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Abstract—In distributed cloud storages fault tolerance is
achieved by regenerating the lost data from the surviving
clouds. Recent studies suggest using maximum distance sep-
arable (MDS) network codes in cloud storage systems to allow
efficient and reliable recovery after node faults. MDS codes
are designed to use a substantial number of repair nodes and
rely on centralized management and a static fully connected
network between the nodes. However, in highly dynamic
environments, like edge caching in communication networks
or peer-to-peer networks, the nodes and the communication
links availability is very volatile. In these scenarios MDS codes
functionality is limited. In this paper we study a non-MDS
network coded approach, which operates in a decentralized
manner and requires a small number of repair nodes for node
recovery. We investigate long-term behavior of the modeled
system and demonstrate, analytically and numerically, the
durability gains over uncoded storage.

I. INTRODUCTION

Modern large-scale distributed cloud storage systems
predominantly use coding to tolerate inevitable errors and
failures of storage media in order to maintain high availability
and avoid data loss. The storage nodes can experience tempo-
rary or permanent faults, when the stored information cannot
be accessed, due to hardware failure, network connectivity
problems, unavailability of a peer in P2P network, etc. When
a new node is plugged into the cloud, whether to replace
a failed node or to increase redundancy, it needs to be
filled with data generated from the other cloud nodes. Reed-
Solomon codes [1] have been traditionally used in Redundant
Array of Independent Disks (RAID) systems for recovery of
the replacement nodes. They belong to the class of maximum
distance separable (MDS) codes. Network codes [2], and
specifically random linear network codes (RLNC) [3] have
been used to construct a MDS regenerating code, which is
shown to achieve optimal recovery traffic and storage cost
for certain scenarios [4].

MDS-based approaches, however, require a large number
of repair nodes and a relatively static cloud structure. This
is impractical for highly dynamic conditions like Peer-Aided
Content Delivery communication networks, or cloud centers
with ”hot” highly demanded hard drives often becoming
unavailable.

[5] proposed a non-MDS RLNC regenerating approach
for distributed and highly dynamic storage systems with
little operational planning, and demonstrated its reliability
in a simulator-based environment. In this paper we expand

upon [5] to build a model of a RLNC cloud storage with
random node losses and recovery from a small number of
repair nodes. We analytically investigate its performance, and
estimate how many cycles of node failure the storage can
tolerate in various scenarios, and, from this point of view,
compare a coded system with an uncoded one.

We shortly describe network coded storage basics, intro-
duce the system setup, and provide an algebraic model of
the system operation in Section II. Based on that model we
derive analytical approximations of the system evolution,
and estimates of the storage life time for a small number of
repair nodes in Section III. A numerical evaluation of the
model and its comparison against the approximations are
presented and discussed in Section IV.

II. PRELIMINARIES AND SYSTEM MODEL

In a random linear network coded [3] storage the original
data is cut into m chunks (segments) of the same sizes. Each
chunk is then treated as a huge vector with entries in a finite
field. Every storage container is filled with a coded chunk
— a random linear combination of all these vectors with
coefficient from the finite field. The corresponding vector of
m combination coefficients is also stored on each container
and constitutes the code.

During a recoding operation several coded chunks can
be summed together with random coefficients to create a
new coded chunk. The coefficient vector of the new chunk
is a linear combination of the coefficient vectors of the old
chunks taken with the new random coefficients.

In order to decode the original data one needs to read any

m containers with linearly independent coefficient vectors,
and solve a system of linear equations to recover the original
data chunks.

