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MONGE-KANTOROVICH DEPTH,

QUANTILES, RANKS, AND SIGNS

By Victor Chernozhukov∗, Alfred Galichon†,

Marc Hallin‡, and Marc Henry§

MIT, NYU, Université libre de Bruxelles and Princeton University, Penn State

We propose new concepts of statistical depth, multivariate quan-
tiles, vector quantiles and ranks, ranks, and signs, based on canon-
ical transportation maps between a distribution of interest on IRd

and a reference distribution on the d-dimensional unit ball. The new
depth concept, called Monge-Kantorovich depth, specializes to halfs-
pace depth for d = 1 and in the case of spherical distributions, but,
for more general distributions, differs from the latter in the ability
for its contours to account for non convex features of the distribution
of interest. We propose empirical counterparts to the population ver-
sions of those Monge-Kantorovich depth contours, quantiles, ranks,
signs, and vector quantiles and ranks, and show their consistency by
establishing a uniform convergence property for empirical (forward
and reverse) transport maps, which is the main theoretical result of
this paper.

1. Introduction. The concept of statistical depth was introduced in order to over-
come the lack of a canonical ordering in IRd for d > 1, hence the absence of the related
notions of quantile and distribution functions, ranks, and signs. The earliest and most
popular depth concept is halfspace depth, the definition of which goes back to Tukey [54].
Since then, many other concepts have been considered: simplicial depth [37], majority
depth ([52] and [40]), projection depth ([38], building on [53] and [13], [61]), Mahalanobis
depth ([41], [38], [40]), Oja depth [45], zonoid depth ([34] and [33]), spatial depth ([36],
[44], [6], [57]), Lp depth [62], among many others. An axiomatic approach, aiming at
unifying all those concepts, was initiated by Liu [37] and Zuo and Serfling [62], who list
four properties that are generally considered desirable for any statistical depth function,
namely affine invariance, maximality at the center, linear monotonicity relative to the
deepest points, and vanishing at infinity (see Section 2.2 for details). Halfspace depth is
the prototype of a depth concept satisfying the Liu-Zuo-Serfling axioms for the family P
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of all absolutely continuous distributions on IRd.

An important feature of halfspace depth is the convexity of its contours, which thus
satisfy the star-convexity requirement embodied in the linear monotonicity axiom. That
feature is shared by most existing depth concepts and might be considered undesirable for
distributions with non convex supports or level contours, and multimodal ones. Proposals
have been made, under the name of local depths, to deal with this, while retaining
the spirit of the Liu-Zuo-Serfling axioms: see [7], [30], [1], and [46] who provide an in-
depth discussion of those various attempts. In this paper, we take a totally different
and more agnostic approach, on the model of the discussion by Serfling in [51]: if the
ultimate purpose of statistical depth is to provide, for each distribution P , a P -related
ordering of IRd producing adequate concepts of quantile and distribution functions, ranks
and signs, the relevance of a given depth function should be evaluated in terms of the
relevance of the resulting ordering, and the quantiles, ranks and signs it produces.

Now, the concepts of quantiles, ranks and signs are well understood in two particular
cases, essentially, that should serve as benchmarks. The first case is that of the family P1

of all distributions with nonvanishing Lebesgue densities over convex support sets. Here,
the concepts of quantile and distribution functions, ranks, and signs are related to the
“classical” univariate ones. The second case is that of the family Pd

ell of all full-rank
elliptical distributions over IRd (d > 1) with radial densities over elliptical support sets.
Recall that the family Pd

ell;g = {Pµ,Σ,g} of elliptical distributions with given radial
density g and distribution function G is a parametric family indexed by a location
parameter µ and a scatter parameter Σ (a symmetric positive definite real matrix) such
that a random vector X has distribution Pµ,Σ,g iff the residual Y := Σ−1/2(X−µ), which
results from transforming X into isotropic position, has spherical distribution P0,I,g.
Further, this is equivalent to RP (Y ) = (Y/‖Y ‖)G(‖Y ‖) having the spherical uniform
distribution Ud on the unit ball Sd in IRd. By spherical uniform, we mean the distribution
of a random vector rϕ, where r is uniform on [0, 1], ϕ is uniform on the unit sphere Sd−1,
and r and ϕ are mutually independent. There, spherical contours with Pµ,I,g-probability
contents τ coincide with the halfspace depth contours, and provide a natural definition of
τ -quantile contours for Y , while RP (Y ), RP (Y )/‖RP (Y )‖ and ‖RP (Y )‖ play the roles of
vector ranks, signs, and ranks, respectively ([21, 22, 23, 24, 25]): we call them spherical
vector ranks, signs, and ranks. On the other hand, we call the inverse map u 7−→ QP (u)
of the vector rank map y 7−→ RP (y) = (y/‖y‖)G(‖y‖) the vector quantile map. In both
cases, the relevance of ranks and signs, whether traditional or spherical, is related to their
role as maximal invariants under groups of transformations minimally generating P1 or
the family Pd

sph = {P0,I,f} of spherical distributions, of which distribution-freeness of RP

is just a by-product, as explained in [26]. We argue that an adequate depth function,
when restricted to those two particular cases, should lead to the same well-established
concepts—classical quantiles, ranks and signs for P1, and spherical ones for Pd

sph—hence
should coincide with halfspace depth.

Now, a closer look at those two particular cases reveals that halfspace depth contours,
in P1 and Pd

sph, are the images, by the vector quantile map QP , of the hyperspheres S(τ)
with radii τ ∈ [0, 1) centered at the origin. The map QP is the gradient of a convex



MONGE-KANTOROVICH DEPTH 3

function and it transports the spherical uniform distribution Ud on the unit ball Sd of IRd

into the univariate distribution P ∈ P1 or into the spherical distribution P = P0,I,f of
interest.

For the case of general distributions P , we proceed similarly, and define the map QP

as a gradient of a convex function that transform the spherical uniform distribution Ud

into the target distribution, namely if U ∼ Ud then Y = QP (U) ∼ P . It follows by
McCann’s [42] extension of Brenier’s celebrated Polar Factorization Theorem [4] that, for
any distribution P on IRd, such a gradient QP exists, and is essentially unique. Moreover,
when P has finite moments of order two, that mapping QP is the Monge-Kantorovich
optimal transport map that transfers the spherical uniform distribution Ud to P , where
optimality is the sense of minimizing the expected quadratic cost minQ IEU(Q(U)−U)2

subject to U ∼ Ud and Q(U) ∼ P .

This suggests a new concept of statistical depth, which we call the Monge-Kantorovich
(or MK) depth DMK, the contours of which are obtained as the images by QP of the
hyperspheres with radius τ ∈ [0, 1]. When restricted to P1 or Pd

sph, Monge-Kantorovich
and halfspace depths coincide. Under suitable regularity conditions due to Caffarelli
(see [58], Section 4.2.2), QP is a homeomorphism, and its inverse RP := Q−1

P is also the
gradient of a convex function; the Monge-Kantorovich depth contours are continuous and
the corresponding depth regions are nested, so that Monge-Kantorovich depth indeed
provides a center-outward ordering of IRd, namely,

(1) y2 ≥DMK
P

y1 if and only if ‖RP (y2)‖ ≤ ‖RP (y1)‖.

Thus, our approach based on the theory of measure transportation allows us to define

(a) an MK vector quantile map QP , and the associated MK quantile correspondence,
which maps τ ∈ [0, 1] to QP (S(τ)),

(b) an MK vector rank (or MK signed rank) function RP , which can be decomposed into
an MK rank function rP from IRd to [0, 1], with rP (x) := ‖RP (x)‖, and an MK sign
function uP , mapping x ∈ IRd to uP (x) := RP (x)/‖RP (x)‖ ∈ Sd−1.

To the best of our knowledge, this is the first proposal of a depth concept based on the
Monge-Kantorovich theory of measure transportation —hence the first attempt to pro-
vide a measure-driven ordering of IRd based on measure transportation theory. Previous
proposals have been made, however, of measure transportation-based vector quantile
functions in Ekeland, Galichon and Henry [17] and Galichon and Henry [18] (with mo-
ment conditions) and Carlier, Chernozhukov and Galichon [5] (dropping moment con-
ditions) who also extended the notion to vector quantile regression, creating a vector
analogue of Koenker and Basset’s [32] scalar quantile regression. More recently, De-
curninge [9] proposed a new concept of multivariate Lp moments based upon a similar
notion. In these contributions, however, the focus is not statistical depth and the asso-
ciated ranks and quantiles, and the leading case for the reference distribution is uniform
on the unit hypercube in IRd, as opposed to the spherical uniform distribution Ud we
adopt here as leading case, while pointing out that other reference distributions may be
entertained, such as the standard Gaussian distribution on IRd or the uniform on the
hypercube [0, 1]d as mentioned above.
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We then proceed to define the empirical notions corresponding to the concepts given
above. We define the empirical MK vector quantiles and ranks as the essentially unique
gradients Q̂n and R̂n of a pair of convex functions solving the Kantorovich dual problem
for the Monge optimal transport with quadratic costs. Using the plug-in principle, we
then define the empirical rank and sign maps as ‖R̂n‖ and R̂n/‖R̂n‖ and the empirical
τ -quantile sets and contours as Q̂n(S(τ)) and Q̂n(S(τ)). We establish the uniform con-
vergence of these quantities to their theoretical counterparts. We derive these results as
a consequence of the uniform convergence of empirical transport (vector quantile and
rank) maps Q̂n and R̂n to their theoretical counterparts QP and RP on compact sub-
sets of the domain’s interior. This is the main theoretical result of the paper presented
in Theorem 3.1. This result in turn is derived through an application of the extended
continuous mapping theorem and a set of new theorems on stability of transport under
deterministic perturbations of the source and target measures, given as Theorems A.1
and A.2 in the Appendix, which are new results of independent interest. Application of
the extended continuous mapping theorem allows to us then to replace the deterministic
perturbations by stochastic perturbations of measures and obtain the stochastic uniform
convergence of the empirical transport maps.

