
MIT Open Access Articles

Unsupervised learning by program synthesis

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ellis, Kevin, Armando Solar-Lezama, and Josh Tenenbaum. "Unsupervised Learning by
Program Synthesis." Advances in Neural Information Processing Systems 28 (NIPS 2015), 7-12
December, 2015, Montreal, Canada, Neural Information Processing Systems Foundation, 2015.
© 2015 Neural Information Processing Systems Foundation

As Published: http://papers.nips.cc/paper/5785-unsupervised-learning-by-program-synthesis

Publisher: Neural Information Processing Systems Foundation

Persistent URL: http://hdl.handle.net/1721.1/113870

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/113870

Unsupervised Learning by Program Synthesis

Kevin Ellis
Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology
ellisk@mit.edu

Armando Solar-Lezama
MIT CSAIL

Massachusetts Institute of Technology
asolar@csail.mit.edu

Joshua B. Tenenbaum
Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology
jbt@mit.edu

Abstract

We introduce an unsupervised learning algorithm that combines probabilistic
modeling with solver-based techniques for program synthesis. We apply our tech-
niques to both a visual learning domain and a language learning problem, showing
that our algorithm can learn many visual concepts from only a few examples and
that it can recover some English inflectional morphology. Taken together, these
results give both a new approach to unsupervised learning of symbolic composi-
tional structures, and a technique for applying program synthesis tools to noisy
data.

1 Introduction

Unsupervised learning seeks to induce good latent representations of a data set. Nonparametric
statistical approaches such as deep autoencoder networks, mixture-model density estimators, or
nonlinear manifold learning algorithms have been very successful at learning representations of
high-dimensional perceptual input. However, it is unclear how they would represent more abstract
structures such as spatial relations in vision (e.g., inside of or all in a line) [2], or morphological rules
in language (e.g., the different inflections of verbs) [1, 13]. Here we give an unsupervised learning
algorithm that synthesizes programs from data, with the goal of learning such concepts. Our ap-
proach generalizes from small amounts of data, and produces interpretable symbolic representations
parameterized by a human-readable programming language.

Programs (deterministic or probabilistic) are a natural knowledge representation for many domains
[3], and the idea that inductive learning should be thought of as probabilistic inference over pro-
grams is at least 50 years old [6]. Recent work in learning programs has focused on supervised
learning from noiseless input/output pairs, or from formal specifications [4]. Our goal here is to
learn programs from noisy observations without explicit input/output examples. A central idea in
unsupervised learning is compression: finding data representations that require the fewest bits to
write down. We realize this by treating observed data as the output of an unknown program applied
to unknown inputs. By doing joint inference over the program and the inputs, we recover compres-
sive encodings of the observed data. The induced program gives a generative model for the data,
and the induced inputs give an embedding for each data point.

Although a completely domain general method for program synthesis would be desirable, we be-
lieve this will remain intractable for the foreseeable future. Accordingly, our approach factors out
the domain-specific components of problems in the form of a grammar for program hypotheses, and
we show how this allows the same general-purpose tools to be used for unsupervised program syn-
thesis in two very different domains. In a domain of visual concepts [5] designed to be natural for

1

humans but difficult for machines to learn, we show that our methods can synthesize simple graph-
ics programs representing these visual concepts from only a few example images. These programs
outperform both previous machine-learning baselines and several new baselines we introduce. We
also study the domain of learning morphological rules in language, treating rules as programs and
inflected verb forms as outputs. We show how to encode prior linguistic knowledge as a grammar
over programs and recover human-readable linguistic rules, useful for both simple stemming tasks
and for predicting the phonological form of new words.

2 The unsupervised program synthesis algorithm

The space of all programs is vast and often unamenable to the optimization methods used in much
of machine learning. We extend two ideas from the program synthesis community to make search
over programs tractable:

Sketching: In the sketching approach to program synthesis, one manually provides a sketch of the
program to be induced, which specifies a rough outline of its structure [7]. Our sketches take the
form of a probabilistic context-free grammar and make explicit the domain specific prior knowledge.

