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ABSTRACT 

Perceptual decision-making is an important and experimentally tractable paradigm for uncovering 
general principles of neural information processing and cognitive function. While the process of 
mapping sensory stimuli onto motor actions may appear to be simple, its neural underpinnings 
are poorly understood. The goal of this thesis is to better understand the neural mechanisms 
underlying perceptual decision-making by exploring three major questions: How is decision-
relevant information encoded across the cortex? What cortical areas are necessary for perceptual 
decision-making? And finally, what neural mechanisms underlie the mapping of sensory percepts 
to appropriate motor outputs? 

We investigated the roles of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices 
of mice during a memory-guided visual decision task. Large-scale calcium imaging revealed that 
neurons in each area were heterogeneous and spanned all task epochs (stimulus, delay, 
response). However, information encoding was distinct across regions, with V1 encoding stimulus, 
fMC encoding choice, and PPC multiplexing the two variables. Optogenetic inhibition during 
behavior showed that all regions were necessary during the stimulus epoch, but only fMC was 
required during the delay and response epochs. Stimulus information was therefore rapidly 
transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, 
but only fMC for maintaining the choice in memory prior to execution. 

We further investigated whether the role of PPC was specific to visual processing or to 
sensorimotor transformation. Using calcium imaging during both engaged behavior and passive 
viewing, we found that unlike V1 neurons, most PPC neurons responded exclusively during task 
performance, although a minority exhibited contrast-dependent visual responses. By re-training 
mice on a reversed task contingency, we discovered that neurons in PPC but not V1 reflected the 
new sensorimotor contingency. Population analyses additionally revealed that task-specific 
information was represented in a dynamic code in PPC but not in V1. The strong task dependence, 
heterogeneity, and dynamic coding of PPC activity point to a central role in sensorimotor 
transformation. 

By measuring and manipulating activity across multiple cortical regions, we have gained insight 
into how the cortex processes information during sensorimotor decisions, paving the way for 
future mechanistic studies using the mouse system. 

 
Thesis Supervisor: Mriganka Sur 

Title: Paul E. Newton Professor of Neuroscience 
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Chapter 1: Introduction 
 

1.1 Background 
 

1.1.1 The neural mechanisms underlying sensorimotor decisions 
 

One of the central functions of the nervous system is to use sensory input to guide motor actions. 

In simple systems, deterministic sensorimotor behaviors such as the pain withdrawal reflex allow 

for a fast behavioral response, and are mediated by simple neural circuits that transform sensory 

input directly into motor action (Carew et al., 1983). However, much of cognitive behavior is non-

deterministic and requires a flexible mapping of sensation onto action. Even simple perceptual 

decisions, such as deciding whether to go or stop at an incoming traffic light, involve a learned 

mapping of arbitrary sensory features (e.g. color) onto specific volitional actions (e.g. pressing the 

gas or the brake). Furthermore, the sensory stimulus and motor output are often separated in 

time, requiring short-term memory, and the mapping between them may change depending on 

context or experience. Such flexible, memory-guided sensorimotor transformations are thought 

to require more complex neural circuits that extend into the cerebral cortex (Andersen and Cui, 

2009; Gold and Shadlen, 2007; Romo and de Lafuente, 2013). Understanding the neurobiology 

of perceptual decision-making holds great promise for generating broader insights into both the 

information processing principles of the brain, as well as the mechanisms of cognition in general.  

 The study of perceptual decision-making is very experimentally tractable, given the 

precise control in both magnitude and time that one can have over the inputs that lead to a 

decision. However, despite this apparent simplicity and decades of work in this area (Shadlen 

and Kiani, 2013), the field is still quite far from a comprehensive understanding of how perceptual 

decisions are made in the brain, and many fundamental questions remain unanswered. How is 

information relevant to a decision encoded and maintained in the brain? What brain areas are 

truly essential for perceptual decision-making? What neural mechanisms underlie the process of 
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mapping a sensory percept to an appropriate choice and motor output? This thesis attempts to 

address each of these questions by combining large-scale neural recordings, temporally-specific 

manipulations, and computational analysis to elucidate the neural mechanisms underlying a 

sensorimotor decision task.  

 

1.1.2 Distributed encoding and maintenance of information during perceptual decisions 

 

Perhaps the most fundamental challenge in the study of perceptual decisions (and perhaps for 

the field of cognitive neuroscience in general) is that the brain is a densely interconnected system, 

with many areas reflecting task-relevant activity even in the simplest of behaviors. The typical 

approach throughout the history of our field is to tame this complexity by assigning and isolating 

specialized functions to individual areas. In this framework, sensorimotor decisions could be 

performed via the (roughly) serial information processing stages of perception, cognition, and 

action, each implemented by distinct sets of brain regions, albeit with some feedback connections 

between them.  

However, as intuitively appealing as this framework is, recordings of neural activity in 

putative sensory, cognitive, and motor regions challenge the idea of a one-to-one assignment of 

brain area to function (Cisek and Kalaska, 2010). For example, the maintenance of information in 

short-term memory is thought to be a more “cognitive” function, and indeed early work using 

delayed response tasks indicated the importance of higher order areas like prefrontal cortex 

(Funahashi et al., 1989; Fuster and Alexander, 1971; Kojima and Goldman-Rakic, 1982) and 

posterior parietal cortex (PPC) (Chafee and Goldman-Rakic, 1998; Constantinidis and Steinmetz, 

1996; Snyder et al., 1997). However, sustained activity during the delay period has also been 

observed in motor cortex, subcortical regions, and even sensory areas (Nakamura and Colby, 

2000; Super et al., 2001). As another important example, classic work identified signals in the 
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association area PPC that appear to reflect the decision process itself, as they were sensitive not 

only to the eventual motor choice, but also accumulated evidence for or against that decision 

(Roitman and Shadlen, 2002; Shadlen and Newsome, 2001). These same “cognitive” decision 

signals, however, have also been observed in many other areas including putative “motor” regions 

like the frontal eye fields (Ding and Gold, 2012; Purcell et al., 2010), the striatum (Ding and Gold, 

2010), and the superior colliculus (Horwitz and Newsome, 1999). Additionally, PPC itself has been 

shown to encode a panoply of other signals besides accumulated evidence, ranging from the 

salience of sensory stimuli (Gottlieb et al., 1998) to the direction of intended movements (Snyder 

et al., 1997). Therefore, although there certainly are fundamental distinctions between sensory, 

association, and motor areas, the highly interconnected nature of these areas and the distributed 

representation of task information across them makes regional assignment of individual functions 

a difficult challenge.  

Nonetheless, identifying how various aspects of a perceptual decision task are encoded 

across different brain areas remains an important first step. Significant progress has been made 

in identifying such signals in non-human primates during perceptual decision tasks (Gold and 

Shadlen, 2007; Hernandez et al., 2010; Siegel et al., 2015). These studies reveal that although 

task-relevant information arrives first in primary sensory areas, it is subsequently distributed and 

reflected in the activity of many downstream areas, including frontal and parietal cortex, but also 

motor regions. In general, activity initially encodes information about the stimulus but is later 

transformed into information about the animal’s impending choice, which can be decoded not only 

from downstream motor circuits, but often also from sensory areas as well.  

Despite this macroscopic understanding of how information flows across the brain during 

perceptual decisions, many mechanistic questions remain which have been difficult to address in 

primates. Because of the availability of powerful experimental tools, including optogenetics, two-

photon microscopy, and transgenic lines, rodents, and especially mice, are quickly becoming a 
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model of choice for the study of sensorimotor decisions (Carandini and Churchland, 2013). Still, 

much work needs to be done to establish sufficiently complex decision tasks for rodents, and to 

measure the distributed neural signals that underlie them. In Chapter 2 of this thesis, I present a 

novel, memory-guided sensorimotor decision task for mice, and demonstrate that neural signals 

encoding this task are distributed across sensory, association, and motor cortices. 

 

1.1.3 Causal interrogation of brain regions underlying sensorimotor decisions 

 

While measurement of neural activity is an important first step toward defining task-related regions, 

the presence of neural activity does not prove that a given region plays a causal role in mediating 

behavior. Causal manipulation experiments are necessary to demonstrate that task-related 

signals in a given brain area are not merely reflecting activity from other regions, but are in fact 

utilized to instruct behavior. However, these experiments occur infrequently in the decision-

making literature, given that performing them in highly trained non-human primates can be 

prohibitively risky and costly. In addition, many perturbation experiments (whether in primates or 

rodents) have been inconclusive or hard to interpret for a variety of reasons, including low 

numbers of subjects, incomplete disruption, non-specific effects, or lack of temporal resolution.  

 For example, microstimulation studies have revealed that activation of neurons in sensory 

(Bisley et al., 2001) or parietal areas (Hanks et al., 2006) is sufficient to influence decision 

behavior. However, these experiments cannot distinguish whether some of the observed 

behavioral effects are actually due to indirect activation of other connected areas, nor can they 

address whether the region is necessary for task performance. Lesions can give definitive 

evidence for the necessity of a brain region in behavior (Gisquet-Verrier and Delatour, 2006; 

Sakurai and Sugimoto, 1985), but they are by nature irreversible and lack the temporal resolution 

to isolate specific aspects of a task. Pharmacological inactivation remains a powerful and 
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relatively tractable technique in both rodents (Erlich et al., 2015; Harvey et al., 2012) and primates 

(Katz et al., 2016; Suzuki and Gottlieb, 2013) for demonstrating whether a region is necessary for 

perceptual decisions. Such experiments have importantly revealed that certain areas like PPC 

can exhibit decision-related activity which is actually dispensable for behavioral performance in 

some tasks (Erlich et al., 2015; Katz et al., 2016). However, behavioral deficits are harder to 

interpret in these experiments, as they lack the temporal resolution to test specific task epochs, 

and it may thus be unclear whether a given manipulation affects stimulus perception, memory 

maintenance, or motor output.  

The advent of optogenetics has dramatically improved our ability to manipulate neural 

circuits with spatial and temporal precision. Optical manipulation experiments have revealed that 

the behavioral effects of inactivation can depend critically on timing (Guo et al., 2014; Kopec et 

al., 2015; Li et al., 2016; Sachidhanandam et al., 2013). Such approaches can therefore help to 

identify not only what brain regions are necessary for a behavior, but also during what trial epochs 

is activity essential for task performance. In Chapter 3 of this thesis, I leverage this optogenetic 

approach to test the necessity and temporal specificity of sensory, association, and motor cortex 

in a visuomotor decision task.  

Clear interpretation of any perturbation experiment, however, requires an understanding 

of potential non-specific effects. Because the brain is a densely interconnected system, sudden 

manipulations of one node can have unintended effects on other nodes of the circuit. These so-

called off-target effects from manipulating an area can be sufficient to alter behavioral 

performance, even when permanent disruptions of that area have no effect on behavior (Otchy et 

al., 2015). It is therefore critical to control for or measure potential off-target effects in areas that 

are interconnected with the brain region of interest. In Chapter 3, I also present experiments that 

involve simultaneous manipulation and recording to test whether behavioral deficits are better 

explained by perturbation of a single node, or by disruption of an interconnected network.  



15 
 

 

1.1.4 Sensorimotor transformation and the posterior parietal cortex 

 

Although many areas are involved in perceptual decision-making, one brain region of keen 

interest to the field (and to this thesis) is the posterior parietal cortex (PPC). As an association 

area that receives inputs from multiple sensory areas and projects directly to motor areas, PPC 

has been long implicated in the process of sensorimotor transformation (Gold and Shadlen, 2007). 

Classic neurophysiological studies in behaving primates have shown that activity in PPC seems 

to reflect the decision process itself, as it encodes both the animal’s impending motor action as 

well as the sensory evidence for that decision (Roitman and Shadlen, 2002; Shadlen and 

Newsome, 2001). Such findings have been recapitulated in rodent PPC using similar 

accumulation of evidence decision tasks (Hanks et al., 2015).  

 However, the breadth and variety of responses observed in PPC makes a direct 

correspondence of PPC activity with accumulated evidence for a decision much too simplistic. 

First, PPC seems to be highly task-dependent, encoding a variety of different parameters 

depending on the experimental conditions, including shape selectivity (Sereno and Maunsell, 

1998), categories (Freedman and Assad, 2006), visual salience (Colby and Goldberg, 1999), and 

even motor imagery (Aflalo et al., 2015). The diversity of PPC responses has led to vigorous 

debates about its specific function: whether in spatial attention (Colby and Goldberg, 1999) versus 

motor planning (Andersen and Buneo, 2002), or in abstract categorization (Freedman and Assad, 

2011) versus action-oriented decisions (Shadlen et al., 2008). Second, even using essentially the 

same accumulation of evidence decision task, researchers have recently found that PPC 

responses can be highly heterogeneous, encoding both sensory accumulation and action 

selection signals (Bennur and Gold, 2011), and even multiplexing decision-irrelevant sensory 

signals with decision-relevant ones (Meister et al., 2013). This dizzying heterogeneity has led 

some to argue that PPC may consist of a dynamic network that encodes multiple signals 
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simultaneously, which can then be de-mixed and read-out separately by downstream structures 

according to behavioral needs (Park et al., 2014; Raposo et al., 2014).     

 Dissociating the possible roles of PPC in decisions will require approaches that go beyond 

mere measurement of neural activity to specific perturbation of PPC circuits during behavior (Katz 

et al., 2016). The enhanced experimental access offered by rodent models have led many to 

begin investigating the role of PPC in mice and in rats (Carandini and Churchland, 2013), yet the 

degree to which rodent PPC is functionally homologous to that of primates remains unclear. Both 

anatomical projection studies (Wang and Burkhalter, 2007; Wang et al., 2012), as well as 

functional mapping studies (Garrett et al., 2014; Marshel et al., 2011) indicate that the coordinates 

for rodent PPC overlap with a group of extrastriate areas that lie rostral to V1. Consistent with a 

possible role in visual processing, some have found that rat PPC is specifically necessary for 

visual but not auditory decisions (Licata et al., 2016; Raposo et al., 2014). Additionally, although 

decision signals similar to that of primates has been observed in rodent PPC (Hanks et al., 2015), 

inactivation experiments demonstrate that such signals are not necessary for performance of an 

auditory accumulation task (Erlich et al., 2015). It thus remains an open question whether rodent 

PPC plays a visuomotor role in a manner homologous to primate PPC, or whether it is primarily 

important for sensory processing as an extrastriate visual area. In Chapter 4, I present 

experiments that explicitly test these two possibilities using behavioral manipulations and calcium 

imaging of mouse posterior parietal cortex. 

 

1.1.5 Population coding and dynamics with heterogeneous neurons 
 

Great progress has been made in the early years of system neuroscience by studying the 

properties of single neurons in relation to externally measured variables, such as the location of 

a somatic sensory stimulus (Mountcastle et al., 1957) or the orientation of a visually presented 
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bar of light (Hubel and Wiesel, 1962). While this approach has been fruitful for early sensory 

regions, its success has been varied for higher cognitive areas like prefrontal cortex or PPC, even 

during simple decision tasks. Indeed, it has been increasingly recognized that heterogeneity and 

mixed selectivity across neurons is a hallmark of neural activity in these areas, and in perhaps 

most of the brain (Jun et al., 2010; Meister et al., 2013; Raposo et al., 2014; Rigotti et al., 2013). 

While the task-related responses of an individual neuron can be bewilderingly complex, 

population-level descriptions can often be simpler and easier to interpret (Churchland et al., 2012; 

Cunningham and Yu, 2014; Mante et al., 2013). Understanding the responses of one neuron with 

mixed selectivity may only be possible in the context of the responses of other neurons (Fusi et 

al., 2016), leading some to argue that the neuronal ensemble, rather than the single neuron, 

should be viewed as the functional unit of the nervous system (Yuste, 2015).  

 Information coding in heterogeneous populations can be explored using the 

complementary approaches of encoding and decoding. The encoding approach seeks to describe 

how task and stimulus information is represented in neural activity. While these encoding models 

have been successful in dissociating the contributions of different task-related signals to the 

responses of a single neuron (Chen et al., 2016; Park et al., 2014; Pillow et al., 2005; Pinto and 

Dan, 2015), many of these models do not take into account the ongoing activity of other neurons 

in the network (but see (Pillow et al., 2008; Truccolo et al., 2005)). Furthermore, merely encoding 

information is not enough. In order for it to be used by downstream circuits, information must be 

explicit enough to be decoded using simple, biologically realistic mechanisms. The decoding 

approach can therefore be used to test what type of information can be read out and when this 

information is available. But it also be used to test how this information is encoded across time, 

i.e. using which neurons. While information could be encoded in a stable manner, using the same 

neurons across time, others have reported that prefrontal cortex (Meyers et al., 2008; Stokes et 

al., 2013) and PPC (Crowe et al., 2010; Harvey et al., 2012; Morcos and Harvey, 2016) can 
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encode the same information at different time points using activity patterns that change 

dynamically (Buonomano and Maass, 2009). Whether such dynamic coding is indeed a hallmark 

of higher cortical regions (Murray et al., 2017) and whether it changes with task demands (Crowe 

et al., 2010) remains unclear. In Chapter 5 of this thesis, I employ both encoding and decoding 

approaches to examine the population dynamics and coding principles of mouse PPC during 

perceptual decision-making. 

 

1.2 Overall organization of thesis 
 

This thesis can be divided into two major sections, each consisting of two chapters. Both sections 

are intimately related as they involve investigation of the same cortical areas in the mouse brain, 

during variations of the same perceptual decision task. 

The first major section centers on the neural mechanisms of a memory-guided 

sensorimotor decision task, and the bulk of the findings have appeared in publication (Goard et 

al., 2016). Chapter 2 describes the behavioral task and the task-related responses of neurons in 

three cortical areas, measured using population calcium imaging: primary visual cortex (V1), 

posterior parietal cortex (PPC), and frontal motor cortex (fMC). Individual neuron responses were 

heterogeneous within each area, with neurons responding during each of the three task epochs 

(stimulus, delay, and response) distributed across the cortex. Population analyses, however, 

revealed that each area dynamically encoded different types of information, with V1 encoding 

stimulus, fMC encoding choice, and PPC encoding stimulus early and then choice later in the trial.  

Chapter 3 then describes an optogenetic approach to causally test the necessity of each of these 

regions for behavior with temporal specificity. While all three areas were necessary during the 

stimulus epoch, only fMC was necessary during the delay and response epochs. This led to a 

model in which stimulus information is transformed rapidly into a motor plan, which is represented 

in the sustained activity of motor cortex neurons until execution of the response. In addition to the 
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published behavioral experiments (Goard et al., 2016), Chapter 3 also describes work that probed 

specifically at the role of PPC and its interactions with V1. Simultaneous recording and inactivation 

experiments demonstrate that PPC inactivation affected V1 responses via network-level effects, 

suggesting that PPC may provide permissive feedback input to V1 that is necessary for task 

performance. 

The second major section of the thesis focuses on understanding the function and 

information coding of the posterior parietal cortex (PPC) during flexible perceptual decision-

making, work that is in preparation for publication. Chapter 4 describes variations on the same 

behavioral decision task which enabled distinctions between a potential role for PPC in sensory 

versus sensorimotor processing. Calcium imaging experiments during engaged visual behavior 

and passive viewing of the same stimuli revealed that unlike neurons in V1, the majority of PPC 

neurons were strongly gated by task performance, although a subset of PPC neurons showed 

contrast-modulated visual responses. Imaging experiments performed before and after task 

contingency reversal further demonstrated that most PPC neurons were sensitive to the learned 

sensorimotor contingency, rather than to the stimulus itself. Chapter 5 probes more deeply into 

the information coding properties of PPC using population-level analyses. An encoding model 

relating task variables to PPC responses was dramatically improved when the activity of the 

network was incorporated. Additionally, time-dependent decoding analyses provided evidence 

that PPC, unlike V1, represented task-relevant information using a dynamic code.  

Finally, in Chapter 6, the findings of the preceding chapters are integrated and discussed 

in the broader context of sensorimotor decision-making and its underlying neural mechanisms. 
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Chapter 2: Neural signatures of a sensorimotor decision in mouse 

visual, parietal, and frontal motor cortex1. 
 

2.1 Summary 
 

Mapping specific sensory features to future motor actions is a crucial capability of mammalian 

nervous systems, but the neural underpinnings are not well understood. We investigated the role 

of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping 

in mice during performance of a memory-guided visual discrimination task using large-scale 

calcium imaging. Single neuron responses within each region were surprisingly heterogeneous 

and spanned all task epochs (stimulus, delay, response), with a fraction of neurons in each area 

exhibiting sustained activity that varied parametrically with delay duration. Population analyses 

demonstrated unique encoding of stimulus identity and behavioral choice information across 

regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC 

multiplexing the two variables. These results suggest a model in which stimulus identity is rapidly 

transformed into a behavioral choice and maintained in higher regions until task execution. 

2.2 Introduction 
 

The ability to use sensory input to guide motor action is a principal task of the nervous system. 

Simple sensorimotor transformations, such as the patellar reflex, can be mediated by simple 

neural circuits within the peripheral nervous system. However, more sophisticated sensorimotor 

decisions, like using a traffic signal to guide future driving maneuvers, often requires mapping 

specific sensory features to motor actions at a later time, and are thought to require more complex 

neural circuits extending into the cerebral cortex (Andersen and Cui, 2009; Gold and Shadlen, 

2007; Romo and de Lafuente, 2013).  

1 The entirety of the findings presented in this chapter appeared in Goard, Pho et al., 2016 
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 Over the past several decades, a number of researchers have measured neural activity 

during memory-guided sensorimotor decisions using delayed-response and working memory 

tasks. However, despite the wealth of research in this area, there are a number of unresolved 

questions. First, it is unclear which regions are responsible for sensorimotor transformation. For 

example, single-unit electrophysiological recordings (Andersen and Cui, 2009; Bennur and Gold, 

2011; Freedman and Assad, 2006; Gold and Shadlen, 2007; Shadlen and Newsome, 2001) and 

pharmacological inactivation (Li et al., 1999) (but see (Chafee and Goldman-Rakic, 2000)) studies 

in non-human primates have implicated posterior parietal cortex (PPC) in mapping sensory input 

to appropriate motor responses.  However, recent rat auditory (Erlich et al., 2015) and mouse 

whisker (Guo et al., 2014b) studies have challenged this view, finding no role for PPC in memory-

guided sensorimotor decisions. Rather, a number of studies suggest that cortical (Guo et al., 

2014b; Murakami et al., 2014; Zagha et al., 2015) and subcortical (Kopec et al., 2015; Znamenskiy 

and Zador, 2013) motor regions might be the key site for sensorimotor transformation. In contrast, 

PPC does appear to be necessary for visual sensorimotor decision tasks in mice (Harvey et al., 

2012) and rats (Raposo et al., 2014); though the proximity of PPC to secondary visual regions 

makes it difficult to clearly isolate the effect of PPC inactivation (see discussion in (Erlich et al., 

2015)). There are several possibilities for the discrepancies seen in the previous studies, including 

differences in species, sensory modality, and behavioral task. In order to further investigate the 

locus of sensorimotor transformation, we hoped in this work to take a more comprehensive 

approach toward measuring and perturbing activity across sensory, parietal association, and 

motor cortical regions during a delayed-response task. 

