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GAUSSIAN APPROXIMATION OF SUPREMA OF

EMPIRICAL PROCESSES∗

By Victor Chernozhukov†, Denis Chetverikov‡ and Kengo

Kato§

MIT†, UCLA‡, and University of Tokyo§

This paper develops a new direct approach to approximating
suprema of general empirical processes by a sequence of suprema
of Gaussian processes, without taking the route of approximating
whole empirical processes in the sup-norm. We prove an abstract
approximation theorem applicable to a wide variety of statistical
problems, such as construction of uniform confidence bands for func-
tions. Notably, the bound in the main approximation theorem is non-
asymptotic and the theorem allow for functions that index the em-
pirical process to be unbounded and have entropy divergent with the
sample size. The proof of the approximation theorem builds on a
new coupling inequality for maxima of sums of random vectors, the
proof of which depends on an effective use of Stein’s method for nor-
mal approximation, and some new empirical process techniques. We
study applications of this approximation theorem to local and series
empirical processes arising in nonparametric estimation via kernel
and series methods, where the classes of functions change with the
sample size and are non-Donsker. Importantly, our new technique is
able to prove the Gaussian approximation for the supremum type
statistics under weak regularity conditions, especially concerning the
bandwidth and the number of series functions, in those examples.

1. Introduction. This paper is concerned with the problem of approxi-
mating suprema of empirical processes by a sequence of suprema of Gaussian
processes. To formulate the problem, let X1, . . . ,Xn be i.i.d. random vari-
ables taking values in a measurable space (S,S) with common distribution
P . Suppose that there is a sequence Fn of classes of measurable functions
S → R, and consider the empirical process indexed by Fn:

Gnf =
1√
n

n∑

i=1

(f(Xi)− E[f(X1)]), f ∈ Fn.
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2 CHERNOZHUKOV CHETVERIKOV KATO

For a moment, we implicitly assume that each Fn is “nice” enough and post-
pone the measurability issue. This paper tackles the problem of approximat-
ing Zn = supf∈Fn

Gnf by a sequence of random variables Z̃n equal in dis-
tribution to supf∈Fn

Bnf , where each Bn is a centered Gaussian process in-
dexed by Fn with covariance function E[Bn(f)Bn(g)] = Cov(f(X1), g(X1))
for all f, g ∈ Fn. We look for conditions under which there exists a sequence
of such random variables Z̃n with

(1) |Zn − Z̃n| = OP(rn),

where rn → 0 as n → ∞ is a sequence of constants. These results have
immediate statistical implications; see Remark 2.5 and Section 3 ahead.

The study of asymptotic and non-asymptotic behaviors of the supremum
of the empirical process is one of the central issues in probability theory, and
dates back to the classical work of [38]. The (tractable) distributional ap-
proximation of the supremum of the empirical process is of particular impor-
tance in mathematical statistics. A leading example is uniform inference in
nonparametric estimation, such as construction of uniform confidence bands
and specification testing in nonparametric density and regression estimation
where critical values are given by quantiles of supremum type statistics [see,
e.g., 3, 41, 57, 32, 31, 14]. Another interesting example appears in econo-
metrics where there is an interest in estimating a parameter that is given as
the extremum of an unknown function such as a conditional mean function.
[16] proposed a precision-corrected estimate for such a parameter. In con-
struction of their estimate, approximation of quantiles of a supremum type
statistic is needed, to which the Gaussian approximation plays a crucial role.

A related but different problem is that of approximating whole empirical
processes by a sequence of Gaussian processes in the sup-norm. This problem
is more difficult than (1). Indeed, (1) is implied if there exists a sequence of
versions of Bn (which we denote by the same symbol Bn) such that

(2) ‖Gn −Bn‖Fn := sup
f∈Fn

|(Gn −Bn)f | = OP(rn).

There is a large literature on the latter problem (2). Notably, Komlós et
al. [40] (henceforth, abbreviated as KMT) proved that ‖Gn − Bn‖F =
Oa.s.(n

−1/2 log n) for S = [0, 1], P = uniform distribution on [0, 1], and F =
{1[0,t] : t ∈ [0, 1]}. See [46] and [7] for refinements of KMT’s result. [47],
[39] and [57] developed extensions of the KMT construction to more general
classes of functions.

The KMT construction is a powerful tool in addressing the problem (2),
but when applied to general empirical processes, it typically requires strong
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GAUSSIAN APPROXIMATION OF SUPREMA 3

conditions on classes of functions and distributions. For example, Rio [57] re-
quired that Fn are uniformly bounded classes of functions having uniformly
bounded variations on S = [0, 1]d, and P has a continuous and positive
Lebesgue density on [0, 1]d. Such conditions are essential to the KMT con-
struction since it depends crucially on the Haar approximation and binomial
coupling inequalities of Tusnády. Note that [39] directly made an assumption
on the accuracy of the Haar approximation of the class of functions, but still
required similar side conditions to [57] in concrete applications; see Section
11 in [39]. [23], [2] and [59] considered the problem of Gaussian approxi-
mation of general empirical processes with different approaches and thereby
without such side conditions. [23] used a finite approximation of a (possibly
uncountably) infinite class of functions and apply a coupling inequality of
[66] to the discretized empirical process (more precisely, [23] used a version
of Yurinskii’s inequality proved by [21]). [2] and [59], on the other hand, used
a coupling inequality of [67] instead of Yurinskii’s and some recent empirical
process techniques such as Talagrand’s [62] concentration inequality, which
leads to refinements of Dudley and Philipp’s results in some cases. However,
the rates that [21], [2] and [59] established do not lead to tight conditions
for the Gaussian approximation in non-Donsker cases, with important ex-
amples being the suprema of empirical processes arising in nonparametric
estimation, namely the suprema of local and series empirical processes (see
Section 3 for detailed treatment).

We develop here a new direct approach to the problem (1), without tak-
ing the route of approximating the whole empirical process in the sup-norm
and with different technical tools than those used in the aforementioned
papers (especially the approach taken does not rely on the Haar expansion
and hence differs from the KMT type approximation). We prove an abstract
approximation theorem (Theorem 2.1) that leads to results of type (1) in sev-
eral situations. The proof of the approximation theorem builds on a number
of technical tools that are of interest in their own rights: notably, 1) a new
coupling inequality for maxima of sums of random vectors (Theorem 4.1),
where Stein’s method for normal approximation (building here on [9] and
originally due to [60, 61]) plays an important role (see also [56, 48, 11]); 2)
a deviation inequality for suprema of empirical processes that only requires
finite moments of envelope functions (Theorem 5.1), due essentially to the
recent work of [5], complemented with a new “local” maximal inequality for
the expectation of suprema of empirical processes that extends the work of
[65] (Theorem 5.2). We study applications of this approximation theorem to
local and series empirical processes arising in nonparametric estimation via
kernel and series methods, and demonstrate that our new technique is able
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4 CHERNOZHUKOV CHETVERIKOV KATO

to provide the Gaussian approximation for the supremum type statistics
under weak regularity conditions, especially concerning the bandwidth and
the number of series functions, in those examples. A companion work [14]
provides multiplier bootstrap methods for (approximate and valid) compu-
tation of Gaussian approximations Z̃n in applications (see also Remark 3.3
below).

It is instructive to briefly summarize here the key features of the main
approximation theorem. First, the theorem establishes a non-asymptotic
bound between Zn and its Gaussian analogue Z̃n. The theorem requires
each Fn to be pre-Gaussian (i.e., assuming the existence of a version of
Bn that is a tight Gaussian random variable in ℓ∞(Fn); see below for the
notation), but allows for the case where the “complexity” of Fn increases
with n, which places the function classes outside any fixed Donsker class;
moreover, neither the process Gn nor the supremum statistic Zn need to be
weakly convergent as n → ∞ (even after suitable normalization). Second,
the bound in Theorem 2.1 is able to exploit the “local” properties of the class
of functions, thereby, when applied to, say, the supremum deviation of kernel
type statistics, it leads to tight conditions on the bandwidth for the Gaussian
approximation (see the discussion after Theorem 2.1 for details about these
features). Note that our bound does not rely on “smoothness” of Fn — in
contrast, in [57], the bound on the Gaussian approximation for empirical
processes depends on the total variation norm of functions. This feature is
helpful in deriving good conditions on the number of series functions for
the Gaussian approximation of the supremum deviation of projection type
statistics treated in Section 3.2 since, for example, the total variation norm
is typically large or difficult to control well for such examples. Finally, the
theorem only requires finite moments of the envelope function, which should
be contrasted with [39, 57, 2, 59] where the classes of functions studied are
assumed to be uniformly bounded. Hence the theorem is readily applicable
to a wide class of statistical problems to which the previous results are not,
at least immediately. We note here that although the bounds we derive are
not the sharpest possible in some examples, they are better than previously
available bounds in other examples, and are also of interest because of their
wide applicability. In fact the results of this paper are already applied in our
companion paper [12] and the paper [10] by other authors.

To the best of our knowledge, [53] is the only previous work that consid-
ered the problem of directly approximating the distribution of the supremum
of the empirical process by that of the corresponding Gaussian process. How-
ever, they only cover the case where the class of functions is independent of
n and Donsker as the constant C in their master Theorem 2 is dependent
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GAUSSIAN APPROXIMATION OF SUPREMA 5

on F (and how C depends on F is not specified), and their condition (1.4)
essentially excludes the case where the “complexity” of F grows with n,
which means that their results are not applicable to the statistical problems
considered in this paper (see Remark 2.5 or Lemma A.1 ahead). Moreover,
their approach is significantly different from ours.

In this paper, we substantially rely on modern empirical process theory.
For general references on empirical process theory, we refer to [43, 64, 22, 4].
Section 9.5 of [22] has excellent historical remarks on the Gaussian approx-
imation of empirical processes. For textbook treatments of Yurinskii’s and
KMT’s couplings, we refer to [18] and Chapter 10 in [55].

1.1. Organization. In Section 2, we present the main approximation the-
orem (Theorem 2.1). We give a proof of Theorem 2.1 in Section 6. In Section
3, we study applications of Theorem 2.1 to local and series empirical pro-
cesses arising in nonparametric estimation. Sections 4 and 5 are devoted to
developing some technical tools needed to prove Theorem 2.1 and its sup-
porting Lemma 2.2. In Section 4, we prove a new coupling inequality for
maxima of sums of random vectors, and in Section 5, we present some in-
equalities for empirical processes. We put some additional technical proofs,
some examples, and additional results in the Appendices. Due to the page
limitation, all the Appendices are placed in the Supplemental Material [15].

1.2. Notation. Let (Ω,A,P) denote the underlying probability space. We
assume that the probability space (Ω,A,P) is rich enough, in the sense
that there exists a uniform random variable on (0, 1) defined on (Ω,A,P)
independent of the sample. For a real-valued random variable ξ, let ‖ξ‖q =
(E[|ξ|q])1/q, 1 ≤ q < ∞. For two random variables ξ and η, we write ξ

d
= η

if they have the same distribution.
For any probability measure Q on a measurable space (S,S), we use the

notation Qf :=
∫
fdQ. Let Lp(Q), p ∈ [1,∞], denote the space of all mea-

surable functions f : S → R such that ‖f‖Q,p := (Q|f |p)1/p < ∞ where
(Q|f |p)1/p stands for the essential supremum when p = ∞. We also use
the notation ‖f‖∞ := supx∈S |f(x)|. Denote by eQ the L2(Q)-semimetric:
eQ(f, g) = ‖f − g‖Q,2, f, g ∈ L2(Q).

For an arbitrary set T , let ℓ∞(T ) denote the space of all bounded functions
T → R, equipped with the uniform norm ‖f‖T := supt∈T |f(t)|. We endow
ℓ∞(T ) with the Borel σ-field induced from the norm topology. A random
variable in ℓ∞(T ) refers to a Borel measurable map from Ω to ℓ∞(T ). For
ε > 0, an ε-net of a semimetric space (T, d) is a subset Tε of T such that
for every t ∈ T there exists a point tε ∈ Tε with d(t, tε) < ε. The ε-covering
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6 CHERNOZHUKOV CHETVERIKOV KATO

number N(T, d, ε) of T is the infimum of the cardinality of ε-nets of T ,
that is, N(T, d, ε) := inf{Card(Tε) : Tε is an ε-net of T} (formally define
N(T, d, 0) := limε↓0N(T, d, ε), where the right limit, possibly being infinite,
exists as the map ε 7→ N(T, d, ε) is non-increasing). For a subset A of a
semimetric space (T, d), let Aδ denote the δ-enlargement of A, that is, Aδ =
{x ∈ T : d(x,A) ≤ δ} where d(x,A) = infy∈A d(x, y).

The standard Euclidean norm is denoted by | · |. The transpose of a vector
x is denoted by xT . We write a . b if there exists a universal constant
C > 0 such that a ≤ Cb. Unless otherwise stated, c, C > 0 denote universal
constants of which the values may change from place to place. For a, b ∈ R,
we use the notation a ∨ b = max{a, b} and a+ = a ∨ 0.

Finally, for a sequence {zi}ni=1, we write En[zi] = n−1
∑n

i=1 zi, that is, En

abbreviates the symbol n−1
∑n

i=1. For example, En[f(Xi)] = n−1
∑n

i=1 f(Xi).

2. Abstract approximation theorem. Let X1, . . . ,Xn be i.i.d. ran-
dom variables taking values in a measurable space (S,S) with common dis-
tribution P . In all what follows, we assume n ≥ 3. Let F be a class of mea-
surable functions S → R. Here we assume that the class F is P -centered,
that is, Pf = 0, ∀f ∈ F . This does not lose generality since otherwise we
may replace F by {f − Pf : f ∈ F}. Denote by F a measurable envelope
of F , that is, F is a non-negative measurable function S → R such that
F (x) ≥ supf∈F |f(x)|, ∀x ∈ S.

In this section the sample size n is fixed, and hence the possible depen-
dence of F and F (and other quantities) on n is dropped.

We make the following assumptions.

(A1) The class F is pointwise measurable, that is, it contains a countable
subset G such that for every f ∈ F there exists a sequence gm ∈ G
with gm(x) → f(x) for every x ∈ S.

(A2) For some q ≥ 2, F ∈ Lq(P ).
(A3) The class F is P -pre-Gaussian, that is, there exists a tight Gaussian

random variable GP in ℓ∞(F) with mean zero and covariance function

E[GP (f)GP (g)] = P (fg) = E[f(X1)g(X1)], ∀f, g ∈ F .

Assumption (A1) is made to avoid measurability complications. See Sec-
tion 2.3.1 of [64] for further discussion. This assumption ensures that, for
example, supf∈F Gnf = supf∈G Gnf , and hence the former supremum is a
measurable map from Ω to R. Note that by Example 1.5.10 in [64], assump-
tion (A3) implies that F is totally bounded for eP , and GP has sample paths
almost surely uniformly eP -continuous.
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GAUSSIAN APPROXIMATION OF SUPREMA 7

To state the main result, we prepare some notation. For ε > 0, define
Fε = {f − g : f, g ∈ F , eP (f, g) < ε‖F‖P,2}. Note that by Theorem 3.1.1
in [22], under assumption (A3), one can extend GP to the linear hull of F
in such a way that GP has linear sample paths (recall that the linear hull
of F is defined as the collection of functions of the form

∑m
j=1 αjfj where

αj ∈ R, fj ∈ F , j = 1, . . . ,m). With this in mind, let

(3) φn(ε) = E[‖Gn‖Fε ] ∨ E[‖GP ‖Fε ].

For the notational convenience, let us write

(4) Hn(ε) = log(N(F , eP , ε‖F‖P,2) ∨ n).

Note that since F is totally bounded for eP (because of assumption (A3)),
Hn(ε) is finite for every 0 < ε ≤ 1. Moreover, write M = max1≤i≤n F (Xi)
and F · F = {fg : f ∈ F , g ∈ F}. The following is the main theorem of this
paper. The proof of the theorem will be given in Section 6.

