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Abstract 
 

Estimating dynamic effects of age on the genetic and environmental variance components in twin 

studies may contribute to the investigation of gene-environment interactions, and may provide more 

insights into more accurate and powerful estimation of heritability. Existing parametric models for 

estimating dynamic variance components suffer from various drawbacks such as limitation of 

predefined functions. We present ACEt, an R package for fast estimating dynamic variance components 



and heritability that may change with respect to age or other moderators. Building on the twin models 

based on penalized splines, ACEt provides a unified framework to incorporate a class of ACE models, in 

which each component can be modeled independently and is not limited by a linear or quadratic 

function. We demonstrate that ACEt is robust against misspecification of the number of spline knots, 

and offers a refined resolution of dynamic behavior of the genetic and environmental components and 

thus a detailed estimation of age-specific heritability. Moreover, we develop resampling methods for 

testing twin models with different variance functions including splines, log-linearity and constancy, 

which can be easily employed to verify various model assumptions. We evaluated the type I error rate 

and statistical power of the proposed hypothesis testing methods under various scenarios using 

simulated datasets. Potential numerical issues and computational cost were also assessed through 

simulations. We applied the ACEt package to a Finnish twin cohort to investigate age-specific heritability 

of body mass index and height. Our results show that the age-specific variance components of these two 

traits exhibited substantially different patterns despite of comparable estimates of heritability. In 

summary, the ACEt R package offers a useful tool for the exploration of age-dependent heritability and 

model comparison in twin studies. 
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Introduction 
 

Twin studies offer unique advantages to examine the overall impact of genes and environment 

on a phenotype, and hence are broadly employed in estimating heritability for many complex 

traits (Polderman et al. 2015). The influence of genes and environment on a specific 

quantitative trait, such as body mass index (BMI) may be dependent on age or other 

moderators (Réale et al. 1999; Jelenkovic et al. 2015). This age-dependent phenomenon has 

also been observed in behavioral genetics research. For example, the correlation in twins on 

cannabis use is higher when they are measured at the age of 18 than 16 (Distel et al. 2011). 

Refined estimation from twin studies of how genetic and environmental components evolve 

with respect to age may contribute to the exploration of gene-environmental interactions and 

may help elucidate the gap of estimated heritability between twin studies and genome-wide 



association studies (GWAS). For example, the potential missing heritability (Eichler et al. 2010) 

may partly attribute to effects from epigenetic markers that are not captured by general GWAS 

but are reflected in the estimation of twin studies. In addition, given age-specific heritability, a 

sample at the age when the heritability peaks can be chosen for GWAS to achieve the largest 

statistical power.  

 

Recent evidence suggests the important role of examining dynamic component variance; 

however, the existing twin models for this problem assuming a linear or quadratic form of the 

moderator effects (Purcell 2002) are often too restricted in reality. Moreover, the incorrect 

model assumptions would result in dramatically biased estimates and misleading interpretation 

(He et al. 2016). So far, very little attention has been paid to the estimation of dynamic 

heritability without a prior knowledge of its functional form, i.e., whether the genetic and 

environmental variance components change as a function of age or environmental exposure. 

Recently, (Briley et al. 2015) proposed a nonparametric method based on local structural 

equation modeling (LOSEM) to estimate the dynamics of variance components, which does not 

require a pre-specified functional form. Despite of its flexibility in model specification, this 

nonparametric method is sensitive to the choice of certain parameters related to a kernel 

function for weighting observations and is not straightforward for model comparison. In 

addition, (He et al. 2016) have proposed two semiparametric models, in which the ACE(t)-p 

model (throughout the article we use ACE(t)-p as the abbreviation) is less dependent on user-

defined parameters requiring prior knowledge of the component variance functions. These 

models allow dynamic additive genetic (A) and common environmental (C) components and a 

constant unique environmental (E) component (He et al. 2016). Unlike most methods based on 

the SEM framework (Rijsdijk and Sham 2002), these models treat variance components (A, C, E) 

as random effects in a linear model (as discussed in (Visscher et al. 2004)), and furthermore, the 

variance of the components is modeled as a function of age. The basic idea is to directly 

estimate the variance functions using B- or penalized B-splines (P-splines) (Eilers and Marx 

1996) rather than assuming them to be constants as in the classical ACE model (Zyphur et al. 



2013) or a known functional form.  B-splines (De Boor 1978) constructed piecewisely from 

polynomial functions are an appealing methods for the nonparametric function estimation. 

Similar to locally weighted scatterplot smoothing (LOWESS) (Cleveland 1979) in some sense, it 

has the overfitting problem if excessive B-spline basis functions are used (i.e., too many 

parameters). Nevertheless, we can smooth adjacent spline coefficients to be more alike to 

reduce the dimension of the curve parameters. P-splines tackle the overfitting problem by 

introducing a penalizing coefficient to smooth the coefficients of the B-spline basis functions 

(Eilers and Marx 1996). In ACE(t)-p, the penalizing coefficients for smoothing the B-spline 

coefficients are first estimated by an empirical Bayes method before used for estimating the 

variance curves for the components. A simple Markov chain Monte Carlo (MCMC) method is 

proposed for estimating the pointwise confidence intervals (CIs) for the estimated variance 

curves. The performance of the estimation procedure has been evaluated through a simulation 

study and its utility has been demonstrated through an application to a Finnish twin study for 

discovering the temporal patterns of genetic and environmental variance curves of BMI (He et 

al. 2016). 

 

In this work, we introduce the R package ACEt which further generalizes the previous models 

(He et al. 2016), and provides functions that facilitate model comparisons between twin models 

of different variance functional forms. First, we describe a unified framework in which the A, C 

and E variance components can be independently modeled by spline, log-linear or constant 

functions (including zero which corresponds to the elimination of a component). We show that 

this unified framework incorporates the classical ACE, AE and CE models as special cases. We 

assess the estimation accuracy and performance through simulation studies under various 

settings. In addition, we implement a function to estimate the dynamic heritability, the 

definition of which is given in the Methods section, together with its pointwise CIs based on the 

estimated variance curves. Once we show that these models with different components and 

functions can be fitted under a single framework, it is natural to ask which variance function is 

the best fitting for a given dataset or how to select a better model. For example, in some cases, 



it is desirable to test the linearity of a C component to see whether there is an accumulative 

environmental effect. Answering this sort of questions requires methods for comparing 

parametric and semiparametric models. In contrast to the LOSEM proposed by (Briley et al. 

2015), it is straightforward and fast to draw inference under the spline-based framework by, for 

example, leveraging likelihood ratio tests (LRTs) (Ruppert et al. 2003; Crainiceanu and Ruppert 

2004). We show in this work how the hypothesis testing for model selection can be addressed 

separately using different strategies for the ACE(t) and ACE(t)-p models which employ B-splines 

and P-splines, respectively. We perform detailed simulation studies under various settings to 

examine the type I error rate, statistical power and other potential numerical issues. We then 

investigate the dynamic heritability of BMI and height with a Finnish twin cohort, finding that 

they follow substantially different temporal patterns. 

 

The rest of the paper is organized as follows. In the Methods section, we first specify the 

generalized ACE(t) and ACE(t)-p models and briefly review the proposed estimation procedure. 

Then, we elaborately describe how hypothesis testing can be conducted using different 

strategies for the ACE(t) and ACE(t)-p models, during which more emphasis is placed on how to 

test constancy and log-linearity in ACE(t)-p. We define the dynamic heritability and provide a 

derivation for estimating the dynamic heritability and obtaining its CIs using a delta method. At 

the end of this section, we give an introduction to the functions provided in the R package ACEt 

and illustrate a practical application to an example dataset in a vignette. In the Results section, 

we assess the performance of the estimation of the variance components and the proposed 

hypothesis testing methods for model comparison through simulated datasets. Influence of 

some practical numerical issues will also be examined. As a demonstration of its utility in real 

data analysis, we investigate the dynamic heritability of BMI and height with a Finnish twin 

cohort. The results and future extension are summarized in the Discussion section.          

 



Methods 
 

Model Specification and Estimation Procedure 
 

In the classical ACE twin model, the variance of a phenotype is decomposed into the additive 

genetic component   
 , the shared environmental component   

  and the unique 

environmental component   
 . Instead of being constants, now assuming that the three 

components are functions of a variable   of interest such as age, we are interested in estimating 

the variance functions   
    ,   

     and   
    . Suppose that there is no prior knowledge of the 

functional form, a natural approach can be to represent the functions using a set of 

independent basis functions       (e.g., power series, Fourier series) that can approximate the 

functions arbitrarily well by taking a linear combination of a sufficiently large number K of these 

basis functions. For example, a quadratic polynomial          can be written as a linear 

combination of the basis functions        ,        , and          with the coefficients 

         . A class of commonly used basis functions is B-spline functions. To approximate an 

unknown function using B-splines, the interval of the estimated function is divided into 

subintervals by a group of   interior knots, and over each subinterval a spline is defined as a 

polynomial function of a given degree  , (i.e., the highest power) (De Boor 1978; Ramsay and 

Silverman 2005). The kth B-spline basis function         of the degree   is defined recursively as 

        
    

       
          

        

           
           , 

         
              
                   

 . 