Symbolic search: Much progress has been made in the engineering of general-purpose symbolic
solvers for Satisfiability Modulo Theories (SMT) problems [8]. We show how to translate our
sketches into SMT problems. Program synthesis is then reduced to solving an SMT problem. These
are intractable in general, but often solved efficiently in practice due to the highly constrained nature
of program synthesis which these solvers can exploit.

Prior work on symbolic search from sketches has not had to cope with noisy observations or proba-
bilities over the space of programs and inputs. Demonstrating how to do this efficiently is our main
technical contribution.

2.1 Formalization as probabilistic inference

We formalize unsupervised program synthesis as Bayesian inference within the following generative
model: Draw a program f(·) from a description length prior over programs, which depends upon
the sketch. Draw N inputs {Ii}Ni=1 to the program f(·) from a domain-dependent description length
prior PI(·). These inputs are passed to the program to yield {zi}Ni=1 with zi , f(Ii) (zi “defined
as” f(Ii)). Last, we compute the observed data {xi}Ni=1 by drawing from a noise model Px|z(·|zi).

Our objective is to estimate the unobserved f(·) and {Ii}Ni=1 from the observed dataset {xi}Ni=1. We
use this probabilistic model to define the description length below, which we seek to minimize:

− logPf (f)︸ ︷︷ ︸
program length

+

N∑
i=1

(
− logPx|z(xi|f(Ii))︸ ︷︷ ︸

data reconstruction error

− logPI(Ii)︸ ︷︷ ︸
data encoding length

)
(1)

2.2 Defining a program space

We sketch a space of allowed programs by writing down a context free grammar G, and write L to
mean the set of all programs generated by G. Placing uniform production probabilities over each
non-terminal symbol in G gives a PCFG that serves as a prior over programs: the Pf (·) of Eq. 1.
For example, a grammar over arithmetic expressions might contain rules that say: “expressions are
either the sum of two expressions, or a real number, or an input variable x” which we write as

E → E + E | R | x (2)

Having specified a space of programs, we define the meaning of a program in terms of SMT primi-
tives, which can include objects like tuples, real numbers, conditionals, booleans, etc [8]. We write
τ to mean the set of expressions built of SMT primitives. Formally, we assume G comes equipped
with a denotation for each rule, which we write as J·K : L → τ → τ . The denotation of a rule in G
is always written as a function of the denotations of that rule’s children. For example, a denotation
for the grammar in Eq. 2 is (where I is a program input):

JE1 + E2K(I) = JE1K(I) + JE2K(I) Jr ∈ RK(I) = r JxK(I) = I (3)

2

Defining the denotations for a grammar is straightforward and analogous to writing a “wrapper
library” around the core primitives of the SMT solver. Our formalization factors out the grammar and
the denotation, but they are tightly coupled and, in other synthesis tools, written down together [7, 9].

The denotation shows how to construct an SMT expression from a single program in L, and we
use it to build an SMT expression that represents the space of all programs such that its solution
tells which program in the space solves the synthesis problem. The SMT solver then solves jointly
for the program and its inputs, subject to an upper bound upon the total description length. This
builds upon prior work in program synthesis, such as [9], but departs in the quantitative aspect of
the constraints and in not knowing the program inputs. Due to space constraints, we only briefly
describe the synthesis algorithm, leaving a detailed discussion to the Supplement.

We use Algorithm 1 to generate an SMT formula that (1) defines the space of programs L; (2)
computes the description length of a program; and (3) computes the output of a program on a given
input. In Algorithm 1 the returned description length l corresponds to the − logPf (f) term of Eq.
1 while the returned evaluator f(·) gives us the f(Ii) terms. The returned constraints A ensure that
the program computed by f(·) is a member of L.