Notation, conventions and preliminaries. Let (Ω,A, IP) be some probability space.
Throughout, P denotes a class of probability distributions over IRd—unless otherwise
specified, the class of all Borel probability measures on IRd. Denote by S

d := {x ∈ IRd :
‖x‖ ≤ 1} the unit ball, and by Sd−1 := {x ∈ IRd : ‖x‖ = 1} the unit sphere, in IRd.
For τ ∈ (0, 1], S(τ) := {x ∈ IRd : ‖x‖ ≤ τ} is the ball, and S(τ) := {x ∈ IRd : ‖x‖ = τ}
the sphere, of radius τ . Let PX stand for the distribution of the random vector X. The
symbol ∂ will denote either the boundary of a set or the subdifferential, as will be clear
from the context. Following Villani [58], we denote by g#µ the image measure (or push-
forward) of a measure µ ∈ P by a measurable map g : IRd → IRd. Explicitly, for any
Borel set A, g#µ(A) := µ(g−1(A)). For a Borel subset D of a vector space equipped with
the norm ‖ · ‖ and f : D 7→ IR, let

‖f‖BL(D) := sup
x

|f(x)| ∨ sup
x 6=x′

|f(x)− f(x′)|‖x− x′‖−1.

For two probability distributions P and P ′ on a measurable space D, define the bounded
Lipschitz metric as

dBL(P,P
′) := ‖P − P ′‖BL := sup

‖f‖BL(D)≤1

∫

fd(P − P ′),

which metrizes the topology of weak convergence. Throughout the paper, we let U and Y
be convex subsets of IRd with non-empty interiors. A convex function ψ on U refers to a
function ψ : U → IR∪{+∞} for which ψ((1−t)x+tx′) ≤ (1−t)ψ(x)+tψ(x′) for any (x, x′)
such that ψ(x) and ψ(x′) are finite and for any t ∈ (0, 1). Such a function is continuous
on the interior of the convex set dom ψ := {x ∈ U : ψ(x) < ∞}, and differentiable
Lebesgue-almost everywhere in dom ψ, by Rademacher’s theorem. Write ∇ψ for the
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gradient of ψ. For any function ψ : U 7→ IR∪ {+∞}, the conjugate ψ∗ : Y 7→ IR∪ {+∞}
of ψ is defined for each y ∈ Y by

ψ∗(y) := sup
z∈U

[y⊤z − ψ(z)].

The conjugate ψ∗ of ψ is a convex lower-semi-continuous function on Y. We shall call a
conjugate pair of potentials over (U ,Y) any pair of lower-semi-continuous convex func-
tions (ψ,ψ∗) that are conjugates of each other. The transpose of a matrix A is de-
noted A⊤. Finally, we call weak order a complete reflexive and transitive binary relation.
Finally, recall the definition of Hausdorff distance between two non-empty sets A and B
in IRd:

dH(A,B) := sup
b∈B

inf
a∈A

‖a− b‖ ∨ sup
a∈A

inf
b∈B

‖a− b‖.

Outline of the paper. Section 2 introduces and motivates the concepts of statistical
depth, vector quantiles and vector ranks based on optimal transport maps. Section 3
describes estimators of depth contours, quantiles and ranks, and proves consistency of
these estimators. Section 4 describes computational characterizations. The appendix
presents additional theoretical results and proofs.

2. Statistical depth and vector ranks and quantiles.

2.1. Statistical depth, regions and contours. The notion of statistical depth serves
to define a center-outward ordering of points in the support of a distribution on IRd,
for d > 1. As such, it emulates the notion of quantile for distributions on the real line.
We define it as a real-valued index on IRd as follows.

Definition (Depth and ordering). A depth function is an upper-semi-continuous
mapping D : IRd 7−→ IR. In our context these functions will be indexed by a distribu-
tion P . The quantity DP (x) is called the depth of x relative to P . For each P ∈ P, the
depth ordering ≥DP

associated with DP is the weak order on IRd defined, for (y1, y2) ∈ IR2d,
by

y1 ≥DP
y2 if and only if DP (y1) ≥ DP (y2),

in which case y1 is said to be deeper than y2 relative to P .

The depth function thus defined allows graphical representations of the distribution P
through depth contours, which are collections of points of equal depth relative to P .

Definition (Depth regions and contours). Let DP be a depth function relative to
distribution P on IRd. The region of depth d is the upper contour set of level d of DP ,
namely CP (d) = {x ∈ IRd : DP (x) ≥ d}; the contour of depth d is the boundary CP (d) =
∂CP (d).

By construction, the depth regions are nested:

∀(d, d′) ∈ IR2
+, d

′ ≥ d =⇒ CP (d
′) ⊆ CP (d).
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Hence, the depth ordering qualifies as a center-outward ordering of points in IRd relative
to the center given by the set of the deepest points, arg supx∈IRd DP (x).

It is often convenient to work with depth regions indexed by their probability content.

Definition (Depth regions with probability content τ). For τ ∈ [0, 1], the depth
region with probability content at least τ is

KP (τ) := CP (d(τ)), d(τ) := inf{d ∈ IR : IPP (C(d)) ≥ τ};

the corresponding contour region is the boundary KP (τ) := ∂KP (d).

Fig 1. Tukey halfspace depth contours for a banana-shaped distribution, produced with the algorithm of
Paindaveine and Šiman [47] from a sample of 9999 observations. The banana-like geometry of the data
cloud is not picked by the convex contours, and the deepest point is close to the boundary of the support.

2.2. Liu-Zuo-Serfling axioms and Tukey’s halfspace depth. The four axioms proposed
by Liu [37] and Zuo and Serfling [62] to unify the diverse depth functions proposed in
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the literature are the following.

(A1) (Affine invariance) DPAX+b
(Ax+ b) = DPX

(x) for any x ∈ R
d, any full-rank d× d

matrix A, and any b ∈ IRd.
(A2) (Maximality at the center) If x0 is a center of symmetry for P (symmetry here can

be either central, angular or halfspace symmetry), it is deepest, that is, DP (x0) =
maxx∈IRd DP (x).

(A3) (Linear monotonicity relative to the deepest points) If DP (x0) = maxx∈IRd DP (x),
then DP (x) ≤ DP ((1 − α)x0 + αx) for all α ∈ [0, 1] and x ∈ IRd: depth is mono-
tonically decreasing along any straight line running through a deepest point.

(A4) (Vanishing at infinity) lim‖x‖→∞DP (x) = 0.

The earliest and most popular depth function is halfspace depth proposed by Tukey [54]:

Definition (Tukey’s halfspace depth). The halfspace depth DTukey
P (x) of a point

x ∈ IRd with respect to the distribution PX of a random vector X on IRd is defined as

DTukey
PX

(x) := min
ϕ∈Sd−1

IP[(X − x)⊤ϕ ≥ 0].

Halfspace depth relative to any distribution with nonvanishing density on IRd sat-
isfies (A1)-(A4). The appealing properties of halfspace depth are well known and well
documented: see Donoho and Gasko [14], Mosler [43], Koshevoy [33], Ghosh and Chaud-
huri [19], Cuestas-Albertos and Nieto-Reyes [8], Hassairi and Regaieg [29], to cite only
a few. Halfspace depth takes values in [0, 1/2], and its contours are continuous and con-
vex; the corresponding regions are closed, convex, and nested as d decreases. Under very
mild conditions, halfspace depth moreover fully characterizes the distribution P . For
somewhat less satisfactory features, however, see Dutta et al. [15]. An important feature
of halfspace depth is the convexity of its contours, which implies that halfspace depth
contours cannot pick non convex features in the geometry of the underlying distribution,
as illustrated in Figure 1.

We shall propose below a new depth concept, the Monge-Kantorovich (MK) depth,
that relinquishes the affine equivariance and star convexity of contours imposed by Ax-
ioms (A1) and (A3) and recovers non convex features of the underlying distribution. As
a preview of the concept, without going through any definition, we illustrate in Figure 2
(using the same banana-shaped distribution as in Figure 1) the ability of the MK depth
to capture non-convexities. In what follows, we characterize these abilities more formally.
We shall emphasize that this notion comes in a package with new, interesting notions of
vector ranks and quantiles, based on optimal transport, which reduce to classical notions
in the univariate and multivariate spherical cases.

2.3. Monge-Kantorovich depth. The principle behind the notion of depth we define
here is to map the depth regions and contours relative to a well-chosen reference distri-
bution F , into depth contours and regions relative to a distribution of interest P on IRd,
using a well-chosen mapping. The mapping proposed here is the gradient of a convex
function ∇ψ such that if U has distribution F , then Y = ∇ψ(U) has distribution P ,
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or, in terms of measures, ∇ψ#F = P . The gradient ∇ψ is said to to push F forward
to P , which is conventionally denoted by the push-forward notation, ∇ψ#F = P , which
is defined in the notation section.