The ACE(t) model (throughout the article we use ACE(t) as the abbreviation) proposed by (He et 

al. 2016) employ B-splines with     (De Boor 1978) for estimating the variance functions of 

the A and C components under the assumption of a constant E component. We now relax this 

assumption and allow all components to be independently modeled by different functions of  . 

The total variance       of a quantitative trait, which is defined as the conditional variance 



calculated at  , can be decomposed into the A, C and E components. Let us denote by   
    , 

  
     and   

     the variance functions for the A, C and E components, respectively. We then 

represent each variance function separately using an exponential of a linear combination of B-

splines (De Boor 1978) 

   
            

   
    

  

   
            (1) 

where       is a vector of the B-spline basis functions for the component   evaluated at   and 

   is a vector of the corresponding spline coefficients.    is the number of spline coefficients 

(i.e., the number of interior knots   minus one plus the degree of B-splines  , which is set at 2 

in the current implementation). The exponential is to ensure that the variance is non-negative, 

which is also proposed in (Turkheimer and Horn 2014). The knots can be evenly distributed or 

be placed based on the quantiles of the sample. In our implementation, we leave the number of 

knots defined by users. It can be seen from (1) that it simplifies to the classical ACE model 

(Zyphur et al. 2013) when   
       

     satisfies for each component because in this case 

we have 

  
            

   
    

  

   
           

    
  

   
     

           

which is independent of  . One practical issue of B-splines is that its performance is sensitive to 

the choice of the number of knots    (illustrated in the Results section), and excessive knots 

would lead to overfitting the data. Thus, ACE(t)-p uses P-splines (which stands for “penalized B-

spline”) (O’Sullivan 1986; Eilers and Marx 1996) that are defined on evenly distributed knots 

and introduce a difference penalty to control the smoothness of   , so that it can address the 

overfitting problem (More information about the difference penalty can be found in e.g., 

(Wood 2006)). Specifically, the penalization for overfitting is achieved by introducing a 

multivariate normal prior assigned on the spline coefficients of each component. More details 

of the ACE(t)-p model are given in Appendix A. 

 



The estimation strategy follows the similar spirit of that described previously (He et al. 2016) 

with some extensions. Specifically, spectral decomposition is employed in order to test log-

linearity which is described in the following subsection. It also improves the performance of the 

MCMC sampling in constructing CIs by avoiding strong posterior correlation between spline 

coefficients when they are almost linear. Following the same notation in (He et al. 2016), 

suppose that we have zero-mean normally distributed quantitative phenotypic data    (an 

     vector) and    (an      vector) for           monozygotic (MZ) and           

dizygotic (DZ) twin pairs. Note that if the initial phenotypic data are not zero-mean, we can 

always centralize them, for example, by fitting a linear regression model and using residuals as 

the input. We also have the information of age   at which    and    are measured, denoted by 

   (an      vector) and    (an      vector) for the MZ and DZ twins. In fact, age can be 

replaced by any other quantitative moderator of interest of which we intend to investigate the 

dynamic effects on the variance components as long as it is measured at the twin level (e.g., 

birth year). This is also called measures of the shared environment (Turkheimer et al. 2005). 

 

Based on the general assumption in the ACE twin model (i.e., MZ and DZ twins share 100% and 

50% of the A component, respectively, and 100% of the C component.), the covariance matrices 

of    and    are 

            
   

              
   

              
   

    , 

            
   

              
   

              
   

    , 

where     
  
  

 ,     
    

    
 ,     

  
  

 ,   denotes the Kronecker product and 

        converts a vector to a diagonal matrix with the vector entries as its diagonal elements. 

Thus, provided that there is no between-pair correlation among the twins, the phenotype 

vector follows a zero-mean multivariate normal distribution, 

 
     

  
               

   
   

 . 
(2) 



To estimate the spline coefficients            
    

    
 

 
 , where the prime represents 

transpose, the maximum likelihood estimation (MLE) finds the solutions that maximize the 

following log-likelihood, i.e., 

                                              
 

 
            

    
             

  
   

     . 

As it is difficult to express the solutions analytically, numerical algorithms such as the Newton’s 

method are needed to find        . The Newton's method requires further calculating the second 

derivative of the likelihood, so we instead employ the L-BFGS algorithm (Byrd et al. 1995) which 

is computationally faster (e.g., implemented in the 'optim' R function). The L-BFGS algorithm is 

a fast Quasi-Newton algorithm that does not involve calculating the Hessian matrix analytically. 

The performance of the approximation of the Hessian matrix by the L-BFGS algorithm is 

assessed in the Results section. The variance of the estimates and thus the pointwise CIs of the 

estimated variance curves can be obtained by either a delta method based on the asymptotic 

normal consistency of MLE or a bootstrap method. The delta method provides a first order 

approximation for the distribution of a function of MLE by utilizing Taylor’s theorem. The two 

methods have comparable results in general (He et al. 2016); however, we find in our simulation 

study that despite the high computational intensity, the bootstrap method is more robust when 

the true values of the spline coefficients are on their boundary in which case the normality of 

the MLE does not hold. The estimation algorithm in this extended ACE(t)-p model is similar to 

that in (He et al. 2016). Spectral decomposition of the penalty matrix is adopted in the MCMC 

method for estimating the CIs. More details are given in Appendix A. 

 

Note that it is possible to incorporate a mean function      under a unified framework with 

the variance components. One of the major benefits of including the mean function is that we 

can pursue an unbiased estimate of the variance components by instead using the restricted 

maximum likelihood (REML) that accounts for the loss in degrees of freedom for estimating the 

parameters in the mean. The REML estimation provides more accurate estimates if the number 



of the covariates in the mean function is large or even comparable to the sample size (Harville 

1977). In the current implementation, however, we do not include the mean function in the 

estimation procedure to diminish the computational burden especially in ACE(t)-p where 

resampling methods are used for model comparisons as discussed later. Fortunately, twin 

studies typically require large sample size, and thus the gain from REML is very limited. 

Therefore, the phenotype should be centered before treated as an input. For example, the 

residuals from a regression model in which an appropriate mean function is specified can be 

used. The dynamic variance components   
     and heritability considered in this study are age-

specific, which means that the variance       is computed conditionally at each age (i.e., 

                   ). It should be noted that here we are interested in the modulating 

effect of age on the shared environmental variance component, that is, how age affects the 

contribution of other shared-environmental factors to the C component. If age is a major 

shared-environmental measurement per se, it should be included in      and be properly 

regressed, so that its modulating but not direct effect is reflected in   
    ; otherwise, the 

estimate for the modulating effect would be inflated or incorrectly estimated. Let us consider a 

situation where the age of a sample has a normal distribution          
   and has a linear 

effect on the phenotype (i.e.,        ). It follows for a DZ twin pair of the age   that 

 
     

     
   

 

 
      

 

 
           

                      
       

  
               

    

                                                  
    

                                  
            

         . 

If we omit age from     , the contribution of age to the shared-environmental variance would 

be included in the estimate of the C component, which would be    
                  

    
 .    

 



Hypothesis testing for comparison of Twin Models  
  

In many cases, it is useful to model some components with splines and others with a constant 

that can be zero. For example, we show in a following real data analysis that two components 

of height are almost constant after some age, and thus, modeling them with constants can 

reduce the estimation uncertainty. When fitting a given twin dataset using more complex 

models, it may also be of primary concern to select the best twin model by comparison. In the 

case of ACE(t), it is straightforward to test a constant or log-linear component by using the LRT 

as they are nested models of the spline model. A constant variance for component   is 

equivalent to a spline model with homogeneous spline coefficients, i.e.,   
       

    . In 

the log-linear case, we have   
    

       

       
  when the knots are evenly distributed. 

It is noted that the correct distribution should be used when testing the variance component in 

the twin models (Visscher 2006). In general cases, when the constancy of the tested component 

is true, the LRT statistic asymptotically follows a    distribution with      (     in the log-

linear case) degrees of freedom according to Wilks' theorem (Wilks 1938) provided that the 

true variance functions of the other components belong to the functional space spanned by the 

basis functions. If the variance functions of the other components are misspecified or are not in 

the functional space spanned by the basis functions, the LRT test does not work properly. In a 

special case, testing a zero variance component corresponds to testing the null hypothesis of 

  
       

    , which lies in the boundary of the parameter space. The asymptotic 

distribution of this LRT statistic under such non-regular conditions has been investigated under 

various scenarios (Chernoff 1954; Self and Liang 1987). Under a unified framework, it has 

been shown that the LRT statistic follows a  
 

 (chi-bar-square) distribution when some 

regularity conditions hold (Shapiro 1988). For a simple situation where there is only one 

variance component of interest and the true values of the parameters for the other 

components are not on the boundary of the parameter space, the LRT statistic for comparing a 

zero component (the null hypothesis) and a constant component asymptotically follows a 

mixture of two    distributions with   and   degree of freedom (this is the case 5 in (Self and 

Liang 1987)). Our simulation results (not shown here) confirm that the empirical distribution 



of the LRT statistic in the above situation is in accordance with its theoretical asymptotic    

distribution under the null hypothesis. More complicated situations are discussed in details by 

(Dominicus et al. 2006). Alternatively, simulation-based methods can be employed to acquire 

the empirical null distribution of the statistic numerically in the case of more complex models. 

