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ABSTRACT

When making daily decisions, people naturally ask two questions: how soon can I
make a decision, and is it a good decision? In experimental setting, humans can subjectively
yet quantitatively assess choice confidence (i.e. how good) based on their perceptual
precision even when a decision is made without an immediate reward or feedback. Such
choice confidence has been shown to have a non-monotonic relationship with decision time
(i.e. how soon), such that choice confidence can be correlated either positively or
negatively with decision time depending on how decision time is constrained. However, the
neural mechanisms underlying the interaction between choice confidence and decision
time during perceptual decision-making are still unclear. Hence, the goals of this research
were to (1) develop dynamic computational models and to (2) find neural representations
of choice confidence in human scalp potentials.

The dynamic models of choice confidence were developed by merging two parallel
conceptual frameworks of decision-making, signal detection theory and sequential
analyses (i.e., drift diffusion model). Specifically, in order to capture the end-point statistics
of binary choice and confidence, we built on a previous study that defined choice
confidence in terms of psychophysics derived from signal detection theory. At the same
time, we augmented this mathematical model to include accumulator dynamics of a drift-
diffusion model to characterize the time-dependence of choice behaviors in a standard
forced-choice paradigm. Twelve human subjects performed a subjective visual vertical
task, simultaneously reporting binary orientation choice and probabilistic confidence. Both
binary choice and confidence experimental data displayed statistics and dynamics
consistent with both signal detection theory and evidence accumulation, respectively.
Specifically, the computational simulations showed that the unbounded evidence
accumulator model fits the confidence data better than the classical bounded model while
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bounded and unbounded models were indistinguishable for binary choice data. These
results suggest that the brain can utilize mechanisms consistent with signal detection
theory to assess confidence when observation duration is externally controlled.

As a neural mechanism that binds choice action and confidence, a fronto-parietal

network has been implicated. Such bi-local neural circuitry is consistent with dual-route
model of metacognition, in which the prefrontal cortex supervises and evaluates object-
level parietal cortex. However, the neural dynamics underlying the interaction between
choice confidence and decision time in the fronto-parietal network during the perceptual
decision-making have yet to be elucidated. Here we show in fifteen human subjects that
choice confidence contributes to frontal event-related potential (ERP) during a pre-
decisional stage when choice accuracy is emphasized over speed during a free response

task. We found that the second positive peak, particularly the curvature, of the stimulus-

locked frontal ERP at 400-600ms covaries with confidence while the amplitude of the

centro-parietal ERP increases with faster decision response time during the same time

interval. This finding provides evidence for a causal role of confidence in perceptual
decision-making, complementing earlier ERP evidence supporting a retrospective role.

Altogether, these results suggest that an internal representation of choice

confidence evolves concurrently with choice action prior to reporting a decision.
Furthermore, the non-monotonic dynamics of confidence arise from its dual roles that may

be determined by the prior expectation of decision time constraint. In other words, the

causal role of confidence may underlie the negative correlations between choice confidence

and decision time behaviors while the retrospective role may underlie the positive
correlations.

Thesis Advisor: Daniel M. Merfeld, Ph.D.
Title: Professor of Otolaryngology, Harvard Medical School
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INTRODUCTION

Decision-making spans scientific disciplines ranging from neuroscience to

experimental psychology to neuroeconomics and is a fundamental component of cognition.

Perceptual decision-making is commonly used as a tool to investigate both cognitive

decision-making and sensory perception. In sensory perception, humans can judge

probabilistic confidence associated with choice accuracy (Graziano, Parra, & Sigman, 2015;

Lichtenstein, Fischhoff, & Phillips, 1977; Yi & Merfeld, 2016) even when an immediate

consequence such as reward or punishment is not apparent. Such choice confidence has

been shown to vary non-monotonically with decision time (Baranski & Petrusic, 1998;

Drugowitsch, Moreno-Bote, & Pouget, 2014; Moran, Teodorescu, & Usher, 2015; Pleskac &

Busemeyer, 2010; Sanders, Hangya, & Kepecs, 2016; Vickers & Packer, 1982). Specifically,

choice confidence was shown to increase with increasing decision time when decision time

was constrained by experimenter (Pleskac & Busemeyer, 2010; Vickers & Packer, 1982).

On the other hand, choice confidence was shown to increase with decreasing decision time

when decision time was unconstrained with choice accuracy emphasized over speed

(Baranski & Petrusic, 1998; Drugowitsch et al., 2014; Sanders et al., 2016; Vickers & Packer,

1982).

Such an invertible association between choice confidence and decision time can be

interpreted as confidence taking a dual role in decision-making. For instance, under heavy

time constraints, confidence takes a retrospective role (Fleming, Weil, Nagy, Dolan, & Rees,

2010) - 'I am less confident because I didn't have enough time'. On the contrary, under

minimal time constraints, confidence plays a causal role (Del Cul, Dehaene, Reyes, Bravo, &

Slachevsky, 2009) -'I decided sooner because I felt more confident'. To explain these two

different roles of confidence, two competing classes of metacognitive models, dual-route

(Nelson, 1990) and hierarchical (Shallice, Burgess, & Robertson, 1996) models, have been

proposed (Fig. 1). In both models, choice confidence and choice action such as decision

time and binary choice are processed in separate loci, illustrated as conscious and

unconscious processes in Figure 1. Here, unconscious processes handle bottom up sensory

information processing in sensory cortices in the posterior part of the brain (Fleming &

Dolan, 2012; Gu, Fetsch, Adeyemo, Deangelis, & Angelaki, 2010; Kandel, Schwartz, Jessell,
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Siegelbaum, & Hudspeth, 2000; Lau & Rosenthal, 2011). On the other hand, conscious

processes in the prefrontal cortex impose top down executive control over the unconscious

process by evaluating the sensory information and supervising subsequent processing

(Fleming & Dolan, 2012; Fleming et al., 2010; Kandel et al., 2000; Lau & Rosenthal, 2011).

Dual-Route Model
a Physiology Behavior

Conscious Process Subjective Reports
Prefrontal Cortex (e.g. Confidence)

Stimulus

Unconscious Process Task Performance
Posterior Cortex (e.g. Response time,

Choice accuracy)

(e.g. LIP neurons,
Central-parietal scalp potentials)

Hierarchical Model
b Behavior

Task Performance
(e.g. Response time, Subjective Reports

Choice accuracy) (e.g. Confidence)

Unconscious Process Conscious Process
Posterior Cortex Prefrontal Cortex

(e.g. LIP neurons, (e.g. Orbitofrontal neurons,
Central-parletal scalp potentials) central-parietal & frontal

scalp potentials)

Physiology

Figure 1. Dual-route and hierarchical models of metacognition.

a Dual-route model and b hierarchical model adopted from (Lau & Rosenthal, 2011).

Neural correlates associated with choice action were found in the lateral intra-parietal

cortex in non-human primates and in the parietal scalp potential in humans (T. Hanks,

Kiani, & Shadlen, 2014; T. D. Hanks, Ditterich, & Shadlen, 2006; O'Connell, Dockree, &

Kelly, 2012; Shadlen & Newsome, 2001). These data suggest the unconscious

processes contributing to task performance. a In a dual-route model (Nelson, 1990),

both processes governing confidence and choice action can evolve concurrently.

However, neural evidence for pre-decisional confidence contributing to task
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performance is lacking, which is highlighted by the gray shaded box. b In a hierarchical

model (Shallice et al., 1996), confidence is assumed as a post-decisional process.

Here, neural evidences include orbitofrontal neurons' firing rate and frontal scalp

potentials that covary with choice confidence(Graziano et al., 2015; Kepecs, Uchida,

Zariwala, & Mainen, 2008).

In dual-route models (Fig. 1a), these two processes are assumed to occur

concurrently, with conscious processes contributing to both confidence and choice action.

On the other hand, hierarchical models (Fig. 1b) assume that confidence is processed after

a choice action and that choice action is predominantly driven by an unconscious process.

Therefore, a primary difference between dual-route and hierarchical models is the

temporal inter-relationship between the unconscious and conscious processes. This may

underlie the non-monotonic relationships between confidence and decision time in human

behavior. However, the detailed mechanisms connecting the metacognition and human

decision behaviors remains elusive since evidence supporting concurrent conscious

processes found in dual-route models (gray box in Fig. la) is lacking.

Hence, a general question here is whether confidence is truly a post-decisional (i.e.

hierarchical) process, or has direct evidence for pre-decisional contributions of confidence

on decision-making just not yet been discovered? In order to investigate this question, we

undertook a multi-disciplinary approach combining experimental psychology,

computational modeling, and functional neural imaging. Specifically, human choice

behavioral data was collected in a controlled environment using standard experimental

psychology methods; computational models were developed in order to infer underlying

mechanisms and the resulting dynamics of human choice behavior. Furthermore, human

scalp potentials were measured to infer neural activities associated with choice behaviors

and their temporal inter-relationships.

In order to help elucidate mechanisms consistent with non-monotonic dynamics of

choice confidence, two experiments were performed that imposed different constraints for

the decision time. In the first experiment, a forced-choice paradigm was used; for this

paradigm, stimulus duration was controlled by operators. This in effect constrained the

decision response time to occur after the stimulus offset. In the second experiment,
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decision time was unconstrained by using a free response task, which allowed subjects to

control the stimulus duration. As a result, choice confidence showed opposing dynamic

findings in these two experiments: choice confidence increased with longer stimulus when

decision time was constrained, but choice confidence decreased with longer decision time

when decision time was unconstrained. Here, because forced-choice tasks, without

rewards or feedback, are ubiquitous and because no mechanistic model has been

established for such tasks, a goal in modeling was to define a decision-making mechanism

that explained the dynamics of forced-choice behaviors by developing and comparing

computational models. On the other hand, human scalp potentials were measured in order

to find direct neural evidence for pre-decisional confidence as predicted by dual-route

model (gray box in Fig. 1a). Here, a free response task was used, which in effect

complemented the post-decisional neural evidence found for a forced-choice task

(Graziano et al., 2015; Zizlsperger, Sauvigny, H Andel, & Haarmeier, 2014).

In the first study (Lim, Wang, & Merfeld, Accepted 2017), using a forced-choice tasks

in which observation duration is constrained but response time is not, we investigated: (1)

whether perceptual choice and confidence mechanisms include evidence accumulation and

(2) whether such evidence accumulation is terminated by decision bounds. In short, two

accumulator models - bounded DDM with "absorbing" bounds (Ratcliff & McKoon, 2008)

and unbounded DDM without decision bounds - were augmented to include confidence

probability judgments (Yi & Merfeld, 2016). Then these models were compared with

empiric SVV binary choice (i.e., is the visual scene tilted left or right?) and confidence (i.e.,

what is the probability that the choice is correct?) data obtained from 12 human subjects

who performed a forced-choice signal-detection direction-recognition task while

simultaneously reporting their choice confidence. We report that forced-choice SVV choice

confidence data were not matched by the bounded DDMs. Data were well matched by the

unbounded DDM having a mechanism that continually accumulates information

throughout stimulus presentation (i.e., decision boundaries do not interfere with continual

evidence accumulation). This establishes the drift diffusion model having no bounds as a

mechanistic confidence model for this forced-choice subjective visual vertical (SVV)

direction-recognition task. While we focus our analysis on a simple drift diffusion model,

we also show that other DDM variants (e.g., collapsing bounds, urgency signal, high-pass
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filtering) yield the same conclusion regarding the contribution of boundaries, which

highlights the robustness of our primary finding that decision boundaries have little, if any,

impact on confidence for our forced-choice signal-detection SVV task.

In the second study, we hypothesized that there is a pre-decisional process that

directly governs confidence concurrently with choice action. Given that perceptual

decision-making is a rapid process, typically taking less than 1sec, we exploited the high

temporal resolution of EEG in order to investigate the pre-decisional dynamics of frontal

and centroparietal brain activities associated with choice confidence and decision time.

Here, we dissociated a choice confidence component from a decision time component by

recording high-density (64 channel) EEG while measuring binary choice accuracy, decision

time, and choice confidence from 15 human subjects. In particular, we report a pre-

decisional ERP component from the frontal areas between 400ms and 600ms from the

stimulus (SVV) onset. We also present the dynamics of frontal and centroparietal ERP's

with respect to two temporal events, stimulus onset and RT. Specifically, while the frontal

ERP predominantly represents confidence near the onset (400-600ms), the association

with decision time grows near the RT to yield a comparable representation for both

confidence and decision time. After the response, the frontal ERP is reduced significantly. In

comparison, the effect of choice action dominates the measured centroparietal ERP

throughout - from the stimulus onset as well as both before and after the RT.
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Abstract

Humans can subjectively yet quantitatively assess choice confidence based on perceptual

precision even when a perceptual decision is made without an immediate reward or

feedback. However, surprisingly little is known about choice confidence. Here we

investigate the dynamics of choice confidence by merging two parallel conceptual

frameworks of decision-making, signal detection theory and sequential analyses (i.e., drift

diffusion modeling). Specifically, in order to capture end-point statistics of binary choice

and confidence, we built on a previous study that defined choice confidence in terms of

psychophysics derived from signal detection theory. At the same time, we augmented this

mathematical model to include accumulator dynamics of a drift-diffusion model to

characterize the time-dependency of the choice behaviors in a standard forced-choice

paradigm in which stimulus duration is controlled by the operator. Human subjects

performed a subjective visual vertical task, simultaneously reporting binary orientation

choice and probabilistic confidence. Both binary choice and confidence experimental data

displayed statistics and dynamics consistent with both signal detection theory and

evidence accumulation, respectively. Specifically, the computational simulations showed

that the unbounded evidence accumulator model fits the confidence data better than the

classical bounded model, while bounded and unbounded models were indistinguishable for

binary choice data. These results suggest that the brain can utilize mechanisms consistent

with signal detection theory - especially when judging confidence without time pressure.



New and Noteworthy

We found that choice confidence data show dynamics consistent with evidence

accumulation for a forced-choice subjective visual vertical task. We also found that the

evidence accumulation appeared unbounded when judging confidence, which suggests that

the brain utilizes mechanisms consistent with signal detection theory to determine choice

confidence.

Introduction

Decision-making spans scientific disciplines ranging from neuroscience to

experimental psychology to neuroeconomics and is a fundamental component of cognition.

Perceptual decision-making is commonly used as a tool to investigate both cognitive

decision-making and perception. To advance our understanding of both human perception

and human cognitive decision-making, we performed studies, in which human subjects

performed a standard and easily reproduced forced-choice decision-making task that

utilized subjective visual vertical (SVV) stimuli (Baccini, Paci, Del Colletto, Ravenni, &

Baldassi, 2014). We specifically chose an SVV direction-recognition task because SVV may

be the most well-studied visual-vestibular perception in humans (Baccini et al., 2014;

Barnett-Cowan, Dyde, Thompson, & Harris, 2010; Clemens, De Vrijer, Selen, Van Gisbergen,

& Medendorp, 2011; De Vrijer, Medendorp, & Van Gisbergen, 2009; Dyde, Jenkin, & Harris,

2006; Howard & Templeton, 1966; Sch6ne & De Haes, 1968; Vingerhoets, De Vrijer, Van

Gisbergen, & Medendorp, 2009), including possible clinical utility (Barnett-Cowan, Dyde,

Fox, et al., 2010; B6hmer & Rickenmann, 1995; Cohen & Sangi-Haghpeykar, 2012; Dieterich

& Brandt, 1992; Dieterich, P6llmann, & Pfaffenrath, 1993; Vibert & Hsusler, 2000; Vibert,

Hsusler, & Safran, 1999; Zwergal et al., 2009). Furthermore, decisions based on vertical

perception are fundamentally important; most of us regularly make life or death decisions

(e.g., while driving, biking, and/or while reaching on a ladder) related to vertical

perception.
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As noted in an influential review (Gold & Shadlen, 2007a) two conceptual

frameworks - signal detection theory and sequential analysis - are commonly used to

study perceptual decision-making. Sequential analysis (Wald, 1947), which is sometimes

called drift diffusion modeling (DDM) (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;

Ratcliff, 1978; Stone, 1960), is commonly used to model response-time tasks in which

subjects are provided a stimulus and tasked to respond as soon as they make their decision.

Such drift diffusion models are commonly recognized as mechanistic hypotheses for how

the brain accumulates information to make decisions (Kiani, Hanks, & Shadlen, 2008;

O'Connell et al., 2012; Ratcliff, 1978; Ratcliff & McKoon, 2008). This sequential analysis

approach has been so successful that a family of such models have evolved in the literature

- including collapsing bounds models (Bowman, Kording, & Gottfried, 2012; Milica,

Jonathan, Alexander, Christof, & Antonio, 2010; Ratcliff & Frank, 2012), urgency signal

models (Churchland, Kiani, & Shadlen, 2008; Cisek, Puskas, & El-Murr, 2009; Thura,

Beauregard-Racine, Fradet, & Cisek, 2012), and models with high-pass dynamics (Bogacz et

al., 2006; Busemeyer & Townsend, 1993; Merfeld, Clark, Lu, & Karmali, 2015; Tsetsos, Gao,

McClelland, & Usher, 2012; Usher & McClelland, 2001). Models that form this DDM family

integrate noisy information over time to yield a decision-variable that represents

accumulated information; these models "make" a decision when the decision-variable

crosses a decision bound (Ratcliff & Rouder, 1998).