Theorem 2.1 (Gaussian approximation to suprema of empirical

processes). Suppose that assumptions (A1), (A2) with q ≥ 3, and (A3)
are satisfied. Let Z = supf∈F Gnf . Let κ > 0 be any positive constant such
that κ3 ≥ E[‖En[|f(Xi)|3]‖F ]. Then for every ε ∈ (0, 1] and γ ∈ (0, 1), there

exists a random variable Z̃
d
= supf∈F GP f such that

P

{
|Z − Z̃| > K(q)∆n(ε, γ)

}
≤ γ {1 + δn(ε, γ)} +

C log n

n
,

where K(q) > 0 is a constant that depends only on q, and

∆n(ε, γ) := φn(ε) + γ−1/qε‖F‖P,2 + n−1/2γ−1/q‖M‖q + n−1/2γ−2/q‖M‖2
+ n−1/4γ−1/2(E[‖Gn‖F·F ])

1/2H1/2
n (ε) + n−1/6γ−1/3κH2/3

n (ε).

δn(ε, γ) :=
1

4
P{(F/κ)31(F/κ > cγ−1/3n1/3Hn(ε)

−1/3)}.

At this point, Theorem 2.1 might seem abstract but in fact it has wide
applicability. We provide a general discussion of key features of the theorem
in Remark 2.3 below after we present bounds on the main terms in the
theorem. See also Corollary 2.2 where we apply Theorem 2.1 to VC type
classes where many simplifications of the abstract result are possible.

Recall that we have extended GP to the linear hull of F in such a way
that GP has linear sample paths. Hence

‖Gn‖F = sup
f∈F∪(−F)

Gnf, ‖GP ‖F = sup
f∈F∪(−F)

GP f,
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8 CHERNOZHUKOV CHETVERIKOV KATO

where −F := {−f : f ∈ F}, from which one can readily deduce the following
corollary. Henceforth we only deal with supf∈F Gnf .

Corollary 2.1. The conclusion of Theorem 2.1 continues to hold with

Z replaced by Z = ‖Gn‖F , Z̃ replaced by Z̃
d
= ‖GP ‖F , and with different

constants K(q), c, C where K(q) depends only on q, and c, C are universal.

Theorem 2.1 is useful only if there are suitable bounds on the following
triple of terms, appearing in its statement:

(5) φn(ε), E[‖En[|f(Xi)|3]‖F ] and E[‖Gn‖F·F ].

To bound these terms, the entropy method or the more general generic
chaining method [63] are useful. We will derive bounds on these terms using
the entropy method since typically it leads to readily computable bounds.
However, we leave the option of bounding the terms in (5) by other means,
e.g., the generic chaining method (in some applications the latter is known
to give sharper bounds than the entropy approach).

Consider, as in [64, p.239], the (uniform) entropy integral

J(δ) = J(δ,F , F ) =
∫ δ

0
sup
Q

√
1 + logN(F , eQ, ε‖F‖Q,2)dε,

where the supremum is taken over all finitely discrete probability measures
on (S,S); see [64], Sections 2.6 and 2.10.3, and [22], Chapter 4, for examples
where the uniform entropy integral can be suitably bounded. We assume the
integral is finite:

(A4) J(1,F , F ) <∞.

Remark 2.1. In applications F and F (and even S) may change with
n, that is, F = Fn and F = Fn. In that case, assumption (A4) is inter-
preted as J(1,Fn, Fn) < ∞ for each n, but it does allow for the case where
J(1,Fn, Fn) → ∞ as n→ ∞. �

We first note the following (standard) fact.

Lemma 2.1. Assumptions (A2) and (A4) imply assumption (A3).

For the sake of completeness, we verify this lemma in the Supplemental
Material [15]. The following lemma provides bounds on the quantities in (5).
Its proof is given in the Supplemental Material [15].

imsart-aos ver. 2011/11/15 file: GA-final.tex date: August 19, 2014



GAUSSIAN APPROXIMATION OF SUPREMA 9

Lemma 2.2 (Entropy-based bounds on the triple (5)). Suppose that as-
sumptions (A1), (A2) and (A4) are satisfied. Then for ε ∈ (0, 1],

φn(ε) . J(ε)‖F‖P,2 + n−1/2ε−2J2(ε)‖M‖2.

Moreover, suppose that assumption (A2) is satisfied with q ≥ 4, and for k =
3, 4, let δk ∈ (0, 1] be any positive constant such that δk ≥ supf∈F ‖f‖P,k/‖F‖P,k.
Then

E[‖En[|f(Xi)|3]‖F ]− sup
f∈F

P |f |3

. n−1/2‖M‖3/23

[
J(δ

3/2
3 ,F , F )‖F‖3/2P,3 +

‖M‖3/23 J2(δ
3/2
3 ,F , F )√

nδ33

]
,

E[‖Gn‖F·F ] . J(δ24 ,F , F )‖F‖2P,4 +
‖M‖24J2(δ24 ,F , F )√

nδ44
.

Remark 2.2 (On the usefulness of the above bounds). The bounds
above are designed to handle cases when the suprema of weak moments,
P |f |3 and Pf4, are much smaller than the moments of the envelope func-
tion, which is the case for all the examples studied in Section 3 where all
the proofs for the results in that section follow from application of Corollary
2.2 below, which is a direct consequence of Theorem 2.1 and Lemma 2.2. �

Remark 2.3 (Key features of Theorem 2.1). Before going to the
applications, we discuss the key features of Theorem 2.1. First, Theorem
2.1 does not require uniform boundedness of F , and requires only finite mo-
ments of the envelope function. This should be contrasted with the fact that
many papers working on the Gaussian approximation of empirical processes
in the sup-norm, such as [39, 57, 2, 59], required that classes of functions
are uniformly bounded. There are, however, many statistical applications
where uniform boundedness of the class of functions is too restrictive, and
the generality of Theorem 2.1 in this direction will turn out to be useful
— a typical example of such an application is the problem of performing
inference on a nonparametric regression function with unbounded noise us-
ing kernel and series estimation methods. One drawback is that γ, which
in applications we take as γ = γn → 0, is typically at most O(n−1/2), and
hence Theorem 2.1 generally gives only “in probability bounds” rather than
“almost sure bounds” (though in some cases, it is possible to derive “almost
sure bounds” from this theorem; see, in particular, Appendix C of the Sup-
plemental Material). The second feature of Theorem 2.1 is that it is able to
exploit the “local” properties of the class of functions F . By Lemma 2.2,
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10 CHERNOZHUKOV CHETVERIKOV KATO

typically, we may take κ3 ≈ supf∈F P |f |3 and E[‖Gn‖F·F ] ≈ supf∈F
√
Pf4

(up to logarithmic in n factors). In some applications, for example, nonpara-
metric kernel and series estimations considered in the next section, the class
F = Fn changes with n and supf∈Fn

‖f‖P,k/‖Fn‖P,k with k = 3, 4 decrease
to 0 where Fn is an envelope function of Fn. The bound in Theorem 2.1 (with
help of Lemma 2.2) effectively exploits this information and leads to tight
conditions on, say, the bandwidth and the number of series functions for the
Gaussian approximation; roughly the theorem gives bounds on the approx-
imation error of the form (nhdn)

−1/6 for kernel estimation and (Kn/n)
−1/6

for series estimation (up to logarithmic in n factors), where hn → 0 is the
bandwidth and Kn → ∞ is the number of series functions. This feature will
be clear from the proofs for the applications in the following section. �

Remark 2.4 (An application to VC type classes). Although applications
of the general results in this section are not restricted to VC type classes,
combination of Theorem 2.1 and Lemma 2.2 will lead to a simple bound for
these classes. Recall the definition of VC type classes:

Definition 2.1 (VC type class). Let F be a class of measurable func-
tions on a measurable space (S,S), to which a measurable envelope F is
attached. We say that F is VC type with envelope F if there are constants
A, v > 0 such that supQN(F , eQ, ε‖F‖Q,2) ≤ (A/ε)v for all 0 < ε ≤ 1,
where the supremum is taken over all finitely discrete probability measures
on (S,S).

Note that the definition of VC type classes allows for unbounded en-
velops F . The VC type class is a wider concept than VC subgraph class
([64], Chapter 2.6). The VC type property is “stable” under summation,
product, or more generally Lipschitz-type transformations, making it much
easier to check whether a function class is VC type; see Lemma A.6 in the
Supplemental Material [15].

We have the following corollary of Theorem 2.1, whose proof is given in
the Supplemental Material [15].

Corollary 2.2 (Gaussian approximation to suprema of empirical

processes indexed by VC type classes). Suppose that assumption (A1)
is satisfied. In addition, suppose that the class F is VC type with an envelope
F and constants A ≥ e and v ≥ 1. Suppose also that for some b ≥ σ > 0 and
q ∈ [4,∞], we have supf∈F P |f |k ≤ σ2bk−2 for k = 2, 3, 4 and ‖F‖P,q ≤ b.
Let Z = supf∈F Gnf . Then for every γ ∈ (0, 1), there exists a random
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GAUSSIAN APPROXIMATION OF SUPREMA 11

variable Z̃
d
= supf∈F GP f such that

P

{
|Z − Z̃| > bKn

γ1/2n1/2−1/q
+

(bσ)1/2K
3/4
n

γ1/2n1/4
+

(bσ2K2
n)

1/3

γ1/3n1/6

}

≤ C

(
γ +

log n

n

)
,

where Kn = cv(log n ∨ log(Ab/σ)), and c, C are constants that depend only
on q (“1/q” is interpreted as “0” when q = ∞).

�

Remark 2.5 (Gaussian approximation in the Kolmogorov distance). The-
orem 2.1 combined with Lemma 2.2 can be used to show that the result (1)
holds for some sequence of constants rn → 0 (subject to some conditions;
possible rates of rn are problem-specific). In statistical applications, how-
ever, one is typically interested in the result of the form (here we follow the
notation used in Section 1)

(6) sup
t∈R

|P(Zn ≤ t)− P(Z̃n ≤ t)| = o(1), n→ ∞.

That is, the approximation of the distribution of Zn by that of Z̃n in the Kol-
mogorov distance is required.To derive (6) from (1), we invoke the following
lemma.

Lemma 2.3 (Gaussian approximation in Kolmogorov distance: non-asymp-
totic result). Consider the setting described in the beginning of this section.
Suppose that assumptions (A1)-(A3) are satisfied, and that there exist con-
stants σ, σ̄ > 0 such that σ2 ≤ Pf2 ≤ σ̄2 for all f ∈ F . Moreover, suppose

that there exist constants r1, r2 > 0 and a random variable Z̃
d
= supf∈F GP f

such that P{|Z − Z̃| > r1} ≤ r2. Then

sup
t∈R

|P(Z ≤ t)− P(Z̃ ≤ t)| ≤ Cσr1

{
E[Z̃] +

√
1 ∨ log(σ/r1)

}
+ r2,

where Cσ is a constant depending only on σ and σ̄.

It is now not difficult to give conditions to deduce (6) from (1). Formally,
we state the following lemma.
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12 CHERNOZHUKOV CHETVERIKOV KATO

Lemma 2.4 (Gaussian approximation in Kolmogorov distance: asymptotic
result). Suppose that there exists a sequence of (P -centered) classes Fn of
measurable functions S → R satisfying assumptions (A1)-(A3) with F = Fn

for each n, and that there exist constants σ, σ̄ > 0 (independent of n) such
that σ2 ≤ Pf2 ≤ σ̄2 for all f ∈ Fn. Let Zn = supf∈Fn

Gnf , and denote
by Bn a tight Gaussian random variable in ℓ∞(Fn) with mean zero and
covariance function E[Bn(f)Bn(g)] = P (fg) for all f, g ∈ Fn. Moreover,

suppose that there exist a sequence of random variables Z̃n
d
= supf∈Fn

Bnf

and a sequence of constants rn → 0 such that |Zn − Z̃n| = OP(rn) and
rnE[Z̃n] = o(1) as n → ∞. Then as n → ∞, supt∈R |P(Zn ≤ t) − P(Z̃n ≤
t)| = o(1).

Note here that we allow the case where E[Z̃n] → ∞. In the examples
handled in the following section, typically, we have E[Z̃n] = O(

√
log n). We

note that the companion work [14] provides multiplier bootstrap methods
for uniformly consistent estimation of the map t 7→ P(Z̃n ≤ t) in applications
(see also Remark 3.3 below). �

3. Applications. This section studies applications of Theorem 2.1 and
its supporting Lemma 2.2 (via Corollary 2.2) to local and series empirical
processes arising in nonparametric estimation via kernel and series meth-
ods. In both examples, the classes of functions change with the sample size
n and the corresponding processes Gn do not have tight limits. Hence reg-
ularity conditions for the Gaussian approximation for the suprema will be
of interest. All the proofs in this section, and motivating examples for series
empirical processes treated in Section 3.2, are gathered in the Supplemental
Material [15].

3.1. Local empirical processes. This section applies Theorem 2.1 to the
supremum deviation of kernel type statistics. Let (Y1,X1), . . . , (Yn,Xn) be
i.i.d. random variables taking values in the product space Y × R

d, where
(Y,AY) is an arbitrary measurable space. Suppose that there is a class G
of measurable functions Y → R. Let k(·) be a kernel function on R

d. By
“kernel function”, we simply mean that k(·) is integrable with respect to
the Lebesgue measure on R

d and its integral on R
d is normalized to be 1,

but we do not assume k(·) to be non-negative, that is, higher order kernels
are allowed. Let hn be a sequence of positive constants such that hn → 0
as n → ∞, and let I be an arbitrary Borel subset of R

d. Consider the
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GAUSSIAN APPROXIMATION OF SUPREMA 13

kernel-type statistics

(7) Sn(x, g) =
1

nhdn

n∑

i=1

g(Yi)k(h
−1
n (Xi − x)), (x, g) ∈ I × G.

Typically, under suitable regularity conditions, Sn(x, g) will be a consistent
estimator of E[g(Y1) | X1 = x]p(x), where p(·) denotes a Lebesgue density
of the distribution of X1 (assuming its existence). For example, when g ≡ 1,
Sn(x, g) will be a consistent estimator of p(x); when Y = R and g(y) = y,
Sn(x, g) will be a consistent estimator of E[Y1 | X1 = x]p(x); and when
Y = R and g(·) = 1(· ≤ y), y ∈ R, Sn(x, g) will be a consistent estimator of
P(Y1 ≤ y | X1 = x)p(x). In statistical applications, it is often of interest to
approximate the distribution of the following quantity:

(8) Wn = sup
(x,g)∈I×G

cn(x, g)
√
nhdn(Sn(x, g) − E[Sn(x, g)]),

where cn(x, g) is a suitable normalizing constant. A typical choice of cn(x, g)
would be such that Var(

√
nhdnSn(x, g)) = cn(x, g)

−2 + o(1). Limit theorems
for Wn are developed in [3, 41, 20, 57, 24, 45], among others.

[24] called the process g 7→
√
nhdn(Sn(x, g) − E[Sn(x, g)]) a “local” em-

pirical process at x (the original definition of the local empirical process
in [24] is slightly more general in that hn is replaced by a sequence of bi-
measurable functions). With a slight abuse of terminology, we also call the
process (x, g) 7→

√
nhdn(Sn(x, g) − E[Sn(x, g)]) a local empirical process.

We consider the problem of approximating Wn by a sequence of suprema
of Gaussian processes. For each n ≥ 1, let Bn be a centered Gaussian process
indexed by I × G with covariance function

(9) E[Bn(x, g)Bn(x̌, ǧ)]

= h−d
n cn(x, g)cn(x̌, ǧ)Cov[g(Y1)k(h

−1
n (X1 − x)), ǧ(Y1)k(h

−1
n (X1 − x̌))].