A second unresolved issue lies in determining which region(s) are responsible for 

maintaining task-relevant information in the delay period between the stimulus and response. For 

decades, researchers have used delayed-response tasks to study the maintenance of information 

(short-term memory), and have observed the presence of sustained neural activity in distributed 
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cortical and subcortical structures; including prefrontal cortex (Funahashi et al., 1989; Fuster and 

Alexander, 1971; Kojima and Goldman-Rakic, 1982; Miller et al., 1996; Romo et al., 1999; 

Sreenivasan et al., 2014), parietal cortex (Chafee and Goldman-Rakic, 1998; Constantinidis and 

Steinmetz, 1996; Harvey et al., 2012; Shadlen and Newsome, 2001; Snyder et al., 1997), sensory 

(Nakamura and Colby, 2000; Super et al., 2001) and motor cortices (de Lafuente and Romo, 2005; 

di Pellegrino and Wise, 1993; Erlich et al., 2015; Guo et al., 2014b; Hernandez et al., 2010; Li et 

al., 2015), as well as several subcortical regions (Fuster and Alexander, 1973; Kawagoe et al., 

1998). Building on this work, theoretical studies have yielded biologically-plausible models 

describing how sustained neural activity can be generated and maintained to support short-term 

memory (Compte et al., 2000; Goldman et al., 2003; Wang, 2008). However, recent studies in 

rodents have indicated that some of the regions traditionally thought to be crucial for short-term 

memory maintenance, such as parietal and prefrontal cortices, appear not to play a major role in 

some tasks (Erlich et al., 2015; Guo et al., 2014b; Liu et al., 2014), though other studies have 

found an important role for sustained activity in motor regions consistent with theoretical models 

(Kopec et al., 2015; Li et al., 2016). Is the sustained activity observed in parietal and prefrontal 

cortex epiphenomenal? Or might the difference stem from another aspect of the task (e.g., 

modality)? We reasoned that we could help resolve this issue by measuring and perturbing activity 

in distributed cortical regions during a visual delayed-response task. 

To leverage the genetic tractability of the mouse toward a better mechanistic 

understanding of memory-guided sensorimotor decisions, we modified a visual discrimination 

task used for head-fixed mice (Andermann et al., 2010) by using a retractable spout to separate 

the components of the task into discrete stimulus, delay, and response epochs. We took 

advantage of high sensitivity genetically-encoded calcium indicators (Chen et al., 2013) to enable 

high-yield 2-photon volume scanning approach (Kampa et al., 2011). This allowed us to image 

from large populations of neurons in sensory, association and frontal motor regions during 
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discrete epochs of a memory-guided sensorimotor decision task, including stimulus encoding, 

delay and behavioral response. (Goard et al., 2016) 

 

2.3 Experimental Procedures 
 

2.3.1 Surgical procedures 

 

All procedures were approved by the Massachusetts Institute of Technology Animal Care and 

Use Committee. Data were collected from male adult (60-120 day old) wild-type mice (C57BL/6; 

n = 12). The animals were housed on a 12 hour light/dark cycle in cages of up to 5 animals before 

the implants, and individually after the implants. All surgeries were conducted under isoflurane 

anesthesia (3.5% induction, 1.5-2.5% maintenance). Meloxicam (1 mg kg-1, subcutaneous) was 

administered pre-operatively and every 24 hours for 3 days to reduce inflammation. Once 

anesthetized, the scalp overlying the dorsal skull was sanitized and removed. The periosteum 

was removed with a scalpel and the skull was abraded with a drill burr to improve adhesion of 

dental acrylic. Stereotaxic coordinates for future viral injections were marked with a non-toxic ink 

and covered with a layer of silicon elastomer (Kwik-Sil, World Precision Instruments) to prevent 

acrylic bonding. The entire skull surface was then covered with dental acrylic (C&B-Metabond, 

Parkell) mixed with black ink to reduce light transmission. A custom-designed stainless steel head 

plate (eMachineShop.com) was then affixed using dental acrylic. After head plate implantation, 

mice recovered for at least five days before beginning water restriction. 

 After behavioral training was complete, animals were taken off water restriction for five 

days before undergoing a second surgery to implant the imaging window(s). Procedures for 

anesthetic administration and post-operative care were identical to the first surgery. The dental 

acrylic and silicon elastomer covering the targeted region were removed using a drill burr. The 

skull surface was then cleaned and a craniotomy (2-4 mm, depending on targeted structure) was 
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made over the region of interest, leaving the dura intact. For imaging experiments, neurons were 

labeled with a genetically-encoded calcium indicator by microinjection (Stoelting) of 50 nl 

AAV2/1.Syn.GCaMP6s.WPRE.SV40 (University of Pennsylvania Vector Core; diluted to a titer of 

1012 genomes ml-1) 300 µm below the pial surface. Between two and five injections were made in 

each exposed region, centered at V1 (4.2 mm posterior, 2.5 mm lateral to Bregma), PPC (2 mm 

posterior, 1.7 mm lateral to Bregma) or fMC (1.5 mm anterior, 1 mm lateral to Bregma). Since the 

viral expression spreads laterally from the injection site, exact stereotaxic locations were 

photographed through the surgical microscope for determining imaging areas. Finally, a cranial 

window was implanted over the craniotomy and sealed first with silicon elastomer then with dental 

acrylic. The cranial windows were made of two rounded pieces of coverglass (Warner Instruments) 

bonded with optical glue (NOA 61, Norland). The bottom piece was circular or oval, custom cut 

according to cortical region(s) (V1: 2.5 mm x 2.5 mm; PPC: 1 mm x 2 mm; V1 + PPC: 4 mm x 4 

mm; fMC: 2 mm x 2.5 mm, anterior-posterior x medial-lateral) and fit snugly in the craniotomy. 

The top piece was a larger circular coverglass (3-5 mm, depending on size of bottom piece) and 

was bonded to the skull using dental acrylic. Mice recovered for five days before commencing 

water restriction. 

 

2.3.2 Behavior 

 

Mice were head-fixed using optical hardware (Thorlabs) and placed in a polypropylene tube to 

limit movement. Spout position was controlled by mounting the spout apparatus on a pressure-

driven sliding linear actuator (Festo) controlled by two solenoids (Parker). Licks were detected 

using an infrared emitter/receiver pair (Digikey) mounted on either side of the retractable lick 

spout. Rewards consisted of 5-8 l water and punishments consisted of a white noise auditory 

stimulus alone (early training) or white noise plus 1-3 l of 5mM quinine hydrochloride (Sigma) in 

water (late training). Behavioral training and testing was implemented with custom software 
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written in Matlab (Mathworks). Drifting grating stimuli were presented with the Psychophysics 

Toolbox (Brainard, 1997). Mice were trained during the light cycle. The stimulus consisted of sine 

wave gratings (spatial frequency: 0.05 cycles deg-1; temporal frequency: 2 Hz) drifting at either 0 

degrees (target) or 90 degrees (non-target) away from vertical. These stimuli were chosen to drive 

distinct groups of visual neurons with roughly equal strength. Thus, any large differences in 

stimulus selectivity observed in cortical neurons are not likely the result of stimulus strength. 

 Mice were trained in successive stages, with advancement to the next stage contingent 

on correct performance: 1) Mice received reward any time they licked the spout. 2) Trial structure 

was initiated by having an auditory cue tone, followed by a visual stimulus (100% targets), 

followed by an inter-trial interval. Mice were only rewarded for licks during the visual stimulus. 3) 

Once mice exhibited preferential licking during the stimulus compared to inter-trial interval, the 

target rate was reduced over several sessions from 100% to 50%. At this point, the non-target 

was a static grating orientated orthogonally to the target. Licks during non-targets were punished 

with white noise or white noise plus quinine. 4) Once mice exhibited the ability to discriminate 

target and non-target gratings (d’ > 1 and RHIT - RFA > 30% for consecutive sessions, where RHIT 

and RFA are the hit and false alarm rate, respectively), the temporal frequency of the non-target 

grating was increased. 5) Spout withdrawal was introduced. At first the spout was extended within 

range before the stimulus appeared, then spout extend time was gradually delayed until after the 

stimulus had turned off (i.e., 0 s delay). 6) Finally, the variable delay period was gradually 

increased to 0/3/6 s. Mice that failed to fully learn the task within 150 sessions or showed signs 

of infection were removed from the study. In total, we removed 11 mice from the study before data 

collection was complete: 3 mice for failure to consistently lick the spout for reward (stage 1), 3 

mice for failure to progress during the visual discrimination phase (stage 3), 1 mouse for failure 

to progress at the variable delay stage (stage 6), 1 mouse that showed signs of infection, and 4 
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mice that completed behavioral training but either had poor viral expression or cloudy windows 

after surgery. 

Once mice reached high levels of performance at the final stage of the task (d’ > 1.5 and 

RHIT - RFA > 50%), they were removed from water restriction for window implantation. After 

recovery from window implantation surgery, they were re-trained to a level of high performance 

(2-7 days) before beginning experimental sessions. Any sessions with poor performance were 

discarded (minimum performance criterion: d’ > 1 and RHIT - RFA > 30%).  

 

2.3.3 Two-photon imaging 
 

GCaMP6s fluorescence was imaged 14-35 days after virus injection using Prairie Ultima IV 2-

photon microscopy system with a resonant galvo scanning module (Bruker). For fluorescence 

excitation, we used a Ti-Sapphire laser (Mai-Tai eHP, Newport) with dispersion compensation 

(Deep See, Newport) tuned to  = 910 nm. For collection, we used GaAsP photomultiplier tubes 

(Hamamatsu). To achieving a wide field of view, we used a 16x/0.8 NA microscope objective 

(Nikon), which was mounted on a Z-piezo (Bruker) for volume scanning. Resonant scanning was 

synchronized to z-piezo steps in the acquisition software for volume scanning. For volume 

scanning, four 441 x 512 pixel imaging planes separated by 20 or 25 m were imaged sequentially 

at a stack rate of 5 Hz for 10 min imaging sessions. Occasionally, very bright neurons were visible 

across multiple planes. To exclude redundant sampling of the same neuron, the Pearson 

correlation coefficients of the fluorescence traces of all pairs of neurons within a recording were 

calculated. Neuron pairs with a correlation coefficient > 0.5, and an inter-ROI distance <12.5 m 

in the XY plane were considered to be redundant and the ROI with the lower average fluorescence 

signal (more likely out of plane) was removed. Even with virus titer dilution, a small number of 

nucleus-filled neurons were observed in most experiments (Chen et al., 2013), but they comprised 
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a small percentage of neurons and generally did not exhibit significant task-driven responses 

(Harvey et al., 2012). Laser power ranged from 40-75 mW at the sample depending on GCaMP6s 

expression levels. Photobleaching was minimal (<1% min-1) for all laser powers used. A custom 

stainless steel plate (eMachineShop.com) attached to a black curtain was mounted to the head 

plate before imaging to prevent light from the visual stimulus monitor from reaching the PMTs. 

During imaging experiments, the polypropylene tube supporting the mouse was suspended from 

the behavior platform with high tension springs (Small Parts) to dampen movement. 

 

2.3.4 Image analysis 

 

Images were acquired using PrairieView acquisition software and sorted into multi-page TIF files. 

All subsequent analyses were performed in MATLAB (Mathworks). First, images were corrected 

for X-Y movement by registration to a reference image (the pixel-wise mean of all frames) using 

2-dimensional cross correlation. Movements in the Z-dimension were rare in normal imaging 

conditions, although movements were sometimes observed during licking. In order to prevent 

licking-related artifacts from being identified as significant responses, we adapted our response 

significance test to exclude short-duration changes in fluorescence (see Section 2.3.5). 

To identify responsive neural somata, a pixel-wise activity map was calculated as 

previously described (Ahrens et al., 2012). Neuron cell bodies were identified using local adaptive 

threshold and iterative segmentation. Automatically-defined ROIs were then manually checked 

for proper segmentation in a MATLAB-based graphical user interface (allowing comparison to raw 

fluorescence and activity map images). To ensure that the response of individual neurons was not 

due to local neuropil on somatic signals, a corrected fluorescence measure was estimated 

according to previously described methods (Chen et al., 2013) as Fcorrected_soma(t) = Fraw_soma(t) - 

0.7 × Fneuropil(t), where Fneuropil was the defined as the fluorescence in the region 0-15 m from the 

ROI border (excluding other ROIs). The F/F (corrected and uncorrected) for each neuron was 



34 
 

calculated as F/Ft = (Ft - F0)/ F0, with F0 defined as the mode of the raw fluorescence density 

distribution. 

 

2.3.5 Analysis of task-driven responses 
 

After image preprocessing and F/F extraction, traces were sorted into matrices by trial type (hit, 

miss, correct reject, false alarm). Testing neurons for significant responses was complicated by 

the large number of neurons (>9,000) and the number of samples per trial. Using a traditional 

threshold approach (with responses considered significant if they pass a threshold of multiple SDs 

from baseline) would yield either an unreasonable number of false positives (if a low threshold 

was used) or an unreasonable number of false rejections (if a high threshold was used). The 

GCaMP6s indicator has a long decay time constant (1/2 > 1 s), with fluorescence transients 

staying above baseline for >3 s seconds for even a single action potential (Chen et al., 2013). 

Thus, to capture weak but reliable trial-locked activity while excluding artifacts, we used a low 

significance threshold (sample different from baseline at p < 0.05, Wilcoxon signed-rank test) but 

required at least 10 samples to be significant in the same direction for at least 2 (of 3) delays for 

either hit or CR trials to be considered statistically significant (probability of significant response 

for any one neuron purely by chance <10-9). Since reliable GCaMP6s signals will exhibit slow 

decay over 10 or more samples, this approach will allow genuine calcium signals to emerge as 

significant, while chance fluctuations in fluorescence and short-duration movement artifacts (such 

as during licking) will not pass the significance threshold. All neurons that were significantly 

different from baseline according to these criteria in either the positive (enhanced activity) or 

negative (suppressed activity) were included in further analysis. To ensure the neuropil correction 

procedure did not create artificial responses, we required that both uncorrected F/F and 

corrected F/F exhibit significant changes for neurons to be included. Once neurons were 

determined to have significant responses, the corrected F/F was used for all further analyses. 
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For some analyses, the F/F responses were normalized by subtracting the baseline response 

(1 s before stimulus onset) and dividing by the maximum (for enhanced neurons) or minimum (for 

suppressed neurons) trial-averaged F/F for the neuron.  

 To investigate the clustering of task-driven responses (Figure 2.3), we first de-noised and 

reduced the dimensionality of the data by taking the first 20 principal components (explaining 98% 

of the variance). To cluster the data, we computed linkages using Ward’s method (with Euclidean 

distance). The dendrogram revealed distinct groups with high inter-cluster distance (Figure 2.3A). 

Averaging the responses of neurons within these clusters yielded distinct response types that 

corresponded well to the range of observed responses (Figure 2.3B). To determine the number 

of clusters (K = 6), we iteratively increased the number of clusters until the average traces began 

showing highly overlapping responses (at K > 6). Manual inspection revealed a small number of 

neurons within each cluster that appeared to be miscategorized. To improve categorization 

(Figure 2.3C), we computed the Pearson correlation coefficient between the response of each 

neuron and the mean of each of the six response types. Neurons were re-categorized based on 

the response type with highest correlation to their average response, yielding distinct clusters with 

high face validity and internal consistency. 

 The trial selectivity index (Figure 2.4C) was computed as SI = (Rpref – Rnon-pref)/(Rpref + Rnon-

pref), where Rpref and Rnon-pref are the responses to the preferred and non-preferred trials, 

respectively. The modal latency of the population (Figure 2.4D, Figure 2.5D) was estimated by 

first taking the DF/F of each neuron, and upsampling (via linear interpolation) the mean F/F 

signal to 1000 Hz. We then determined the point at which the mean F/F signal for each neuron 

went above or below baseline in a sustained manner ( from mean baseline F/F for 1000 

consecutive samples, or 1 s in trial time) and used the first sample as the estimated latency for 

that neuron. Since the latency distribution of the population was highly skewed in higher regions, 

we used the first mode of the latency density distribution to describe the onset of population 



36 
 

activity (full latency distributions for 6 s delay trials shown in Figure 2.5D). Note that these 

latencies are computed on upsampled data based on a linear interpolation, so the values should 

be considered approximate. To measure whether the neurons within a region exhibited delay 

modulation (Figure 2.4E) we fit the slope of the integrated F/F across increasing delay durations 

using a first order polynomial. We then calculated the delay modulation index (DMI) as DMI = 

(npos-nneg)/(npos+nneg) for enhanced populations and DMI = (nneg-npos)/(npos+nneg) for suppressed 

populations, where npos is the number of neurons with a positive slope and nneg is the number of 

neurons with a negative slope. 

 

2.3.6 Population encoding of task-related variables 
 

In order to determine how well we could decode the stimulus identity for populations of neurons 

(Figure 2.6B), we measured the discriminability of population responses on error trials from 

correct trials with a different stimulus but the same response. For example, to compare miss and 

correct reject (CR) population responses (different stimuli, same response), for each time point 

we first calculated the Euclidean distances between the neural population response vector at 

each CR trial t and a template CR response vector (average of all CR trials except t) and 

calculated the Euclidean distances between each miss trial t and the template CR response 

(average of all trials). We then generated a receiver operating characteristic curve from the 

distances to determine the discriminability of the miss from CR responses. By taking the area 

under the receiver operating characteristic (auROC; (Britten et al., 1992) for each time point, we 

could quantify the performance of an ideal observer in discriminating stimulus identity based 

purely on the population responses as a function of time during the trial. For behavioral choice 

encoding (Figure 2.6C), the same analysis was carried out comparing error-correct trial pairs with 

the same stimulus but different response. To reduce noise from experiments with very few error 

trials, only experiments that had at least three error trials of each type (miss, false alarm) were 
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included in the analysis. To determine how coding varied as a function of neural population size, 

we averaged the performance across 1000 iterations using populations of 1, 5, 10, 50, or 100 

randomly selected neurons (Figure 2.6D). For significance testing, we calculated the auROC for 

1000 permutations with shuffled trial labels. Individual time points were considered to predict 

stimulus/choice if the mean auROC was greater than the 95% confidence interval of the shuffled 

permutations for at least 3 consecutive time points (to compensate for multiple comparisons). 

 

2.3.7 General statistics 

 

Data groups were tested for normality using the Kolmogorov-Smirnov test and then compared 

with the appropriate tests (t-tests, Wilcoxon rank-sum or Wilcoxon signed-rank tests, all two 

sided). Bonferroni correction was used for multiple comparisons. Bootstrap estimates of s.e.m. 

were calculated as the standard deviation of values evaluated in 1,000 bootstrap iterations, 

obtained by randomly re-sampling with replacement from the original values. Due to very large 

sample sizes, very small p-values (<10-9) were approximated as p < 10-9 as a lower bound on 

reasonable probabilities. Sample sizes were not explicitly estimated, as even a single session 

generally had sufficient samples for the statistical tests used. However, to ensure that results were 

replicable between sessions and mice, we included 4-6 mice for each region in both imaging and 

inactivation experiments. 

 

 

2.4 Results 
 

2.4.1 Calcium imaging during a memory-guided sensorimotor task 

 

We trained head-fixed mice to perform a visual discrimination task with a memory-guided 

response (Figure 2.1A). In this task, water-restricted mice were presented a 2 s drifting grating 
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stimulus at one of two orientations (0, 90 from vertical), followed by a variable delay period (0-, 

3-, or 6-s), at which point a lick spout was moved rapidly into reach with a linear actuator for 1.5 

s (Figure 2.1B, bottom). Licking on “go” trials (horizontal grating drifting toward 0 from vertical) 

was rewarded with 5-8 l water (hit), while licking on “no-go” trials (vertical grating drifting toward 

90 from vertical) was punished with 2 l water containing 5mM quinine hydrochloride (false 

alarm; Figure 2.1B, top). This structure allowed the separation of each trial into “stimulus”, “delay”, 

and “response” epochs. Notice that the stimulus-choice association is fixed, so correct 

performance does not require memory of the stimulus during the delay period (memory of the 

planned response is sufficient). After extensive training (117 ± 11 behavioral sessions, 299 ± 25 

trials per session; mean ± s.e.m.), mice reliably exhibited strong differences in licking between go 

and no-go trials (Figure 2.1C, top) for all delay period durations. We applied an a priori exclusion 

criteria that any mice licking continuously throughout the delay period on target trials would be 

excluded from the study, since this strategy would possibly obviate the short-term memory 

component of the task. Mice did exhibit a bias toward licking (as observed previously with go/no-

go tasks; (Huber et al., 2012; O'Connor et al., 2010), so we quantified their performance using d-

prime rather than percent correct to account for motivation and criterion (Carandini and 

Churchland, 2013) (Figure 2.1C, bottom). Performance decreased slightly with longer delays, but 

was well above chance for all delay durations (0 s Delay, p < 10-9; 3 s Delay, p < 10-9; 6 s Delay, 

p < 10-9; t-test, n = 8 mice across 80 sessions). 

 We focused our experiments on three cortical regions we expected to be important for 

performance of this task: (1) the primary visual cortex (V1), which is known to be important for 

orientation discrimination (Glickfeld et al., 2013); (2) the posterior parietal cortex (PPC), which 

receives extensive input from visual regions (Harvey et al., 2012; Oh et al., 2014; Pho et al., 

2015), projects to motor regions (Wang et al., 2012), and has been implicated in sensorimotor 

decision tasks (Andersen and Cui, 2009; Gold and Shadlen, 2007; Hanks et al., 2015; 
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McNaughton et al., 1994; Nitz, 2006; Raposo et al., 2014; Shadlen and Newsome, 2001; Whitlock 

et al., 2008) and (3) the frontal motor cortices (fMC), which include regions known to be crucial 

for voluntary licking behaviors (Guo et al., 2014b; Komiyama et al., 2010).  