A. Cloud storage setup

Similarly to [5], we assume that the data is contained in
m source segments (packets). These m segments are put
into n > m (possibly RLNC coded) storage segments of
the same volume, thus, the redundancy factor is r = n/m.
The storage segments are spread afterwards among n

c

nodes.
The size of each node is s

c

storage segments, and n = s
c

n
c

.
The storage undergoes independent periodic node failures:

at every time step random n
l

nodes out of n
c

lose all their
data and need to be recovered. In the recovery phase, which



follows the loss phase, the data is regenerated from n
r

random repair nodes chosen from n
c

� n
l

working nodes.
Both failed and repair nodes are picked uniformly. Each
one of n

r

recovery nodes sends a (different) recovery set of
s
r

 s
c

segments to each of n
l

failed nodes (possibly, pre-
coding over its own s

c

segments). Each failed node receives
s
r

n
r

packets and post-codes them into s
c

segments to store.
The overall recovery traffic is therefore s

r

n
r

n
l

. The size
of the coding coefficients is negligible with respect to the
data segments volume and is not taken into account. After
filling up the replaced n

l

nodes, the storage is checked for
integrity. If the stored data does not contain m degrees of
freedom required to restore the source data, storage failure
is reported.

B. Algebraic model

The relationship between the source data packets and the
storage segments at time t 2 {0, 1, 2, . . .} is represented by
a n⇥m storage matrix M

t

2 Fn⇥m with entries in a field
F . The entry M [i, j] gives the network coding coefficient
of j-th source packet in the i-th storage segment. For the
storage without coding every row of M

t

is a row of identity
matrix I

m⇥m

. We shall interchangeably call the i-th row
M [i, ·] as a vector, a packet, or a segment in the k-th node
for k = di/s

c

e. Let I
i⇥j

be the matrix made from the first
i rows (i  j) or the first j columns (i � j) of the identity
matrix of dimension max{i, j}, let 0

i⇥j

be a i ⇥ j zero
matrix, let [n..N ] be the range of integers between n and N
inclusively.

The initial storage state is given by a matrix M0 of full
rank (m). Each cycle of loss and recovery amounts to left
multiplication by a random evolution matrix W

t

, and the new
storage state is given by M

t+1 = W
t+1Mt

, where W
t

2
Fn⇥n. By W t

t

0 =
Q

t�t

0

⌧=0 Wt�⌧

we shall mean the evolution
matrix between times t0 and t > t0, so that M

t

= W t

t

0M
t

0�1.
We also let W t , W t

1 .
Since M

t

and W
t

are block matrices, they can also be
indexed by the node number. We shall use bold indices for
this purpose. Let M

t

[i, ·] be the s
c

⇥ m block of M
t

that
corresponds to the node i, and let W

t

[i, j], be the s
c

⇥ s
c

block of W
t

that corresponds to the mapping from node j in
M

t�1 to node i in M
t

. We shall refer to W
t

[i, ·],W
t

[·, j] as
i-th row-group, resp. j-th column-group of block matrix W .

Let S
l

(t),S
r

(t) ⇢ [1..n
c

] be disjoint sets of the lost and
the recovery nodes at round t+1 of size n

l

, n
r

, respectively.
The evolution matrix W

t

has a structure shown on Figure 1:

W
t

[i, j] =

8
><

>:

I
sc⇥sc , if i = j /2 S

l

(t)

U ij

t

, if i 2 S
l

(t), j 2 S
r

(t)

0
sc⇥sc , otherwise ,

(1)

where U ij

t

= U ij,post

t

U ij,pre

t

is the product of the pre-

coding recovery matrix U ij,pre

t

2 F sr⇥sc , which describes
the mapping from the packets on repair node j to the s

r

packets sent to node i, and the post-coding recovery matrix

1
1

1
1

1
1

1
0

0
1

1
1

1
1

1

U9,2

U8,2

U9,4

U8,4

Fig. 1. Evolution matrix Wt structure. Sl(t) = {8, 9}, Sr(t) = {2, 4},
sc = 1.