Signal detection theory (Green & Swets, 1966; Macmillan & Creelman, 2005) is a

second framework used to study decision-making and is certainly among the most widely

used and most successful formalisms used to study perception and psychophysics. Signal

detection theory is commonly applied during the analysis of data obtained using forced-

choice tasks in which the operator controls all aspects of stimulus presentation (e.g.

amplitude, duration), and the subject must provide a response after the stimulus

presentation is over. Unlike evidence accumulation models that model hypothesized neural

mechanisms, signal detection theory is a statistical model that does not explicitly model an

underlying neural mechanism for evidence accumulation. In fact, many studies using

forced-choice signal-detection tasks do not posit an explicit mechanistic model of the

decision-making process, but some have applied sequential analyses (Ratcliff & McKoon,
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2008) - in large part, because such sequential analyses have been so successful in their

ability to model response-time data.

When sequential analyses have been applied to forced-choice signal-detection tasks,

several models assumed that the same decision bounds successfully used for response-time

tasks were applicable. For example, previous studies terminated the accumulation process

whenever a decision bound was crossed (Ratcliff, 2006; Ratcliff & McKoon, 2008), which

precisely replicates how these models work for response-time tasks. This bounded DDM

has been referred to as having "absorbing" bounds (Diederich, 1997). Such a DDM with

absorbing bounds was later combined with signal detection theory to address forced-

choice tasks. Specifically, a "partial information model" (Ratcliff, 2006) allowed part of the

binary choice to be made when accumulated evidence crossed bounds with the remaining

portion of the choice determined by signal detection theory using the end-point statistics.

Moreover, a leak mechanism replacing the bound mechanism was proposed (Busemeyer &

Townsend, 1993) in order to better capture the decision dynamics and the speed-accuracy

trade off in forced-choice paradigms (Bogacz et al., 2006; Usher & McClelland, 2001). To

compare decision dynamics of the leaky integrator model and DDM in forced-choice

paradigms, decision bounds were removed from DDM- making drift variance the key

parameter determining the dynamics of the stochastic information accumulation (Usher &

McClelland, 2001). This study showed that both an unbounded DDM and and an

unbounded leaky integrator fit the time-accuracy data better than fits provided by bounded

models (Usher & McClelland, 2001). As for the speed-accuracy trade-off, it was shown that

the DDM bounds are modulated in forced-choice paradigms to maximize the reward rate

when reward is provided (Bogacz et al., 2006).

Since forced-choice signal-detection tasks, without rewards or feedback, are

ubiquitous and because no mechanistic model has been established for such tasks, our goal

was to determine the pertinent decision-making mechanism for forced-choice signal-

detection tasks. More specifically, using forced-choice tasks in which observation duration

is constrained but response time is not, we investigated: (1) whether perceptual choice and

confidence mechanisms include evidence accumulation and (2) whether such evidence

accumulation is terminated by decision bounds. In short, two accumulator models,

bounded DDM with "absorbing" bounds (Ratcliff & McKoon, 2008) and unbounded DDM
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without decision bounds, were augmented to include confidence probability judgments (Yi

& Merfeld, 2016). And then these models were compared with empiric SW binary choice

(i.e. is the visual scene tilted left or right?) and confidence (i.e. what is the probability that

the choice is correct?) data obtained from 12 human subjects who performed a forced-

choice signal-detection direction-recognition task while simultaneously reporting their

choice confidence.

We report that forced-choice SW! choice confidence data were not matched by the

bounded DDMs. Data were well matched by the unbounded DDM having a mechanism that

continually accumulates information throughout stimulus presentation (i.e., decision

boundaries do not interfere with continual evidence accumulation). This establishes the

drift diffusion model having no bounds as a mechanistic confidence model for this forced-

choice subjective visual vertical (SW) direction-recognition task. While we focus our

analysis on a simple drift diffusion model, we show that other DDM variants (e.g.,

collapsing bounds, urgency signal, high-pass filtering) yield the same conclusion regarding

the contribution of boundaries, which highlights the robustness of our primary finding that

decision boundaries have little, if any, impact on confidence for our forced-choice signal-

detection SW task.
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Methods

Human Studies

The MEEI Human Studies Committee and MIT Committee on the Use of Humans as

Experimental Subjects approved the study, and informed consent was obtained. Twelve

normal volunteers (7 females, 5 males, mean age 31, range 20 to 55 years) participated in

the study. Each subject answered health questionnaires, including vestibular function

history. All 12 subjects had normal vision after correction; 3 required correction via contact

lenses.

The task was to report the perceived orientation of a visual object displayed on a

computer monitor. In each trial, a stationary Gabor patch (Baccini et al., 2014)was

displayed at the center, and subjects indicated whether the Gabor appeared tilted left

(CCW) or right (CW) of subjective vertical (upright) after the Gabor turned off. Subjects

reported simultaneously the binary orientation choice (left or right) and choice confidence

by tapping on an iPad screen (Fig. 2). Subjects were informed that confidence is defined as

the probability that their choice is correct. The confidence ranged between 50% and 100%

with 1% resolution, with 100% being the highest confidence and 50% indicating a random

guess.

The stimulus was applied with 5 durations (105, 200, 400, 800, and 1600ms) in

order to investigate the time-dependency of binary choice accuracy and choice confidence.

Also, in order to obtain a psychometric function for each duration, a fixed-interval non-

adaptive procedure was used. In other words, stimuli were provided at 7 tilt magnitudes

(0.3, 0.5, 0.8, 1.3, 2.1, 3.3, and 5.50) regardless of the perceptual thresholds of individual

subjects. When combined with the two tilt directions (left and right), this yielded 14 tilt

amplitudes between -5.5 and +5.5". The experiment consisted of 900 trials in total per

subject, carried out in 5 blocks of 180 trials. 5 durations and 14 amplitudes were randomly

interleaved within a block. Prior to the main data collection, a short practice session

consisting of -10 trials was performed in order to familiarize our subjects with the task.

A visual fixation point was displayed during inter-trial intervals of 2000 ms, and

each Gabor stimulus was followed by a visual masker without orientation cues (i.e. a bulls

eye target of the same size as the Gabor) to disrupt the influence of any Gabor afterimage
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that may have been present (Fig. 2). The iPad turned on only after the Gabor turned off, and

then the iPad turned off after the subject submitted a response. The visual scene was

displayed on a computer monitor (Asus VG248QE) and was generated using Psychtoolbox

(Brainard, 1997) at a refresh rate of 144Hz. The Gabor patch had a visual angle of 70 in

diameter (Lopez, Mercier, Halje, & Blanke, 2011) with 2-cycle/" and 80% contrast (Baccini

et al., 2014). Subjects viewed the display through a round window having a 200 viewing

angle at a distance 85cm from the eyes inside a dark chamber. Subjects rested their chins

on a chin bar to hold their head in a steady position throughout the experiment.

Fixation dot

-2000 ms

Gabor Stimulus

[Stimulus Onset] 0 ms

Masker

[Stimulus Offset] 105-1600 ms "R9
97% 6

Confirmi

no

Figure 2. Experimental procedure for a forced-choice SW orientation-recognition task

Subjects simultaneously reported both orientation choice and confidence after the

Gabor stimulus turned off. The observation duration was controlled by the experimenter,

pseudo-randomly selected among the 5 stimulus durations (i.e., between 105ms and

1600ms). Stimui were presented on a computer monitor through a round window, and

the subject response was obtained via iPad.
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Computational Models

In this study, we compare four drift-diffusion models (DDM's) that differ in the

dynamical features of evidence accumulation and decision bounds. These four models

include a pure DDM (pDDM), a collapsing bound DDM (cbDDM), an urgency signal DDM

(usDDM), and a high-pass filter DDM (hpfDDM). Figure 3 illustrates the dynamics of the

four DDM's, and a list of the model parameters are provided in Table 1. Here, pDDM is the

simplest model consisting of an integrator that accumulates sensory evidence until the

evidence crosses a fixed decision bound (Fig. 3 Top Left). In cbDDM, the dynamics of

evidence accumulation is identical to pDDM, but the decision bounds collapse over time

instead of being constant (Fig. 3 Top Right). In usDDM, a signless urgency signal is added to

the accumulated evidence in order to boost the signal to cross the bounds earlier (Fig. 3

Bottom Left). Lastly, in hpfDDM, older information leaks away to weigh more recent

information when accumulating the sensory evidence (Fig. 3 Bottom Right). Figure 3 also

illustrates how the decision bounds affect the binary response statistics, such as choice

accuracy (i.e. percent choosing a positive choice when given positive stimulus) in forced-

choice paradigm. For instance, in bounded DDM's, the probability choosing a positive

choice %(+) is determined by applying the partial information model (Ratcliff, 2006). In the

partial information model, part of the choice is determined when accumulated evidence

crosses a bound, and the remaining portion of the choice is determined by the position of

the accumulated evidence. Figure 3 shows sensory evidence accumulation in response to

positive stimulus. In Figure 3, the probability of accumulated evidence crossing a positive

bound A at any time during stimulus presentation is depicted by the gray curve labeled

RT(+), which shows a response time (RT) distribution. Then by tend, the total percent

crossing a bound equals the area under the distribution curve (e.g. gray area under RT(+)

curve). For the remaining proportion that did not cross a bound by tend, the total

probability of the accumulated evidence positioned between the mean neutral point (zo)

and the positive bound A (e.g. gray area under vertical bell curve) contribute to positive

choice. Hence, for bounded DDM's, the total choice accuracy when given a positive stimulus

is the sum of two gray areas in Figure 3. On the contrary, in the unbounded DDM's, the

choice is determined only by the position of the accumulated evidence at tend. In Figure 3,
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the vertical black bell curve illustrates the probability of the accumulated evidence

positioned at tend, and the total %(+) equates the black area under the distribution curve.

pDDM
RT(+

A

ZO

-A

A

-A

0

A

zO

-A

t

cbDDM

t -

Bounded Accumulator with Partial Information %(+) = Area (M)

Unbounded Accumulator %(+) = Area (U)

usDDM hpfDDM

A

zo

-A

:7'

- -- --- -------

0 t 0 't

Figure 3. Four drift-diffusion model variants - each including both signal detection theory

and partial information for a total of 8 models

Each panel shows one of four individual models, pDDM, cbDDM, hpfDDM, and usDDM.

See extended text sections describing the details of each of these four models. Each

panel also shows two variants representing signal detection theory and partial

information models. As the mean accumulated evidence (thick solid black) increases

over time, the variance (light gray shade showing the standard deviation) increases as

well. An example decision variable (i.e. accumulated evidence) for a single trial is

shown as the jagged thin black line, which starts at mean decision bias zo. For the

partial information model, a decision is made whenever the decision variable crosses

one of the decision bounds (dashed black starting at A or -A). The probability of hitting

a bound, which defines the decision time distribution, is shown as dark gray curves
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above each plot. The probability of crossing the positive (+) bound is drawn on the top

of each panel, and the probability of crossing the negative (-) bound is drawn below the

negative bound, inverted. If a stimulus ends before crossing a decision bound, signal

detection theory is applied (dark gray curve in a vertical orientation at tend). In a partial

information model, the probability responding positive (% (+)) is the sum of a decision

variable's (1) probability crossing (+) bound up until the end of the stimulus at tend and

(2) the probability positioned between zo and A at tend, which corresponds to the sum of

the gray areas. On the other hand, if the binary decision is determined purely based on

end-point statistics (consistent with signal detection theory), only the position of decision

variable at the end of the stimulus tend contributes to the decision. The distribution of

decision variables at tend is shown as black bell curve in a vertical orientation. In such

case, the %(+) corresponds to the area colored black.

Table 1. Free parameters for each accumulator model

Parameter pDDM cbDDM usDDM hpfDDM Definition

a 0 0 0 0 Diffusion noise

770 0 0 Sensory noise

T 0 Leak time constant

Y0 0 0 0 Sensory bias

zo0 0 0 0 Mean decision bias

z 0 0 0 0 Decision bias range

A0 Maximum urgency signal

TA 0 Urgency signal time constant

a A A A A Decision bound

Ta A Decision bound time constant

Total # of 5 5 7 5 Unbounded models

parameters 6 7 8 6 Bounded models

0 indicates the parameters in both the unbounded and

A indicates the parameters in only the bounded models

the bounded models
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PureDDM (pDDM)

Consistent with Ratcliff's model (Ratcliff, 2006), pDDM is modeled as a simple

integrator (f )to accumulate the noisy sensory cue x over time to yield a decision variable y

such that

y =f x dt

The noisy sensory cue x is normally distributed around the noiseless stimulus level (=drift

rate in Ratcliff 2006) v with a variance 172 and a bias It, such that x-N(v - y, iq2). In

addition to sensory noise, another source of noise in Ratcliff's model is the initial offset

parameter that is uniformly distributed yo-U zO - , zo + j. During the accumulation

process, diffusion noise v-N(0, a.2) is added, yielding f = x + v.

Consistent with earlier formulations (Bitzer, Park, Blankenburg, & Kiebel, 2014; Ratcliff,

2006), this process is a Weiner diffusion process (Gardiner, 1985).

When a constant stimulus with a magnitude of v is assumed, solving for the

continuous time solution yields

y(t) = Yo + xt + W(t) (1-1)

A(t) = a (1-2)

Discrete time solutions are provided in APPENDIX I. In Equation (1-1), xt is noisy sensory

information that is accumulated over time, W(t) is diffusion noise associated with decision

(non-sensory) process, and yo is the starting point of the accumulator. The variance of yo is

-.Therefore, the expected value and the variance of y(t) are
12

E[y(t)] = zo + (v -- p)t (2-1)

Var [y(t)] = Z + .2t+r1 2 t 2  (2-2)

Collapsing bound DDM (cbDDM)

cbDDM equations range widely in terms of complexity (Bowman et al., 2012; Milica

et al., 2010; Ratcliff & Frank, 2012), but here we consider cbDDM in its simplest form

having the fewest free parameters (Milica et al., 2010). As in pDDM, the accumulation
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process remains the same (Eq's 1-1 and 2), but the decision bounds decay exponentially

towards 0 such that

A(t) = ae-r (3-2)

Urgency signal DDM (usDDM)

usDDM has an even wider range of complexity (Churchland et al., 2008; Cisek et al.,

2009; Thura et al., 2012), but as with cbDDM, we consider the simplest mechanism

(Churchland et al., 2008). In usDDM, an urgency signal A is added to accumulated sensory

evidence to make the decision variable rise faster,

y = f xdt+ A

A usually takes the form of exponentially saturating function (Churchland et al., 2008; Cisek

et al., 2009; Thura et al., 2012). One of the simpler versions of A was introduced by

Churchland (2008), who characterized the urgency signal as a half-life formula. However,

since this formula is nonlinear when expressed in discrete formulation, we here define A as

an exponential decay. Meanwhile, decision bounds stay constant in usDDM. Hence, the

continuous time solutions for usDDM are

y(t) = Yo + (v - 1)t + 11(t) + W(t) (4-1)

1(t) = Ao ( - e S) (4-2)

A(t) = a (4-3)

Here, -cus characterizes the decay rate of the urgency signal, and A,, characterizes the

maximum urgency signal. The expected value and the variance of y(t) are then

E[y(t)] = zo + (v - y)t + A0 1 - e~ (51)

Var[y(t)] = _+ .2 t+17 2 t2  (5-2)
12

High-pass filter DDM (hpfDDM)

For the hpfDDM, it is assumed that the brain considers only the more recent

information while discarding older information (Merfeld et al., 2015; Tsetsos et al., 2012;

Usher & McClelland, 2001). This mechanism of putting a time window around incoming

sensory input can be modeled as a high-pass filter (HPF), and this HPF is applied
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sequentially with a DDM. For the linear model considered herein, the order of these

processes (HPF before DDM or DDM before HPF) does not matter. The width of the time

window is characterized by a time constant -r, which can be represented by the following

expression.

y= f HPFtx) dt

Unlike previous models, the diffusion noise a for an hpfDDM is assumed to originate from

the sensory noise (i.e. r1 = a). Also, now the diffusion process is also affected by the leak

(HPF), resulting in a Langevin process (Langevin, 1908) rather than being a pure diffusion

(Weiner) process. Applying Langevin's equation (Langevin, 1908) yields a continuous time

solution with the following noise variance:

y(t) = Yo + (v - y)t (1 - e7F) + W(t), W(t)-N (0, (1 - e(6-1)

A(t) = a (6-2)

The expected value and the variance of y(t) are then

E[y(t)] = zo + (v - y)T ( 1 - e -) (7-1)

Var[y(t)] = + (1 - e T(7-2)
12 2 /

An important dynamic characteristics of an hpfDDM is that both the expected value

and the variance of the decision variable reach a steady state ((v - M)r and -+ ,
12 2

respectively) as t -> +oo. In contrast, E[y(t)] and Var[y(t)] in the other three models

diverge towards +oo as t -+ +oo. These differences play a crucial role in the assumption

about the internal representation of the decision variable noise distribution. In other

words, because the steady-state decision variable variance converges to a finite value

beyond the time constant, the neural network is not required to track the variance real

time. This means that the neurons now can establish a stationary representation of

decision noise, contrary to the other models that require non-stationary, time-dependent

noise representations. Here, we assume such steady-state stationary decision noise with

variance (Var):

VaZ[y(t) = + (7-3)
12 2
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The procedures for finding thresholds based on these four DDM's are outlined in equations

(13)~(18).

