceases to be in a position to know that choosing the
outside-right box maximizes actual value. It seems to us clear that an agent

facing Unstable Boxes like Miners is rationally required to choose either the

middle-left box or the middle-right box, and rationally permitted to choose
either. Even when an agent knows which option uniquely maximizes actual
value, rational permission and actual value maximization can come apart, if

the agent's knowledge is unstable. This is a somewhat surprising result.

But, as concerns Classic Newcomb, the real substance of the guiding rule of

actual value is what it says about the coincidence between rational permission

and actual value maximization: namely, that rational permission and actual
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value maximization cannot come apart if the agent has stable access to actual
value.

The simplest cases in which an agent has stable access to actual value are
cases in which the agent knows the actual values of her options. (Imagine an
agent choosing among transparent boxes, each containing a sum of money.)
Classic Newcomb is interesting in part because it is a case in which the agent
has stable access to actual value without being in a position to know the
actual values of her options. The agent is not in a position to know whether
the actual value of A2B is 1,000 or 1,001,000, for example, because she does
not know whether the opaque box contains $0 or $1,000,000. Nevertheless, she
is in a position to know that taking A2B (uniquely) maximizes actual value,
and, conditional on A2B, she still is in a position to know that A2B (uniquely)
maximizes actual value.

The guiding rule of actual value entails that if an agent is stably in a
position to know of an option that it uniquely maximizes actual value, the
agent is rationally required to choose the option. This claim is the crucial
premise of the Objective Argument for two-boxing:

(P1) If an agent is stably in a position to know of an option that it uniquely
maximizes actual value, then the agent is rationally required to choose
the option.

(P2) An agent facing Classic Newcomb is stably in a position to know of
taking both boxes that it uniquely maximizes actual value.

(C) Therefore, an agent facing Classic Newcomb is rationally required to take
both boxes.

The Causal Dominance Argument and the Objective Argument are closely
related. If Ai causally dominates Aj, then, unless the agent is otherwise epis-
temically disabled, the agent is stably in a position to know that the actual
value of Ai exceeds the actual value of A3 . Pointing out that taking both boxes
causally dominates taking only the opaque box therefore helps to justify the
minor premise of the Objective Argument.

The crucial difference between the Causal Dominance Argument and the
Objective Argument lies in their respective major premises." The major
premise of the Objective Argument amounts to the claim that agents are

37Ahmed (2014a, ch. 7) claims that the best argument for two-boxing goes through
a principle, akin to Causal Dominance, which he calls CDB: "If you know that a certain
available option makes you worse off, given your situation, than you would have been on some
identifiable alternative, then that first option is irrational" (p. 202). He then formulates a
weaker principle, CDB-sequence: "If you know that a certain available sequence of choices
makes you worse off, given your situation, than you would have been on some identifiable
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rationally required to be guided by actual value when they are capable of be-
ing guided by actual value. Or to put the point in deontological terms (since
agents are always objectively required to choose so as to maximize actual
value): in the rare cases in which the objective 'ought' provides the agent with
guidance, the guidance provided by the rational 'ought' cannot conflict with
the guidance provided by the objective 'ought'. 38

The major premise of the Causal Dominance Argument-namely, Causal
Dominance-is refuted by cases like The Dominating Fire and The Semi-
Frustrater. But such cases pose no threat to the major premise of the Objective
Argument, since they are not cases in which the agent has stable access to
actual value.

2.9 Objective Guidance

The second premise of the Objective Argument is uncontroversial. An agent
facing Classic Newcomb is stably in a position to know of taking both boxes
that it uniquely maximizes actual value. If one-boxers want to resist the
Objective Argument, they must reject the guiding rule of actual value.

The guiding rule of actual value is an instance of a schema that all sides
should accept. The schema involves two elements: the objective value quan-
tity, which is the value quantity the maximization of which makes options
objectively permissible to choose, and the guidance relation, which an agent
facing a decision problem bears to value quantities. The schema is an objective
guidance constraint on the rational 'ought':

Objective Guidance: If an agent facing a decision problem bears

alternative, then that first sequence is irrational" (p. 211, italics original). He offers a
counterexample to CDB-sequence and argues that "accepting CDB and not CDB-sequence
looks completely unmotivated" (p. 211). As it turns out, both Unstable Boxes like Miners
and The Semi-Frustrater are counterexamples to CDB. But we do not need anything nearly
as strong as CDB to motivate two-boxing. Neither Unstable Boxes like Miners nor The
Semi-Frustrater are counterexamples to the guiding rule of actual value. As for Ahmed's
counterexample to CDB-sequence--namely, Newcomb Insurance-it matters whether there
is a single choice or a sequence of choices, since the value quantities to which the agent
has stable access depends on it. If there is a single choice, even a single choice among
sequences, we agree with Ahmed's judgments. If there is a sequence of choices, each among
non-sequential options, we agree with the recommendations of the rule of c-expected value.

38Kotzen (MS) also proposes a connection between the objective 'ought' and the rational
'ought' and suggests that the proposed connection justifies two-boxing. In broad strokes,
we agree. But at the level of detail, our suggestion is importantly different from Kotzen's.
Kotzen's proposed connection, unlike ours, does not require stable access. As such, it is false:
Unstable Boxes like Miners is a counterexample, as is a variation on The Semi-Frustrater
in which the agent knows that she will not press the black button.
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the guidance relation to the objective value quantity, then the op-
tions that are rationally permissible for the agent to choose must
maximize the objective value quantity.

To get from Objective Guidance to the guiding rule of actual value, we need
two further claims: that the guidance relation is stable access, and that actual
value is the objective value quantity.

One-boxers could disagree with our claim that the guidance relation is
stable access, but this will not be of much help in resisting the Objective
Argument. After all, the Objective Argument is not wedded to any particular
conception of guidance. It can be recast using any conception of guidance on
which an agent facing Classic Newcomb bears the guidance relation to actual
value, and, so far as we can tell, every plausible conception of guidance is
one on which an agent facing Classic Newcomb bears the guidance relation
to actual value. To resist the Objective Argument, one-boxers therefore must
deny that actual value is the objective value quantity.

In principle, there are three ways that one-boxers could deny that actual
value is the objective value quantity: they could deny that there is an objective
'ought'; they could grant that there is an objective 'ought', but deny that
there is an objective value quantity; or they could argue that some value

quantity besides actual value is the objective value quantity. Only the third

way is plausible. The first two ways effectively abandon the consequentialist

common ground between one-boxers and two-boxers. One-boxers and two-
boxers should agree that, when an agent faces a decision problem, there are

facts about which options are objectively permissible for the agent to choose,
and that what makes an option objectively permissible for the agent to choose
is the maximization of some value quantity, the objective value quantity. The
dispute between one-boxers and two-boxers thus reduces to a dispute about

what the objective value quantity is. Two-boxing is true if actual value is the
objective value quantity. For one-boxing to be true, some other value quantity
would have to be the objective value quantity.

