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Abstract
We study the Static-Routing-Resiliency problem, motivated by routing on the Internet: Given
a graph G = (V, E), a unique destination vertex d, and an integer constant c > 0, does there
exist a static and destination-based routing scheme such that the correct delivery of packets from
any source s to the destination d is guaranteed so long as (1) no more than c edges fail and (2)
there exists a physical path from s to d? We embark upon a study of this problem by relating
the edge-connectivity of a graph, i.e., the minimum number of edges whose deletion partitions
G, to its resiliency. Following the success of randomized routing algorithms in dealing with a
variety of problems (e.g., Valiant load balancing in the network design problem), we embark
upon a study of randomized routing algorithms for the Static-Routing-Resiliency problem. For
any k-connected graph, we show a surprisingly simple randomized algorithm that has expected
number of hops O(|V|k) if at most k-1 edges fail, which reduces to O(|V|) if only a fraction t
of the links fail (where t < 1 is a constant). Furthermore, our algorithm is deterministic if the
routing does not encounter any failed link.
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1 Introduction

Routing on the Internet (both within an organizational network and between such networks)
typically involves computing a set of destination-based routing tables (i.e., tables that map
the destination IP address of a packet to an outgoing link). Whenever a link or node fails,
routing tables are recomputed by invoking the routing protocol to run again (or having it
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run periodically, independent of failures). This produces well-formed routing tables, but
results in relatively long outages after failures as the protocol is recomputing routes.

As critical applications began to rely on the Internet, such outages became unacceptable.
As a result, “fast failover” techniques have been employed to facilitate immediate recovery
from failures. The most well-known of these is Fast Reroute in MPLS where, upon a link
failure, packets are sent along a precomputed alternate path without waiting for the global
recomputation of routes [23]. This, and other similar forms of fast failover thus enable rapid
response to failures but are limited to the set of precomputed alternate paths. Most of
existing approaches protect only from a single failure, however in many scenarios (e.g. overlay
networks [11], highly-connected large datacenter networks [15]) multiple failures at the same
time may be a common occurrence.

The goal of this paper is to perform a theoretical study of failover routing. The funda-
mental question is, how resilient can failover routing be? That is, how many link failures can
failover routing schemes tolerate before connectivity is interrupted (i.e., packets are trapped
in a forwarding loop, or hit a dead end)? The answer to this question depends on both the
structural properties of the graph, and the limitations imposed on the routing scheme.

Clearly, if it is possible to store arbitrary amount of information in the packet header,
perfect resiliency can be achieved by collecting information about every failed link that is hit
by a packet [19, 26]. Such approaches are not feasibly deployable in modern-day networks
as the header of a packet may be too large for today’s routing tables. Our focus is thus
on failover routing schemes that do not involve any change in the packet headers. Another
traditional approach to achieving high resiliency is implementing stateful routing, i.e., storing
information at a node every time a packet is seen being received from a different incoming
link (see, e.g., link reversal [14] and other approaches [20, 21]). As current routing protocols
do not allow network operators to implement such stateful failover routing, our goal is to
design protocols that correspond to a stateless, or static, failover routing.

Specifically, we consider a particularly simple and practical form of static failover routing:
for each incoming link, a router maintains a destination-based routing table that maps the
destination address of a packet and the set of non-failed (“active”) links, to an output link.
The router can locally detect which outgoing links are down and forwards packets accordingly.
One should note that maintaining such per-incoming-link destination-based routing tables is
necessary; not only is destination-based routing unable to achieve robustness against even a
single link failure [18], but it is even computationally hard to devise failover routing schemes
that maximize the number of nodes that are protected [2, 5, 18, 24]. We only consider link
failures, not router failures (which are not always detectable by neighboring routers, and so
such fast failover techniques may not apply).

A failover routing algorithm is responsible for computing, for each node (vertex) of a
network (graph), a routing function that matches an incoming packet to an outgoing edge.
A set of such routing functions for each vertex guarantees reachability between a pair of
vertices, u and v, for which there exists a connecting path in the graph, if any packet directed
to node v originated at node u is correctly routed from u to v.

We are interested in routing functions that rely solely on information that is locally
available at a node (e.g., the set of non-failed edges, the incoming link along which the packet
arrived, and any information stored in the header of the packet).