Psychophysics, Confidence, and DDM

There is a general consensus that confidence reflects the state of the decision

variables although it is still debated whether decision and confidence involve a single- or

double-stage process (Murphy, Robertson, Harty, & O'Connell, 2015; Navajas, Bahrami, &

Latham, 2016; Pleskac & Busemeyer, 2010; Rahnev, Koizumi, McCurdy, D'Esposito, & Lau,

2015; van den Berg et al., 2016; Yu, Pleskac, & Zeigenfuse, 2015). Yi and Merfeld recently

proposed a psychophysical model explaining the correlations between confidence and

perceptual precision (Yi & Merfeld, 2016). Here we combine this earlier confidence model

with a DDM. Perceptual precision is effectively modeled as a sigmoidal psychometric

function based on signal detection theory (Green & Swets, 1966; Merfeld, 2011; Wichmann

& Hill, 2001). This function represents perceptual noise, and thresholds are defined in

terms of the spread parameter a- of such distribution. Unlike in Yi and Merfeld (2016) that

developed the model in the stimulus domain, here we define confidence in terms of the

decision-variable (i.e. define confidence in terms of y instead of v).

The direction-recognition psychometric function is typically modeled as the

probability of choosing a positive choice given a stimulus in the form of cumulative

Gaussian function,

Pr(+j v, t) = cP(E[y(v, t)]; zo, Var[y(t)]), (8-1)

where E[y(v, T)] indicates the expected decision variable driven by the stimulus v with a

duration t. Then each individual y(v, t) is a random variable from each trial such that

y(v, t)-N(E[y(v, t)], Var[y(t)]). Therefore the probability density of y(v, t) is a Gaussian

function

p(y(v, 0) = /(y(v, t); E[y(v, t)], Var[y(t)]) (8-2)

Confidence is an internal probabilistic representation of choice accuracy given the

decision variable that is driven by the stimulus. Taking Yi's mapping of confidence from the

psychophysics, confidence on a single-trial basis can be obtained from

conf = c1(y(v, t); zo, K(t) -Var [y(t)]) (9)
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where K(t) is a confidence factor at time t, K < 1 indicating overconfidence and K > 1

indicating underconfidence (Yi & Merfeld, 2016). Here, as an empiric model required to

match data, K(t) is modeled as an exponentially decaying function such that

K(t) = (KO - Ko)e-t/rc + Ko (10)

since K showed time-dependence as shown in the supplement (Fig. 4L). The probability

density of confidence can be obtained through a coordinate conversion from the stimulus

domain in Eq. (9) to the confidence domain by substituting y(v, t) = c- (conf; 0, K-

Var[y(t)]) from Eq. (9) into Eq. (8-2),

p(conf) = <p(c -'(conf; zo, K(t) - Var[y(t)]); E[y(v, t)], Var[y(t)]) (11)

When expressed as a discrete probability density, Eq. (11) becomes equivalent to the

confidence density equation (Eq. 2) in Yi and Merfeld (2016).

p(conf) ~ Pr (conf - < conf < conf + (12)

= 0 (-1 (conf +- zo, K(t) -Var[y(t)]; E [y(v, t)],Var[y(t)]

-( (-1 (conf - - , K(t) - Var[y(t)]); E[y(v, t)], Var[y(t)]

In Eq. (12), Ac is the resolution allowed for the confidence response. In this study, subjects

reported confidence with a 1% resolution (Ac = 1%).

Perceptual Threshold in Unbounded DDM's

In unbounded DDM's, as illustrated in Figure 3, the final position of the decision

variable determines the categorical response. This is consistent with signal detection

theory (SDT) that assumes no decision bounds, in which the end point statistics determine

the probability correct. In binary forced-choice paradigms where there are only two choice

categories (positive or negative as in Fig. 3) a decision variable greater than 0 (or zo) yields

a positive response. In the direction-recognition paradigm that was utilized in several

studies investigating the precision of vestibular perception (Grabherr, Nicoucar, Mast, &

Merfeld, 2008; Karmali, Lim, & Merfeld, 2014; Lim, Karmali, Nicoucar, & Merfeld, 2017;

Valko, Lewis, Priesol, & Merfeld, 2012), the threshold is defined at the stimulus level that

would yield 84% (1a-) correct direction choice. In DDM's, this corresponds to the stimulus

level v at which E[y(v, t)] = Var[y(t)]. Then solving for v gives the direction-recognition
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threshold Tm,SDT(t) as a function of stimulus duration t for pDDM. Subscript m indicates

the DDM variant (p, cb, us, or hpf). Hence the threshold expressions for the four models are

z2  
j20

TP,SD7(t) = Tcb,SDT(t) =It 2

212t! 2  
L

Tus,SDT = 2 Z+O2LO (14)

z2  
f2

Thpf,SDT(t) = (- 2TYV e- + i (15)

For cbDDM, because SDT assumes no decision-boundary, Tcb,SDT =Tp,SDT(t) as in

Equation (13). In Equations (13) and (14), even though the accumulated evidence

approaches infinity with increasing time, the threshold approaches a non-zero asymptote

because the variance also increases at a comparable rate. Therefore, the steady-state

threshold asymptotes to qj + ft as t -> oo for pDDM, cbDDM, and usDDM. hpfDDM threshold

also asymptotes but to a different steady-state -+ - + y as t - oo.
12  2r

Perceptual Threshold in Bounded DDM

In the past, response time (RT) and choice accuracy (Hawkins, Forstmann,

Wagenmakers, Ratcliff, & Brown, 2015; Ratcliff, 2006; Ratcliff & Rouder, 1998; Usher &

McClelland, 2001) were used to verify DDM. Although the experimental design herein does

not allow RT measurement, the mathematical expression for choice accuracy can still be

derived while assuming absorbing decision bounds. For instance, the decision process

terminates when a decision variable hits a bound at any time before the stimulus ends, and

the choice accuracy corresponds to the cumulative probability of hitting the correct bound

plus the remaining decision variables on the correct side (Ratcliff, 2006). This concept of

applying SDT to only the decision variables that did not reach a decision bound was

proposed as "partial information theory" (Ratcliff, 2006). Since this study investigated

direction-recognition decision processes, two decision bounds A or - A are assumed. At

time t, the probability of a decision variable yt hitting either A or -A is denoted as Prt. This
A

Prt is the union of the probability of Pr(yt > A) and Pr(yt < -A):
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Prt = Pr(yt > A) + Pr(yt < -A) (16)
A

Then the probability of a decision variable yt hitting one particular bound is the joint

probability between the proportion that remains after the previous time t - At and the

probability of the current yt distance being greater than the distance to the bound:

Pr(yt > A) = {1 - Pri) - {1 - cD(A; E[yt], Var[yt])} (17-1)

Pr(yt <-A) = {1 - - Pr1 ) - {cD(-A; E[yt], Var[yt])} (17-2)

The probability density of the correct RT given positive stimulus (e.g. response the positive

direction given the positive stimulus) is provided in Eq. (17-1) while the incorrect RT (e.g.

response in the negative direction given the positive stimulus) is provided in Eq. (17-2).

Based on these, the choice accuracy is the sum of all the correct RT probability up until t

and the remaining decision variables that are closer to the correct bound (equivalently

above zo given positive stimulus) at t. For Prt defined as the total choice accuracy, Prt is the
C C

sum of probability correct when given positive stimulus Prt (+I v > p) and when given
C

negative stimulus Prt(-Iv <M).
C

Prt(+Iv > y) = Z =At Pr(y > A1) + I1 - t Pr) - Pr(yt > zo) (18-1)

Prt(-Iv < y) = Z =At Pr(y < -Ai) + {1 - = Pr1 ). Pr(yt < zo) (18-2)

Prt=Prt(+Iv > y) - Pr (v > pi) + Prt(-Iv < y) - Pr (v < y) (18-3)
C C C

Solving for v(Prt = 0.84) yields the threshold prediction as a function of time. Because of
C

the iterative nature of Eq. (18), an analytical threshold expression was not derived. Rather,

these equations were solved numerically via DDM modeling.

Fitting

Fitting a psychometric function to binary responses

The models were fit using maximum-likelihood methods. First, the likelihood

function L for the models based on SDT (Eq. 8) was defined as the joint probability of all of

the responses R (-or +) happening given the stimulus and duration arrays V and T,

respectively, while assuming a set of free parameters for an unbounded fit model (Ut) or a

different set of parameters for a bounded ('B) fit model.
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L(RIV,T;'U) = H R=+O (E[y(V, T)]; zo, Var[y(T)]) '-FR=-1 - c(E [y(V, T)]; zo, Var[y(T)])} (19-1)

As one example, as shown in Table 1, pDDM has free parameter set U = {p, a, 1, zo, z}.

Taking a natural log of L(R IV, T; U) yields the log likelihood

InL = ER=+ ln{c (E[y(V, T)]; zo, Var[y(T)])) + R l In{1 - P(E[y(V, T)]; zo, Var[y(T)])} (19-2)

The likelihood for the bounded DDM takes a more complicated form, but is similar in

principle to Eq. (19-1),

L(R IV, T; 3) = HR=+{Prc(+Iv > , 01 HR=-( - Pr(+Iv>u, 0)1 (20-1)

- HR=-{Prc(-Iv <, ) - HR=+(l - Prc(-Iv <[y, t)))

The free parameter set here includes the bound parameter as well such that

3 = [tp, u, -q, zo, z, al for pDDM. (See Table 1 presented earlier.) Consequently, the log

likelihood of Eq. (20-1) becomes

lnL = ZR=+ln{Pr,(+Iv> X 0) + ZR=. n{(1 - Prc(+Iv > M, t)) (20-2)

+ R- ln{Prc(+Iv< t) + iR=+ln [(1 - Prc(-Iv < y, t)))

The DDM parameters, U and B, that yielded a minimum negative log-likelihood (NLL =

-InL) were found using fmincon in MATLAB.

Fitting a confidence function to confidence responses

Similar to the method used to fit binary data, the confidence models were fitted

using maximum-likelihood methods (Yi & Merfeld, 2016) when sufficient measurements

were available to calculate the likelihood. This time, instead of binary responses, the

likelihood is defined as the joint probability of all of the confidence responses C E [0 100]

happening given the stimulus and duration arrays V and T, as well as the underlying

perceptual parameters, U or B, found from the binary data fit while assuming confidence

function parameters K = {KO, K,, Tc)-

L(CIV, T, U or B; K) = H c Pr (c - '< conf < cj + (21-1)

Then the loglikelihood is

InL(CIV, T, U or B; K) = c ln Pr (c-< conf < cj + ' (21-2)

Equations 21-1 and 21-2 require the time at which the confidence is calculated since

confidence at time t is measured against Var[y(t)]. Within SDT, the confidence is calculated

always at the end of the stimulus at t=T. However, in the bounded DDM's, the time at which

39



a y(t) crosses a bound depends on the random noise driving y(t) at each trial. Such

information on timing is not available in the current experimental data where the

observation duration was controlled by the experimenter by design. Therefore, to fit the

bounded DDM's, the root-mean-squared-error (RMSE) was calculated between the

predicted confidence histogram and the observed confidence histogram for each subject.

To generate the model predictions, each DDM was simulated with 90,000 trials at each

duration for each subject with the estimated DDM parameters. The histogram (with

response proportion instead of count) was then obtained by binning the simulated

confidence using the same binning used for the observed data. The confidence parameters

that yielded a minimum RMSE were found via fmincon in MATLAB.

Goodness of fit assessment

In this study, each subject provides two related datasets, binary choice and

confidence vectors - one value for each per stimulus. The goodness of fit was evaluated

separately for the binary choice and confidence data. For binary choice data, Bayesian

Information Criterion (BIC) was calculated from the negative log-likelihood (NLL) since the

responses are in binary form.

BIC = 2NLL + In(n) k (22-1)

Here, n is the number of trials, which equals the length of binary response vector, and k is

the number of free parameters. For confidence data, BIC was calculated from RMSE such

that

BIC = m ln(RMSE2 ) + ln(m) k (22-2)

where m is the number of confidence bins. When comparing two models A and B, ABIC was

calculated such that ABICA-B = BICA - BICB, in which a positive value indicates that model

B fit is better than model A fit. When comparing multiple models, notation ABICA-,c is

used to summarize ABICA-B and ABICA-c. For example, ABICA-B,C > 0 indicates that model

A scored worse than model B and C.

Given the study design, as is not uncommon, the DDM's face an overfitting problem -

even though there are 900 trials per subject - given that there are only 5 durations to fit 5

free parameters in Eq. 10 and 6 free parameters in Eq. 11. In order to assess overfitting, log
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likelihood ratio (LLR) tests with Chi-square statistics were performed (Huelsenbeck &

Crandall, 1997; Wilks, 1938). In other words, the LLR was calculated for each model with

subsets of non-zero parameters to identify free parameters that can be eliminated.

In order to compare the unbounded and bounded model fits to the confidence data,

binomial test and Chi-square test was used to compare the model fit performances

between the unbounded and bounded models. Also, pairwise two-sided multiple

comparisons between the confidence data and each of the models was performed using the

Dwass, Steel, Critchlow-Fligner (DSCF) method.
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Results

Overview

Both perceptual choice accuracy and confidence increased with increasing stimulus

duration (Fig. 4) when stimulus duration was operator-controlled and the response was

constrained to occur after stimulus presentation was complete. In order to investigate

these dynamics, (a) two different decision bound mechanisms for (b) four variants of

accumulator models were simulated and fitted to the experimental data. Goodness of fit

analysis of confidence response showed that each of the four models performed

significantly better when sensory accumulation was unbounded. On the other hand, both

bounded and unbounded models did similarly well in describing the binary response data.

Also, goodness of fit analysis showed that unbounded pDDM (cbDDM) and hpfDDM are

indistinguishable for the stimuli used in this study but each performed significantly better

than unbounded usDDM. Prior to model fits, a parametric study was performed in order to

identify the free parameters that significantly contribute to model fit improvement. Nested

model analysis of the data from 12 subjects eliminated 3 free parameters, sensory bias,

decision bias, and decision bias range.

Perceptual decision accuracy and confidence data

Figure 4 summarizes the behavioral responses from 12 subjects. Panels A-E in

Figure 4 show psychometric functions fitted to binary choice and confidence responses.

Continuous cumulative Gaussian functions describe mean accuracy as well as median

confidence. Median confidence is used because the distribution of confidence responses is

not Gaussian (Figures 4F-J). Both choice accuracy and confidence can be expressed as

thresholds, which are, respectively, defined as the stimulus levels at which % correct and %

confidence are 84%. These binary choice and confidence thresholds are plotted against

stimulus duration in order to visualize the dynamic characteristics (Fig. 4K); thresholds

show an exponential-like decay that attains non-zero asymptotes for both binary choice

and confidence. In addition, the mean confidence factor K(t) shows time-dependency (Fig.

4L). Here, K(t) in Figure 4L is equivalent to the ratio of the confidence threshold to the

binary choice threshold curves in Figure 4K. However, K(t) was calculated for individual
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subjects since the data showed that each subject has a different tendency to be more or less

confident for given choice accuracy. Even after such normalization of the confidence by the

choice accuracy, the time-dependency of K(t) remained. In short, the time-dependency of

K(t) was characterized for each subject by fitting a function that decays exponentially to a

non-zero asymptote (Eq. 10).

105M 200ms
100

%(+) AfBJ

0-5 0 5 -5 0 S

OA
IF G

0 50 100 0 50 100

400ms
C :T

-5 0 5
Tilt (deg)

H

0 so 100
Confidence (%+)

800IMS

-5 0 5

1600ms
E 100%(+) 0 Mean choice

E Median confidence
---Psychomnetric func

Confidace function

2160 Trials per curv

-5 0 5

0 so 100 0 i o 100

3

4
02

0
Li

4

2

1:;is
a,
U

0

200 400 800 1600 200 400 800 1600
Duration (nu) Duration (ms)

Figure 4. Perceptual binary choice anc confidence data summary from 12 subjects

A-E A Gaussian psychometric function (solid black curve) was fitted to binary choice

data (black circle), and a Gaussian confidence function (solid gray curve) was fitted to

confidence data (gray circle) at individual stimulus durations. The x-axis is stimulus level

in tilt. The left y-axis is % responding + for the binary responses and % confidence that

the stimulus is + for confidence responses. The right y-axis show the confidence

interpreted by subjects (% correct). F-G Confidence histogram with 11 confidence bins.

K Choice threshold (solid black) and confidence threshold (solid gray) in terms of

stimulus duration. L Confidence factor as a function of stimulus duration. Error bars

show 95% confidence interval.
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Parametric study - Nested model analysis

Prior to final fits of the experimental data to the models, a parametric evaluation

was performed in order to prevent overfitting. Nested model hierarchical analysis using

binary choice data from 12 subjects showed that at least three free parameters can be

excluded from the models. Table 2 shows the resulting free parameters and log-likelihood

ratio (LLR) for all four accumulator models, both unbounded (Table 2) and bounded (Table

3) conditions. If adding more free parameters improves fitting, the LLR with a greater

number of free parameters should be greater than 0. A negative LLR indicates that the

model fit worsened compared to the baseline model. Ubindicates the baseline parameter

set for the unbounded models, and Ui indicates the i number of parameters added to the

baseline set Ub in Table 2. Similarly, Bb indicates the baseline parameter set for the

bounded models, and B+i indicates the i number of parameters added to the baseline set Bb

in Table 3.

For unbounded model fits, the fits converged for all 12 subjects. For bounded model

fits, the fits did not converge for a few subjects, numbers varied depending on the free

parameter sets. The number of converging fits is indicated by the subscript in Table 3. The

best NLL scores with high statistical significance (p<0.01, X, > 6.6) are highlighted with

bold*** in Table 2, and the parameter sets with these best NLL scores are used in all

analyses that follow.