Algorithm 1 SMT encoding of programs generated by
production P of grammar G

function Generate(G,J·K,P):
Input: Grammar G, denotation J·K, non-terminal P
Output: Description length l : τ ,

evaluator f : τ → τ , assertions A : 2τ

choices← {P → K(P ′, P ′′, . . .) ∈ G}
n← |choices|
for r = 1 to n do

let K(P 1
r , . . . , P

k
r) = choices(r)

for j = 1 to k do
ljr, f

j
r , A

j
r ← Generate(G,J·K,P jr)

end for
lr ←

∑
j l
j
r

// Denotation is a function of child denotations
// Let gr be that function for choices(r)
//Q1, · · · , Qk : L are arguments to constructorK
let gr(JQ1K(I), · · · , JQkK(I)) =

JK(Q1, . . . , Qk)K(I)
fr(I)← gr(f

1
r (I), · · · , fkr (I))

end for
// Indicator variables specifying which rule is used
// Fresh variables unused in any existing formula
c1, · · · , cn = FreshBooleanVariable()
A1 ←

∨
j cj

A2 ← ∀j 6= k : ¬(cj ∧ ck)
A← A1 ∪A2 ∪

⋃
r,j A

j
r

l = log n+ if(c1, l1, if(c2, l2, · · ·))
f(I) = if(c1, f1(I), if(c2, f2(I), · · ·))
return l, f, A

The SMT formula generated by Algorithm
1 must be supplemented with constraints
that compute the data reconstruction er-
ror and data encoding length of Eq. 1.
We handle infinitely recursive grammars
by bounding the depth of recursive calls
to the Generate procedure, as in [7].

SMT solvers are not designed to minimize
loss functions, but to verify the satisfiabil-
ity of a set of constraints. We minimize
Eq. 1 by first asking the solver for any
solution, then adding a constraint saying
its solution must have smaller description
length than the one found previously, etc.
until it can find no better solution.

3 Experiments

3.1 Visual concept learning

Humans quickly learn new visual con-
cepts, often from only a few examples
[2, 5, 10]. In this section, we present ev-
idence that an unsupervised program syn-
thesis approach can also learn visual con-
cepts from a small number of examples.
Our approach is as follows: given a set of
example images, we automatically parse
them into a symbolic form. Then, we
synthesize a program that maximally com-
presses these parses. Intuitively, this pro-
gram encodes the common structure needed to draw each of the example images.

We take our visual concepts from the Synthetic Visual Reasoning Test (SVRT), a set of visual
classification problems which are easily parsed into distinct shapes. Fig. 1 shows three examples
of SVRT concepts. Fig. 2 diagrams the parsing procedure for another visual concept: two arbitrary
shapes bordering each other.

We defined a space of simple graphics programs that control a turtle [11] and whose primitives
include rotations, forward movement, rescaling of shapes, etc.; see Table 1. Both the learner’s
observations and the graphics program outputs are image parses, which have three sections: (1) A
list of shapes. Each shape is a tuple of a unique ID, a scale from 0 to 1, and x, y coordinates:

3

〈id, scale, x, y〉. (2) A list of containment relations contains(i, j) where i, j range from one to the
number of shapes in the parse. (3) A list of reflexive borders relations borders(i, j) where i, j range
from one to the number of shapes in the parse.

The algorithm in Section 2.2 describes purely functional programs (programs without state), but
the grammar in Table 1 contains imperative commands that modify a turtle’s state. We can think
of imperative programs as syntactic sugar for purely functional programs that pass around a state
variable, as is common in the programming languages literature [7].

The grammar of Table 1 leaves unspecified the number of program inputs. When synthesizing a
program from example images, we perform a grid search over the number of inputs. Given images
with N shapes and maximum shape ID D, the grid search considers D input shapes, 1 to N input
positions, 0 to 2 input lengths and angles, and 0 to 1 input scales. We set the number of imperative
draw commands (resp. borders, contains) to N (resp. number of topological relations).