 

Unlike ACE(t), testing constancy or log-linearity in ACE(t)-p is more complicated. Testing the log-

linearity of a component   in ACE(t)-p is equivalent to testing the following hypothesis,  

      
  
                

  
             . 

If the LRT is used, the major challenge is to obtain the null distribution because the asymptotic 

distribution (a mixture of two    distributions) is not valid in this case (Ruppert et al. 2003). We 

thus propose a parametric bootstrap method which is shown to work properly in the simulation 

study. Detailed information of the method is given in Appendix B.  

 

Testing the constancy against log-linearity is relatively straightforward in ACE(t)-p. The 

inference can be made based on the estimated coefficients and their variance estimated from 

the MCMC method. One problem to be solved is that the variance obtained in the previous 

work (He et al. 2016) is underestimated because it does not take into account the uncertainty 

of   
            
  for the other spline components. We propose a resampling method to correct for 

the underestimation of the variance, and provide a detailed description of the method for 

testing constancy in Appendix C. 

 

 

Estimation of Dynamic Heritability 
 

Other than the absolute values of variance, we are interested in the proportion of age-specific 

variation that is explained by the A, C and E components, respectively. In particular, the 

heritability, which is the proportion of the total variance attributed to the genetic differences 



between individuals, is an important concept in quantitative genetics. Given the estimates of 

the dynamic variance components, we are ready to further estimate the dynamic heritability 

curve. We define the age-specific (or other moderators) heritability       for the ACE model as 

      
  

    

  
       

       
    

. 

The following derivation is based on the ACE model, and if the AE model is adopted,   
     in 

the denominator of the right-hand side is eliminated. By substituting with (1), the estimated 

dynamic heritability follows 

        
   

    

   
        

        
    

 
              

                                          
, (3) 

where       is a vector of the B-spline basis functions evaluated at  . The variance of the 

estimated heritability at   can be obtained either from a delta method or a bootstrap method. 

Denote by         
     

     
   the estimated spline coefficients from either ACE(t) or ACE(t)-p, 

and by        the covariance matrix of   , which is estimated from the MLE in the case of the 

ACE(t) model and from the posterior distribution in the case of ACE(t)-p. We notice that the 

estimated heritability equals 

       
 

                                                
 

 

                  
, 

where 

 
  

  
   

            

            
             

            

            
 . 

As    and    are affine transformations of   , we have 

 
  

  
                                      . 

By applying the delta method and substituting     with its estimate        , it follows that 

                 
                      

       

 
       

   
 
       

   
           

       

   
 
       

   
 

 

                                          . 

The CI at   can be calculated based on the assumption of an approximately normal distribution 

of       . On the other hand, the pointwise variance of the estimated dynamic heritability 



       can also be acquired from a parametric bootstrap method described previously (He et al. 

2016). In the bootstrap method, each bootstrap estimates of the heritability at   is calculated 

according to the equation (3) from a bootstrap replicate sampled from the formula (2) with    

plugged in. The delta method may not be accurate when the estimated heritability or 

component variance approaches its boundary. In this situation, the bootstrap method is 

recommended. 

 

Software overview 
 

To use the ACEt R package, the data set should be prepared in a matrix format for MZ and DZ 

twins separately in which each row for a twin pair contains three columns (the first two are 

phenotypes and the third is age or other moderators of interest). An example data set is given 

in the package, and an example of its application is described in the supplementary materials 

(Text S1). The phenotypic data should be zero-mean normally distributed and preferably 

adjusted by age as aforementioned. The AtCtEt function estimates variance curves using B-

splines in which users can specify whether the variance of each component is dynamic, 

constant or zero. Users need to provide the number of knots and how the knots are distributed, 

evenly or quantile-based. Our previous simulation shows that the pointwise CIs computed from 

the Hessian matrix provided by the maximum likelihood estimation are comparable to those 

from the bootstrap method, but when the curves are close to their boundaries the bootstrap 

method is recommended. The AtCtEtp function corresponds to ACE(t)-p in which users can 

specify a component to be modeled by splines, a linear function or a constant. The acetp_mcmc 

function implementing an MCMC method is dedicated to producing the empirical Bayes 

estimates and to generating the covariance matrix for the estimates. Two model comparison 

methods for ACE(t)-p are provided by the test_acetp function. Finally, variance curves and 

dynamic heritability with their pointwise CIs can be plotted using the plot_acet function either 

with the delta or the bootstrap method. 



Results 
 

In this section, we evaluate the performance of the proposed models in estimating the variance 

components and testing twin models. More specifically, we first assess the accuracy of the 

estimation in terms of average mean square errors (AMSEs). The type I error rate and the 

empirical power of the testing procedures are then evaluated by simulations. We then report a 

rough estimate of the computational cost of the estimation algorithm in ACE(t) and ACE(t)-p. 

Finally, as a demonstration of the proposed package, we analyze the dynamic heritability of 

BMI and height for a Finnish twin cohort. The sample sizes of the MZ and DZ twins in all of the 

following simulation studies are set to be equal although there are often more DZ twins than 

MZ twins in twin studies. In the Appendix, we further discuss the robustness of the estimation 

algorithm against the selection of the initial values (Appendix D), and compare different 

methods (analytical Hessian vs. approximate Hessian, bootstrapping vs. delta method) for 

estimating the CIs (Appendix E and F). 

   

Evaluation of the accuracy of the estimation 
 

To evaluate how many samples are needed to obtain accurate estimates of the variance 

functions, we compute the following AMSE for component   based on   points evenly placed 

across the age interval, 

       
 

 
    

        
       

  
                          , (4) 

where we chose      , which is sufficient to produce a reliable estimate of AMSE for the 

smooth functions assessed in the following simulation study. The same AMSE has previously 

been used to assess the performance of the models in which only two components are set to 

be dynamic (He et al. 2016). In this simulation, we were interested in further figuring out 

whether more samples would be needed to achieve the same AMSEs if the number of dynamic 

components increased up to three. We also assessed the possible impact of the initial values on 



the estimation procedure. To simplify the comparison, we used the same quadratic and power 

functions for the A and C components as in (He et al. 2016),  

  
          

    

  
  , 

  
          , 

and additionally the following oscillation function for the E component, 

  
                 

 

 
 . 

A plot of the three variance functions is given in the supplementary materials (Figure S1). We 

evaluated the AMSEs under scenarios of different numbers of interior knots, twin pairs and 

initial values. In each scenario, the estimated AMSEs were computed using the equation (4) 

from 100 simulated datasets based on the above twin model with   sampled from a uniform 

distribution           .  

 

In the case of ACE(t), we observed that the AMSEs for the three components dropped 

substantially with the number of twin pairs increasing from 5,000 to 20,000 in all scenarios 

(Figure 1). The AMSEs for the E component were much lower than those for the A and C 

components. The AMSEs rose rapidly for the A and C components with the number of interior 

knots increasing from 5 to 12, but decreased for the E component. With the same sample sizes, 

the estimated AMSEs for the A and C components were comparable to the estimates from the 

previous simulation study in which the E component had a constant variance (Table 2 in (He et 

al. 2016)), suggesting that increasing the number of dynamic components did not require more 

samples to attain the same AMSE. The results also showed that trying additional randomly 

generated initial values had little impact on the AMSEs.  

 

Akin to the trend observed for ACE(t), the results for ACE(t)-p showed that the AMSEs dropped 

rapidly with the increasing twin pairs, particularly from 5,000 to 10,000 (Figure 2). The results 



also indicated that using multiple initial values at the suggested magnitude (See supplementary 

materials D) had little influence. However, we observed different patterns with respect to the 

number of knots. Specifically, the AMSEs for the E component decreased with the knots 

increasing from 8 to 20, which were similar to that from ACE(t), while the AMSEs rose very 

modestly with the increasing knots for the A component and there was almost no evident 

upward trend for the C component, indicating that the performance of ACE(t)-p was robust 

against excessive knots. Comparing with the results from ACE(t), we found that the AMSEs for 

ACE(t)-p were substantially lower under the same settings.           

 

Evaluation of type I error rate 
 

First, we check that the proposed parametric bootstrap method for testing log-linearity of a 

component variance in ACE(t)-p works properly under different settings. In each setting, we 

simulated a phenotypic dataset of 10,000 twin pairs. We examined the null distribution of the 

p-values for testing a log-linear C component. In principle, the choice of the C component is 

arbitrary because the bootstrap method for LRT does not require a specific component. 