It is not clear what one-boxers could take the objective value quantity to
be. Heretofore, it has been common ground between one-boxers and two-

boxers that actual value is the objective value quantity. The most promising

proposal we have yet to see was suggested to us by Arif Ahmed, in personal
communication. Ahmed, a committed one-boxer, suggests that one-boxers
take e-actual value to be the objective value quantity.

We can introduce e-actual value in a way that makes its similarity to actual

value clear. Actual value, an explicitly causal notion, can be explicated using

e-expected value and knowledge. Let S = {S 1 , ... , S,} be the finest partition

of causally act-independent states. Let So be the member of S that is true at

the actual world, and let CS be the agent's credence function conditionalized
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on Sp. The actual value of an option is then equal to the e-expected value
of the option relative to Cs@. The e-actual value of an option also can be
explicated using e-expected value and knowledge. Say that a state, T, is
evidentially act-independent just if T is compossible with each A E A and, for
each A E A, C(T) = C(T I A). Let T = {T1,. . ., T,} be the finest partition of
evidentially act-independent states. Let Tg be the member of T that is true at
the actual world, and let CTO be the agent's credence function conditionalized
on T@. The e-actual value of an option is then equal to the e-expected value of
the option relative to CT". We can think of it this way, then: the actual value
of an option is what the agent expects the value of the option to be, given full
causal knowledge (that is, knowledge of which member of the finest partition
of causally act-independent states is true), and the e-actual value is what the
agent expects the value of the option to be, given full evidential knowledge
(that is, knowledge of which member of the finest partition of evidentially
act-independent states is true).

There is nothing incoherent about the suggestion that e-actual value is the
objective value quantity. But if one-boxing stands and falls with the claim that
e-actual value is the objective value quantity, then one-boxers are in serious
trouble; for the claim that agents are always objectively required to choose so
as to maximize e-actual value is highly unintuitive. To see this, return to two
examples from above.

Consider The Frustrater, and let us suppose that box A contains $100, box
B contains $0, and the envelope contains $40. It seems clear, then, that an
agent facing The Frustrater is objectively required to take box A, the most
lucrative box. But if e-actual value is the objective value quantity, then an
agent facing The Frustrater is objectively required to take the envelope. The
true member of the finest partition of evidentially act-independent states, TO,
does not specify how much money is in box A, since any state that specifies
how much money is in the boxes is not evidentially act-independent. Hence,
the option that uniquely maximizes e-actual value is taking the envelope.

In Boxes like Miners, actual value and e-actual value coincide. Taking
the right box uniquely maximizes both. But if we imagine that the agent
regards herself as slightly intuitive-that the agent's credence that the left
box contains $10 conditional on taking the left box is slightly greater than her
unconditional credence that the left box contains $10-then, although taking
the right box still uniquely maximizes actual value, and although it still seems
that the agent is objectively required to take the right box, taking the middle
box uniquely maximizes e-actual value.

There may be other proposals one-boxers could produce about what the
objective value quantity is, and we can evaluate them individually. But we
doubt that any will be plausible. To us, it seems obvious that an agent facing
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Classic Newcomb is objectively required to take both boxes, so it seems ob-
vious that the objective value quantity, whatever it proves to be, is uniquely
maximized by two-boxing in Classic Newcomb.

Strictly speaking, the Objective Argument does not require that actual
value be the objective value quantity or that stable access be the guidance
relation. All that it requires is three claims: (1) that Objective Guidance is
true; (2) that two-boxing in Classic Newcomb uniquely maximizes the objec-

tive value quantity; and (3) that an agent facing Classic Newcomb bears the

guidance relation to the objective value quantity.
That being said, we believe that the objective value quantity is actual

value, and we believe that the guidance relation is stable access. In our view,
the guiding rule of actual value is virtually undeniable.

2.10 Explaining the Counterexamples

The foregoing discussion provides us not only with a sound argument for two-

boxing, but also with the resources needed to explain why Causal Dominance

admits of counterexamples.
Nothing about what an agent rationally ought to do follows from the rela-

tions of causal dominance among the options. Of course, both actual value and

c-expected value respect causal dominance, so, if Ai causally dominates Aj,
the actual value of Ai exceeds the actual value of A3 , and the c-expected value

of Ai exceeds the c-expected value of A3 . But nothing about what an agent

rationally ought to do follows from the actual values of the options, and noth-

ing about what an agent rationally ought to do follows from the c-expected

values of the options. There is no direct connection between dominance or

value quantity maximization and rational choice. In order to derive conclu-

sions about what an agent rationally ought to do, we need to know, in addition

to the facts about which options maximize which value quantities, the facts

about which value quantities the agent has stable access to.

Once we appreciate that stable access mediates the connection between

value quantity maximization and rational choice, we can explain the pattern

of counterexamples to Causal Dominance that we find. Since both actual value

and c-expected value respect causal dominance, and since both the guiding rule

of actual value and the guiding rule of c-expected value are true, we should

expect counterexamples to Causal Dominance to arise when, but only when,
agents lack stable access both to actual value and to c-expected value. This is

exactly what we find. There are non-ideal counterexamples to Causal Domi-

nance because a non-ideal agent may lack stable access both to actual value

and to c-expected value, despite the fact that one of her options causally dom-

inates another (e.g., The Dominating Fire). There are ideal counterexamples
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to Causal Dominance because an ideal agent might lack stable access both to

actual value and to c-expected value, despite the fact that one of her options

causally dominates another (e.g., The Semi-Frustrater). There are non-ideal

counterexamples to Causal Dominance Selection because a non-ideal agent

might lack stable access both to actual value and to c-expected value, de-

spite the fact that one of her options causally dominates all others (e.g., The

Dominating Fire). There are no ideal counterexamples to Causal Dominance

Selection because an ideal agent is guaranteed to have stable access to actual

value if one of her options causally dominates all others. 3 9

39An ideal agent knows that the states S = {S1, S2 , . - , Sn} are causally act-independent.
Hence, for each A E A and each S E S, she knows that (S ++ [A o-+ S]). The
states are causally act-independent, so there is some Sj E S such that, for any A E A,
av(A) = V(ASj). Hence, if option Ai dominates all other options, the ideal agent knows
that Ai uniquely maximizes actual value. Moreover, conditional on A , the V(AS)'s remain
unchanged, and the ideal agent still knows that some S c S obtains; hence the ideal agent
still is in a position to know that Ai uniquely maximizes actual value.
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Chapter 3

Evidence and Rationalization

3.1 Introduction

Suppose that you have to take a test tomorrow. Naturally you'd prefer not
to study. But you should study, since you care very much about passing and
expect to pass only if you study. Is there anything you can do to change that?
Is there any way for you to "rationalize" slacking off?