The nested model hierarchical analyses of unbounded models indicated that

sensory bias y and decision bias zo do not significantly improve model fits. Decision bias

range z marginally improves the model fit for pDDM only partially (4 subjects out of 12).

Based on these, only sensory noise 17 and diffusion noise a remained for pDDM and cbDDM;

only diffusion noise u and urgency signal parameters A, and Ta remained for usDDM; and

only a diffusion noise a and a leak time constant T remained for hpfDDM for the unbounded

models (Table 2).

Similarly, the nested model hierarchical analyses of bounded models indicated that

decision bias zo and decision bias range z did not significantly improve the model fit for any

of the 4 DDM's and that sensory bias y improved the model fits for only 1 or 2 subjects.

Based on these, only sensory noise 77 and diffusion noise a remained for pDDM, cbDDM, and
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usDDM, and only a diffusion noise o- and a leak time constant T remained for hpfDDM in

addition to bound parameters for the bounded models (Table 3).

Table 2. Unbounded

NLL median
[Quartiles]

Ub
U11
= { 7

b, 17

models: Nested model hierarchical analysis

LLR median [Quartiles]

U+1
U1,

U+2= 71U+ 1, zO}

U+1
U+2 = 1U+ 1 ,z}

U+1

Resulting
Model

Parameters

pDDM 313
U - W [309 303*** 12** -412 -31 1.5*
cbDD M 387]' [291, 376] [9.0, 14] [-485, -308] [-48, -1.4] [0.2, 2.1]

433*** 501 -65

usD - [387 ' [460 571] [-120, - - - = A ,,,TA

= "~" '~ 4831 L' 2.7]

hpfDDM 302*** -459 -212 0.00
Ub = {a, r} [290, 375] [-783, -276] [-251, -164] [-0.00, 0.00]

ForhpfDDM, threshold expression Eq. 15 is undefined when r = 0.

* Marginally significant improvement (0.05>p>0.01) for 4 subjects.

** Significant improvement (p<0.01, X1 > 6.6) for 11 subjects. For the remaining 1 subject, additional free

parameter did not alter the fit (X 2 = 0).

Bold*** High statistical significance (p<0.01, X, > 6.6) for all 12 subjects.

Table 3. Bounded models: Nested model hierarchical analysis

NLL median
[Quartiles]

LLR median [Quartiles]

23h

D2= tD+1, 9-t = ,zJOI B2 -{B+1,zJ

Resulting
Model

Parameters

pDDM 340 295** 0.00 0.02 0.00 3 = [a, a, n}
2Bb = {a, or [251, 434]7 [291, 3 7 9 ]1 [-0.00, 0.05]6 [-1.7, 0.0 6 ]11 [-0.01, 0.00]i=

cbDDM 340 295** 0.00 0.02 0.00 [a= arn}
Bb = {a,ra, o} [251, 434]7 [291, 3 7 9 ]i [-0.00, 0.05]6 [-1.7, 0.06 ]11 [-0.01, 0.00] B a

usDDM 317 295** 0.07 0.4 0.00 2={a,o, ,A., a}b = {a,, A., r},, 1 [292, 417]8 1 [291, 3 7 9 ]1 [0.06, 0.37]7 [-0.04, 1.5] 11 [-0.00, 0.00]i,
hpfDDM 295** 0.2 0.00 =a,a, }

Bb = [a, a, r) [289, 3 80]11 [-1.3, 1.5]8 [-0.00, 0.00]i=

Subscripts to right of quartiles indicate the number of subjects that yielded converging model fits.

For hpfDDM, threshold expression Eq. 15 is undefined when T = 0.

Bold** Best median NLL with highest model fit convergence rate.

Model fits did not converge for more than half of the subjects.
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Model dynamics comparisons

In this study, two questions were investigated through computational modeling. (1)

What is the role of decision bounds when the task does not constrain response time? (2)

What is the additional feature of the decision dynamics - is it a simple accumulator or does

it require additional dynamic components such as a leak mechanism or urgency signal?

Table 4, Figure 5, and Figure 6 summarize the model fit results relevant to these two

questions. In short, goodness-of-fit scores consistently show that, with one exception

described later, unbounded models fit both binary choice and confidence data better than

bounded models for all four accumulator model variants. On the other hand, pure

accumulator and leaky accumulator model fits are indistinguishable while the urgency

signal model scored worse than all other models. Detailed results are presented in the

following 2 subsections.

I. Unbounded vs. bounded evidence accumulation

In order to quantitatively compare between unbounded and bounded conditions,

ABICBounded- Unbounded (= BICBounded - BICUnbounded) was calculated, taking the number

of free parameters into account. Here, 11 subjects with converging fits for both unbounded

and bounded models were compared. Because BIC is smaller for better model fits, positive

ABICBounded-Unbounded indicates that the unbounded model fits the data better than the

bounded model.

Table 4 shows that three of four unbounded models fit binary data better than

bounded models. There is a strong evidence (median ABIC > 6; ABIC > 2 for 10 out of 11

subjects) that unbounded cbDDM and hpfDDM performed better than bounded cbDDM and

hpfDDM, but the improvement offered by unbounded pDDM over bounded pDDM was less

strong (ABIC > 2 for 6 out of 11 subjects). In contrast, the bounded usDDM performs

better with a very strong evidence (ABIC > 2 for 9 out of 11 subjects) than its unbounded

version.

Focusing on confidence, each of the four unbounded models fits confidence data

substantially better than the bounded model with a very strong evidence (median ABIC >

6; ABIC > 2 for 9 or more out of 11 subjects). Examples of detailed analyses are presented

in Figure 5. Because the pure accumulator model (pDDM) is the simplest model that scored
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well in the goodness of fit assessments (Table 2 and 3) without assistance of an additional

dynamic component, only the pDDM fit results are presented in Figure 5 for simplicity.

Table 4. Goodness-of-Fit score (BIC) comparisons between bounded and unbounded

DDM's

N=11 ABIC, [nded-Un nunded edan Quartiles
pDDM cbDDM usDDM hpfDDM

. 1.9* 8.7** -160 6.6**
-0.5, 4.5]6 [6.3, 11]1 [-365, -19]2 [6.4, 6.8]1o
114*** 115*** 130*** 12***

C [87, 133]11 [99, 147 ]11 [92, 150]1o [4.5, 47]9

Subscriptions indicates the number of subjects that yielded ABIC>2.

* positive evidence for unbounded models (ABIC > 2)

** strong evidence for unbounded models (ABIC > 6)

* very strong evidence for unbounded models (ABIC > 10) (Kass & Raftery, 1995)

Figure 5A shows the SVV orientation direction-recognition binary choice thresholds

estimated by three different models: (i) signal detection theory (SDT) that does not include

any dynamics (gray curve), (ii) unbounded pDDM (solid black curve), and (iii) bounded

pDDM (dashed black curve). Here, binary choice thresholds are defined as the stimulus

levels at which 84% correct response is achieved. The curves are the mean estimates

across 11 subjects since 1 subject's data did not yield a converging fit for the bounded

pDDM. The light gray shade shows 95% CI from signal detection theory fits. All three

threshold estimates show similar time-dependency: thresholds decrease to a non-zero

plateau. For binary choice thresholds, signal detection theory yields 2 free parameters per

duration, totaling 10 free parameters across 5 durations. Unbounded and bounded pDDMs

have 2 and 3 free parameters, respectively. When comparing the model fits, signal

detection theory estimates were chosen as the baseline because the biggest number of free

parameters should guarantee the smallest fitting errors (smallest Dev in Fig. 5C-D, black

bars) in addition to the historical explanation that signal detection theory has been the

standard means to calculate thresholds under the forced-choice experimental paradigm

used. See Table 2 for the values of Dev (= 2xNLL).
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Before adjusting for the number of free parameters, all three models score similarly

in explaining the binary response (Dev in Fig. 5C-D). After the adjustment, unbounded and

bounded models provide substantially better explanations of the binary response data than

SDT in isolation (ABICunbounded-SDT < -10 for 8 out 11 subjects, and ABICbounded-SDT <

-10 for 7 out 11 subjects) (Kass & Raftery, 1995). Between unbounded and bounded

pDDM, the median ABIC (Table 4) indicates positive support for unbounded pDDM (* in

Figure 5D).

The confidence response is explained significantly better by the unbounded pDDM

than the bounded pDDM stimulus durations between 200ms and 1600ms (binomial test

p<0.0001, chi-square test p=0.03). Such quantitative analyses are visualized as RMSE and

ABIC scores at each duration in Figure 5C (the bottom 2 rows) and the sum across all

durations in Figure 5D (bottom panels). For instance, RMSE for both SDT and unbounded

pDDM was approximately 3 times better than bounded pDDM. Also, BIC scores showed

very strong support for unbounded pDDM (ABICbounded-sDT,unbounded > 10 in Fig. 5D)

(Kass & Raftery, 1995) compared to the other models. Between unbounded and bounded

pDDM, the median ABIC (Table 4) indicates very strong support for unbounded pDDM (***

in Figure 5D) when describing the confidence data.

These quantitative analyses are visually matched by confidence fit quality (Fig. 5E-I),

such that unbounded pDDM (solid black curve) outlines the confidence data (gray bars)

better than bounded pDDM (dashed black curve) between 200ms and 1600ms. In support

of this result, statistical analyses show that there is no difference between unbounded

pDDM and the confidence data (multiple comparisons p=0.95) whereas there is a

significant difference between bounded pDDM and the confidence data (multiple

comparisons p<0.0001). At 105ms, the confidence fits are statistically indistinguishable

between the bounded and unbounded pDDMs (multiple comparisons p 0.35) because a

large proportion of the decision variables do not cross bounds within such a short

accumulation time. Figure 5B shows the proportion of the decision variables that cross one

of the two bounds as a function of stimulus duration. The proportion is the mean calculated

given the stimulus vector. As can be seen, nearly all decision variables hit a bound by

200ms. In other words, when the stimulus duration is short, the majority of trials do not

48



yield a decision boundary crnssing. even when a decision boundary is nresent. hence

yielding choice confidence dictated by SDT. On the contrary, when the stimulus duration is

long, the majority of the trials yield a decision boundary crossing when a decision

boundary is present, yielding choice confidence determined by the position of the decision

bounds.
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Figure 5. Model comparisons: unbounded and bounded pDDM's

A Binary choice threshold estimates as a function of stimulus duration. Unbounded

pDDM (solid black), bounded pDDM (dotted black), and signal detection theory (SDT,

solid gray) threshold predictions were averaged across 11 subjects. Gray shade show

95% Cl for SDT estimates. B Probability hitting a bound as a function of stimulus

duration in bounded pDDM. C Mean goodness-of-fit scores at individual stimulus

duration for binary responses (Top two rows) and confidence responses (Bottom two

rows). Black bars correspond to SDT, white bars correspond to Unbounded pDDM, and

gray bars correspond to Bounded pDDM. D Marginal goodness-of-fit scores across all

durations for binary responses (Top row) and confidence responses (Bottom row).

Horizontal bars with single asterisk (*) indicate a positive

evidence(ABICbounded-unbounded > 2) and with triple asterisk (***) indicate very strong

support (ABICbounded-unbounded > 10) for unbounded pDDM. The errorbars show lower

and upper quartiles. E-I Confidence histograms aggregated across all stimulus levels for

11 subjects. Gray bars show data, solid black curves show Unbounded pDDM, and

dotted black curves show Bounded pDDM.
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II. Evidence accumulation dynamics

Because several previous studies performed extensive model comparisons using

binary response data (Bogacz et al., 2006; Hawkins et al., 2015; Tsetsos et al., 2012; Usher

& McClelland, 2001), this study focused on confidence data. Since the comparisons between

unbounded and bounded models showed that the confidence response is better explained

by unbounded models (e.g., Fig. 5), only the unbounded accumulator models are compared

herein. Moreover, among the four dynamic variants of unbounded accumulator models,

pDDM and cbDDM yield identical theoretical binary choice thresholds (Eq. 13); therefore,

one curve for each of three accumulator models (pDDM, usDDM, hpfDDM) in addition to 1

curve based on signal detection theory are compared in Figure 6A. All unbounded models

showed thresholds that decay to a non-zero asymptote. Among three accumulator models,

pDDM and hpfDDM performed similarly well in fitting both binary and confidence data

(Fig. 6B-C). However, the hpfDDM BIC scored marginally better than pDDM as inferred by

the median ABICPDDMfhpfDDM = 3.11 (ABICPDDM-hpfDDM > 2 for 7 out of 12 subjects).

usDDM performed substantially worse than the other accumulators in describing binary

choice data (1ABICUSDDM-pDDMhpfDDM > 10 for 11 out of 12 subjects).

Furthermore, median RMSE and BIC for the usDDM fit of the confidence data were

also worse than for the other accumulator models (ABICUSDDM-pDDM,hpfDDM > 10 for 6 out

of 12 subjects in Fig. 6B-C). In theory, the urgency component boosts the decision variable,

resulting in lower thresholds and higher confidence. These behaviors are illustrated in

Figure 6A and D-H: usDDM estimates achieve lower thresholds (black dotted curve in Fig.

6A) and higher confidence (black dotted curves in Fig. 6D-H). On the other hand, hpfDDM

was only marginally better than pDDM (cbDDM) in fitting the confidence data

(ABICpDDM-hpfDDM > 2 for 6 out of 12 subjects; Table 2 and Fig. 6B-C), which is consistent

with the results from the binary data. Such quantitative similarity between pDDM

andhpfDDM is especially pronounced in the confidence prediction. In Figure 6D-H, pDDM

(solid black) and hpfDDM (dashed black) nearly overlap.
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Figure 6. Unbounded model comparisons: 4 variants of accumulator dynamics

A Binary choice threshold estimates as a function of stimulus duration. pDDM and cbDDM

(solid black), usDDM(dotted black), hpfDDM (dashed black), and signal detection theory

(SDT, solid gray) threshold predictions were averaged across 12 subjects. Gray shade

shows 95% Cl for SDT estimates. B Mean goodness-of-fit scores at individual stimulus

duration for binary responses (Top two rows) and confidence responses (Bottom two rows).

Black bars correspond to SDT, white bars correspond to pDDM, gray bars correspond to

usDDM, and dark gray bars correspond to hpfDDM. C Marginal goodness-of-fit scores

across all durations for binary responses (Top row) and confidence responses (Bottom row).

Horizontal bars with single asterisk (*) indicate positive evidence that hpfDDM performs

better than pDDM. Triple asterisks (***) indicate very strong evidence against usDDM.

Errorbars show lower and upper quartiles. >symbol indicates that BICpDDM > BIChpfDDM. D-

H Confidence histograms aggregated across all stimulus levels for 12 subjects. Gray bars

show data. Same convention as panel A for curves; specifically, solid black curves show

pDDM and cbDDM, dotted black curves show usDDM, and dashed black curves show

hpfDDM. Differences between pDDM and hpfDDM are barely evident in panels D through H;

the most pronounced difference is observed in panel D for confidence near 100%.
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Discussion

Summary

Both SVV perceptual threshold and confidence data displayed a dependence on

stimulus duration. Perceptual thresholds decreased exponentially to a non-zero asymptote

and confidence increased as stimulus duration increased. Computational simulations

showed that such dynamics of perceptual choice and confidence are consistent with an

evidence accumulator mechanism. More importantly, human perceptual choice confidence

was found to be consistent with a signal detection theory model that assumed unbounded

evidence accumulation. These results indicate that the sensory evidence accumulates

without bounds when judging perceptual choice confidence for tasks that constrain the

response time to occur after completion of stimulus presentation. The model comparisons

also showed that the models cannot be distinguished with only the binary choice response

for these data.

Binary choice behavior in unbounded and bounded evidence accumulators

For binary choice data, there are numerous decision-making studies that present

choice accuracy and response time data supporting bounded accumulator models

(Hawkins et al., 2015; Ratcliff, 2006; Ratcliff & Rouder, 1998; Usher & McClelland, 2001). In

these studies, a response time task was used, in which response time is signaled by the

subjects. At the same time, there are equally numerous perceptual psychophysical studies

that present choice accuracy data supporting signal detection theory (Green & Swets, 1966;

Wichmann & Hill, 2001). In these studies, a forced-choice task was used, in which stimulus

duration is controlled by operators, but decision time is not signaled. Considering that

these two theories successfully explain the binary choice behavior, it is not surprising that

both unbounded and bounded models perform comparably in fitting binary choice data. In

fact, the bounded accumulator equation (Eq.18) converges with signal detection theory

(psychometric function in Eq. 8-1) when bound A is sufficiently large. This is consistent

with an earlier study that showed A approaching infinity when neither stimulus duration

nor response time was constrained (Bogacz et al., 2006). However, as shown in Table 5 (in

Appendix II), the fitted A is finite and A « oo such that the bound is only 1 standard
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deviation (of the decision variables) away at t = 450 ms. Hence, the alternative

explanation is that there are two solutions for the bounded model: one with finite bounds

yielding a bounded model fit, and another one with infinite bounds, which converges with

an unbounded model fit.

In order to verify that both of these two solutions are valid, simulated datasets were

generated using the fitted parameters of each of our 12 subjects, and then the models were

fitted to the simulated datasets. Figure 7 and Figure 8 show simulated data generated by

unbounded and bounded accumulation models, respectively. Each of these simulated data

sets were fit using both bounded and unbounded fit models. For simplicity, only pDDM was

considered for both the model generating and the model fitting the simulated data. The

same number of virtual subjects was simulated using the model parameters fitted to each

subject. For unbounded model simulations, 11 out of 12 simulated subjects yielded

converging fits, and for bounded model simulations, 10 out of 11 simulated subjects

yielded converging fits.