We now define a noise model Px|z(·|·) that specifies how a program output z produces a parse x,
by defining a procedure for sampling x given z. First, the x and y coordinates of each shape are
perturbed by additive noise drawn uniformly from −δ to δ; in our experiments, we put δ = 3.
Then, optional borders and contains relations (see Table 1) are erased with probability 1/2. Last,
because the order of the shapes is unidentifiable, both the list of shapes and the indices of the
borders/containment relations are randomly permuted. The Supplement has the SMT encoding of
the noise model and priors over program inputs, which are uniform.

teleport(position[0],
initialOrientation)

draw(shape[0], scale = 1)
move(distance[0], 0deg)
draw(shape[0], scale = scale[0])
move(distance[0], 0deg)
draw(shape[0], scale = scale[0])

Figure 1: Left: Pairs of examples of three SVRT concepts taken from [5]. Right: the program we
synthesize from the leftmost pair. This is a turtle program capable of drawing this pair of pictures and
is parameterized by a set of latent variables: shape, distance, scale, initial position, initial orientation.

s1 = Shape(id = 1, scale = 1,

x = 10, y = 15)

s2 = Shape(id = 2, scale = 1,

x = 27, y = 54)

borders(s1, s2)

Figure 2: The parser segments shapes and
identifies their topological relations (con-
tains, borders), emmitting their coordi-
nates, topological relations, and scales.

To encourage translational and rotational invariance,
the first turtle command is constrained to always be a
teleport to a new location, and the initial orientation of
the turtle, which we write as θ0, is made an input to the
synthesized graphics program.

We are introducing an unsupervised learning algorithm,
but the SVRT consists of supervised binary classifi-
cation problems. So we chose to evaluate our visual
concept learner by having it solve these classification
problems. Given a test image t and a set of exam-
ples E1 (resp. E2) from class C1 (resp. C2), we use
the decision rule P (t|E1)R

C1

C2
P (t|E2), or equivalently

Px({t} ∪E1)Px(E2)R
C1

C2
Px(E1)Px({t} ∪E2). Each

term in this decision rule is written as a marginal prob-
ability, and we approximate each marginal by lower
bounding it by the largest term in its corresponding
sum. This gives

−l({t} ∪ E1)︸ ︷︷ ︸
≈logPx({t}∪E1)

−l(E2)︸ ︷︷ ︸
≈logPx(E2)

C1

R
C2

−l(E1)︸ ︷︷ ︸
≈logPx(E1)

−l({t} ∪ E2)︸ ︷︷ ︸
≈logPx({t}∪E2)

(4)

4

Grammar rule English description

E → (M; D)+; C+; B+ Alternate move/draw; containment relations; borders relations
M→ teleport(R, θ0) Move turtle to new locationR, reset orientation to θ0
M→ move(L,A) Rotate by angle A, go forward by distance L
M→ flipX()|flipY() Flip turtle over X/Y axis
M→ jitter() Small perturbation to turtle position
D → draw(S,Z) Draw shape S at scale Z
Z → 1|z1|z2| · · · Scale is either 1 (no rescaling) or program input zj
A → 0◦| ± 90◦|θ1|θ2| · · · Angle is either 0◦, ±90◦, or a program input θj
R → r1|r2| · · · Positions are program inputs rj
S → s1|s2| · · · Shapes are program inputs sj
L → `1|`2| · · · Lengths are program inputs `j
C → contains(Z,Z) Containment between integer indices into drawn shapes
C → contains?(Z,Z) Optional containment between integer indices into drawn shapes
B → borders(Z,Z) Bordering between integer indices into drawn shapes
B → borders?(Z,Z) Optional bordering between integer indices into drawn shapes

Table 1: Grammar for the vision domain. The non-terminal E is the start symbol for the grammar.
The token ; indicates sequencing of imperative commands. Optional bordering/containment holds
with probability 1/2. See the Supplement for denotations of each grammar rule.

where l(·) is

l(E) , min
f,{Ie}e∈E

− logPf (f)−

(∑
e∈E

logPI(Ie) + logPx|z(Ee|f(Ie))

)
(5)

So, we induce 4 programs that maximally compress a different set of image parses: E1, E2, E1 ∪
{t}, E2 ∪ {t}. The maximally compressive program is found by minimizing Eq. 5, putting the
observations {xi} as the image parses, putting the inputs {Ie} as the parameters of the graphics
program, and generating the program f(·) by passing the grammar of Table 1 to Algorithm 1.