The gradient of a convex function property is a generalization of monotonicity in the
one-dimensional case. When F and P have finite second-order moments, these maps are
the optimal Monge-Kantorovich transport maps from F to P for the quadratic cost,
as explained below. In the unidimensional case, when F is the standard uniform, the
gradient/optimal transport map ∇ψ coincides with the classical quantile function.

Fig 2. The Monge-Kantorovich depth contours for the same banana-shaped distribution from a sample
of 9999 observations, as in Figure 1. The banana-like geometry of the data cloud is correctly picked up
by the non convex contours.

The following theorem, due to Brenier [4] and McCann [42], establishes existence of
gradients of convex functions with the required properties.
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Theorem 2.1 (Brenier-McCann’s Existence Result). Let P and F be two distri-
butions on IRd. (1) If F is absolutely continuous with respect to the Lebesgue measure
on R

d, with support contained in a convex set U , the following holds: there exists a con-
vex function ψ : U → IR ∪ {+∞} such that ∇ψ#F = P . The function ∇ψ exists and
is unique, F -almost everywhere. (2) If, in addition, P is absolutely continuous on R

d

with support contained in a convex set Y, the following holds: there exists a convex func-
tion ψ∗ : Y → IR ∪ {+∞} such that ∇ψ∗#P = F . The function ∇ψ∗ exists, is unique
and equal to ∇ψ−1, P -almost everywhere.

Remark 2.1 (Interpretation as a Monge-Brenier Optimal Transport). If P and F
have finite second moments, Q is F -almost everywhere equal to the optimal transport
plan ∇ψ from F to P for quadratic cost: namely, the map Q : IRd −→ IRd solves the
problem

inf
Q

∫

(u−Q(u))2dF (u) : Q#F = P,

or, equivalently,

sup
Q

∫

u⊤Q(u) dF (u) : Q#F = P.(2)

This definition has a classical counterpart in the case of univariate distributions. When
d = 1 and F is uniform on [0, 1], the optimal transport u 7→ Q(u) is the classical quantile
function for distribution P . �

We now state a fundamental duality result due to Kantorovich and Brenier, which we
explicitly rely on in Section 3.

Theorem 2.2 (Kantorovich-Brenier, see [58]). Suppose hypothesis (1) of Theorem 2.1
holds and P and F have finite second moments, then the function ψ, or optimal potential,
solves the optimization problem

∫

ψdF +

∫

ψ∗dP = inf
(ϕ,ϕ∗)

(
∫

ϕdF +

∫

ϕ∗dP

)

,(3)

where the infimum is taken over the class of conjugate pairs of potentials (ϕ,ϕ∗) over (U ,Y).

Remark 2.2. This problem is dual to the optimal transport problem (2). Moreover,
under the hypotheses of Theorem 2.2, ∇ψ is the unique optimal transport map from F
to P for quadratic cost, in the sense that any other optimal transport coincides with ∇ψ
on a set of F -measure 1 (see [58]). Under the hypotheses of Theorem 2.2 and hypothe-
sis (2) of Theorem 2.1, ∇ψ∗ is the unique optimal (reverse) transport map from P to F
for quadratic cost, in the sense that any other optimal transport coincides with ∇ψ∗ on
a set of P -measure one (see [58]). �
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Next we use Theorem 2.1 to define a natural notion of vector quantiles and vector
ranks.

Definition 2.1 (Monge-Kantorovich vector quantiles and ranks). Let F be an ab-
solutely continuous reference distribution with support in a convex set U ⊆ IRd, and
let P be an arbitrary distribution with support in a convex set Y ⊆ IRd. Let ∇ψ be the
F -almost surely unique gradient of a convex function ψ of Theorem 2.1 and let ψ∗ be
the conjugate of ψ over (U ,Y). Vector quantiles and ranks are defined as follows:

QP (u) ∈ arg sup
y∈Y

[y⊤u− ψ∗(y)], u ∈ U ; RP (y) ∈ arg sup
u∈U

[y⊤u− ψ(u)], y ∈ IRd.

Remark 2.3. Thus we define the MK vector quantiles QP and ranks RP as any
solutions of the optimization problems in the display above. Our definition here does not
impose any moment condition and ensures that the quantities are defined for every value
of the argument in the appropriate domains. By the envelope theorem and Rademacher’s
theorem ([58]), the maps QP and RP essentially coincide with the gradients ∇ψ and ∇ψ∗

of conjugate potentials ψ and ψ∗, namely

(4) QP = ∇ψ a.e. on U , RP = ∇ψ∗ a.e. on Y,

where “a.e.” abbreviates “almost everywhere with respect to the Lebesgue measure”. In
the fact, the equality holds everywhere on certain domains under condition (C) stated
below. Under the conditions of Theorem 2.2, the pair (ψ,ψ∗) has the variational char-
acterization given in (3). �

When requiring regularity of vector quantiles and ranks, we shall impose the following
condition on the conjugate pair of optimal potentials (ψ,ψ∗) over (U ,Y).

(C) Let U and Y be closed, convex subsets of IRd, and U0 ⊂ U and Y0 ⊂ Y be open,
non-empty sets in IRd. Let ψ : U 7→ IR and ψ∗ : Y 7→ IR form a conjugate pair
over (U ,Y) and possess gradients ∇ψ(u) for all u ∈ U0, and ∇ψ∗(y) for all y ∈ Y0.
The gradients ∇ψ|U0 : U0 7→ Y0 and ∇ψ∗|Y0 : Y0 7→ U0 are homeomorphisms
and ∇ψ|U0 = (∇ψ∗|Y0)

−1.

Under Condition (C), we have:

(5) QP (u) = ∇ψ(u) for all u ∈ U0, RP (y) = ∇ψ∗(y) = (∇ψ)−1 (y) for all y ∈ Y0,

that is, vector ranks and quantiles are defined as gradients of conjugate potentials for
each (as opposed to almost every) value in the indicated sets, and inverse functions of
each other.

Sufficient conditions for Condition (C) in the context of Definition 2.2 are provided by
Caffarelli’s regularity theory (Villani [58], Theorem 4.14). One set of sufficient conditions
is as follows.
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Lemma 2.1 (Caffarelli’s Regularity, [58], Theorem 4.14). Suppose that P and F
admit densities, which are of smoothness class Cβ for β > 0 on convex, compact support
sets cl(Y0) and cl(U0), and the densities are bounded away from zero and above uniformly
on the support sets. Then Condition (C) is satisfied for the conjugate pair (ψ,ψ∗) such
that ∇ψ#F = P and ∇ψ∗#P = F.

We now can give our main definition – that of multivariate notions of quantiles and
ranks, through which a depth function will be inherited from the reference distribu-
tion F = Ud.

Definition 2.2 (Monge-Kantorovich depth, quantiles, ranks and signs). Let F
be the spherical uniform distribution Ud on a unit ball U = S

d, and P be an arbitrary
distribution with support in a convex region Y ⊆ IRd. MK quantiles, ranks, signs and
depth are defined as follows.

1. The MK rank of y ∈ IRd is ‖RP (y)‖ and the MK sign is RP (y)/‖RP (y)‖.
2. The MK τ -quantile contour is the set QP (S(τ)) and the MK depth region with

probability content τ is QP (S(τ)).

3. The MK depth of y ∈ IRd is the depth of RP (y) under D
Tukey
Ud

:

DMK
P (y) := DTukey

Ud
(RP (y)).

The notion of depth proposed in Definition 2.2 is based on an optimal transport map
from the reference spherical uniform distribution F = Ud to the distribution of interest P .
Under Condition (C), QP and RP are continuous and are mutual inverse maps, so that
the MK τ -quantile contours are continuously deformable into spheres and the MK depth
regions with probability content τ are nested.

By choosing other reference distributions F , such as the uniform distribution on a unit
hypercube, or the standard Gaussian distribution, we can give a more general definition
of MK ranks, quantiles, and signs, which may be of interest.

Definition 2.3 (Monge-Kantorovich depth, quantiles, ranks and signs for general F ).
Let F be an absolutely continuous reference distribution with support contained in a
convex region U ⊆ R

d, and let ‖ · ‖ be a norm on U . Let DF : IRd → R+ be an
associated reference depth function and K(τ) the associated τ -quantile contour and K(τ)
the associated depth region with probability content τ . The MK quantiles, ranks, signs
and depth are defined as follows.

1. The MK rank of y ∈ IRd is ‖RP (y)‖ and the MK sign is RP (y)/‖RP (y)‖.
2. The MK τ -quantile is the set QP (K(τ)) and the MK depth region with probability

mass τ is QP (K(τ)).
3. The MK depth of y ∈ IRd is the depth of RP (y) under DF :

DMK
P (y) := DF (RP (y)).
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Of course, all the quantities thus defined depend on the choice of the reference distri-
bution F and the depth function DF .

Remark 2.4. When the reference distribution F is spherical, it is natural to use
Tukey’s depth function DF = DTukey

F to define the MK depth of y ∈ IRd relative to P as
the halfspace depth of RP (y) relative to the reference distribution F , namely

DMK
P (y) := DTukey

F (RP (y)).