The simulated binary choice resulted in choice accuracy (black circles) and

psychometric functions (solid black curves) shown in Figure 7A-E and Figure 8A-E for

unbounded and bounded simulation models, respectively. Both Figure 7 and 8 are plotted

using a format identical to that shown in Figure 4 for the human data. Figure 7K and Figure

8K show thresholds as a function of stimulus duration. Deviance (Dev) scores (Fig. 7L-M,

Fig. 8M-L) are similar for all three models - SDT (black bars), unbounded (light gray bars),

and bounded (dark gray bars) accumulators - indicating that bound mechanisms are

difficult to distinguish based only on binary choice response. Although the current

experimental design is not able to provide strong evidence to clarify the bound

mechanisms for binary decision-making, the computational modeling and simulations in

this study provides insights to why signal detection theory provides effective summary

statistics while a bounded accumulator provides an effective mechanism for choice

behavior at the same time.
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Cnnfirlncp jidgment in unbounded and bounded evidencep nccimiilator

The model comparisons between unbounded and bounded data generating models

showed that binary response fits are equally well fit by both boundary models. This

matched our findings (Figs. 5 and 6). For comparison, the human confidence data were

explained substantially better by unbounded accumulators. Both of these effects were

reproduced in the simulated dataset. In other words, the simulated confidence response

assuming different bound conditions display strikingly different behavior unlike the

simulated binary choice.

Figure 7A-E and Figure 8A-E show confidence functions (gray curves) fitted to

median confidence (gray circles) assuming unbounded and bounded accumulators,

respectively. Circles are the mean and error bars are 95% confidence interval calculated

across all simulated subjects. When a bounded mechanism is assumed, the accumulation

process ends when the decision variable crosses a bound, so a decision variable cannot

never be greater than the position of the decision bounds. This bounded behavior causes

the confidence to saturate below 100% even when the stimulus is big, which is apparent in

Figure 8A-E (gray circles). This magnitude-dependent confidence saturation is not

consistent with the experimental data (Fig. 4A-E) that do not display such a saturation.

Moreover, simulated confidence histograms in Figure 7F-J match the empirical data in

Figure 4F-J better than those in Figure 8F-J. For instance, only unbounded simulated data

were significantly better fit by the unbounded pDDM than by the bounded pDDM (median

ABICbounded-unbounded > 10) whereas bounded simulated data was better fit by the

bounded pDDM than the unbounded pDDM.

Simulated confidence data were also fitted by both unbounded and bounded

models. The model that matched that used to generate the simulated data always yielded a

lower RMSE than the other model (Fig. 7L-M and Fig. 8L-M). For instance, when unbounded

pDDM was assumed, unbounded accumulator and signal detection theory scored better

RMSE than a bounded accumulator pDDM. Similarly, when a bounded pDDM was assumed,

the bounded pDDM scored the best. When these goodness-of-fit scores of the simulated

data (Fig. 7 and 8) are compared with the empirical data analyses (Fig. 5), it can be seen

that unbounded model simulations reproduce the RMSE and BIC score patterns. In other

words, for both empirical and simulated confidence, assuming unbounded pDDM yields
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better RMSE and BIC, and inversely, bounded pDDM yields worse RMSE and BIC. These

results indicate that (1) choice confidence shows dynamics consistent with an integration

mechanism and that (2) choice confidence utilizes unbounded evidence accumulation.
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Figure 7. Simulated dataset generated by an unbounded pDD

A-E A Gaussian psychometric function (solid black curve) was fitted to simulated binary

choice data (black circle), and a Gaussian confidence function (solid gray curve) was

fitted to simulated confidence data (gray circle) at individual stimulus durations. 12

virtual subjects were simulated, yielding 2160 data points per duration. The x-axis is

stimulus level in tilt. The left y-axis is % responding + in case of binary response and %
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confidence that the stimulus is + in case of confidence response. The right y-axis show

the confidence interpreted by subjects (% correct). F-J Confidence histograms

aggregated across all stimulus levels for 11 simulated subjects that yielded converging

fits for both unbounded and bounded models. Gray bars show data, solid black curves

show unbounded pDDM, and dotted black curves show bounded pDDM. K Binary

choice threshold estimates as a function of stimulus duration. Unbounded pDDM (solid

black), bounded pDDM (dotted black), and signal detection theory (SDT, solid gray)

threshold predictions were averaged across 11 simulated subjects. Gray shading shows

95% Cl for SDT fit. L Mean goodness-of-fit scores at individual stimulus duration for

binary responses (Top two rows) and confidence responses (Bottom two rows). Black

bars correspond to SDT, white bars correspond to Unbounded pDDM, and gray bars

correspond to Bounded pDDM. M Marginal goodness-of-fit scores across all durations

for binary responses (Top row) and confidence responses (Bottom row). Horizontal bars

with double asterisks (**) indicate strong (ABICbounded-unbounded > 6) support and triple

asterisks (***) indicate very strong support (ABICbounded-unbounded > 10) for unbounded

pDDM. The errorbars show lower and upper quartiles.

57



Simulated Data Assuming Bounded Accumulator Decision-making -Man Coce Medin confidence
- Psychometricfunc -Confidence function

105ms 200ms 400ms Booms 1GOOms
100 AE 100%(+)

%(+)

RandomsoGuess

0 5n-19

-5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5
Tit(deg)

Simulated Confidence Data and Model Fits * Data U--- une

F N=10 subjects G H

.k 0. I~

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
Confidence (%+)

Binary Choice Threshold Fits Goodness-of-fit Scores Goodness-of-fit Scores
4 L (IndiVidUal Durations) M (All Durations)

K - SDT (mean, 95% Cl) 1000 o (SDT)
-Unbounded pDDM n=80 n=900
--- BoundedpDDM P o

3 N=10 subjects A

0.1 .2-0 (SDT)
F 

L I

1* 0 IL KmIFuii
o E EU U

0 -
0 200 400 800 1600 105 200 400 800 1600

Duration (ms) Duration (ms) E SDT 0 Unbounded pDDM U Bounded pDDM

Figure 8. Simulated dataset generated by a bounded pDDM

A-E A Gaussian psychometric function (solid black curve) was fitted to simulated binary

choice data (black circle), and a Gaussian confidence function (solid gray curve) was

fitted to simulated confidence data (gray circle) at individual stimulus durations. 11

virtual subjects with converging bounded model fits were simulated, yielding 1980 data

points per duration. The x-axis is stimulus level in tilt. The left y-axis is % responding +

in case of binary response and % confidence that the stimulus is + in case of confidence

response. The right y-axis show the confidence interpreted by subjects (% correct). F-J

Confidence histograms aggregated across all stimulus levels for 10 simulated subjects

that yielded converging fits for both unbounded and bounded models. Gray bars show
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data, Id black ri'rves show unbounded pDDM, and dotted black curves show

bounded pDDM. K Binary choice threshold estimates as a function of stimulus duration.

Unbounded pDDM (solid black), bounded pDDM (dotted black), and signal detection

theory (SDT, solid gray) threshold predictions were averaged across 10 simulated

subjects. Gray shade show 95% Cl for SDT estimates.95%CI for SDT fit. L Mean

goodness-of-fit scores at individual stimulus duration for binary responses (Top two

rows) and confidence responses (Bottom two rows). Black bars correspond to SDT,

white bars correspond to UnboundedpDDM, and gray bars correspond to Bounded

pDDM. M Marginal goodness-of-fit scores across all durations for binary responses

(Top row) and confidence responses (Bottom row). Horizontal bars with single asterisk

(*) indicate a positive evidence(ABICunbounded-bounded > 2) and with triple asterisk (***)

indicate a very strong evidence (ABICunbounded-bounded > 10) for bounded pDDM.

These results are the opposite the analysis from the real experimental data. The

errorbars show lower and upper quartiles.
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AdUUILIUI II oal I IfJUI It= ILnnt ol accumulator models

In order to infer the effect of the model parameters on choice accuracy (i.e.

threshold), we start with threshold equations (13)-(15) obtained assuming an unbounded

mechanism. There are two justifications for this inference. First, we showed that decision

boundary conditions cannot be distinguished using forced-choice tasks that utilize static

(i.e., constant) sensory stimuli. Second, equations (13)-(15) are analytical solutions, in

which the contribution of the parameters on the threshold dynamics is explicit. For

instance, threshold equations of an unbounded pDDM and usDDM (13-14) show that

decision bias parameters (zo and z) and diffusion noise (a) contribute to the rate at which

the threshold decreases with increasing stimulus duration. On the other hand, sensory

noise parameters (17 and y) contribute to the threshold asymptote. Similarly, an unbounded

hpfDDM's threshold equation (15) shows that decision bias parameters (zo and z) and leak

time constant (-c) contribute to the the threshold decay rate while sensory noise

parameters (a and p) contribute to the threshold asymptote. Although the decision-making

models presented herein do not explicitly include sensory models, threshold predictions

can be extrapolated based on the known behaviors of sensory noise (e.g. 77 and P in pDDM).

For example, in the case of SVV perception, subjects performing the SVV task with the head

tilted are known to show systematic biases (p) (De Vrijer, Medendorp, & Van Gisbergen,

2008) and changes in precision (inversely related to 77) (De Vrijer et al., 2009). According to

equations (13-15), increase in SVV sensory bias and decrease in SVV sensory precision

result in the elevation of the threshold asymptote, shifting the threshold curve as a whole

without affecting the threshold decay rate.

Decoupling the effects of zo, z, and u requires extensive sampling for t < -300ms

where the threshold is changing, and even then separating zo and z is impossible since both

contribute inversely to . Similarly, 7 and p cannot be separated. Therefore, only a survived
t

as the threshold rate parameter, and rj survived as the asymptote parameter in the nested

model analysis. Such parameter overlaps are more pronounced for usDDM (Eq. 14). As a

result, in the unbounded usDDM, the component having the strongest temporal effect, the

urgency signal component - 1 - e , takes over as the threshold rate parameter. As a

consequence, a has a median 4 times greater than for the other models and serves as the
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asymptote parameter within the given stimulus duration range (t < 1600 ms). On the

other hand, in unbounded hpfDDM (Eq. 15), T is the only dynamic term, and the rest

contribute to the threshold asymptote. In the end, all models resulted in one threshold

change rate parameter and one asymptote parameter.

Similarly, for the bounded models, in addition to the decision bound parameter(s),

all models resulted in one threshold change rate parameter and one asymptote parameter.

The values of o and 77 of bounded models were comparable among pDDM, cbDDM, and

usDDM (Table 5 in Appendix II). And the values of a were comparable among all four

bounded DDM's. Additional dynamic components in cbDDM and usDDM had little effect.

For instance, the time constant for the collapsing bound in cbDDM (Ta) was greater than

-1000ms (median 3450ms), indicating that the bounds remained near constant within the

stimulus duration range (51600ms). Also, the time constant for the urgency signal was near

0, rendering the overall effect of the urgency signal to near 0 as well. Such similarity of

necessitating only three effective free parameters with comparable values is consistent

with nearly identical goodness-of-fit performance observed in NLL scores (Table 3) of the

three models. For bounded hpfDDM, o- and - had values nearly identical to unbounded

hpfDDM, which is consistent with similar NLL scores between the unbounded and bounded

hpfDDM's (Table 2 and Table 3).

Accumulation dynamics - effective time window of evidence accumulation

As presented in Figure 6A, the general shape of the threshold prediction is similar

across all four models. Based on this observation, the width of the time window relevant

for accumulating evidence can be calculated for pDDM that does not have specified time

window. For hpfDDM, the width of the time window is defined in terms of T, at which the

threshold is 1.58 times the asymptote threshold Tftpf,, (i.e. Thpf,(UB C)=7 hp_~ 1.58x

Thpf,'). By applying the same criterion, the time constant that satisfies Tp,UB Qu) =
e-1

__ can be calculated, which in turn yields,

a 2  (1_e-1) 2

= 77 2 1-(e-1) 2 (23)
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Then the median r- is 227 m, which k cnmnrh1 tn the mpdian -. nf 141 me. Thi

implies that even without an explicit time window, pDDM requires only the initial -200ms

in order to achieve near-optimal choice accuracy. Although it is not apparent in Equation

(23) whether such a time window is located near the stimulus onset or near the stimulus

offset (equivalent to near the response time), the threshold equation for pDDM (Eq. 13)

indicates that it is the initial segment of information that is most relevant in pDDM for

static (i.e., constant) stimuli. Such an effect is consistent with previously reported primacy

effect (Kiani et al., 2008).

In addition, Equation (23) shows that diffusion noise and decision bias range each

widen the time window while sensory noise shortens the time window. Going back to the

pDDM threshold equation (Eq. 13), sensory noise determines the lowest threshold whereas

diffusion noise from the accumulation process increases the threshold for short stimulus

duration. When summing these two, in pDDM, the accumulation process actually hurts

choice accuracy since a better threshold can be achieved based solely on the sensory noise.

In turn, the role of the accumulator in pDDM penalizes the earlier decision in order to

prevent premature decision. This contrasts with hpfDDM, in which the accumulation

process rewards waiting. An hpfDDM does not add additional noise, since diffusion noise

arises from sensory noise. However, the leak mechanism discards older information,

keeping only the recent information. Hence, in pDDM, the threshold is determined by the

amount of the most recent information contained within the time window, and such an

effect was previously reported as a recency effect (Tsetsos et al., 2012). While previous

debates about pure, urgency signal, and leaky accumulator models focused on dynamic

characteristics (Thura, 2016) like primacy vs. recency effects, the analytical solutions for a

forced choice task highlights a fundamental difference in the neural implementation:

penalizing a premature decision vs. rewarding a delayed decision.

Confidence model - additional dynamics

This study focused on a narrow definition of confidence and its dynamics: how does

choice confidence change in a forced-choice paradigm, wherein observation duration was

set by the operator? Therefore, our experimental design presented herein cannot clear all
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of the hurdles identified by previous choice confidence research (Moran et al., 2015).

However, our findings are consistent with earlier studies showing that (i) "confidence

decreases as the difficulty level increases", (ii) confidence increases as the response time

increases, (iii) confidence increases as choice accuracy increases, and (iv) confidence

decreases for correct choices as the difficulty level increases (Moran et al., 2015; Pleskac &

Busemeyer, 2010). The latter (iv) is particularly relevant to help explain the observation

that the confidence data appeared to show that there is another time-constant 1 k

associated with confidence that may not impact binary choice (Fig. 4L).

In addition, modeling results led to stronger boundary condition (bounded versus

unbounded) conclusions for confidence responses than for binary data. Because of this,

although binary choice and confidence data point to a conclusion that both behaviors

display accumulation dynamics, it is not conclusive whether the two choice behaviors share

the same accumulation process. At this point, it is worth recapitulating the assumption

underlying the confidence model. Instead of viewing binary choice and confidence as two

separate processes, we assumed that the state of a decision variable is mapped onto

confidence judgment and that the same state is used to determine the binary decision,

which is consistent with one-stage theory of choice and confidence (Kiani & Shadlen, 2009;

Ratcliff & Starns, 2013; Sanders et al., 2016). Within this framework, confidence is

determined on a single-trial basis given the prior knowledge of the decision variable

distribution. The distribution may be accessible through population coding that provides a

time-varying representation of the distribution or through stored neural circuitry that

provides a representation that is stationary (i.e., non-varying) in time. Nonetheless, holding

this one-stage assumption leads to another assumption when additional dynamics K(t)

attributing to confidence were allowed in order to account for over-representation of low

confidence. Interestingly, while the confidence model including K(t) described both low

and high confidence data, the over-representation of 50% confidence (random guess) was

still not fully ameliorated. This implies there may be an additional nonlinear process

contributing to confidence judgment. Although it could not be determined whether these

additional dynamic elements were mediated by parallel or post-decisional processing

under the current experimental design, K(t) is consistent with two-stage theory of choice

and confidence (Kvam, Pleskac, Yu, & Busemeyer, 2015; Moran et al., 2015; Pleskac &
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Busemeyer, 2010; Yu et al., 2015). Investigating such a question requires the measurement

of all three choice behaviors, choice accuracy, binary choice response time, confidence, and

confidence judgment time. An equally important measurement would be provided by

functional neuroimaging with high enough temporal resolution to make connections

among the three choice behaviors in terms of timing - i.e. is confidence a post-decisional

process? Also, uncovering the neuroanatomy of choice behaviors is essential to determine

whether confidence builds on the variables available to decision-making or whether

confidence estimation requires a separate, parallel process separate from the processes

governing binary choice.
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Appendix I

PureDDM (pDDM)

When Weiner's diffusion process f = x + vwv is expressed in discrete time,

Ay = xAt + Aw (Al)

where xAt~((v - M)Lt, i/2 Atz) and Aw-N(O, 2 At). At time t, the decision variable is

updated from the previous state by Ay, such that Yt = yt-At + Ay while the decision bound

stays constant,

yt = Yt-At + xAt + Aw (A2-1)

At = a (A2-2)

Collapsing bound DDM (cbDDM)

The discrete time and solutions for the decision bounds is

At = (1 - rt)At-At, AO = a (A3)

Urgency signal DDM (usDDM)

The discrete time solutions for usDDM are

Yt = Yt-At + xAt + Aw + AA (A4-1)

AA t /100 At-At (A4-2)
Tus TUS

At= a (A4-3)

High-pass filter DDM (hpfDDM)

The discrete time solutions for hpfDDM are

= ( -) yt-At + vAt + Aw (AS-1)