While it is known that every k-connected network cannot be partitioned by deleting at
most k−1 links, it is not known whether any static “deterministic” routing (i.e., the outgoing
port of each packet is always uniquely determined at a vertex v by its incoming link and the
failed edges incident at v) achieves such resiliency.
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On the other hand, routing based on random walks, i.e., choosing the outgoing link at
random, achieves the best possible resilience as they will eventually deliver a packet to the
destination as long as the network is connected. But, it comes with a huge cost. Namely, a
random walk might traverse the whole network even when there is no single failed link. In
fact, the expected delivery time of a packet would be as large as Θ(|V |3) in some network
topologies [6]. Furthermore, a random walk almost never reaches the destination following
the shortest path. So, although extremely robust, when it comes to the time needed to
deliver a packet to the destination, the behaviour of random walks is undesirable.

1.1 Our Results

In this paper, we show how randomness can be used to achieve k − 1 resilient routing in
k-connected networks while significantly outperforming random walks in terms of number
of traversed nodes. Namely, we introduce Randomized failover routing (RND) in which
outgoing edge is chosen for packets in a probabilistic manner based on the destination label,
the incoming edge, and the set of non-failed edges. The randomized protocol that we present
provides bound on the expected delivery time that gracefully grows with the number of
actual link failures.

Our randomized routing functions provide delivery in case of any k−1 link failures for any
k-connected graph. We achieve that by leveraging the standard decomposition of k-connected
graphs into k arc-disjoint spanning arborescences T [10]. We also provide a bound on the
expected number of hops that our algorithm performs, which is O(Hk) for any k − 1 failures
and O(H) for αk failures, where H is the length of the longest branch of any arborescence of
T and α < 1 is a constant. Furthermore, our routing functions are deterministic as long as
the routing does not encounter any failure. Hence, packets belonging to the same logical
connection are routed along the same path, minimizing reordering complexity at the receiver
side.

Motivated by the fact that one can protect against k − 1 failures in k-connected graphs
using randomness, we make the following general conjecture, whose proof eludes us despite
much effort.

Conjecture: For any k-connected graph, one can find deterministic failover routing
functions that are robust to any k − 1 failures.

1.2 Organization

The rest of the paper is organized as follows. Section 2 provides background on existing
works. In Section 3, we introduce our routing model and formally state the Static-Routing-
Resiliency problem. The summary of our routing techniques that are leveraged throughout
the whole paper are presented in Section 4. In Section 5, we focus on studying the relation
between arborescences our input graph decomposes into and failed links. Section 6 builds
on Section 5 and is devoted to designing an algorithm that, for any k-connected graph,
computes randomized routing functions that are robust to k − 1 edge failures and have
bounded expected delivery time.

2 Related Work

Past work [1, 29] (1) designed such routing functions with guaranteed robustness against
only a single link/node failure [12, 13, 22, 28, 30, 32], (2) achieved robustness against bk2 − 1c
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edge failures for k-connected graphs [11], and (3) proved that it is impossible to be robust
against any set of edge failures that does not partition the network [13].

Thanks to its flexibility and oblivious behavior, another line of study was motivated by
randomization. Namely, some of the previous work developed randomized routing schemes,
usually to directly or indirectly achieve low congestion and/or balance the network load. In
particular, Busch et al. [7] use randomization to adjust packet priorities, which in turn allows
them to control deflection of packets.

Valiant [27] proposed a randomized routing algorithm with the goal to balance the load
of the underlying network. Since then, that scheme is called Valiant Load-Balancing (VLB),
whose one of the main ingredients is randomization. VLB was extensively used in designing
networks. Zhang-Shen et al. [31] employed VLB to design fault-tolerant networks with
guaranteed no congestion under few router or link failures. Greenberg et al. [16] adopt VLB
to reduce volatility of traffic and failure pattern of their data centers. In [25], Shepherd et al.
extend VLB in order to build cost-effective networks robust to changes in demand patterns.

Beraldi [3] presents a search protocol for mobile networks that is based on modified
random walks, i.e. based on biased random walks with look-ahead. Motivated by the success
of ant-colonies in their search for food, Günes et al.[17] studied ant algorithms, which in
their heart rely on randomization, as an approach to designing on-demand ad-hoc routing
algorithms.

Chiesa et al. [8] studied resilience under link failures in k-connected networks. They devise
static routing schemes that are resilient under k − 1 failures in the following regimes: (1) if
the routers are allowed to use three bits in the packet header for read/write operation, or (2)
if the network supports broadcasting. A building block of those schemes is the result that
every k-connected graph contains k arc-disjoint arborescences rooted at the same vertex [10].