If you could somehow stop caring about passing the test, then you would
be under no rational pressure to study. In general, changing what one cares
about is a way of changing what one rationally ought to do. But changing
what one cares about is not always an option. It's not as easy as saying "I
don't care if I fail." Let's assume that in this case you're not able to kick the
desire to pass. At least not within the next 24 hours.

What else might you do? You could drink a bottle of mouthwash. Doing
that would make studying irrational, since having drunk the mouthwash you
should rather go to the hospital. (You care about passing the test, but much
more about keeping your liver.) Then again, drinking the mouthwash would
itself be irrational. So it wouldn't really accomplish what you sought in the
first place: to avoid studying without thereby doing anything irrational. Nor
would it allow you to slack off the rest of the night. By drinking the mouthwash
you simply trade one unpleasant obligation (studying) for another (a trip to
the emergency room).

If you had some way of forgetting about the test-for example, by taking
a memory-erasing pill-then you could rationalize slacking off, since having
taken the pill you would no longer have any reason to study. But like drinking
the mouthwash, taking the pill would be irrational. For you now expect that it
would result in your not studying and failing the test-an undesirable outcome.

What if you could take a different kind of pill, one that would cause you
to know everything you need to know to pass the test? In that case you could
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rationalize slacking off, since having taken the pill you would no longer need
to study. And unlike taking the memory-erasing pill, taking this pill would be
rational, since you expect that it would result in your passing the test. So it
seems that by taking the pill you can tailor the demands of rationality to your
liking, without thereby doing anything irrational.

But taking a knowledge-inducing pill is a suspiciously easy way to ratio-
nalize slacking off. There is a simple diagnosis of why that is. The knowledge
induced by the pill-consisting of facts about the subject matter of the test-
does not play an essential role in the explanation of why, after taking the pill,
it is rational for you to slack off. After all, simply believing that you took the
pill (whether or not you actually took it) is enough to rationalize slacking off.

Let's assume that there is nothing you can do such that simply believing
that you did it would rationalize slacking off. In particular, you don't have
access to knowledge-inducing pills. Are you therefore stuck with the obligation
to study, or is there something else you could do to bypass that obligation?

A natural thought is that you might investigate whether studying really
will help you pass the test. For if the investigation led you to sufficiently doubt
the connection between studying and passing, then slacking off would become
rationally permissible. If, on the other hand, the investigation reinforced the
connection, then you would once again find yourself obligated to study.

What kind of investigation might you undertake? Suppose that many
students just like you have faced decisions just like yours in the past. There is
a trustworthy record book documenting, for each student, whether the student
studied and whether the student passed. The book aggregates the data, giving
overall pass rates for studying and not studying. Before reading the book, you
believe that the pass rate for studying is high while the pass rate for not
studying is low. So you expect the book to reflect these estimates. But it
could be that the book says that the overall pass rates for studying and not
studying are equal. If it does, then after reading the book it would be rational
for you to slack off.

Before saying anything more about the record book investigation, let me
make two clarifications. First, it's no surprise that we are sometimes able to
rationalize a choice without seeing the rationalization coming. Suppose that
you have the option of buying a bet that pays if you develop lung cancer
before age 70. At present you believe that you don't have lung cancer, that
lung cancer doesn't run in your family, and that you've never smoked and never
will. So you shouldn't buy the bet. But now imagine that, before deciding
whether to buy the bet, you have the option of getting a CAT scan. Since
you believe that you don't have cancer, you expect that the scan will reveal
nothing ominous. But, to your dismay, the scan reveals a malignant tumor.
Now you have done something-getting the CAT scan-that made it the case
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that you should buy the bet. So in a sense you have rationalized buying the
bet. But the credit should really go-not to you-but to the world, for setting
you straight on your unfortunate condition. Although it was your investigation
that ended up rationalizing the choice, you played no part in orchestrating the

rationalization.

Second, it's no surprise that we are sometimes able to rationalize a choice

without being 100% certain, in advance, that the rationalization is coming.

Suppose that you must pick one of two planes to board: plane A or plane B.

Each plane has 50 passengers, and you know that of the 100 total passengers

exactly one is carrying explosives. You have no idea which plane the bomber
is on. But you have the opportunity to perform an experiment before making

your choice: first, you choose a plane to investigate; then, one passenger from

the chosen plane is selected at random and scanned for explosives; then, you're

shown the results of the scan. Suppose that you wisely decide to perform the

experiment. Before seeing the results of the experiment, you're 99% confident
that the scan will show nothing unusual on the selected passenger. And you

know that if that happens, you will have a very slight reason to prefer boarding

the plane from which the subject of the experiment was selected. So you're

99% confident that investigating plane A will rationalize boarding plane A.
And you're 99% confident that investigating plane B will rationalize boarding

plane B. As it happens, you choose to investigate plane A and the scan shows

nothing unusual, as expected. So by investigating plane A, you have ratio-

nalized boarding plane A, and you have done so in a way that you expected,
with 99% confidence, to rationalize boarding plane A. Still, you don't deserve

all the credit for the rationalization. You needed a little help from the world.

For if the test had come up positive for explosives, then you would have had

extremely strong reason to board plane B and your attempt at rationalizing

boarding plane A would have failed.

Returning to your decision of whether to study, it's now clear why reading
the record book is not a satisfying way of rationalizing slacking off. Although

reading the book could rationalize slacking off, you're not confident, let alone

certain, that it will. (After all, if you were confident that the record book con-

tained evidence against the connection between studying and passing, then it

wouldn't be rational for you to study in the first place.) What you seek when

you seek to rationalize slacking off is not just to do something that might

rationalize slacking off, but rather to do something that you can foresee with

certainty will rationalize slacking off. You want to guarantee the rationaliza-

tion of your preferred choice.