At = a (A5-2)
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Appendix 11

Table 5. Model parameter values and the comparisons between

bounded conditions

Median (25%, 75%)

unbounded and

pDDM I cbDDMParameter usDDM hDfDDM

o-(s1/2) 0.40 1.36 0.43
(0.32, 0.56) (0.97, 1.86) (0.33, 0.61)

)(0) 0.71
(0.49, 0.92)

-T ( S) -141
Accumulator T (ms) -- _ (128, 160)

Model 0.21
-e o (*s) (0.19, 2.54)

rZ 230
0ms) - (0, 870)

# 2 3 2
parameters

3.63 3.63 3.76
K 0  (2.05, 12.21) (1.52, 12.21) (2.10, 12.21)

Confidence 0.84 0.92 0.86
Model K, (0.44, 1.48) (0.42, 1.78) (0.44, 1.47)

rKjms) 41 41 41

(11, 103) (11, 100) (11, 108)

-(*s1/2) 0.32 0.63 0.23 0.43
(0.00, 1.09) (0.01, 2.41) (0.01, 0.75) (0.32, 0.62)

1.98 1.73 2.25
(0.01, 2.43) (0.00, 2.41) (0.87, 3.22)

T (ms) - - (123 160)

A (*s) - - 2.69

Accumulator (0.10, 5.29)

Model rA(ms) - - (0, 34)

-o)0.84 0.80 0.76 0.91
(* (0.61, 1.04) (0.64, 1.09) (0.61, 1.05) (0.60, 1.98)

3.45x103

Ta (ms) - (1000, - -
7.91x106)

parameters 4 3

3.50 2.90 3.92 3.65
K(1.92, 6.67) (1.63, (1.69, 5.66) (2.36, 4.77)

Confidence (.92 11.88)
MdlK,0.92 1.00 0.92 0.99

(0.46, 1.45) (0.41, 1.94) (0.28, 1.13) (0.67, 1.35)
52 52 51 61

(14,211) (11,116) (11,152) (11,1114)
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Abstract

When making daily decisions, people naturally ask two questions: how soon can I make a

decision, and is it a good decision? In experimental setting, perceptual choice confidence

(i.e. how good) has been shown to have a non-monotonic relationship with decision time

(i.e. how soon), such that choice confidence can be correlated either positively or

negatively with decision time depending on how decision time is constrained. As an

underlying neural mechanism that binds choice action and confidence, fronto-parietal

network has been implicated. Such bi-local neural circuitry is consistent with dual-route

model of metacognition, in which meta-level prefrontal cortex supervises and evaluates the

object-level parietal cortex. However, the dynamics underlying the interaction between

choice confidence and decision time and their neural correlates in the fronto-parietal

network during the perceptual decision-making is still unclear. Here we show that choice

confidence contributes to frontal event-related potential (ERP) during pre-decisional stage

when the task emphasizes choice accuracy over speed. We found that the second positive

peak, particularly the curvature, of the stimulus-locked frontal ERP at 400-600ms covaries

with confidence while the amplitude of the centro-parietal ERP increases with shorter

decision response time (RT) during the same time interval. This finding provides an

evidence for the causal role of confidence in perceptual decision-making, complementing

an earlier ERP evidences for retrospective role of confidence. Altogether, the causal role of

confidence may underlie the negative correlations between choice confidence and decision

time behaviors while the retrospective role may underlie the positive correlations.
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I ntrnrdu itin

When making daily decisions, people naturally ask two questions: how soon can I

make a decision, and is it a good decision? In experimental settings, the objective

measurement of task performance is readily available by the means of choice accuracy.

However, in real life, living organisms have to rely on a subjective assessment such as

certainty of a decision before finding out the consequences. In sensory perception, although

the immediate consequence such as reward or punishment is not apparent, humans can

judge probabilistic confidence associated with a choice accuracy (Graziano et al., 2015;

Lichtenstein et al., 1977; Yi & Merfeld, 2016; Yu et al., 2015). Such choice confidence has

been shown to vary systematically with decision time such that choice confidence increases

with decreasing decision time when choice accuracy is emphasized over decision speed

(Baranski & Petrusic, 1998; Drugowitsch et al., 2014; Pleskac & Busemeyer, 2010; Vickers

& Packer, 1982). In fact, a tight correlation between choice confidence and decision time

observed in human behavior led to a conclusion that decision time is sufficient to

determine confidence (Audley, 1960; Zylberberg, Barttfeld, & Sigman, 2012). In support of

this conclusion, activities of neurons in lateral intra-parietal (LIP) cortex in non-human

primates were shown to reflect stimulus level, decision time, and choice certainty (Kiani &

Shadlen, 2009; Shadlen, Hanks, Churchland, Kiani, & Yang, 2006; Shadlen & Newsome,

2001). In this neural population, firing rate increased with greater stimulus level, faster

response time (RT), and higher choice certainty.

Consistent with such electrophysiological data, a number of

electroencephalographic (EEG) studies of perceptual decision-making behaviors showed

that the central-parietal areas of human brain are involved in decision-making (Boldt &

Yeung, 2015; Graziano et al., 2015; O'Connell et al., 2012; Philiastides, Heekeren, & Sajda,

2014; Zizlsperger et al., 2014). Specifically, centro-parietal event-related potential (ERP)

increased faster for shorter RT (O'Connell et al., 2012), and greater parietal ERP was

observed for higher choice confidence (Boldt & Yeung, 2015; Graziano et al., 2015;

Zizlsperger et al., 2014). In addition, frontal potentials were also reported to be associated

with confidence during memory retrieval (Graziano et al., 2015). Such finding of confidence

component in the frontal event-related potential (ERP) is consistent with mounting
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eV1ieLn tL LULLrUULb dtLs tle rWe of IrontaI l actra I judginig cnfidnce (Fleming JU&Dil,

2012; Fleming et al., 2010; Kepecs et al., 2008; Lak et al., 2014; Middlebrooks & Sommer,

2012; Padoa-Schioppa & Assad, 2006). For instance, neural recordings in animals(Kepecs

et al., 2008; Lak et al., 2014; Middlebrooks & Sommer, 2012; Padoa-Schioppa & Assad,

2006) and neuroimaging in human patients (Fleming & Dolan, 2012; Vilkki, Surma-aho, &

Servo, 1999) with various brain lesions in the frontal structures support the necessity of

intact frontal functional connectivity for confidence judgments.

Confidence judgment for perceptual decision-making involves multiple loci in the

brain, spanning prefrontal and parietal cortex as well as the limbic system (Fleming &

Dolan, 2012; Fleming et al., 2010; Hsu, Bhatt, Adolphs, Tranel, & Camerer, 2005). Two

spatial components, parietal and frontal, found in an ERP study (Graziano et al., 2015) also

implicate the multi-focal process, particularly frontoparietal network, in choice confidence.

However, little is known about the dynamics of the frontoparietal interaction that may

underlie the relationship between choice confidence and decision time. For instance, while

a tight correlation between confidence and RT is observed (Audley, 1960; Zylberberg et al.,

2012), confidence is often assumed to be a retrospective (i.e. post-decisional) process

(Graziano et al., 2015; Moran et al., 2015; Pleskac & Busemeyer, 2010; Yu et al., 2015). This

temporal segregation can be explained by spatial segregation of the processes that govern

confidence and RT. The behavioral correlation between confidence and RT is explained by

the neural activity in the centroparietal area that encodes sensory evidence accumulation,

which in turn affects both confidence and RT (Gherman & Philiastides, 2015). On the other

hand, the confidence judgment that occurs after the choice formation can be explained by

bi-focal processes observed as a continued elevation of centroparietal scalp potential and

an enhanced peak in the frontal ERP after the RT. However, even with the help of spatial

segregation, such temporal segregation still contradicts the perceived cause and effect

relationship between confidence and RT because people report that they decided sooner

because they are more confident - not that they are more confident because they decided

sooner. Hence, we hypothesized that there is a pre-decisional process that directly governs

confidence. Given that perceptual decision-making is a rapid process, typically taking less

than 1sec, we exploited high temporal resolution of EEG in order to investigate the pre-
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decisional dynamics of frontal and centroparietal brain activities associated with choice

confidence and RT.

In this study, we dissociated the choice confidence component from the decision

time component by recording high-density (64 channel) EEG while measuring binary

choice accuracy, decision time, and choice confidence. In particular, we present a pre-

decisional ERP component from the frontal areas between 400ms and 600ms from the

stimulus onset. We also present the dynamics of frontal and centroparietal ERP's with

respect to two temporal events, stimulus onset and RT. Specifically, while the frontal ERP

predominantly represents confidence near the onset (400-600ms), the association with

decision time grows near the RT to yield a comparable representation for both confidence

and decision time. After the response, frontal ERP is reduced significantly. In comparison,

decision time dominates the measured centroparietal ERP throughout - from the stimulus

onset as well as both before and after the RT.

Methods

Experimental Procedures

The MEEI Human Studies Committee and MIT Committee on the Use of Human as

Experimental Subjects approved the study, and informed consent was obtained. Fifteen

normal volunteers (7 women, mean age 28, range 21 to 48 years) completed the study.

Each subject answered health questionnaires, which included vestibular function history.

In addition, new general self-efficacy scale (Scherbaum, Cohen-Charash, & Kern, 2006) and

Beck depression inventory (Rush et al., 2003) were administered on the test day. All 15

subjects were right-handed and had normal vision with or without correction; 5 required

correction via contact lenses.

The task was to report the perceived orientation of a visual object displayed on a

computer monitor whenever subjects reached a decision (Fig. 9a). In each trial, a stationary

Gabor patch was displayed at the center, and subjects pressed a hand-held button to

indicate the perceived orientation of the Gabor. For instance, if the Gabor appeared tilted

left (CCW) of the subjective vertical (upright), subjects pressed the button in their left hand.
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The Gabor stimulus disappeared upon pressing the button; then subjects verbally reported

choice confidence.

To emphasize accuracy over speed, subjects were specifically instructed not to rush

the decision in order to enhance accuracy. They were also informed in advance that the

stimulus had a duration of 1600ms and were encouraged to respond with the buttons

before the stimulus disappeared. For confidence reports, subjects were informed that

confidence is defined as the probability that their binary choice is correct. The confidence

ranged between 50% and 100% with 5% resolution, with 100% being the highest

confidence and 50% indicating a random guess.

Four stimulus levels were determined based on each individual subject's

orientation-recognition perceptual threshold, defined as the width (i.e., a) of the

psychometric function (Chaudhuri & Merfeld, 2013). Each subject's threshold was first

measured via a separate test using an adaptive 4-down 1-up staircase forced-choice

procedure. This "1R" threshold corresponds to a stimulus level at which an 84% correct

average response accuracy is expected. The staircase procedure was 100-trials long, and

stimulus duration was 1600ms, and responses were accepted only after the stimulus

turned off. Based on this threshold, four stimulus levels were fixed at 0.75CY, 1u, 1.25a, and

1.5a, which target 77%, 84%, 89%, and 93% average choice accuracy, respectively. When

combined with the two tilt directions (left and right), this yielded 8 tilt amplitudes, which

were pseudo-randomly interleaved within each block. The experiment consisted of 480

trials in total per subject, carried out in 4 blocks of 120 trials each.

In addition to these primary 4 blocks of decision-making, two control experiments

were performed. In the first control experiment, the motor reaction time and the associated

EEG motor response were measured. Subjects were given only one button to press as soon

as the Gabor stimulus appeared regardless of the stimulus level. In the second control

experiment, the sensory response without decisional component was measured. Subjects

were given one button to press as soon as the Gabor stimulus disappeared (i.e., "turned

off") regardless of the stimulus level. Stimulus duration in this sensory control experiment

was uniformly varied at four different durations, 1400, 1600, 1800, and 2000ms in order to

prevent the subjects from guessing the off time. There were two blocks in each of motor
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and sensory control experiments, one for left (CCW) and another for right (CW) Gabor

orientation, and the same set of four stimulus levels were used as in the main experiment. A

single Gabor orientation was used within each block, matching the hand holding the button.

A visual fixation point was displayed during inter-trial intervals that uniformly

varied between 1500ms and 2000ms, and each Gabor stimulus was followed by a visual

masker to disrupt the influence of any Gabor afterimage that may have been present.

Figure 9a summarizes the experimental procedures. The visual scene was displayed on a

computer monitor (Asus VG248QE) and was generated using Psychtoolbox (Brainard,

1997) at a refresh rate of 144Hz. The Gabor patch had a visual angle of 70 in diameter

(Lopez et al., 2011) with 2-cycle/ and 80% contrast (Baccini et al., 2014).Subjects viewed

the display through a round window having a 20 viewing angle at a distance 85cm from

the eyes inside a dark chamber. Subjects rested their chins on a chin bar to hold their head

in a steady position throughout the experiment.

EEG Recordings and Data Analyses

EEG was recorded using an ActiChamp 64-channel system (Brain Vision LLC) at a

sample rate of 1000Hz, referenced to Fpz. Electrode impedance was kept under 50kf. After

the recording, EEG data was band-pass filtered between 0.08Hz and 100Hz and notch-

filtered at 60Hz. Eye movements were recorded in a separate block, and ocular components

were removed through independent component analysis (ICA) using Brain Analyzer 2.0

(Brain Vision LLC). After the ocular correction, EEG data was re-referenced to averaged

mastoids. Epochs containing remaining artifacts were rejected by semi-manual inspection,

resulting in a rejection rate of 4.3%.

EEG data analyses were performed using MATLAB (MathWorks) and EEGLAB

(Delorme & Makeig, 2004). Event-related potentials were analyzed with respect to two

events, (a) stimulus onset, and (b) response time (RT). Two electrode groupings were of

special interest following the topographical analysis and the literature research on the

neural circuitry of decision-making and confidence: (1) centroparietal potential (CPP)

combining CPz, CP1, and CP2 was selected based on previous human EEG studies(Boldt &

Yeung, 2015; Gherman & Philiastides, 2015; O'Connell et al., 2012; Zizlsperger et al., 2014);

and (2) frontal potential (FP) combining Fz, F1, and F2 was selected based on the
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preliminary findings, which were consistent with previous findings in animals (Uchida,

Kepecs, & Mainen, 2006) and humans (Graziano et al., 2015).

EEG data were analyzed based on three behavioral factors, choice accuracy,

response time, and choice confidence. Since choice accuracy was targeted at specific

performance (i.e., accuracy) given stimulus levels, stimulus levels were treated as a factor

to replace the choice accuracy. After the artifact rejection, only the trials in which subjects

reported within the time limit (before the stimulus turns off at 1600ms from the onset)

were kept, which accounted for 89% of the data. As the result, 85% of the EEG data

remained in total. The data was then partitioned to 4 categories for each of the factors in

order to be consistent with 4 stimulus levels. For response time (RT), 25% quantiles were

used. For confidence, the "lowest" confidence category was defined as just guessing (i.e.,

50% confidence); the remaining 3 categories were defined using tertiles (also named 3-

quantiles, meaning 33% data in each of the three remaining categories, referred to as "low",

"high", and "highest").

Apart from these choice behavioral factors, as noted earlier, two temporal events

are particularly relevant in this study, stimulus onset and response time. For both stimulus-

locked ERPs and response-locked ERPs, the baseline correction was referenced to -200-

Oms before the stimulus onset. In order to identify ERP components that are significantly

affected by choice behavior factors, a cluster-randomization procedure (Maris &

Oostenveld, 2007) was applied to define time intervals during which the difference ERP

between the two most widely separated categories is significantly different from 0. In other

words, the difference ERPs were calculated between the largest (1.5u) and smallest (0.75a)

stimulus levels, between the fastest and slowest RTs, and between highest and lowest (i.e.,

50%, "guessing") confidence. Then two-sided t-tests (a=0.05) were performed at each time

point to define a temporal cluster. The epochs in the two categories were then randomly

permutated 1,000 times to estimate p-values.

The effect of the factors on the identified components were analyzed using repeated

measures ANOVA and linear mixed effect (LME) models via R (Team, 2008). Then repeated

measures pairwise multiple comparisons among the criteria were performed with Tukey

contrasts as ad-hoc analyses. Repeated measures were also taken into account when
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calculating Spearman correlation coefficient (Lindell & Whitney, 2001; Rosner, Wang,

Eliassen, & Hibert, 2015)

Results

Overview

Despite the strong association between response time and confidence found in

behavior, we report that the scalp topography and time evolution for response time and

confidence are different. Specifically, we report (1) that the curvature of the second peak in

FP between 400ms and 600ms from the stimulus onset decreases with decreasing

confidence, eventually disappearing at 50% confidence, and (2) that the CPP shows the

greatest difference potential dependent on response time while FP shows the greatest

difference potential dependent on confidence.