3 Model

We represent our network as an undirected multigraph G = (V (G), E(G)), where each router
in the network is modeled by a vertex in V (G) and each link between two routers is modeled
by an undirected edge in the multiset E(G). When it is clear from the context, we simply
write V and E instead of V (G) and E(G). We denote an (undirected) edge between x and y
by {x, y}. A graph is k-edge-connected if there exist k edge-disjoint paths between any pair
of vertices of G.

Each vertex v routes packets according to a routing function that matches an incoming
packet to a sequence of forwarding actions. Packet matching is performed according to the
set of active (non-failed) edges incident at v, the incoming edge, and any information stored
in the packet header (e.g., destination label, extra bits), which all are locally available at a
vertex.

Since our focus is on per-destination routing functions, we assume that there exists a
unique destination d ∈ V to which every other vertex wishes to send packets and, therefore,
that the destination label is not included in the header of a packet. Forwarding actions
consist of routing packets through an outgoing edge, rewriting some bits in the packet header,
and creating duplicates of a packet.

In this paper we consider randomized routing functions, in which a vertex forwards a
packet through an outgoing edge with a probability based only on the incoming port and the
set of active outgoing edges. We present the formal definitions of the randomized routing
model in Section 6.
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Figure 2 Graph used in the proof of Theorem 7 for k = 2.

The Static-Routing-Resiliency (Srr) problem. Given a graph G, a routing function f is
k-resilient if, for each vertex v ∈ V , a packet originated at v and routed according to f
reaches its destination d as long as at most k edges fail and there still exists a path between
v and d. The input of the Srr problem is a graph G, a destination d ∈ V (G), and an integer
k > 0, and the goal is to compute a set of resilient routing functions that is k-resilient.

4 General Routing Techniques and Randomized Algorithm

Definition and notation. We denote a directed arc from x to y by (x, y) and by ~G the
directed copy of G, i.e. a directed graph such that V (~G) = V and {x, y} ∈ E if and only if
(x, y), (y, x) ∈ E(~G).

A subgraph T of ~G is an r-rooted arborescence of ~G if (i) r ∈ V , (ii) V (T ) ⊆ V , (iii)
r is the only vertex without outgoing arcs and (iv), for each v ∈ V (T ) \ {r}, there exists
a single directed path from v to r that only traverses vertices in V (T ). If V (T ) = V , we
say that T is a r-rooted spanning arborescence of ~G. When it is clear from the context,
we use the word “arborescence” to refer to a d-rooted spanning arborescence, where d
is the destination vertex. We say that two arborescences T1 and T2 are arc-disjoint if
(x, y) ∈ E(T1) =⇒ (x, y) /∈ E(T2). A set of l arborescences {T1, . . . , Tl} is arc-disjoint if the
arborescences are pairwise arc-disjoint. We say that two arc-disjoint arborescences T1 and
T2 do not share an edge {x, y} ∈ E if (x, y) ∈ E(T1) =⇒ (y, x) /∈ E(T2).

For example, consider Fig. 1, in which each pair of nodes is connected by an edge (ignore
the red crosses) and three arc-disjoint (d-rooted spanning) arborescences Red, Green, and
Blue are depicted by colored arrows.

Arborescence-based routing. Throughout the paper, unless specified otherwise, we let
T = {T1, . . . , Tk} denote a set of k d-rooted arc-disjoint spanning arborescences of ~G. All our
routing techniques are based on a decomposition of ~G into T . The existence of k arc-disjoint
arborescences in any k-connected graph was proven in [10], while fast algorithms to compute
such arborescences can be found in [4]. We say that a packet is routed in canonical mode
along an arborescence T if a packet is routed through the unique directed path of T towards
the destination. If the packet hits a failed edge at vertex v along T , it is processed by
v (e.g., duplication, header-rewriting) according to the capabilities of a specific routing
function and it is rerouted along a different arborescence. We call such routing technique
arborescence-based routing. One crucial decision that must be taken is the next arborescence
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to be used after a packet hits a failed edge. In this paper, we propose two natural choices
that represent the building blocks of all our routing functions. When a packet is routed along
Ti and it hits a failed arc (v, u), we consider the following two possible actions:

Reroute along some available arborescence, e.g., reroute along T ′, where T ′ is chosen
randomly from distribution that we define in the sequel. Observe that, if the outgoing
arc belonging to T ′ failed, we randomly pick another arborescence T ′′, and so on.
Bounce on the reversed arborescence, i.e., we reroute along the arborescence Tnext that
contains arc (u, v).