The choice of halfspace depth may be less natural for non-spherical reference distribu-
tions. One example is where F is the standard uniform distribution U [0, 1]d on the unit
cube [0, 1]d. Then it seems natural to use the sup norm ‖ · ‖∞ as the norm ‖ · ‖ and the
depth function DU [0,1]d(y) = 1/2−‖y−1/2‖∞, where 1 = (1, . . . , 1)′, in which case K(τ)

is a cube of diameter τ1/d centered at 1/2. In this case, the MK depth is

DMK
P (y) := DU [0,1]d(RP (y)).

2.4. Monge-Kantorovich depth with spherical uniform reference distribution. Here we
consider in more detail the Monge-Kantorovich depth defined from a baseline spherical
uniform distribution Ud supported on the unit ball Sd of IRd. Recall that this distribution
is that of a random vector rϕ, where r is uniform on [0, 1], ϕ is uniform on the unit
sphere Sd−1, and r and ϕ are mutually independent.

The spherical symmetry of distribution Ud produces halfspace depth contours that
are concentric spheres, the deepest point being the origin. The radius τ of the ball
S(τ) = {x ∈ IRd : ‖x‖ ≤ τ} is also its Ud-probability contents, that is, τ = Ud(S(τ)).
Letting θ := arccos τ , the halfspace depth with respect to Ud of a point τu ∈ S(τ) :=
{x ∈ IRd : ‖x‖ = τ}, where τ ∈ (0, 1] and u ∈ S

d, is

(6) DU (τu) =

{

π−1[θ − cos θ log | sec θ + tan θ|] d ≥ 2
(1− τ)/2 d = 1.

Note that for d = 1, u takes values ±1 and, in agreement with rotational symmetry
of Ud, that depth does not depend on u.

The principle behind the notion of depth we investigate further here is to map the
depth regions and contours relative to the spherical uniform distribution Ud, namely, the
concentric spheres, into depth contours and regions relative to a distribution of interest P
on IRd using the optimal transport plan from Ud to P . Under the sufficient conditions for
Condition (C) provided in Lemma 2.1 (note that the conditions on F are automatically
satisfied in case F = Ud), QP and RP are continuous and are inverse maps of each other,
so that the MK depth contours are continuously deformable into spheres, the MK depth
regions are nested, and regions and contours, when indexed by probability content, take
the respective forms

QP (S(τ)) and QP (S(τ)) , for τ ∈ (0, 1].



MONGE-KANTOROVICH DEPTH 13

MK depth is halfspace depth in dimension 1. The halfspace depth of a point x ∈ IR
relative to a distribution P over IR takes the very simple form

DTukey
P (x) = min(P (x), 1 − P (x)),

where, by abuse of notation, P stands for both distribution and distribution function.
The nondecreasing map defined for each x ∈ IR by x 7→ RP (x) = 2P (x) − 1 is the
derivative of a convex function and it transports distribution P to U1, which is uni-
form on [−1, 1], i.e., RP#P = U1. Hence RP coincides with the MK vector rank of
Definition 2.2. Therefore, for each x ∈ IR,

DP (x) = DTukey
Ud

(RP (x)) = min(P (x), 1 − P (x))

and MK depth coincides with Tukey depth in case of all distributions with nonvanishing
densities on the real line.

More generally (still in the univariate case), denoting by F1 and F2 the distribu-
tion functions associated with two absolutely continuous distributions P1 and P2, the
mapping F−1

2 ◦ F1, being monotone increasing, is also the optimal transport from P1

to P2. The same transformation has been studied, in a different context, by Doksum [11]
and Doksum and Sievers [12]; see also the concept of convex ordering proposed by van
Zwet [56].

MK depth is halfspace depth for elliptical families. As explained in the introduction, a
d-dimensional random vector X has elliptical distribution Pµ,Σ,g with location µ ∈ IRd,
positive definite symmetric d × d scatter matrix Σ and radial density function g (ra-
dial distribution function G) if and only if, denoting by Σ1/2 the symmetric root of Σ,
Y := Σ−1/2(X − µ) has spherical distribution P = P0,I,g (hence ‖Y ‖ has density f),
which holds if and only if

(7) RP (Y ) :=
Y

‖Y ‖
G
(

‖Y ‖
)

is distributed according to Ud.

Let Ψ(t) =
∫ t
−∞G(r)dr, and note that the map z 7→ RP (z) is the gradient of ψ∗(z) :=

Ψ(‖z‖) so that, from (7), ∇ψ∗#P = Ud as Definition 2.2 requires. That ψ∗ is convex
follows from Theorem 5.1 of [49] by noting that ψ∗ is a composition of Ψ : IR → IR,
a convex, non-decreasing map, and ‖ · ‖ : IRd → R, a convex function by definition of
the norm. As a consequence, the mapping RP in (7) is the MK vector rank function
associated with P = P0,I,f ; and, the MK depth contours (with probability content τ)
of P are spheres with radii G−1(τ) centered at the origin:

DP (x) = {y ∈ IRd : ‖y‖ ≤ G−1(τ)}.

These spheres are halfspace depth contours for P . This is the precise sense in which MK
depth reduces to halfspace for elliptical families.

It should be noted above, that we treat location and scatter parameters as known,
and transform X to a vector Y in isotropic position. This transformation ensures basic
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invariance properties of the resulting depth, ranks, and quantiles with respect to affine
transformations. When those parameters are unknown, they will have to be replaced with
by affine-equivariant estimators, as in the usual definition of elliptical ranks and signs
(see,e.g., [21]) in order to insure similar invariance properties for the empirical analogs.
Without the aforementioned transformation, however, the invariance properties are not
guaranteed, owing to the fact that composition of two gradients of convex functions is
not necessarily the gradient of a convex function, unless the composition has a specific
structure, as is the case above.

3. Empirical depth, ranks and quantiles. Having defined Monge-Kantorovich
vector quantiles, ranks and depth relative to a distribution P based on reference dis-
tribution F on IRd, we now turn to the estimation of these quantities. Hereafter, we
shall assume that Condition (C) holds. Then, the MK vector quantiles and ranks of
Definition 2.2 are

(8) QP (u) := ∇ψ(u), RP (y) := ∇ψ∗(y) = (∇ψ)−1 (y),

for each u ∈ U0 and y ∈ Y0, respectively. We define Φ0(U ,Y) as a collection of conjugate
potentials (ϕ,ϕ∗) on (U ,Y) such that ϕ(u0) = 0 for some fixed point u0 ∈ U0. Under the
conditions of Theorem 2.2, the potentials (ψ,ψ∗) solve the dual problem

(9)

∫

ψdF +

∫

ψ∗dP = inf
(ϕ,ϕ∗)∈Φ0(U ,Y)

∫

ϕdF +

∫

ϕ∗dP.

Constraining the conjugate pair to lie in Φ0(U ,Y) is a normalization that (without any
loss of generality) pins down the constant, so that (ψ,ψ∗) are uniquely determined, as
argued in the proof.

We propose empirical versions of MK quantiles and ranks based on estimators P̂ of P .
The typical case is when the reference measure F is known. However, our theory allows
us to handle the case where F is itself unknown, and so it is estimated by some F̂ . This is
indeed useful for at least two reasons. First, we may be interested in a classical problem
of comparing one distribution P to a reference distribution F , both of which are known
only up to a random sample available from each of them. Second, we may be interested
in discretizing F for computational reasons, as we discuss in Section 4, in which case the
discretized F is the estimator of F .

3.1. Conditions on estimators of P and F . Suppose that {P̂n}
∞
n=1 and {F̂n}

∞
n=1 are

sequences of random measures on Y and U , with finite total mass, that are consistent
for P and F , in the sense that

(10) dBL(P̂n, P ) →IP∗ 0, dBL(F̂n, F ) →IP∗ 0,

where →IP∗ denotes convergence in (outer) probability under probability measure IP, see
van der Vaart and Wellner [55]. A basic example is where P̂n is the empirical distri-
bution of a random sample (Yi)

n
i=1 drawn from P and F̂n is the empirical distribution
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of a random sample (Ui)
n
i=1 drawn from F . Other, much more complicated examples,

including smoothed empirical measures and data originating from dependent processes,
satisfy sufficient conditions for (10) that we now give. In order to develop some examples,
we introduce an ergodicity condition:

(E) Let W be a measurable subset of IRd. A data stream {(Wt,n)
n
t=1}

∞
n=1, with Wt,n ∈

W ⊆ IRd for each t and n, is ergodic for the probability law PW on W if for
each g : W 7→ IR such that ‖g‖BL(W) <∞, the law of large numbers holds:

(11)
1

n

n
∑

t=1

g(Wt,n) →IP

∫

g(w)dPW (w).

The class of ergodic processes is extremely rich, including in particular the following
cases:

(E.1) Wt,n =Wt, where (Wt)
∞
t=1 are independent, identically distributed random vectors

with distribution PW ;
(E.2) Wt,n = Wt, where (Wt)

∞
t=1 is stationary strongly mixing process with marginal

distribution PW ;
(E.3) Wt,n = Wt, where (Wt)

∞
t=1 is an irreducible and aperiodic Markov chain with

invariant distribution PW ;
(E.4) Wt,n = wt,n, where (wt,n)

n
t=1 is a deterministic sequence of points such that (11)

holds deterministically.

For a detailed motivation and discussion of the use of deterministic sequences such as,
for example, the so-called low-discrepancy sequences: see, e.g., Chapter 9 and, more
particularly, page 314 of [31].