However, as found in the previous subsection, the estimation for the A and C components is 

more prone to error than the E component. Therefore, we are more interested in checking the 

type I error rate for the A or C component. In the first case, we assumed a log-linear C 

component and kept the A and E components as constants (  
              

     

                 
            ). We also examined the null distribution under different 

numbers of initial values attempted in the EM algorithm. The Q-Q plot of the p-values (Figure 3) 

showed that there was a slight deviation from the expected null distribution only in the case of 

one initial value, suggesting that using multiple initial values had a modest benefit to control 

type I error rate. Nevertheless, computational cost grows linearly with the initial value 

attempts, which can become a major burden for the intensive bootstrap procedure. In the 

second case, we replaced the constant function of the A component by splines to examine 

whether the performance was affected by the existence of another spline term. The spline 

coefficients for the A component were randomly generated from a zero-mean normal 



distribution with  
  
   . We used 8, 10 and 12 interior knots to test the sensitivity to the 

number of knots in the spline term. Our simulation results showed that the distribution of the 

p-values under the null hypothesis obtained by the bootstrap method was not affected by the 

existence of another spline term other than the tested component or the number of the knots 

in the spline term under the null model (Figure 4). Again, the deviations from the expected null 

distributions in the case of one initial value were trivial in these scenarios.  

 

To evaluate the proposed correction method for testing constancy in ACE(t)-p, we still checked 

Q-Q plots to compare the null distributions of the p-values before and after the variance 

correction. We tested a constant versus a log-linear E component under the same simulation 

setting as the above second case. We chose     , the number of resampling used for the 

variance correction (see Appendix C for more details). Our simulation results showed that there 

was a modest inflation of the type I error rate without the correction and the inflation 

disappeared after applying this correction (Figure 5). Similarly, the empirical type I error rate 

was well controlled for testing the A or C component when the tested component was 

comparable to the other components (the results not present here). However, when the A or C 

component was much smaller than the E component, we observed inflation of type I error rate.   

 

Evaluation of statistical power 
 

We assessed empirical statistical power of the proposed testing methods for the ACE(t) and 

ACE(t)-p models through simulated datasets. We focused on providing a rough estimate of the 

sample size needed for detecting a small deviation from the null hypothesis in each proposed 

test. We also examined the extent to which the statistical power was affected by other factors 

such as the ratio of the tested variance to the total variance. We assumed a twin model with a 

spline A component   
    , a constant C component   

  and a log-linear E component 

  
                 . The simulation setting was chosen to mimic the variance functions 

and the similar scale of BMI in the previous Finnish twin study (He et al. 2016). For the ACE(t) 



model, we considered two sorts of tests: (1) zero against constancy of the C component, and (2) 

constancy against linearity of the E component. For ACE(t)-p, we  considered the following 

tests: (2) constancy against linearity of the E component and (3) linearity against non-linearity 

of the A component. The rationale of choosing these tests is that we are more interested in 

testing a zero C component as the previous results on BMI show that the C component almost 

disappear after some age (He et al. 2016). Testing a constant E component is also of importance 

because a linearly increasing E component indicates that the phenotype is subject to 

accumulative environmental effect as we will see in the following real data analysis. 

Additionally, testing non-linearity of the A component may give us some information about 

gene-environmental interaction. For (1), we evaluated the empirical power by first changing the 

variance of the C component   
  between 0.1 and 0.3 with   

    ,            and      

fixed. To further assess whether the power was affected by the total variance, we then tuned    

between log(4) and log(12) given   
     . For (2), we evaluated the empirical power by first 

changing the slope    between 0.0025 and 0.01 with     ,   
     and   

    fixed. We then 

assessed whether the power was affected by the intercept    and the total variance, we 

changed   
  between 4 and 12 and    between 1.5 and 2.5. For (3), we changed the variance 

for the spline coefficients of the A component  
  
  between 0.01 and 0.1 (  

  
    

corresponding to linearity) with   
   ,      and          fixed. In each test, we 

calculated the empirical power from 200 simulated twin datasets and evaluated the power 

under different sample sizes ranging from 6,000 to 12,000 twin pairs (50% MZ and 50% DZ 

twins). The age of each twin pair was randomly generated from a uniform distribution 

          .  

 

We observed that at least 12,000 twin pairs were needed to yield a power larger than 0.8 for 

detecting the existence of   
      in ACE(t) when the total average variance was ~4.5 (Figure 

6A). The statistical power dropped dramatically with the increasing total variance. As shown in 

Figure 6B, even with 12,000 twin pairs the power was smaller than 0.5 when the total average 

variance became ~6.5, and was almost imperceptible when it was ~14.5. The results from the 



tests for constancy in ACE(t) show that 10,000 twin pairs were necessary to yield a statistical 

power of 80% for detecting a linear variance increasing with age from 1 to 1.25 (corresponding 

to         ) given the total average variance of ~6 (Figure 6C). Unlike the test for existence, 

the power of LRT for detecting non-constancy was mildly affected by the total variance (Figure 

6D) and the intercept (Figure 6E).  

 

Comparison between Figure 6C and 7A suggested that the test for constancy in ACE(t)-p was 

somewhat more powerful than that in ACE(t) when the true variance function is linear. This is 

expected as the alternative model is linear when testing a constant component in ACE(t)-p. At 

least 6000 twin pairs were required for a power of 80% when detecting         . The results 

(Figure 7B) showed that a large sample size (>12,000 twin pairs) was necessary to achieve a 

power of 80% for detecting  
  
     .  

 

Evaluation of computational cost 
 

The current implementation of the models makes it feasible to estimate dynamic variance 

components for large-scale twin data sets within a few seconds, especially in the case of ACE(t). 

We considered the factors including sample size, the function form (i.e. spline, log-linear or 

constant) of a variance component, the number of knots to investigate the computational cost. 

It should be noted that a specific dataset and the number of parameters also determine the 

speed of convergence of the L-BFGS algorithm. Table 1 gives rough estimates of the average 

computational time of ACE(t) and ACE(t)-p based on three randomly generated simulation 

datasets. The estimation was conducted on an Intel i7-4790, 16G RAM PC. It seemed that the 

computational time grew almost linearly with sample size in ACE(t). We also observed that 

when the number of knots was large (e.g. >10), the computational time was comparable 

between 5,000 and 10,000 twin pairs, which is probably because the optimization algorithm 

takes longer to converge in this case. Regarding ACE(t)-p, it took much longer than ACE(t) under 



the same setting. Moreover, it is harder to predict the computational intensity because it was 

dramatically affected by the number of iterations in the EM algorithm, although the algorithm 

converges within 10 iterations in most cases we simulated. It seemed that excessive number of 

knots had modest impact on the computational intensity particularly under large sample size 

(e.g. the computational time for ACE(t)-p increased a little from 10 knots to 15 knots in Table 1) 

probably because the EM algorithm converged faster and stops in fewer steps when excessive 

knots were provided.  

 

The computational cost for the hypothesis testing in ACE(t) can almost be neglected as the    

tests can be used. In contrast, testing log-linearity in ACE(t)-p largely depends on the number of 

resampling for obtaining the null distribution, which is unfortunately time-consuming. A test 

with a dataset of 10,000 twin pairs using 200 bootstrap replicates can take more than one hour. 

Testing constancy in ACE(t)-p is computationally much faster, and the simulation results show 

that the variance correction with the resampling method solves the inflation of type I error 

rate. When testing constancy in ACE(t)-p, the cost largely depends on how many MCMC 

iterations are used to approximate the posterior distribution, and   (the number of resampling 

 
            
  to correct for the type I error rate. It takes the same PC a few minutes for such a test 

using 10,000 MCMC iterations and     . 

 

An application to a Finnish twin study of height and BMI 
 

We applied the R package to a Finnish twin study to investigate the dynamic heritability of 

height (cm) and BMI. The same dataset has been used in the previous study (He et al. 2016), 

including 19,510 MZ and 27,312 DZ same-sex twin individuals along with the information on 

age at the measurement contributed to the CODATwins project (Silventoinen et al. 2015). The 

details on collection of the data were described in previous publications (Kaprio and Koskenvuo 

2002) (Kaprio et al. 2002). In the previous analysis, the age-specific genetic and environmental 



components of BMI between age 11-60 was studied using a model with dynamic A and C 

components and a constant E component. After finding that the C component disappears after 

the age of ~20, a dynamic AE model was fitted for the individuals with age 20-60. In this 

analysis, we fitted an ACE(t)-p model with all component being dynamic to investigate the 

heritability of BMI and height. We used two different numbers of knots, 8 and 12. Figure 8 

shows the variance components for BMI and height estimated by the ACE(t)-p models with 8 

and 12 knots. For BMI, the variance of the A component leveled off across the age interval 

while the variance of the E component rose gradually (Figures 8A and 8B). A test for a log-linear 

E component with 200 bootstrapping gave a p-value of 0 (i.e., p<0.005), indicating the E 

component increased in a non-log-linear trend. For height, the variances of the A and C 

components dropped drastically until age ~20, and after that both keep almost constant 

(Figures 8C and 8D). An additional analysis of height with the twins of age>20 showed similar 

patterns (Figures 8E and 8F). The tests for log-linearity and constancy with 8 knots (Table 2) 

suggested that the A and C components were constant and the E component was non-linear 

after age 20. However, both A and C components seemed to be close to a linear function and it 

was possible that the tests lacked enough power to detect the log-linearity. The number of 

knots had no noticeable effect on the estimated variance curves except for the E component of 

BMI that was more wiggly under the setting of 12 knots. The heritability curves of BMI and 

height estimated from ACE(t)-p with 8 knots (shown in Figure 9) peaked at the age of ~20 and 

~40, respectively.  