But so far we have seen no reason to think that you can. Indeed, just

thinking abstractly about the matter, the kind of guaranteed rationalization

described above is hard to countenance. If rationality was such that one could
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manipulate its demands in foreseeable ways, then it would seem too easy to

be rational. Rationality-the subjective, practical flavor of rationality under

discussion-is supposed to be within our ken, in some important sense, but it
is not supposed to be completely under our control. Just as the correct rule of

rational action cannot be "do whatever is objectively best," so too it cannot
be "do whatever you want." A good theory of practical rationality should

strike a balance between these two extremes. But a theory that permitted

rationalization would seem to tread too closely to the "do whatever you want"

extreme. And in so doing, such a theory would seem to be stripped of any

normative force. How could we feel pressure to follow the demands of the
theory, when we decided what those demands are? Perhaps it is hard to find

examples of rationalization because rationalization is impossible.

3.2 Mathematical Background

If rationalization is impossible, then a recently defended theory of practical ra-
tionality, known as evidential decision theory, stands refuted.1 For this theory
permits rationalization. In 3.4 I will describe an example in which eviden-
tial decision theory permits rationalization. In this section and the next, I
will introduce the theory, its main rival, and the model in which both are
formulated.

The main element of the model is a quadruple (A, S, p, u), called a decision

problem, in which A is a finite partition of propositions a1 , .. . , am representing
the actions available to a particular agent at a particular time, S is a finite
partition of propositions si, . .. , sn representing the possible states of the world
upon which the consequences of the actions depend, p is a probability function
representing the agent's degrees of belief at the specified time, and u is a utility
function representing the agent's non-instrumental desires at the time. The
actions a E A and states s E S are chosen so that each conjunction as picks
out a unique consequence, fully specifying how things stand with respect to
everything that matters to the agent. Such consequences form the domain of
the agent's utility function.

Various decision theories can be formulated within this model. Given a
decision problem (A, S, p, u), the simple expected utility of an action ai G A is
identified with a weighted sum, for each state, of the utility of taking the action

'The theory originated with Jeffrey (1965) and has been most recently and extensively
defended by Ahmed (2014a).
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in a world in that state, weighted by the probability of the state obtaining:

n

SEU(ai) = Zp(s)u(ais).
j=1

Simple decision theory (SDT) enjoins agents to choose among the a E A so as
to maximize SEU.

The inadequacy of SDT is well known and easy to illustrate. Suppose
that Al is deciding whether to smoke. He believes that smoking has a strong
tendency to cause cancer and, while he finds some pleasure in smoking, that
pleasure is dwarfed by the displeasure he associates with cancer. Given what
he believes and desires, Al should not smoke.

But SDT advises that Al smoke. Let S include the proposition that
Al gets cancer and its negation. Let -y be the large amount of disutility
associated with cancer, let 6 > 0 be the small amount of utility associated
with smoking, and set an arbitrary zero where both cancer and smoking are
absent.

cancer -cancer
smoke -y+ 6 6
,smoke -7 0

Figure 3-1: The payoff table for the smoking problem.

If x is Al's degree of belief in the proposition that he will get cancer, then his
simple expected utilities are related by the following equation:

SEU(smoke) = x(--y + 6) + (1 - x)6

= -xy + 6 > -xy = SEU(-,smoke).

Hence, SDT enjoins Al to smoke, in spite of his belief that smoking causes
cancer and his strong desire to avoid cancer.

To handle this kind of problem, Jeffrey (1965) proposed a different def-
inition of expected utility. Whereas simple expected utility weights utilities
by unconditional probabilities in states, Jeffrey's definition (EEU) weights

2This theory is sometimes associated with Savage (1954). However, Savage's state space
is not a space of possible worlds. If we wish to interpret it as such, then plausibly Savage
intended his states to form a privileged partition on that space-essentially a partition of
dependency hypothesis, a la Lewis (1981). So Savage's theory is best understood as an early
version of causal decision theory, for which the smoking problem does not arise. Thanks to
Bob Stalnaker on this point.
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utilities by conditional probabilities in states, conditional on actions:

n

EEU(ai) = Zp(sla)u(aisj).
j=1

Applying Jeffrey's definition to the smoking problem:

EEU(smoke) = p(cancerIsmoke)(-y + 6) + (1 - p(cancerIsmoke))6

= p(cancerlsmoke)y + 6.

EEU(-,smoke) = -p(cancerI-,smoke) -y.

Therefore, not smoking maximizes EEU iff the difference

p(cancer Ismoke) - p(cancerl|,smoke)

exceeds the fraction 6 /y. In other words, not smoking maximizes EEU iff Al

regards smoking as sufficiently strong evidence of cancer-a condition plausibly

satisfied by the description of the smoking problem. (The required strength of

the evidential connection lowers as -y increases and 6 decreases.)

Since Jeffrey's definition uses conditional probabilities of states on actions,
and since the differences between these conditional probabilities measure the

extent to which the agent regards actions as evidence of states, Jeffrey's brand

of expected utility has come to be known as evidential expected utility, and the

theory enjoining agents to maximize EEU has come to be known as evidential

decision theory (EDT).
Although EDT gives rational advice in the smoking problem, some believe

that it does so only incidentally. For these theorists, Al is irrational to smoke

because he believes that smoking causes cancer, not because he regards smok-
ing as evidence of cancer. The shift in emphasis makes no difference in the

smoking problem because smoking is regarded both as a cause and as evi-

dence of cancer. But it makes a difference elsewhere, such as in the notorious

Newcomb problem: 3

Newcomb: There is a transparent box containing $1,000 and an

opaque box containing either $1,000,000 (full) or nothing (empty).

Ted has two options: he can take just the opaque box (onebox) or

he can take both boxes (twobox). The content of the opaque box

was determined yesterday by a reliable predictor. The opaque box

contains $1,000,000 iff the predictor predicted that Ted would take

just the opaque box.

3Attributed to physicist William Newcomb, Newcomb was popularized by Nozick (1969).
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full empty
twobox 1,001,000 1,000
onebox 1,000 0

Figure 3-2: The payoff table for Newcomb.

Supposing for simplicity that Ted's utilities are linear and increasing in dollars,
the evidential expected utilities of his options in Newcomb are:

EEU(twobox) = p(f ulltwobox)(1, 001,000) + (1 - p(f ull Itwobox))(1, 000)
= p(f ulltwobox)(1, 000, 000) + 1, 000.

EEU(onebox) = p(f ull onebox)(1, 000,000).

Therefore, one-boxing maximizes EEU iff the difference

p(fullonebox) - p(fulltwobox)

exceeds the fraction 1/1, 000. In other words, EDT advises one-boxing so long
as Ted regards one-boxing as at least a little evidence that the opaque box
contains $1,000,000-a condition satisfied by the description of Newcomb.