To grasp how bouncing enters in our picture for obtaining k − 1 resiliency, consider the
following case. Assume that in the network there are k/2 failed links, such that every single
out of k arborescences contains one of the links. (As a reminder, arborescences that we
construct might share links, but not arcs.) So, this example might suggest that there are
scenarios in which already k/2 failed links make all the arborescences not very useful, and
that no algorithm can cope with that. But, there is a twist. Let k = 2, and Ti and Tj be
the two arborescences and let them share the same failed edge a. Furthermore, let a be the
only failed edge Ti and Tj contain. If a packet hits a while routed along Ti or Tj , then after
bouncing on a the packet will reach d without any further interruption! So, we have just
found a way to resolve a case in which every arborescence contains one failed link, and that
is not an isolated scenario, as we discuss in the sequel.

From a different point of view, bouncing is a way of recycling arborescences that contain
one failed link. This observation is crucial to obtain an efficient and a simple randomized
(k − 1)-resilient routing scheme, which we are now ready to present. The algorithm is
parametrized by q that we define later.

Algorithm 1 Definition of Rand-Bouncing-Algo.
Rand-Bouncing-Algo: Given T = {T1, . . . , Tk}
1. T := an arborescence from T sampled uniformly at random (u.a.r.)
2. While d is not reached

a. Route along T (canonical mode)
b. If a failed edge is hit then

i. With probability q, replace T by an arborescence from T sampled u.a.r.
ii. Otherwise, bounce the failed edge and update T correspondingly

In the following sections, we first study the connection between arborescences of T and
failed links, and show how a part of their intricate interaction can be represented in a simple
and an elegant way via, so-called, meta-graph. Afterwards, we show the Rand-Bouncing-
Algo is (k − 1)-resilient and we analyze its efficiency.

5 Meta-graph, Good Arcs, and Good Arborescences

The goal of this section is to provide an understanding of the structural relation between
the arborescences of T when the underlying k-connected network has at most k − 1 failed
edges. The perspective that we are building here drives the construction of our randomized
algorithm.

We start by introducing the notion of a meta-graph. To that end, we fix an arbitrary set
of failed edges F . Throughout the section, we assume |F | < k, and define f := |F |. Then,
we define a meta-graph HF = (VF , EF ) as follows:
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VF = {1, . . . , k}, where vertex i is a representative of arborescence Ti.
For each failed edge e ∈ E belonging to at least one arborescences of T we define the
corresponding edge eF in HF in the following way:
eF := {i, j}, if e belongs to two different arborescences Ti and Tj ;
eF := {i, i}, i.e. eF is a self-loop, if e belongs to a single arborescence Ti only.

Note that in our construction HF might contain parallel edges. Intuitively, the meta-graph
represents a relation between arborescences of T for a fixed set of failed edges. We provide
the following lemma as the first step towards understanding the structure of HF .

I Lemma 1. The set of connected components of HF contains at least k − f trees.

Proof. We give a proof by contradiction. To that end, assume that the set of connected
components of HF , denoted by C, contains at most k − f − 1 trees. Now, if C ∈ C is a tree,
we have |E(C)| = |V (C)| − 1, and |E(C)| ≥ |V (C)| otherwise. We also have∑

C∈C
|E(C)| =

∑
C∈C is not a tree

|E(C)|+
∑

C∈C is a tree
|E(C)|

≥
∑

C∈C is not a tree
|V (C)|+

∑
C∈C is a tree

(|V (C)| − 1). (1)

Next, following our assumption that C contains at most k − f − 1 trees, from (1) we obtain∑
C∈C
|E(C)| ≥

∑
C∈C
|V (C)| − (k − f − 1). (2)

Furthermore, as by the construction we have
∑
C∈C |V (C)| = |VF | = k, (2) implies∑

C∈C
|E(C)| ≥ |VF | − (k − f − 1) = f + 1. (3)

On the other hand, from the construction of HF we have∑
C∈C
|E(C)| = f,

which leads to a contradiction with (3). J

Lemma 1 implies that the fewer failed edges there are, the larger fraction of connected
components of the meta-graph HF are trees. Note that an isolated vertex is a tree as well.

In the sequel, we show that each tree-component of HF contains at least one vertex
corresponding to an arborescence from which any bounce on a failed edge leads to the
destination d without hitting any new failed edge. To that end, we introduce the notion of
good arcs and good arborescences. We say that an arc (u, v) is a good arc of an arborescence
T if on the (unique) v-d path in T there is no failed edge. Let a = (i, j), for i 6= j, be an arc
of ~HF , {u, v} be the edge that corresponds to a, and w.l.o.g. assume (u, v) is an arc of Tj .
Then, we say a is a well-bouncing arc if (u, v) is a good arc of Tj . Intuitively, a well-bouncing
arc (i, j) of ~HF means that by bouncing from Ti to Tj on the failed edge {v, u} the packet
will reach d via routing along Tj without any further interruption. Finally, we say that an
arborescence Ti is a good arborescence if every outgoing arc of vertex i ∈ VF is well-bouncing.