U ij,post

t

2 F sc⇥sr , which describes the mapping from the
packets received by node i from node j to the regenerated
packets to be stored on node i. Note that rankW

t

= n�n
l

s
c

.
For a network coded storage we assume that each entry of

U ij,pre

t

, U ij,post

t

is drawn randomly independently uniformly
from non-zero elements of F . For a storage without coding
U ij,pre

t

, U ij,post

t

consists of rows and columns of I
sc⇥sc ,

respectively.
As the storage M

t

evolves with time, rankM
t

decreases
or remains the same. For |F | � n � m the original m
segments’ random storage coefficients in M0 with high
probability are such that any m coded packets (rows) of
M0 are independent, and, therefore,

rankM
t

= min{rankW t, rankM0}
= min{rankW t,m}.

(2)

m linearly independent packets are necessary and sufficient
to recover the source packets from the storage. Let T

life

be
the time to storage failure, i.e the time when rankW t

1 , and,
hence, rankM

t

becomes less than m for the first time

T
life

, min{t : rankM
t

< m}. (3)

Our goal is to estimate average T
life

for various recovery
strategies and system parameters.

III. ANALYSIS

T
life

is the hitting time of a certain subset of states of
discrete Markov process M

t

with an enormously large state
space. We shall analyze this process via approximating it
with a low-dimensional Markov chain.

Note that if recovery traffic n
r

n
l

s
r

is less than the number
of source packets m, then there is a chance of using the same
n
r

repair nodes to regenerate the data on the other n
c

� n
r

nodes and lower the rank of M
t

to n
r

s
c

. If n
r

s
c

 m� s
c

,



this sequence of losses and repairs would break the storage.
Hence, theoretically T

life

can take very small values, and no
code can guarantee integrity of the storage even after nc�nr

nl

iterations:

Pr[T
life

 dnc

� n
r

n
l

e] > 0. (4)

Additionally, the time till the first encounter of this sequence,
firstly, follows a geometric distribution with finite mean and,
secondly, upperbounds T

life

. Therefore, almost surely

E[T
life

] < 1, 8m � (n
r

+ 1)s
c

. (5)

Let T > 0 and let

fW
t , fW

T

T�t+1 = fW
T

fW
T�1 · · ·fWT�t+1,

where fW
t

[i, j] = W
t

[i, j] for all entries, except for the
recovery submatrix, whose entries {fW

t

[i, j]}(i,j)2Sl(t)⇥Sr(t)

are drawn uniformly at random from real interval (0, 1).
Correspondingly, fW

t

2 Rn⇥n. Consider N0(t) = |{j :
fW

t

[i, j]
c

= 0
sc⇥sc8i}| for t 2 [0..T ] which is the number

of zero column-groups of size s
c

in fW
t

. Assume that
N0(0) = 0. Clearly, N0(t) 2 [0..n

c

].

Theorem 1. With probability 1 the rank of the evolution

matrix is bounded by

rankWT  s
c

(n
c

�max
tT

N0(t)). (6)

N0(t) follows the Markov property with Pr[N0(t + 1) =
j|N0(t) = i] = p

i,j

, where

p
i,j

= 1{i=j} Hg
nl/i

nl/nc
+

X

k2[0..nr]
l2[1..nl]
l�k=j�i

Hg
k/i

nr/nc
Hg

l/nc�i�(nr�k)
nl/nc�nr

,

(7)

where Hg
k/K

n/N

=
(Kk)(

N�K
n�k )

(Nn)
is the pmf of the hypergeometric

distribution with n trials, N items, and K possible successes.

Proof. Each unit of N0(t) corresponds to s
c

zero columns
of fW

t

and to at least s
c

units of the nullity of fW
t

. Therefore.
rankfW

t

 s
c

(n
c

�N0(t)) 8t  T . Since rankfW
t

is non-
increasing with t, rankfW

T

 min
tT

s
c

(n
c

�N0(t)).
Multiplying fW

t

by fW
T�t

, or WT

T�t+1 by W
T�t

on the
right performs linear operations on the columns over field F
or R. Since R is an uncountable field with characteristic zero,
no linear dependency between the columns of fW

t

would be
invalid in WT

T�t+1 with probability 1 for any t. Therefore,

rankWT  rankfW
T

, and bound (6) follows.
Let N0(t) = i. As fW

t

is multiplied by fW
T�t

, random n
l

column-groups of fW
t

, l out of which being non-zero, are
chosen to be, first, added with random non-zero coefficients
to n

r

other column-groups, k out of which are zero, and,
second, replaced with zeros.