We identified parietal cortex on the basis of stereotaxic coordinates from previous studies 

(Harvey et al., 2012). Note that this region has weak visual responses and has also been classified 

as a secondary visual region (AM) (Garrett et al., 2014; Wang et al., 2012). However, in addition 

to visual inputs, retrograde tracing from our lab (unpublished results) and others (Harvey et al., 

2012) has revealed that the region receives input from auditory, somatosensory, secondary motor, 

and frontal cortices, as well as the lateral posterior thalamic nucleus. Since the parcellation of 

rodent frontal and motor cortices is a subject of debate in the field (Brecht, 2011), and both medial 

and lateral regions have been implicated in licking (Komiyama et al., 2010) we define fMC on the 

basis of stereotaxic coordinates (including primary and secondary motor regions) and remain 

agnostic as to its precise homology with primate frontal and motor cortices. Nonetheless, several 

studies have indicated that rodent fMC plays an important role in tasks involving perceptual 

decisions and memory (Erlich et al., 2015; Guo et al., 2014b; Kepecs et al., 2008; Li et al., 2015).  

To measure neural activity in layer 2/3 of cortex during task performance, a craniotomy 

was made over one or more of regions V1, PPC and fMC (Figure 2.1D) after completion of training. 

Stereotaxically-guided microinjections of adeno-associated virus (AAV) containing the 

genetically-encoded calcium indicator GCaMP6s (Chen et al., 2013) were made in V1 (n = 5 

mice), PPC (n = 6) and/or fMC (n = 4), and sealed cranial windows were made over V1 and PPC 

(Figure 2.1E) or fMC. To increase the number of recorded neurons, we used a volume scanning 

approach (Kampa et al., 2011) that allowed us to image four imaging planes (separated by 20-25 

m) to simultaneously sample hundreds of GCaMP6s-infected neurons within an 850 m x 850 

m x 60-75 m volume at a sample rate of 5 Hz (Figure 2.1F). Images were corrected for X-Y 

movement and regions of interest were assigned to cell somata based on a pixel-wise activity 



40 
 

map calculation, yielding fluorescence traces from individual neurons that were active during the 

imaging session (26 sessions, active neurons per session: 352 ± 40, mean ± s.e.m.). A total of 

9,150 active neurons were imaged in regions V1 (n = 2,695 neurons), PPC (n = 3,552), and fMC 

(n = 2,903), of which 3,049 (33.3%) exhibited trial-locked responses significantly different from 

baseline (see Experimental Procedures for inclusion criteria; Figure 2.1G). Pilot experiments in 

transgenic mice expressing tdTomato in PV+ and SOM+ interneurons revealed that interneuron 

calcium signals measured with volume scanning were considerably smaller than tdTomato-

negative (putatively excitatory) neurons (though see (Peron et al., 2015), and therefore the vast 

majority of task-responsive cells were likely excitatory pyramidal neurons. 

 

2.4.2 Single neurons exhibit heterogeneous trial-evoked responses 
 

To investigate how regions V1, PPC, and fMC encode task-relevant variables, we analyzed the 

activity of single neurons in each region during task performance (Figure 2.2). The majority (63%, 

Figure 2.3, see below for description of classification procedure) of V1 neurons with increased 

task-evoked activity exhibited robust and reliable responses during the stimulus epoch but not 

during other epochs of the task, with similar responses across 0, 3, and 6 s delays (Figure 

2.2A,B). However, there was also a sizable fraction (37%) of neurons that exhibited activity during 

the other task epochs, particularly during the response epoch (Figure 2.2C). Interestingly, there 

was an additional fraction (53% of responsive neurons) of neurons that were suppressed 

throughout the stimulus and delay periods in a delay duration-dependent fashion (Figure 2.2D). 

To our knowledge, neurons exhibiting delay-dependent suppression have not been previously 

described in V1 despite their prevalence in our sample.  

Neurons in PPC were even more heterogeneous, with a large number (48% of enhanced 

neurons) of neurons exhibiting activity during both stimulus and response epochs (Figure 2.2E,F), 

as well as some neurons (11% of enhanced neurons) exhibiting delay-dependent enhanced 
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activity (Figure 2.2G), as has previously been observed in primate experiments in delayed-

response tasks (Chafee and Goldman-Rakic, 1998; Constantinidis and Steinmetz, 1996). Finally, 

we again saw neurons that exhibited suppressed delay-dependent activity during the task (Figure 

2.2H), though they were much less prevalent compared to V1 (9% vs. 53% for PPC and V1, 

respectively).  

Neurons in fMC likewise exhibited heterogeneous responses during multiple task epochs. 

As expected in motor regions, a plurality (47% of enhanced neurons) of neurons responded solely 

during the response epoch (Figure 2.2I). However, a substantial fraction (33% of enhanced 

neurons) of neurons responded not only during the response epoch, but also in a sustained 

manner throughout the delay period (Figure 2.2J), including neurons that exhibited sustained 

activity during the delay period of the task, and actually showed decreased activity during the 

response period (Figure 2.2K). Note that the sustained activity cannot be attributed to the slow 

decay of the GCaMP6 indicator after the initial stimulus response, as the duration of the sustained 

activity varies parametrically with the duration of the delay period. Sustained activity was also 

observed using a calcium indicator with a faster time course (GCaMP6f, data not shown). Finally, 

we again observed a subset (39% of responsive neurons) of neurons with suppressed delay-

dependent activity in fMC (Figure 2.2L).  

To characterize the diversity of trial-evoked responses and their relative prevalence in 

each region, we clustered the neurons by their response characteristics. We pooled the significant 

responses (enhanced and suppressed) from all three areas, and then used PCA-based de-

noising and hierarchical clustering to delineate distinct response types (see Materials and 

Methods). Hierarchical clustering revealed six distinct response types, four of them exhibiting 

enhanced activity and two exhibiting suppressed activity (Figure 2.3A). To reveal the archetypical 

response of each group, we averaged the normalized responses of all neurons within each 

cluster, revealing four enhanced response classes: stimulus-driven (Stim only), response-driven 
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(Resp only), stimulus- and response-driven (Stim+Resp), and delay-driven (Delay), as well as two 

suppressed response classes: delay-sensitive stimulus-driven (Supp. Delay early) and delay-

sensitive response-driven (Supp. Delay late; Figure 2.3B). These clusters have strong face 

validity, as the average responses (Figure 2.3B) are qualitatively similar to observed single-

neuron responses (Figure 2.2). Although neurons that were active during the response epoch 

were predominantly selective for ‘go’ trials, there were response-driven neurons that were 

selective for ‘no-go’ trials as well (data not shown), suggesting that the response-driven activity is 

not entirely related to motor activity. There were clear differences in both enhanced and 

suppressed response types between regions, such as V1 containing a large number of ‘Stim only’ 

and ‘Supp. Delay early’ neurons, while fMC had greater numbers of ‘Delay’, ‘Resp only’, and 

‘Supp. Delay late’ neurons (Figure 2.3C). However, there was a surprising amount of 

heterogeneity as well, with all three regions containing a fraction of almost all response types.  

 

2.4.3 Suppressed neurons exhibit non-selective responses 
 

We next investigated what role neurons exhibiting suppressed activity (975/3049 neurons, 32.0%; 

Figure 2.2D,H,L) play in encoding task-relevant information. We found that the enhanced and 

suppressed neurons across regions exhibited striking differences in selectivity. The vast majority 

of enhanced neurons showed a strong preference for a particular trial type (hit vs. correct reject, 

only correct trials included in analysis), with little or no response to the non-preferred trial type 

(Figure 2.4A). However, the majority of suppressed neurons showed very similar responses to 

both trial types, with little difference between “preferred” and “non-preferred” trial types (Figure 

2.4B). We used a selectivity index ranging from 0 (responds equally to preferred and non-

preferred stimuli) to 1 (only responds to preferred stimuli) to quantify the selectivity of each neuron 

(see Materials and Methods), revealing that enhanced neurons were significantly more selective 

than suppressed neurons in all three regions (Figure 2.4C; V1: Enh. median SI = 0.67, Supp. 



43 
 

median SI = 0.16, p < 10-9; PPC: Enh. median SI = 0.91, Supp. median SI = 0.31, p < 10-9; fMC: 

Enh. median SI = 0.99, Supp. median SI = 0.53, p < 10-9; Wilcoxon rank-sum test).  

One possibility for the presence of the suppressed responses is that local inhibition is 

being recruited by the increased activity of the enhanced neurons during task performance. If this 

were the case, we would expect that the time course of the suppressed responses would closely 

follow that of the enhanced responses. We estimated the response latency of the suppressed 

neurons, and found that the latencies were slow (>400 ms) and uncorrelated to the enhanced 

population latency in the cortical region (Figure 2.4D). We also found that suppressed neurons 

exhibited suppression throughout the delay period (in a duration-dependent manner; Figure 

2.2D,H,L), even when this pattern was not present in the enhanced neurons of the same region 

(Figure 2.4E). Taken together, these findings suggest that the suppressed responses are not 

simply reflecting inhibition from local excitatory responses, but rather are the result of more 

complex dynamics; possibly low-latency, delay-dependent inputs from distal regions. 

 

2.4.4 Enhanced neurons show regional differences despite local heterogeneity 
 

The lack of trial type selectivity observed in suppressed neurons indicates that there will be little 

information about stimulus identity or future motor response in the activity of these neurons. 

However, the enhanced neurons are highly selective, and likely represent these task-relevant 

variables in a more robust manner. To further investigate the role of enhanced neurons in different 

cortical regions, we investigated the population responses within regions by pooling the neurons 

across imaging sessions from different animals. 

To investigate the encoding of task variables at the population level, we averaged and 

normalized the preferred responses of enhanced task-driven neurons across all correct trials of 

equivalent delay (hit or correct reject, depending on preferred response) and sorted them first by 

cortical region, and then by latency to peak response (Figure 2.5A). While V1 neurons preferred 
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go and no-go trials in roughly equal numbers, we found that PPC and fMC neurons were highly 

biased toward the go trials (Figure 2.5B). Since the target and non-target stimuli have similar 

visual saliency, this suggests that these regions may encode task-related variables other than 

stimulus identity. Indeed, although the responses within regions were heterogeneous (Figure 

2.3), there were clear differences in the average responses between regions (Figure 2.5C). 

Specifically, V1 neurons were predominantly active during the stimulus epoch, while PPC and 

fMC exhibited more heterogeneous responses spanning stimulus, delay, and response epochs. 

Although sustained delay-period activity could be observed across all cortical regions, it was most 

prevalent in fMC, both in single-unit (Figure 2.3C) and population (Figure 2.5C) activity. Finally, 

there were considerable differences in latency to significant response, with the first mode of the 

latency distribution increasing from V1 to PPC to fMC for all delay durations (V1: 89 ± 10ms, PPC: 

244 ± 15 ms, fMC: 827 ± 177 ms, mean across delays; regions all significantly different, V1 x 

PPC: p < 10-9, V1 x fMC: p < 10-9, PPC x fMC: p < 10-9, Wilcoxon rank-sum test; Figure 2.5D).  

 

2.4.5 Population error-trial analysis reveals distinct encoding dynamics in each region 

 

To further investigate how neural activity might reflect the encoding of the stimulus identity and 

behavioral choice (including planning of the response before it is made), we analyzed the 

modulation of responses in all regions during error trials. We hypothesized that if neurons were 

simply encoding stimulus identity, there would be no difference in activity during correct trials and 

error trials containing the same visual stimulus (i.e., hit vs. miss; correct reject vs. false alarm). 

Indeed, V1 neurons exhibit similar responses to correct and error trials with the same stimulus, 

while neurons in PPC and fMC show very different responses on the two trial types (Figure 2.6A, 

left and middle panels corresponding to miss vs. hit trials; Pearson correlation between miss and 

hit trials, V1: 0.47 ± 0.03, PPC: 0.05 ± 0.01, fMC: 0.06 ± 0.02). Similarly, we hypothesized that if 

neurons encoded the animal’s behavioral choice independently of the stimulus shown, we would 
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expect there to be little difference between correct trials and error trials with the same motor 

response (i.e., hit vs. false alarm; correct reject vs. miss). Neuronal responses in PPC and fMC 

appear to exhibit more similarity than V1 for trial types with the same motor response (Figure 

2.6A, middle and right panels corresponding to hit vs. false alarm trials; Pearson correlation 

between hit and false alarm trials, V1: 0.23 ± 0.03, PPC: 0.47 ± 0.01, fMC: 0.46 ± 0.02).  

To quantify the encoding of task variables as a function of time in each region, we used 

an ideal observer analysis to determine how well we could decode the stimulus identity 

independent of the behavioral choice (Figure 2.6B) and behavioral choice independent of 

stimulus identity (Figure 2.6C) using only the responses from randomly selected populations of 

neurons (ranging from population size of 1 to 100, see Materials and Methods for details of 

decoding procedure). In V1, stimulus identity could be decoded with perfect accuracy given a 

sufficient number of neurons (Figure 2.6B, left), while behavioral choice was only weakly encoded 

(Figure 2.6C, left). The stimulus identity encoding peaked during the visual stimulus and then 

gradually declined throughout the trial (statistically significant from baseline from 0.2 - 9.2 s, mean 

value greater than 95% CI of shuffled permutations for consecutive time points, see Materials 

and Methods), likely due to the slow decay of the GCaMP6s indicator, while the behavioral choice 

encoding gradually increased, peaking during the response period (statistically significant from 

4.8 – 6.8 s and 8.4 - 10.0 s; Figure 2.6D, left). Note that in all three regions, the increase in 

stimulus identity encoding during the response epoch is likely the byproduct of reward or 

punishment (which is directly associated with the stimulus identity) influencing motor activity. In 

PPC, both stimulus identity and behavioral choice could be decoded with moderate success 

(Figure 2.6B,C, middle), although the dynamics were noticeably different. Specifically, while the 

stimulus identity was predominantly encoded early in the trial (statistically significant from 0.6 – 

3.4 s and 7.2 - 10.0 s), the behavioral choice encoding slightly lagged the stimulus identity 

encoding, and remained high throughout the trial, peaking during the early part of the licking 
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response (statistically significant from 1.4 - 10.0 s; Figure 2.6D, middle). Note that the stimulus 

encoding is much weaker in PPC than in V1, likely due to the large number of neurons that jointly-

encode stimulus and choice information (Park et al., 2014; Raposo et al., 2014); Pho et al., 2015). 

Finally, in fMC the stimulus identity could not be decoded above chance for the majority of the 

trial (Figure 2.6B, right), while the behavioral choice could be decoded with greater accuracy in 

fMC than in other regions (Figure 2.6C, right). Thus, while stimulus identity decoding was only 

above chance during the response epoch (statistically significant from 8.8 - 9.4 s, see caveat on 

stimulus identity encoding during response epoch above), the behavioral choice could be 

decoded throughout the delay and response epochs (statistically significant from 3.0 - 10.0 s; 

Figure 2.6D, right).  

Taken together, these results suggest a working hypothesis of the roles that neural activity 

in regions V1, PPC, and fMC play in the performance of the task. Specifically, the results suggest 

that sensory input is primarily processed during the stimulus epoch, first in V1, then subsequently 

in PPC. Neural activity related to the behavioral choice arises in PPC and fMC shortly after the 

peak in stimulus identity coding, and is sustained in both regions throughout the delay and 

response epochs. This implies that stimulus identity is rapidly transformed into a behavioral choice 

within the stimulus epoch (possibly within PPC), and then the behavioral choice is maintained in 

higher regions (potentially in both PPC and fMC) until the relevant motor action is performed 

(Figure 2.7). 

 

2.5 Discussion 
 

Understanding the circuits underlying the conversion of sensory input into motor action is a major 

goal of neuroscience research (Andersen and Cui, 2009; Gold and Shadlen, 2007; Romo and de 

Lafuente, 2013). By measuring the activity of neurons in multiple cortical regions during a 

memory-guided sensorimotor decision task, this study has made the following contributions. 



47 
 

First, large-scale 2-photon calcium imaging revealed that despite differences in single-unit 

activity between regions, the responses within a region were surprisingly heterogeneous, with a 

representation of all classified response types in all regions (Figure 2.3). For example, in V1 we 

observed many neurons that were active during the response epoch in addition to the expected 

neurons active during the stimulus period, and vice versa in the frontal motor cortices. This study 

also shows, for the first time in mice, that a fraction of neurons (mostly in PPC and fMC) exhibit 

sustained activity that varies parametrically with delay duration, in line with earlier work from non-

human primates (Funahashi et al., 1989; Fuster and Alexander, 1971; Kojima and Goldman-Rakic, 

1982).  

One difference between our study and many previous delayed-response studies was the 

use of a go/no-go design rather than an alternative choice design. Although we used this design 

primarily for practical reasons (to reduce training time), we found interesting biases in the cortical 

responses resulting from the response asymmetry (Figure 2.5B). In particular, while V1 exhibited 

a moderate bias toward Hit trials (65.3% target-preferring), PPC and fMC exhibited much stronger 

biases toward Hit trials (95.5% and 97.2% target-selective, respectively), although there was a 

small fraction of neurons that showed robust responses selective for CR. Given that the false 

alarm rate exceeded the miss rate at all delays, it is surprising that there is not more activity 

reflecting the suppression of licking on non-target trials. In future studies, it would be interesting 

to probe other regions involved in motor and cognitive control, such as striatum and prefrontal 

cortex, to see if there are signals corresponding to the suppression of licking during correct reject 

trials. 

The sustained delay-period activity we observed contrasts with several recent studies in 

which neurons recorded in parietal and prefrontal cortices exhibited sequential neural activity 

(Baeg et al., 2003; Fujisawa et al., 2008; Harvey et al., 2012). It has been unclear whether the 

different modes of neural activity (steady-state vs. sequential) observed during short-term 
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memory depend on the behavioral task, or whether the sequential activity had simply been 

obscured by lower-throughput methods of collecting and analyzing the data. Using volumetric 

calcium imaging to sample large populations of neurons, we found evidence in our task for steady-

state representation of motor choice, with the vast majority of delay-sensitive neurons becoming 

active early in the trial and exhibiting persistent or ramping activity throughout the delay period 

(Figure 2.2G, J, K; Figure 2.3). We suspect that the nature of the mnemonic information in the 

behavioral task has a strong bearing on the mode of activity observed. In tasks where neurons 

exhibit steady-state activity, such as our study and others (Funahashi et al., 1989; Fuster and 

Alexander, 1971; Kojima and Goldman-Rakic, 1982; Shadlen and Newsome, 2001), the encoded 

motor plan is held constant throughout the delay period (e.g., lick when the spout comes forward; 

make a saccade to a fixed location). In contrast, in tasks where neurons exhibit sequential activity 

(Baeg et al., 2003; Fujisawa et al., 2008; Harvey et al., 2012) the encoded motor plan may vary 

as a function of the trial as the animal navigates through real or virtual space. Both types of 

memory are important for understanding complex behavior, and warrant further study of the 

underlying neural architecture. 

A second contribution is the finding that a sizable fraction of the significantly responding 

neurons (32.0% of all significantly-responding neurons) exhibited suppressed rather than 

enhanced responses during task performance (Figure 2.2, Figure 2.3). However, these neurons 

were generally much less selective than enhanced neurons (particularly in V1 and PPC), and as 

a result appear to play little role in encoding task-relevant variables (Figure 2.4). Without a 

method for specifically manipulating the activity of the suppressed neurons, it is difficult to 

unambiguously discern what role they may play in task performance. One possibility is that 

suppression of spontaneously active neurons may reduce any ongoing task-irrelevant activity, 

and thereby improve the readout of task-relevant population activity by higher-order neurons. 
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Third, we found that despite the heterogeneity observed in the single-unit activity, when 

the populations of neurons within each region are analyzed as a whole, they exhibit distinct coding 

dynamics of task-relevant variables (Figure 2.6). Specifically, the V1 population predominantly 

encodes the stimulus identity, particularly early in the trial. Similar to previous research in non-

human primates (Park et al., 2014) and rodents (Raposo et al., 2014), we find multiplexed 

encoding of stimulus identity and behavioral choice in PPC. However, we find that the dynamics 

of the stimulus identity and behavioral choice encoding in PPC are distinct, with choice encoding 

lagging slightly, and lasting throughout the delay period. The fMC predominantly encodes 

behavioral choice, beginning early in the trial and lasting throughout the delay period until after 

the motor response is made, in accord with choice-related activity observed in premotor regions 

in earlier rodent (Erlich et al., 2011; Guo et al., 2014b; Li et al., 2015) and non-human primate 

studies (Hernandez et al., 2010). 

 A few caveats are important to note in the interpretation of this study. One persistent issue 

in delayed-response tasks (in which the correct response is evident early in the trial) is that the 

subject could adapt a behavioral strategy in which they make a micropostural preparation (e.g., 

movement of the eyes, changes in body orientation or tongue position) to stand in for the eventual 

motor action. This in turn may preclude the necessity for actively maintaining a motor plan 

throughout the delay period. This problem has been recognized for some time (Kojima and 

Goldman-Rakic, 1982), and we attempted to address the possibility using video analysis (see 

Supplementary Materials), but it remains challenging to control for the wide range of potential 

covert movements. Disentangling the effects of covert preparations on premotor and motor 

activity will be an important step in understanding the neural basis of motor planning. Use of more 

advanced behavioral paradigms, such as a delayed match-to-sample task, can additionally aid in 

isolating periods of sensory memory from motor planning. 
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A second caveat is that the asymmetry of the go/no-go design can muddle interpretation 

of stimulus and choice information, as assessed via comparison with error trials (Figure 2.6). 

Errors in a go/no-go paradigm can result from changes in arousal, motivation, or impulsivity that 

alter the willingness of the animal to respond, and therefore our measurement of “choice”-related 

information may also reflect these non-specific factors. While go/no-go designs have been 

commonly used for rodent studies (Huber et al., 2012; Lee et al., 2012; Pinto and Dan, 2015; 

Pinto et al., 2013; Sippy et al., 2015), forced-choice tasks are also amenable to rodents (Brunton 

et al., 2013; Guo et al., 2014a; Raposo et al., 2014) and have the advantage of being immune to 

these issues of motivation and criterion (Carandini and Churchland, 2013). 

Finally, this study focused on cortical regions located on the dorsal surface of the mouse 

brain, as they are readily accessible to both 2-photon calcium imaging and optogenetic inhibition. 

However, there are likely to be additional cortical and subcortical regions involved in this task, 

including prefrontal cortex (Funahashi et al., 1989; Fuster and Alexander, 1971; Kojima and 

Goldman-Rakic, 1982), thalamus (Fuster and Alexander, 1973), superior colliculus (Kopec et al., 

2015), and basal ganglia (Ding and Gold, 2012; Kawagoe et al., 1998). These regions could be 

further investigated with a similar approach as invasive (Andermann et al., 2013; Barretto and 

Schnitzer, 2012; Zorzos et al., 2012) and noninvasive (Filonov et al., 2011; Mittmann et al., 2011; 

Prakash et al., 2012) techniques for optical interrogation of deeper structures become available. 
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2.8 Figures 

 

Figure 2.1: Calcium imaging during a sensorimotor decision task.  