Discussion 
 

So far, we introduce the ACEt R package for estimating dynamic heritability and comparing twin 

models with different variance functions. Although OpenMx (Boker et al. 2011) has been widely 

applied in twin studies for estimating variance components, the ACEt R package provides a 

comprehensive and fast computational alternative that focuses on dynamic variance 

components and heritability. The package is a major extension to the classical ACE twin model 

and is more flexible than the parametric models using predefined functions (Purcell 2002).  



 

The evaluation of AMSEs provides more insights into the different estimation performance of 

ACE(t) and ACE(t)-p. In the simulations, 5 interior knots are sufficient for the smooth quadratic 

and low-order power functions, but more than 10 knots are needed for the oscillation function 

that has more fluctuations. Using either abundant or inadequate knots would lead to increased 

estimation errors, particularly in the case of ACE(t). This is because an overly small number of 

knots is not able to capture the sharp dynamics of the oscillation while an overly large number 

of knots results in overfitting. Compare to ACE(t), ACE(t)-p is superior in the sense that it is 

immune to the pre-specification of abundant knots. In ACE(t)-p, ensuring more than the 

minimum adequate number of knots is more crucial (Ruppert 2002), as also shown in our 

simulation studies. It has been noted that choosing                                      

as a simple default usually works well (Ruppert 2002; Ruppert et al. 2003). It is demonstrated 

from the simulation results that ACE(t)-p with 8 or 12 knots had much smaller AMSEs than 

ACE(t) for the quadratic and power functions that require no more than 5 knots. It seems from 

the AMSEs that accurate estimation and discrimination of the A and C components is more 

difficult than the E component. This problem exacerbates if the E component is much larger 

than both A and C components. In this case, hypothesis testing of log-linearity and constancy 

for the A or C component can be unreliable due to the inaccurate estimation.    

 

The previous work based on simulation and real data analyses has demonstrated that reliable 

estimates can be achieved using ACE(t) or ACE(t)-p  with more than 10,000 twin pairs (He et al. 

2016). Therefore, in this work, we focus on developing and implementing inference procedures 

for the comparison of twin models with different variance functions. We create a unified 

framework that incorporates these models in order to leverage LRTs. Compared to LOSEM 

(Briley et al. 2015), one of the advantages is that it is straightforward to perform model 

comparison by leveraging the likelihood-based methods, which is one of the appealing features 

of our models. Bootstrapping for testing a penalized spline term has been shown to work 

perfectly in the penalized regression models (Ruppert et al. 2003; Kauermann et al. 2009). Our 



simulation results demonstrate the feasibility and robustness of the extension of such 

bootstrap methods to variance function models. We also find that the false positive rate for 

testing log-linearity in ACE(t)-p is not affected by adding more spline variance components with 

different knots. One concern is the computational intensity of using the bootstrap method. 

Parallel computing can be adopted to alleviate this problem. Testing multiple non-parametric 

hypotheses in ACE(t)-p can be performed for each component sequentially. Another advantage 

of ACE(t)-p over LOSEM is that it is less sensitive to the user-defined parameters by estimating 

them in a data-driven way. Nevertheless, LOSEM enjoys its convenience and flexibility in model 

specification as being incorporated in the SEM framework. 

 

In general, our results indicate that the number of attempted initial values for the estimation 

algorithm has little influence on the performance provided that the initial values are selected 

not to be far away from its true value. Otherwise, in both models, the optimization algorithm is 

more likely stuck at a distant local minimum that could substantively affect the result. Overall, if 

multiple random initial values are attempted, this problem has no predominant effect on the 

estimation accuracy of variance curves or on the performance of the hypothesis testing 

procedure. In addition, more sophisticated EM algorithm may be adopted to minimize the 

impact of the selection of initial values (Ueda and Nakano 1998). 

 

When using the ACE(t) model, the estimated variance of the estimates computed by the delta 

method from the Hessian matrix would not be reliable if the variance component is close to 

zero as the asymptotic property fails. In this case, we recommend that instead the bootstrap 

method should be adopted to construct the CIs. 

 

Our analysis of BMI and height implies that investigation of dynamic heritability can provide 

additional guidance for GWAS. The analyses of dynamic heritability with the Finnish twin cohort 

suggest that the environmental factors have much larger nonlinear cumulative influence on 



BMI than height, indicating the different property of the two traits. The increasingly inflated E 

component for BMI also suggests that general linear mixed models (LMM) used in GWAS may 

not be optimal for such traits as it is based on an assumption of homoscedasticity with respect 

to age. In this case, LMM may lose some statistical power to detect genetic variants and a 

variance function model can be considered. A variance function model even enables the 

estimation of heritability for certain phenotypes such as BMI from an independent population 

without genetic information as the genetic and environmental components become 

identifiable. In addition, dynamic heritability provides information about the optimal age of a 

sample for performing GWAS. Using individuals at the age with the largest heritability should 

yield most statistical power to detect genetic contribution in GWAS. 

 

In summary, the proposed R package is a useful and fast tool for computing variance curves and 

dynamic heritability for twin studies. The developed methods for model comparison have been 

shown to work properly under various settings. Future extension might incorporate a broader 

range of twin models such as the ADE model and allow other types of phenotypes such as 

binary and ordinal data. More sophisticated implementation using multicore and parallel 

computing can be developed to significantly reduce the cost for the hypothesis testing in 

ACE(t)-p that requires the resampling method. On the other hand, in the current models, we 

have only considered twin-level moderators such as age. Nevertheless, individual-level 

moderators are more common in epidemiology and sociology, and even for age, phenotypes 

can be measured at different time points within a twin pair. Thus, further work needs to be 

carried out to handle individual-level moderators. 
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Supporting Information 
 

Figure S1. The variance functions of the A, C and E components with respect to age (0-50) used in the 

simulation study to assess the estimation accuracy of the ACE(t) and ACE(t)-p models in terms of the 

AMSEs. Red curve: the variance function of the A component. Green curve: the variance function of the 

C component. Blue curve: the variance function of the E component.  

 

Figure S2. Plots of variance curves together with the confidence intervals when the C component is zero. 

Left: the delta method. Right: the bootstrap method. 

 

Text S1. A detailed demonstration of utilizing the ACEt R package to estimate dynamic heritability and to 

perform hypothesis testing using an example dataset.   
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Tables 
 

 

Computational time (in seconds) of the ACE(t) and ACE(t)-p model 

Knot Number of twin pairs 

 5000 10000 20000 40000 80000 

 ACE(t) 

3 1.243 2.903 5.580 12.677 23.820 

5 1.863 3.463 8.270 15.237 25.740 

10 3.840 5.327 10.837 20.617 35.195 



15 6.220 7.833 14.673 25.410 48.460 

 ACE(t)-p 

3 6.497 11.040 24.93 51.483 110.380 

5 11.287 31.483 50.120 110.573 148.650 

10 17.473 39.667 78.717 163.173 378.965 

15 30.833 42.150 85.920 195.17 393.825 

Table 1: This table gives rough estimates of the computational time for the ACE(t) and ACE(t)-p models with respect to 
the number of the interior knots and the number of twin pairs. All three variance components are assumed to be 
dynamic and modeled by B-splines. Knot: the number of interior knots for each of the A, C and E components. Model 
fitting in each simulation dataset was performed with one attempt of a randomly generated initial value within the 
proposed interval. 

 

 

Table 2: P-values from testing log-linearity and constancy of the variance components for height. The tests were based on the twins 
with age>20. We first tested log-linearity against dynamic, and then tested constancy against log-linearity. Each component was 
tested with the other two components modeled as splines with 8 interior knots.  

 Component 

 A C E 

H0: log-linearity, H1: splines  0.72 0.69 <0.01 

H0: constancy, H1: log-linearity 0.15 0.20 0.00019 



Figures 
 

Figure 1. The AMSEs for the three components (A, C, E) using the ACE(t) model with respect to sample size (5000 – 20000 twin pairs), number of the interior knots (5, 8, 12) 

and number of initial values attempted (2, 3, 4). 

 

Figure 2. The AMSEs for the three components (A, C, E) using the ACE(t)-p model with respect to sample size (5000 – 20000 twin pairs), number of the interior knots (8, 12, 

16, 20) and number of initial values attempted (2, 3, 4). 

 

Figure 3: QQ Plots of p-values obtained by the bootstrap method under the null hypothesis for testing linearity of the C component. In this setting, the C variance component 

is a linear function (  
                    ) and the A and E variance components are a constant (  

               
            ) under the null model. We 

investigate the influence on the type I error rate of different attempts of initial values. A) Left: One initial value was used in the estimation of each bootstrap sample. B) 
Right: Three randomly generated initial values were attempted in the estimation of each bootstrap sample.  