• If all the n
l

column-groups of fW
t

were zero column-
groups (l = 0), then the multiplication does not change
the matrix and N0. This happens w.p. Hg

nl/i

nl/nc
, which

corresponds to the first term in Equation (7).
• Otherwise (l > 0), non-zero column-groups are added

with positive coefficients to the n
r

column-groups, and
they become non-zero in fW

t+1
. In this case N0(t+1) =

i + l � k , j. Expressing the probabilities of having
specific values for l and k gives the second term in
Equation (7).

The next theorem derives explicit expressions for hitting
times T

k

, min{t : N0(t) = k} for the case of single failed
and repair node.

Theorem 2. For n
r

= n
l

= 1, s
r

= s
c

, and |F | � n, the

bound 6 is tight with high probability.

rankWT = s
c

(n
c

�N0(T )). (8)

The average hitting times are given by

E[T
k

] = E[Time when rankW

t

reaches (nc�k)sc
] =

k(n
c

� 1)

n
c

� k
. (9)

Proof. For n
r

= n
l

= 1 from Equation (7)

p
i,i+1 = 1� p

i,i

=
n
c

� i

n
c

n
c

� i� 1

n
c

� 1
. (10)

N0(t) never decreases, and max
tT

N0(t) = N0(T ).
For s

r

= s
c

each nonzero block W
T�t

[i, j]
c

is ei-
ther I

sc⇥sc , or can be considered randomly chosen from
(F\0)sc⇥sc . A random matrix ↵ from F sc⇥sc has full rank
s
c

, with probability at least 1� 1
|F |�1 .

Equation (8) holds for t = 0. Assume it hold at some
t � 0. At each time step t + 1 WT

T�t+1 is multiplied by
W

T�t

to result in WT

T�t

. This replaces column-groups A,B
with 0, B +A↵.

• If A is zero, WT

T�t+1 = WT

T�t

, the rank and N0(t) do
not change, Equation (8) holds at t+ 1.

• If B is zero, A,B = A, 0 are replaced with 0, A =
B,A, the rank and N0(t) do not change, Equation (8)
holds at t+ 1.

• If A,B are non-zero, B is replaced with B+A↵. With
high probability ↵ is full-rank, A↵ is independent of
B, and B + A↵ is full-rank. The rank decreases by
rankA = s

c

(with high probability), N0(t) increases
by one, Equation (8) still holds at t+ 1.

By induction with high probability Equation (8) holds for
any t.

Let T
i,k

be the average hitting time of state k, starting
from state i  k. We have

T
i,k

= p
i,i

T
i,k

+ p
i,i+1Ti+1,k + 1

T
i,k

= 1/p
i,i+1 + T

i+1,k,



Fig. 2. Simulations and analytical approximations of storage life time.

which in combination with T
k,k

= 0 and Equation (10) gives

T0,k = E[T
k

] =

k�1X

i=0

1

p
i,i+1

=

k�1X

i=0

n
c

n
c

� i

n
c

� 1

n
c

� i� 1

= n
c

(n
c

� 1)(
1

n
c

� k
� 1

n
c

) =
n
c

(n
c

� 1)k

(n
c

� k)n
c

,

which proves Equation (9).

For this special case Theorem 2 provides an analytical
expression for the average storage life time. It is the hitting
time of state n

c

� (m � s
c

), which corresponds to rank
m� s

c

:

E[T
life

] =
(n

c

�m+ s
c

)(n
c

� 1)

m� s
c

. (11)

The general case upper bound

E[T
life

]  T+ : E[max
tT

+
N0(t)] = n

c

�m/s
c

+ 1, (12)

which follows from (6), does not have an explicit formula,
but it can be calculated numerically from the transition matrix
given by (7).