Thus, if the data stream {(Wt,n)
n
t=1}

∞
n=1 is ergodic for PW , we can estimate PW by

the empirical and smoothed empirical measures

P̂W (A) =
1

n

n
∑

t=1

1{Wt,n ∈ A}, P̃W (A) =
1

n

n
∑

t=1

∫

IRd

1{Wt,n + hnε ∈ A ∩W}dΦ(ε),

where Φ is the probability law of the standard d-dimensional Gaussian vector, N(0, Id),
and hn ≥ 0 a semi-positive-definite matrix of bandwidths such that ‖hn‖ → 0 as n→ ∞.
Note that P̃W may not integrate to 1, since we are forcing it to have support in W.

Lemma 3.1. Suppose that PW is absolutely continuous with support in the compact
set W ⊂ R

d. If {(Wt,n)
n
t=1}

∞
n=1 is ergodic for PW on W, then

dBL(P̂W , PW ) →IP∗ 0, dBL(P̃W , PW ) →IP∗ 0.

Thus, if PY := P and PU := F are absolutely continuous with support sets contained in
compact sets Y and U , and if {(Yt,n)

n
t=1}

∞
n=1 is ergodic for PY on Y and {(Ut,n)

n
t=1}

∞
n=1

is ergodic for PU on U , then P̂n = P̂W or P̃W and F̂n = P̂U or P̃U obey condition (10).

Absolute continuity of PW in Lemma 3.1 is invoked to show that the smoothed esti-
mator P̃W is asymptotically non-defective.
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3.2. Empirical vector quantiles and ranks. We base empirical versions of MK quan-
tiles, ranks and depth on estimators P̂n for P and F̂n for F satisfying (10). This includes
cases where the reference measure F is known, i.e. F̂n = F . Recall Assumption (C) is
maintained throughout this section.

Definition 3.1 (Empirical Monge-Kantorovich vector quantiles and ranks). Em-
pirical vector quantile Q̂n and vector rank R̂n are any pair of functions satisfying, for
each u ∈ U and y ∈ Y,

(12) Q̂n(u) ∈ arg sup
y∈Y

[y⊤u− ψ̂∗
n(y)], R̂n(y) ∈ arg sup

u∈U
[y⊤u− ψ̂n(u)],

where (ψ̂n, ψ̂
∗
n) ∈ Φ0(U ,Y) is such that

(13)

∫

ψ̂ndF̂n +

∫

ψ̂∗
ndP̂n = inf

(ϕ,ϕ∗)∈Φ0(U ,Y)

∫

ϕdF̂n +

∫

ϕ∗dP̂n.

We now state the main result of Section 3.

Theorem 3.1 (Uniform Convergence of Empirical Transport Maps). Suppose that
the sets U and Y are compact subsets of IRd, and that the probability measures P and F
are absolutely continuous with respect to the Lebesgue measure, with support(P ) ⊆ Y
and support(F ) ⊆ U . Suppose that {P̂n} and {F̂n} are sequences of random measures
on Y and U , with finite total mass, that are consistent for P and F in the sense of (10).
Suppose that Condition (C) holds for the solution of (9) for Y0 := int(support(P ))
and U0 := int(support(F )). Then, as n→ ∞, for any closed set K ⊂ U0 and any closed
set K ′ ⊂ Y0,

sup
u∈K

‖Q̂n(u)−QP (u)‖ →IP∗ 0, sup
y∈K ′

‖R̂n(y)− RP (y)‖ →IP∗ 0,

and
sup
A⊆K

dH(Q̂n(A),QP (A)) →IP∗ 0, sup
A′⊆K ′

dH(R̂n(A
′),RP (A

′)) →IP∗ 0,

where the suprema are taken over nonempty subsets.

The first result establishes the uniform consistency of empirical vector quantile and
rank maps, hence also of empirical ranks and signs. The set QP (K) with K = K(τ) is the
statistical depth contour with probability content τ . The second result, therefore, estab-
lishes consistency of the approximation Q̂n(K) to the theoretical depth region QP (K).

3.3. Empirical MK quantiles, ranks, and signs and their convergence. We work with
the conditions of the previous theorem, but here, for the sake of simplicity, we first
consider the lead case where F is known, i.e. F̂n = F .

Definition 3.2 (Empirical MK depth, quantiles, ranks and signs for known F ).
Let F be an absolutely continuous reference distribution with support contained in a
convex region U ⊆ R

d, and let ‖ · ‖ be a norm on U . The MK empirical quantiles, ranks,
signs and depth are defined as follows.
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1. The MK empirical rank and sign of y ∈ IRd are ‖R̂n(y)‖ and R̂n(y)/‖R̂P (y)‖.
2. The MK empirical τ -quantile contour is the set Q̂n(K(τ)) and the MK empirical

depth region with probability mass τ is Q̂n(K(τ)).
3. The MK empirical depth of y ∈ IRd is the depth of R̂n(y) under DF :

D̂MK
P,n (y) := DF (R̂n(y)).

Uniform convergence of empirical MK rank, signs and depth to their theoretical coun-
terparts follows by an application of the Extended Continuous Mapping Theorem.

Corollary 3.1. Work with the assumptions of Theorem 3.1, and assume that DF

is continuous on U0. As n→ ∞, for any closed set K ′ ⊂ Y0,

sup
y∈K ′

|‖R̂n(y)‖ − ‖RP (y)‖| →IP∗ 0,

sup
y∈K ′

|R̂n(y)/‖R̂n(y)‖ −Rn(y)/‖RP (y)‖
∣

∣ →IP∗ 0,

sup
y∈K ′

|D̂MK
P,n (y)−DMK

P (y)| →IP∗ 0.

Uniform convergence of MK empirical τ -quantile contours and MK empirical depth
regions with probability content τ follows also through an application of the Extended
Continuous Mapping Theorem.

Corollary 3.2. Work with the assumptions of Theorem 3.1. Consider T ⊂ (0, 1)
such that cl(∪τ∈T K(τ)) ⊂ U0, then

sup
τ∈T

dH(Q̂n(K(τ)),QP (K(τ))) →IP∗ 0, sup
τ∈T

dH(Q̂n(K(τ)),QP (K(τ))) →IP∗ 0.

The main results are derived assuming we know the reference distribution F and the
associated depth function DF as well as depth regions K(τ) and quantile contours K(τ).
There are cases where these will be approximated numerically or using data. The same
definitions and results extend naturally where these quantities are replaced by uniformly
consistent estimators D̂F,n, K̂n(τ), and K̂n(τ):

(14)

supu∈K |D̂F,n(u)−DF (u)| →IP∗ 0,

supτ∈T dH(K̂n(τ),K(τ)) →IP∗ 0,

supτ∈T dH(K̂n(τ),K(τ)) →IP∗ 0,

where K is any closed subset of U0. These high-level conditions hold trivially for the
numerical approximations we use in Section 4. They also hold, for example, for Tukey’s
halfspace depth under regularity conditions. We will not discuss these conditions here.

Definition 3.3 (Empirical MK depth, quantiles, ranks and signs with estimated F ).
Let F be an absolutely continuous reference distribution with support contained in a
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convex and compact region U ⊂ R
d, and let ‖ ·‖ be a norm on U . Given estimators D̂F,n,

K̂n(τ) and K̂n(τ) satisfying (14), the MK empirical quantiles, ranks, signs and depth are
defined as follows.

1. The MK empirical rank and sign of y ∈ IRd are ‖R̂n(y)‖ and R̂n(y)/‖R̂P (y)‖.
2. The MK empirical τ -quantile contour is the set Q̂n(K̂n(τ)) and the MK empirical

depth region with probability mass τ is Q̂n(K̂n(τ)).
3. The MK empirical depth of y ∈ IRd is the depth of R̂n(y) under D̂F,n:

D̂MK
P,n (y) := D̂F,n(R̂n(y)).

Corollary 3.3. Work with conditions of the previous corollary and suppose that
Conditions (14) hold. Then the conclusions of Corollary 3.1 hold and the conclusions of
Corollary 3.2 hold in the following form:

sup
τ∈T

dH(Q̂n(K̂n(τ)),QP (K(τ))) →IP∗ 0, sup
τ∈T

dH(Q̂n(K̂n(τ)),QP (K(τ))) →IP∗ 0.

4. Computing Empirical Quantiles and Depth Regions. Here we provide
computational characterizations of the empirical quantiles, ranks, and depth regions for
various cases of interest.

Smooth P̂n and F̂n. Suppose P̂n and F̂n satisfy Caffarelli regularity conditions, so
that Q̂n = ∇ψ̂n and R̂n = ∇ψ̂∗

n, with (ψ̂n, ψ̂
∗
n) satisfying (C). The MK empirical vector

quantile maps Q̂n and R̂n can then be computed with the algorithm of Benamou and
Brenier [3].

Discrete P̂n and smooth F̂n. Suppose now P̂n is a discrete estimator of P and F̂n an
absolutely continuous distribution with convex compact support U ⊂ IRd. Let P̂n be of the
form P̂n=

∑Kn

k=1 pk,nδyk,n for some integer Kn, some nonnegative weights p1,n, . . . , pKn,n

such that
∑Kn

k=1 pk,n = 1, and y1,n, . . . , yKn,n ∈ IRd . The leading example is when P̂n is
the empirical distribution of a random sample (Yi)

n
i=1 drawn from P .