Those who reject EDT's diagnosis of the smoking problem also find fault
in its treatment of Newcomb. They maintain that Ted should take both boxes,
since he knows that his actions have no causal effect on the content of the
opaque box, and since-no matter what the opaque box contains-two-boxing
nets $1,000 more than one-boxing. 4

Many of those who reject EDT accept an alternative decision theory. As
formulated by Lewis (1981), the alternative theory is essentially a return to
SDT, with one caveat. Whereas in SDT the set of states can be any partition
of logical space, Lewis requires that the states be (causal) dependency hypothe-
ses. A dependency hypothesis, for an agent at a time, is a proposition fully
specifying how things the agent cares about do or do not depend causally on
the agent's present actions.' It is a hypothesis about the causal structure of
the world, as it pertains to the decision. Lewis proves that, necessarily, the
dependency hypotheses for an agent are causally independent of the actions
between which the agent is deciding. So, for example, the proposition that

4 See Spencer and Wells (Forthcoming) for a more detailed defense of two-boxing.
'In order to account for decision problems in which the objective chance of an action

yielding a particular consequence is neither 0 nor 1, we would need to alter the framework
slightly, removing the stipulation that each ac entails a unique consequence and requiring
that the c specify objective conditional chances of consequences on actions. However, the
decision problems discussed in this paper require no such alteration, so we will work with
the simpler albeit less general framework sketched above.
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the opaque box contains $1,000,000 is a dependency hypothesis for Ted in
Newcomb, whereas getting cancer is not a dependency hypothesis for Al in the
smoking problem.

Replacing the state space of SDT with a partition of dependency hypothe-
ses C = {ci, ... , c,}, we can characterize a third kind of expected utility:

n

CEU(ai) = p(c)u(aicj).
j=1

Since the concept of a dependency hypothesis is causal by definition, this kind
of expected utility has come to be known as causal expected utility, and the
theory enjoining agents to maximize CEU has come to be known as causal
decision theory (CDT).

CDT directly opposes EDT in Newcomb. If x is Ted's degree of belief in the
proposition that the opaque box contains $1,000,000, then his causal expected
utilities are related by the following equation:

CEU(twobox) = x(l, 001, 000) + (1 - x)1, 000

= 1, 000, 00Ox + 1, 000 > 1, 000, 000x = CEU(onebox).

Hence, CDT enjoins Ted to take both boxes.

3.3 Evidence Gathering

Each of the decision problems considered so far is non-sequential, in the sense
that there is just one set of options and the choice between the members of
that set occurs at a single time. A sequential decision problem, on the other
hand, has at least two sets of options corresponding to two different times at
which a choice must be made.

Sequential decisions are common. Often when we make a decision it is just
one move in a chain of subsequent decisions. One particularly common kind
of sequential decision problem involves evidence gathering. Often we decide
to ask a question, make an observation, look up something on the internet or
perform an experiment before proceeding further with our lives. We saw an
example of this in 3.1, with the decision of whether to read the pass-fail data
before deciding whether to study.

The problem that I will present in the next section-to illustrate the possi-
bility of rationalization under EDT-is a sequential problem involving evidence
gathering. It will take a little work to see exactly how to apply EDT and CDT
to this kind of problem. The purpose of this section is to extend the framework
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of 3.2 so that we can more easily apply the theories presented in that section

to the problem of the next section.
Start with a simple two-stage sequential decision problem where the options

include gathering more information before acting.

Simple Problem. There are two opaque boxes before you: A and

B. One contains $100; the other is empty. You're 75% confident
that A contains $100. You may take either box, but not both.

Alternatively, you may look inside A and then take a box.

fullA f7ullB
A 100 0
B 0 100

Figure 3-3: The payoff table for the Simple Problem.

In the Simple Problem your first set of options includes looking in A, taking
A straightaway, or taking B straightaway. We already know how to calculate

the expected utilities of the latter two options and it is clear that the expected

utility of taking A straightaway (75) exceeds the expected utility of taking B

straightaway (25). The question is whether the expected utility of taking A
straightaway also exceeds that of looking in A before choosing a box.

Let us assume that, if you look in A, you will act rationally thereafter, in

the sense that you will update your degrees of belief by conditionalizing on

the truth about what is in the box, and that after updating you will choose

the option that maximizes expected utility relative to your updated degrees

of belief. So, for example, if you see that A contains $100, your new expected

utility for taking A will be 100, and you will take A. And if you see that A
contains nothing, your new expected utility for taking B will be 100, and you

will take B. So in either case, you will choose an action with expected utility

100, and you can be certain of this. So the expected utility of looking in A is

itself 100, i.e. greater than that of taking A straightaway. Hence, the uniquely

rational choice is to look in A before choosing a box.
To generalize the informal reasoning above, we take as given a partition

of propositions = {ei, ... , em} representing the possible pieces of evidence

that you might learn by making a particular observation. We then define

the expected utility of using a particular piece of evidence ek - E to inform

your decision (call this act useek) as the expected utility of the action that

maximizes expected utility relative to your updated-on-ek degrees of belief.

This definition yields causalist and evidentialist formulae:

n

CEU(use,) = maxi Zp(c|ek)u(ajcj). (3.1)
j=1
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n

EEU(use,) = maxi E p(sj Iekaj)u(ajsj). (3.2)
j=1

Next we define the expected utility of gathering and using the evidence

gathered (call this action look) as a weighted sum, for each possible piece of

evidence, of the expected utility of using that piece of evidence, weighted by
the probability that the piece of evidence is true (i.e. that it will be the piece

of evidence gathered). This definition also yields causalist and evidentialist

formulae:

CEU(look) = Zp(e)CEU(usek). (3.3)
k=1

EEU(look) = Ep(el look)EEU(usee). (3.4)
k=1

Applying these formulae to the Simple Problem, it is straightforward to confirm
that looking in A maximizes both CEU and EEU.

There is an alternative version of Newcomb that has garnered some atten-
tion in the literature.6 This alternative version may seem to supply a case in
which EDT permits rationalization. In fact, it does not. But it is instructive
to see why it does not. Here is the problem:

Viewcomb: Everything is the same as in Newcomb, only now Ted
has the option of looking inside the opaque box before making his
decision.

According to EDT, Ted should one-box straightaway. For suppose that
Ted looks in the box and sees that it is full. Then the act that maximizes
EEU relative to his updated degrees of belief is two-boxing, and its EEU is
1,001,000. Suppose on the other hand that Ted sees that the box is empty.
Then the act that maximizes EEU relative to his updated degrees of belief is
again two-boxing, although its EEU in this case is 1,000. Hence, by equation

(3.2),

EEU(usefU1) = 1, 001, 000; and,

EEU(usepty) = 1, 000.