I Lemma 2. Let T be a tree-component of HF s.t. |V (T )| > 1. Then, ~T contains at least
|V (T )| well-bouncing arcs.

ICALP 2016
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Proof. Let Ti be an arborescence of T such that i ∈ V (T ). Then, by the construction of HF

we have that Ti contains a failed link. Next, a failed link closest to the root of Ti is a good
arc of Ti. Therefore, for every i ∈ V (T ), we have that Ti contains an arc which is both good
and failed. Furthermore, by the construction of HF and the definition of well-bouncing arcs,
we have that for every good, failed link of Ti there is the corresponding well-bouncing arc of
~T . Also, observe that the construction of HF implies that a well-bouncing arc corresponds
to exactly one good-arc.

Now, putting all the observations together, we have that each Ti, for every i ∈ V (T ),
has a good failed link which further corresponds to a well-bouncing arc of ~T . As all the
arborescences are arc-disjoint, and there are |V (T )| many of them represented by the vertices
of T , we have that ~T contains at least |V (T )| well-bouncing arcs. J

Now, building on Lemma 2, we prove the following.

I Lemma 3. Let T be a tree-component of HF . Then, there is an arborescence Ti such that
i ∈ V (T ) and Ti is good.

Proof. Consider two cases: |V (T )| = 1, and |V (T )| > 1. In the case |V (T )| = 1, T is an
isolated vertex which implies that it has no outgoing arcs. Therefore, T represents a good
arborescence.

If |V (T )| > 1, then from Lemma 2 we have that ~T contains at most 2(|V (T )|−1)−|V (T )| <
|V (T )| arcs which are not well-bouncing. This implies that there is at least one vertex in T
from which every outgoing arc is well-bouncing. J

Let us understand what this implies. Consider an arborescence Ti, and a routing of a
packet along it. In addition, assume that the routing hits a failed edge e, such that e is shared
with some other arborescence Tj . Now, if e corresponds to a well-bouncing arc of ~HF , then
by bouncing on e and routing solely along Tj , the packet will reach d without any further
interruption. Lemma 3 claims that for each tree-component T of HF there always exists an
arborescence Ti, with i ∈ V (T ), which is good, i.e. every failed edge of Ti corresponds to a
well-bouncing arc of ~HF .

We can now state the main lemma of this section.

I Lemma 4. If G contains at most k − 1 failed edges, then T contains at least one good
arborescence.

Proof. We prove that there exists an arborescence Ti such that if a packet bounces on any
failed edge of Ti it will reach d without any further interruption. Let F be the set of failed
edges, at most k−1 of them. Then, by Lemma 1 we have that HF contains at least k−f ≥ 1
tree-components. Let T be one such component.

By Lemma 3, we have that there exists at least an arborescence Ti such that every
outgoing arc from i is well-bouncing. Therefore, bouncing on any failed arc of Ti the packet
will reach d without any further interruption. J

6 Randomized Routing via Good Arborescences

In this section, we show that a set of routing functions for G obtained by Rand-Bouncing-
Algo is (k − 1)-resilient. Note that our routing function (RND) maps an incoming edge and
the set of active edges incident at v to a set of pairs (e, q), where e is an outgoing edge and q
is the probability of forwarding a packet through e. A packet is forwarded through a unique
outgoing edge.
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The section is structured as follows. As a prelude, we show a simple, yet inefficient,
randomized routing algorithm, called Rand-Algo, that although is (k − 1)-resilient, fails to
achieve low expected number of hops in case of k− 1 failed edges. We then apply our results
from Section 5 to show that Rand-Bouncing-Algo is both (k − 1)-resilient and requires
up to an order fewer number of hops, compared to Rand-Algo, to reach the destination.

6.1 A Simple (Inefficient) Randomized Routing
Consider the following naive randomized algorithm Rand-Algo for routing along arbores-
cences. A packet is routed along the same arborescence until it either reaches its destination
or hits a failed edge. In the latter case, it is rerouted along another arborescences chosen
uniformly at random. We show that there exists a k-connected graph and a set of failed
edges such that the expected number of tree switches that Rand-Algo makes is Ω(k2). This
further implies that the expected number of hops is Ω(Hk2) in the worst case, where H is
the length of a longest path in any arborescence and assuming that longest path in all the
arborescences are up to a constant factor the same.