It is expected that under suitable regularity conditions, there is a sequence

W̃n of random variables such that W̃n
d
= sup(x,g)∈I×G Bn(x, g) and as n →

∞, |Wn − W̃n| P→ 0. We shall argue the validity of this approximation with
explicit rates.

We make the following assumptions.

(B1) G is a pointwise measurable class of functions Y → R uniformly
bounded by a constant b > 0, and is VC type with envelope ≡ b.
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14 CHERNOZHUKOV CHETVERIKOV KATO

(B2) k(·) is a bounded and continuous kernel function on R
d, and such that

the class of functions K = {t 7→ k(ht+ x) : h > 0, x ∈ R
d} is VC type

with envelope ≡ ‖k‖∞.
(B3) The distribution of X1 has a bounded Lebesgue density p(·) on R

d.
(B4) hn → 0 and log(1/hn) = O(log n) as n→ ∞.
(B5) CI×G := supn≥1 sup(x,g)∈I×G |cn(x, g)| < ∞. Moreover, for every fixed

n ≥ 1 and for every (xm, gm) ∈ I×G with xm → x ∈ I and gm → g ∈ G
pointwise, cn(xm, gm) → cn(x, g).

We note that [52] and especially [29, 30] give general sufficient conditions
under which K is VC type.

We first assume that G is uniformly bounded, which will be relaxed later.

Proposition 3.1 (Gaussian approximation to suprema of local empirical
processes: bounded case). Suppose that assumptions (B1)-(B5) are satis-
fied. Then for every n ≥ 1, there is a tight Gaussian random variable Bn

in ℓ∞(I × G) with mean zero and covariance function (9), and there is a

sequence W̃n of random variables such that W̃n
d
= sup(x,g)∈I×G Bn(x, g) and

as n→ ∞,

|Wn − W̃n| = OP{(nhdn)−1/6 log n+ (nhdn)
−1/4 log5/4 n+ (nhdn)

−1/2 log3/2 n}.

Even when G is not uniformly bounded, a version of Proposition 3.1 con-
tinues to hold provided that suitable restrictions on the moments of the
envelope of G are assumed. Instead of assumption (B1), we make the follow-
ing assumption.

(B1)′ G is a pointwise measurable class of functions Y → R with mea-
surable envelope G such that E[Gq(Y1)] < ∞ for some q ≥ 4 and
supx∈Rd E[G4(Y1) | X1 = x] < ∞. Moreover, G is VC type with enve-
lope G.

Then we have the following proposition.

Proposition 3.2 (Gaussian approximation to suprema of local empirical
processes: unbounded case). Suppose that assumptions (B1)′ and (B2)-
(B5) are satisfied. Then the conclusion of Proposition 3.1 continues to hold,
except for that the speed of approximation is

OP{(nhdn)−1/6 log n+ (nhdn)
−1/4 log5/4 n+ (n1−2/qhdn)

−1/2 log3/2 n}.

Remark 3.1 (Discussion and comparison to other results). It is instruc-
tive to compare Propositions 3.1 and 3.2 with implications of Theorem 1.1
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GAUSSIAN APPROXIMATION OF SUPREMA 15

of Rio [57], which is a very sharp result on the Gaussian approximation (in
the sup-norm) of general empirical processes indexed by uniformly bounded
VC type classes of functions having locally uniformly bounded variation.

1. Rio’s [57] Theorem 1.1 is not applicable to the case where the envelope
function G is not bounded. Hence Proposition 3.2 is not covered by [57].
Indeed, we are not aware of any previous result that leads to the conclusion
of Proposition 3.2, at least in this generality. For example, [41] considered the
Gaussian approximation of Wn in the case where Y = R and g(y) = y, but
also assumed that the support of Y1 is bounded. [24] proved in their Theorem
1.1 a weak convergence result for local empirical processes, which, combined
with the Skorohod representation and Lemma 4.1 ahead, implies a Gaussian
approximation result for Wn even when G is not uniformly bounded (but
without explicit rates); however, their Theorem 1.1 (and also Theorem 1.2) is
tied with the single value of x, that is, x is fixed, since both theorems assume
that the “localized” probability measure, localized at a given x, converges
(in a suitable sense) to a fixed probability measure (see assumption (F.ii) in
[24]). The same comment applies to [25]. In contrast, our results apply to
the case where the supremum is taken over an uncountable set of values of x,
which is relevant to statistical applications such as construction of uniform
confidence bands.

2. In the special case of kernel density estimation (i.e., g ≡ 1), Rio’s The-

orem 1.1 implies (subject to some regularity conditions) that |Wn − W̃n| =
Oa.s.{(nhdn)−1/(2d)

√
log n+ (nhdn)

−1/2 log n} for d ≥ 2 (the d = 1 case is for-
mally excluded from [57] but Giné and Nickl showed that the same bound
can be obtained for d = 1 case [the proof of Proposition 5 in 31]). Hence
Rio-Giné-Nickl’s error rates are better than ours when d = 1, 2, 3, but ours
are better when d ≥ 4 (aside from the difference between “in probability”
and almost sure bounds). Another approach to couplings of kernel density
estimators is proposed in Neumann [50] where the distribution of Wn is cou-
pled to the distribution of the smoothed bootstrap, which is then coupled
to the distribution of the empirical bootstrap. Neumann’s Theorem 3.2 im-
plies that one can construct a sequence X1, . . . ,Xn, its copy X1, . . . ,Xn,
and empirical bootstrap sample X∗

1 , . . . ,X
∗
n from X1, . . . ,Xn so that if we

define W ∗
n by (7) and (8) with X1, . . . ,Xn replaced by X∗

1 , . . . ,X
∗
n, then

|Wn −W ∗
n | = OP((nhd)

−1/(2+d)(log n)(4+d)/(2(2+d))). Thus Neumann’s error
rates of (empirical bootstrap) approximation are better than our error rates
of (Gaussian) approximation when d ≤ 4 but ours are better when d ≥ 5.
Also we note that Neumann’s approach requires similar side conditions as
those of Rio’s approach, is tied with kernel density estimation and not as
general as ours.
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16 CHERNOZHUKOV CHETVERIKOV KATO

3. Consider, as a second example, kernel regression estimation (that is,
Y = R and g(y) = y). In order to formally apply Rio’s Theorem 1.1 to
this example, we need to assume that, for example, (Y1,X1) is generated
in such a way that (Y1,X1) = (h(U,X1),X1) where the joint distribution
of (U,X1) has support [0, 1]

d+1 with continuous and positive Lebesgue den-
sity on [0, 1]d+1, and h is a function [0, 1]d+1 → R which is bounded and of
bounded variation [for example, let F−1

Y1|X1

(· | x) denote the quantile function
of the conditional distribution of Y1 given X1 = x and take U uniformly dis-

tributed on (0, 1) independent of X1; then (Y1,X1)
d
= (F−1

Y1|X1
(U | X1),X1),

but for the above condition to be met, we need to assume that F−1
Y1|X1

(u | x)
is (bounded and) of bounded variation as a function of u and x, which is
not a typical assumption in estimation of the conditional mean]. Subject to
such side conditions, Rio’s Theorem 1.1 leads to the following error rate:
|Wn− W̃n| = Oa.s.{(nd/(d+1)hdn)

−1/(2d)
√
log n+(nhdn)

−1/2 log n}. See, for ex-
ample, [16], Theorem 8. In contrast, Propositions 3.1 and 3.2 do not require
such side conditions. Moreover, aside from the difference between “in prob-
ability” and almost sure bounds, as long as hn = O(n−a) for some a > 0,
our error rates are always better when d ≥ 2. When d = 1, our rate is better
as long as nh4n/ log

c n→ 0 (and vice versa) where c > 0 is some constant. �

Remark 3.2 (Converting coupling to convergence in Kolmogorov dis-
tance). By Remark 2.5, we can convert the results in Propositions 3.1 and
3.2 into convergence of the Kolmogorov distance between the distributions
of Wn and its Gaussian analogue W̃n. In fact, under either the assumptions
of Proposition 3.1 or 3.2, by Dudley’s inequality for Gaussian processes [64,

Corollary 2.2.8], it is not difficult to deduce that E[W̃n] = O(
√
log n). Hence

if moreover there exists a constant σ > 0 (independent of n) such that
Var(cn(x, g)

√
nhdnSn(x, g)) ≥ σ2 for all (x, g) ∈ I × G (giving primitive reg-

ularity conditions for this assumption is a standard task; note also that under
either the assumptions of Proposition 3.1 or 3.2, Var(cn(x, g)

√
nhdnSn(x, g))

is bounded from above uniformly in (x, g) ∈ I × G), we have

|Wn − W̃n| = oP(log
−1/2 n) ⇒ sup

t∈R
|P(Wn ≤ t)− P(W̃n ≤ t)| = o(1).

Note that |Wn − W̃n| = oP(log
−1/2 n) (i) if nhdn/ log

c n → ∞ under the
assumptions of Proposition 3.1, and (ii) if n(1−2/q)hdn/ log

c n → ∞ under
the assumptions of Proposition 3.2, where c > 0 is some constant. These
conditions on the bandwidth hn are mild, and interestingly they essentially
coincide with the conditions on the bandwidth used in establishing exact
rates of uniform strong consistency of kernel type estimators in [26, 27]. �
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GAUSSIAN APPROXIMATION OF SUPREMA 17

Remark 3.3 (Constructing under-smoothed uniform bands). The re-
sults in Propositions 3.1 and 3.2 are useful for constructing one- and two-
sided uniform confidence bands for various nonparametric functions, such
as density and conditional mean, estimated via kernel methods. For con-
creteness, consider a kernel density estimator Ŝn(x) = Sn(x, g) defined in

(7) with g ≡ 1. Let σn(x) =

√
Var(Ŝn(x)), and define Wn as in (8) with

cn(x, g) = 1/(σn(x)
√
nhdn). Also define Cn(x) = [Ŝn(x) − c(α)σn(x),∞)

where c(α) is a constant specified later with α ∈ (0, 1) a confidence level.
Assume that the bandwidth hn is chosen in such a way that

(10) sup
x∈I

|E[Ŝn(x)]− p(x)|
σn(x)

= o(log−1/2 n).

Conditions like (10) are typically referred to as under-smoothing [see 31,
p.1130 for related discussion]. Then

P(p(x) ∈ Cn(x),∀x ∈ I) ≤ P(Wn ≤ c(α) + o(log−1/2 n))

= P(W̃n ≤ c(α) + o(log−1/2 n)) + o(1) = P(W̃n ≤ c(α)) + o(1),(11)

and likewise P(p(x) ∈ Cn(x),∀x ∈ I) ≥ P(W̃n ≤ c(α)) − o(1), under the

conditions specified in Remark 3.2 where W̃n is defined in Proposition 3.1.
Here the last equality in (11) follows from the anti-concentration inequality
for Gaussian processes (see Lemma A.1 in the Supplemental Material [15])

together with the fact that E[W̃n] = O(
√
log n). Hence Cn(·) is a one-sided

uniform confidence band of level α if we set c(α) to be the (1− α)-quantile

of the distribution of W̃n, which in turn can be estimated via a bootstrap
procedure; see our companion paper [14]. Another way is to use a bound

on the (1 − α)-quantile of W̃n using sharp deviation inequalities available
to Gaussian processes, which leads to analytic construction of confidence
bands; see, for example, [16] for this approach. In some applications, the
distribution of the approximating Gaussian process is completely known,
and in that case the distribution of W̃n can be simulated via a direct Monte
Carlo method; see [58] for such examples. Finally, we mention that there
are alternative, yet more conservative, approaches on construction of con-
fidence bands based on non-asymptotic concentration inequalities (and not
on Gaussian approximation); see [44] and [37]. �

3.2. Series empirical processes. Here we consider the following problem.
Let (η1,X1), . . . , (ηn,Xn) be i.i.d. random variables taking values in the
product space E × R

d, where (E ,AE) is an arbitrary measurable space.
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18 CHERNOZHUKOV CHETVERIKOV KATO

Suppose that the support of X1 is normalized to be [0, 1]d, and for each
K ≥ 1, there are K basis functions ψK,1, . . . , ψK,K defined on [0, 1]d. Let
ψK(x) = (ψK,1(x), . . . , ψK,K(x))T . Examples of such basis functions are
Fourier series, splines, Cohen-Daubechies-Vial (CDV) wavelet bases [17],
Hermite polynomials and so on. Let Kn be a sequence of positive constants
such that Kn → ∞ as n → ∞. Let G be a class of measurable functions
E → R such that E[g2(η1)] <∞ and E[g(η1) | X1] = 0 a.s. for all g ∈ G, and
let I be an arbitrary Borel measurable subset of [0, 1]d. Suppose that there
are sequences of Kn×Kn matrices A1n(g) and A2n(g) indexed by g ∈ G. We
assume that smin(A2n(g)) > 0 for all g ∈ G. In what follows, we let smin(A)
and smax(A) denote the minimum and maximum singular values of a matrix
A, respectively. Consider the following empirical process:

Sn(x, g) =
ψKn(x)TA1n(g)

T

|A2n(g)ψKn(x)|

[
1√
n

n∑

i=1

g(ηi)ψ
Kn(Xi)

]
, x ∈ I, g ∈ G,

which we shall call the “series empirical process” (we shall formally follow
the convention 0/0 = 0). The problem here is the Gaussian approximation
of the supremum of this series empirical process:

Wn := sup
(x,g)∈I×G

Sn(x, g).

We address this problem in what follows. The study of distributional ap-
proximation of this statistic is motivated by inference problems for functions
using series (or sieve) estimation. See Examples B.1 and B.2 in the Sup-
plemental Material [15] for concrete examples, coming from nonparametric
conditional mean and quantile estimation using the series method. These
examples explain and motivate various forms of Sn arising in mathematical
statistics.

Returning to the general setting, let Bn be a centered Gaussian process
indexed by I × G with covariance function

E[Bn(x, g)Bn(x̌, ǧ)]

= αn(x, g)
T
E[g(η1)ǧ(η1)ψ

Kn(X1)ψ
Kn(X1)

T ]αn(x̌, ǧ),(12)

where αn(x, g) = A1n(g)ψ
Kn(x)/|A2n(g)ψ

Kn(x)|. It is expected that under

suitable regularity conditions, there is a sequence W̃n of random variables

such that W̃n
d
= sup(x,g)∈I×G Bn(x, g) and as n → ∞, |Wn − W̃n| P→ 0. We

shall establish the validity of this approximation with explicit rates.
We make the following assumptions.
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GAUSSIAN APPROXIMATION OF SUPREMA 19

(C1) G is a pointwise measurable VC type class of functions E → R with
measurable envelope G such that E[g2(η1)] <∞ and E[g(η1) | X1] = 0
a.s. for all g ∈ G.

(C2) There exist some constants c1, C1 > 0 such that smax(A2n(g)) ≤ C1

and smin(A2n(g)) ≥ c1 for all g ∈ G and n ≥ 1.
(C3) ξn := supx∈[0,1]d |ψKn(x)| ∨ 1 < ∞ and there exists a constant C2 >

0 such that smax(E[ψ
Kn(X1)ψ

Kn(X1)
T ]) ≤ C2 for all n ≥ 1. The

map (x, g) 7→ A1n(g)ψ
Kn(x)/|A2n(g)ψ

Kn(x)| =: αn(x, g) is Lipschitz
continuous with Lipschitz constant ≤ Ln(≥ 1) in the following sense:

|αn(x, g) − αn(x̌, ǧ)| ≤ Ln{|x− x̌|+ (E[(g(η1)− ǧ(η1))
2])1/2},

∀x, x̌ ∈ [0, 1]d,∀g, ǧ ∈ G.(13)

Here ξn and Ln are allowed to diverge as n→ ∞.
(C4) log ξn = O(log n) and logLn = O(log n) as n→ ∞.