The MK empirical vector quantile map Q̂n is then equal (almost everywhere) to the
gradient of a convex map ψ̂n such that ∇ψ̂n#F̂n = P̂n, i.e., the F̂n-almost surely unique
map Q̂n = ∇ψ̂n satisfying the following:

(1) ∇ψ̂n(u) ∈ {y1,n, . . . , yKn,n}, for Lebesgue-almost all u ∈ U ,

(2) F̂n

(

{u ∈ U : ∇ψ̂n(u) = yk,n}
)

= pk,n, for each k ∈ {1, . . . ,Kn},

(3) ψ̂n is a convex function.

The following characterization of ψ̂n specializes Kantorovich duality to this discrete-
continuous case (see, e.g.,[17]).

Lemma. There exist unique (up to an additive constant) weights {v∗1 , . . . , v
∗
n} such

that ψ̂n(u) = max1≤k≤Kn
{u⊤yk,n − v∗k} satisfies conditions (1), (2) and (3). The func-

tion v 7→
∫

ψ̂ndF̂n +
∑Kn

k=1 pk,nvk is convex and minimized at v∗ = {v∗1 , . . . , v
∗
n}.
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This lemma allows efficient computation of Q̂n using a gradient algorithm proposed
in [2]. The map ψ̂n is piecewise affine and the empirical vector quantile Q̂n is piecewise
constant. The correspondence Q̂−1

n defined for each k ≤ Kn by

yk,n 7→ Q̂−1
n (yk,n) := {u ∈ U : ∇ψ̂n(u) = yk,n}

maps {y1,n, . . . , yKn,n} into Kn regions of a partition of U , called a power diagram. The

estimator R̂n of the MK vector rank can be computed according to formula (12) after
computing the conjugate ψ̂∗

n of ψ̂n via: ψ̂∗
n(y) = supu∈U{u

⊤y − ψ̂n(u)}. The empirical
depth, depth regions, and quantiles can be computed using the depth function, according
to their theoretical definitions.

Discrete P̂n and F̂n. Particularly amenable to computation is the case when both
distribution estimators P̂n and F̂n are discrete with uniformly distributed mass on sets of
points of the same cardinality. Let P̂n =

∑n
j=1 δyj/n for a set Yn = {y1, . . . , yn} of points

in IRd and F̂n =
∑n

j=1 δuj
/n, for a set Un = {u1, . . . , un} of points in IRd. The restriction

of the quantile map Q̂n to Un is the bijection u 7−→ y = Q̂n|Un(u) from Un onto Yn

and R̂n|Yn is its inverse. The solutions Q̂n and R̂n can be computed with any optimal
assignment algorithm. More generally, in the case of any two discrete estimators P̂n

and F̂n, the problem of finding Q̂n or R̂n is a linear programming problem.

Visualization of Empirical MK Depth and Quantile Contours. Whenever P̂n is finitely
discrete, then the MK empirical depth regions and quantile contours are finite sets of
points. For visualization purposes it may be helpful to transform them into nicer looking
objects which are close to the original objects in terms of Hausdorff distance. In the
example below we used α-hulls to create approximations to the depth regions and took
the boundaries of the set as a numerical approximation to the quantile contours. It may
also be possible to use polygonization methods such as those in [10] for d = 2 and [20]
for d = 3.

Example 4.1 (Computing MK Depth Regions). In the example illustrated in Fig-
ure 2, we use a discrete approximation F̂n to the spherical uniform reference distribution.
Figure 2 shows the MK empirical depth contours for the same banana-shaped distribu-
tion as in Figure 1. The specific construction to produce Figure 2 is the following: P̂n is
the empirical distribution of a random sample Yn drawn from the banana-shaped distri-
bution in IR2, with n = 9999; F̂n is a discrete approximation to F with mass 1/n on each
of the points in Un. The latter is a collection of 99 evenly spaced points on each of 101 cir-
cles, of evenly spaced radii in (0, 1]. The sets Yn and Un are matched optimally with the
assignment algorithm of the adagio package in R. MK empirical depth regions are α-hulls
of Q̂n(Un ∩ S(τ)) for 11 values of τ ∈ (0, 1) (see [16] for a definition of α-hulls). The α-
hulls are computed using the alphahull package in R, with α = 0.3. The banana-shaped
distribution considered is the distribution of the vector (X + R cos Φ,X2 + R sinΦ),
where X is uniform on [−1, 1], Φ is uniform on [0, 2π], Z is uniform on [0, 1], X, Z and Φ
are independent, and R = 0.2Z(1 + (1− |X|)/2). �



20 CHERNOZHUKOV, GALICHON, HALLIN, HENRY

APPENDIX A: UNIFORM CONVERGENCE OF SUBDIFFERENTIALS AND
TRANSPORT MAPS

A.1. Uniform Convergence of Subdifferentials. Let U and Y be convex, closed
subsets of IRd. A pair of convex potentials ψ : U 7→ IR ∪ {∞} and ψ∗ : Y 7→ IR ∪ {∞} is
a conjugate pair over (U ,Y) if, for each u ∈ U and y ∈ Y,

ψ(u) = sup
y∈Y

[y⊤u− ψ∗(y)], ψ∗(y) = sup
u∈U

[y⊤u− ψ(u)].

In the sequel, we consider a fixed pair (ψ,ψ∗) obeying the following condition.

(C) Let U and Y be closed, convex subsets of IRd, and U0 ⊂ U and Y0 ⊂ Y some open,
non-empty sets in IRd. Let ψ : U 7→ IR and ψ∗ : Y 7→ IR form a conjugate pair
over (U ,Y) and possess gradients ∇ψ(u) for all u ∈ U0, and ∇ψ∗(y) for all y ∈ Y0.
The gradients ∇ψ|U0 : U0 7→ Y0 and ∇ψ∗|Y0 : Y0 7→ U0 are homeomorphisms,
and ∇ψ|U0 = (∇ψ∗|Y0)

−1.

We also consider a sequence (ψn, ψ
∗
n) of conjugate potentials approaching (ψ,ψ∗).

(A) A sequence of conjugate potentials (ψn, ψ
∗
n) over (U ,Y), with n ∈ N, is such that:

ψn(u) → ψ(u) in IR∪{∞} pointwise in u in a dense subset of U and ψ∗
n(y) → ψ∗(y)

in IR ∪ {∞} pointwise in y in a dense subset of Y, as n→ ∞.

Condition (A) is equivalent to requiring that either ψn or ψ∗
n converge pointwise over

dense subsets. There is no loss of generality in stating that both converge.

Define the maps

Q(u) := arg sup
y∈Y

[y⊤u− ψ∗(y)], R(y) := arg sup
u∈U

[y⊤u− ψ(u)],

for each u ∈ U0 and y ∈ Y0. By the envelope theorem,

R(y) = ∇ψ∗(y), for y ∈ Y0; Q(u) = ∇ψ(u), for u ∈ U0.

Let us define, for each u ∈ U and y ∈ Y,

(15) Qn(u) ∈ arg sup
y∈Y

[y⊤u− ψ∗
n(y)], Rn(y) ∈ arg sup

u∈U
[y⊤u− ψn(u)].

It is useful to note that

Rn(y) ∈ ∂ψ
∗
n(y) for y ∈ Y; Qn(u) ∈ ∂ψn(u) for u ∈ U ,

where ∂ denotes the sub-differential of a convex function; conversely, any pair of elements
of ∂ψ∗

n(y) and ∂ψn(u), respectively, could be taken as solutions to the problem (15)
(by Proposition 2.4 in Villani [58]). Hence, the problem of convergence of Qn and Rn

to Q and R is equivalent to the problem of convergence of subdifferentials. Moreover, by
Rademacher’s theorem, ∂ψ∗

n(y) = {∇ψ∗
n(y)} and ∂ψn(u) = {∇ψn(u)} almost everywhere

with respect to the Lebesgue measure (see, e.g., [58]), so the solutions to (15) are unique
almost everywhere on u ∈ U and y ∈ Y.
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Theorem A.1 (Local uniform convergence of subdifferentials). Suppose that Condi-
tions (A) and (C) hold. Then, as n→ ∞, for any compact set K ⊂ U0 and any compact
set K ′ ⊂ Y0,

sup
u∈K

‖Qn(u)−Q(u)‖ → 0, sup
y∈K ′

‖Rn(y)− R(y)‖ → 0.

Remark A.1. This result appears to be new. It complements the result stated in
Lemma 5.4 in Villani [60] for the case U0 = U = Y0 = Y = IRd. This result also trivially
implies convergence in Lp norms, 1 ≤ p <∞:

∫

U
‖Qn(u)−Q(u)‖pdF (u) → 0,

∫

Y
‖Rn(y)− R(y)‖pdP (y) → 0,

for probability laws F on U and P on Y, whenever, for some p̄ > p,

sup
n∈N

∫

U
‖Qn(u)‖

p̄ + ‖Q(u)‖pdF (u) <∞, sup
n∈N

∫

Y
‖Rn(y)‖

p̄ + ‖R(y)‖pdP (y) <∞.