To prove the promised bound, we start by defining a 2k edge connected graph G = (V,E)
and its set of 2k arc disjoint spanning trees T0, . . . , T2k−1 as follows.

Set V consists of a destination vertex d and 4k additional vertices arranged into two
equal-sized layers L1 = {v1

0 , . . . , v
1
2k−1} and L2 = {v2

0 , . . . , v
2
2k−1}.

Set E is defined by the following four subgraphs: (1) L2 is a clique of size 2k; (2) (L1, L2)
is a complete bipartite graph; (3) for each k = 0, . . . , k − 1, there is an edge (v1

2i, v
1
2i+1)

and (4) vertex d is connected to each vertex of L1. There is no other edge included in G.
Next, we construct 2k arc-disjoint spanning trees T0, . . . , T2k−1 (see Fig. 2 for an example
with k = 2). We use [t]0 to denote set {0, 1, 2, . . . , t− 1}.

For each i ∈ [k]0, add the following arcs:
(v2

2i+1, v
2
2i), (v2

2i, v
1
2i), (v1

2i, v
1
2i+1), and (v1

2i+1, d) into T2i+1;
arcs (v2

2i, v
2
2i+1), (v2

2i+1, v
1
2i+1), (v1

2i+1, v
1
2i), and (v1

2i, d) into T2i.
For each i ∈ [k]0, and for each j ∈ [2k]0 \ {2i, 2i+ 1}, add the following arcs:

(v2
j , v

2
2i), and (v1

j , v
2
2i) into T2i;

(v2
j , v

2
2i+1), and (v1

j , v
2
2i+1) into T2i+1.

Finally, consider a scenario in which edges (v2
0 , v

2
1), (v2

2 , v
2
3), . . . , (v2

2k−4, v
2
2k−3) and (v1

0 , v
1
1),

(v1
2 , v

1
3), . . . , (v1

2k−4, v
1
2k−3), (v1

2k−2, v
1
2k−1) failed.

We say that a packet is routed downwards (upwards) if it is routed from a vertex in
L2 (L1) to a vertex in L1 (L2). Let Ed be the expected number, minimized over all the
vertices, of tree switches of a packet that is routed downwards, Eu be the expected number
of tree switches of a packet that is routed along Ti and is currently located at v2

i , for some
i ∈ [2k − 2]0, and E2 be the expected number of tree switches of a packet that is originated
by a vertex in L2. Then, we can show.

I Lemma 5. It holds Eu ≥ 3
2k−1Ed + 2k−4

2k−1Eu + 1 .

Proof. Let p be routed along Th and located at v2
h, for some h ∈ [2k − 2]0. W.l.o.g, let h = 0.

By the construction of T0, from v1
0 packet p should be forwarded to v2

1 but (v2
0 , v

2
1) has failed.

So, from v2
0 , p is forwarded downwards along T1, T2k−2 or T2k−1 with probability 3

2k−1 and
routed along any other tree Tj to a vertex v2

j in L2 with probability at least 2k−4
2k−1 . Hence,

the lemma follows. J

I Lemma 6. We have Ed ∈ Ω(k2).
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Proof. By the construction, a packet routed downwards traverses arc (v2
i , v

1
i ) of Ti. W.l.o.g,

let p be routed along (v2
2i, v

1
2i) of T2i. As (v1

2i, v
1
2i+1), which belongs to T2i, has failed, p is

rerouted along Tj for some j ∈ [2k]0 \ {2i}. Among them, only T2i+1 has a path from v1
2i to

d that does not contain any failed link. T2i+1 is chosen with probability 1
2k−1 .

If any other tree Tj is chosen except T2k−2 and T2k−1, which happens with probability
2k−4
2k−1 , then p is rerouted through Tj from v1

2i to a vertex v2
j in L2, and hence

Ed ≥
2k − 4
2k − 1Eu + 1. (4)

Putting together with (4) and Lemma 5 we obtain Ed ∈ Ω(k2). J

We finally observe that any packet originated at a vertex of L2 is routed downwards at
least once before reaching the destination vertex, i.e., E2 ≥ Ed = Ω(k2), which proves the
following theorem.