For many commonly used basis functions such as Fourier series, splines
and CDV wavelet bases, ξn = O(

√
Kn) as n→ ∞; see, for example, [34] and

[51]. The Lipschitz condition (13) is satisfied if infx∈[0,1]d |ψKn(x)| ≥ c2 > 0,

|ψKn(x) − ψKn(x̌)| ≤ L1n|x − x̌|, and ‖A1n(g) − A1n(ǧ)‖op ∨ ‖A2n(g) −
A2n(ǧ)‖op ≤ L2n(E[(g(η1) − ǧ(η1))

2])1/2, where c2 > 0 is a fixed constant
and L1n, L2n are sequences of constants possibly divergent as n→ ∞ (‖A‖op
denotes the operator norm of a matrix A). Then (13) is satisfied with Ln =
O(L1n ∨ L2n). Assumption (C4) states mild growth restrictions on Kn and
Ln, and is usually satisfied.

Proposition 3.3 (Gaussian approximation to suprema of series empirical
processes). Suppose that assumptions (C1)-(C4) are satisfied. Moreover,
suppose either (i) G is bounded (i.e., ‖G‖∞ < ∞), or (ii) E[Gq(η1)] < ∞
for some q ≥ 4 and supx∈[0,1]d E[G

4(η1) | X1 = x] < ∞. Then for every
n ≥ 1, there is a tight Gaussian random variable Bn in ℓ∞(I × G) with

mean zero and covariance function (12), and there exists a sequence W̃n of

random variables such that W̃n
d
= sup(x,g)∈I×G Bn(x, g) and as n→ ∞,

|Wn − W̃n|

=

{
OP{n−1/6ξ

1/3
n log n+ n−1/4ξ

1/2
n log5/4 n+ n−1/2ξn log

3/2 n}, (i),

OP{n−1/6ξ
1/3
n log n+ n−1/4ξ

1/2
n log5/4 n+ n−1/2+1/qξn log

3/2 n}, (ii).

Remark 3.4 (Discussion and comparisons with other approximations).
Proposition 3.3 is a new result, and its principal attractive feature is the
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20 CHERNOZHUKOV CHETVERIKOV KATO

weak requirement on the number of series functions Kn (recall that, for
example, for Fourier series, splines, and CDV wavelet bases, we have ξn =
O(

√
Kn)). Another approach to deduce a result similar to Proposition 3.3

is to apply Yurinskii’s coupling (see Theorem 4.2 ahead) to random vectors
g(ηi)ψ

Kn(Xi), which, however, requires a rather stringent restriction on Kn,

namely K5
n/n → 0, for ensuring |Wn − W̃n| P→ 0 even in the simplest case

where E = R and g(η) = η. See, for example, [16], Theorem 7. Moreover, the
use of Rio’s [57] Theorem 1.1 here is not effective since the total variation
bound is large or difficult to control well in this example, which results in
restrictive conditions on Kn (also Rio’s [57] Theorem 1.1 does not cover case
(ii) where G may not be bounded). �

Remark 3.5 (Converting coupling to convergence in Kolmogorov dis-
tance). As before, we can convert the results in Proposition 3.3 into con-
vergence of the Kolmogorov distance between the distributions of Wn and
its Gaussian analogue W̃n. Suppose that ξn = O(

√
Kn). By Dudley’s in-

equality for Gaussian processes [64, Corollary 2.2.8], it is not difficult to

deduce that E[W̃n] = O(
√
log n) under the assumptions of Proposition 3.3.

Hence if moreover there exists a constant σ > 0 (independent of n) such
that Var(Sn(x, g)) ≥ σ2 for all (x, g) ∈ I × G, by Lemma 2.4, we have

|Wn − W̃n| = oP(log
−1/2 n) ⇒ sup

t∈R
|P(Wn ≤ t)− P(W̃n ≤ t)| = o(1).

Note that |Wn − W̃n| = oP(log
−1/2 n) if Kn(log n)

c/n → 0 in case (i) and
if Kn(log n)

c/n1−2/q → 0 in case (ii), where c > 0 is some constant. These
requirements on Kn are mild, in view of the fact that at least Kn/n→ 0 is
needed for consistency (in the L2-norm) of the series estimator [see 35]. �

Remark 3.6 (Constructing under-smoothed uniform confidence bands).
Results in Proposition 3.3 can be used for constructing one- and two-sided
uniform confidence bands for various nonparametric functions, such as den-
sity, conditional mean, and conditional quantile, estimated via series meth-
ods following the same arguments as those described in Remark 3.3 above.
�

4. A coupling inequality for maxima of sums of random vectors.

The main ingredient in the proof of Theorem 2.1 is a new coupling inequality
for maxima of sums of random vectors, which is stated below.

Theorem 4.1 (A coupling inequality for maxima of sums of random vec-
tors). Let X1, . . . ,Xn be independent random vectors in R

p with mean zero

imsart-aos ver. 2011/11/15 file: GA-final.tex date: August 19, 2014



GAUSSIAN APPROXIMATION OF SUPREMA 21

and finite absolute third moments, that is, E[Xij ] = 0 and E[|Xij |3] <∞ for
all 1 ≤ i ≤ n and 1 ≤ j ≤ p. Consider the statistic Z = max1≤j≤p

∑n
i=1Xij .

Let Y1, . . . , Yn be independent random vectors in R
p with Yi ∼ N(0,E[XiX

T
i ]),

1 ≤ i ≤ n. Then for every β > 0 and δ > 1/β, there exists a random variable

Z̃
d
= max1≤j≤p

∑n
i=1 Yij such that

P(|Z − Z̃| > 2β−1 log p+ 3δ) ≤ ε+ Cβδ−1{B1 + β(B2 +B3)}
1− ε

,

where ε = εβ,δ is given by

(14) ε =
√
e−α(1 + α) < 1, α = β2δ2 − 1 > 0,

and

B1 = E

[
max

1≤j,k≤p
|

n∑

i=1

(XijXik − E[XijXik])|
]
,

B2 = E

[
max
1≤j≤p

n∑

i=1

|Xij |3
]
,

B3 =

n∑

i=1

E

[
max
1≤j≤p

|Xij |3 · 1
(
max
1≤j≤p

|Xij | > β−1/2

)]
.

A different, though related, Gaussian approximation inequality was ob-
tained in Theorem 2.1 of [13] with different techniques. We have chosen
to present a new theorem here because 1) it is based on the Stein’s ex-
changeable pairs technique, which is well understood in the literature, and
our theorem might be helpful for deriving further results in the future; 2)
applying Theorem 2.1 of [13] here would require solving a complicated op-
timization problem to find the best bound for the coupling problem; and 3)
our new theorem does not require truncating normal random vectors, allow-
ing us to avoid an additional layer of complication in the final application
to empirical processes.

The following corollary is useful for many applications. Recall n ≥ 3.

Corollary 4.1 (An applied coupling inequality for maxima of sums of
random vectors). Consider the same setup as in Theorem 4.1. Then for

every δ > 0, there exists a random variable Z̃
d
= max1≤j≤p

∑n
i=1 Yij such

that

(15) P(|Z−Z̃| > 16δ) . δ−2{B1+δ
−1(B2+B4) log(p∨n)} log(p∨n)+

log n

n
,
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where B1 and B2 are as in Theorem 4.1, and

B4 =

n∑

i=1

E

[
max
1≤j≤p

|Xij |3 · 1
(
max
1≤j≤p

|Xij | > δ/ log(p ∨ n)
)]

.

Proof of Corollary 4.1. In Theorem 4.1, take β = 2δ−1 log(p ∨ n).
Then α = β2δ2 − 1 = 4 log2(p ∨ n)− 1 ≥ 2 log(p ∨ n) (recall n ≥ 3 > e), so
that ε ≤ 2 log(p ∨ n)/(p ∨ n) ≤ 2n−1 log n. This completes the proof. �

Theorem 4.1 is a coupling inequality similar in nature to Yurinskii’s [66]
coupling for sums of random vectors (as opposed to the maxima of such
vectors as in the current theorem). Before proving Theorem 4.1, let us first
recall Yurinskii’s coupling inequality.

Theorem 4.2 (Yurinskii’s coupling for sums of random vectors; [66]; see
also [42]). Consider the same setup as in Theorem 4.1. Let Sn =

∑n
i=1Xi.

Then for every δ > 0, there exists a random vector Tn
d
=
∑n

i=1 Yi such that

P(|Sn − Tn| > 3δ) . B0

(
1 +

| log(1/B0)|
p

)
,

where B0 = pδ−3
∑n

i=1 E[|Xi|3].

For the proof, see [55], Section 10.4. Because of the general fact that
max1≤j≤n |xj | ≤ |x| for x ∈ R

p, one has

| max
1≤j≤p

(Sn)j − max
1≤j≤n

(Tn)j | ≤ max
1≤j≤p

|(Sn − Tn)j | ≤ |Sn − Tn|.

Hence if we take Z̃ = max1≤j≤p(Tn)j ,

(16) P(|Z − Z̃| > 3δ) . B0

(
1 +

| log(1/B0)|
p

)
.

Unfortunately, when p is large, the right side needs not be small. This is
because B0 is proportional to

∑n
i=1 E[|Xi|3] and this quantity may be larger

than what we want.
To better understand the difference between (15) and (16), consider the

situation where p is indexed by n and p = pn → ∞ as n → ∞. More-
over, consider the simple case where Xij = xij/

√
n and |xij| ≤ b (xij are

random; b is a fixed constant). Then B1 = O(n−1/2 log1/2 pn), B2 + B4 =
O(n−1/2). The former estimate is deduced from the fact that, using the
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symmetrization and the maximal inequality for Rademacher averages con-
ditional on X1, . . . ,Xn [use 64, Lemmas 2.2.2 and 2.2.7], one has B1 .√

log(1 + p)E[max1≤j≤p(
∑n

i=1X
4
ij)

1/2]. On the other hand, pn
∑n

i=1 |Xi|3 =
O(n−1/2p

5/2
n ). Therefore, to make |Z − Z̃| P→ 0, the former (15) allows pn to

be of an exponential order (pn can be as large as log pn = o(n1/4); hence,
for example, pn can be of order en

α
for 0 < α < 1/4), while the latter (16)

restricts pn to be pn = o(n1/5). Note that, under the exponential moment
condition, instead of Yurinskii’s coupling, we can use Zaitsev’s coupling in-
equality [67, Theorem 1.1] but it still requires pn = o(n1/5) to deduce that

|Z − Z̃| P→ 0 (although by using Zaitsev’s coupling, we indeed have an ex-
ponential type inequality for |Z − Z̃|).

Remark 4.1 (Connection to Theorem 2.1). The importance of Theorem
4.1 in the context of the proof of Theorem 2.1 is described as follows. In the
proof of Theorem 2.1, we make a finite approximation of F by a minimal
ε‖F‖P,2-net of (F , eP ) and apply Theorem 4.1 to the “discretized” empirical
process; hence in this application, p = N(F , eP , ε‖F‖P,2). The fact that The-
orem 4.1 allows for “large” p means that a “finer” discretization is possible,
and as a result, the bound in Theorem 2.1 depends on the covering number
N(F , eP , ε‖F‖P,2) only through its logarithm: logN(F , eP , ε‖F‖P,2). �

We will use a version of Strassen’s theorem to prove Theorem 4.1. We
state it for the reader’s convenience. The proof of this result can be found
in the Supplemental Material [15].

Lemma 4.1 (An implication of Strassen’s theorem). Let µ and ν be Borel
probability measures on R, and let V be a random variable defined on a
probability space (Ω,A,P) with distribution µ. Suppose that the probability
space (Ω,A,P) admits a uniform random variable on (0, 1) independent of
V . Let ε > 0 and δ > 0 be two positive constants. Then there exists a random
variable W , defined on (Ω,A,P), with distribution ν such that P(|V −W | >
δ) ≤ ε if and only if µ(A) ≤ ν(Aδ) + ε for every Borel subset A of R.

Proof of Theorem 4.1. For the notational convenience, write eβ =
β−1 log p. Construct Y1, . . . , Yn independent of X1, . . . ,Xn. By Lemma 4.1,
the conclusion follows if we can prove that for every Borel subset A of R,

P(Z ∈ A) ≤ P(Z̃∗ ∈ A2eβ+3δ) +
ε+ Cβδ−1{B1 + β(B2 +B3)}

1− ε
,

where Z̃∗ := max1≤j≤p
∑n

i=1 Yij . Let Sn =
∑n

i=1Xi and Tn =
∑n

i=1 Yi. Fix
any Borel subset A of R. We divide the proof into several steps.
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Step 1: We approximate the non-smooth map x 7→ 1A(max1≤j≤p xj) by a
smooth function. The first step is to approximate the map x 7→ max1≤j≤p xj
by a smooth function. Consider the function Fβ : Rp → R defined by Fβ(x) =
β−1 log(

∑p
j=1 e

βxj), which gives a smooth approximation of max1≤j≤p xj ;
this function arises in definition of free energy in spin glasses [54]. In-
deed, an elementary calculation gives the following inequality: for every
x = (x1, . . . , xp)

T ∈ R
p,

(17) max
1≤j≤p

xj ≤ Fβ(x) ≤ max
1≤j≤p

xj + β−1 log p.

See [8]. Hence we have

P(Z ∈ A) ≤ P(Fβ(Sn) ∈ Aeβ) = E[1Aeβ (Fβ(Sn))].

Step 2: The next step is to approximate the indicator function t 7→ 1A(t)
by a smooth function. This step is rather standard.

Lemma 4.2. Let β > 0 and δ > 1/β. For every Borel subset A of R,
there exists a smooth function g : R → R such that ‖g′‖∞ ≤ δ−1, ‖g′′‖∞ ≤
Cβδ−1, ‖g′′′‖∞ ≤ Cβ2δ−1, and

(1− ε)1A(t) ≤ g(t) ≤ ε+ (1− ε)1A3δ (t), ∀t ∈ R,

where ε = εβ,δ is given by (14).

Proof of Lemma 4.2. The proof is due to [55], Lemma 10.18 (p. 248).
Let ρ(·, ·) denote the Euclidean distance on R. Then consider the function
h(t) = (1− ρ(t, Aδ)/δ)+. Note that h is Lipschitz continuous with Lipschitz
constant ≤ δ−1. Construct a smooth approximation of h(t) by

g(t) =
β√
2π

∫

R

h(s)e−
1

2
β2(s−t)2ds =

1√
2π

∫

R

h(t+ β−1z)e−
1

2
z2dz.

Then the map t 7→ g(t) is infinitely differentiable, and

‖g′‖∞ ≤ δ−1, ‖g′′‖∞ ≤ Cβδ−1, ‖g′′′‖∞ ≤ Cβ2δ−1.

The rest of the proof is the same as [55], Lemma 10.18 and omitted. �

Apply Lemma 4.2 to A = Aeβ to construct a suitable function g. Then

E[1Aeβ (Fβ(Sn))] ≤ (1− ε)−1
E[g ◦ Fβ(Sn)].
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Step 3: The next step uses Stein’s method to compare E[g ◦ Fβ(Sn)]
and E[g ◦ Fβ(Tn)]. The following argument is inspired by [9], Theorem 7.
We first make some complimentary computations. Here for a smooth func-
tion f : Rp → R, we use the notation ∂jf(x) = ∂f(x)/∂xj , ∂j∂kf(x) =
∂2f(x)/∂xj∂xk, and so on.

Lemma 4.3. Let β > 0. For every g ∈ C3(R),

p∑

j,k=1

|∂j∂k(g ◦ Fβ)(x)| ≤ ‖g′′‖∞ + 2‖g′‖∞β,(18)

p∑

j,k,l=1

|∂j∂k∂l(g ◦ Fβ)(x)| ≤ ‖g′′′‖∞ + 6‖g′′‖∞β + 6‖g′‖∞β2.(19)

Moreover, let Ujkl(x) := sup{|∂j∂k∂l(g ◦Fβ)(x+ y)| : y ∈ R
p, |yj| ≤ β−1, 1 ≤

∀j ≤ p}. Then

(20)

p∑

j,k,l=1

Ujkl(x) ≤ C(‖g′′′‖∞ + ‖g′′‖∞β + ‖g′‖∞β2).