(A) Experimental setup for 2-photon imaging in head-fixed mice performing a memory-guided visual 

discrimination task. Resonant-galvo scan mirrors were synchronized to a z-piezo to allow volumetric 

imaging. A retractable lick spout was used to restrict the timing of behavioral responses to a specific epoch 

of the task. (B) Contingency table (top) and trial structure of the memory-guided visual discrimination task 

(bottom). Trials consisted of stimulus, delay, and response epochs, and the retractable spout was within 

reach only during the response epoch. Trials of three different delays (0, 3, or 6 seconds) were randomly 

interleaved. (C) Average behavioral performance (n = 8 mice). Top, Response rate for target stimuli (hit 

rate; blue) and non-target stimuli (false alarm rate; red). Bottom, D-prime for delays of 0-6 seconds. (D) 

Location of cranial windows (blue circles) and AAV-GCaMP6s injections (green pipettes) in primary visual 

cortex (V1), posterior parietal cortex (PPC), and frontal motor cortex (fMC). (E) Example wide-field 

epifluorescence image of GCaMP6s expression in both V1 and PPC (window diameter, 4 mm). (F) Four 

imaging planes (25 µm apart) within V1 acquired at a stack rate of 5 Hz. Scale bar, 100 µm. (G) Sample 

raw ∆F/F traces from V1, PPC, and fMC (separate experiments) during interleaved target (blue bars) and 

non-target (white bars) trials of varying delay duration. 
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Figure 2.2. Single neurons exhibit heterogeneous trial-evoked responses.  

(A) Trial-to-trial and average responses from a single V1 neuron. Top three plots, stacked single-trial ∆F/F 

responses to the preferred stimulus (correct trials only), grouped into 0-, 3-, and 6-second delay trials. The 

neuron is active during the stimulus for all three delays. Colored bars above plots indicate time of visual 

stimulus (white) and spout extension (colored, shade indicates delay period). Bottom plot, overlay of mean 

∆F/F responses during 0-, 3-, and 6-s delay trials. Shade of average traces indicates delay period (dark 

blue, 0-s delay; medium blue, 3-s delay, light blue, 6-s delay). Additional V1 example neurons exhibiting 

activity during the stimulus period (B), response period (C), or suppressed activity throughout the delay 

period (D). Color shade indicates delay as in (A). (E) Same as (A) but for a PPC neuron. This neuron is 

active during both stimulus and response period. Additional PPC example neurons exhibiting activity during 

the stimulus and response period (F), sustained activity during the delay period (G), or suppressed activity 

throughout the delay period (H). Color shade indicates delay as in (E). (I) Same as (A) but for a fMC neuron. 

This neuron is active during the response period. Additional fMC example neurons exhibiting activity during 

the delay and response period (J), during only the delay period (K), or suppressed activity throughout the 

delay period (L). Color shade indicates delay as in (I).  
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Figure 2.3. Clustering reveals distinct response types distributed between regions.  

Hierarchical clustering was performed on the first 20 principal components (explaining >98% of the 
variance), revealing six separable clusters. Further cluster division resulted in separation of very similar 
response types. (A) Normalized calcium response to the preferred stimulus (correct trials only) of each 
neuron for the 6 s delay condition, separated by cluster identity (color indicates cluster). Bars at top of plot 
indicate time of visual stimulus (white), delay (grey), and spout extension (purple). Right inset shows 
dendrogram resulting from hierarchical clustering procedure and cluster names. (B) Average normalized 
response of each cluster for all delay durations, separated by enhanced and suppressed clusters. Titles 
indicate name of response type cluster and the number of neurons included. Response color indicates 
cluster identity. Colored bars indicate time of visual stimulus (white) and spout extension (color indicates 
cluster, shade indicates delay duration). (C) Proportion of neurons in V1 (n = 1169), PPC (n = 1287) and 
fMC (n = 593) of each response class. 



60 
 

 

 

 

Figure 2.4. Neurons with suppressed activity are much less selective than neurons with enhanced 
activity.  

(A) Three example V1 neurons (top, middle, bottom) with enhanced task-driven activity. Responses shown 
for preferred stimulus (left) and non-preferred stimulus (right), including only correct trials. Each plot shows 
an overlay of the mean ∆F/F responses during 0-, 3-, and 6-s delay trials. Colored bars above plots indicate 
time of visual stimulus (white; T, target stimulus; NT, non-target stimulus) and spout extension (blue, shade 
indicates delay period). Shade of average traces indicates delay period (dark blue, 0-s delay; medium blue, 
3-s delay, light blue, 6-s delay). (B) Three example V1 neurons (top, middle, bottom) with suppressed task-
driven activity. Responses shown for preferred stimulus (left) and non-preferred stimulus (right), including 
only correct trials. Color shade indicates delay as in (A). (C) Histograms of selectivity index for enhanced 
(blue) and suppressed (red) neurons for each of the three regions (V1, left; PPC, middle; fMC, right). (D) 
Modal latency for enhanced (solid) and suppressed (hashed) neurons for each of the three regions (V1, 
blue; PPC, green; fMC, red). Latencies for enhanced and suppressed populations differ in V1 and PPC, but 
not fMC. (E) Delay modulation index for enhanced (solid) and suppressed (hashed) neurons for each of the 
three regions (V1, blue; PPC, green; fMC, red). The delay modulation increases for enhanced neurons from 
V1 to PPC to fMC, but is high in all three regions for suppressed neurons. Wilcoxon signed-rank test with 
Bonferroni correction used for all statistical tests. For bar plots, bars indicate mean ± bootstrap-estimated 
S.E.M. 
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Figure 2.5. Distinct population dynamics in regions V1, PPC, and fMC.  

(A) Normalized preferred calcium responses of all significantly responsive neurons showing enhanced 
responses (pooled across all 8 mice) in V1 (top, n = 545), PPC (middle, n = 1167) and fMC (bottom, n = 
362), across all three delay durations (0-, 3-, 6-seconds; left, middle, and right, respectively). Only correct 
trials were included. For each neuron, traces were normalized to the peak of each cell’s trial-averaged 
response (colorbar on right inset). For each area, neurons were sorted by time of peak response. Sidebar 
indicates preferred trial for each neuron (Hit, orange; CR, blue). (B) Proportion of task-responsive neurons 
in each brain region that preferred Hit (orange) vs. Correct reject (CR, blue) trials. There was a strong bias 
for neurons in PPC and fMC to toward hit trials. (C) Mean population response of each brain region (V1, 
blue; PPC, green; fMC; red), across the three delay durations (line boundaries indicate mean ± bootstrap-
estimated s.e.m.). Colored bars indicate the times of visual stimulus (white), delay (gray), and spout 
extension (purple). (D) Histogram of latency to significant response of each brain region (only neurons with 
significant responses during stimulus or delay epochs considered). The population of single neuron 
latencies in V1 significantly precedes PPC, which in turn precedes fMC, for all delays (p < 10-9, all 
comparisons, Wilcoxon rank sum test). Color indicates region (V1, blue; PPC, green; fMC; red). 
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Figure 2.6. Error responses and population coding of task variables.  

(A) Responses of all target-preferring neurons (6-s delay trials only) in all three regions (V1: top, blue; PPC: 

middle, green; fMC: bottom, red) to correct target trials (Hit, middle), error trials with the same stimulus but 

different response (Miss, left), and error trials with the same response but different stimulus (False alarm, 

right). Color bars indicate normalized F/F (0 to 1).  (B) Ideal observer performance (area under the receiver 

operator characteristic, auROC) in estimating the stimulus identity (target, non-target) based only on the 

neural activity of significantly enhanced neurons in V1 (left), PPC (middle), and fMC (right), including 

randomly sampled correct and error trials). Line shading indicates neuron population size used for the 

decoding (dark to light blue: n = 1 to 100 neurons; see legend). (C) Ideal observer performance in estimating 

the behavioral choice (lick, no-lick) based only on the neural activity of significantly enhanced neurons in 

V1 (left), PPC (middle), and fMC (right), including randomly sampled correct and error trials). Line shading 

indicates neuron population size used for the decoding (dark to light red: n = 1 to 100 neurons). (D) Re-plot 

of stimulus identity and behavioral choice decoding performance for n = 100 neurons, with line boundaries 

indicating mean ± bootstrap-estimated S.E.M. Dotted lines indicate upper 95% confidence interval for 1000 

permutations with shuffled labels. 
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Figure 2.7. Working hypothesis of information propagation.  

Based on imaging results (Figure 2.5) and population analyses (Figure 2.6), we developed a working 
hypothesis of information propagation during the sensorimotor decision task. During the stimulus epoch 
(left), stimulus identity (blue) is encoded by V1 and PPC, while behavioral choice (red) is encoded by PPC 
and fMC. Note that although there are direct inputs from V1 to PPC and PPC to fMC, there may be 
intermediate connections as well. During the delay epoch (middle), coding of stimulus identity fades while 
coding of behavioral choice is actively maintained in fMC (and possibly PPC). During the response epoch, 
the stored choice information leads to the execution of the motor action within fMC (and possibly V1 and 
PPC). 
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Chapter 3: Causal roles of visual, parietal, and frontal motor 

cortex in a sensorimotor decision1. 
 

3.1 Summary 
 

Neural correlates of sensorimotor decisions have been measured across many brain areas, but 

the causal role of these regions is poorly understood. We investigated the necessity of visual (V1), 

posterior parietal (PPC), and frontal motor (fMC) cortices during distinct epochs of a memory-

guided visual discrimination task using optogenetic inactivation. Bilateral, reversible silencing of 

any of the three areas during the stimulus epoch disrupted performance, even using a brief (250 

ms) stimulus presentation. However, only fMC was required during the delay and choice epochs. 

These results lead to the hypothesis that stimulus identity is rapidly transformed into behavioral 

choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining 

the choice in memory prior to execution. However, simultaneous recording and inactivation 

experiments additionally reveal that disruption of PPC indirectly affects V1 activity, raising the 

possibility that permissive feedback inputs are critical for behavioral performance. 

 

3.2 Introduction 
 

Perceptual decisions involve multiple cognitive capacities including sensory processing, evidence 

accumulation, sensorimotor transformation, short-term memory maintenance, movement 

planning, and motor execution. It is no wonder that neural correlates of short-term memory and 

perceptual decision-making have been recorded in a plethora of brain regions, including prefrontal 

(Fuster and Alexander, 1971; Kim and Shadlen, 1999; Kojima and Goldman-Rakic, 1982; Romo 

et al., 1999), parietal (Constantinidis and Steinmetz, 1996; Shadlen and Newsome, 2001), 

sensory (Super et al., 2001), and motor (de Lafuente and Romo, 2005; di Pellegrino and Wise, 

1Many of the findings (Figures 3.1-3.4) presented in this chapter appeared in Goard, Pho et al., 2016 
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1993) cortices, as well as in several subcortical areas including the striatum (Ding and Gold, 2010) 

and superior colliculus (Horwitz and Newsome, 1999). Indeed, a few impressive studies and 

research programs have measured from many of these regions in the same decision task (Brody 

and Hanks, 2016; Goard et al., 2016; Hernandez et al., 2010; Siegel et al., 2015), and found 

different neural signatures that appear to vary with each area’s position on the sensory to motor 

hierarchy. However, despite a wealth of research in this area, it remains unclear which areas are 

causally necessary for the transformation and maintenance of task information.  

For example, single-unit electrophysiological recordings in non-human primates have long 

implicated the posterior parietal cortex (PPC) as a critical node for the process of sensorimotor 

transformation (Andersen and Cui, 2009; Bennur and Gold, 2011; Freedman and Assad, 2006; 

Gold and Shadlen, 2007; Shadlen and Newsome, 2001). However, recent inactivation studies in 

macaques (Katz et al., 2016) and in rodents (Erlich et al., 2015; Guo et al., 2014) have challenged 

this perspective, finding minimal role for PPC in certain decision tasks. Other studies suggest that 

motor regions, whether cortical (Guo et al., 2014; Murakami et al., 2014; Zagha et al., 2015) or 

subcortical (Kopec et al., 2015; Znamenskiy and Zador, 2013), may instead be the key site of 

sensorimotor transformation. The discrepancies between these different studies may include 

differences in species, sensory modality, or behavioral task.  

Similarly, the importance of various areas in maintaining information in memory remains 

unresolved. Sustained activity during delayed response tasks have been observed in many areas 

including prefrontal cortex (Funahashi et al., 1989; Fuster and Alexander, 1971; Kojima and 

Goldman-Rakic, 1982; Miller et al., 1996; Romo et al., 1999; Sreenivasan et al., 2014), parietal 

cortex (Chafee and Goldman-Rakic, 1998; Constantinidis and Steinmetz, 1996; Harvey et al., 

2012; Shadlen and Newsome, 2001; Snyder et al., 1997), motor cortex (de Lafuente and Romo, 

2005; di Pellegrino and Wise, 1993; Erlich et al., 2015; Guo et al., 2014; Hernandez et al., 2010; 

Li et al., 2015), and even primary sensory areas (Nakamura and Colby, 2000; Super et al., 2001). 
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However, recent studies in rodents have indicated that some of the regions traditionally thought 

to be crucial for short-term memory maintenance, such as parietal and prefrontal cortices, appear 

not to play a major role in some tasks (Erlich et al., 2015; Guo et al., 2014; Liu et al., 2014), though 

other studies have found an important role for sustained activity in motor regions consistent with 

theoretical models (Kopec et al., 2015; Li et al., 2016). 

To further investigate these questions of sensorimotor transformation and short-term 

memory maintenance, we hoped in this work to take a more comprehensive approach toward 

measuring and perturbing activity across sensory, parietal association, and motor cortical regions 

during a delayed-response task. To leverage the genetic tractability of the mouse toward a better 

mechanistic understanding of memory-guided sensorimotor decisions, we modified a visual 

discrimination task used for head-fixed mice (Andermann et al., 2010) by using a retractable spout 

to separate the components of the task into discrete stimulus, delay, and response epochs. We 

took advantage of high sensitivity genetically-encoded calcium indicators (Chen et al., 2013b) to 

enable high-yield 2-photon volume scanning approach (Kampa et al., 2011). This allowed us to 

image from large populations of neurons in sensory, association and frontal motor regions during 

discrete epochs of a memory-guided sensorimotor decision task, including stimulus encoding, 

delay and behavioral response (see Chapter 2). 

Although measurement of neural activity is an important first step toward defining task-

related regions, the presence of neural activity does not prove that a given region plays a causal 

role in mediating behavior. For example, it is possible that sustained activity seen in one region 

reflects sustained activity in a connected region without playing a direct role in the maintenance 

of mnemonic information. Microstimulation studies have revealed that activation of neurons in 

certain regions is sufficient to influence task performance (Bisley et al., 2001; Hanks et al., 2006), 

but does not directly address whether the region is necessary. Other studies have used surgical 

lesions (Gisquet-Verrier and Delatour, 2006; Sakurai and Sugimoto, 1985), pharmacological 
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inactivation (Erlich et al., 2015; Harvey et al., 2012; Katz et al., 2016; Li et al., 1999) or tissue 

cooling (Bauer and Fuster, 1976; Chafee and Goldman-Rakic, 2000)  to reveal the cortical regions 

necessary for performance of short-term memory maintenance in rodents and non-human 

primates. However, while these studies have been important for establishing the anatomical 

framework of memory maintenance, these manipulations have limited spatial and temporal 

resolution. In particular, activity could not be silenced rapidly enough to test specific epochs of 

the task (e.g., delay period), and it is thus unclear whether a given manipulation affects stimulus 

perception, memory maintenance, or motor output.  

Recent optical inactivation approaches have revealed that the effect of cortical inactivation 

on behavior is crucially dependent on timing (Kopec et al., 2015; Li et al., 2016; Sachidhanandam 

et al., 2013) and whether inactivation is unilateral or bilateral (Li et al., 2016). To continue this 

approach, we used an optogenetic approach for reversibly silencing activity bilaterally in defined 

cortical regions with precise temporal control (Zhao et al., 2011). We modified a visual 

discrimination task used for head-fixed mice (Andermann et al., 2010) by using a retractable spout 

to separate the components of the task into discrete stimulus, delay, and response epochs. Using 

inactivation of bilateral cortical regions exhibiting task-related responses, we sought to determine 

the necessity of sensory, association, and frontal motor cortical regions during each epoch of a 

memory-guided task. 

One major caveat, however, of any perturbation approach is the possibility of off-target 

effects. Although the reductionist approach of isolating specific roles to individual brain areas is 

attractive for its conceptual simplicity, the reality is that the brain is one densely interconnected 

dynamical system. Sudden and acute perturbations of one node may have non-physiological and 

compromising effects on other nodes in the circuit, whether by disrupting downstream dynamics 

or removing permissive input that disrupts a circuit’s excitatory-inhibitory balance. Indeed, as 

recent work has demonstrated in both rodents and songbirds, acute manipulation of brain regions 
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can disrupt behavior even when those same brain regions are dispensable after chronic lesion 

(Otchy et al., 2015). This effect arises because transient manipulations affect downstream circuits 

which are essential for behavior (as shown by chronic lesion). Transient manipulations alone 

therefore cannot distinguish whether an area truly plays an instructive role in behavior and 

provides necessary computations for task performance (Otchy et al., 2015; Panzeri et al., 2017), 

or whether an area plays merely a permissive role in providing necessary input to other essential 

regions. 

Distinguishing these alternatives is particularly important for the study of the posterior 

parietal cortex in rodents. Recent inactivation studies observed a minimal role for PPC in rat 

auditory-based (Erlich et al., 2015) and mouse whisker-based (Guo et al., 2014) decision tasks. 

However, PPC does appear to be necessary for visual sensorimotor decision tasks in mice 

(Harvey et al., 2012) and in rats (Licata et al., 2016; Raposo et al., 2014). Some have argued that 

the proximity of PPC to secondary visual regions makes it difficult to clearly isolate the effect of 

PPC inactivation (Brody and Hanks, 2016; Erlich et al., 2015). Indeed, both anatomical projection 

studies (Wang and Burkhalter, 2007; Wang et al., 2012), as well as functional mapping studies 

(Garrett et al., 2014; Marshel et al., 2011) indicate that PPC lies immediately adjacent to, or 

perhaps overlaps with, a group of retinotopically-organized extrastriate areas that are rostral to 

V1. The fact that these visual areas are very small, and are all directly and indirectly 

interconnected to one another (Wang et al., 2012) means that great care must be taken to properly 

interpret their individual roles in behavior. 

To isolate the role of PPC in visual sensorimotor decisions, we performed control 

experiments to simultaneously record from visual cortex while manipulating activity in PPC. By 

isolating the effects of light stimulation on different putative cell types, we were able to distinguish 

direct spread of light from indirect network-level effects. We find that PPC manipulation 
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moderately suppresses visual cortex activity, likely via network mechanisms, raising the possibility 

that feedback from PPC to V1 plays a permissive role in behavior.  

 

3.3 Experimental Procedures 
 

3.3.1 Surgical procedures 

 

All procedures were approved by the Massachusetts Institute of Technology Animal Care and 

Use Committee. Data were collected from male adult (60-120 day old) VGAT-ChR2-EYFP mice 

(Jackson Laboratory; n = 15). The animals were housed on a 12 hour light/dark cycle in cages of 

up to 5 animals before the implants, and individually after the implants. All surgeries were 

conducted under isoflurane anesthesia (3.5% induction, 1.5-2.5% maintenance). Meloxicam (1 

mg kg-1, subcutaneous) was administered pre-operatively and every 24 hours for 3 days to reduce 

inflammation. Surgical procedures for the first headplate implant surgery are identical to those 

described in Section 2.3.1. After head plate implantation, mice recovered for at least five days 

before beginning water restriction. 

 After behavioral training was complete, animals were taken off water restriction for five 

days before undergoing a second surgery to implant the photoinhibition windows. Procedures for 

anesthetic administration and post-operative care were identical to the first surgery. The dental 

acrylic and silicon elastomer covering the targeted region were removed using a drill burr. The 

skull surface was then cleaned and a craniotomy (2-4 mm, depending on targeted structure) was 

made over the region of interest, leaving the dura intact. Craniotomies were made bilaterally, with 

no virus injection. Finally, a cranial window was implanted over the craniotomy and sealed first 

with silicon elastomer then with dental acrylic. The cranial windows were made of two rounded 

pieces of coverglass (Warner Instruments) bonded with optical glue (NOA 61, Norland). The 

bottom piece was circular or oval, custom cut according to cortical region(s) (V1: 2.5 mm x 2.5 
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mm; PPC: 1 mm x 2 mm; V1 + PPC: 4 mm x 4 mm; fMC: 2 mm x 2.5 mm, anterior-posterior x 

medial-lateral) and fit snugly in the craniotomy. The top piece was a larger circular coverglass (3-

5 mm, depending on size of bottom piece) and was bonded to the skull using dental acrylic. Mice 

recovered for five days before commencing water restriction. 

 

3.3.2 Behavior 
 

The behavioral apparatus and training procedures are identical to those described in Section 

2.3.2. Briefly, mice were head-fixed using optical hardware (Thorlabs) and placed in a 

polypropylene tube to limit movement. Spout position was controlled by mounting the spout 

apparatus on a pressure-driven sliding linear actuator (Festo) controlled by two solenoids 

(Parker). Licks were detected using an infrared emitter/receiver pair (Digikey) mounted on either 

side of the retractable lick spout. Rewards consisted of 5-8 l water and punishments consisted 

of a white noise auditory stimulus alone (early training) or white noise plus 1-3 l of 5mM quinine 

hydrochloride (Sigma) in water (late training). The stimulus consisted of sine wave gratings 

(spatial frequency: 0.05 cycles deg-1; temporal frequency: 2 Hz) drifting at either 0 degrees (target) 

or 90 degrees (non-target) away from vertical.  

 Mice were trained in successive stages, with advancement to the next stage contingent 

on correct performance. At first the spout was extended within range before the stimulus 

appeared, then spout extend time was gradually delayed until after the stimulus had turned off 

(i.e., 0 s delay). Finally, the variable delay period was gradually increased to 0/2/4 s.  

Once mice reached high levels of performance at the final stage of the task (d’ > 1.5 and 

RHIT - RFA > 50%), they were removed from water restriction for window implantation. After 

recovery from window implantation surgery, they were re-trained to a level of high performance 
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(2-7 days) before beginning experimental sessions. Any sessions with poor performance were 

discarded (minimum performance criterion: d’ > 1 and RHIT - RFA > 30%).  