Behavioral Data

First, a perceptual threshold was obtained for each subject using a staircase

procedure. The average threshold was 0.84 deg and its 95% confidence interval (95%CI)

was 0.64 and 1.09 deg. In order to quantify each individual subject's tendency to rate

confidence, a confidence factor K was calculated (Yi & Merfeld, 2016). Here, K = 1

indicates that the confidence matches choice accuracy, K < 1 indicates overconfidence, and

K > 1 indicates underconfidence. On average, subjects were somewhat underconfident as

the average confidence factor (K) was 1.94 (std 0.74). This means that subjects indicated

84% confidence at the stimulus level 1.94 times the perceptual threshold (84% correct)

based on binary choice. Subjects utilized wide range of confidence between 50% and 100%

(e.g., Fig. 9c and 9d). In addition, the motor reaction time was measured in a separate

motor control block, during which the task did not involve orientation-recognition

decision-making. The motor reaction time included stimulus sensory onset response and

the motor delay for pressing a button. The average median reaction time was 312ms (std

45ms). The main experiment was performed after establishing these psychophysical and

motor response baselines.
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As a result of emphasizing accuracy over speed, subjects achieved average choice

accuracy that matched the theoretical performance (Fig. 9b) we targeted. Figure 9c-h show

behavioral data. Figure 9c shows confidence histogram histograms categorized by the

stimulus level for all 15 subjects. The average median confidence was 65, 68, 71, and 73%

for the four stimulus levels (0.75 a, l, 1.25a, and 1.5y, respectively), which are shown as

gray circles in Fig. 9e. The correlation between confidence and stimulus was significant but

weak (p=0.35, p=0.006; gray circles in Fig. 9e) with confidence significantly higher for

larger stimuli (multiple comparisons, ps0.006). Figure 9f summarizes RT histograms

categorized by stimulus level. The average RTs were 912, 899, 870, and 869ms for the four

stimulus levels (0.75o, ly, 1.25a, and 1.5a, respectively). Although the difference is small,

RTs are significantly slower for 0.75a and la than 1.25a and 1.5y (multiple comparisons,

psO.0013). There was no significant correlation between RT and stimulus levels (p=0.14,

p=0.27; gray circles in Fig. 9h).

In comparison, confidence and RT showed a stronger correlation with each other

than with stimulus level. When confidence is categorized by RT (Fig 9d), the separations

between the confidence histograms grow, yielding a stronger correlation with RT (p=0.68,

p<0.0001; black squares in Fig. 9e) than with stimulus level (gray circles). The average

median RT were 1120, 1013, 865, and 787ms for lowest (50% average), low (60%), high

(73%), and highest (85%) confidence, respectively. A similar effect by confidence on RT is

observed. When RT is grouped by confidence (Fig. 9g), the separations between the RT

histograms grow, yielding a correlation (p=0.64, p<0.0001; black squares in Fig. 9h)

comparable to confidence categorized by reaction time (Fig. 9e). The averaged confidence

medians were 59, 66, 73, and 79% for slowest (1234ms average), slow (945ms), fast

(789ms), and fastest (661ms) RTs, respectively.
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obtained from categorizing the data by 4 stimulus levels. Confidence below 50%

indicates incorrect responses. (d) Confidence histograms obtained from categorizing

the data by 4 RTs. The medians of each RT category are shown in the legend. (e)

Correlations between median confidence and its grouping variables (stimulus levels in

gray and RTs in black). Markers show the mean, and error bars show 95%C across 15

subjects. (f) RT histograms obtained from categorizing the data by 4 stimulus levels. (g)

RT histograms obtained from grouping the data by 4 confidence levels (50%, low,

medium, and high confidence). (h) Correlations between median RT and its grouping

variables (stimulus levels in gray and RTs in black). Symbols show the mean across

subjects of each subject's median value, and error bars show 95%C across 15 subjects.
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Event-Related Potential (ERP) Data

In the main experiment, there were two discrete temporal events, (1) stimulus onset

and (2) response time (RT). As a first step, the topography of stimulus-locked ERP's was

obtained in order to observe general patterns. Figure 10a-c shows the grand average

topography of stimulus-locked ERP's across all trials and all stimulus levels. Following the

onset of the Gabor stimulus, a visual evoked response (Ni) is observed between 150ms and

200ms in the occipital area (Makeig et al., 2002) (Fig. 10a). And then a more distributed

response appears between 250ms and 300ms spanning frontal, central, and parietal areas

(Fig. 10b). Then, as previously reported to reflect evidence accumulation process in

decision-making(O'Connell et al., 2012), a centroparietal potential (CPP) is observed

between 475ms and 525ms (Fig. 10c).

In order to observe the effect of stimulus level, RT, and confidence, difference

potentials were calculated between the two extreme categories. For instance, the scalp

potentials measured for the smallest stimulus level (0.75a) was subtracted from that

measured for the largest stimulus level (1.5 a) (Fig. lOd-f). Similarly, the difference

potentials between fastest and slowest RT (Fig 10g-i) as well as the difference potentials

between highest and lowest confidence (Fig. 10j-l) were obtained. The stimulus level

difference potential showed that there are two weak poles at 475-525ms, one in frontal

and another in parietal (Fig. 100. In comparison, both RT difference potential and

confidence difference potential showed stronger features. An enhanced difference ERP was

observed in centroparietal area for the fastest RT compared to the slowest RT (Fig. 10i),

particularly at 475-525ms, whereas an enhanced ERP was observed in the frontal area for

the highest confidence compared to lowest confidence (Fig. 101). In addition, a stronger RT

difference potential is observed at 250-300ms throughout frontal, central, and parietal

areas for the fastest response time (Fig. 10e).
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Figure 10. Stimulus-locked topography

(a-c) Grand average across all trials at three time intervals, 150-200ms, 250-300ms,

and 475-525ms from the stimulus onset, respectively. Blue indicates negative potential,

and red indicates positive potential. Scale 1.66pV for a; 4.12pV for b; and 7.39pV

for c. (d-f) Difference potential between largest and smallest stimulus levels. (g-i)

Difference potential between fastest and slowest RT. U-1) Difference potential between

highest and lowest confidence. Scale 1.49pV for d, g, j (150-200ms); 1.62pV for e,

h, k (250-300ms); and 2.86pV for f, i, I (475-525ms).
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Stimulus Time-Locked ERPs
By Confidence By Stimulus Level By Response Time
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Figure 11. The effect of confidence, stimulus level, and RT on stimulus-locked event-

related potentials (ERPs)

(a) Centroparietal ERPs (CPPs) categorized by confidence (highest, high, low, and

lowest). Gray shade shows the time interval during which the difference potential

between high and 50% confidence is significant (two-sided t-test, a=0.05). (b) CPPs

categorized by four stimulus levels, 1.5a (largest), 1.25a, 1a (threshold level), and

0.75c (smallest). (c) CPPs categorized by RT quartiles. The legend shows the median

RTs in each quartile - 661ms (fastest), 789ms, 945ms, and 1234 (slowest). (d)

Difference potential topography for confidence within the time interval defined in the

gray shade marked with letter d. Random cluster analysis p=0.002 in CPP, scale
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2.29pV. (e) Difference potential topography for stimulus level (p=010 in CPP), scale

1.22pV. (f) Difference potential topography shows the late component for RT (p<0.001

in CPP), scale 2.48pV. Small topography image shows an early component at

207~291 ms (p=0.006 in CPP), scale 1.45pV. (g) Frontal ERPs (FPs) with four levels of

confidence. Late component in FP is marked with horizontal bracket labeled with P2

(400-600ms). (h) FPs with four stimulus levels. (i) FPs with RT quartiles. () Difference

potential topography for confidence (p=0.006 in FP, scale 2.49pV). (k) Difference

potential topography for stimulus level (p=0.011 in FP, scale +1.17pV). (1) Difference

potential topography for RT (p=0.006 in FP, scale 2.48pV). Small topography image

shows an early component at 219-290ms (p=0.004 in FP), scale 1.56pV.

Having observed that both centroparietal and frontal areas are associated with

confidence and RT, the next step was to define time intervals, during which the effects of

decision behaviors are significant in these two regions. Such time intervals serve a double

purpose: first to verify that the general pattern observed in the difference potential

topography (Fig. 10) at 250-300ms and at 475-525ms are significant; and secondly to

identify a specific ERP component that is modulated by choice confidence. A cluster-

randomization procedure (see Methods) revealed four time intervals in each of centro-

parietal potential (CPP) and frontal potential (FP). These time intervals are highlighted in

gray shades in Figure 11a-c for CPP (all p50.010) and in Figure 11g-i for FP (all p 0.011).

Specifically, in both CPP and FP, at least one time interval after 300ms was found for each

of all three factors - confidence, stimulus level, and RT - (Fig. 11a-c and Fig. 11g-i), which

coincides with the late component (475ms-525ms) in Figure 10. Within these time

intervals, repeated measures ANOVA on the area under the ERPs indicated that CPP

amplitude is modulated by confidence (F3,42=8.60, p=0.0001) and RT (F 3,4 2 =9.30, p<0.0001)

and modulated less by stimulus level (F 3,42=2.41, p=0.080). On the other hand, the FP late

component is significantly modulated by confidence (F 3,42=3.96, p=0.014), stimulus

level(F3,42=2.91, p=0.015), and RT (F 3,42=3.95, p=0.014).

In order to quantify how much ERP's are modulated by the factors, the ERP areas

was calculated at each factor category, from which the gain (ERP area per category) was

estimated for each subject. Figure 12 summarizes the effect of the factors on the ERP area.
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Among the three factors, confidence and RT had significantly greater effects on the late

component of both CPP and FP than stimulus level (multiple comparisons, z>4.14,

p 50.0001). This overall effect is consistent with the behavioral data (Fig.9 c-h) as stimulus

level is not a good predictor for choice behavior. However, CPP and FP displayed different

sensitivity to confidence and RT. Specifically, the CPP late component showed greatest gain

for RT (214.01pV.ms per RT quartile, r=0.26), compared to either confidence (93.00 pV-ms

per confidence category, r=0.20; multiple comparisons, z=9.05, p<0.0001) or stimulus level

(37.71pV-ms per stimulus level, r=0.11; z=13.18, p<0.0001). Figure 12a shows the CPP late

component area for RT (solid gray), confidence (solid black), and stimulus level (dashed

gray). Bar graph in Figure 12b shows the gains for the three factors. On the other hand, as

seen in Figure 12c-d, the FP late component showed greatest sensitivity to confidence

(98.30[tV-ms per confidence category, r=0.33), compared to either RT (49.82pV-ms per RT

quartile, r=0.31; z=8.82, p<0.0001) or stimulus level (15.16pX-ms per stimulus level,

r=0.15; z=15.12, p<0.0001).

In addition, an earlier time interval was found only for RT in both CPP (207-291ms,

p=0.006) and FP (219-290ms, p=0.004). Within these time intervals (marked with

horizontal brackets in Fig. 11c and 11i), ERP area was calculated, which showed that RT

had a significant effect on CPP (F 3,42=6.40, p=0.001) and FP (F 3,42=3.95, p=0.014). The

corresponding early component of CPP had a gain of 33.36pV-ms per RT quartile (t=2.98,

p=0.003), and the early component of FP had a gain of 33.47pV-ms per RT quartile (t=3.40,

p=0.0007). Such an RT-dependent early component was also observed in the motor control

experimental data (see Supplement I, Figure 16 b), in which the task did not involve binary

decision-making. In fact, a greater effect was recorded in our control study focused on

motor responses. The gain of the early component in CPP was 106.97 V-ms per RT quartile

(t=3.32, p=0.0009) for the motor task, which was significantly greater (z=12.57, p<0.0001)

than the CPP gain for the decision-making task. The gain in FP was 30.16pV-ms per RT

quartile (t=3.40, p=0.0007) for the motor task, which did not differ from the decision-

making task (z=0.64, p=0.522).
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Figure 12. ERP late component areas and gains

(a) CPP area as a function of confidence (black squares), stimulus (gray circles), and

RT (gray squares) levels. Lines show the repeated measures LME model fits, markers

show the mean across subjects, and error bars show 95%CI. (b) Mean CPP area gain

and 95%CI. Gain is taken from the slope of the LME fit from a. Horizontal bars with

triple asterisks (***) indicate p50.0001 (repeated measures multiple comparisons, Tukey

contrast). (c) FP area as a function of confidence, stimulus, and RT levels. (d) Mean FP

area gain and 95%CI.

A particularly notable ERP characteristic that is associated only with confidence was

the curvature of FP P2. As can be seen in Figure 1 1g-i, the peak of FP P2 disappears only for

50% (lowest) confidence (blue in Fig. 11g) while it remains for the smallest stimulus level

(blue in Fig. 11h) and the slowest RT (blue in Fig. 11i). The curvature was calculated for

each ERP between 400ms and 600ms (marked P2 in Fig. 11g-i) by fitting a quadratic

function to each subject's ERP using a linear mixed effect (LME) model as described in the

methods. Figure 13 shows the mean curvature across subjects with 95%CI error bars. It is

apparent in Figure 13 that the FP P2 peak disappears (i.e. curvature goes to zero; t=0.048,

p=0.96) only when confidence is 50% ("lowest"). In all other conditions, the curvature is

significantly greater than 0 (t>2.7, p<0.01). Repeated measures ANOVA showed that only
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confidence has a significant effect on FP P2 curvature (F 3,42=7.58, p=0.0004) while stimulus

level (F 3 ,4 2 =1.08, p=0.3 7 ) and RT (F 3,42=1.24, p=0.31) did not have significant effects.

FP P2 Curvature (400ms~600ms)

By Confidence By Stimulus Level By Response Time

E 0 0

*0

u-600- !III0 60--600 - -600 -
(Gues* Highest Smallest Largest Slowest Fastest

Figure 13. The curvature of FP between 400ms and 600ms from the stimulus onset

Curvature was calculated for the four levels of confidence (Left), stimulus levels

(Center), and response time (Right). Asterisk indicates that the curvature is not

significantly different from 0 (t=0.048, p=0.96).

Response time-locked ERPs showed results that are consistent with the

observations from stimulus-locked ERPs. First, grand averaged ERP displayed a positive

pole in the centroparietal area, which remained elevated throughout from -525ms to 5Oms

relative to RT (Fig. 14a and Fig. 18a in Supplement). Such large response in the parietal

area is also apparent in the response time-locked CPP (Fig. 14e-g). The scalp potential

depression (negative potential) in the frontal area emerges after RT (Fig. 18a), which is

also observed in FP traces (Fig. 14j-1). Second, between -150--100ms, the positive pole

that show the greatest difference potential between highest and lowest confidence

categories (Fig. 14b) is shifted frontal compare to the parietal shift observed in the

difference potential between fastest and slowest RT's (Fig. 14d). When looking at the

temporal dynamics of the difference potential in topography (Fig. 18b and 18d), difference

potential is more positive in frontal area relative to parietal area before -150ms for both

confidence and RT factors. However, at -150--100ms, parietal shift of the positive pole is

more pronounced for RT than for confidence. And then around RT (-50-0ms and 0--50ms

topographies in Fig. 18b-d), the positive pole completes shifting to the parietal area.
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Response Time-Locked ERPs
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Figure 14. Response time-locked ERPs

(a) Grand average topography at 150~100ms before the RT. Scale 5.75pV. (b-d)
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smallest stimulus levels (c), and between fastest and slowest RT (d) at 150-100ms

before the RT. Scales 5.55pV. (e-g) Centroparietal ERP's for the four levels of

confidence (e), stimulus level (f), and RT (g). Baseline correction was referenced to

200-Oms prior to the stimulus onset. Gray shades show the time interval during which

the difference potential between the greatest (cyan curves) and smallest (blue curves)

ERP's are significantly different from 0 (a randomized cluster procedure, p50.002). Two

clusters were identified between -193ms and 248ms for confidence (marked h in e), and

one cluster was identified between -267ms and 249ms for RT (marked i in g). No

cluster was found for stimulus level (f). (h, i) Pre- and post-RT difference topographies

between high and 50% confidence (h) and fastest and slowest RT (i) within the time

interval based on the statistics in CPP. Pre- and post-RT clusters are indicated by

horizontal bracket. a-1) Frontal ERP's for the four levels of confidence (j), stimulus level

(k), and RT (1). Two clusters were identified between -443ms and 231 ms for confidence

(marked m in j), and one cluster was identified between -337ms and 109ms for RT

(marked n in I). No cluster was found for stimulus level (k). (m, n) Pre- and post-RT

difference topographies between high and 50% confidence (m) and fastest and slowest

RT (n) within the time interval based on the statistics in FP. Difference potential

topography scales: (h) pre-RT 4.55pV, post-RT 3.79pV, (i) pre-RT 4.88pV, post-RT

4.47pV, (m) pre-RT 3.62pV, post-RT 3.97pV, and (n) pre-RT 4.28pV, post-RT

5.58pV.
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(a) Response time-locked CPP area as a function of confidence (black squares) and RT

(gray squares) levels. Pre-RT components are marked with filled squares accompanied

by solid lines, and post-RT components are marked with open squares accompanied by

dotted lines. Lines show the repeated measures LME model fits, symbols show the

mean across subjects, and error bars show 95%CI. (b) Mean CPP area gain and

95%CI. Gain is taken from the slope of the LME fit from a. (c) Response time-locked FP

area as a function of confidence (black squares) and RT (gray squares) levels. (d)

Mean FP area gain and 95%C. Horizontal bars with single asterisk indicates

0.01<p50.05, and double asterisks indicate 0.001<p50.01 (repeated measures multiple

comparisons, Tukey contrast).
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In order to verify such brief difference between the two behavioral factors, a

random cluster procedure was performed for the response time-locked CPP and FP to first

identify the time interval, during which the difference potential is significant (gray shades

in Fig. 14e, g, j, 1). Pre-RT and post-RT time intervals were identified for confidence and RT,

but no significant cluster was found for stimulus level. Because the pre-RT time interval in

FP extends further back in time than in CPP, the frontal element is more emphasized in

Figure 6m and n than in Figure 14h and 14i. The pole shift that depends on the behavioral

factors prior to RT (pre-RT) was also quantitatively analyzed by calculating pre- and post-

RT ERP area within the cluster. Figure 15 summarizes the ERP area as functions of

behavioral factors (CPP in Fig. 15a and FP in Fig. 15c) and the gain (CPP in Fig. 15b and FP

in Fig. 15d) per factor category. Gain was calculated by estimating the slope in Figure 15a

and 15c through fitting a linear mixed effect (LME) model. In summary, pre-RT CPP is

modulated significantly more (z=2.52, p=0.12) with the change in RT (411.51 V-ms per

quartile, r=0.38) than in confidence (212.82pV-ms per category, r=0.33). On the contrary,

the contribution of confidence (464.86pV.ms per category, r=0.46) and RT (428.62 V-ms

per quartile, r=0.50) are comparable (z=0.30, p=0.76) in pre-RT FP.