Proof of Lemma 4.3. Let δjk = 1(j = k). A direct calculation gives

∂jFβ(x) = πj(z), ∂j∂kFβ(x) = βwjk(x), ∂j∂k∂lFβ(x) = β2qjkl(x),

where

πj(x) = eβxj/
∑p

k=1e
βxk , wjk(x) = (πjδjk − πjπk)(x),

qjkl(x) = (πjδjlδjk − πjπlδjk − πjπk(δjl + δkl) + 2πjπkπl)(x).

By these expressions, we have

πj(x) ≥ 0,

p∑

j=1

πj(x) = 1,

p∑

j,k=1

|wjk(x)| ≤ 2,

p∑

j,k,l=1

|qjkl(x)| ≤ 6.

Inequalities (18) and (19) follow from these relations and the following com-
putation.

∂j(g ◦ Fβ)(x) = (g′ ◦ Fβ)(x)πj(x),

∂j∂k(g ◦ Fβ)(x) = (g′′ ◦ Fβ)(x)πj(x)πk(x) + (g′ ◦ Fβ)(x)βwjk(x),

∂j∂k∂l(g ◦ Fβ)(x) = (g′′′ ◦ Fβ)(x)πj(x)πk(x)πl(x)

+ (g′′ ◦ Fβ)(x)β(wjk(x)πl(x) +wjl(x)πk(x) + wkl(x)πj(x))

+ (g′ ◦ Fβ)(x)β
2qjkl(x).
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For the last inequality (20), it is standard to see that whenever |yj| ≤
β−1, 1 ≤ ∀j ≤ p, we have πj(x + y) ≤ e2πj(x), from which the desired
inequality follows. �

For i = 1, . . . , n, let X ′
i be an independent copy of Xi. Let I be a uniform

random variable on {1, . . . , n} independent of all the other variables. Define
S′
n := Sn −XI +X ′

I . For λ ∈ R
p,

E[e
√
−1λTS

′

n ] =
1

n

n∑

i=1

E[e
√
−1λT (Sn−Xi)]E[e

√
−1λTX′

i ]

=
1

n

n∑

i=1

∏

j 6=i

E[e
√
−1λTXj ]E[e

√
−1λTXi ] =

n∏

i=1

E[e
√
−1λTXi ] = E[e

√
−1λTSn ].

Hence S′
n

d
= Sn. Also with Xn

1 = {X1, . . . ,Xn},

(21) E[S′
n − Sn | Xn

1 ] = E[X ′
I −XI | Xn

1 ] = −n−1Sn,

and

E[(S′
n − Sn)(S

′
n − Sn)

T | Xn
1 ] = E[(X ′

I −XI)(X
′
I −XI)

T | Xn
1 ]

=
1

n

n∑

i=1

E[(X ′
i −Xi)(X

′
i −Xi)

T | Xn
1 ] =

1

n

n∑

i=1

(E[XiX
T
i ] +XiX

T
i )

=
2

n

n∑

i=1

E[XiX
T
i ] +

1

n

n∑

i=1

(XiX
T
i − E[XiX

T
i ])

=
2

n

n∑

i=1

E[XiX
T
i ] + n−1V,(22)

where V is the p × p matrix defined by V = (Vjk)1≤j,k≤p =
∑n

i=1(XiX
T
i −

E[XiX
T
i ]).

For the notational convenience, write f = g ◦ Fβ . Consider

h(x) =

∫ 1

0

1

2t
E[f(

√
tx+

√
1− tTn)− f(Tn)]dt.

Then Lemma 1 of [48] implies

p∑

j=1

xj∂jh(x)−
p∑

j,k=1

n∑

i=1

E[XijXik]∂j∂kh(x) = f(x)− E[f(Tn)],
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and especially

E[f(Sn)]− E[f(Tn)] = E




p∑

j=1

n∑

i=1

Xij∂jh(Sn)




− E




p∑

j,k=1

n∑

i=1

E[XijXik]∂j∂kh(Sn)


 .(23)

Denote by ∇h(x) and Hess h(x) the gradient vector and the Hessian ma-
trix of h(x), respectively. Let

R = h(S′
n)− h(Sn)− (S′

n − Sn)
T∇h(Sn)

− 2−1(S′
n − Sn)

T (Hess h(Sn))(S
′
n − Sn).

Then one has

0 = nE[h(S′
n)− h(Sn)] (as S′

n
d
= Sn)

= nE[(S′
n − Sn)

T∇h(Sn) + 2−1(S′
n − Sn)

T (Hess h(Sn))(S
′
n − Sn) +R]

= nE
[
E[(S′

n − Sn)
T | Xn

1 ]∇h(Sn)

+ 2−1 Tr
(
(Hess h(Sn))E[(S

′
n − Sn)(S

′
n − Sn)

T | Xn
1 ]
)
+R

]

= E


−

p∑

j=1

n∑

i=1

Xij∂jh(Sn) +

p∑

j,k=1

n∑

i=1

E[XijXik]∂j∂kh(Sn)




+ E


1
2

p∑

j,k=1

Vjk∂j∂kh(Sn) + nR


 (by (21) and (22))

= −E[f(Sn)] + E[f(Tn)] + E


1
2

p∑

j,k=1

Vjk∂j∂kh(Sn) + nR


 , (by (23))

that is,

E[f(Sn)]− E[f(Tn)] = E


1
2

p∑

j,k=1

Vjk∂j∂kh(Sn) + nR


 .

Using Lemma 4.3, one has

|
p∑

j,k=1

Vjk∂j∂kh(Sn)| ≤ max
1≤j,k≤p

|Vjk|
p∑

j,k=1

|∂j∂kh(Sn)| ≤ Cβδ−1 max
1≤j,k≤p

|Vjk|,
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and with ∆i := (∆i1, . . . ,∆ip)
T := X ′

i −Xi,

|E[nR]| =

∣∣∣∣∣∣
E


1
2

n∑

i=1

p∑

j,k,l=1

∆ij∆ik∆il(1− θ)2∂j∂k∂lh(Sn + θ∆i)



∣∣∣∣∣∣

(θ ∼ U(0, 1) independent of all the other variables)

≤ 1

2
E




n∑

i=1

p∑

j,k,l=1

|∆ij∆ik∆il| · |∂j∂k∂lh(Sn + θ∆i)|


 .(24)

Let χi = 1(max1≤j≤p |∆ij| ≤ β−1) and χc
i := 1− χi. Then

(24) =
1

2
E

[
n∑

i=1

χi∗
]
+

1

2
E

[
n∑

i=1

χc
i∗
]
=:

1

2
[(A) + (B)] .

Observe that

(A) ≤ E




p∑

j,k,l=1

max
1≤i≤n

(χi · |∂j∂k∂lh(Sn + θ∆i)|) × max
1≤j,k,l≤p

n∑

i=1

|∆ij∆ik∆il|




≤ Cβ2δ−1
E

[
max

1≤j,k,l≤p

n∑

i=1

|∆ij∆ik∆il|
]

(by (20))

≤ Cβ2δ−1
E

[
max
1≤j≤p

n∑

i=1

|∆ij|3
]
≤ Cβ2δ−1

E

[
max
1≤j≤p

n∑

i=1

|Xij |3
]
= Cβ2δ−1B2,

and

(B) ≤ Cβ2δ−1
n∑

i=1

E

[
χc
i max
1≤j≤p

|∆ij |3
]

(by (19))

≤ Cβ2δ−1
n∑

i=1

E

[
χc
i max
1≤j≤p

|Xij |3
]
. (by symmetry)

As χc
i ≤ 1(max1≤j≤p |Xij | > β−1/2) + 1(max1≤j≤p |X ′

ij | > β−1/2), we have

E

[
χc
i max
1≤j≤p

|Xij |3
]
≤ E

[
max
1≤j≤p

|Xij |3 · 1
(
max
1≤j≤p

|Xij | > β−1/2

)]

+ E

[
max
1≤j≤p

|Xij |3
]
· P
(
max
1≤j≤p

|Xij | > β−1/2

)
.(25)

We here recall Chebyshev’s association inequalities stated in the following
lemma. For a proof, see, for example, Theorem 2.14 in [4].
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Lemma 4.4 (Chebyshev’s association inequalities). Let ϕ and ψ be func-
tions defined on an interval I in R, and let ξ be a random variable such that
P(ξ ∈ I) = 1. Suppose that E[|ϕ(ξ)|] <∞,E[|ψ(ξ)|] <∞ and E[|ϕ(ξ)ψ(ξ)|] <
∞. Then Cov(ϕ(ξ), ψ(ξ)) ≥ 0 if ϕ and ψ are monotone in the same direc-
tion, and Cov(ϕ(ξ), ψ(ξ)) ≤ 0 if ϕ and ψ are monotone in the opposite
direction.

Since the maps t 7→ t3 and t 7→ 1(t > β−1/2) are non-decreasing on [0,∞),
the second term on the right side of (25) is not larger than the first term.
Hence

(B) ≤ Cβ2δ−1
n∑

i=1

E

[
max
1≤j≤p

|Xij |3 · 1
(
max
1≤j≤p

|Xij | > β−1/2

)]
= Cβ2δ−1B3.

Therefore, we conclude that

|E[f(Sn)]− E[f(Tn)]| ≤ Cβδ−1{B1 + β(B2 +B3)}.

Step 4: Combining Steps 1-3, one has

P(Z ∈ A) ≤ (1− ε)−1
E[g ◦ Fβ(Tn)] +

Cβδ−1{B1 + β(B2 +B3)}
1− ε

≤ P(Fβ(Tn) ∈ Aeβ+3δ) +
ε+ Cβδ−1{B1 + β(B2 +B3)}

1− ε

(by construction of g)

≤ P(Z̃∗ ∈ A2eβ+3δ) +
ε+ Cβδ−1{B1 + β(B2 +B3)}

1− ε
. (by (17))

This completes the proof. �

5. Inequalities for empirical processes. In this section, we shall
present some inequalities for empirical processes that will be used in the
proofs of Theorem 2.1 and Lemma 2.2. These inequalities are of interest
in their own rights. Consider the same setup as in Section 2, that is, let
X1, . . . ,Xn be i.i.d. random variables taking values in a measurable space
(S,S) with common distribution P . Let F be a pointwise measurable class
of functions S → R, to which a measurable envelope F is attached. In this
section, however, we do not assume that F is P -centered. Consider the em-
pirical process Gnf = n−1/2

∑n
i=1(f(Xi)− Pf). Let σ2 > 0 be any positive

constant such that supf∈F Pf
2 ≤ σ2 ≤ ‖F‖2P,2. Let M = max1≤i≤n F (Xi).
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Theorem 5.1 (A useful deviation inequality for suprema of empirical
processes). Suppose that F ∈ Lq(P ) for some q ≥ 2. Then for every t ≥ 1,
with probability > 1− t−q/2,

‖Gn‖F ≤ (1 + α)E[‖Gn‖F ] +K(q)
[
(σ + n−1/2‖M‖q)

√
t

+ α−1n−1/2‖M‖2t
]
, ∀α > 0,

where K(q) > 0 is a constant depending only on q.

Proof of Theorem 5.1. The theorem essentially follows from [5], The-
orem 12, which states that

‖(‖Gn‖F − E[‖Gn‖F ])+‖q .
√
q(Σ + σ) + qn−1/2(‖M‖q + σ),

where Σ2 = E[‖n−1
∑n

i=1(f(Xi)−Pf)2‖F ]. By Lemma 7 of the same paper,

Σ2 ≤ σ2 + 64n−1/2‖M‖2E[‖Gn‖F ] + 32n−1‖M‖22.

Hence, using the simple inequality 2
√
ab ≤ βa+ β−1b,∀β > 0, one has

‖(‖Gn‖F − E[‖Gn‖F ])+‖q .
√
qβE[‖Gn‖F ] +

√
q(1 + β−1)n−1/2‖M‖2

+
√
qσ + qn−1/2(‖M‖q + σ).

Therefore, by Markov’s inequality, for every t ≥ 1, with probability > 1−t−q,

‖Gn‖F ≤ E[‖Gn‖F ] + (‖Gn‖F − E[‖Gn‖F ])+
≤ (1 + C

√
qβt)E[‖Gn‖F ] + C

√
q(1 + β−1)n−1/2‖M‖2t

+ C
√
qσt+ Cqn−1/2(‖M‖q + σ)t, ∀β > 0.

The final conclusion follows from taking β = C−1q−1/2t−1α. �

The proof of Lemma 2.2 relies on the following moment inequality for
suprema of empirical processes, which is an extension of [65], Theorem 2.1,
to possibly unbounded classes of functions (Theorem 3.1 of [65] derives a
moment inequality applicable to the case where the envelope F has q > 4
moments, but the form of the inequality in Theorem 5.2 is more convenient
in our applications; note that Theorem 5.2 only requires F ∈ L2(P ), as
opposed to F ∈ Lq(P ) with q > 4 in Theorem 3.1 of [65], and Theorem 5.2
is not covered by [65]). Recall the uniform entropy integral J(δ,F , F ).
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Theorem 5.2 (A useful maximal inequality). Suppose that F ∈ L2(P ).
Let δ = σ/‖F‖P,2. Then

E[‖Gn‖F ] . J(δ,F , F )‖F‖P,2 +
‖M‖2J2(δ,F , F )

δ2
√
n

.

In the Supplemental Material [15], we give a full proof of Theorem 5.2
for the sake of completeness, although the proof is essentially similar to the
proof of Theorem 2.1 in [65].

The bound in Theorem 5.2 will be explicit as soon as a suitable bound
on the covering number is available. For example, the following corollary is
an extension of [28], Proposition 2.1. For its proof, see Appendix A.5.

Corollary 5.1 (Maximal inequality specialized to VC type classes).
Consider the same setup as in Theorem 5.2. Suppose that there exist con-
stants A ≥ e and v ≥ 1 such that supQN(F , eQ, ε‖F‖Q,2) ≤ (A/ε)v , 0 <
∀ε ≤ 1. Then

E[‖Gn‖F ] .
√
vσ2 log

(
A‖F‖P,2

σ

)
+
v‖M‖2√

n
log

(
A‖F‖P,2

σ

)
.

6. Proof of Theorem 2.1. We make use of Lemma 4.1 to prove the
theorem. Construct a tight Gaussian random variable GP in ℓ∞(F) given in
assumption (A3), independent of X1, . . . ,Xn. We note that one can extend
GP to the linear hull of F in such a way that GP has linear sample paths [see
22, Theorem 3.1.1]. Let {f1, . . . , fN} be a minimal ε‖F‖P,2-net of (F , eP )
with N = N(F , eP , ε‖F‖P,2). Then for every f ∈ F , there exists a function
fj, 1 ≤ j ≤ N such that eP (f, fj) < ε‖F‖P,2. Recall Fε = {f − g : f, g ∈
F , eP (f, g) < ε‖F‖P,2} and define

Zε = max
1≤j≤N

Gnfj, Z̃
∗ = sup

f∈F
GP f, Z̃

∗ε = max
1≤j≤N

GP fj.

Observe that |Z − Zε| ≤ ‖Gn‖Fε and |Z̃∗ε − Z̃∗| ≤ ‖GP ‖Fε .
We shall apply Corollary 4.1 to Zε. Recall that log(N ∨n) = Hn(ε). Then

for every Borel subset A of R and δ > 0,

P(Zε ∈ A)−P(Z̃∗ε ∈ A16δ) . δ−2{B1+δ
−1(B2+B4)Hn(ε)}Hn(ε)+n

−1 log n,
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where

B1 = n−1
E

[
max

1≤j,k≤N
|

n∑

i=1

(fj(Xi)fk(Xi)− P (fjfk))|
]
,

B2 = n−3/2
E

[
max

1≤j≤N

n∑

i=1

|fj(Xi)|3
]
,

B4 = n−1/2
E

[
max

1≤j≤N
|fj(X1)|3 · 1

(
max

1≤j≤N
|fj(X1)| > δ

√
nHn(ε)

−1

)]
.