 

3.3.3 Cell-attached recordings 

 

For in vivo anesthetized electrophysiology experiments (Figure 3.1A,B), we used procedures 

similar to those previously described (Wilson et al., 2012). Briefly, transgenic VGAT-ChR2-EYFP 

mice (n = 2) were anesthetized with isoflurane (1.5%), with body temperature maintained at 37.5º 

C with a heating blanket. A metal head plate was attached to the skull using superglue and dental 

acrylic, and a 1mm craniotomy was performed over V1. The dosage of anesthesia was then 

lowered (1%) before beginning electrophysiology. 

Recordings were made using custom software written in Matlab (Mathworks) controlling a 

MultiClamp 700B Amplifier (Axon) that measured differences between a glass pipette electrode 

inserted into the brain at 27º and an Ag/AgCl ground pellet electrode positioned in the same 

solution as the brain. Borosilicate pipettes (outer diameter = 1.5mm, inner diameter = 1.17mm) 

were pulled using a Sutter P-2000 laser puller (Sutter Instruments) to a diameter corresponding 

to 3-7 MΩ. The pipette was back-filled with Alexa Fluor 488 (Molecular Probes) and targeted to 

the injection site using a 10x lens. Cells were targeted blindly by advancing diagonally through 

the cortex with light positive pressure. Cell proximity was detected through deflections in electrical 

resistance observed in voltage clamp during a repetitive 5mV command pulse. Once resistance 

had increased a few MΩ, slight negative pressure was applied and the pipette was advanced 

more slowly until resistance further increased (to a final value of 10-30 MΩ) and/or spikes were 

detected visually or via an audio monitor. At that point, the amplifier was switched to current clamp 

to record spikes. 
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 Optogenetic activation of local inhibitory cells was achieved using a 200mW 473nm diode-

pumped solid state blue laser (Opto-Engine) coupled with a 200µm fiber. Laser intensity was 

modulated with a variable neutral density filter (Thorlabs) to match the intensity used during 

behavioral experiments (6.5 mW mm-2). Full-field drifting grating stimuli were presented for 4 

seconds, with each presentation preceded by a 6 second “off” period with gray screen. 

Optogenetic stimulation occurred on every other stimulus presentation during the middle 2 

seconds of the “on” period. Data was analyzed using Matlab, with spikes detected using a 

manually-defined thresholds. 

 

3.3.4 Photoinhibition 

 

Blue light illumination was provided by a 200 mW 473 nm diode-pumped solid state laser (MBL-

III-473, Opto-Engine). The laser was passed through a 50/50 splitter (CM1-BS013, Thorlabs), 

with each output passed through an adjustable neutral density filter (Thorlabs) into a fiber launch 

(PAF-X-11-PC-A, Thorlabs). Fibers terminated in ceramic ferrules that were precisely positioned 

above the cranial window with optical hardware. A light shield (eMachineShop.com) was attached 

to the head plate to prevent reflected laser light from reaching the retina and influencing behavior. 

Laser power was controlled by analog inputs sent from the behavior computer. Continuous light 

pulses (2.2 s, 6.5 mW mm-2) were used to suppress activity in a sustained manner at low laser 

power (Zhao et al., 2011). We measured the spread of inhibition using immunohistological 

labeling of activity-driven protein expression (see Histology section). For photoinhibition 

experiments, laser stimulation was given on 50% of trials with 4 s delay (25% of all trials; no 

photoinhibition on 0 s or 2 s delay trials) in a randomly inter leaved manner. Laser stimulation was 

applied throughout the duration of visual stimulus presentation (stimulus epoch), in the middle 2 

s of delay (delay epoch), or during the spout extension (response epoch).  
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3.3.5 Histology 

 

For photoinhibition characterization experiments (Figure 3.1C-E), naïve VGAT-ChR2-EYFP or 

wild-type mice were implanted with a head plate and a 2 mm diameter cranial window over 

posterior cortex (V1 or PPC). After recovery and habituation, mice were head-fixed and stimulated 

with 2 s light pulses (6.5 mW mm-2) every 10 s. Drifting grating stimuli were played during the light 

pulses to drive neural activity. After 1.5 h of light stimulation, mice were removed from the rig and 

perfused with 4% paraformaldehyde. The brain was removed and placed in 4% PFA for 24 h, 

followed by 24 h in PBS. 50 m sagittal slices were cut and placed in PBST (0.2% Triton X-100 

in PBS) with 5% normal goat serum for 1 h. They were then incubated with primary antibody at 

4°C for 24 h (rabbit Anti-c-Fos 1:200, SC-52, Santa Cruz Biotechnology, Inc.; rabbit Anti-Arc 

1:200, ab118929, Abcam). After washing in PBST, slices were incubated 1 h with secondary 

antibody (1:200 AlexFlour555 anti-rabbit, Invitrogen). Slices were washed again in PBST, 

mounted and coverslipped. Slices were imaged on a laser scanning confocal microscope (Zeiss). 

Repeating this procedure with Arc as an activity marker (1:500 anti-Arc, Abcam) yielded 

qualitatively similar results as c-Fos (data not shown). 

 

3.3.6 Silicon probe recordings 

 

In vivo single unit recordings (Figure 3.6, Figure 3.7, Figure 3.8) were performed in untrained 

VGAT-ChR2-EYFP mice (n=6) under isoflurane anesthesia (1.5%) with body temperature 

maintained at 37.5º C with a heating blanket. A metal headplate was attached to the skull using 

dental acrylic, and two craniotomies were performed on the left hemisphere: one over PPC (1 mm 

x 2mm, AP x ML) and one over V1 (1.5 mm x 1.5mm), centered at the same coordinates described 

above. Dental acrylic mixed with black ink was applied to the area of skull between the two 
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craniotomies, to reduce light transmission. The dosage of anesthesia was then lowered (0.8-1%) 

before beginning electrophysiology. 

 Recordings were made using a silicon linear microprobe with 16 sites spaced at 50µm 

intervals (NeuroNexus, model A1x16-5mm-50-177-A16). The electrode was inserted at a 45º 

degree angle, and was moved using a micromanipulator (Sutter, MP-285) to a depth of at least 

700µm to ensure that all sites were within the cortex. The electrode was allowed to settle for at 

least 5 minutes to ensure stability of recordings. Electrical signals, referenced to a chlorinated 

silver ground wire that was placed in the same saline solution as the brain, were amplified and 

recorded using a Plexon system (16 channels, 50kHz at 12-bit resolution). The presence of 

spiking activity was assessed online using an audio monitor, and channels with spiking activity 

were selected for post-hoc offline spike sorting (Offline Sorter 2.8.8, Plexon). 

 Prior to the first recording of each experiment, two optical fibers terminating in ceramic 

ferrules were precisely positioned above the two craniotomies (V1 and PPC) to form a 2.5mm x 

2.5mm spot over each. As in the behavioral experiments, this spot exceeded the size of the PPC 

craniotomy, but provided a constant light density of 6.5 mW mm-2. Only one fiber was connected 

to the laser (473 nm, MBL-III-473, Opto Engine) at a time, and the connection was manually 

switched in blocks of trials for each recording.  

 Visual stimuli were presented to the right eye alone using a screen placed at an oblique 

angle to the animal. The stimulus consisted of sinusoidal drifting gratings (0.05 cycles deg-1; 2 Hz) 

of 4 different orientations, all presented within 2 s (0.5 s per orientation). This was chosen to 

activate a broad population of V1 neurons irrespective of tuning. Stimulus presentation was 

interleaved with an 8 s gray screen period. On every other stimulus presentation, laser stimulation 

was also applied for 2.2 s, beginning 0.1 s before the onset of the visual stimulus. Laser 

stimulation was applied to PPC or V1 in blocks of 30-50 trials. In most recordings, a block of trials 

with low-power (total power: 19 mW, density: 3.9 mW mm-2) PPC stimulation was also recorded. 
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Offline analysis to sort waveforms for each unit was performed using commercial 

programs (Offline Sorter 2.8.8, Plexon). Briefly, raw voltage traces were high-pass filtered at 

250Hz, events were detected by voltage threshold crossing, and clusters were separated in 

principal components space. Post-processing was performed using custom MATLAB code. Units 

were included for further analysis if they exhibited clear isolation from noise and other units, robust 

and stable firing across at least two blocks of trials, and visual responsiveness (t-test, p < 0.05). 

Neurons were further separated into two groups based on the effect of V1 stimulation on their 

responses.  

Peri-stimulus time histograms were generated using 0.1 ms time bins. Spike widths were 

calculated by upsampling the average waveform to 500kHz (2µs resolution) by linear interpolation, 

and measuring the time between the peak and trough. Normalized spike rate was calculated 

within each block as the firing rate on laser trials divided by the firing rate on no-laser trials. 

Normalized spike rates below 0.1 were rounded down to 0 for logarithmic plots. Distances from 

the edge of laser spot over PPC were estimated using micromanipulator measurements and 

known site locations along the electrode. The position of the electrode tip was noted for each 

recording, and the location of each unit along the probe was inferred by assuming a 45-degree 

angle and calculating the X-Y Euclidean distance (ignoring depth) from the edge of the PPC 

window. Units were recorded from a range of depths and cortical layers (range: 160-784 µm, 

median: 458 µm). 

 

3.3.7 General statistics 
 

Data groups were tested for normality using the Kolmogorov-Smirnov test and then compared 

with the appropriate tests (t-tests, Wilcoxon rank-sum or Wilcoxon signed-rank tests, all two 

sided). Bonferroni correction was used for multiple comparisons. To ensure that results were 
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replicable between sessions and mice, we included 4-6 mice for each region for the inactivation 

experiments. 

 

3.4 Results 
 

3.4.1 Summary of behavioral task, imaging results, and working hypothesis 
 

As previously described in Chapter 2, we trained head-fixed mice to perform a visual 

discrimination task with a memory-guided response (see Figure 2.1). In this task, water-restricted 

mice were presented a 2 s drifting grating stimulus at one of two orientations (0, 90 from vertical), 

followed by a delay period, at which point a lick spout was moved rapidly into reach with a linear 

actuator for 1.5 s. Licking on “go” trials (horizontal grating drifting toward 0 from vertical) was 

rewarded with 5-8 l water (hit), while licking on “no-go” trials (vertical grating drifting toward 90 

from vertical) was punished with 2 l water containing 5mM quinine hydrochloride (false alarm). 

This structure allowed the separation of each trial into “stimulus”, “delay”, and “response” epochs. 

 We focused our experiments on three cortical regions we expected to be important for 

performance of this task: (1) the primary visual cortex (V1), which is known to be important for 

orientation discrimination (Glickfeld et al., 2013); (2) the posterior parietal cortex (PPC), which 

receives extensive input from visual regions (Harvey et al., 2012; Oh et al., 2014; Pho et al., 

2015), projects to motor regions (Wang et al., 2012), and has been implicated in sensorimotor 

decision tasks (Andersen and Cui, 2009; Gold and Shadlen, 2007; Hanks et al., 2015; 

McNaughton et al., 1994; Nitz, 2006; Raposo et al., 2014; Shadlen and Newsome, 2001; Whitlock 

et al., 2008) and (3) the frontal motor cortices (fMC), which include regions known to be crucial 

for voluntary licking behaviors (Guo et al., 2014; Komiyama et al., 2010).  

As shown in detail in Chapter 2, population calcium imaging during behavior revealed that 

all three regions exhibit neural responses during all three task epochs, with a surprising amount 
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of heterogeneity in each region across individual neurons (see Figures 2.2-2.4). However, 

population coding analyses revealed that the three brain regions play distinct roles in encoding 

the task. V1 principally encodes the stimulus identity, PPC encodes a mixture of stimulus identity 

and behavioral choice, and fMC predominantly encodes the behavioral choice throughout the 

stimulus, delay, and response epochs (see Figures 2.5-2.6). Together, these results suggest a 

working hypothesis of the roles that neural activity in regions V1, PPC, and fMC play in the 

performance of the task. Specifically, the results suggest that sensory input is primarily processed 

during the stimulus epoch, first in V1, then subsequently in PPC. Neural activity related to the 

behavioral choice arises in PPC and fMC shortly after the peak in stimulus identity coding, and is 

sustained in both regions throughout the delay and response epochs. This implies that stimulus 

identity is rapidly transformed into a behavioral choice within the stimulus epoch (possibly within 

PPC), and then the behavioral choice is maintained in higher regions (potentially in both PPC and 

fMC) until the relevant motor action is performed (see Figure 2.7). 

 

3.4.2 Characterization of photoinhibition approach 

 

Although trial-locked neural activity provides insight into which cortical regions may contribute to 

behavioral performance during different epochs of the task, it is important to note that the 

presence of neural activity in a region does not demonstrate a functional role in task performance. 

To directly test the plausibility of our working hypothesis (see Figure 2.7), we next used an 

optogenetic inactivation approach to directly test the necessity of spatially defined cortical regions 

during specific epochs of the task. To inactivate the cortical regions of interest, we utilized the 

VGAT-ChR2-EYFP transgenic mouse line (Zhao et al., 2011) to rapidly and reversibly inhibit 

neural activity. The VGAT-ChR2-EYFP mice express the light-sensitive cation channel 

channelrhodopsin (ChR2) in all cortical inhibitory neuron subtypes, and thus stimulation of cortex 

with 473nm light effectively silences the activity of nearby pyramidal cells (Guo et al., 2014; Zhao 
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et al., 2011). To characterize the efficacy of optogenetic inhibition, we performed cell-attached 

recordings from regular-spiking neurons in L2/3 and L5 of region V1 (Figure 3.1A). We found that 

laser stimulation (2 s continuous pulses, 6.5mW mm-2) potently inhibited the activity of regular 

spiking neurons (see example L5 neuron, Figure 3.1B), completely eliminating spikes during the 

laser stimulation period in all recorded neurons, even during presentation of a drifting grating 

stimulus of the preferred orientation (grating presented from 1 s before laser stimulation to 1 s 

after laser stimulation; Figure 3.1B, inset, n = 2 mice). To characterize the spatial extent of 

photoinhibition, we performed immunohistochemistry using c-Fos as a marker of neural activity 

(Figure 3.1C). Naïve VGAT-ChR2-EYFP and control mice were implanted with windows and 

periodically illuminated with 2s continuous pulses of 473nm light (6.5mW mm-2). We found that 

after light exposure, VGAT-ChR2-EYFP mice (but not wild-type controls) showed dramatically 

reduced expression of c-Fos throughout all layers of the cortex underlying our cranial window 

(Figure 3.1D,E, n = 3 mice). The suppression was confined to within 500 m laterally from the 

edge of the window, and did not spread past the white matter into subcortical regions. Similar 

results were achieved using an Arc antibody (n = 2 mice).   

Using a simplified version of the task with a 0 s delay period, we confirmed that bilateral 

inactivation of V1 during the stimulus epoch impaired performance of VGAT-ChR2-EYFP mice 

(d’ = -1.41, p = 0.002), but not wild-type controls exposed to the same light stimulation (d’ = 

+0.14, p = 0.27; Figure 3.2A-C). In some neurons, we noticed that it took a few hundred 

milliseconds for the spike rate to recover to baseline (e.g., neuron in Figure 3.1B). To ensure that 

inactivation did not have long-lasting effects on the inactivated cortical regions, we inactivated 

region V1 for 2 s prior to the stimulus onset, and found no effect on performance (d’ = -0.15, p = 

0.51); Figure 3.2D-F). 
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3.4.3 Photoinhibition of specific cortical regions during task performance 

After training VGAT-ChR2-EYFP mice on the task, we implanted bilateral glass cranial windows 

above V1 (n = 4 mice), PPC (n = 4), or fMC (n = 4; Figure 3.3B). We tested the necessity of each 

region during each of the three task epochs (stimulus, delay, response) with high temporal 

specificity (Figure 3.3A) by randomly interleaving ‘laser ON’ and ‘laser OFF’ trials in the same 

behavioral session. Photoinhibition of all three regions was capable of disrupting performance of 

the task, causing performance to drop to chance levels. However, the specific task epochs during 

which laser stimulation disrupted behavior differed for each brain region (Figure 3.3C).  

As expected, V1 (Figure 3.3C, D, top row) was necessary during the stimulus epoch, with 

laser stimulation dramatically reducing the animal’s ability to perform the task (stimulus: d’OFF = 

1.51 ± 0.11, d’ON: 0.21 ± 0.11, p < 10-3). However, inactivation of V1 during the delay or response 

epochs had no effect (delay: d’ = 0.47, p = 0.41, response: d’ = 0.23, p = 1.0). Activity in PPC 

(Figure 3.3C, D; middle row) was also necessary during the stimulus epoch (stimulus: d’OFF = 

1.81 ± 0.16, d’ON: 0.27 ± 0.12, p < 10-3). However, despite the high level of activity in many PPC 

neurons during the delay and response periods (see Figure 2.5), inactivation of PPC during these 

periods had no effect on behavior (delay: d’ = 0.03, p = 1.0, response: d’ = 0.24, p = 0.79). By 

contrast, suppression of fMC (Figure 3.3C,D; bottom row) during any of the three trial epochs 

completely abolished performance in the task (stimulus: d’OFF = 1.37 ± 0.10, d’ON: -0.05 ± 0.13, p 

< 10-4; delay: d’OFF = 1.60 ± 0.10, d’ON: 0.32 ± 0.23, p < 10-4; response: d’OFF = 1.60 ± 0.17, d’ON: -

0.06 ± 0.05, p < 10-3; paired t-test with Bonferroni correction used for all behavioral statistical 

tests).  

One concern is that suppression of fMC could have disrupted performance in a trivial 

manner by preventing the execution of motor commands. This was indeed observed for 

inactivation of fMC during the response period, as licking behavior was abolished during laser ON 

trials (Figure 3.3D, bottom right). However, prevention of motor function cannot explain 
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decreased performance during stimulus or delay epoch inactivation, as light stimulation affected 

performance without decreasing lick rate (Figure 3.3D, bottom left & middle). The lick rate 

recovery after stimulus/delay epoch photoinhibition is somewhat puzzling given that the vast 

majority of the neurons in fMC are selective for Hit trials (see Figure 2.5B). In future experiments, 

it would be useful to image fMC activity after removal of photoinhibition to determine if the activity 

defaults to a “go” activity pattern after recovery. 

Another concern is that the visual stimulus duration (2 s) is likely longer than necessary to 

perform the discrimination, meaning that the stimulus epoch could act as a mixed stimulus/delay 

epoch. To test this possibility, we trained mice on a similar task with a shortened stimulus duration 

of 250 ms (Figure 3.4A; performance declined to chance levels with shorter stimulus durations, 

data not shown). Stimulus period photoinhibition continues to disrupt behavioral performance for 

all three regions (Figure 3.4B), similar to the longer duration stimulus epochs (Figure 3.3C). Note 

that recovery of activity after photoinhibition can take several hundred milliseconds (Figure 3.1B; 

 = 416 +/- 91 ms), so the results should be interpreted with caution. However, these data do 

demonstrate that fMC is necessary either during or very shortly after the visual stimulus is shown, 

highlighting the rapid conversion of sensory into motor information across cortical regions. 

Our results thus show that all three regions are necessary during the stimulus epoch of 

the task. This is in line with our imaging results (see Figure 2.5) and population analyses (see 

Figure 2.6) in showing that task-relevant information reaches frontal motor regions relatively 

rapidly after stimulus presentation, and suggests that PPC may be involved with converting 

stimulus identity representations into behavioral choice representations early in the task (during 

the stimulus epoch), while fMC is necessary for maintaining and executing the behavioral choice 

(see Figure 2.7). Surprisingly, although there was robust task-related activity in PPC during the 

delay and response epochs, photoinhibition of PPC during these epochs had no impact on 

performance of the memory-guided task. Only fMC was necessary during the delay and response 
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epochs of the task, showing that fMC can act independently of V1 and PPC once the stimulus 

epoch processing is complete. 

 

3.4.4 Photoinhibition of V1 and PPC during a 0 s delay task has similar effects 

 

The apparent necessity of PPC in our task is intriguing, especially since recent work has brought 

the causal role of PPC in decision-making under contention. Although classical studies have 

implicated macaque PPC in perceptual decisions (Gold and Shadlen, 2007; Hanks et al., 2006; 

Shadlen and Newsome, 2001), recent muscimol experiments demonstrated that PPC can be 

inactivated with no effect on decision performance (Katz et al., 2016). Similarly, in rodents, PPC 

has been shown to be dispensable for decisions involving whisker-based object localization (Guo 

et al., 2014) or accumulation of auditory evidence (Erlich et al., 2015). However, PPC has been 

shown by other investigators to be causally involved in visual decisions during an accumulation 

task (Licata et al., 2016; Raposo et al., 2014), and a memory-guided navigational choice task 

(Harvey et al., 2012). Since inactivation of PPC in our visual delayed response task (see Figure 

3.3C-D) appeared to disrupt behavior, we decided to investigate this further. 

 We used a simplified version of the visual discrimination task (Goard et al., 2016), with a 

0 s delay between the stimulus and response period (Figure 3.5A, B). After presentation of the 

stimulus for 2 s, a retractable lick spout immediately became available to the animal for a 1.5 s 

response window. Licks to the target stimulus were rewarded with water (Hit trials), whereas licks 

to the non-target stimulus were punished with a small aversive drop of quinine (False Alarm trials). 

Mice (n = 4) achieved high levels of performance on the task (d-prime, 1.94 ± 0.12; mean ± SEM). 

We again took advantage of an optogenetic approach to test the causal necessity of V1 

and PPC in the task, using the transgenic VGAT-EYFP-ChR2 mouse line, which express the light-

sensitive opsin ChR2 in all inhibitory neurons (Zhao et al., 2011). Blue light stimulation (473nm) 
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of the cortex is sufficient to excite locally-projecting inhibitory neurons and thus suppress the 

activity of all nearby pyramidal cells (Guo et al., 2014), as shown in the example cell recorded in 

vivo in an anesthetized mouse (Figure 3.5C).  

After training VGAT-EYFP-ChR2 mice on the behavioral task, we implanted bilateral 

windows over V1 (n = 3 mice) or over PPC (n = 4) and covered the rest of the skull with black 

cement, in order to restrict light stimulation to areas of interest (Figure 3.5C). We then tested the 

necessity of these two regions during a particular epoch of the task (“stimulus” or “response”) by 

stimulating the cortex on randomly interleaved trials (Figure 3.5D). Photoinhibition of V1 during 

the stimulus period strongly disrupted behavioral performance during laser ON trials, by reducing 

responses during target stimuli to chance levels (Figure 3.5D, top; change in d’, -1.68 ± 0.18). 