In the scenario without storage coding every row of
M

t

= M
t

I
m⇥m

is a row of identity matrix I
m⇥m

, and
every storage packet is just a copy of some source packet.
r copies of every source packet are originally put into
the storage, producing n = rm storage segments of m
different kinds. Assume that s

c

< m, and no cloud contains
more than one copy of any source packet. Let k-th family

F
k

(t) = {i : M
t

[i, k] 6= 0
sc⇥1} be the collection of

the indices of the clouds which have the k-th source
segment I

m⇥m

[k, ·], let N
k

(t) = |F
k

(t)|  n
c

, and let
R(t) =

P
m

k=1 1{Nk

(t) > 0} be the number of non-empty

families. Then N
k

(0) = r, R(0) = m, and the storage failure
condition is R(Tuncod

life

) = m� s
c

. We can derive

E[R(Tuncod

life

)] = mPr[N1(T
uncod

life

) > 0] = m� s
c

. (13)

N
k

(t) follows a Markov chain with transition probabilities
Pr[N

k

(t+ 1) = j|N
k

(t) = i] = q
i,j

q
i,i+1 = q

i,i�1 =
i

n
c

n
c

� i

n
c

� 1

q
i,i

= 1� 2q
i,i+1.

(14)

IV. QUANTITATIVE RESULTS

In addition to theoretical analysis, we test performance of
the algebraic model, described in Section II-B, in a software
simulation and compare it to the analytical results. In each test
m source data segments, randomly generated from Fm

65537,
are encoded into n = n

c

= 50 storage packets, s
c

= 1
per node, and put into matrix M0. At each discrete time
step t > 0 n

l

uniformly chosen storage packets are erased
(node fault), and filled with random linear combinations of
n
r

other packets (node recovery), also chosen uniformly at
random. We assume n

l

= 1 in all tests, except for the test
with n

r

= 4, n
l

= 2. Additionally, we perform uncoded
storage tests, where ⇠ n/m copies of each source packet
are distributed possibly uniformly among n = 50 nodes, and
recovery is performed by copying all the packets from the
repair node onto the failed node.

For a range of m, which also corresponds to a range
of redundancy r = n/m values, we measure T

life

(time
when rankM

t

becomes m�1) average over 20 independent
experiments. The resulting average life times are shown on
Figure 2. The maximal simulation time was set ⇡ 6 ⇤ 105.
The test storages, that did not reach rank m� 1 by that time,
are depicted by a point on the black horizontal line.



The plot also demonstrates the analytical approximations
(13) and (11) for the uncoded and coded (n

r

= 1) scenarios,
respectively, and the general case upper bound (12).

In accordance with Equation (11), for single node coded
repair the storage life time grows linearly with redundancy.
Although the uncoded storage exhibits superlinear behavior,
its life time is smaller by a factor 3 to 10 for redundancies
10 and 1.5, respectively. This gain is due to RLNC, which
obviates the need to have exact copies of all the original
data packets in the storage (a coupon collector problem [6]),
any m independent linear combinations are enough.

In contrast, the test life time of a storage with several
repair nodes (n

r

> 1) grows at least exponentially with
redundancy and n

r

. The average gain in T
life

over single
node repair has factors of 5 for n

r

= 2, and more than
5000 for n

r

= 3 when the redundancy is r = 2.5. When
the lost packets are recovered from a single repair node, the
coded packets from different nodes are never mixed together
in a linear combination. Packet internode recoding creates
multiple dependencies between many packets in the storage,
and makes it harder to eliminate degrees of freedom.

V. CONCLUSIONS

We studied a RLNC distributed cloud storage, where the
data for the failed nodes is regenerated from few repair nodes
in a decentralized manner. We proposed an algebraic model,
and used it to analyze durability of the system. The derived
analytical approximations of the average storage life time
provide qualitative and quantitative intuition for the choice
of the system parameters.
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