Clearly B1 ≤ n−1/2
E[‖Gn‖F·F ], B2 ≤ n−1/2κ3, and B4 ≤ n−1/2P [F 31(F >

δ
√
nHn(ε)

−1)]. Hence choosing δ > 0 in such a way that

Cδ−2n−1/2
E[‖Gn‖F·F ]Hn(ε) ≤

γ

4
, Cδ−3n−1/2κ3H2

n(ε) ≤
γ

4
,

that is,

δ ≥ Cmax
{
γ−1/2n−1/4(E[‖Gn‖F·F ])

1/2H1/2
n (ε), γ−1/3n−1/6κH2/3

n (ε)
}
,

we have

P(Zε ∈ A) ≤ P(Z̃∗ε ∈ A16δ)+
γ

2
+
γ

4
κ−3P [F 31(F > δ

√
nHn(ε)

−1)]+
C log n

n
.

Note that δ ≥ cγ−1/3n−1/6κH
2/3
n (ε), so that

P [F 31(F > δ
√
nHn(ε)

−1)] ≤ P [F 31(F/κ > cγ−1/3n1/3Hn(ε)
−1/3)].

Hence

P(Zε ∈ A) ≤ P(Z̃∗ε ∈ A16δ) +
γ

2

+
γ

4
P [(F/κ)31(F/κ > cγ−1/3n1/3Hn(ε)

−1/3)] +
C log n

n

=: P(Z̃∗ε ∈ A16δ) +
γ

2
+ error.(26)

By Theorem 5.1, with probability > 1− γ/4,

(27) ‖Gn‖Fε ≤ K(q)
{
φn(ε) + (ε‖F‖P,2 + n−1/2‖M‖q)γ−1/q

+ n−1/2‖M‖2γ−2/q
}
=: a,

where K(q) is a constant that depends only on q. Moreover, by the Borell-
Sudakov-Tsirel’son inequality [64, Proposition A.1], with probability > 1−
γ/4, we have

(28) ‖GP ‖Fε ≤ φn(ε) + ε‖F‖P,2
√

2 log(4/γ) =: b.
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Therefore, for every Borel subset A of R,

P(Z ∈ A) ≤ P(Zε ∈ Aa) +
γ

4
(by (27))

≤ P(Z̃∗ε ∈ Aa+16δ) +
3

4
γ + error (by (26))

≤ P(Z̃∗ ∈ Aa+b+16δ) + γ + error. (by (28))

The conclusion follows from Lemma 4.1. �
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[31] Giné, E. and Nickl, R. (2010). Confidence bands in density estimation. Ann. Statist.
38 1122-1170.

[32] Ghosal, S., Sen, A. and van der Vaart, A.W. (2000). Testing monotonicity of regres-
sion. Ann. Statist. 28 1054-1082.

[33] He, X. and Shao, Q.-M. (2000). On parameters on increasing dimensions. J. Multi-

variate Anal. 73 125-135.
[34] Huang, J.Z. (1998). Projection estimation in multiple regression with application to

functional ANOVA models. Ann. Statist. 26 242-272
[35] Huang, J.Z. (2003). Asymptotics for polynomial spline regression under weak condi-

tions. Statist. Probab. Lett. 65 207-216.
[36] Koenker, R. and Bassett G.W. (1978). Regression quantiles. Econometrica 46 33-50.

imsart-aos ver. 2011/11/15 file: GA-final.tex date: August 19, 2014



GAUSSIAN APPROXIMATION OF SUPREMA 35

[37] Kerkyacharian, G., Nickl, R., and Picard, D. (2012). Concentration inequalities and
confidence bands for needlet density estimators on compact homogeneous manifolds.
Probab. Theory Related Fields 153 363-404.

[38] Kolmogorov, A. (1933). Sulla determinazione empirica di una legge di distribuzione.
Inst. Ital. Atti. Giorn. 4 83-91.

[39] Koltchinskii, V.I. (1994). Komlós-Major-Tusnády approximation for the general em-
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APPENDIX A: ADDITIONAL PROOFS

A.1. Proof of Lemma 2.1. We first note that by approximation [see 64,
Problem 2.5.1], assumption (A4) implies that

∫ 1

0

√
logN(F , eP , ε‖F‖P,2)dε <∞.

Let GP be a centered Gaussian process indexed by F with covariance function
E[GP (f)GP (g)] = P (fg). Recall that F is P -centered, and by Example 1.3.10 in
[64], F is P -pre-Gaussian if and only if (F , eP ) is totally bounded and GP has
a version that has sample paths almost surely uniformly eP -continuous. Dudley’s
criterion for sample continuity of Gaussian processes states that when

(29)

∫ ∞

0

√
logN(F , eP , ε)dε <∞,

there exists a version of GP that has sample paths uniformly eP -continuous [64,
p.100-101] (note that (29) implies that N(F , eP , ε) is finite for every ε > 0, that is,
F is totally bounded for eP ). The lemma readily follows from these observations. �

A.2. Proofs of Lemmas 2.3 and 2.4.

Proof of Lemma 2.3. The proof of Lemma 2.3 depends on the following lemma
on anti-concentration of suprema of Gaussian processes.

Lemma A.1 (An anti-concentration inequality). Let (S,S, P ) be a probabil-
ity space, and let F ⊂ L2(P ) be a P -pre-Gaussian class of functions. Denote by
GP a tight Gaussian random variable in ℓ∞(F) with mean zero and covariance
function E[GP (f)GP (g)] = CovP (f, g) for all f, g ∈ F where CovP (·, ·) denotes
the covariance under P . Suppose that there exist constants σ, σ̄ > 0 such that
σ2 ≤ VarP (f) ≤ σ̄2 for all f ∈ F . Then for every ǫ > 0,

sup
x∈R

P

{∣∣∣∣∣supf∈F
GP f − x

∣∣∣∣∣ ≤ ǫ

}
≤ Cσǫ

{
E

[
sup
f∈F

GP f

]
+
√
1 ∨ log(σ/ǫ)

}
,

where Cσ is a constant depending only on σ and σ̄.

Proof of Lemma A.1. The proof of this lemma is the same as that of Theorem
2.1 in [14] with the exception that we now apply Theorem 3, part (ii) instead of
Theorem 3, part (i) from [12]. �
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Going back to the proof of Lemma 2.3, for every t ∈ R, we have

P(Z ≤ t) = P({Z ≤ t} ∩ {|Z − Z̃| ≤ r1}) + P({Z ≤ t} ∩ {|Z − Z̃| > r1})
≤ P(Z̃ ≤ t+ r1) + r2

≤ P(Z̃ ≤ t) + Cσr1{E[Z̃] +
√
1 ∨ log(σ/r1)}+ r2,

where we have used Lemma A.1 to deduce the last inequality. A similar argument
leads to the reverse inequality. This completes the proof. �

Proof of Lemma 2.4. Take βn → ∞ sufficiently slowly such that βnrn(1 ∨
E[Z̃n]) = o(1). Then since P(|Zn − Z̃n| > βnrn) = o(1), by Lemma 2.3, we have

sup
t∈R

|P(Zn ≤ t)− P(Z̃n ≤ t)| = O{rn(E[Z̃n] + | log(βnrn)|)}+ o(1) = o(1).

This completes the proof. �

A.3. Proof of Lemma 4.1. The “only if” part is trivial, and hence we
prove the “if” part. By Strassen’s theorem [see 55, Section 10.3], there are random
variables V ∗ andW ∗ with distributions µ and ν such that P(|V ∗−W ∗| > δ) ≤ ε. V ∗

may be different from V . Let F (w | v) be a regular conditional distribution function
of W ∗ given V ∗ = v. Denote by F−1(τ | v) the quantile function of F (w | v), that
is, F−1(τ | v) = inf{w : F (w | v) ≥ τ}. Generate a uniform random variable U on
(0, 1) independent of V and take W (ω) = F−1(U(ω) | V (ω)). Then it is routine to

verify that (V,W )
d
= (V ∗,W ∗). �

A.4. Proof of Theorem 5.2. We first prove the following technical lemma.

Lemma A.2. Write J(δ) for J(δ,F , F ) and suppose that J(1) is finite (and
hence J(δ) is finite for all δ). Then (i) the map δ 7→ J(δ) is concave; (ii) J(cδ) ≤
cJ(δ), ∀c ≥ 1; (iii) the map δ 7→ J(δ)/δ is non-increasing; (iv) the map [0,∞) ×
(0,∞) ∋ (x, y) 7→ J(

√
x/y)

√
y is concave.

Proof. Let λ(ε) = supQ
√
1 + logN(F , eQ, ε‖F‖Q,2). Part (i) follows from the

fact that the map ε 7→ λ(ε) is non-increasing. Part (ii) follows from the inequality

∫ cδ

0

λ(ε)dε = c

∫ δ

0

λ(cε)dε ≤ c

∫ δ

0

λ(ε)dε.

Part (iii) follows from the identity

J(δ)

δ
=

∫ 1

0

λ(δε)dε.

The proof of part (iv) uses some facts in convex analysis. Proofs of the following
lemmas can be found in, for example, [6], Section 3.2.
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Lemma A.3. Let D be a convex subset of Rn, and let f : D → R be a concave
function. Then the perspective (x, t) 7→ tf(x/t), {(x, t) ∈ Rn+1 : x/t ∈ D, t >
0} → R, is also concave.

Lemma A.4. Let D1 be a convex subset of Rn, and let gi : D1 → R, 1 ≤ i ≤ k
be concave functions. Let D2 denote the convex hull of the set {(g1(x), . . . , gk(x)) :
x ∈ D1}. Let h : D2 → R be concave and nondecreasing in each coordinate. Then
f(x) = h(g1(x), . . . , gk(x)), D1 → R, is concave.

Let h(s, t) = J(s/t)t, g1(x, y) =
√
x and g2(x, y) =

√
y. Then h is concave and

nondecreasing in each coordinate, and gi, i = 1, 2 are concave. Hence J(
√
x/y)

√
y =

h(g1(x, y), g(x, y)) is concave. �

We will use a version of the contraction principle for Rademacher averages. Recall
that a Rademacher random variable is a random variables taking ±1 with equal
probability.

Lemma A.5 (A contraction principle, [43]). Let ε1, . . . , εn be i.i.d. Rademacher
random variables independent of X1, . . . , Xn. Then

E

[∥∥∥∥∥

n∑

i=1

εif
2(Xi)

∥∥∥∥∥
F

]
≤ 4E

[
M

∥∥∥∥∥

n∑

i=1

εif(Xi)

∥∥∥∥∥
F

]
.

Proof. See [43], Theorem 4.12, and the discussion following the theorem. �

We will also use the following form of the Hoffmann-Jørgensen inequality.

Theorem A.1 (A Hoffmann-Jørgensen-type inequality, [43]). Let ε1, . . . , εn be
i.i.d. Rademacher random variables independent of X1, . . . , Xn. Then for every
1 < q <∞,

(
E

[∥∥∥∥∥

n∑

i=1

εif(Xi)

∥∥∥∥∥

q

F

])1/q

≤ K(q)

[
E

[∥∥∥∥∥

n∑

i=1

εif(Xi)

∥∥∥∥∥
F

]
+ ‖M‖q

]
,

where K(q) is a constant depending only on q.

Proof. See, for example, [43], Theorem 6.20. �

We are now in position to prove Theorem 5.2.

Proof of Theorem 5.2. We may assume that J(1) is finite since otherwise
J(δ) is infinite and there is nothing to prove. Moreover, without loss of generality,
we may assume that F is everywhere positive. Let Pn denote the empirical distri-
bution that assigns probability n−1 to each Xi. Let σ

2
n = supf∈F n

−1
∑n

i=1 f
2(Xi).

imsart-aos ver. 2011/11/15 file: GA-final.tex date: August 19, 2014



40 CHERNOZHUKOV CHETVERIKOV KATO

For i.i.d. Rademacher random variables ε1, . . . , εn independent of X1, . . . , Xn, the
symmetrization inequality gives

E[‖Gn‖F ] ≤ 2E

[∥∥∥∥∥
1√
n

n∑

i=1

εif(Xi)

∥∥∥∥∥
F

]
.

Here the standard entropy integral inequality gives

E

[∥∥∥∥∥
1√
n

n∑

i=1

εif(Xi)

∥∥∥∥∥
F

| X1, . . . , Xn

]
≤ C

∫ σn

0

√
1 + logN(F , ePn

, ε)dε

≤ C‖F‖Pn,2

∫ σn/‖F‖Pn,2

0

√
1 + logN(F , ePn

, ε‖F‖Pn,2)dε

≤ C‖F‖Pn,2J(σn/‖F‖Pn,2).

Hence by Lemma A.2 (iv) and Jensen’s inequality,

Z := E

[∥∥∥∥∥
1√
n

n∑

i=1

εif(Xi)

∥∥∥∥∥
F

]
≤ C‖F‖P,2J(

√
E[σ2

n]/‖F‖P,2).

By the symmetrization inequality, the contraction principle (Lemma A.5) and the
Cauchy-Schwarz inequality,

E[σ2
n] ≤ σ2 + E

[∥∥En[(f
2(Xi)− Pf2)]

∥∥
F

]
≤ σ2 + 2E

[∥∥En[εif
2(Xi)]

∥∥
F

]

≤ σ2 + 8E [M ‖En[εif(Xi)]‖F ] ≤ σ2 + 8‖M‖2
(
E

[
‖En[εif(Xi)]‖2F

])1/2
.

Here by the Hoffmann-Jørgensen inequality (Theorem A.1),

(
E

[
‖En[εif(Xi)]‖2F

])1/2
. E [‖En[εif(Xi)]‖F ] + n−1‖M‖2,

so that, √
E[σ2

n] ≤ C‖F‖P,2(∆ ∨
√
DZ),

where ∆2 := max{σ2, n−1‖M‖22}/‖F‖2P,2 ≥ δ2 and D := ‖M‖2/(
√
n‖F‖2P,2).

Therefore, using Lemma A.2 (ii), we have

Z ≤ C‖F‖P,2J(∆ ∨
√
DZ)

We consider the following two cases:
(i)

√
DZ ≤ ∆. In this case, J(∆ ∨

√
DZ) ≤ J(∆), so that Z ≤ C‖F‖P,2J(∆).

Since the map δ 7→ J(δ)/δ is non-increasing (Lemma A.2 (iii)),

J(∆) = ∆
J(∆)

∆
≤ ∆

J(δ)

δ
= max

{
J(δ),

‖M‖2J(δ)√
nδ‖F‖P,2

}
.

Since J(δ)/δ ≥ J(1) ≥ 1, the last expression is bounded by

max

{
J(δ),

‖M‖2J2(δ)√
nδ2‖F‖P,2

}
.
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(ii)
√
DZ ≥ ∆. In this case, J(∆ ∨

√
DZ) ≤ J(

√
DZ), and since the map

δ 7→ J(δ)/δ is non-increasing (Lemma A.2 (iii)),

J(
√
DZ) =

√
DZ

J(
√
DZ)√
DZ

≤
√
DZ

J(∆)

∆
≤

√
DZ

J(δ)

δ
.

Therefore,

Z ≤ C‖F‖P,2

√
DZ

J(δ)

δ
,

that is

Z ≤ C‖F‖2P,2D
J2(δ)

δ2
=
C‖M‖2J2(δ)√

nδ2
.

This completes the proof. �

A.5. Proof of Corollary 5.1. Observe that

J(δ) ≤
∫ δ

0

√
1 + v log(A/ε)dε ≤ A

√
v

∫ ∞

A/δ

√
1 + log ε

ε2
dε.