This result was expected given V1’s known role in visual processing of orientation; both in our 

coarse discrimination task (Goard et al., 2016) and in detection paradigms (Glickfeld et al., 2013). 

By contrast, light stimulation of V1 during the response period had little effect. When we 

inactivated bilateral PPC, we found a similar pattern of results. Photoinhibition of PPC during the 

stimulus period also strongly disrupted behavioral performance during laser ON trials (Figure 

3.5D, bottom; change in d’, -1.37 ± 0.11). The disruption in performance could not be explained 

by changes in overall lick probability, as inactivation caused both an increase in false alarm rate 

and a decrease in hit rate (Figure 3.5E). By contrast, little effect was observed for stimulation of 

PPC during the response period. Examination of licking dynamics showed no clear effect of laser 

stimulation on the pattern of motor output for Hit or False Alarm trials (Figure 3.5F). This was true 

even when overall performance was reduced, as in the case of stimulus period inactivation. 

These results confirm our prior report using a longer delay period (Goard et al., 2016) that 

inactivation of either V1 or PPC disrupts behavior only if applied during presentation of the visual 

stimulus (see Figure 3.3). Inactivation applied even immediately after stimulus offset has no effect 

on behavior, arguing strongly against a role for PPC in executing the motor choice. 
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3.4.5 Light stimulation of PPC does not activate putative inhibitory neurons in V1 

 

The effects of manipulating V1 and PPC are remarkably similar. Both manipulations are specific 

to the stimulus period, and cause animals to lick indiscriminately at a rate intermediate between 

their baseline Hit and False Alarm rates. One legitimate concern, given the close proximity of PPC 

to V1 and other secondary visual areas (Garrett et al., 2014; Marshel et al., 2011; Wang and 

Burkhalter, 2007; Wang et al., 2012), is that this similarity could be due to nonspecific inactivation, 

or “inactivation spillover” (Brody and Hanks, 2016; Erlich et al., 2015). Other researchers have 

observed deficits on visual decision-making behavior when optically manipulating PPC (Licata et 

al., 2016), and they estimated the spatial extent of light stimulation using published calculators, 

concluding that that direct spread of light to V1 was unlikely. However, laser stimulation 

parameters can vary widely across studies and experimental preparations, and thus the spatial 

extent of light stimulation should be measured empirically. 

 Previous work, using the same mouse line and a similar stimulation paradigm but higher 

laser power densities, has shown that light stimulation can affect the activity of neurons as far as 

1 or 2mm away (Guo et al., 2014). We previously measured the spatial extent of our stimulation 

approach using post-hoc immunohistochemistry and cFos labeling as a marker of neural activity 

(see Figure 3.1D). Light stimulation dramatically reduced cFos labeling under the cranial window, 

throughout all layers of the cortex, and extending less than 500µm from the edge of the window 

(Goard et al., 2016).  

However, cFos is an indirect measure of neural activity that might not be sensitive to more 

subtle changes in firing rate. We therefore directly measured the effects of stimulating PPC on V1 

spiking activity using single-unit electrophysiology (Figure 3.6A, B). Some single units (n = 7 

across 3 mice) showed increased spiking when light stimulation was applied to V1 (average 

enhancement: 6.4-fold), presumably representing ChR2+ inhibitory cells that are directly activated 

by light (Figure 3.6D, E). Consistent with this assumption, these cells tended to exhibit narrow 
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spike widths (Figure 3.6C; 5 of 7 units with spike widths less than 0.3 ms), an extracellular 

signature commonly used to distinguish excitatory and inhibitory neurons (McCormick et al., 1985; 

Mitchell et al., 2007; Runyan and Sur, 2013; Swadlow, 2003). Light stimulation of PPC had no 

effect on the majority of these cells (5 of 7 cells), with one cell showing significant enhancement 

and one showing significant suppression. This demonstrates that photoinhibition of PPC is 

unlikely to cause direct light activation of inhibitory cells in V1.  

 

3.4.6 Light stimulation of PPC causes moderate suppression of V1 neurons 
 

In addition to the V1-enhanced cells, we recorded many units (n = 34 across 6 mice) that were 

strongly suppressed by direct light stimulation of V1 (Figure 3.7A,B; 93.4% suppression). These 

V1-suppressed neurons had broader spike widths on average than the V1-enhanced population 

(Figure 3.6C). When light stimulation was applied to PPC, we found that many of these cells were 

moderately suppressed (average suppression: 60.7%; 25 of 34 cells with significant suppression, 

p < 0.01, Wilcoxon rank-sum test). We hypothesize that this moderate suppression is not due to 

direct light activation of nearby inhibitory neurons in V1, but rather to the loss of long-range 

excitatory input from PPC. Consistent with this hypothesis, the normalized spike rate (stimulation 

divided by control) was not significantly correlated with distance (Figure 3.8B; r = 0.13, p = 0.48), 

as would be expected for a polysynaptic effect as opposed to a direct effect of light-mediated 

inactivation. Additionally, normalized spike rate was weakly but not significantly correlated with 

recording depth (r = 0.26, p = 0.13).  

Photoinhibition of PPC therefore has an indirect and moderate effect on V1 activity. This 

is not unexpected given the interconnected nature of PPC and V1 (Wang et al., 2012), although 

it does warrant caution in interpretation of our behavioral results, as with any acute manipulation 

experiment including pharmacological manipulations or acute lesions (Otchy et al., 2015). 

Disruption of behavior during PPC inactivation could be due to disruption of computations within 
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PPC, but it could be also explained by loss of feedback excitation onto V1. Either way, PPC 

appears to provide signals necessary for performance of the task, whether by performing 

sensorimotor computations or by providing feedback excitation onto V1. Both V1 and PPC are 

necessary exclusively during the stimulus period and not during execution of the motor response. 

 

3.5 Discussion 
 

Sensorimotor decisions involve both transformation and maintenance of information, and it 

remains a major goal of systems neuroscience to understand how neural circuits perform these 

functions. As a first step towards this goal, we manipulated the activity of neurons in multiple 

cortical regions during a memory-guided sensorimotor decision task to discover which areas were 

fundamental to each of these processes. 

Our first major finding is that the frontal motor cortex, and not posterior parietal cortex, 

appears to be responsible for maintenance of the motor plan during the delay period, adding to 

several other recent studies (Erlich et al., 2011; Guo et al., 2014; Hernandez et al., 2010; Li et al., 

2015). Indeed, while photoinhibition of fMC during the delay period results in complete disruption 

of behavioral performance, photoinhibition of PPC during the delay period has no significant effect 

(Figure 3.3). This suggests that, at least in motor planning tasks, PPC may be more important for 

mapping stimulus identity to behavioral choice than for maintaining the choice in short-term 

memory stores. However, additional research will be necessary to determine if the PPC is indeed 

the locus for stimulus-response mapping in these tasks. Another intriguing finding is that the 

dependency on fMC arises quite early in the task (Figure 3.3), within hundreds of milliseconds 

from stimulus onset (Figure 3.4). This result appears to conflict with earlier findings using 

unilateral inactivation of motor cortex (Guo et al., 2014; Hanks et al., 2015), but is consistent with 

a recent study finding that delay-period motor cortical activity can be recovered if the contralateral 

hemisphere is spared (Li et al., 2016). It is unclear whether these differences should be attributed 
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to differences in behavioral task or stereotactic coordinates. Our chosen coordinates lie slightly 

posterior and medial to the motor area described by one group to be important for licking 

behaviors in mice (Guo et al., 2014; Komiyama et al., 2010), but the size of our stimulation window 

likely overlaps with this area. Nonetheless, the early dependency on fMC activity suggests a very 

rapid conversion of stimulus information into a motor plan in our task. An alternative possibility is 

that disruption of fMC affects other areas during the stimulus period that are necessary for 

performance. While we did not measure activity in V1 or PPC during fMC inactivation, the lack of 

strong direct connectivity of fMC with either area (Zingg et al., 2014) makes the possibility of off-

target effects less likely. 

Second, we find that inactivation of PPC during the stimulus epoch of the task disrupts 

behavior, whether using a memory-guided version of the task (Figure 3.3), a very brief stimulus 

presentation (Figure 3.4), or a 0 s delay between stimulus and choice (Figure 3.5). This adds to 

prior work which indicate a role for rodent PPC in other visual decision tasks (Harvey et al., 2012; 

Licata et al., 2016; Raposo et al., 2014) by specifying an early involvement of PPC in such tasks. 

But our results conflict with perturbation studies in rodents (Erlich et al., 2015; Guo et al., 2014) 

and primates (Katz et al., 2016), which found little role for PPC in other decision tasks. To resolve 

these discrepancies, one must first ask the question: what exactly is being disrupted when we 

shine light in PPC during the stimulus period? 

One possibility that our electrophysiological recordings rule out is that of direct light spread 

to V1. Putative inhibitory neurons in V1, which exhibit narrow spike waveforms and are activated 

by direct stimulation of V1, are not excited by light stimulation of PPC (Figure 3.6). These 

measurements are bolstered by post-hoc immunohistochemical measurements of cFos, which 

show reduced labeling across all layers in a spatial region that extends at most 500 µm laterally 

from the cranial window (Figure 3.1). However, it must be acknowledged that the precise 

definition of rodent PPC, its homology to primate cortex, and its anatomical relationship to 
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extrastriate visual areas, remains a matter of debate. It is possible that rodent PPC is homologous 

to primate PPC in being unnecessary for visual decisions (Katz et al., 2016). In this case, 

behavioral deficits in rodents may arise only in visual tasks because of nonspecific inactivation of 

separate, nearby extrastriate areas (Brody and Hanks, 2016). An alternative possibility is that 

rodent PPC shares features with primate extrastriate cortex, and thus deficits on visual decisions 

observed by us and others could be due to direct disruption of visual or visuomotor computations 

within PPC (Licata et al., 2016). Distinguishing these possibilities will require improved resolution 

and delineation of these areas, perhaps using more precise retinotopic mapping (Garrett et al., 

2014) or noise correlation analyses (Kiani et al., 2015).  

Still another possibility is that PPC inactivation induces off-target effects in other areas, 

particularly V1. Indeed, our electrophysiological recordings show that the role of PPC cannot be 

easily assessed independently from that of V1. The two brain areas are directly and indirectly 

interconnected (Wang et al., 2012), and manipulation of PPC activity does moderately affect V1 

spiking as well (Figure 3.7).  This warrants caution in interpretation of our behavioral results, as 

with any acute manipulation including optical or pharmacological manipulations (Otchy et al., 

2015). However, the reduction in V1 activity was far from complete, with an average ~40% of 

visually-evoked spikes spared. It is unlikely that an incomplete disruption of V1 activity can fully 

explain the large behavioral deficit that we observed when inactivating PPC. Low contrast visual 

stimuli can produce even weaker neural responses, and even so our mice are able to perform 

visual discrimination at such low contrasts (see Figure 4.4B). The lack of distance dependence 

(Figure 3.8) and effect on putative inhibitory cells further argues that such reduction is a network-

level effect.  

We therefore argue that PPC is causally involved in the task, whether by directly 

computing visuomotor transformations, or by indirectly providing permissive feedback excitation 

to V1. Fully distinguishing whether PPC plays an instructive versus a merely permissive role will 



89 
 

require additional experiments. Specifically, one should selectively lesion PPC, and then allow 

time for homeostatic recovery of activity levels in V1 and other areas that receive input from PPC. 

If task performance is preserved after lesion (without any task-specific practice), then one can 

conclude that PPC is not in fact required for task performance, but provides permissive input to 

V1 or other areas that are essential (Otchy et al., 2015; Panzeri et al., 2017). A third and intriguing 

possibility is that PPC and V1 may jointly participate in an inter-areal network that processes and 

transforms stimulus information in a manner that is necessary for task performance. Such a 

perspective, while speculative, goes beyond attributing specific functions to individual areas, and 

can be tested in future work using targeted measurement and manipulation of specific projection 

pathways between areas (Chen et al., 2013a; Li et al., 2015; Znamenskiy and Zador, 2013). 

Although the necessity of PPC activity during the stimulus period requires future inquiry, 

we observed a clear negative result when inactivating PPC in the delay and response periods. 

Does this activity play any functional role, or is it merely epiphenomenal? Delay-period PPC 

activity could reflect feedback inputs from motor and frontal regions that drive the behavior, or it 

may point to a role for PPC in learning (Law and Gold, 2008). Another intriguing alternative comes 

from unilateral disruption experiments in both primates (Katz et al., 2016; Wardak et al., 2002; 

Wilke et al., 2012) and rodents (Erlich et al., 2015), which demonstrate clear biases in free choice 

behavior even though the same manipulations have little effect on instructed sensory trials. 

Activity in PPC could therefore be more important for biasing attention or behavior in less 

demanding task conditions, as seen also in humans with hemi-spatial neglect (Kerkhoff, 2001).   

One caveat is that disruption of behavioral performance in a go/no-go task may be hard 

to interpret due to the asymmetry of the task design. We provided controls to demonstrate that 

deficits in performance were not due to distraction by the light stimulus itself, prolonged temporal 

effects, or non-specific changes in overall lick rate (except for fMC during the response period). 
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However, we cannot rule out the possibility that behavioral disruption is due to laser-induced 

changes in motivation, arousal, or perceptual criterion.  

An important next step is to determine the role of V1, PPC, and fMC in a task that requires 

memory of the stimulus, such as a delayed match-to-sample task (Liu et al., 2014; Miller et al., 

1996; Romo et al., 1999). It seems probable that in such tasks, PPC or perhaps even primary 

sensory cortex would play a greater role during delay-period maintenance. Given the importance 

of both sensory and motor short-term memory, both delayed-response and delayed-comparison 

tasks warrant further study. 

 Finally, this study focused on cortical regions located on the dorsal surface of the mouse 

brain, as they are readily accessible to optogenetic inhibition. However, there are likely to be 

additional cortical and subcortical regions involved in this task, including prefrontal cortex 

(Funahashi et al., 1989; Fuster and Alexander, 1971; Kojima and Goldman-Rakic, 1982), 

thalamus (Fuster and Alexander, 1973), superior colliculus (Kopec et al., 2015), and basal ganglia 

(Ding and Gold, 2012; Kawagoe et al., 1998). These regions could be further investigated with a 

similar approach as invasive (Andermann et al., 2013; Barretto and Schnitzer, 2012; Zorzos et al., 

2012) and noninvasive (Filonov et al., 2011; Mittmann et al., 2011; Prakash et al., 2012) 

techniques for optical interrogation of deeper structures become available. 
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3.8 Figures 
 

 

Figure 3.1. Characterization of photoinhibition in VGAT-ChR2-EYFP mice.  

(A) Schematic of cell-attached recording set-up to test effect of blue light on regular spiking neurons in 
VGAT-ChR2-EYFP mice. (B) Response of example layer 5 regular spiking neuron with high baseline firing 
rate on interleaved laser off (top) and laser on (bottom) trials. Blue light completely silences neural activity 
during all trials (bottom). Complete silencing was observed for all regular spiking neurons recorded (right, 
n = 10 neurons). (C) Cortical slice from VGAT-ChR2-EYFP mouse showing constitutive c-Fos expression 
(red) in putative excitatory (EYFP-negative) neural somata. Note that c-Fos expresses at low levels in 
inhibitory interneurons (EYFP-positive; blue arrowheads). (D) Laser stimulation in VGAT-ChR2-EYFP mice 
dramatically reduces c-Fos expression (red) in a local region underneath the cranial window. Reduction of 
c-Fos spreads farthest in middle layers, but is generally limited to a few hundred microns from the window 
edge. Reduction of c-Fos was not observed in subcortical regions. The light blue line indicates window 
location (2mm diameter window). (E) Identical laser stimulation in wild-type mice does not affect c-Fos 
expression (red) underneath the cranial window. The light blue line indicates window location (2mm 
diameter window). Scale bar, 1 mm. 
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Figure 3.2. Photoinhibition control experiments.  

(A) Bilateral V1 laser stimulation in VGAT-ChR2-EYFP and control (wild-type) mice during the stimulus 
epoch of a 0 s delay version of the task. (B,C) Bilateral laser stimulation significantly impairs behavior in a 

VGAT-ChR2-EYFP mouse, causing performance to fall near chance levels (d’ = -1.41, p = 0.002, n = 6 

sessions). Laser stimulation has no effect on performance for a wild-type control mouse (d’ = +0.14, p = 
0.27, n = 8 sessions). (D) To ensure that laser stimulation does not exert effects on performance lasting 
beyond the laser stimulation period, we investigated the effect of laser stimulation during a 2 s period 
immediately prior to visual stimulus onset in a VGAT-ChR2-EYFP mouse. (E,F) Laser stimulation during 

the 2 s prior to the stimulus epoch had no significant effect on performance (d’ = -0.15, p = 0.51, n = 8 

sessions) compared to laser stimulation during the stimulus period for the same mouse (d’ = -1.93, p = 
0.003, n = 8 sessions). Paired t-tests used for all statistical tests. 
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Figure 3.3. Photoinhibition of specific cortical regions during task performance.  

(A) Continuous blue light stimulation (473nm, 2s) was applied on interleaved trials during either the 
stimulus, delay, or response epochs of the task. (B) Glass windows were implanted bilaterally over V1 (top), 
PPC (middle) or fMC (bottom) of VGAT-ChR2-YFP mice. Superficial blue light stimulation silences activity 
in nearby pyramidal cells (Figure 3.1), effectively silencing the exposed region. (C) Behavioral performance 
(d-prime) during interleaved laser OFF and ON trials for each brain region and trial epoch. Photoinhibition 
of V1 (top row) or PPC (middle row) significantly disrupts behavioral performance only when applied during 
the stimulus period (left column), whereas photoinhibition of fMC (bottom row) during any epoch of the task 
significantly decreases d-prime (*, p < 0.05, t-test with Bonferroni correction). (D) Effect of laser stimulation 
on hit rate (blue) and false alarm rate (red). Lightly colored lines represent individual behavioral sessions. 
Colored bars at top indicate statistical significance for each group (p < 0.05, t-test with Bonferroni 
correction). For all plots, error bars indicate ± S.E.M. 
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Figure 3.4. Bilateral photoinactivation during brief (250 ms) visual stimuli.  

(A) Mice were trained on a version of the task with a brief (250 ms) visual stimulus, followed by a 1 sec 
delay. Pre-stimulus period (1 s), response period (1.5 s), and ITI (3 s) were unchanged from the standard 

task. Laser was on for 250 ms during the stimulus. (B) Performance was significantly impaired for V1 (d’ 

= -1.08, p = 0.048, n = 5 sessions), PPC (d’ = -1.09, p = 0.009, n = 6 sessions), and fMC (d’ = -1.08, p = 
0.003, n = 5 sessions). 
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Figure 3.5. Photoinhibition of V1 and PPC during a 0 s delay task has similar effects. 

(A) Experimental setup for photoinhibition in head-fixed mice performing a visual discrimination task. A 

retractable lick spout was used to restrict lick responses to a specific epoch of the task. (B) Trial structure 

of the 0-second delay task. After a brief auditory preparatory cue, a drifting grating was presented for 2 s. 

The retractable lick spout was presented immediately after the stimulus turned off for at least 1.5 s. 

Continuous blue light stimulation (473nm, 2s) was applied on interleaved trials during either the stimulus or 

response epochs of the task. (C) Schematic illustrating inactivation method (left). Glass windows cut to size 

were implanted over bilateral PPC and/or V1. Example loose patch recording demonstrating complete 

suppression of a putative pyramidal neuron by light (right). Photostimulation of GABAergic neurons 

expressing ChR2 in VGAT-ChR2-EYFP mice can be used to transiently inactivate local pyramidal cells. (D) 

Behavioral performance (d-prime) during interleaved laser Off and On trials for both task epochs (columns) 

and brain regions (rows). *, p < 0.001, Wilcoxon signed-rank test. Lines indicate individual sessions. (E) 

Effect of photoinhibition on lick rates for both task epochs and brain regions. Inactivation of bilateral V1 (top 

row, n = 3 mice) disrupts behavior by reducing hit rates (blue) and increasing false alarm rates (red), but 

only when applied during the stimulus epoch (left) and not during the response epoch (right). Inactivation 

of bilateral PPC (bottom row, n = 4 mice) similarly causes a reduction in hit rates and increase in false alarm 

rates only during the stimulus epoch (left) and not during the response epoch (right). Lines indicate 

individual sessions. (F) Effect of photoinhibition on licking dynamics for both task epochs (columns) and 

brain regions (rows). Average lick peri-stimulus time histograms with (blue) and without (black) laser 

stimulation for both Hit trials (solid) and False Alarm trials (dotted). Lick PSTHs on False Alarm trials are 

plotted with an inverted Y-axis for illustration. Shading indicates SEM across sessions. Photoinhibition had 

no effect on licking dynamics for any stimulation condition. 
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Figure 3.6. Light stimulation of PPC does not activate putative inhibitory neurons in V1.  

(A) Single-unit recordings (using a 16-channel silicon linear probe) were made in V1 of untrained VGAT-
ChR2-EYFP mice under isoflurane anesthesia during laser stimulation of either V1 or PPC. (B) Example 
regular-spiking (green) and fast-spiking (brown) units recorded from the same channel. Left, principal 
components analysis on detected waveforms reveals clearly separable clusters. Right, average waveforms 
have different spike widths. Shading indicates STD. (C) V1-enhanced cells are more likely to be fast-spiking 
than V1-suppressed cells. Left, waveforms of all V1-enhanced (top, brown, n = 7) and V1-suppressed cells 
(bottom, green, n = 34), with overlaid population averages. Right, spike widths of V1-enhanced and V1-
suppressed cells. Bars denote mean ± SEM. Markers and shapes indicate individual units from different 
mice (n=6). (D) Effect of V1 stimulation (top row) or PPC stimulation (bottom row) on V1-enhanced cells. 
Left column, trial-sorted spike raster and peri-stimulus time histogram for the example fast-spiking cell in 
(B), with (blue line) and without (black line) laser stimulation. Grey shading or dashed lines indicate visual 
stimulation (2 s). Blue shading indicates laser stimulation (2.2 s, onset precedes visual stimulation by 0.1 
s). Right column, average peri-stimulus time histograms across all V1-enhanced cells (n=7). Shading 
indicates SEM. V1-enhanced cells do not show consistent enhancement by PPC stimulation. (E) Spike rate 
of V1-enhanced cells, normalized to no-laser trials for V1 (red) and PPC (dark blue) stimulation at full power 
(34 mW). PPC was also stimulated at low power (PPC-low, light blue, 19mW) for a subset of cells (n=4). 
Bars denote mean. Markers and shapes indicate individual units from different mice. Normalized spike rates 
below 0.1 were rounded down to 0. PPC stimulation had an inconsistent effect, with only 2 of 7 cells showing 
significant enhancement (n=1) or suppression (n=1). 
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Figure 3.7. Light stimulation of PPC causes moderate suppression of V1 neurons.  