Mean time, new features emerged from the response time-locked ERP's. For

instance, the difference potential displayed different scalp distribution depending on the

timing with respect to RT. Figure 14h-i and Figure 14m-n show pre- and post-RT CPP and

FP. Confidence difference potential showed lateralization to the left hemisphere (Fig. 14h,

m) whereas RT difference potential showed parietal shift (Fig. 14i, n) more during post-RT

than during pre-RT. Such parietal shift after RT is also illustrated in Figure 15 that shows

response time-locked CPP and FP as functions of confidence and RT categories. Specifically,

the gain in FP drops significantly in post-RT relative to pre-RT (** in Fig. 15d; zn2.99,

p50.00 2 8 ) while the gain in CPP does not change significantly before and after RT (Fig. 15b;

z:1.72, p 0.085). On the other hand, no significant lateralization was observed in either

CPP or FP and for both behavioral factors (F 3, 4 2 51.77, p 0.17) although a tendency for

rightward lateralization was observed after RT in RT-dependent CPP (F 3,42=2.43, p=0.078).
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Discussion

The primary objective of this study was to find a pre-decisional neural

representation of the relationship between the choice confidence and decision time

observed in the behavior. Here, probabilistic judgment of choice certainty was measured as

the confidence, and RT was recorded as a measure of decision time. As a result, a pre-

decisional confidence component was found in the frontal scalp potential while persistent

(i.e. pre- and post-decisional) RT components were found in the centroparietal potential.

Specifically, the second positive peak of FP that occurs at 400-600ms from the stimulus

onset was shown to indicate the confidence categories ranging from a lowest (50%,

random guess) to highest confidence (median 85%). Then near the response time, the

contribution of decision time increased in FP to level with the effect of confidence, which is

consistent with the high correlations between confidence and RT observed in behavior

(Fig. 9). After the response time (up to 400ms post-RT), FP decreased substantially. On the

other hand, RT remained as the dominant factor in CPP, which stayed elevated during and

after the perceptual decision-making. These results indicate that the pre-decisional

confidence component is driven by the input stimulus while the RT component is driven by

the output choice action.

While the neural generator for the FP needs to be further verified in the future,

prefrontal cortex (PFC) is a probable source that contribute to FP. This conjecture is based

on the known neural circuitry of metacognition (Fleming, 2016; Fleming & Dolan, 2012;

Fleming et al., 2010) and a source localization of post-decisional confidence ERP (Graziano

et al., 2015). Choice certainty, which was measured as the probabilistic choice confidence in

this study, constitutes a part of metacognition that connects perception and cognition. In

perceptual decision-making, the amount of perceived sensory information is inferred from

the choice accuracy and the response time (Gold & Shadlen, 2007b), and introspection

about the decision is measured as confidence (Fleming et al., 2010). Several

neurobiological lesion studies provided direct evidences for spatial segregation of the

metacognitive process from the perception. For instance, physical lesions and temporary

functional disruptions in dorsolateral prefrontal cortex (dlPFC) and orbitofrontal cortex

(OFC) compromised introspective ability while preserving the choice accuracy and decision
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time (Kepecs et al., 2008; Lak et al., 2014; Lau & Rosenthal, 2011; Rounis, Maniscalco,

Rothwell, Passingham, & Lau, 2010). While prefrontal cortex is the meta-level locus

(Fleming & Dolan, 2012), parietal area was consistently shown to be the object-level locus

especially relevant to encoding motion and orientation sensory perception and choice

action(T. D. Hanks et al., 2006; Roitman & Shadlen, 2002; Shadlen & Newsome, 2001;

Ungerleider & Haxby, 1994). Such spatial segregation of the two processes of perceptual

decision-making is resolved by the fronto-parietal network(Fleming, 2016; Fleming &

Dolan, 2012; Fleming et al., 2010), in which the PFC monitors and supervises the

perception and choice processed in the parietal cortex. A human EEG study (Graziano et al.,

2015) complements this bilocal (Nelson, 1990), hierarchical (Shallice et al., 1996) view of

choice behaviors by presenting post-decisional confidence ERP components in frontal and

centroparietal electrodes what were sourced localized to both PFC and posterior cortex.

Specifically, frontal ERP was accompanied by orbitofrontal and anterior cingulate cortices

while centroparietal ERP was accompanied by more broad areas including parietal and

temporal cortices in source localization. However, in this study, we found a pre-decisional

confidence component in the frontal scalp potential, indicating that the neural circuit

engages in the metacognitive activity earlier than previously shown. In fact, the contrast

between Figure 5c and Figure 8c shows that the pre-decisional confidence component in FP

P2 is a stimulus-locked response rather than RT-locked response. This indicates that the

sensory information streaming to or out of the PFC is not confined to post-decision, which

is consistent with dual-route model of perceptual decision-making (Del Cul et al., 2009).

Furthermore, in support of such dual-route decision-making, the pre-decisional confidence

component in FP concurrently accompanies the parietal confidence ERP found at -300ms

from the stimulus onset (Zizlsperger et al., 2014), also preceding RT.

However, it is important to note that this study does not refute the hierarchical view

of metacognition. In fact, it was shown in human behaviors that confidence has non-

monotonic relationship with decision time (Moran et al., 2015; Pleskac & Busemeyer,

2010). In other words, depending on how decision time was constrained, the confidence-

decision time causality switched. For instance, when subjects were under pressure to

respond faster, confidence decreased with shorter decision time (Vickers & Packer, 1982)

(cite my paper). Such paradigm pre-conditions confidence as the post-decisional process of
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reflecting on the decision time - e.g. I am less confident because I did not have enough time

to decide. On the other hand, when there was no time pressure, confidence increased with

shorter decision time (Vickers & Packer, 1982) (Fig. 9). In this case, confidence serves as

the cause for shorter or longer decision time - e.g. I decided sooner because I felt more

confident. By providing the neural correlate of pre-decisional confidence that is consistent

with the frontal-parietal neural circuitry of metacognition, we present the missing half of

the piece constituting the non-monotonic dynamics of choice confidence.

In order to further verify that FP P2 arise from a binary decision-making process, a

sensory control study was performed for the same subjects after completing the main

decision-making experiment blocks. As shown in Supplement Figure 17b, FP P2 disappears

entirely without any elevation when the task does not involve binary decision-making

while the onset responses, N1 and P1, remains intact. Such FP P2 disappearance during a

sensory task is strikingly different from FP P2 disappearance during perceptual decision-

making task (Fig. 11g and Fig. 13 Left), in which only the curvature is removed while the

elevation remains for the lowest confidence category. Moreover, FP P2 is also missing in

the motor control task, which also did not include perceptual decision-making (Supplement

Fig. 16c Left and Fig. 16d Left). These results indicate that FP P2 is neither a sensory nor

motor component. In accordance with the study that investigated the effect of attention on

confidence ERP (Zizlsperger et al., 2014), our results supports that choice confidence

evolves only when the decision target feature is unambiguous, as indicated by the FP P2

curvature present only for confidence higher than 50%.

In relation to existing decision-making models, CPP amplitude was shown to reflect

bounded accumulation of sensory information (O'Connell et al., 2012). Specifically, a

number of studies demonstrated that stimulus-locked CPP (or more broadly scalp potential

in parietal area) is modulated by both sensory strength (O'Connell et al., 2012; Philiastides

et al., 2014; Philiastides, Ratcliff, & Sajda, 2006; Zizlsperger et al., 2014) and response time

(O'Connell et al., 2012; Philiastides et al., 2006), which was also replicated in this study

(Fig. 11c and Fig. 11f). However, in addition to the late decision-making component starting

at -400ms in CPP, an additional early component (Ph) that is associated with RT was also

found at 200-300ms. Interestingly, this early component (Ph) was also present in the

motor control data (marked with horizontal brackets in Fig. 11c, Fig. 11i, Fig. 16b, and Fig.

92



16d), which indicates that P1 reflects non-perceptual decision process. This conclusion is

consistent with two conflicting results from earlier studies: the study showing the causal

role of LIP in decision-making in non-human primates (T. D. Hanks et al., 2006) was refuted

by a study showing that choice accuracy is unaffected by LIP inactivation (Katz, Yates,

Pillow, & Huk, 2016). In other words, LIP may reflect non-perceptual choice action during

pre-decisional stage. In computational model, such non-perceptual component may be

interpreted as an urgency signal (Churchland et al., 2008; Cisek et al., 2009; Hawkins et al.,

2015). While there exists no model explaining how an urgency signal affects choice

confidence, the lack of confidence-dependent P1 modulation (Fig. 11a and 11g) suggests

that the urgency signal only affects choice action (RT), but not confidence. Hence, a model

congruent with the neural basis of perceptual decision-making calls for a mechanism that

accounts for the non-perceptual decision signal although the interpretation is not limited to

urgency signal - i.e. leaky accumulator model has the same dynamic feature as urgency

signal accumulator model. In addition to the incorporation of the current study's results to

decision-making model, future work includes source localization.
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Supplement II
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Figure 18. RT-locked topography

(a) Grand Ave, Scale 6.03pV (b-d) Difference potential for (b) Confidence, (c) Stimulus

level, and (d) RT. (b-d) Scales 4.32pV for -525--475ms, 3.78pV for -300--250ms,

5.55pV for -150~-1 Oms, 6.64pV for -50-Oms, and 6.1 OpV for 0-50ms.
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CONCLUSIONS

In this thesis we investigated the dynamics of probabilistic judgment of choice

certainty during perceptual decision-making in humans. In order to achieve this goal, we

took a multi-disciplinary approach combining experimental psychology, computational

modeling, and functional neuroimaging. Our primary novel findings are:

Study 1: The dynamics of choice confidence data obtained during a forced-choice task,

in which decision time is constrained by externally controlling the stimulus duration,

are consistent with unbounded evidence accumulation (integration). This advances the

field since earlier studies assumed that confidence resulted from bounded evidence

accumulation (Pleskac & Busemeyer, 2010; Ratcliff & Starns, 2013)

Study 2: The second positive peak of frontal scalp potential occurring between 400ms

and 600ms from the stimulus onset reflects pre-decisional choice confidence during a

free response task, in which decision time is unconstrained by emphasizing accuracy

over speed (Fig. 19 in red bolds). This advances the field as it is the first study to show a

neural marker (ERP) representing choice confidence before a decision is made, which

bolsters existing models of behavioral data that hypothesized such pre-decisional

contributions of confidence.

Furthermore, we contributed to the understanding of perceptual decision-making

by showing that:

(i) Choice confidence increased with increasing stimulus duration in a forced-choice

paradigm, but choice confidence decreased with increasing decision time in a free

response paradigm. While these reversed correlations with decision time replicate

the previously known non-monotonic relationship between choice confidence and

decision time, the novelty is in using a forced-choice paradigm (unlimited

response time after the stimulus ends) instead of an interrogation paradigm

(limited response time after the response cue).
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(ii) Both bounded and unbounded models describe binary choice behavior well. This

explains why both signal detection theory and sequential analysis (i.e. drift-

diffusion model) have been equally successful in modeling binary choice data.

(iii) The complexity of DDMs can be reduced to two or three free parameters to

describe binary choice behavior during forced-choice tasks for a moderate

number of subjects (N=12).

(iv) A mathematical framework that binds binary choice behavior during a forced-

choice task with choice confidence was further developed.

(v) Pure accumulator and leaky accumulator DDMs are indistinguishable for forced-

choice paradigms using constant stimuli.

(vi) In a free response paradigm with an emphasis on choice accuracy over speed, the

skewness of choice confidence distribution is markedly unaffected by stimulus

level. This observation is contrary to the confidence distribution in a forced-choice

paradigm, in which skewness increases with increasing stimulus level.

(vii) The amplitude of frontal scalp potentials that reflect choice confidence increases

concurrently with centroparietal scalp potential that reflects choice action

between 400ms and 600ms from the stimulus onset. Such dynamics are consistent

with the pre-decisional contribution (i.e. a causal role) of confidence in perceptual

decision-making during a free response task, which had earlier been suggested by

behavioral data (Nelson, 1990).

(viii) The first positive peak of both frontal and centroparietal scalp potentials at

between 200ms and 300ms reflects RT but not confidence during a free response

task. Motor control ERPs also show that a motor action without perceptual

decision-making is sufficient for the association between RT and the first positive

peak of the ERPs.
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Figure 19. Hybrid model of metacognition during perceptual decision-making

In summary, the primary contribution of this thesis was providing evidence

supporting a causal role of choice confidence in decision-making (black box in Fig. 19). The

Study 1 results from the computational modeling of forced-choice decision behaviors

indicate that both binary choice and confidence share at least part of the information from

the pre-decisional evidence accumulation process. These modeling results also suggest that

there is a secondary process underlying the additional temporal dependency observed in

confidence behavior, which is consistent with retrospective role of confidence in

perceptual decision-making. Most importantly, direct neural evidence for pre-decisional

contribution of confidence on a decision (highlighted in red in Fig. 19) was measured in

frontal scalp potentials (e.g., Fig. 11g and 12b).

On a conceptual level, the findings in this research taken together suggest that

whether a decision time longer than -400ms is allowed or not determine the role of choice

confidence in perceptual decision-making. Since (1) the internal representation of choice

arises at 400ms-600ms from stimulus onset and (2) the choice action representation

arises at 200-300ms from the stimulus onset, choice action may predominate for a

decision made before 400ms while choice confidence may contribute more on a decision

made after 600ms during a free response task. In other words, for rushed decisions

(RT<400ms), because internal representations of pre-decisional choice confidence are not

yet available, introspection relies on the post-decisional assessment of choice certainty. On

the other hand, when longer decision times are allowed (RT>600ms), pre-decisional choice
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confidence contributes to choice action as conditioned by the task instruction. The former

case corresponds to a retrospective role while the latter case corresponds to a causal role

of choice confidence. In a model of metacognition, these double roles of choice confidence

can be captured by merging dual-route and hierarchical models (Fig. 19). This model can

be realized by utilizing a feedback loop between the two loci that correspond to prefrontal

and parietal cortices in metacognitive neuroanatomy (Fleming & Dolan, 2012). In this

neural circuitry, the prefrontal cortex may alternate between evaluation and supervision

roles to either judge confidence or to contribute to a choice action by generating input to

the parietal cortex depending on whether the input is required or not.

This interpretation is not limited to a free response task if the supervisory role of

prefrontal cortex is to NOT generate an input to parietal cortex as instructed during a

forced-choice task. Within this framework, in a forced-choice paradigm, pre-decisional

choice confidence may become available and be reinforced by post-decisional choice

confidence while the input to the parietal cortex is delayed until the end of the stimulus. In

terms of dynamics, the time constants for the DDMs of the forced-choice binary and

confidence data indicate that the choice accuracy and confidence reach 90% of the optimal

accuracy and confidence at -450ms and -150ms, respectively, for a given stimulus level. If

the brain has prior knowledge about the evidence accumulation time constant - that the

evidence accumulation is 63% to 90% complete by 200ms-400ms -, the brain may initiate

metacognitive processes at -400ms that are 90% complete by -600ms.

In conclusion, the results from the first and the second studies are leads to a

conjecture that the causal and retrospective roles of confidence manifest as negative and

positive correlations between choice confidence and decision time, respectively. While the

possible mechanism and the neural substrate underlying the non-monotonic dynamics of

confidence judgment has been investigated through computational models and functional

neural imaging, verifying their neuroanatomy remains as future work. For instance, source

localization of the ERP should be conducted to identify the specific neuroanatomical origins

of the ERPs reported herein.

Equally important remaining work is developing one or more computational models

of the behavioral data from the second study. Salient features relevant for the modeling

emerged from the second study (see (vi) and (viii) in the contribution list above). First,
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substantial differences in the confidence histogram shapes between the two studies

suggests that the confidence mechanism might be different depending on the task. One

major difference in the task of the second study compared to that of the first study was that

subjects terminated the stimulus when sensory evidence accumulation was no longer

needed or desired. While the computational models from the first study indicated that

decision bounds do not contribute to confidence judgments, the computational models in

the second study seem likely to require a decision bound mechanism in order to explain the

insensitivity of confidence to stimulus level. Secondly, the ERPs suggest that an urgency

signal correlated with RT may contribute to choice behaviors during a free response task.

This is contrary to the modeling results from the first study, which showed that an urgency

signal decision-making model performed worst in fitting the forced-choice behavioral data.

Since the urgency signal ERP was not significantly affected by confidence, an urgency signal

may indirectly affect decision-making by modulating decision bounds instead of directly

contributing to evidence accumulation. One possible mechanism for modulating the

decision bounds that is worth investigating is collapsing bounds (Hawkins et al., 2015)

since urgency signal DDM and collapsing bound DDM similarly affect the end point

statistics of RT behavior.

Additional future work also includes investigating whether the pre-decisional

confidence ERP is still present in a forced-choice paradigm, in which confidence may take a

retrospective role in perceptual decision-making. Comparing pre-decisional and post-

decisional components of confidence ERP and running source localizations for the two

temporally distinct components may verify the validity of the feedback dual-route model of

metacognition.
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