I Theorem 7. For any k > 0, there exists a 2k edge-connected graph, a set of 2k arc-disjoint
spanning trees, and a set of 2k− 1 failed edges, such that the expected number of tree switches
with Rand-Algo is Ω(k2).1

6.2 Correctness of Randomized-Bouncing Routing

In this section we prove that Rand-Bouncing-Algo eventually delivers a packet to d, i.e.
it avoids loops, and in the next section we analyze its efficiency.

Assume that we, magically, know whether the arborescence we are routing along is a
good one or not. Then, on a failed edge we could bounce if the arborescence is good, or
switch to the next arborescence otherwise. And, we would not even need any randomness.
However, we do not really know whether an arborescence is good or not since we do not know
which edges will fail. To alleviate this lack of information we use a random guess. So, each
time we hit a failed edge we take a guess that the arborescence is good, where the parameter
q estimates this likelihood. Notice that Rand-Bouncing-Algo implements exactly this
approach. As an example, consider Fig. 1. If a packet originated at a is first routed through
Red and the corresponding outgoing edge {a, c} is failed, then the packet is forwarded with
probability q to Blue or Green chosen u.a.r., and with probability 1 − q it is bounced to
Green, which shares the outgoing failed edge {a, c} with Red. By the following lemma we
show that this approach leads to (k − 1)-resilient routing.

I Lemma 8. Rand-Bouncing-Algo produces a set of (k − 1)-resilient routing functions.

Proof. By Lemma 4 we have that there exists at least one arborescence Ti of T such that
bouncing on any failed edge of Ti the packet will reach d without any further interruption.
Now, as on a failed edge algorithm Rand-Bouncing-Algo will switch to Ti with positive
probability, and on a failed edge of Ti the algorithm will bounce with positive probability,
we have that the algorithm will eventually reach d. J

1 In the extended version of this paper [9], we show a more involved example for which Rand-Algo
makes Ω(|V |k2) hops, in expectation, to deliver a packet to d.
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6.3 Number of Switches of Rand-Bouncing-Algo
In this subsection we analyze the expected number of times I the packet is rerouted from one
arborescence to another one in Rand-Bouncing-Algo. As we are interested in providing
an upper bound on I, we make the following assumptions. First, we assume that bouncing
from an arborescence which is not good the routing always bounces to an arborescence which
is not good as well. Second, we assume that only by bouncing from a good arborescence the
routing will reach d without switching to any other arborescence. Third, we assume that
there are exactly k − f good arborescences, which is the lower bound provided by Lemma 1
and Lemma 3. Clearly, these assumptions can only lead to an increased number of iterations
compared to the real case. Finally, for the sake of brevity we define t := f

k .
Now, we are ready to start with the analysis. As the first step we define a random variable,

where in the definitions T is the arborescence variable from algorithm Rand-Bouncing-
Algo,

X := number of times a failed edge is hit before reaching d if routing on T .

Let Tinit be the first arborescence that we consider in Rand-Bouncing-Algo. Then, E [I]
is upper-bounded by

E [I] ≤Pr [Tinit is not good]E [X|Tinit is not good] +
Pr [Tinit is good]E [X|Tinit is good] , (5)

where from our assumptions we have

Pr [Tinit is not good] = t, and Pr [Tinit is good] = 1− t.

To simplify calculations, let XP and YP be pessimistic upper bound on conditional expec-
ted values. That is, letXP be the same as E [X|Tinit is not good] and YP as E [X|Tinit is good]
under assumption that: the packet always hits a failed edge unless it bounces on a good
arborescence; and, whenever packet bounces on a non-good arborescence it switches to a
non-good one.

Now, let us express XP and YP as functions in XP , YP , q, and t, while following our
assumptions. If T is not a good arborescence, then a routing along T will hit a failed edge.
If it hits a failed edge, with probability 1− q the routing will bounce and switch to a non
good arborescence. With probability qt the routing scheme will set T to be a non good
arborescence, and with probability q(1− t) it will set T to be a good arborescence. Formally,
we have

XP = 1 + qtXP + q(1− t)YP + (1− q)XP . (6)

Applying an analogous reasoning about YP , we obtain

YP = 1 + qtXP + q(1− t)YP . (7)

Observe that the equations describing XP and YP differ only in the term (1− q)XP . This
comes from the fact that bouncing on a good arborescences the packet will reach d without
hitting any other failed edge.

By some simple calculations (see [9]), we obtain

E [I] ≤ U(q) := t

(1− q)q(1− t) + 1
1− q . (8)

Now we can prove the following lemma.
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I Lemma 9. We have that

E [I] ≤ 2 + 4 t

1− t = 2 + 4 f

k − f
.