 

Figure 4: QQ Plots of p-values obtained by the bootstrap method under the null hypothesis for testing linearity of the C component. In this setting, the A, C and E variance 

components are modeled by splines (   
   ), a linear function (  

                    ) and a constant (  
      ), respectively, under the null model. We 

investigate the influence on the type I error rate of different numbers of interior knots (8, 10 and 12) for the spline term and different attempts of initial values. A) Top left: 8 
knots and one initial value attempted. B) Top right: 10 knots and one initial value attempted. C) Bottom left: 12 knots and one initial value attempted. D) Bottom right: 12 
knots and two initial values attempted. 

 

Figure 5: QQ Plots of p-values obtained from 100 simulations under the null hypothesis for testing constancy of a variance component in the ACE(t)-p model. A) Left: the 
distribution of p-values without the correction of the variance of the estimated spline coefficients. B) Right: the distribution of p-values after correcting for the 
underestimation of the variance of the estimated spline coefficients using a resampling method. 

 

Figure 6: Empirical power curves for testing zero or constant variance components using the ACE(t) model. The statistical power was evaluated under different sample sizes 
(4000-12000 twin pairs). A) The power curves for testing a non-zero C component. B) The power curves for testing a non-zero C component with respect to different 
variances of the E component. C) The power curves for testing a constant E component. D) The power curves for testing a linear E component with respect to different 
variances of the C component. E) The power curves for testing a linear E component with respect to different intercepts. 

 



Figure 7: Empirical power curves for testing constant or linear variance components using the ACE(t)-p model. The statistical power was evaluated under different sample 

sizes (4000-12000 twin pairs). A) The power curves for testing a constant E component. B) The power curves for testing a log-linear E component. 

 

 

 

Figure 8: The variance curves of the A, C and E components for BMI and height estimated from the Finnish twin cohort. The shaded areas represent the 95% confidence 
bands. The variance curves are: A) across age 11-60 for BMI with 8 knots for each component, B) across age 11-60 for BMI with 12 knots for each component, C) across age 
11-60 for height with 8 knots for each component, D) across age 11-60 for height with 12 knots for each component, E) between age 20-60 for height with 8 knots for each 
component, F) between age 20-60 for height with 12 knots for each component. 

 

Figure 9: The dynamic heritability for BMI and height across age 11-60 estimated from the Finnish twin cohort. Both heritability curves were estimated using an ACE(t)-p 

model with 8 knots for each component. A) the heritability curve for BMI, B) the heritability curve for height. 

 



Appendix 
 

A. More description of the ACE(t)-p model 
 

The ACE(t)-p model is featured by adding a penalizing term with a difference matrix    for each 

component coefficients to the log-likelihood in ACE(t). From a Bayesian perspective, following 

the previous notations (He et al. 2016), it can be treated as assigning a multivariate normal prior 

on the spline coefficients of each component, i.e., 

        
  
   

  ,           

where   
  is the generalized inverse of the difference matrix and  

  
  is the inverse of the 

penalizing coefficient   . This means that the selection of    is equivalent to choosing  
  
 . We 

then develop an empirical Bayes method by first estimating  
  
  from the marginal likelihood 
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By applying a Laplace approximation to the integral, we construct an EM-like algorithm to 

estimate  
      
 . This integrated likelihood is somewhat different from the marginal likelihood 

used by (Ruppert et al. 2003) and (Kauermann and Wegener 2011) in the sense that we further 

integrate out the parameters in the fixed effects (See the derivation below). The algorithm for 

the estimation procedure is similar to that described in (He et al. 2016). Given   
      
 , we 

estimate the spline coefficients        by calculating the mean from the conditional joint 

posterior distribution 



             
      
                

      
             

      
  

      
 

 
           

    
               

   
    

  
      

 

  
  
 

         

   

using an MCMC method. The Metropolis–Hastings (MH) method that we proposed in (He et al. 

2016) using an independent normal proposal distribution suffers from slow mixing when   
  
  is 

close to zero because of the strong linear posterior correlation between the spline coefficients. 

In the current implementation, if   
  
  is small, we first reparameterize the spline coefficients 

using the spectral decomposition of    (described in the following section) and run the MH 

algorithm based on the parameter space consisting of the eigenvectors. The posterior 

covariance matrix estimated from the MCMC method is used to construct the pointwise CIs. 

 

B. Detailed description of testing a log-linear component in the ACE(t)-p 

model  
 

Note that a log-linear component in ACE(t)-p can be regarded as a nested model in which we 

have  
  
    as       

    is satisfied only if        or    is linear. In fact, because   , the 

difference matrix of the second order, is a real symmetric matrix, it can be decomposed as 

         
 , in which    is an orthogonal matrix consisting of the eigenvectors and 

    

  

 
     

    

  

is a diagonal matrix in which  s are the eigenvalues of    and the last two entries are zero. The 

two zero eigenvalues mean that two spline coefficients corresponding to the linear term are 



not penalized (Wood 2006). If we reparametrize using                      
   , then the 

marginal likelihood becomes 
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in which      is the absolute value of the determinant of the Jacobian matrix and is a contant 

that can be ignored by the likelihood function. As  
  
    implies      

     
         

  
 
  , 

the penalized marginal likelihood       
  
       

  , where              , under the 

hypothesis of the log-linearity of the variance component   follows 
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in which    refers to the spline coefficients for the components other than   and   
  refers to 

      
     

  , that is, the spline coefficients corresponding to the two eigenvectors with zero 

eigenvalues. So the log-linear component   has only   
  in the integrand of the marginal 



lilkelihood. . Under the ACE(t)-p model, testing a log-linear variance component against a spline 

one amounts to testing the following hypotheses, 

      
  
                

  
             . 

Under the frequentist framework, the LRT has a variety of advantages over other methods in 

terms of testing a zero variance component (Scheipl et al. 2008). To test   , we define the 

statistic 
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It should be pointed out that the likelihood used here is an integrated likelihood in which the 

fixed effects are integrated out in our empirical Bayes method. Under LRT, integrated likelihood 

functions are similar to or even more advantageous than ordinary likelihood functions (Berger 

et al. 1999; Severini 2010).  

 

As aforementioned, under the null hypothesis, the LRT statistic asymptotically follows a simple 

mixture of    distributions in certain cases when it is on the boundary of the parameter space 

(Self and Liang 1987). Unfortunately, it has been shown that the proposed mixture of the    

distributions does not work properly and the asymptotic approximation performs poorly in real 

data analysis because the number of random effects which is related to the number of knots 

does not grow to infinity with increasing sample size (Ruppert et al. 2003). Our simulation 

results (not presented here) also indicate that the empirical distributions under null hypotheses 

in ACE(t)-p moderately deviate from the 50:50 mixture of the    distributions. Although the 

exact distribution of the LRT statistic under the regression model has been solved (Crainiceanu 

and Ruppert 2004), the situation in ACE(t)-p is more complicated, so we resort to Monte-Carlo 

simulation of the empirical null distribution. A variety of bootstrapping strategies aiming to 

accurately mimic the null distribution for the penalized spline models have been proposed 

(Ruppert et al. 2003; Kauermann et al. 2009). Following the same spirit by (Ruppert et al. 

2003), we employ a parametric bootstrap method to simulate the null distribution of the LRT 

statistic. More specifically, we first simulate the random effects for the other spline terms 



    in the null model, i.e., the spline coefficients   
  

               from a zero-mean 

normal distribution with the variance   
  
  estimated from the null model. Alternatively, a 

residual bootstrap method (Kauermann et al. 2009) based on the prediction       
 

 can be 

used to generate   
  

, and we do not observe significantly distinct results from these two 

methods in our simulation studies. If there is no spline term in the null model, the above step is 

skipped. Then, a phenotypic data set is simulated based on the null model with   
  

,    
  and the 

estimates of other parameters    
  plugged in. The empirical null distribution of the LRT statistic 

can be acquired by repeating the estimation procedure and calculating the LR for a large 

number of simulated data sets (e.g., 200), from which a p-value can be derived. 

 

C. Detailed description of testing a constant component in the ACE(t)-p 

model 

 

For a log-linear component, the coefficients corresponding to the non-linear spline terms are 

zero (  
                ). To simplify the inference, we further reparametrize    

  using 

a linear transformation with       
    

   , which is the log-variance values at the starting and 

the end points of the age interval, that is,   
           

 
    

           
 
   

     

 
  

  
      

         
   

    
  

 .      and      are the minimum and maximum ages in the data. Thus, 

testing the constancy of component   is equivalent to testing the following hypotheses 

       
    

               
    

           . 

Suppose that we denote by                
   and                        

   the posterior 

mean and its estimated variance from the conditionally marginal posterior distribution 

          
                 that can be obtained from the output of the MH algorithm. 

Thus,     is the first order approximation of the posterior mean 

          
  
            

    (Kass and Steffey 1989). As discussed above, the integrated 



likelihood that we used amounts to giving a uniform flat prior to   . The Bayesian estimate with 

a uniform prior is equivalent to MLE. The Bayesian central limit theorem ((Carlin and Louis) 

Theorem 5.1) states that the posterior distribution         asymptotically converges to the 

limiting normal distribution of MLE, in which we can replace the posterior mode and the 

observed Fisher information with the posterior mean and the posterior covariance matrix, i.e., 

                         . Thus, the p-value for testing   
    

  can be calculated 

approximately based on the following normality under the null hypothesis 

   
     

                                      . 