We evaluated the classification accuracy across each of the 23 SVRT problems by sampling three
positive and negative examples from each class, and then evaluating the accuracy on a held out
test example. 20 such estimates were made for each problem. We compare with three baselines, as
shown in Fig. 3. (1) To control for the effect of our parser, we consider how well discriminative clas-
sification on the image parses performs. For each image parse, we extracted the following features:
number of distinct shapes, number of rescaled shapes, and number of containment/bordering rela-
tions, for 4 integer valued features. Following [5] we used Adaboost with decision stumps on these
parse features. (2) We trained two convolutional network architectures for each SVRT problem, and
found that a variant of LeNet5 [12] did best; we report those results here. The Supplement has the
network parameters and results for both architectures. (3) In [5] several discriminative baselines
are introduced. These models are trained on low-level image features; we compare with their best-
performing model, which fed 10000 examples to Adaboost with decision stumps. Unsupervised
program synthesis does best in terms of average classification accuracy, number of SVRT problems
solved at ≥ 90% accuracy,1 and correlation with the human data.

We do not claim to have solved the SVRT. For example, our representation does not model some ge-
ometric transformations needed for some of the concepts, such as rotations of shapes. Additionally,
our parsing procedure occasionally makes mistakes, which accounts for the many tasks we solve at
accuracies between 90% and 100%.

3.2 Morphological rule learning

How might a language learner discover the rules that inflect verbs? We focus on English inflectional
morphology, a system with a long history of computational modeling [13]. Viewed as an unsuper-
vised learning problem, our objective is to find a compressive representation of English verbs.

1Humans “learn the task” after seven consecutive correct classifications [5]. Seven correct classifications
are likely to occur when classification accuracy is ≥ 0.51/7 ≈ 0.9

5

Figure 3: Comparing human performance on the
SVRT with classification accuracy for machine
learning approaches. Human accuracy is the
fraction of humans that learned the concept: 0%
is chance level. Machine accuracy is the fraction
of correctly classified held out examples: 50% is
chance level. Area of circles is proportional to
the number of observations at that point. Dashed
line is average accuracy. Program synthesis: this
work trained on 6 examples. ConvNet: A variant
of LeNet5 trained on 2000 examples. Parse (Im-
age) features: discriminative learners on features
of parse (pixels) trained on 6 (10000) examples.
Humans given an average of 6.27 examples and
solve an average of 19.85 problems [5].

We make the following simplification: our learner is presented with triples of
〈lexeme, tense, word〉2. This ignores many of the difficulties involved in language acquisi-
tion, but see [14] for a unsupervised approach to extracting similar information from corpora. We
can think of these triples as the entries of a matrix whose columns correspond to different tenses
and whose rows correspond to different lexemes; see Table 3. We regard each row of this matrix
as an observation (the {xi} of Eq. 1) and identify stems with the inputs to the program we are to
synthesize (the {Ii} of Eq. 1). Thus, our objective is to synthesize a program that maps a stem to a
tuple of inflections. We put a description length prior over the stem and detail its SMT encoding in
the the Supplement. We represent words as sequences of phonemes, and define a space of programs
that operate upon words, given in Table 2.

English inflectional verb morphology has a set of regular rules that apply for almost all words, as
well as a small set of words whose inflections do not follow a regular rule: the “irregular” forms.
We roll these irregular forms into the noise model: with some small probability ε, an inflected form
is produced not by applying a rule to the stem, but by drawing a sequence of phonemes from a
description length prior. In our experiments, we put ε = 0.1. This corresponds to a simple “rules
plus lexicon” model of morphology, which is oversimplified in many respects but has been proposed
in the past as a crude approximation to the actual system of English morphology [13]. See the
Supplement for the SMT encoding of our noise model.

In conclusion, the learning problem is as follows: given triples of 〈lexeme, tense, word〉, jointly infer
the regular rules, the stems, and which words are irregular exceptions.