6 See, for example, Gibbard and Harper (1978), Adams and Rosenkrantz (1980), Skyrms
(1990), Arntzenius (2008), Meacham (2010), Ahmed (2014a) and Hedden (2015b).
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Plugging these values into equation (3.4), we have:

EEU(look) = p(fulllook)EEU(useefUi) + p(emptyIlook)EEU(seeempty)

= p(fullllook)(1, 001, 000) + p(emptyllook)(1, 000)

Notice that, for Ted, look entails two-boxing, since he is certain that

he will two-box no matter what he learns by looking. Plausibly, then,
p(fulllook) = p(f ulltwobox) and p(emptyjlook) = 1 - p(fulltwobox). Sup-

posing for concreteness that the predictor is believed to be 60% reliable, we
have:

EEU(look) = (.4)(1, 001, 000) + (.6)(1, 000)

= 401, 000.

Note also that

maxi EEU(a) = EEU(onebox) = (.6)(1, 000, 000) = 600, 000.

Hence,
EEU(look) = 401, 000 < 600, 000 = maxi EEU(ai).

Hence, EDT recommends that Ted one-box straightaway.

Note that in Viewcomb Ted can change EDT's recommendation as he

pleases. Although at the outset EDT recommends that Ted one-box, it is

within Ted's power to look in the opaque box, and he can be certain, in ad-

vance, that if he looks in the box, EDT will thereafter recommend that he

two-box. We thus seem to have a case in which EDT countenances a rational-

ization of the kind discussed in 3.1.

But we do not. The reason is that EDT does not permit looking in the box.

From an evidentialist perspective, looking in the box (to avoid one-boxing) is

just like drinking the mouthwash or taking the memory-erasing pill (to avoid

studying). In each case, one is able to change the demands of rationality in a

foreseeable way, but only by first doing something irrational. There is nothing

odd about such irrational rationalizations. The odd rationalization is that

which is itself rational. Our question is whether there is a theory of rationality

that permits rationalization.

3.4 The Switch Problem

Although EDT does not permit rationalization in Viewcomb, there exists a

decision problem in which it does. Here is the problem:
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The Switch Problem: There are two opaque boxes, A and B. One
contains $100. The other is empty. Sue may take A (TakeA)
or B (TakeB) but not both. Additionally, there are two colored
switches, one red and one green, blocked from Sue's view. Each

switch is either on or off. Before choosing a box, Sue may look at
the red switch (LookR) or the green switch (LookG) but not both.

The statuses of the switches and the contents of the boxes were

determined in advance, by a predictor, in the following way.

If the predictor predicted that Sue would take A (PredA), she
tossed a fair coin, put $100 in A (InA) if it landed heads (H), and

tossed another coin. If the second coin landed heads, she flipped

both switches on (RG). If it landed tails, she flipped just the green

switch on (-iRG). Alternatively, if the first coin landed tails (T),
she put $100 in B (InB), and tossed another coin. If the second

coin landed heads, she flipped just the green switch on. If it landed
tails, she flipped both switches off (-,R--iG).

If the predictor predicted that Sue would take B (PredB), she
tossed a coin, put $100 in B if it landed heads, and tossed another
coin. If the second coin landed heads, she flipped both switches
on. If it landed tails, she flipped just the red switch on (R--G).
Alternatively, if the first coin landed tails, the predictor put $100
in A, and tossed a second coin. If it landed heads, she flipped just
the red switch on. If it landed tails, she flipped both switches off.

Sue is fully aware of the foregoing details, which are summarized
in figures 3-4 and 3-5.

PredA PredB
InA InB InA

RG -'RG -,RG -,R-,G RG R-,G R-,G .-,RG
TakeA 100 100 0 0 0 0 100 100
TakeB 0 0 100 100 100 100 0 0

Figure 3-4: The payoff table for The Switch Problem.

Here is how to interpret figure 3-4. For each cell containing a number, the

number in the cell represents the payoff of choosing the option that is directly

left of the cell, at a world in which each proposition directly above the cell is

true. So, for example, the number 100 in the top-left cell represents the payoff
of taking box A at a world in which each proposition directly above the cell is

true, i.e. a world in which the predictor predicted that A would be taken, put

$100 in A, and flipped both switches on.
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Figure 3-5: Probability trees representing the probabilis-
tic relations in The Switch Problem.

In The Switch Problem, EDT permits Sue to manipulate rationality in
foreseeably contradictory ways. By this I mean the following:

Claim 1. Sue is certain that if she looks at the red switch, EDT
will require that she take box A.
Claim 2. Sue is certain that if she looks at the green switch, EDT
will require that she take box B.
Claim 3. EDT permits Sue to look at either switch.

To prove these claims I will make two simplifying assumptions, each of
which may be relaxed without loss. First, I will assume that Sue believes
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the predictor to be 100% reliable.7 Second, I will assume that Sue's utilities
are linear and increasing in dollars. I will also carry over the 'transparency'
assumption from the discussion of evidence gathering in 3.3. That is, I will
assume that Sue is certain that if she looks at a switch, she will act rationally

thereafter, in the sense that she will update her degrees of belief by condition-
alizing on the truth about the switch, and that after updating she will choose
the option that maximizes expected utility relative to her updated degrees of

belief.8 Let p be Sue's probability function before she decides whether to look
at a switch. For any proposition e, let pe be Sue's credence function after
conditionalizing on e: pe() = p(.Ie).

To prove Claim 1, it suffices to prove the embedded conditional from
premises of which Sue is certain. Suppose that Sue looks at the red switch.
Then, either she learns R or she learns -R.

Suppose that she learns R. Then her new probability function is PR. Note
that there is only one possibility in which the red switch is on and the pre-
dictor predicted that Sue would take box A; and, in that possibility, $100 is
in box A. Moreover, conditional on her taking box A, Sue is certain that the
predictor predicted that she take A. Hence, pR(InAITakeA) = 1. Note also
that there are three equiprobable possibilities in which the red switch is on
and the predictor predicted that Sue would take box B; and, in two of them,
$100 is in box B. Hence, pR(InBITakeB) = 2/3. Hence, after learning R,
Sue's EEU of taking box A is 100 while her EEU of taking box B is 100(2/3).
Hence, EDT requires that Sue take box A.