Hence, the new result is stronger than available results on convergence in measure
(including Lp convergence results) in the optimal transport literature (see, e.g., Vil-
lani [58, 59]). �

Remark A.2. The following example also shows that, in general, our result cannot
be strengthened to the uniform convergence over entire sets U and Y. Consider the
sequence of potential maps ψn : U = [0, 1] 7→ IR:

ψn(u) =

∫ u

0
Qn(t)dt, Qn(t) = t · 1(t ≤ 1− 1/n) + 10 · 1(t > 1− 1/n).

Then ψn(u) = 2−1u21(u ≤ 1−1/n)+
{

10(u− (1−1/n))+2−1(1−1/n)2
}

1(u > 1−1/n)
converges uniformly on [0, 1] to ϕ(u) = 2−1u2. The latter potential has the gradient
map Q : [0, 1] 7→ Y0 = [0, 1] defined by Q(t) = t. We have that supt∈K |Qn(t)−Q(t)| → 0
for any compact subset K of (0, 1). However, the uniform convergence over the entire
region [0, 1] fails, since supt∈[0,1] |Qn(t) − Q(t)| ≥ 9 for all n. Therefore, the theorem
cannot be strengthened in general. �

We next consider the behavior of image sets of gradients defined as follows:

Qn(A) := {Qn(u) : u ∈ A}, Q(A) := {Q(u) : u ∈ A}, A ⊆ K,

Rn(A
′) := {Rn(y) : y ∈ A′}, R(A′) := {R(y) : y ∈ A′}, A′ ⊆ K ′,

where K ⊂ U0 and K
′ ⊂ Y0 are compact sets, and the subsets A and A′ are understood

to be non-empty.

Corollary A.1 (Convergence of sets of subdifferentials). Under the conditions of
the previous theorem, we have that

sup
A⊆K

dH(Qn(A),Q(A)) → 0, sup
A′⊆K ′

dH(Rn(A
′),R(A′)) → 0.
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Corollary A.2 (Convergence of sets of subdifferentials). Assume the conditions
of the previous theorem. For any sequence of sets {An} ⊆ K and {A′

n} ⊆ K ′ such
that dH(An, A) → 0 and dH(A′

n, A
′) → 0 for some sets A and A′, we have

dH(Qn(An),Q(A)) → 0, dH(Rn(A
′
n),R(A

′)) → 0.

A.2. Uniform Convergence of Transport Maps. We next consider the problem
of convergence for potentials and transport (vector quantile and rank) maps arising from
the Kantorovich dual optimal transport problem.

Equip Y and U with absolutely continuous probability measures P and F , respectively,
and let

Y0 := int(support(P )), U0 := int(support(F )).

We consider sequences of measures Pn and Fn approximating P and F :

(W) There are sequences of measures {Pn}n∈N on Y and {Fn}n∈N on U , with finite total
mass, that converge to P and F , respectively, in the topology of weak convergence:

dBL(Pn, P ) → 0, dBL(Fn, F ) → 0.

Recall that we defined Φ0(U ,Y) as a collection of conjugate potentials (ϕ,ϕ∗) on (U ,Y)
such that ϕ(u0) = 0 for some fixed point u0 ∈ U0. Let (ψn, ψ

∗
n) ∈ Φ0(U ,Y) solve the

Kantorovich problem for the pair (Pn, Fn):

(16)

∫

ψndFn +

∫

ψ∗
ndPn = inf

(ϕ,ϕ∗)∈Φ0(U ,Y)

∫

ϕdFn +

∫

ϕ∗dPn.

Also, let (ψ,ψ∗) ∈ Φ0(U ,Y) solve the Kantorovich problem for the pair (P,F ):

(17)

∫

ψdF +

∫

ψ∗dP = inf
(ϕ,ϕ∗)∈Φ0(U ,Y)

∫

ϕdF +

∫

ϕ∗dP.

It is known that solutions to these problems exist; see, e.g., Villani [58]. Recall also that
we imposed the normalization condition in the definition of Φ0(U ,Y) to pin down the
constants.

Theorem A.2 (Local uniform convergence of transport maps). Suppose that the
sets U and Y are compact subsets of IRd, and that the probability measures P and F are
absolutely continuous with respect to the Lebesgue measure, with support(P ) ⊆ Y and
support(F ) ⊆ U . Suppose that Condition (W) holds, and that Condition (C) holds for
a solution (ψ,ψ∗) of (17) for the sets U0 and Y0 defined as above. Then the conclusions
of Theorem A.1 and Corollary A.1 and Corollary A.2. hold.

APPENDIX B: PROOFS

B.1. Proof of Theorem A.1. The proof relies on the equivalence of the uniform
and continuous convergence.
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Lemma B.1 (Uniform convergence via continuous convergence). Let D and E be
complete separable metric spaces, with D compact. Suppose f : D 7→ E is continuous.
Then a sequence of functions fn : D 7→ E converges to f uniformly on D if and only if,
for any convergent sequence xn → x in D, we have that fn(xn) → f(x).

For the proof, see, e.g., Rockafellar and Wets [50]. The proof also relies on the following
convergence result, which is a consequence of Theorem 7.17 in Rockafellar and Wets [50].
For a point a and a non-empty set A in R

d, define d(a,A) := infa′∈A ‖a− a′‖.

Lemma B.2 (Argmin convergence for convex problems). Suppose that g is a lower-
semi-continuous convex function mapping IRd to IR∪ {+∞} that attains a minimum on
the set X0 = arg infx∈IRd g(x) ⊂ int(D0), where D0 = {x ∈ IRd : g(x) < ∞}, and int(D0)
is a non-empty, open set in IRd. Let {gn} be a sequence of convex, lower-semi-continuous
functions mapping IRd to IR ∪ {+∞} and such that gn(x) → g(x) pointwise in x ∈ IRd

0,
where IRd

0 is a countable dense subset of IRd. Then any xn ∈ arg infx∈IRd gn(x) obeys

d(xn,X0) → 0,

and, in particular, if X0 is a singleton {x0}, xn → x0.

The proof of this lemma is given below, immediately after the conclusion of the proof
of this theorem.

We define the extension maps y 7→ gn,u(y) and u 7→ ḡn,y(u) mapping IRd to IR∪{−∞}

gn,u(y) :=

{

y⊤u− ψ∗
n(y) if y ∈ Y

−∞ if y 6∈ Y
, ḡn,y(u) :=

{

y⊤u− ψn(u) if u ∈ U
−∞ if u 6∈ U .

By the convexity of ψn and ψ∗
n over convex, closed sets Y and U , we have that the

functions are proper upper-semi-continuous concave functions. Define the extension
maps y 7→ gu(y) and u 7→ ḡy(u) mapping IRd to IR ∪ {−∞} analogously, by remov-
ing the index n above.

Condition (A) assumes pointwise convergence of ψ∗
n to ψ∗ on a dense subset of Y. By

Theorem 7.17 in Rockafellar and Wets [50], this implies the uniform convergence of ψ∗
n

to ψ∗ on any compact set K ′ ⊂ int Y that does not overlap with the boundary of the
set D1 = {y ∈ Y : ψ∗(y) < +∞}. Hence, for any sequence {un} such that un → u ∈ K,
a compact subset of U0, and any y ∈ (int Y) \ ∂D1,

gn,un(y) = y⊤un − ψ∗
n(y) → gu(y) = y⊤u− ψ∗(y).

Next, consider any y 6∈ Y, in which case, gn,un(y) = −∞ → gu(y) = −∞. Hence,

gn,un(y) → gu(y) in IR ∪ {−∞}, for all y ∈ IRd
1 = IRd \ (∂Y ∪ ∂D1),

where IRd
1 is a dense subset of IRd. We apply Lemma B.2 to conclude that

arg sup
y∈IRd

gn,un(y) ∋ Qn(un) → Q(u) ∈ arg sup
y∈IRd

gu(y) = {∇ψ(u)}.
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TakeK as any compact subset of U0. The above argument applies for every point u ∈ K
and every convergent sequence un → u. Therefore, since by Assumption (C) the map
u 7→ Q(u) = ∇ψ(u) is continuous in u ∈ K, we conclude by the equivalence of the
continuous and uniform convergence, Lemma B.1, that

Qn(u) → Q(u) uniformly in u ∈ K.

By symmetry, the proof of the second claim is identical to the proof of the first one.�

B.2. Proof of Lemma B.2. By assumption, X0 = argmin g ⊂ int(D0), and X0 is
convex and closed. Let x0 be an element of X0. We have that, for all 0 < ε ≤ ε0 with ε0
such that Bε0(X0) ⊂ int(D0),

(18) g(x0) < inf
x∈∂Bε(X0)

g(x),

where Bε(X0) := {x ∈ IRd : d(x,X0) ≤ ε} is convex and closed.

Fix an ε ∈ (0, ε0]. By convexity of g and gn and by Theorem 7.17 in Rockafellar and
Wets [50], the pointwise convergence of gn to g on a dense subset of IRd is equivalent
to the uniform convergence of gn to g on any compact set K that does not overlap
with ∂D0, i.e. K ∩ ∂D0 = ∅. Hence, gn → g uniformly on Bε0(X0). This and (18) imply
that eventually, i.e. for all n ≥ nε,

gn(x0) < inf
x∈∂Bε(X0)

gn(x).

By convexity of gn, this implies that gn(x0) < infx 6∈Bε(X0) gn(x) for all n ≥ nε, which is
to say that, for all n ≥ nε,

arg inf gn = argmin gn ⊂ Bε(X0).

Since ε > 0 can be set as small as desired, it follows that any xn ∈ arg inf gn is such
that d(xn,X0) → 0. �

B.3. Proof of Corollary A.1. By Theorem A.1 and the definition of Hausdorff
distance, for A denoting non-empty subsets,

sup
A⊆K

dH(Qn(A),Q(A))

= sup
A⊆K

(

sup
u∈A

inf
ū∈A

‖Qn(ū)−Q(u)‖ ∨ sup
ū∈A

inf
u∈A

‖Qn(ū)−Q(u)‖

)

≤ sup
A⊆K

(

sup
u∈A

‖Qn(u)−Q(u)‖ ∨ sup
ū∈A

‖Qn(ū)−Q(ū)‖

)

= sup
u∈K

‖Qn(u)−Q(u)‖ → 0.