We took five inflected forms of the top 5000 lexemes as measured by token frequency in the CELEX
lexical inventory [15]. We split this in half to give 2500 lexemes for training and testing, and
trained our model using Random Sample Consensus (RANSAC) [16]. Concretely, we sampled many
subsets of the data, each with 4, 5, 6, or 7 lexemes (thus 20, 25, 30, or 35 words), and synthesized
the program for each subset minimizing Eq. 1. We then took the program whose likelihood on the
training set was highest. Fig. 4 plots the likelihood on the testing set as a function of the number of
subsets (RANSAC iterations) and the size of the subsets (# of lexemes). Fig. 5 shows the program
that assigned the highest likelihood to the training data; it also had the highest likelihood on the
testing data. With 7 lexemes, the learner consistently recovers the regular linguistic rule, but with
less data, it recovers rules that are almost as good, degrading more as it receives less data.

Most prior work on morphological rule learning falls into two regimes: (1) supervised learning of
the phonological form of morphological rules; and (2) unsupervised learning of morphemes from
corpora. Because we learn from the lexicon, our model is intermediate in terms of supervision. We
compare with representative systems from both regimes as follows:

2The lexeme is the meaning of the stem or root; for example, run, ran, runs all share the same lexeme

6

Grammar rule English description

E → 〈C, · · · , C〉 Programs are tuples of conditionals, one for each tense
C → R|if (G)R else C Conditionals have return valueR, guard G, else condition C
R → stem+ phoneme∗ Return values append a suffix to a stem
G → [VPMS] Guards condition upon voicing, manner, place, sibilancy
V → V ′|? Voicing specifies of voice V ′ or doesn’t care
V ′ → VOICED|UNVOICED Voicing options
P → P ′|? Place specifies a place of articulation P ′ or doesn’t care
P ′ → LABIAL| · · · Place of articulation features
M→M′|? Manner specifies a manner of articulationM′ or doesn’t care
M′ → FRICATIVE| · · · Manner of articulation features
S → S ′|? Sibilancy specifies a sibilancy S ′ or doesn’t care
S ′ → SIBILANT|NOTSIBIL Sibilancy is a binary feature

Table 2: Grammar for the morphology domain. The non-terminal E is the start symbol for
the grammar. Each guard G conditions on phonological properties of the end of the stem:
voicing, place, manner, and sibilancy. Sequences of phonemes are encoded as tuples of
〈length, phoneme1, phoneme2, · · · 〉. See the Supplement for denotations of each grammar rule.

Lexeme Present Past 3rd Sing. Pres. Past Part. Prog.
style staIl staIld staIlz staIld staIlIN
run r2n ræn r2nz r2n r2nIN
subscribe s@bskraIb s@bskraIbd s@bskraIbz s@bskraIbd s@bskraIbIN
rack ræk rækt ræks rækt rækIN

Table 3: Example input to the morphological rule learner

The Morfessor system [17] induces morphemes from corpora which it then uses for segmentation.
We used Morfessor to segment phonetic forms of the inflections of our 5000 lexemes; compared
to the ground truth inflection transforms provided by CELEX, it has an error rate of 16.43%. Our
model segments the same verbs with an error rate of 3.16%. This experiment is best seen as a sanity
check: because our system knows a priori to expect only suffixes and knows which words must share
the same stem, we expect better performance due to our restricted hypothesis space. To be clear, we
are not claiming that we have introduced a stemmer that exceeds or even meets the state-of-the-art.

In [1] Albright and Hayes introduce a supervised morphological rule learner that induces phonolog-
ical rules from examples of a stem being transformed into its inflected form. Because our model
learns a joint distribution over all of the inflected forms of a lexeme, we can use it to predict inflec-
tions conditioned upon their present tense. Our model recovers the regular inflections, but does not
recover the so-called “islands of reliability” modeled in [1]; e.g., our model predicts that the past
tense of the nonce word glee is gleed, but does not predict that a plausible alternative past tense is
gled, which the model of Albright and Hayes does. This deficiency is because the space of programs
in Table 2 lacks the ability to express this class of rules.