If no spline component is assumed in  , the test based on the above normality is 

straightforward. However, if there is at least one spline component in  ,           will 

underestimate           because it does not take into account the variation of     
  for the 

components that have a spline function. This is one of the drawbacks of using the empirical 

Bayes method instead of a full Bayesian method that further gives hyper-priors to     
 . This is 

also because we integrate out    in the marginal likelihood and thus cannot estimate both 

  and    
  at the first stage. Our simulation results suggest that the underestimated           

results in modestly inflated type I error rate (see the Results section). A handful of strategies 

based on delta methods (Kass and Steffey 1989; Ruppert and Carroll 2000; Krivobokova et 

al. 2008) have been proposed. The idea is to provide certain correction by focusing on an 

estimate of the second term in the following equation 

                       
                   

     . 

Note that           is a first order approximation of the first term            
  
      (Kass and 

Steffey 1989). As the estimates in our case are obtained using the numerical methods rather 

than explicitly, we propose a resampling method to approximate            
  
     . The basic 

idea is to estimate the variation of     with respect to the variation of   
  
  by resampling from 

the asymptotic distribution of   
  
 . More precisely, we obtain   samples     

   from the normal 

distribution with the covariance matrix equal to the Fisher information from the MLE of the 

integrated likelihood.   does not need to be large as the correction term is often small 



compared to the total variance. A rough estimate should be enough, which is also 

demonstrated in the simulation study where we chose     . For each sample    
  , we 

calculate      using the same MCMC method. Then,             
  
      can be approximated by 

the covariance of     . Thus, the corrected estimated variance for the estimates     is 

                                   
 

    . 

 

D. Impact of initial values for the estimation algorithm 
 

One of the concerns about the implementation lies in the potential convergence of the 

numerical algorithm to a local maximum of the log-likelihood rather than a global one. The log-

likelihoods are not necessarily concave in the whole space of the spline coefficients, so the 

achievement of the global maximum is not guaranteed. This issue is more manifest in ACE(t)-p, 

as we employ the EM-algorithm which tends to converge to a local maximum and depends on a 

pre-specified initial value. We found that the estimates with different initial values using ACE(t)-

p varied much more significantly than those from ACE(t) under the same setting. Nevertheless, 

we can mitigate this problem by trying multiple different initial values although we might never 

be assured whether the global maximum is attained. Thus, starting from initial values that are 

probably close to the true values is crucial for efficiently acquiring stable and accurate 

estimates. Attempts from multiple initial values effectively reduced the variation of the 

estimated maximum likelihood and the risk of being stuck on a local maximum that was far 

from away the global one at the cost of growing computational intensity which could be a 

major problem in the bootstrap method for LRT. We suggest choosing initial values at the same 

magnitude of the log scale of the phenotype variance. We find in our simulations with randomly 

generated initial values at this magnitude (not presented here) that the influence on the 

likelihoods, estimates and hypothesis testing is well controlled. The impact of the initial values 

on the accuracy of the estimation of the variance functions and the hypothesis testing were 

further evaluated in the following sections. The results in the following sections indicate that 



using random initial values at the suggested magnitude generally has little impact on the 

estimation. It also suggested that it had ignorable impact on the LRT even without repeated 

initial value attempts. 

 

E. Comparison between the analytical and approximated Hessian matrices  
 

As it is hard to express the analytical solutions in the MLE for ACE(t) or ACE(t)-p, we employed 

the L-BFGS algorithm with box constraints, which approximates the Hessian matrix in each 

iterative step, so that no computation of the analytical formula for the Hessian matrix is 

needed. The accuracy of the Hessian matrix has a direct impact on the estimated CIs. Hence, we 

investigated this potential issue in ACE(t) by comparing the Hessian matrix approximated by the 

L-BFGS algorithm with the analytical one derived from the second derivative of the log-

likelihood with expectation evaluated at    . The results from the analysis of the example 

dataset provided in the R package (in the supplementary materials (Text S1)) showed that the 

vast majority of the entries in the approximated Hessian matrix were very close to its analytical 

value, which demonstrates the reliability of the L-BFGS algorithm for computing the estimated 

standard error in this case. 

 

F. Comparison between the delta method and the bootstrap method 
 

Our simulation results from the example dataset in the R package showed that in general the pointwise 

CIs acquired by these two methods were comparable (See the supplementary materials (Text S1)). 

However, if the true value of the component variance is on the boundary (e.g.,                ), the 

asymptotic normality of the MLE does not hold because the regularity condition is violated. Therefore, 

the delta method is not reliable in this case, and the parametric bootstrap method can be a better 

alternative. To examine the performance of the delta method and the bootstrap method for estimating 

CIs when some parameters are on the boundary, we set the C component to be zero and fitted it with a 

spline function. Figure S2 illustrates the difference of CIs between the delta method and the bootstrap 



method when estimating a variance component being zero. The estimated pointwise CIs from the delta 

method were much wider where the estimated variance curve of the C component approached zero due 

to the erroneously large estimated variance. 
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Supplementary material Text S1. Application to an example dataset

We illustrate how to utilize the ACEt R package with an example dataset that can be loaded with the
following codes.
library(ACEt)
data(data_ace)

The installation of the ACEt package requires first installing the BH, Rcpp and RcppArmadillo packages. The
example dataset contains two matrices mz and dz for MZ and DZ twins respectively. Each matrix includes
2500 twin pairs, of which the first two columns are the quantitative phenotype for the twin pair and the third
column (T_m or T_d) is age.
attributes(data_ace)

## $names
## [1] "mz" "dz"
head(data_ace$mz)

## T_m
## [1,] 2.5638027 4.7355457 1
## [2,] -3.1959902 -3.0133873 1
## [3,] 1.3924694 2.8656795 1
## [4,] 2.4519483 1.9145994 1
## [5,] -0.4186678 1.3470608 1
## [6,] -1.2805044 -0.5234272 1
head(data_ace$dz)

## T_d
## [1,] 0.1402850 -0.3430456 1
## [2,] 0.8588600 -0.7381698 1
## [3,] 0.4025476 0.2794685 1
## [4,] -0.4564107 0.2008932 1
## [5,] -0.2458682 -3.0600677 1
## [6,] 0.1459282 0.4588418 1

The age is distributed uniformly from 1 to 50 in both twin datasets and the phenotypes are normally
distributed with a mean equal to zero. As discussed in the previous section, before used as an input for
this package, the phenotype should be centered, for example, by using residuals from a linear regression
model lm() in which covariates for the mean function can be included. Fitting an ACE(t) model can be done
by calling the AtCtEt function, in which users can specify a function (null, constancy or splines) for each
component independently through the mod argument.
# fitting the ACE(t) model
re <- AtCtEt(data_ace$mz, data_ace$dz, mod = c('d','d','c'), knot_a = 6, knot_c = 4)
summary(re)
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## Length Class Mode
## n_beta_a 1 -none- numeric
## n_beta_c 1 -none- numeric
## n_beta_e 1 -none- numeric
## beta_a 7 -none- numeric
## beta_c 5 -none- numeric
## beta_e 1 -none- numeric
## hessian_ap 169 -none- numeric
## hessian 169 -none- numeric
## con 1 -none- numeric
## lik 1 -none- numeric
## knots_a 10 -none- numeric
## knots_c 8 -none- numeric
## knots_e 2 -none- numeric
## min_t 1 -none- numeric
## max_t 1 -none- numeric
## boot 0 -none- NULL

In the above script, an ACE(t) model is fitted for the example dataset. The first two arguments specify
the matrices of the phenotypes for MZ and DZ twins, respectively. The argument mod = c('d','d','c')
specifies that we allow the variances of the A and C components to change dynamically and assume the
variance of the E component to be a constant over age. The mod argument is a vector of three elements
corresponding to the A, C and E components that can be 'd', 'c' or 'n', in which 'n' represents the
exclusion of a component. For example, mod = c('d','n','c') indicates that we fit an AE model with a
dynamic A component and a constant E component. It should be noted that the E component cannot be
eliminated. We can also give the number of knots for each component, which is ignored if we choose 'c'
or 'n' for that component. The number of randomly generated initial values for the estimation algorithm
can be specified using the robust argument. Multiple initial values can be attempted to minimize the risk
of missing the global maximum. The AtCtEt function returns both analytical and approximated Hessian
matrices (shown below), which are close to each other in general and can be used to compute pointwise
CIs. Note that the analytical Hessian is always positive definite, but the approximated one is not necessarily
positive definite. The returned value lik is the negative log-likelihood that can be used for LRT for the
comparison of twin models.
# part of the analytical Hessian matrix
re$hessian[1:8,1:8]