Suppose, on the other hand, that Sue learns -,R. Then her new credence
function is PR. Note that there are three equiprobable possibilities in which
the red switch is off and the predictor predicted that Sue would take box A;
and, in one of them, $100 is in A. Hence, pR(InATakeA) = 1/3. Note also
that there is only one possibility in which the red switch is off and the predictor
predicted that Sue would take box B; and, in that possibility, $100 is in A.
Hence, P-(InBITakeB) = 0. Hence, after learning -,R, Sue's EEU of taking
box A is 100(1/3) while her EEU of taking box B is 0. Hence, EDT requires
that Sue take box A.

Hence, if Sue looks at the red switch, then, no matter what she learns,
EDT will require that she take box A. The only premise is that Sue will con-
ditionalize on the truth about whether the switch is on. By the transparency

7This assumption may lead to Sue assigning zero probability to some of her available
actions, in which case the evidential expected utilities of those actions would be undefined.
To avoid this, we may assume instead that the probability that the predictor is mistaken is
non-zero but negligible. Thanks to Bob Stalnaker on this point.

8 This assumption may also lead to Sue assigning zero probability to some of her avail-
able actions. As before, we can avoid this by assuming instead that irrational actions get
negligible positive probability.
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assumption, Sue is certain of this. Hence, Sue is certain of the conclusion.
Claim 1 follows.

To prove Claim 2, Suppose that Sue looks at the green switch. Then,
either she learns G or she learns -,G. Suppose that she learns G. Then her
new probability function is PG. Note that there is only one possibility in which
the green switch is on and the predictor predicted that Sue would take box B;
and, in that possibility, $100 is in box B. Moreover, conditional on her taking
box B, Sue is certain that the predictor predicted that she take B. Hence,
pG(InBITakeB) = 1. Note also that there are three equiprobable possibilities
in which the green switch is on and the predictor predicted that Sue would take
box A; and, in two of them, $100 is in box A. Hence, PR(InAITakeA) = 2/3.
Hence, after learning G, Sue's EEU of taking box B is 100 while her EEU of
taking box A is 100(2/3). Hence, EDT requires that Sue take box B.

Suppose, on the other hand, that Sue learns -,G. Then her new probability
function is P,G. Note that there are three equiprobable possibilities in which
the green switch is off and the predictor predicted that Sue would take box
B; and, in one of them, $100 is in B. Hence, pG(InBITakeB) = 1/3. Note
also that there is only one possibility in which the green switch is off and the
predictor predicted that Sue would take box A; and, in that possibility, $100
is in B. Hence, P-G(InAjTakeA) = 0. Hence, after learning -,G, Sue's EEU
of taking box B is 100(1/3) while her EEU of taking box A is 0. Hence, EDT
requires that Sue take box B.

Hence, if Sue looks at the green switch, then, no matter what she learns,
EDT will require that she take box B. Claim 2 follows by the transparency
assumption.

To prove Claim 3, first consider the option of looking at the red switch.
The associated evidence partition is {R, -,R}. We saw above that the EEU
of the option that maximizes EEU relative to PR (namely, TakeA) is 100,
and the EEU of the option that maximizes EEU relative to PR (namely,
TakeA) is 100(1/3). Moreover, Claim 1, together with the transparency
assumption, entails that p(TakeAlLookR) = 1. Since p(PredictAlTakeA) = 1
and p(RjPredictA) = 1/4, it follows that p(RILookR) 1/4. Hence, by
equation (3.4),

EEU(LookR) = 100(1/4) + 100(1/3)(3/4) = 50.

Next consider the option of looking at the green switch. The associated
evidence partition is {G, -,G}. We saw above that the EEU of the option
that maximizes EEU relative to PG (namely, TakeB) is 100, and the EEU of
the option that maximizes EEU relative to PG (namely, TakeB) is 100(1/3).
Moreover, Claim 2, together with the transparency assumption, entails that
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p(TakeB|LookG) = 1. Since p(PredictBlTakeB) = 1 and p(GjPredictB) =
1/4, it follows that p(GjLookG) = 1/4. Hence, the EEU of looking at the
green switch is also 50.

It is simple to confirm that EEU(TakeA) = EEU(TakeB) = 50 as well.
After all, p(InAITakeA) = p(InBITakeB) = 1/2. Hence, before looking at
a switch, the EEUs of each of Sue's four options are equal. Hence, EDT
initially permits Sue to take any option, including either evidence gathering

option. Claim 3 follows. Hence, EDT permits rationalization in The Switch

Problem.

CDT handles The Switch Problem much more sanely. Like EDT, CDT ini-

tially permits each of Sue's four options. The question is whether the demands

of CDT change after Sue looks at a switch. Whether they do depends on Sue's

beliefs about which box she will ultimately decide to take. We have not yet said
anything about those beliefs, so, from a causalist perspective, our problem is

not yet fully specified. Let us fully specify it. Let us stipulate that Sue is max-

imally unsure about what she will do, so that p(TakeA) = p(TakeB) = 1/2.
We can now show that the CEU of taking box A will always equal the CEU
of taking box B, no matter what Sue learns after looking at a switch.

Suppose that Sue looks at the red switch and learns R. Then her updated
causal expected utilities are as follows:

CEUR(TakeA) = PR(InA)(100).

CEUR(TakeB) = PR(InB)(100).

Since Sue's degrees of belief are split evenly over her options, they are also
split evenly over the two possible predictions. Hence, the four possibilities in

which the red switch is on are equiprobable. Half of those possibilities are
ones in which box A contains $100, and the other half are ones in which box

B contains $100. Hence, pR(InA) = pR(InB) = 1/2. Hence,

CEUR(TakeA) = 50 = CEUR(TakeB).

By the symmetry of the problem, parallel reasoning shows that

CEUR(TakeA) = 50 = CEUR(TakeB),

as well. Indeed, the same holds true for the causal expected utilities of Sue's

options after looking at the green switch.

What happens if we relax the assumption that Sue is maximally unsure of

what she will do? Then CDT's recommendations may change. For instance,
if Sue is antecedently certain that she will take box A, and she sees that the
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red switch is on, then CDT requires that she take box A. 9 But if, on the other

hand, Sue sees that the red switch is off, CDT requires that she take box

B." So, although CDT sometimes changes its requirements, Sue cannot be

antecedently certain about the way in which the theory will change its recom-

mendations, since she cannot be antecedently certain that-for example-the

red switch is on. As we saw in 3.1, there is nothing odd about rationalizations

that aren't anticipated with certainty. So there is nothing odd about CDT's

treatment of The Switch Problem.