The proof of the second claim is identical. �
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B.4. Proof of Corollary A.2. We have that

dH(Qn(An),Q(A))≤ dH(Qn(An),Q(An)) + dH(Q(An),Q(A))

≤ sup
A⊆K

dH(Qn(A), Q(A)) + sup
ū,u∈K

{Q(ū)−Q(u) : ‖ū− u‖ ≤ dH(An, A)}

→ 0,

where the first inequality holds by the triangle inequality, the second inequality holds
by definition and by An, A ⊆ K, and the last conclusion follows by Corollary A.1 and
continuity of the map u 7−→ Q(u) on u ∈ K.

The proof of the second claim is identical. �

B.5. Proof of Theorem A.2. Step 1. Here we show that the set of conjugate
pairs is compact in the topology of uniform convergence. First we notice that, for any
pair (ϕ,ϕ∗) ∈ Φ0(U ,Y),

‖ϕ‖BL(U) ≤ (2‖Y‖‖U‖) ∨ ‖Y‖ <∞, ‖ϕ∗‖BL(Y) ≤ (2‖Y‖‖U‖) ∨ ‖U‖ <∞,

with ‖A‖ := supa∈A ‖a‖ for A ⊆ IRd, where we have used the fact that ϕ(u0) = 0 for
some u0 ∈ U as well as compactness of Y and U .

The Arzela-Ascoli Theorem implies that Φ0(U ,Y) is relatively compact in the topology
of the uniform convergence. We want to show compactness, namely that this set is also
closed. For this we need to show that all uniformly convergent subsequences (ϕn, ϕ

∗
n)n∈N′

(where N
′ ⊆ N) have the limit point in this set:

(ϕ,ϕ∗) := lim
n∈N′

(ϕn, ϕ
∗
n) ∈ Φ0(U ,Y).

This is true, since uniform limits of convex functions are necessarily convex (see [50]),
and since

ϕ(u) = lim
n∈N′

[

sup
y∈Y

[u⊤y − ϕ∗
n(y)]

]

≤ lim sup
n∈N′

[

sup
y∈Y

[u⊤y − ϕ∗(y)] + sup
y∈Y

|ϕ∗
n(y)− ϕ∗(y)|

]

= sup
y∈Y

[u⊤y − ϕ∗(y)];

and

ϕ(u) = lim
n∈N′

[

sup
y∈Y

[u⊤y − ϕ∗
n(y)]

]

≥ lim inf
n∈N′

[

sup
y∈Y

[u⊤y − ϕ∗(y)]− sup
y∈Y

|ϕ∗
n(y)− ϕ∗(y)|

]

= sup
y∈Y

[u⊤y − ϕ∗(y)].

Analogously, ϕ∗(y) = supu∈U [u
⊤y − ϕ(y)].



26 CHERNOZHUKOV, GALICHON, HALLIN, HENRY

Step 2. The claim here is that

(19) In :=

∫

ψndFn +

∫

ψ∗
ndPn →n∈N

∫

ψdF +

∫

ψ∗dP =: I0.

Indeed,

In ≤

∫

ψdFn +

∫

ψ∗dPn →n∈N I0,

where the inequality holds by definition, and the convergence holds by
∣

∣

∣

∣

∫

ψd(Fn − F )

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

ψ∗d(Pn − P )

∣

∣

∣

∣

. dBL(Fn, F ) + dBL(Pn, P ) → 0,

where x . y means x ≤ Ay, for some constant A that does not depend on n. Moreover,
by definition,

IIn :=

∫

ψndF +

∫

ψ∗
ndP ≥ I0,

but

|In − IIn| ≤

∣

∣

∣

∣

∫

ψnd(Fn − F )

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

ψ∗
nd(Pn − P )

∣

∣

∣

∣

. dBL(Fn, F ) + dBL(Pn, P ) → 0.

Step 3. Here we conclude.

First, we observe that the solution pair (ψ,ψ∗) to the limit Kantorovich problem
is unique on U0 × Y0 in the sense that any other solution (ϕ,ϕ∗) agrees with (ψ,ψ∗)
on U0 × Y0. Indeed, suppose that ϕ(u1) 6= ψ(u1) for some u1 ∈ U0. By the uniform
continuity of elements of Φ0(U ,Y) and openness of U0, there exists a ball Bε(u1) ⊂ U0

such that ψ(u) 6= ϕ(u) for all u ∈ Bε(u1). By the normalization assumption ϕ(u0) =
ψ(u0) = 0, there does not exist a constant c 6= 0 such that ψ(u) = ϕ(u)+c for all u ∈ U0,
so this must imply that ∇ψ(u) 6= ∇ϕ(u) on a set K ⊂ U0 of positive measure (otherwise,
if they disagree only on a set of measure zero, we would have ψ(u)−ψ(u0) =

∫ 1
0 ∇ψ(u0+

v⊤(u−u0))
⊤(u−u0)dv =

∫ 1
0 ∇ϕ(u0+ v

⊤(u−u0))
⊤(u−u0)dv = ϕ(u)−ϕ(u0) for almost

all u ∈ Bε(u1), which is a contradiction). However, the statement ∇ψ 6= ∇ϕ on a
set K ⊂ U0 of positive Lebesgue measure would contradict the fact that any solution ψ
or ϕ of the Kantorovich problem must obey

∫

h ◦ ∇ϕdF =

∫

h ◦ ∇ψdF =

∫

hdP,

for each bounded continuous h, i.e. that ∇ϕ#F = ∇ψ#F = P , established on p.72 in
Villani [58]. Analogous arguments apply to establish uniqueness of ψ∗ on the set Y0.

Second, we can split N into subsequences N = ∪∞
j=1Nj such that, for each j,

(20) (ψn, ψ
∗
n) →n∈Nj

(ϕj , ϕ
∗
j ) ∈ Φ0(U ,Y), uniformly on U × Y.

But by Step 2 this means that
∫

ϕjdF +

∫

ϕ∗
jdP =

∫

ψdF +

∫

ψ∗dP.
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It must be that each pair (ϕj , ϕ
∗
j ) is the solution to the limit Kantorovich problem, and

by the uniqueness established above we have that

(ϕj , ϕ
∗
j ) = (ψ,ψ∗) on U0 × Y0.

By Condition (C) we have that, for u ∈ U0 and y ∈ Y0:

Q(u) = ∇ψ(u) = ∇ϕj(u), R(u) = ∇ψ∗(u) = ∇ϕ∗
j(u).

By (20) and Condition (C) we can invoke Theorem A.1 to conclude that Qn → Q
uniformly on compact subsets of U0 and Rn → R uniformly on compact subsets of Y0. �

B.6. Proof of Lemma 3.1. The proof is a variant of standard arguments, for
example, those given in ([48], proof of Theorem 2.1), so is delegated to the Supplemental
Appendix. �

B.7. Proof of Theorem 3.1. The proof is an immediate consequence of the Ex-
tended Continuous Mapping Theorem, as given in van der Vaart and Wellner [55], The-
orem A.1 and Corollary A.1.

The theorem, specialized to our context, reads as follows: Let D and E be normed
spaces and let x ∈ D. Let Dn ⊆ D be arbitrary subsets and gn : Dn 7→ E be arbi-
trary maps (n ≥ 0), such that for every sequence xn ∈ Dn such that xn → x, along
a subsequence, we have that gn(xn) → g0(x), along the same subsequence. Then, for
arbitrary (i.e. possibly non-measurable) maps Xn : Ω 7→ Dn such that Xn →IP∗ x, we
have that gn(Xn) →IP∗ g0(x).

In our case Xn = (P̂n, F̂n) is a stochastic element of D, viewed as an arbitrary map
from Ω to D, and x = (P,F ) is a non-stochastic element of D, where D is the space of
linear operators D acting on the space of bounded Lipschitz functions. This space can
be equipped with the norm (see notation section):

‖ · ‖D : ‖(x1, x2)‖D = ‖x1‖BL(Y) ∨ ‖x2‖BL(U).

Moreover, Xn →IP∗ x with respect to this norm, i.e.

‖Xn − x‖D := ‖P̂n − P‖BL(Y) ∨ ‖F̂n − F‖BL(U) →IP∗ 0.

Then gn(Xn) := (Q̂n, R̂n) and g(x) := (Q,R) are viewed as elements of the space
E = ℓ∞(K×K ′, IRd× IRd) of bounded functions mapping K×K ′ to IRd× IRd, equipped
with the supremum norm. The maps have the continuity property: if ‖xn−x‖D → 0 along
a subsequence, then ‖gn(xn) − g(x)‖E → 0 along the same subsequence, as established
by Theorem A.1. Hence conclude that gn(Xn) →IP∗ g(x).

The second claim follows by the Extended Continuous Mapping Theorem and Corol-
lary A.1. �

B.8. Proof of Corollaries 3.1, 3.2, and 3.3. Corollaries 3.1 and 3.2 follow by
Theorem 3.1 and the Extended Continuous Mapping Theorem; and Corollary 3.3 follows
by Theorem 3.1, the Extended Continuous Mapping Theorem, and Corollary A.2. �
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