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 3.3122436 8.572181 0.9774334 0.00000000 0.000000 0.000000
## [2,] 8.5721808 64.560338 43.2299744 2.22206265 0.000000 0.000000
## [3,] 0.9774334 43.229974 145.2021892 67.94632724 2.836022 0.000000
## [4,] 0.0000000 2.222063 67.9463272 182.31265682 68.569776 2.334633
## [5,] 0.0000000 0.000000 2.8360218 68.56977584 155.634291 54.989838
## [6,] 0.0000000 0.000000 0.0000000 2.33463321 54.989838 113.226897
## [7,] 0.0000000 0.000000 0.0000000 0.00000000 1.840752 22.878770
## [8,] 4.9109578 13.518421 2.7632296 0.02669836 0.000000 0.000000
## [,7] [,8]
## [1,] 0.000000 4.91095781
## [2,] 0.000000 13.51842124
## [3,] 0.000000 2.76322956
## [4,] 0.000000 0.02669836
## [5,] 1.840752 0.00000000
## [6,] 22.878770 0.00000000
## [7,] 11.077766 0.00000000
## [8,] 0.000000 11.02095804
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# part the Hessian matrix approximated by the L-BFGS algorithm
re$hessian_ap[1:8,1:8]

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 3.3066880 8.583804 0.9771341 0.00000000 0.000000 0.000000
## [2,] 8.5838039 64.611733 43.1402778 2.22883073 0.000000 0.000000
## [3,] 0.9771341 43.140278 144.8342062 67.91347006 2.836111 0.000000
## [4,] 0.0000000 2.228831 67.9134701 181.14525247 67.405340 2.312405
## [5,] 0.0000000 0.000000 2.8361108 67.40534018 155.154944 55.376537
## [6,] 0.0000000 0.000000 0.0000000 2.31240520 55.376537 114.366468
## [7,] 0.0000000 0.000000 0.0000000 0.00000000 1.856622 23.555961
## [8,] 5.0462737 13.315584 2.7042919 0.02561431 0.000000 0.000000
## [,7] [,8]
## [1,] 0.000000 5.04627369
## [2,] 0.000000 13.31558433
## [3,] 0.000000 2.70429192
## [4,] 0.000000 0.02561431
## [5,] 1.856622 0.00000000
## [6,] 23.555961 0.00000000
## [7,] 11.486909 0.00000000
## [8,] 0.000000 11.08078500

The AtCtEt function returns the minus log-likelihood evaluated at the estimates that is needed to make
inference based on LRT. For example, the following program tests whether the A or C component has
a constant variance with respect to age, we fit the null models and calculate the p-values based on χ2

distributions. It can be seen that the LRT has no sufficient statistical power to reject the constancy of the C
component with this sample size (p1>0.05). In addition, we test whether the C component can be ignored
by comparing re_cc and re_cn and compute the p-value (p3) based on a mixture of χ2 distributions.
re_cc <- AtCtEt(data_ace$mz, data_ace$dz, mod = c('d','c','c'), knot_a = 6, knot_c = 4)
p1 <- pchisq(2*(re_cc$lik-re$lik), 4, lower.tail=FALSE)
p1

## [1] 0.2079343
re_ac <- AtCtEt(data_ace$mz, data_ace$dz, mod = c('c','d','c'), knot_a = 6, knot_c = 4)
p2 <- pchisq(2*(re_ac$lik-re$lik), 6, lower.tail=FALSE)
p2

## [1] 8.937498e-12
re_cn <- AtCtEt(data_ace$mz, data_ace$dz, mod = c('d','n','c'), knot_a = 6, knot_c = 4)
p3 <- 0.5*pchisq(2*(re_cn$lik-re_cc$lik), 1, lower.tail=FALSE)
p3

## [1] 2.155026e-08

After fitting the ACE(t) model, we can plot the estimated variance curves by calling the plot_acet function.
plot_acet(re, ylab='Var', xlab='Age (1-50)')

3



0 10 20 30 40 50

0
1

2
3

Variance curves of the A, C, and E components

Age (1−50)

V
ar

Additive genetic component
Common environmental component
Unique environmental component

By default, the 95% pointwise CIs are estimated using the delta method. Alternatively, we can choose the
bootstrap method by setting boot=TRUE and giving the number of bootstrap resampling, the default value of
which is 100.
## fitting an ACE(t) model with the CIs esitmated by the bootstrap method
re_b <- AtCtEt(data_ace$mz, data_ace$dz, mod = c('d','d','c'), knot_a = 6, knot_c = 4, boot = TRUE, num_b = 60)
plot_acet(re_b, boot = TRUE)
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Next, we plot the age-specific heritability by setting the argument heri=TRUE in the plot_acet function.
And similarly we can choose either the delta method or the bootstrap method to generate the CIs.
## plot dynamic heritability with the CIs using the delta method
plot_acet(re_b, heri=TRUE, boot = FALSE)
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## plot dynamic heritability with the CIs using the bootstrap method
plot_acet(re_b, heri=TRUE, boot = TRUE)
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The ACE(t)-p model is implemented in the AtCtEtp function, in which users can choose exponential of
penalized splines, a linear function or a constant to model a certain component by setting the mod argument.
Compared to the ACE(t) model, it is not an essential problem to provide an excessive number of knots (the
default value of interior knots is 8) when using the ACE(t)-p model as it is more important to ensure adequate
knots for curves with more fluctuation than to avoid overfitting. Below, we fit the example dataset using the
AtCtEtp function in which the A and C components are modelled by B-splines of 8 interior knots and the
E component by a log-linear function. Similar to the AtCtEt function, we can use the robust argument to
specify the number of randomly generated initial values, which can reduce the program’s possibility of being
stuck on a local maximum in the EM algorithm.
## fitting an ACE(t)-p model
re <- AtCtEtp(data_ace$mz, data_ace$dz, knot_a = 8, knot_c = 8, mod=c('d','d','l'))
summary(re)

## Length Class Mode
## D_a 81 -none- numeric
## D_c 81 -none- numeric
## D_e 4 -none- numeric
## pheno_m 5000 -none- numeric
## pheno_d 5000 -none- numeric
## T_m 5000 -none- numeric
## T_d 5000 -none- numeric
## knot_a 12 -none- numeric
## knot_c 12 -none- numeric
## knot_e 2 -none- numeric
## beta_a 9 -none- numeric
## beta_c 9 -none- numeric
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## beta_e 2 -none- numeric
## con 1 -none- numeric
## lik 1 -none- numeric
## iter 5 -none- numeric
## var_b_a 1 -none- numeric
## var_b_c 1 -none- numeric
## var_b_e 1 -none- numeric
## mod 3 -none- character
## hessian 9 -none- numeric

The AtCtEtp function finds MLE of the variance σ2
βA,C,E using the integrated likelihood and also provides

estimates of the spline coefficients, i.e. βA,C,E , which are based on maximum a posteriori (MAP) estimation.
For a variance component of log-linearity (the E component in this example), β is a vector of two elements
that exp(β) are the variances of this component at the minimum and maximum age in the dataset. To obtain
the empirical Bayes estimates of βA,C,E and the covariance matrix using the MCMC method, we then call
the acetp_mcmc function by plugging the result from the AtCtEtp function. We can also specify the numbers
of the MCMC iterations and burn-in.
re_mcmc <- acetp_mcmc(re, iter_num = 5000, burnin = 500)
summary(re_mcmc)

## Length Class Mode
## beta_a_mc 9 -none- numeric
## beta_c_mc 9 -none- numeric
## beta_e_mc 2 -none- numeric
## cov_mc 400 -none- numeric
## knots_a 12 -none- numeric
## knots_c 12 -none- numeric
## knots_e 2 -none- numeric
## min_t 1 -none- numeric
## max_t 1 -none- numeric

Given the esimates together with their covariance matrix, we can plot the variance curves or dynamic
heritability by calling the plot_acet function. The boot option is ignored for the ACE(t)-p model.
plot_acet(re_mcmc)
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plot_acet(re_mcmc, heri=TRUE)
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Assigning too many knots in the ACE(t)-p model is much less harmful than that in the ACE(t) model.
Comparing the following two plots (Figure 1) from the application of the two models with 10 knots for each
component to the example data set, it suggests that the ACE(t) model has an overfitting problem but the
ACE(t)-p model works properly.

Finally, we give an example to test a linear or constant variance curve. The test_acetp function is dedicated
to the model comparison for the ACE(t)-p model and returns a p-value from LRT using a resampling method
for testing log-linearity or from a χ2 distribution for testing constancy. First, the following code tests whether
the E component is invariant with age. Before testing, we need to fit the data using the AtCtEtp function
and obtain an AtCtEtp_model object re. Note that when testing a constant component, the component must
be specified as log-linear when fitting the model (as shown above).
test <- test_acetp(re, comp = 'e')

## Model comparison:
## [1] "Constancy (null) vs. Log-linear"
test$p

## [,1]
## [1,] 0.137253

The result suggests that the E component is time-invariant as the p-value is larger than 0.05. Next, we test
whether a log-linear model would be fitted better for the C component.
test <- test_acetp(re, comp = 'c', sim = 100, robust = 0)

## Model comparison:
## [1] "Log-linear (null) vs. Spline"
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Figure 1: Plots of variance curves of the example data set fitted by the ACE(t) and ACE(t)-p model with 10
interior knots for each component. Left: the ACE(t) model. Right: the ACE(t)-p model.

test$p

## [1] 0.63

The result shows that the null hypothesis of the log-linearity is not rejected.
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