4 Discussion

4.1 Related Work

Inductive programming systems have a long and rich history [4]. Often these systems use stochastic
search algorithms, such as genetic programming [18] or MCMC [19]. Others sufficiently constrain
the hypothesis space to enable fast exact inference [20]. The inductive logic programming com-
munity has had some success inducing Prolog programs using heuristic search [4]. Our work is
motivated by the recent successes of systems that put program synthesis in a probabilistic frame-
work [21, 22]. The program synthesis community introduced solver-based methods for learning
programs [7, 23, 9], and our work builds upon their techniques.

7

Figure 4: Learning curves for our morphol-
ogy model trained using RANSAC. At each
iteration, we sample 4, 5, 6, or 7 lexemes
from the training data, fit a model using
their inflections, and keep the model if it has
higher likelihood on the training data than
other models found so far. Each line was run
on a different permutation of the samples.

PRESENT = stem
PAST = i f [CORONAL STOP]

stem + Id
i f [VOICED]

stem + d
e l s e

s tem + t
PROG. = stem + IN
3 r d S i n g = i f [SIBILANT]

stem + Iz
i f [VOICED]

stem + z
e l s e

s tem + s

Figure 5: Program synthesized by morphol-
ogy learner. Past Participle program was the
same as past tense program.

There is a vast literature on computational models of morphology. These include systems that learn
the phonological form of morphological rules [1, 13, 24], systems that induce morphemes from
corpora [17, 25], and systems that learn the productivity of different rules [26]. In using a general
framework, our model is similar in spirit to the early connectionist accounts [24], but our use of
symbolic representations is more in line with accounts proposed by linguists, like [1].

Our model of visual concept learning is similar to inverse graphics, but the emphasis upon synthe-
sizing programs is more closely aligned with [2].We acknowledge that convolutional networks are
engineered to solve classification problems qualitatively different from the SVRT, and that one could
design better neural network architectures for these problems. For example, it would be interesting
to see how the very recent DRAW network [27] performs on the SVRT.

4.2 A limitation of the approach: Large datasets

Synthesizing programs from large datasets is difficult, and complete symbolic solvers often do not
degrade gracefully as the problem size increases. Our morphology learner uses RANSAC to sidestep
this limitation, but we anticipate domains for which this technique will be insufficient. Prior work in
program synthesis introduced Counter Example Guided Inductive Synthesis (CEGIS) [7] for learn-
ing from a large or possibly infinite family of examples, but it cannot accomodate noise in the data.
We suspect that a hypothetical RANSAC/CEGIS hybrid would scale to large, noisy training sets.

4.3 Future Work

The two key ideas in this work are (1) the encoding of soft probabilistic constraints as hard con-
straints for symbolic search, and (2) crafting a domain specific grammar that serves both to guide
the symbolic search and to provide a good inductive bias. Without a strong inductive bias, one can-
not possibly generalize from a small number of examples. Yet humans can, and AI systems should,
learn over time what constitutes a good prior, hypothesis space, or sketch. Learning a good inductive
bias, as done in [22], and then providing that inductive bias to a solver, may be a way of advancing
program synthesis as a technology for artificial intelligence.

Acknowledgments

We are grateful for discussions with Timothy O’Donnell on morphological rule learners, for advice
from Brendan Lake and Tejas Kulkarni on the convolutional network baselines, and for the sugges-
tions of our anonymous reviewers. This material is based upon work supported by funding from
NSF award SHF-1161775, from the Center for Minds, Brains and Machines (CBMM) funded by
NSF STC award CCF-1231216, and from ARO MURI contract W911NF-08-1-0242.

8

References
[1] Adam Albright and Bruce Hayes. Rules vs. analogy in english past tenses: A computational/experimental

study. Cognition, 90:119–161, 2003.
[2] Brenden M Lake, Ruslan R Salakhutdinov, and Josh Tenenbaum. One-shot learning by inverting a com-

positional causal process. In Advances in neural information processing systems, pages 2526–2534, 2013.
[3] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum.