An integration by parts gives

∫ ∞

c

√
1 + log ε

ε2
dε =

[
−
√
1 + log ε

ε

]∞

c

+
1

2

∫ ∞

c

1

ε2
√
1 + log ε

dε

≤
√
1 + log c

c
+

1

2

∫ ∞

c

√
1 + log ε

ε2
dε, if c ≥ e.

by which we have

∫ ∞

c

√
1 + log ε

ε2
dε ≤ 2

√
1 + log c

c
≤ 2

√
2
√
log c

c
, if c ≥ e,

Since A/δ ≥ A ≥ e, we have

J(δ) ≤ 2
√
2vδ
√
log(A/δ).

Applying Theorem 5.2, we obtain the desired conclusion. �

A.6. Proof of Lemma 2.2. Before proving Lemma 2.2, we shall recall the
following lemma on uniform entropy numbers.

Lemma A.6. Let F1, . . . ,Fk be classes of measurable functions S → R to which
measurable envelopes F1, . . . , Fk are attached, respectively, and let φ : Rk → R be a
map that is Lipschitz in the sense that

|φ ◦ f(x)− φ ◦ g(x)|2 ≤
k∑

j=1

L2
j(x)|fj(x)− gj(x)|2,
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for every f = (f1, . . . , fk), g = (g1, . . . , gk) ∈ F1 × · · · × Fk =: F and every x ∈ S,
where L1, . . . , Lk are non-negative measurable functions on S. Consider the class
of functions φ(F) := {φ ◦ f : f ∈ F}. Denote (

∑k
j=1 L

2
jF

2
j )

1/2 by L · F . Then we
have

sup
Q
N(φ(F), eQ, ε‖L · F‖Q,2) ≤

k∏

j=1

sup
Rj

N(Fj , eRj
, ε‖Fj‖Rj ,2),

for every 0 < ε ≤ 1, where the suprema are taken over all finitely discrete probability
measures on (S,S).

Proof of Lemma A.6. The proof is implicit in [64], p.199, and hence omitted.
�

We will use the following corollary to the above lemma.

Corollary A.1. (i) Let F and G be classes of measurable functions S → R,
to which measurable envelopes F and G are attached, respectively. Denote by F · G
the pointwise product of F and G. Then

sup
Q
N(F · G, eQ,

√
2ε‖FG‖Q,2)

≤ sup
Q
N(F , eQ, ε‖F‖Q,2) sup

Q
N(G, eQ, ε‖G‖Q,2),

for every 0 < ε ≤ 1, where the suprema are taken over all finitely discrete probability
measures Q on (S,S).

(ii) Let F be a class of measurable functions S → R, to which a measurable
envelope F is attached. For every q ≥ 1, let F(q) = {|f |q : f ∈ F}. Then

sup
Q
N(F(q), eQ, qε‖F q‖Q,2) ≤ sup

Q
N(F , eQ, ε‖F‖Q,2),

for every 0 < ε ≤ 1, where the suprema are taken over all finitely discrete probability
measures Q on (S,S).

Proof of Corollary A.1. (i) Take k = 2,F1 = F , F1 = F,F2 = G, F2 = G,
and φ : R2 → R as φ(s, t) = st. Then we can take L1 = F,L2 = G, and the desired
conclusion directly follows from Lemma A.6.

(ii) This follows from application of Lemma A.6 with k = 1 and φ(s) = |s|q. �

Proof of Lemma 2.2. For the first inequality, noting that J(δ,Fε, 2F ) . J(δ,F , F ) =
J(δ), by Theorem 5.2, we have

E[‖Gn‖Fε
] . J(ε)‖F‖P,2 + n−1/2ε−2J2(ε)‖M‖2.

Moreover, by Dudley’s inequality [64, Corollary 2.2.8], E[‖GP ‖Fε
] . J(ε)‖F‖P,2.

Note that by approximation [see 64, Problem 2.5.1], we have

∫ δ

0

√
1 + logN(F , eP , τ‖F‖P,2)dτ . J(δ).
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Hence the first inequality is proved.
The third inequality is deduced from Theorem 5.2 together with the covering

number estimate,

sup
Q
N(F · F , eQ,

√
2ε‖F 2‖Q,2) ≤ sup

Q
N2(F , eQ, ε‖F‖Q,2),

which follows from Corollary A.1 (i). Hence we shall prove the second inequality.
We first observe that

En[|f(Xi)|3] = P |f |3 + n−1/2
Gn(|f |3),

by which we have

E
[
‖En[|f(Xi)|3]‖F

]
≤ sup

f∈F
P |f |3 + n−1/2

E[‖Gn(|f |3)‖F ].

Let ε1, . . . , εn be i.i.d. Rademacher random variables independent of X1, . . . , Xn.
By the symmetrization inequality,

E[‖Gn(|f |3)‖F ] ≤ 2E

[∥∥∥∥∥
1√
n

n∑

i=1

εi|f(Xi)|3
∥∥∥∥∥
F

]
.

By the contraction principle together with the Cauchy-Schwarz inequality,

E

[∥∥∥∥∥

n∑

i=1

εi|f(Xi)|3
∥∥∥∥∥
F

]
. E

[
M3/2

∥∥∥∥∥

n∑

i=1

εi|f(Xi)|3/2
∥∥∥∥∥
F

]

≤ ‖M‖3/23


E



∥∥∥∥∥

n∑

i=1

εi|f(Xi)|3/2
∥∥∥∥∥

2

F






1/2

.

Moreover, by the Hoffmann-Jørgensen inequality,


E



∥∥∥∥∥

n∑

i=1

εi|f(Xi)|3/2
∥∥∥∥∥

2

F






1/2

. E

[∥∥∥∥∥

n∑

i=1

εi|f(Xi)|3/2
∥∥∥∥∥
F

]
+ ‖M‖3/23 .

By Theorem 5.2 together with Corollary A.1 (ii), we have

E

[∥∥∥∥∥
1√
n

n∑

i=1

εi|f(Xi)|3/2
∥∥∥∥∥
F

]
. J(δ

3/2
3 ,F , F )‖F 3/2‖P,2

+
‖M3/2‖2J2(δ

3/2
3 ,F , F )√

nδ33
,

by which we have

E
[
‖En[|f(Xi)|3]‖F

]
− sup

f∈F
P |f |3 . n−1‖M‖33

+ n−1/2‖M‖3/23

[
J(δ

3/2
3 ,F , F )‖F‖3/2P,3 +

‖M‖3/23 J2(δ
3/2
3 ,F , F )√

nδ33

]
.
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A further simplification is possible. By Lemma A.2 (iii), the map δ 7→ J(δ,F , F )/δ
is non-increasing, so that J2(δ

3/2
3 ,F , F )/δ33 ≥ J2(1,F , F ) ≥ 1. Hence the first term

on the right side is not larger than

‖M‖33J2(δ
3/2
3 ,F , F )/(nδ33).

This completes the proof. �

A.7. Proof of Corollary 2.2. The proof consists of applying Theorem
2.1. Standard calculations show that for any δ ∈ (0, 1),

J(δ) :=

∫ δ

0

sup
Q

√
1 + logN(F , L2(Q), ε‖F‖Q,2)dε . δ

√
v log(A/δ).

Further, for some sufficiently large C, let κn := C(bσ2 + b3Knn
−1+3/q)1/3. Also

note that for k = 2, 3, 4, ‖M‖k ≤ ‖M‖q ≤ n1/qb. Therefore, Lemma 2.2 implies

E
[
‖En[|f(Xi)|3]‖F

]
− sup

f∈F
P |f |3

. n−1/2+3/(2q)b3/2

(
b3/2J(δ

3/2
3 ) +

b3/2J2(δ
3/2
3 )

n1/2−3/(2q)δ33

)
,

for any δ3 ≥ supf∈F ‖f‖P,3/‖F‖P,3. Setting δ3 = b1/3σ2/3/b = (σ/b)2/3 gives

E
[
‖En[|f(Xi)|3]‖F

]
− bσ2

. n−1/2+3/(2q)b3/2
(
b3/2−1σK1/2

n + b3/2Knn
−1/2+3/(2q)

)
,

so that using the elementary inequality 2xy ≤ x2 + y2, we obtain

E
[
‖En[|f(Xi)|3]‖F

]
≤ C(bσ2 + b3Knn

−1+3/q) ≤ κ3n.

Further, let εn = σ/(bn1/2). Then

Hn(εn) = log(N(F , eP , εn‖F‖P,2) ∨ n) . Kn

and J(εn) ≤ CσK
1/2
n /(bn1/2).

Also, for q ∈ [4,∞), we have by the Markov inequality that

δn(εn, γ) =
1

4
P{(F/κn)31(F/κn > cγ−1/3n1/3Hn(εn)

−1/3)}

. (b/κn)
q(γ1/3Hn(εn)

1/3n−1/3)q−3

. (K−1/3
n n−1/q+1/3)q(γ1/3Hn(εn)

1/3n−1/3)q−3

≤ γq/3−1/Kn ≤ 1

for any γ ∈ (0, 1). For q = ∞, note that since C in the definition of κn is sufficiently
large, b/κn < n1/3Hn(εn)

−1/3, and so δn(εn, γ) = 0 for any γ ∈ (0, 1).

imsart-aos ver. 2011/11/15 file: GA-final.tex date: August 19, 2014



GAUSSIAN APPROXIMATION OF SUPREMA 45

Now, Theorem 2.1 combined with Lemma 2.2 shows that for any γ ∈ (0, 1)

and δ4 ≥ supf∈F ‖f‖P,4/‖F‖P,4, one can construct a random variable Z̃ such that

Z̃
d
= supf∈F GP f and

P

(
|Z − Z̃| > K(q)∆n(εn, γ)

)
≤ γ(1 + δ(εn, γ)) + C(logn)/n(30)

. γ + (logn)/n,

where K(q) is a constant that depends only on q, and

∆n(εn, γ) := φn(εn) + γ−1/qεnb+ γ−1/qbn−1/2+1/q + γ−2/qbn−1/2+1/q

+ γ−1/2E1/2
n H1/2

n (εn)n
−1/4 + γ−1/3κnH

2/3
n (εn)n

−1/6,

φn(εn) . bJ(εn) + ε−2
n bJ2(εn)n

−1/2+1/q,

En := E[‖Gn‖F·F ] . b2J(δ24) + δ−4
4 b2J2(δ24)n

−1/2+2/q.

Using the bound derived above, we have

φn(εn) . σK1/2
n n−1/2 + bKnn

−1/2+1/q . bKnn
−1/2+1/q,

and setting δ4 = (b2σ2)1/4/b = (σ/b)1/2,

En . bσK1/2
n + b2Knn

−1/2+2/q.

Also, setting c ≥ 1 in the definition of Kn, so that Kn = cv(log n∨ log(Ab/σ)) ≥ 1,
and using γ < 1 gives

γ−1/qεnb + γ−1/qbn−1/2+1/q + γ−2/qbn−1/2+1/q . γ−1/2bKnn
−1/2+1/q,

γ−1/2E1/2
n H1/2

n (εn)n
−1/4 . γ−1/2(bσ)1/2K3/4

n n−1/4 + γ−1/2bKnn
−1/2+1/q,

γ−1/3κnH
2/3
n (εn)n

−1/6 . γ−1/3b1/3σ2/3K2/3
n n−1/6 + γ−1/3bKnn

−1/2+1/q.

Substituting these bounds into (30) and using the definition of ∆n(εn, γn), we obtain
the asserted claim. �

A.8. Proofs of Propositions 3.1-3.3.

Proof of Proposition 3.1. For given x ∈ I, g ∈ G and h > 0, define

fx,g,h(y, t) = cn(x, g)g(y)k(h
−1(t− x)), (y, t) ∈ Y × R

d.

Consider the class of functions Fn = {fx,g,hn
− E[fx,g,hn

(Y1, X1)] : (x, g) ∈ I × G}.
We shall apply Corollary 2.2 to Fn. Let Zn = supf∈Fn

Gnf . We first note that
|fx,g,h(y, t)| ≤ CI×Gb‖k‖∞ so that |fx,g,h(y, t)−E[fx,g,h(Y1, X1)]| ≤ 2CI×Gb‖k‖∞ ≡
F . It is not difficult to see that Fn is pointwise measurable. Using Corollary A.1
(i), we can prove that there are constants A, v > 0 such that

(31) sup
Q
N(Fn, eQ, 2εCI×Gb‖k‖∞) ≤ (A/ε)v, 0 < ∀ε ≤ 1, ∀n ≥ 1.
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Hence for every n ≥ 1, Fn is pre-Gaussian and there exists a tight Gaussian random
variable Gn in ℓ∞(Fn) with mean zero and covariance function

E[Gn(f)Gn(f̌)] = Cov(f(Y1, X1), f̌(Y1, X1)), f, f̌ ∈ Fn.

To apply Corollary 2.2, note that

E[|fx,g,hn
(Y1, X1)− E[fx,g,hn

(Y1, X1)]|3] . E[|fx,g,hn
(Y1, X1)|3]

= |cn(x, g)|3
∫

Rd

E[|g(Y1)|3 | X1 = t]|k(h−1
n (t− x))|3p(t)dt

= |cn(x, g)|3hdn
∫

Rd

E[|g(Y1)|3 | X1 = x+ hnt]|k(t)|3p(x+ hnt)dt

≤ C3
I×Gb

3‖p‖∞hdn
∫

Rd

|k(t)|3dt,

and

E[|fx,g,hn
(Y1, X1)− E[fx,g,hn

(Y1, X1)]|4] . E[|fx,g,hn
(Y1, X1)|4]

= |cn(x, g)|4hdn
∫

Rd

E[|g(Y1)|4 | X1 = x+ hnt]|k(t)|4p(x+ hnt)dt

≤ C4
I×Gb

4‖p‖∞hdn
∫

Rd

|k(t)|4dt.

Thus, applying Corollary 2.2 with parameters γ, b, σ in the corollary satisfying

γ = γn = (logn)−1, b = O(1) and σ = σn = h
d/2
n shows that there exists a

sequence Z̃n of random variables such that Z̃n
d
= supf∈Fn

Gnf and as n→ ∞,

|Zn − Z̃n| = OP(n
−1/6hd/3n logn+ n−1/4hd/4n log5/4 n+ n−1/2 log3/2 n).

This implies the conclusion of the theorem. In fact, let

Bn(x, g) = h−d/2
n Gn(fx,g,hn

), (x, g) ∈ I × G,

and W̃n = h
−d/2
n Z̃n. Then Bn is the desired Gaussian process, and as Wn =

h
−d/2
n Zn, we have W̃n

d
= sup(x,g)∈I×G Bn(x, g) and

|Wn − W̃n| = h−d/2
n |Zn − Z̃n|

= OP{(nhdn)−1/6 logn+ (nhdn)
−1/4 log5/4 n+ n−1/2h−d/2

n log3/2 n}.

This completes the proof. �

Proof of Proposition 3.2. We shall follow the notation used in the proof of
Proposition 3.1. Take F (y, x) = CI×G‖k‖∞(G(y) + E[G(Y1)]) as an envelope of
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Fn. A version of inequality (31) continues to hold with 2CI×Gb‖k‖∞ replaced by
‖F‖Q,2. Let D = supx∈Rd E[G4(Y1) | X1 = x]. Then we have

E[|fx,g,hn
(Y1, X1)− E[fx,g,hn

(Y1, X1)]|3] . E[|fx,g,hn
(Y1, X1)|3]

≤ (1 +D)C3
I×G‖p‖∞hdn

∫

Rd

|k(t)|3dt,

and

E[|fx,g,hn
(Y1, X1)− E[fx,g,hn

(Y1, X1)]|4] . E[|fx,g,hn
(Y1, X1)|4]

≤ DC4
I×G‖p‖∞hdn

∫

Rd

|k(t)|4dt.