(A) Effect of V1 stimulation (top row) or PPC stimulation (bottom row) on V1-suppressed cells. Left column, 
trial-sorted spike raster and peri-stimulus time histogram for an example regular-spiking cell, with (blue line) 
and without (black line) laser stimulation. Grey shading or dashed lines indicate visual stimulation (2 s). 
Blue shading indicates laser stimulation (2.2 s, onset precedes visual stimulation by 0.1 s). Right column, 
average peri-stimulus time histograms across all V1-suppressed cells (n=34). Shading indicates SEM. V1-
suppressed cells are moderately suppressed by PPC stimulation. (B) Spike rate of V1-suppressed cells, 
normalized to no-laser trials for V1 (red) and PPC (dark blue) stimulation at full power (34 mW). PPC was 
also stimulated at low power (PPC-low, light blue, 19mW) for a subset of cells (n=28). Bars denote mean. 
Markers and shapes indicate individual units from different mice. Normalized spike rates below 0.1 were 
rounded down to 0. V1 stimulation always had a greater effect (93.4% suppression) than PPC stimulation 
at high power (60.7%) or low power (39.7%). 
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Figure 3.8. Lack of distance-dependence suggests indirect, network-level suppression of V1.  

Normalized spike rate versus distance for V1-enhanced (A) and V1-suppressed cells (B) for PPC 
stimulation at both high power (dark blue) and low power (light blue), and for V1 stimulation (red). Distances 
from edge of laser spot were estimated from probe insertion location, location of PPC window, and location 
of electrode site along the probe. Red line indicates average effect of V1 stimulation. Blue lines indicate 
best-fit linear regression for high power (dark blue) and low power (light blue) stimulation of PPC. There 
was no significant correlation (p = 0.50) between normalized spike rate (at high power) and distance. 
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Chapter 4: Task-dependent representations of stimulus and 

choice in mouse parietal cortex. 
 

4.1 Summary 
 

The posterior parietal cortex (PPC) has been implicated in perceptual decisions, but whether its 

role is specific to sensory processing or sensorimotor transformation is not well understood. To 

distinguish these possibilities, we trained mice to perform a visual discrimination task and imaged 

the activity of PPC populations during both engaged behavior and passive viewing. Unlike 

neurons in primary visual cortex (V1), which responded robustly to stimuli in both conditions, most 

neurons in PPC responded exclusively during task engagement. However, PPC responses were 

heterogeneous, with a smaller subset of neurons exhibiting stimulus-driven, contrast-dependent 

responses in both conditions. To test whether PPC responses primarily encoded the stimulus or 

the learned sensorimotor contingency, we imaged the same neurons before and after re-training 

mice on a reversed task contingency. Unlike V1 neurons, most PPC neurons exhibited a dramatic 

shift in selectivity after re-training and reflected the new sensorimotor contingency, while a smaller 

subset of neurons preserved their stimulus selectivity. Mouse PPC is therefore strongly task-

dependent, contains heterogeneous populations sensitive to stimulus and choice, and may play 

an important role in the flexible transformation of sensory inputs into motor commands. 

  

4.2 Introduction 
 

Perceptual decision-making involves multiple cognitive processes, including processing of 

sensory stimuli, accumulation of evidence, and transformation of sensory information into an 

appropriate motor plan. Although many brain regions have been implicated in perceptual 

decisions, dissociating their individual contribution to these different processes remains a 

challenge.  
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In particular, the posterior parietal cortex (PPC) has been hypothesized to play a key role 

in at least some types of decision tasks in both primates (Gold and Shadlen, 2007; Shadlen and 

Newsome, 2001) and in rodents (Goard et al., 2016; Harvey et al., 2012; Raposo et al., 2014). 

However, the specific role of rodent parietal cortex, and whether its function is homologous to that 

of primates, remains unclear. Recent electrophysiological recordings in rats during auditory 

decisions (Hanks et al., 2015) recapitulated findings in primates that PPC neurons can reflect the 

accumulated evidence for a decision. However, pharmacological inactivation of PPC during the 

same auditory task has no effect on behavioral performance (Erlich et al., 2015), and a minimal 

role of PPC was also found for whisker-based decisions in mice (Guo et al., 2014b). These 

findings are in contrast to studies involving visual decision tasks, where activity in PPC not only 

encodes information about the decision (Goard et al., 2016; Morcos and Harvey, 2016; Raposo 

et al., 2014) but is also causally necessary for behavior (Goard et al., 2016; Harvey et al., 2012; 

Licata et al., 2016).  

The apparent specificity of behavioral deficits to the visual modality has led some to argue 

that rodent PPC may ultimately be more homologous to extrastriate cortex in processing sensory 

signals that are accumulated elsewhere for decision-making (Licata et al., 2016). Indeed, both 

anatomical projection studies (Wang and Burkhalter, 2007; Wang et al., 2012), as well as 

functional mapping studies (Garrett et al., 2014; Marshel et al., 2011) indicate that PPC may 

overlap with or contain a group of retinotopically-organized extrastriate areas that are rostral to 

V1. An alternative possibility is that PPC may play a specific role in the mapping of visual stimuli 

to motor commands. If this were the case, one may expect that activity in PPC would highly task-

dependent, and may even flexibly re-map depending on learned sensorimotor contingencies 

(Freedman and Assad, 2006).  

To distinguish these possibilities, we used population calcium imaging to measure activity 

in PPC and in the primary visual cortex (V1) during a go/no-go lick-based visual discrimination 

task. Having previously demonstrated the necessity of PPC in the performance of this task (Goard 
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et al., 2016), we sought in this work to investigate its specific role in either sensory processing or 

sensorimotor transformation by manipulating task engagement and learned task contingencies. 

V1 neurons had robust visual responses during both task engagement and passive viewing of 

stimuli that remained stable after task contingency reversal. By contrast, PPC responses were 

largely specific to task performance and were highly sensitive to task contingency. Our results are 

consistent with a role of the mouse posterior parietal cortex in transforming sensory information 

to motor commands during perceptual decisions. 

 

4.3 Experimental Procedures 
 

4.3.1 Surgical procedures 

 

All experiments were carried out in mice of either sex using protocols approved by Massachusetts 

Institute of Technology’s Animal Care and Use Committee and conformed to National Institutes 

of Health guidelines. Data were collected from adult (3-5 months old) wild-type (C57BL/6; n = 15) 

mice. The animals were housed on a 12 hour light/dark cycle in cages of up to 5 animals before 

the implants, and individually after the implants. All surgeries were conducted under isoflurane 

anesthesia (3.5% induction, 1.5-2.5% maintenance). Meloxicam (1 mg kg-1, subcutaneous) was 

administered pre-operatively and every 24 hours for 3 days to reduce inflammation. Surgical 

procedures for the first headplate implant surgery are identical to those described in Section 2.3.1. 

After head plate implantation, mice recovered for at least five days before beginning water 

restriction. 

 After behavioral training was complete, animals were taken off water restriction for five 

days before undergoing a second surgery to implant the imaging window. Procedures for 

anesthetic administration and post-operative care were identical to the first surgery. The dental 

acrylic and silicon elastomer covering the targeted region were removed using a drill burr. The 
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skull surface was then cleaned and a craniotomy was performed over left V1/PPC, leaving the 

dura intact. Neurons were labeled with a genetically-encoded calcium indicator by microinjection 

(Stoelting) of 50 nl AAV2/1.Syn.GCaMP6s.WPRE.SV40 (University of Pennsylvania Vector Core; 

diluted to a titer of 1012 genomes ml-1) 300 µm below the pial surface. Between two and five 

injections were made in each exposed region, centered at V1 (4.2 mm posterior, 2.5 mm lateral 

to Bregma) and PPC (2 mm posterior, 1.7 mm lateral to Bregma). Since the viral expression 

spreads laterally from the injection site, exact stereotaxic locations were photographed through 

the surgical microscope for determining imaging areas. Finally, a cranial window was implanted 

over the craniotomy and sealed first with silicon elastomer then with dental acrylic. The cranial 

windows were made of two rounded pieces of coverglass (Warner Instruments) bonded with 

optical glue (NOA 61, Norland). The bottom piece was circular or oval, custom cut according to 

cortical region(s) (V1: 2.5 mm x 2.5 mm; PPC: 1 mm x 2 mm; V1 + PPC: 4 mm x 4 mm, anterior-

posterior x medial-lateral) and fit snugly in the craniotomy. The top piece was a larger circular 

coverglass (3-5 mm, depending on size of bottom piece) and was bonded to the skull using dental 

acrylic. Mice recovered for five days before commencing water restriction. 

 

4.3.2 Behavioral tasks 

 

We trained mice to perform a head-fixed go/no-go visual discrimination task. Stimuli consisted of 

full-contrast sine wave gratings (spatial frequency: 0.05 cycles deg-1; temporal frequency: 2 Hz) 

drifting at either 0° (upwards, target, Stimulus A) or 90° (rightwards, non-target, Stimulus B) away 

from vertical. Stimuli were presented to the right eye alone by placing the screen at an oblique 

angle to the animal. Behavioral training and testing was implemented with custom software written 

in Matlab (Mathworks) using Psychtoolbox-3 (Kleiner et al., 2007) and Data Acquisition toolbox. 

Spout position was controlled by mounting the spout apparatus on a pneumatically-driven sliding 

linear actuator (Festo) controlled by two solenoids. Licks were detected using an infrared 
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emitter/receiver pair (Digikey) mounted on either side of the retractable lick spout. Mice were 

water-restricted and earned most of their daily ration (1mL) during training. 

 Detailed information about the behavioral training procedures is provided in Section 4.3.3. 

An auditory cue tone (5 kHz, 0.5 s, 65 dB SPL) indicated the beginning of each trial. After a 1 s 

delay, a visual stimulus was presented for 2 s. At the end of the stimulus epoch, the spout was 

rapidly moved within reach of the tongue, and remained within reach for 1.5 s. Correct licks during 

this period were rewarded with 5-8 µl water and a brief reward tone (10 kHz, 0.1 s). Licks to the 

non-target stimulus were punished with a white noise auditory stimulus alone (early training) or 

white noise plus 1-3 µl of 5mM quinine hydrochloride in water (late training). This concentration 

was chosen to deter licking to non-targets without causing mice to lose motivation altogether. At 

the end of the response epoch, the spout was then rapidly retracted and remained out of reach 

until the next trial (3 s inter-trial interval). 

During imaging experiments, blocks of engaged behavior trials were alternated with blocks 

of passive viewing. Blocks were 5-10 min in duration (40-80 trials per block). During passive 

blocks, the spout was out of reach for the duration of the block. A few extra passive trials were 

given (without imaging) before each passive block to ensure that mice did not expect spout 

presentation during all imaged passive trials. The sequence of target and non-target stimuli 

presented for a given passive block was matched to the sequence of stimuli used for the 

preceding engaged block. In some cases, instead of alternating between engaged and passive 

blocks, the engaged blocks were all grouped together at the beginning of the session, followed 

by an equal number of consecutive passive blocks. No difference in results was observed for 

alternating versus grouped blocks.  

Some mice (n = 6) were trained on a variable contrast version of the task. On each trial, 

the stimulus was randomly set to one of six contrasts (2, 4, 8, 16, 32, or 64%), regardless of 

whether the stimulus was a target or non-target. The mouse therefore could not predict the 

contrast of the stimulus from trial to trial.  
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Some mice (n = 3) were re-trained after initial imaging experiments on a reversed reward 

contingency. Reward contingency was switched abruptly, with reward given for licks to Stimulus 

B and no reward for licks to Stimulus A. Because mice were quickly discouraged by the reversal, 

no quinine punishment was initially given. Additionally, the reward tone (10 kHz, 0.1 s) was paired 

with the onset of the new target stimulus (Stimulus B) early in re-training, in order to encourage 

licking. Three of the five mice trained on this reversed contingency achieved criterion performance 

after re-training for 10 ± 2 days. 

For all tasks, behavioral d-prime was computed by norminv(Hit rate) – norminv(False 

alarm rate), where norminv() is the inverse of the cumulative normal function (Carandini and 

Churchland, 2013; Green and Swets, 1966). Values of Hit and False alarm rate were truncated 

between 0.01 and 0.99, setting the maximum d’ to 4.65.   

 

4.3.3 Behavioral training 

 

Mice were trained once a day, 5-6 days per week. Mice were trained in successive stages, with 

advancement to the next stage contingent on correct performance (see Supplementary 

Materials): 1) Mice receiving reward any time they licked the spout. 2) Trial structure was initiated 

by having an auditory cue tone, followed by a visual stimulus (100% targets), followed by an inter-

trial interval. Mice were only rewarded for licks during the visual stimulus. 3) Once mice exhibited 

preferential licking during the stimulus, the target rate was reduced over several sessions from 

100% to 50%. At this point, the non-target was a static grating orientated orthogonally to the 

target. Licks during non-targets were punished with white noise or white noise plus quinine. 4) 

Once mice exhibited the ability to discriminate target and non-target gratings (d’ > 1 and RHIT - RFA 

> 30% for several sessions, where RHIT and RFA are the hit and false alarm rate, respectively), the 

temporal frequency of the non-target grating was increased. 5) Spout withdrawal was introduced. 

At first the spout was extended within range before the stimulus appeared, then spout extend time 
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was gradually delayed until after the stimulus had turned off. 6) Some mice were also trained on 

the variable contrast version of the task. Stimuli of lower contrast were gradually added and 

randomly interleaved in with higher contrast stimuli, until mice could achieve significant 

performance even at the lowest contrast (2%). Mice that failed to fully learn the task within 150 

sessions or showed signs of infection were removed from the study. Some mice were additionally 

trained on a delayed response version of the task and re-used in another study (Goard et al., 

2016) which added to the training time. 

Once mice reached high levels of performance at the final stage of the task (d’ > 1.5 and 

RHIT - RFA > 50%), they were removed from water restriction for window implantation. Mice reached 

criterion performance after an average of 92 ± 11 sessions. After recovery from window 

implantation surgery, they were re-trained to a level of high performance (2-7 days) before 

beginning experimental sessions. Any sessions with poor performance were discarded (minimum 

performance criterion: d’ > 1 and RHIT - RFA > 30%).  

 

4.3.4 Two-photon imaging 

 

Procedures for two-photon calcium imaging were identical to those described in Section 2.3.3. 

Briefly, GCaMP6s fluorescence was imaged 14-35 days after virus injection using Prairie Ultima 

IV 2-photon microscopy system with a resonant galvo scanning module (Bruker). We used a 

16x/0.8 NA microscope objective (Nikon), which was mounted on a Z-piezo (Bruker) for volume 

scanning. Four 441 x 512 pixel imaging planes separated by 20 or 25 m were imaged 

sequentially at a stack rate of 5 Hz for 5-10 min imaging sessions. Laser power ranged from 40-

75 mW at the sample depending on GCaMP6s expression levels. During imaging experiments, 

the polypropylene tube supporting the mouse was suspended from the behavior platform with 

high tension springs (Small Parts) to dampen movement. 
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4.3.5 Image analysis 

 

Calcium imaging data were acquired using PrairieView acquisition software and sorted into multi-

page TIF files. All analyses were performed using custom scripts written either in ImageJ or 

MATLAB (Mathworks).  

Images were first corrected for X-Y movement by registration to a reference image (the 

pixel-wise mean of all frames) using 2-dimensional cross correlation. To identify responsive neural 

somata, a pixel-wise activity map was calculated as previously described (Ahrens et al., 2012). 

Neuron cell bodies were identified using local adaptive threshold and iterative segmentation. 

Automatically-defined ROIs were then manually checked for proper segmentation in a MATLAB-

based graphical user interface (allowing comparison to raw fluorescence and activity map images). 

To subtract the influence of local neuropil on somatic signals, the fluorescence in the somata was 

estimated as Fcorrected_soma(t) = Fraw_soma(t) - 0.7 × Fneuropil(t), where Fneuropil was the defined as the 

fluorescence in the region 0-15 mm from the ROI border (excluding other ROIs) (Chen et al., 

2013). ΔF/F for each neuron was calculated as ΔF/Ft = (Ft - F0)/ F0, with F0 defined as the mode 

of the raw fluorescence density distribution. 

To align ROIs between different imaging sessions across days (Figure 4.7, Figure 4.8), 

we used a semi-automated method similar to prior work (Huber et al., 2012). First, for each plane, 

anchor points were manually defined by visual comparison of the two average projection images. 

These anchor points helped to define a predicted displacement vector field that would be used to 

map coordinates from one session to the other. For each coordinate, the predicted vector was 

defined by the average (weighted inversely by distance) of the vectors for all defined anchor 

points.  

Next, for each ROI, a square region (~4x the size of the ROI) around the ROI was selected. 

To determine the displacement across sessions, we computed the normalized cross-correlation 
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of this square with the average projection of the other session. This was multiplied point-by-point 

with a mask that decayed gradually with distance from the predicted displacement vector, and 

then smoothed with a 2-D Gaussian filter. The peak of the resulting image was taken to be the 

actual displacement vector of the ROI. This process biases the displacement of each ROI towards 

the vector predicted from the manually-defined anchor points. Finally, any ROIs with a computed 

displacement vector that differed by greater than 5 pixels from the predicted vector were flagged 

for manual inspection, and then either redrawn or removed. 

 

4.3.6 Analysis of task-driven responses 

 

After image preprocessing and F/F extraction, traces were sorted by trial type (hit, miss, correct 

reject, false alarm) and condition (engaged, passive). The baseline response (1 s before stimulus 

onset) was subtracted from each trial. A neuron was considered task responsive if its mean ΔF/F 

during the last 1.6 s (8 frames) of the stimulus period was significantly (p < 0.01, t-test) greater 

than the pre-stimulus baseline (1 s), for either hit or correct reject trials. Neurons also had to meet 

a signal-to-noise criterion, needing a trial-averaged response that exceeded a threshold of at least 

2 standard deviations above baseline during either the stimulus or choice period. All further 

analyses are based on responses during the last 1.6 s of the stimulus period, unless noted 

otherwise.  

In some sessions, an unnoticed bug in the behavior software caused the non-target 

stimulus to be presented during both the stimulus and choice period (3.5 s total). Because most 

of our analyses were confined to the 2 s stimulus period, the bug should not dramatically alter the 

results. Additionally, within-mouse comparisons of behavior showed no significant difference in 

performance with or without the bug. Nonetheless, we re-analyzed the data excluding these 

sessions and found no major differences in our key findings in Figure 4.2 and Figure 4.3. We 
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therefore included these sessions in our stimulus-period analyses, but not in plots or analyses 

that involve the choice period (Figure 4.2B, D; Figure 4.3). 

Neurons were marked as target- or non-target-preferring (Figure 4.2E) based on their 

mean response during Engaged trials. Neurons were marked as task-gated if they did not exhibit 

a significant response to their preferred stimulus during Passive trials (Figure 4.2F). 

 All comparative indices (engagement modulation index, contrast modulation index, 

selectivity index) were computed using a receiver operating characteristic (ROC) analysis, which 

quantifies the ability of an ideal observer to discriminate between trial types based on single trial 

responses (Britten et al., 1996; Green and Swets, 1966). Each index was derived from the area 

under the ROC curve (AUC), and defined as 2 × (AUC − 0.5); this value ranged from -1 to 1 

(Raposo et al., 2014). Engagement modulation index (Figure 4.2H, Figure 4.4D, Figure 4.8D) 

was computed by comparing the stimulus period response (last 1.6 s) during engaged and 

passive conditions. A value of +1 indicates that a cell always fired more on Engaged trials. 

Contrast modulation index (Figure 4.4C) was computed by comparing responses at the highest 

and lowest contrasts, with positive values indicating preference for high contrasts. Selectivity 

index (Figure 4.2G) was computed by comparing target and non-target responses, with positive 

values indicating preference for target stimuli. Finally, selectivity index was computed separately 

before and after reversal training (Figure 4.7E-H) by comparing responses to the Stimulus A (red, 

original target) and Stimulus B (blue, original non-target), with positive values indicating 

preference for the Stimulus A. 

 To determine whether these comparative indices were significant (for either individual 

neurons or for the whole population), we used a permutation test. We shuffled the labels for each 

trial and recomputed the index 2000 times to create a distribution of indices that could have arisen 

by chance. Indices outside the center 95% interval of this distribution were considered significant. 
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4.3.7 Error trial analysis 

 

Data from error trials are included only in Figure 4.3, Figure 4.6, and Figure 4.8C, and were 

taken from behavioral sessions in which the mouse committed at least five misses or five false 

alarms. Because mice had a bias towards licking, the number of Miss trials was small, and we 

focused our analysis on False Alarm trials (except in Figure 4.3E-F). Error modulation index 

(Figure 4.8C) was computed in the same manner as other comparative indices (see Section 2.3.5) 

but by comparing stimulus period responses on False Alarm trials versus Correct Reject trials, 

with positive values indicating preference for False Alarm trials.  

Selectivity for stimulus and choice (Figure 4.3E-H, Figure 4.6C-F) were computed using 

an ROC-based analysis across different time bins (Bennur and Gold, 2011; Hernandez et al., 

2010). For stimulus encoding, Hit trials were compared with False Alarm trials. For choice 

encoding, False Alarm trials were compared with Correct Reject trials. The auROC was computed 

by comparing the two distributions of responses at each time point (200 ms bins) during the trial. 

A permutation test was used to determine the percentage of neurons with significant selectivity (p 

< 0.05), and bootstrapping across sessions was used to determine confidence intervals on these 

percentages. 

 

4.3.8 Contrast task analysis 

 

For data acquired during the variable contrast task, neurons were considered significantly 

responsive if the mean ΔF/F during the stimulus period was significantly above threshold for at 

least two of the six contrasts of the same stimulus. We focused our analyses on target-preferring 

neurons, which were included if their mean response across contrasts was greater for Hit (target) 

trials compared to Correct Reject trials. 



117 
 

 Single neuron contrast response functions were fit to the hyperbolic ratio function (Figure 

4.4E), also known as the Naka-Rushton function (Albrecht and Hamilton, 1982): 

𝑅(𝐶) = 𝑅𝑚𝑎𝑥

𝐶𝑛

𝐶𝑛 + 𝐶50
𝑛 + 𝑅0 

where 𝑅(𝐶) is the neural response as a function of contrast, 𝑅𝑚𝑎𝑥 is the saturation point, 𝐶50 is 

the contrast at the half-saturation point, 𝑅0 is the baseline response, and 𝑛 is an exponent that 

determines the steepness of the curve. The responses for both Engaged and Passive conditions 

were fit simultaneously, with 𝑛 constrained to be constant across conditions, by minimizing the 

sum (across data points) of the squared error between the model and the data, divided by the 

variance of that data point.  