3.5 Managing Rationality

The Switch Problem is similar to Viewcomb in that the agent can predict with

certainty that if she makes a particular observation, the demands of evidential

rationality will change in a particular way. In Viewcomb, the agent can predict

with certainty that if she looks in the opaque box, EDT will no longer permit

one-boxing. In The Switch Problem, the agent can predict with certainty that

if she looks at the red switch, EDT will no longer permit taking box B (and

that if she looks at the green switch, EDT will no longer permit taking A).
However, in Viewcomb, EDT does not permit gathering evidence in such a

way as to predictably manipulate the demands of rationality." This fact may

be seen as a sort of saving face for the theory. Although it is physically possible

for an agent to manipulate EDT's demands in Viewcomb (by looking in the

9Proof: Suppose that Sue learns R. By hypothesis, p(TakeA) = 1. Hence, in this
case, the causal expected utility of taking box A equals its evidential expected utility,
which, we have seen, is 100. The causal expected utility of taking box B is pR(InB)(100),
or equivalently pR(InBITakeA). We have seen that pR(InAITakeA) = 1. Hence,
pR(InB|TakeA) = 0. Hence, in this case, after learning R, Sue's causal expected utility of
taking box A exceeds that of taking box B by 100.

"Proof: Suppose that Sue learns -,R. By hypothesis, p(TakeA) = 1. Hence, in this case,
the causal expected utility of taking box A equals its evidential expected utility, which,
we have seen, is 100/3. The causal expected utility of taking box B is p-R(InB)(100), or

equivalently pR(InBjTakeA)(100). We have seen that p-R(InAITakeA) = 1/3. Hence,
p-,R(InBiTakeA) = 2/3. Hence, in this case, after learning -,R, Sue's causal expected

utility of taking box B exceeds that of taking box A, 200/3 to 100/3.
"There is a famous theorem due to I. J. Good (1967) according to which it is always

rational to gather more evidence before making a decision, provided that the cost of so

doing is negligible. Viewcomb is a counterexample to the version of Good's theorem wherein
'rational' is given an evidential interpretation. EDT's violation of Good's theorem is often

used as an argument against the theory, but Maher (1990) has shown that CDT also violates

Good's theorem on occasion. Hence, violations of Good's theorem do not, on their own, cut

any ice in the debate between EDT and CDT. Nevertheless, this paper suggests that there

is a problem for EDT surrounding its treatment of evidence gathering that arises not when

the theory prohibits the collection of cost-free evidence, but rather when it permits such

collection.
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box), it is rationally impermissible, according to the theory. If we personify

EDT as an advisor, it is as if the advisor is saying: "You should one-box. Of
course, if you look in the box, then, no matter what you see, I will tell you to
two-box. But I don't want to tell you that, since I think you should one-box.
So you shouldn't look in the box." This advice may seem odd but it is at least
self-reinforcing. The advisor acknowledges that her advice will change from
what it is at the outset, but she does not support that change.

The Switch Problem is different. There, EDT permits gathering evidence
in such a way as to predictably manipulate the demands of rationality. It is as
if the EDT-advisor is saying: "You are permitted to take box B. Of course, if
you look at the red switch, then, no matter what you see, I will tell you that
you are not permitted to take box B-that you should rather take box A. But
I have no problem telling you that. So go ahead, look at the red switch. Or
don't. I'll tell you whatever you want to hear." Not only is this advice odd,
it rings of self-doubt. Not only does the advisor acknowledge that her advice
will change, she apparently endorses that change at the outset.

To make things vivid, imagine that Sue, who only speaks English, has a
Chinese-speaking duplicate, Lu. Suppose that Sue and Lu face The Switch
Problem together, and they have shared interests: they will split whatever
earnings they make from whichever box they collectively decide to take. More-
over, they are both convinced by evidential reasoning when it comes to making
choices. At the outset Sue and Lu are indifferent as to which box to take, and
they are also indifferent as to which switch to look at. As it happens, Sue
looks at the red switch and Lu looks at the green switch. After looking at
their respective switches Sue and Lu reconvene to decide which box to take.
Sue now knows the status of the red switch (say, that it's on) and Lu knows the
status of the green switch (say, that it's off), but neither knows the statuses
of both switches, and they are unable to communicate with one another. Sue
reaches for box A but just as she is about to take it, Lu grabs her arm and
gestures for them to take box B. Sue shakes her head and points at box A.
They start fighting.

But should they fight? Sue and Lu both want the same thing. And they
both agree on how their beliefs and desires should combine to guide their
decision. Of course, they have different beliefs: Sue believes that the red
switch is on but has no idea whether the green switch is on, whereas Lu
believes that the green switch is off but has no idea whether the red switch
is on. There is nothing odd about two people with different beliefs rationally
disagreeing about what to do, even when their interests align. What is odd
is that Sue knew, in advance, that after looking at the red switch she would
prefer that they take box A, and that after Lu looked at the green switch, Lu
would prefer that they take box B. And Lu knew this as well. So they knew
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that they would fight, and they knew which sides they would be taking in the
fight. In that case, why not start fighting right then and there, before looking?
Either way, fighting over which box to take at any stage in the problem seems
perverse. The location of the money was wholly determined by the toss of a
fair coin, so, intuitively, taking either box is permissible-regardless of what
is known about the switches.

David Lewis (1981) once chided evidential decision theory for commending
"an irrational policy of managing the news." To this we should add that the
theory commends an irrational policy of managing its own requirements.

3.6 Conclusion

We began with a case in which one option-slacking off-was antecedently
irrational, and we asked whether it was possible to "rationalize" that option.
We found that it was not. It is worth noting that the case with which we
ended takes a slightly different form. In The Switch Problem, both box-taking
options are antecedently permissible, yet it is possible to render one or the
other option uniquely rational.

Two questions arise. First, is the type of rationalization permitted under
EDT in The Switch Problem any less toxic than the type of rationalization
identified in 3.1? In other words, does the fact that the initial expected
utilities of the options in The Switch Problem are equal make EDT's treatment
of the case any less problematic? I see no reason to think that it does, though
I think that this question is worth pursuing further.

Second, is it possible to design a case in which EDT permits the ratio-
nalization of an initially impermissible option? If it was, then the type of
rationalization in such a case would seem exactly analogous to the studying
problem with which we began.

Consider a variation on The Switch Problem in which there is a small
prize-say, one cent-for looking at a switch. The addition of the prize tips
the initial expected utilities in such a way that taking a box straightaway is
now impermissible. So we have designed a case in which EDT permits the
rationalization of an initially impermissible option. Still, the case is such that
the initial expected utilities of the two box-taking options are equal-a feature
not shared by the studying case. I leave it as an open question whether the
two cases can be made exactly the same.
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