Church: a language for generative models. In UAI, pages 220–229, 2008.
[4] Sumit Gulwani, Jose Hernandez-Orallo, Emanuel Kitzelmann, Stephen Muggleton, Ute Schmid, and Ben

Zorn. Inductive programming meets the real world. Commun. ACM, 2015.
[5] François Fleuret, Ting Li, Charles Dubout, Emma K Wampler, Steven Yantis, and Donald Geman. Com-

paring machines and humans on a visual categorization test. PNAS, 108(43):17621–17625, 2011.
[6] Ray J Solomonoff. A formal theory of inductive inference. Information and control, 7(1):1–22, 1964.
[7] Armando Solar Lezama. Program Synthesis By Sketching. PhD thesis, EECS Department, University of

California, Berkeley, Dec 2008.
[8] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and Algorithms for the

Construction and Analysis of Systems, pages 337–340. Springer, 2008.
[9] Emina Torlak and Rastislav Bodik. Growing solver-aided languages with rosette. In Proceedings of the

2013 ACM international symposium on New ideas, new paradigms, and reflections on programming &
software, pages 135–152. ACM, 2013.

[10] Stanislas Dehaene, Véronique Izard, Pierre Pica, and Elizabeth Spelke. Core knowledge of geometry in
an amazonian indigene group. Science, 311(5759):381–384, 2006.

[11] David D. Thornburg. Friends of the turtle. Compute!, March 1983.
[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2324, November 1998.
[13] Mark S Seidenberg and David C Plaut. Quasiregularity and its discontents: the legacy of the past tense

debate. Cognitive science, 38(6):1190–1228, 2014.
[14] Erwin Chan and Constantine Lignos. Investigating the relationship between linguistic representation and

computation through an unsupervised model of human morphology learning. Research on Language and
Computation, 8(2-3):209–238, 2010.

[15] R Piepenbrock Baayen, R and L Gulikers. CELEX2 LDC96L14. Philadelphia: Linguistic Data Consor-
tium, 1995. Web download.

[16] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography. Commun. ACM, 24(6):381–395, June 1981.

[17] Sami Virpioja, Peter Smit, Stig-Arne Grnroos, and Mikko Kurimo. Morfessor 2.0: Python implementation
and extensions for morfessor baseline. Technical report, Aalto University, Helsinki, 2013.

[18] John R. Koza. Genetic programming - on the programming of computers by means of natural selection.
Complex adaptive systems. MIT Press, 1993.

[19] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In ACM SIGARCH Com-
puter Architecture News, volume 41, pages 305–316. ACM, 2013.

[20] Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In POPL,
pages 317–330, New York, NY, USA, 2011. ACM.

[21] Yarden Katz, Noah D. Goodman, Kristian Kersting, Charles Kemp, and Joshua B. Tenenbaum. Modeling
semantic cognition as logical dimensionality reduction. In CogSci, pages 71–76, 2008.

[22] Percy Liang, Michael I. Jordan, and Dan Klein. Learning programs: A hierarchical bayesian approach.
In Johannes Fürnkranz and Thorsten Joachims, editors, ICML, pages 639–646. Omnipress, 2010.

[23] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthesis of loop-free pro-
grams. In PLDI, pages 62–73, New York, NY, USA, 2011. ACM.

[24] D. E. Rumelhart and J. L. McClelland. On learning the past tenses of english verbs. In Parallel dis-
tributed processing: Explorations in the microstructure of cognition, pages Volume 2, 216–271. Bradford
Books/MIT Press, 1986.

[25] John Goldsmith. Unsupervised learning of the morphology of a natural language. Comput. Linguist.,
27(2):153–198, June 2001.

[26] Timothy J. O’Donnell. Productivity and Reuse in Language: A Theory of Linguistic Computation and
Storage. The MIT Press, 2015.

[27] Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. DRAW: A recurrent neural network for
image generation. CoRR, abs/1502.04623, 2015.

9