Proof. From (8) we have E [I] ≤ U(q). Setting q = 1/2 we obtain

U(1/2) ≤ 2 + 4 t

1− t ,

and by plugging t = f/k the lemma follows. J

Note that if we know f in advance, or have some guarantee in terms of an upper bound
on f , we can derive parameter q that improves the running time of Rand-Bouncing-Algo,
as provided by the following lemma.

I Lemma 10. U(q) is minimized for q = q∗ := 1− (1 +
√
t)−1, and equal to

U(q∗) = 1 +
√
t

1−
√
t
. (9)

Proof. Consider U(q)′, which is

U(q)′ = t(1− q)2 − q2

(1− q)2q2(t− 1) .

In order to find the value of q that minimizes U(q), denote it by q∗, we find the roots of
U(q)′ = 0 with respect to q. There is only one positive solution of equation U(q)′ = 0, which
is also the minimizer q∗, and is equal to q∗ = 1− 1

1+
√
t
, as desired.

Finally, substituting q∗ into (8) and simplifying the expression we obtain (9). J

Observe that

U(q∗) ≤ 4
1− f

k

.

Therefore, if f = αk, i.e., only a fraction of the edges fail, we obtain U(q∗) ≤ 4
1−α . This

means that the expected number of arborescence switches does not depend on the number
of failed edges but on the ratio between this number and the connectivity of the graph.
Otherwise, if f = k − 1, we have that the expected number of arborescence switches is
bounded by 4k, which is linear w.r.t. to the connectivity of the graph. Combining these
conclusions with Lemma 8, we obtain the following.

I Theorem 11. Given a k-connected graph G, destination d and a decomposition of G into k
arc-disjoint arborescences T rooted at d, there exists a (k− 1)-resilient algorithm that delivers
a packet to d after O

(
k

k−fH
)

hops in expectation, where H is the length of a longest path of
any arborescence of T and f the number of failed edges. The algorithm uses randomization
only when encounters a failed edge. In particular, if f = 0, the algorithm is deterministic.

6.4 An Extension: Rerouting in a Non-uniform Manner
In this section we briefly study non-uniform choice of arborescence used for rerouting in
algorithm Rand-Bouncing-Algo. To motivate that discussion, consider a scenario in which
a packet hits a failed edge u, v while routed along arborescence T . Wlog, assume T = Tk.
Furthermore, assume that path v-d along every other arborescence does not contain any
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failed link. Therefore, switching from Tk to any other arborescence the packet will reach
d without any further interruption. If the packet is rerouted at step 2.2.(a) of algorithm
Rand-Bouncing-Algo but not bounced, then the rerouting tree is chosen uniformly at
random. It further means that the expected number of edges the packet will traverse before
reaching d from v is

EU =
k−1∑
i=1

distTi(v)
k − 1 =

∑k−1
i=1 distTi

(v)
k − 1 ,

where distTi
(a) is the number of the edges on the unique path from a to d along arborescence

Ti.2 However, the distances from v to d along different arborescences might significantly
differ. This naturally suggests us to consider a non-uniform distribution of arborescences
chosen at step 2.2.(a) of Rand-Bouncing-Algo, as we do in the rest of this section.

For each vertex v 6= d and each arborescence Ti define probability piv as

piv :=
1

distTi
(v)∑k−1

j=1
1

distTj
(v)

.

The expected number of the edges the packet will traverse if each arborescence is chosen
with respect to the distribution given by pv is

ENU =
k−1∑
i=1

pivdistTi
(v) =

k−1∑
i=1

1∑k−1
j=1

1
distTj

(v)

= k − 1∑k−1
i=1

1
distTi

(v)

.

Now we would like to show that indeed EU
?
≥ ENU . But, it is the same as showing that

(k − 1)2 ?
≤
k−1∑
i=1

distTi
(v)

k−1∑
i=1

1
distTi

(v) .

However, the latter follows from Cauchy–Schwarz inequality as

(k − 1)2 =
(
k−1∑
i=1

√
distTi

(v)

√
1

distTi
(v)

)2

≤
k−1∑
i=1

distTi
(v)

k−1∑
i=1

1
distTi

(v) .

Hence, EU ≥ ENU , as advertised.
We note that this example is a potential scenario that might occur. However, and

unfortunately, in case of failures we are unable to detect whether the described situation
has occurred or not. Nevertheless, we believe that in practical applications the non-uniform
choice of arborescences used for rerouting, as described above, would result in a more efficient
routing than its uniform counterpart.
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