Thus, applying Corollary 2.2 with parameters γ, b, σ in the corollary satisfying

γ = γn = (logn)−1, b = O(1), and σ = σn = h
d/2
n shows that there exists a

sequence Z̃n of random variables such that Z̃n
d
= supf∈Fn

Gnf and as n→ ∞,

|Zn − Z̃n| = OP(n
−1/6hd/3n logn+ n−1/4hd/4n log5/4 n+ n−1/2+1/q log3/2 n).

The rest of the proof is the same as in the previous one. �

Proof of Proposition 3.3. We only deal with case (ii). The proof for case
(i) is similar. Observe first that by condition (C2),

|αn(x, g)| ≤
C1|ψKn(x)|
c1|ψKn(x)| ≤ C3,

where C3 = C1/c1. For given n ≥ 1, x ∈ I and g ∈ G, define

fn,x,g(η, t) = g(η)αn(x, g)
TψKn(t), (η, t) ∈ E × [0, 1]d.

Consider the class of functions Fn = {fn,x,g : (x, g) ∈ I × G}. We shall apply
Corollary 2.2 to Fn. Note that Wn = supf∈Fn

Gnf . First, we have |fn,x,g(η, t)| ≤
C3ξn|G(η)| =: Fn(η, t). Second, observe that Fn = H1 · H2n, where H1 = {(η, t) 7→
g(η) : g ∈ G} and H2n = {(η, t) 7→ αn(x, g)

TψKn(t) : (x, g) ∈ I × G}. By condition
(C3),

|αn(x, g)
TψKn(t)− αn(x̌, ǧ)

TψKn(t)| ≤ Lnξn{|x− x̌|+ (E[(g(η1)− ǧ(η1))
2)1/2},

so that, using the fact that G is VC type, we deduce that there are constants
A, v > 0 such that

sup
Q
N(H2n, eQ, εC3ξn) ≤ (ALn/ε)

v, 0 < ∀ε ≤ 1, ∀n ≥ 1.

Using again the fact that G is VC type and Corollary A.1 (i), we deduce that there
are constants A′, v′ > 0 such that

(32) sup
Q
N(Fn, eQ, ε‖Fn‖Q,2) ≤ (A′Ln/ε)

v′

, 0 < ∀ε ≤ 1, ∀n ≥ 1.
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Hence for every n ≥ 1, there exists a tight Gaussian random variable Gn in ℓ∞(Fn)
with mean zero and covariance function

E[Gn(f)Gn(f̌)] = Cov(f(η1, X1), f̌(η1, X1)), f, f̌ ∈ Fn.

Let Bn(x, g) = Gn(fn,x,g), (x, g) ∈ I ×G. Then Bn is the desired Gaussian process.
To apply Corollary 2.2, we make some complimentary calculations. Let D =

supx∈[0,1]d E[G
4(η1) | X1 = x]. Then for n ≥ 1,

E[|g(η1)αn(x, g)
TψKn(X1)|3]

≤ E[E[G3(η1) | X1]|αn(x, g)
TψKn(X1)|3]

≤ C3(1 +D)ξnE[|αn(x, g)
TψKn(X1)|2]

= C3(1 +D)ξnαn(x, g)
T
E[ψKn(X1)ψ

Kn(X1)
T ]αn(x, g)

≤ C3
3C2(1 +D)ξn,

and

E[|g(η1)αn(x, g)
TψKn(X1)|4] ≤ C4

3C2Dξ
2
n.

Thus, applying Corollary 2.2 with parameters γ, b, σ in the corollary satisfying γ =
γn = (log n)−1, b = bn = O(ξn), and σ = O(1) shows that there exists a sequence

W̃n of random variables such that W̃n
d
= supf∈Fn

Gnf = sup(x,g)∈I×G Bn(x, g) and
as n→ ∞,

|Wn − W̃n| = OP(n
−1/6ξ1/3n logn+ n−1/4ξ1/2n log5/4 n+ n−1/2+1/qξn log3/2 n).

This completes the proof. �

imsart-aos ver. 2011/11/15 file: GA-final.tex date: August 19, 2014



GAUSSIAN APPROXIMATION OF SUPREMA 49

APPENDIX B: MOTIVATING EXAMPLES FOR SERIES EMPIRICAL
PROCESSES IN SECTION 3.2

Example B.1 (Forms of Sn(x, g) arising in nonparametric mean regression).
Here we explain which forms of Sn(x, g) arise in the nonparametric series or sieve
mean regression. Consider a (generally heteroscedastic) nonparametric regression
model

Yi = m(Xi) + ηi, E[ηi | Xi] = 0, E[η2i | Xi = x] = σ2(x), 1 ≤ i ≤ n,

where Yi is a scalar response variable, Xi is a d-vector of covariates of which the
support = [0, 1]d, and ηi is a scalar unobservable error term. We assume that the
data (Y1, X1), . . . , (Yn, Xn) are i.i.d. The parameter of interest is the conditional
mean function m(x) = E[Y1 | X1 = x].

Consider series estimation of m(x). The idea of series estimation is to approxi-

mate m(x) by
∑Kn

j=1 θKn,jψKn,j(x) with Kn → ∞ as n → ∞ and to estimate the

vector θKn = (θKn,1, . . . , θKn,Kn
)T by the least squares method:

θ̂Kn = arg min
θKn∈RKn

n∑

i=1

(
Yi − ψKn(Xi)

T θKn
)2
.

The resulting estimate of m(x) is given by m̂(x) = ψKn(x)T θ̂Kn .
The asymptotic properties of the series estimate have been thoroughly inves-

tigated in the literature. Importantly, under suitable regularity conditions, the
rescaled and recentered estimator admits an asymptotic linear form:

S̃n(x) =

√
n(m̂(x) −m(x))

|A2nψKn(x)| ≈ ψKn(x)TA1n

|A2nψKn(x)|

[
1√
n

n∑

i=1

ηiψ
Kn(Xi)

]
=: Sn(x),

where A1n = (E[ψKn(X1)ψ
Kn(X1)

T ])−1 and

A2n = (E[σ2(X1)ψ
Kn(X1)ψ

Kn(X1)
T ])1/2A1n.

See, for example, [51]. Here S̃n(x) ≈ Sn(x) means that S̃n(x) = Sn(x)+oP(log
−1/2 n)

uniformly in x ∈ I (the remainder term could be faster, but oP(log
−1/2 n) is fast

enough to make the remainder term negligible in approximating (in the Kolmogorov
distance) the distribution of supx∈I S̃n(x) by that of the Gaussian analogue of
supx∈I Sn(x) as the expectation of the latter is typically O(

√
logn); see Remark

2.5 and Lemma A.1). Hence, for the purpose of making uniform inference on m(x)
over a Borel subset I of [0, 1]d, it is desirable to have a (tractable) distributional
approximation of the quantity Wn = supx∈I Sn(x). �

Example B.2 (Forms of Sn(x, g) arising in nonparametric quantile regression).
Here we explain which forms of Sn(x, g) arise in the nonparametric series or sieve
quantile regression. Let (Y1, X1), . . . , (Yn, Xn) be i.i.d. random variables taking val-
ues in R × Rd where the support of X1 = [0, 1]d. Suppose that the parameter of
interest is the conditional quantile function:

Q(τ, x) = inf{y : FY |X(y | x) ≥ τ}, x ∈ [0, 1]d, τ ∈ (0, 1),
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where FY |X(y | x) = P(Y1 ≤ y | X1 = x) is the conditional distribution function.
Consider series estimation of Q(τ, x). A standard way is to solve the following
minimization problem:

θ̂Kn(τ) = arg min
θKn∈RKn

n∑

i=1

ρτ
(
Yi − ψKn(Xi)

T θKn
)
,

where ρτ (y) = {τ−1(y ≤ 0)}y is called the check function [36], and whereKn → ∞
as n → ∞. A series estimate of Q(τ, x) is obtained by Q̂(τ, x) = ψKn(x)T θ̂Kn(τ).
Let T be an arbitrary closed interval in (0, 1). Suppose that the conditional distri-
bution function FY |X(y | x) has a Lebesgue density fY |X(y | x). Then, subject to
some regularity conditions, the rescaled and recentered estimator admits an asymp-
totically linear form:

S̃n(x, τ) =

√
n(Q̂(τ, x)−Q(τ, x))√

τ(1 − τ)|A2n(τ)ψKn(x)|

≈ ψKn(x)TA1n(τ)√
τ(1 − τ)|A2n(τ)ψKn(x)|

[
1√
n

n∑

i=1

{τ − 1(Yi ≤ Q(τ,Xi))}ψKn(Xi)

]

=: Sn(x, τ),

where A1n(τ) = Jn(τ)
−1, Jn(τ) = E[fY |X(Q(τ,X1) | X1)ψ

Kn(X1)ψ
Kn(X1)

T ],

A2n(τ) = (E[ψKn(X1)ψ
Kn(X1)

T ])1/2Jn(τ)
−1 (note that τ(1 − τ) comes from the

conditional variance of 1(Yi ≤ Q(τ,Xi)) given Xi). Here too S̃n(x, τ) ≈ Sn(x, τ)

means that S̃n(x, τ) = Sn(x, τ)+ oP(log
−1/2 n) uniformly in (x, τ) ∈ I ×T ; see [33]

and Belloni et al. [1, Theorem 2]. Note that

Yi ≤ Q(τ,Xi) ⇔ ηi ≤ τ, with ηi = FY |X(Yi | Xi),

and ηi are uniform random variables on (0, 1), independent ofX1, . . . , Xn. So letting
gτ (η) = τ − 1(η ≤ τ), we have the expression

Sn(x, τ) =
ψKn(x)TA1n(τ)√

τ(1 − τ)|A2n(τ)ψKn(x)|

[
1√
n

n∑

i=1

gτ (ηi)ψ
Kn(Xi)

]
.

For the purpose of making uniform inference on Q(τ, x) over (τ, x) ∈ T × I, it is
desirable to have a (tractable) distributional approximation of the quantity Wn =
sup(x,τ)∈I×T Sn(x, τ). �
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APPENDIX C: OBTAINING ALMOST SURE BOUNDS FROM
THEOREM 2.1

The purpose of this section is to derive almost sure bounds from Theorem 2.1. We
use the same notation as that in Section 2. Consider an infinite sequence X1, X2, . . .
of i.i.d. random variables taking values in a measurable space (S,S). Let F be some
class of functions defined on S. In this section, the function class F is independent
of n. For each n, denote Zn = supf∈F Gnf where

Gnf =
1√
n

n∑

i=1

(f(Xi)− E[f(Xi)]), f ∈ F .

We look for conditions under which there exists a sequence of random variables Z̃n

such that ∣∣∣Zn − Z̃n

∣∣∣ = Oa.s.(rn)

where rn → 0 as n→ ∞ is a sequence of constants and for each n,

(33) Z̃n
d
= sup

f∈F
GP f.

To this end, we have the following theorem:

Theorem C.1 (Almost sure bounds). Let α and β be some constants satisfying
α > 1 and β > q/(q − 2). Denote γn = n−1/β(log n)−α. Suppose that assumptions
(A1), (A2) with q ≥ 3, and (A4) of Section 2 are satisfied. In addition, suppose that
κ = κn and ε = εn are chosen so that κ3n ≥ E[‖En[|f(Xi)|3]‖F ] and δn(εn, γn) =
O(1). Then there exists a sequence Z̃n of random variables satisfying (33) and

∣∣∣Zn − Z̃n

∣∣∣ ≤ Oa.s.

(
∆n(εn, γn) +

(log n)α/q

n1/(2β)−1/(qβ)

)

Remark C.1. One interesting feature of this theorem is that it gives a dimension-
free result, that is, the bound does not explicitly depend on the dimensionality d
when S ⊂ Rd.

Proof. The proof consists of two steps. In the first step, we construct random
variables Z̃n along the subsequence n = nm = mβ , m ≥ 1 so that the conclusion
of the theorem holds for this subsequence. In the second step, we show that the
conclusion of the theorem holds for all n if we define Z̃n = Z̃nm

for all nm ≤ n <
nm+1.

Step 1: Note that by Lemma 2.1, assumption (A3) is satisfied, and so we can

apply Theorem 2.1 for all n. In particular, we can construct Z̃n for all n = nm,
m ≥ 1, such that

P

{
|Zn − Z̃n| > K(q)∆n(εn, γn)

}
≤ γn {1 + δn(εn, γn)}+

C logn

n
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for these n. Further, δn(εn, γn) = O(1), α > 1, and β > q/(q − 2) > 1 imply that

∞∑

m=1

[
γnm

{1 + δnm
(εnm

, γnm
)}+ C lognm

nm

]
<∞,

so that it follows from the Borel-Cantelli lemma that

(34)
∣∣∣Znm

− Z̃nm

∣∣∣ ≤ Oa.s. (∆nm
(εnm

, γnm
)) as m→ ∞.

This completes Step 1.
Step 2: Let sm, m ≥ 1, be some sequence of constants to be chosen later. We

will use the Montgomery-Smith maximal inequality [see 49, 19]:

(35) P

{
max

1≤k≤n
‖
√
kGk‖F > 30s

}
≤ 9P

{
‖
√
nGn‖F > s

}
for all s > 0.

Using (35) and setting ∆nm = nm+1 − nm, we obtain for all m ≥ 1,

P



 max

nm<n<nm+1

∥∥∥∥∥

n∑

i=nm+1

(f(Xi)− E[f(Xi)])

∥∥∥∥∥
F

> 30sm





≤ P

{
max

1≤k≤∆nm

‖
√
kGk‖F > 30sm

}

≤ 9P
{
‖(∆nm)1/2G∆nm

‖F > sm

}
(36)

Further, setting tm = (m(logm)α)2/q and

sm = (∆nm)1/2
{
(1 + α)E[‖G∆nm

‖F ] +K(q)
[
(‖F‖P,2+

(∆nm)−1/2+1/q‖F‖P,q)
√
tm + α−1(∆nm)−1/2+1/q‖F‖P,qtm

]}

where K(q) is a sufficiently large constant, we obtain from Theorem 5.1 that the

probability in (36) is bounded from above by t
−q/2
m . Our choice of tm ensures that

∞∑

m=1

t−q/2
m <∞,

so that applying the Borel-Cantelli lemma one more time, we obtain

(37) max
nm<n<nm+1

∥∥∥∥∥

n∑

i=nm+1

(f(Xi)− E[f(Xi)])

∥∥∥∥∥
F

= Oa.s.(sm) as m→ ∞.

Note also that ∆nm ≤ βmβ−1, and Theorem 5.2 implies that E[‖G∆nm
‖F ] = O(1),

so that
sm = O((∆nm)1/2

√
tm)
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since β > q/(q − 2), which we assume. Substituting ∆nm and tm gives

(38) sm = O(m(β−1)/2+1/q(logm)α/q) as m→ ∞

Combining (34), (37), and (38) together with defining ñ := ñn := nm for all nm ≤
n < nm+1 and Z̃n := Z̃ñ

d
= supf∈F GP f for all nm < n < nm+1, we have

(39)
∣∣∣Zn − (ñ/n)1/2Z̃n

∣∣∣ ≤ Oa.s.

(
∆n(εn, γn) +

(logn)α/q

n1/(2β)−1/(qβ)

)
.

It remains to bound |(ñ/n)1/2Z̃n− Z̃n|. To this end, note that Z̃n is the supremum
of a zero-mean Gaussian process, whose distribution is independent of n. Moreover,
Z̃n is finite almost surely. Therefore, it follows from Proposition A.2.3 in [64] that
there exists a constant K ′ such that

E[exp{K ′(Z̃n)
2}] = O(1).

Therefore, Z̃n = Oa.s.(
√
logn). Since (ñ/n)1/2 − 1 = O(n−1/β), we conclude that

(40)
∣∣∣(ñ/n)1/2Z̃n − Z̃n

∣∣∣ = Oa.s.

(√
logn

n1/β

)
.

Combining (39) and (40) completes the proof. �
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