 We evaluated the goodness of fit for each neuron using a bootstrap hypothesis test, as 

detailed by others (Carandini et al., 1997). Briefly, we tested the null hypothesis that the mean of 

the probability distribution underlying the neural responses was identical to the predictions of the 

model. We measured the observed prediction error (eobs) and computed the probability of 

observing an error at least as large if the null hypothesis were true. To sample from a distribution 

that conformed to the null hypothesis, we shifted the data such that the mean responses equaled 

the model predictions, and drew 1000 bootstrap samples from this dataset, computing a prediction 

error (ei) for each. The proportion of samples for which the prediction error was larger than eobs is 

the achieved significance level. For neurons with an achieved significance level below 10% 

(p<0.1), there was sufficiently strong evidence against the model, and therefore these neurons 

were excluded from further analysis.  

Contrast modulation index was computed to compare responses on high (64%, 32%) 

versus low (2%, 4%) contrasts. A permutation test was used to assess significance (p<0.05) by 

shuffling trial labels 2000 times, and comparing the measured index to the shuffled distribution of 

indices. 
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4.3.9 Reverse contingency task analysis 

 

We imaged from the same field of neurons before and after reversal of reward contingency. The 

two sessions were separated by an average time interval of 16 ± 1 days. A semi-automated 

method was used to align ROIs between the two sessions (see Section 4.3.5). Neurons were 

included for analysis only if a significant response (p < 0.01) to either stimulus was observed both 

before and after reversal.  

 

4.3.10 General statistics 

 

Unless otherwise noted, all measures are reported as mean ± SEM. Due to very large sample 

sizes, very small p-values (<10-9) were approximated as p < 10-9 as a lower bound on reasonable 

probabilities.  

 

4.4 Results 
 

4.4.1 Imaging calcium responses in V1 and PPC during engaged task performance and 

passive viewing 
 

We trained mice on a head-fixed lick/no-lick visual discrimination task (Figure 4.1A, B), similar to 

previous designs (Andermann et al., 2010; Goard et al., 2016; Pinto et al., 2013). Water-restricted 

mice discriminated between a target stimulus (horizontal grating drifting upwards, 0° from vertical, 

Stimulus A) which was rewarded with water, and a non-target stimulus of an orthogonal 

orientation (vertical drifting upwards rightwards, 90°, Stimulus B). Lick responses to the non-target 

grating were discouraged by punishment with a small, aversive drop of quinine. A retractable lick 

spout was presented immediately after stimulus presentation (2 s), and retracted on every trial. 

This restricted the animal’s lick response to the “response” period (1.5 s), and allowed us to 
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separately assess perception and action (Figure 4.1B). Video recording of the mice during the 

stimulus period confirmed that mice withheld licking until the spout became present during the 

response epoch (data not shown). Mice (n = 15) achieved high levels of performance on the task 

(Figure 4.1C; d-prime, 2.23 ± 0.18; mean ± SEM), with a bias towards licking, resulting in more 

false alarms than misses. 

We have previously demonstrated using a version of this task with a 4 s delay period 

(Goard et al., 2016), that inactivation of either V1 or PPC during the stimulus period disrupts 

behavioral performance, whereas inactivation during the response period has no effect (see 

Figure 3.3). Additional inactivation experiments using the same 0 s delay task presented here 

confirmed this result (see Figure 3.5). Stimulus-period activity in PPC is therefore necessary for 

the task, but it is unclear whether such activity is important for sensory processing, decision 

formation, or action selection. In order to distinguish between these possibilities, we measured 

neural activity in PPC and V1 under two different conditions: during engagement in the behavioral 

task as well as during passive visual stimulation (Figure 4.1B). We reasoned that neurons 

important for sensory processing would show a robust response to stimuli during both passive 

and engaged conditions, whereas decision- or action-encoding neurons would show strong 

modulation by behavioral state. 

We used two-photon microscopy and a volumetric imaging approach to image hundreds 

of neurons simultaneously in either V1 or PPC (see Section 4.3.4). After completion of behavioral 

training, we injected AAV2/1 syn-GCaMP6s (Chen et al., 2013b) into the two areas under 

stereotaxic guidance. We used a resonant scanning system combined with a z-piezo to 

concurrently record activity from several hundreds of GCaMP6-infected cells within layer 2/3 in a 

volume comprising four planes (850µm x 850µm) 20µm apart in depth, at an overall stack rate of 

5 Hz. Images were corrected for X-Y movement, and fluorescence traces were extracted from 

semi-automatically generated ROIs based on a pixel-wise activity map (see Section 4.3.5). 
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To investigate the effects of behavioral performance on neural responses, we imaged the 

same neurons in alternating blocks (5-10 min, 40-80 trials) of engaged behavior and passive 

viewing (Figure 4.1B). During “engaged” behavior trials, the spout was extended on each trial 

during the response period. During “passive” trials, the spout was not extended during the 

response period but remained withdrawn and inaccessible from the animal. To avoid extraneous 

stimulus confounds, no additional cue was provided to signal engaged or passive blocks. 

Nonetheless, mice rapidly became aware after the first 1-2 trials of a block whether the spout 

would be available for a behavioral response, as confirmed in video recordings by the complete 

lack of licking during passive blocks (data not shown). Discrimination performance was similarly 

high (d’, 2.22 ± 0.18) for both the first and subsequent “engaged” blocks. 

We imaged from an average of 606 cells (range: 257-1057) in each population within 

either V1 or PPC, of which an average 135 cells (range: 21-364) exhibited significant task-related 

responses. Pilot experiments using transgenic mice with tdTomato expressed in PV+ and SOM+ 

interneurons revealed that calcium signals from these neurons were generally too weak to be 

measured with volume scanning, and therefore the vast majority of task-responsive cells were 

likely to be excitatory pyramidal neurons. We first analyzed only the neural responses measured 

during correct Engaged trials, or during Passive viewing. In V1, many neurons showed a robust 

and reliable response to either the target or non-target stimulus, though some were modulated by 

engagement in the task. For example, one target-preferring cell showed a reliable passive 

response to the target stimulus that was moderately enhanced during task performance (Figure 

4.1D, left). A non-target preferring cell, however, exhibited a suppressed response during 

engagement in the task (Figure 4.1D, right). By contrast, PPC neurons exhibited much stronger 

responses during task engagement compared to passive viewing, specifically for target stimuli. 

For example, one target-preferring cell had robust activity only during engagement (Figure 4.1E, 

left), whereas another cell showed relatively weak passive responses that became stronger during 

task performance (Figure 4.1E, right). 
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4.4.2 V1 neurons respond passively, whereas PPC responses are gated by task 

engagement. 

 

To compare the overall response properties of V1 and PPC, we analyzed the responses of all 

neurons that had significant (p < 0.01, t-test) stimulus-period activity during the task. We focused 

on stimulus-period responses given that inactivation during this period disrupts behavioral 

performance (see Figure 3.3, Figure 3.5). A total of 1915 neurons (18% of all neurons, 18 fields, 

9 mice) in V1 (Figure 4.2A, B) and 3524 neurons (26% of all neurons, 22 fields, 10 mice) in PPC 

(Figure 4.2C, D) were significantly responsive during the task. Two striking differences between 

V1 and PPC were immediately apparent when examining the trial-averaged responses. First, 

while V1 was about evenly split between target- and nontarget-preferring cells (61% target-

preferring, Figure 4.2E), there was a strong bias in PPC towards the target stimulus (88% target-

preferring). Secondly, while most task-responsive V1 neurons also responded during passive 

viewing (84% with significant passive response, p < 0.01, t-test, Figure 4.2F), the majority of PPC 

neurons had responses that were gated by task engagement (only 21% with significant passive 

response).  

The dramatic effect of task engagement on PPC responses can also be observed by 

comparing the selectivity of responses during Passive and Engaged conditions (Figure 4.2G). 

We quantified selectivity using an ROC-based index that ranged from -1 to 1, with positive values 

indicating preference for the target stimulus (see Section 2.3.5 for details). V1 has a large 

proportion of significantly selective neurons in both Passive (83% of cells, p < 0.05, permutation 

test) and Engaged conditions (91% of cells). By contrast, PPC neurons are largely unselective 

during Passive conditions (31% selective, p < 0.05, permutation test), and yet become 

significantly selective to target trials during task engagement (91% of cells). We also quantified 

the change in responses for engagement versus passive viewing for each neuron using an 

engagement modulation index (Figure 4.2H), which also ranged from -1 to 1, with positive values 
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indicating increases with engagement. The mean modulation index was significantly above zero 

for target-preferring neurons in both V1 (0.23 ± 0.01; p < 10-9, Wilcoxon signed rank test) and 

PPC (0.35 ± 0.01; p < 10-9). Nontarget-preferring neurons in V1 showed weaker modulation 

(modulation index: 0.06 ± 0.01 for non-target; 0.23 ± 0.01 for target) than target-preferring neurons 

(p < 10-9, Wilcoxon rank-sum test), indicating that the effect of engagement was stimulus-specific. 

Comparing responses during engaged behavior and passive viewing therefore revealed 

different response properties in V1 and PPC. In V1, task performance did not merely increase 

overall responsiveness (as would be expected with arousal), but instead modulated firing rates to 

enhance the contrast between target and non-target stimuli. By contrast, PPC responses were 

strongly target-selective and gated by behavior. This dramatic task-dependent increase in activity 

strongly implicates a role for PPC beyond mere sensory processing. Furthermore, because this 

activity is selective to target trials in which the animal licks, a major component of PPC responses 

likely signals the impending action and does not simply reflect overall increases in arousal or 

attention during task engagement. A subset (~20%) of PPC neurons, however, do have significant 

passive responses, and could play a role in sensory processing. 

 

4.4.3 Error trials reveal sensitivity of PPC to both stimulus and choice 

 

One possible explanation for the strong behavioral gating and target selectivity of PPC responses 

is that these neurons reflect signals related to movement or action planning. Another possibility 

is that task engagement provides a stimulus-specific attentional signal. One way to arbitrate 

between these alternatives is to observe activity level on error trials. We thus examined PPC 

responses during error trials to see whether activity in PPC reflected the stimulus, the animal’s 

eventual choice, or both.  

We analyzed neuronal responses in V1 and PPC from behavioral sessions in which the 

mouse committed at least five misses or five false alarms. We focused on target-selective neurons, 
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as these represented the vast majority of responses in PPC. Because the mice had a bias towards 

licking, there were fewer sessions and neurons with sufficient Miss trials (V1, n = 202 cells from 

3 sessions; PPC, 1157 cells from 8 sessions), compared to sessions with sufficient False Alarm 

trials (V1, n = 1053 cells from 16 sessions; PPC, n = 2996 cells from 21 sessions).  

We compared neuronal responses on Miss trials to Hit trials as well as to trials with 

Passive presentation of target stimuli (Figure 4.3A-B). V1 responses were largely similar 

regardless of behavioral state (Miss versus Passive) or choice (Miss versus Hit). The majority of 

Hit-responsive V1 neurons were also significantly responsive during Miss trials (81%) and during 

Passive Target trials (71%). By contrast, many PPC neurons were strongly modulated by both 

behavioral state and choice. A majority of Hit-responsive PPC neurons (58%) did not show 

significant responses during either Miss or Passive trials. These neurons could be interpreted as 

encoding the animal’s impending action, as they only responded on licking trials. Other PPC 

neurons (42%) did exhibit significant responses during Miss trials, although these cells were 

present only in a subset of imaged populations (4 of 6). These neurons were sensitive to 

behavioral state (Engaged versus Passive), and to the stimulus (Miss versus CR, not shown), but 

insensitive to the animal’s choice (Hit versus Miss).  

What happens on False Alarm (FA) trials, when mice lick inappropriately following a 

Nontarget stimulus? We compared neuronal responses on FA trials to both Hit trials and Correct 

Reject (CR) trials (Figure 4.3C-D). Hit-responsive V1 neurons varied in their responsiveness on 

Nontarget trials. A subset of V1 neurons (28%) responded significantly on CR trials, and a slightly 

larger proportion showed significant FA responses (44%). By contrast, PPC neurons showed 

much stronger responses on FA versus CR trials. A much larger proportion of neurons 

demonstrated significant FA responses (43%) than CR responses (5%), and this was true across 

imaged populations.  

The above comparisons were made using responses measured during the stimulus period, 

and thus give a static snapshot of how responses differ on the various trial types. In a 



124 
 

complementary analysis, we also measured how the responses vary with trial type as a function 

of time. Such comparisons could then be used to evaluate the dynamics of stimulus and choice 

information encoded in the activity of V1 and PPC neurons (Goard et al., 2016). 

We used an ROC-based analysis to compare single neuron responses on error trials with 

responses on correct trials at each time point of the trial (Britten et al., 1996; Hernandez et al., 

2010). We assessed stimulus encoding by comparing Target trials (Hit, Miss) to Non-target trials 

(FA, CR), in which the same action was committed, but a different stimulus was presented. 

Conversely, we compared Lick trials (Hit, FA) to No-lick trials (Miss, CR) to assess choice 

encoding, where the same stimulus was presented, but a different action was chosen. We did this 

separately for sessions with sufficient Miss trials (Figure 4.3E) and for sessions with sufficient FA 

trials (Figure 4.3H). We quantified both the average selectivity across neurons (Figure 4.3F,I), 

and the proportion of neurons with significant selectivity (Figure 4.3G,J). 

In V1, encoding of stimulus information was robust and appeared rapidly after stimulus 

presentation. A majority of neurons showed significant selectivity between Miss and CR trials 

(63%; Figure 4.3G, left), or between FA and Hit trials (83%; Figure 4.3J, left). Choice information 

was weak, with only a minority of neurons showing selectivity between Miss and Hit trials (13%) 

or between FA and CR trials (12%). For PPC, however, we observed robust encoding of both 

stimulus and choice (Figure 4.3G, J, right). Stimulus information was significant in a subset of 

PPC neurons for both Miss trials (37% selective) and FA trials (65%). Choice information 

appeared later in the trial compared to stimulus signals, but significant predictive choice activity 

was still observable during the stimulus period for a subset of neurons, whether looking at either 

Miss trials (21%) or FA trials (18%).  

Although care must be taken to properly interpret differences in activity levels on error 

trials (see Discussion), PPC activity is neither purely sensory, as V1 responses appear to be, nor 

is it purely movement-related. Instead, PPC appears to be sensitive to both the stimulus and 

impending choice of the animal. 
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4.4.4 PPC reflects both stimulus contrast and behavioral state 

 
Previous work has shown that in both primates (Gold and Shadlen, 2007; Shadlen and Newsome, 

2001) and rodents (Hanks et al., 2015), neurons in PPC encode not only the impending motor 

action but also the sensory evidence for that decision. To test whether neurons in mouse PPC 

similarly reflected the decision process, we varied the amount of sensory evidence from trial-to-

trial by manipulating stimulus contrast. We also compared responses during engaged and passive 

conditions to examine how sensory and motor signals may be combined in PPC responses. 

A subset of the mice (n = 6) were trained to perform a variant of the discrimination task, in 

which the contrast of the grating stimulus varied randomly from trial-to-trial (Figure 4.4A). Mice 

performed well above chance, even at very low contrasts (d’ at 2% contrast, 1.05 ± 0.25; p < 0.05, 

Wilcoxon signed-rank test), although performance degraded as contrast was lowered (p < 0.05, 

Kruskal-Wallis test) reflecting the decrease in the strength of sensory evidence (Figure 4.4B). 

We imaged from neurons in V1 (n = 8 sessions) and PPC (n = 11 sessions) and computed 

contrast response functions for both passive and engaged conditions. Because the large majority 

of neurons in PPC responded selectively to target stimuli (Figure 4.2C,F, 95% in this dataset), we 

focused our analysis on target-preferring neurons (V1, n = 250; PPC, n = 611). Neurons were 

included for further analysis if they demonstrated significant Hit responses at multiple contrasts 

that could be well fit with a hyperbolic ratio function (Albrecht and Hamilton, 1982) (see Section 

4.3.8). 

As in the single-contrast task, the population response in V1 was robust in both Engaged 

and Passive conditions (Figure 4.5A), with most neurons showing significant responses during 

both Engaged and Passive conditions (68% of cells, p < 0.01, t-test, Figure 4.5B). The majority 

of V1 neurons had Hit responses that were significantly modulated by contrast (73% of cells, p < 

0.05, permutation test, Figure 4.5C,E, left), and a smaller proportion were significantly modulated 
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by engagement (41% of cells, p < 0.05, permutation test, Figure 4.5D,E, left). By contrast, PPC 

population activity was more robust in Engaged versus Passive conditions (Figure 4.4C). Only a 

subset of PPC neurons had have significant passive responses (24% of cells), though more 

neurons had Engaged responses that depended significantly on contrast (43% of cells, Figure 

4.5C,E, right). The majority of PPC neurons were significantly enhanced by engagement (55% of 

cells, Figure 4.5D,E, right). 

 Are these sensory and motor signals encoded in separate neuron populations within PPC? 

Closer examination of the individual PPC contrast response functions revealed a great deal of 

heterogeneity (Figure 4.4D). We divided neurons into groups based on whether they exhibited 

significant modulation by contrast and/or engagement (Figure 4.4D,E; Figure 4.5E). A subset of 

PPC neurons (18% of cells) showed strong modulation by contrast, but very weak modulation by 

engagement (Figure 4.4E, left column). Such neurons therefore faithfully represented the sensory 

stimulus regardless of behavioral state. Conversely, a larger group of PPC neurons (29% of cells) 

were gated by task engagement but showed little to no modulation with contrast (Figure 4.4B, 

middle row). These neurons reflected the behavioral state and impending action of the animal 

irrespective of sensory drive. Lastly, a third subset of PPC neurons (25% of cells) were 

significantly modulated by both contrast and engagement (Figure 4.4B, bottom row). PPC 

therefore appears to contain both contrast-modulated “sensory” neurons as well as engagement-

modulated “motor” neurons. This differs qualitatively from V1 (Figure 4.5E, left), where most 

neurons (73%) are modulated by contrast, and much fewer by engagement alone (11%). 

 

4.4.5 PPC encodes both contrast-dependent sensory signals and contrast-independent 

choice signals 
 

We also analyzed the error trials to see whether stimulus and choice signals could be separately 

extracted from responses in PPC, and whether these signals depended on contrast (Figure 4.6). 

We compared False Alarm trials with Hit and Correct Reject trials, using sessions with at least 
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five False Alarm trials at each contrast (7 of 11 sessions, n = 392 neurons). We did not make 

comparisons with Miss trials given the low number of trials. The population response on FA trials 

was weak, but distinguishable from the response on CR trials (Figure 4.6A), especially during 

the choice period (Figure 4.6B). Using an ROC-based approach, we again found that PPC 

encoded both stimulus and choice with differing time courses (Figure 4.6E). Interestingly, some 

PPC cells encoded the stimulus in a contrast-dependent manner, but also encoded the choice in 

a contrast-independent manner (Figure 4.6C). We quantified the contrast-dependence of the 

auROC index for each neuron by measuring its slope as a function of contrast (Figure 4.6D). A 

larger proportion of neurons exhibited significant contrast-dependence in stimulus encoding 

(Figure 4.6F, 15% of cells, p < 0.05, permutation test) compared to the proportion with significant 

contrast-dependence in choice encoding (4% of cells, p < 0.05). PPC may therefore 

simultaneously encode both contrast-dependent sensory signals and contrast-independent motor 

signals in the same population of neurons. 

 

4.4.6 PPC reflects changes in stimulus-reward contingency 

 

Thus far we have seen that PPC has a strong bias towards target stimuli during the task. Most 

neurons reflect the behavioral state, and a subset of neurons appear to encode the sensory 

stimulus in a contrast-dependent manner. Error analyses indicate that PPC neurons may encode 

both stimulus and choice signals, but errors can reflect other factors such as impulsivity or 

inattention. To more conclusively determine whether PPC neurons reflect sensory stimuli versus 

sensorimotor transformation, we manipulated the stimulus-reward structure of the task. By re-

training mice on a reversed stimulus-reward contingency, and measuring activity from the same 

neurons before and after reversal, we could test whether neurons were more sensitive to stimulus 

identity or the learned task contingencies.  
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After imaging the responses of neurons in V1 and PPC in the original go/no-go task, we 

reversed the reward contingencies of the stimuli (Figure 4.7A). Licking in response to the original 

non-target stimulus (Stimulus B, blue) was now rewarded with water, whereas licking to Stimulus 

A (red) was punished with quinine. Three mice successfully learned the task after 7-11 days of 

training, although performance was slightly worse than before (Figure 4.7B; d-prime, original, 

2.96 ± 0.50; reversed, 1.51 ± 0.22). We then measured responses from the same populations of 

neurons in V1 and in PPC under the reversed reward contingency, using a semi-automated 

procedure (Huber et al., 2012) to identify the same neurons across different imaging sessions 

(see Section 4.3.5 for details). 

We analyzed the selectivity of individual neurons that had significant responses both 

before and after reversal (V1, n = 488 in 8 fields; PPC, n= 509 in 8 fields). Many neurons in V1 

that were selective to a particular stimulus remained selective to the same stimulus after reversal, 

whether Stimulus A or Stimulus B (Figure 4.7C). By contrast, many PPC neurons exhibited a 

switch in selectivity when the contingency was reversed. These neurons that were selective to 

target stimulus A during the original task became selective to the new target stimulus B after 

reversal (Figure 4.7D). 

We first examined the overall selectivity in neurons in V1 and PPC (Figure 4.7E, F). For 

V1, the representation of the two stimuli was relatively unchanged (p = 0.13, permutation test), 

with a slight bias towards the original target stimulus A. However, in PPC, selectivity was 

dramatically altered with reversal of reward contingency (p < 0.001, permutation test), with the 

majority of responsive neurons preferring the new target stimulus B after reversal. 

We then plotted the selectivity of individual neurons before and after reversal against each 

other as a scatter plot (Figure 4.7G,H). Purely stimulus-selective neurons will remain close to the 

unity line and in the first (bottom-left) and third (top-right) quadrants, whereas neurons that are 

sensitive to the reward contingency will lie in either the second quadrant (top-left; for no-go 

selective cells) or the fourth quadrant (bottom-right; for go-selective cells). V1 neurons were 
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strongly stimulus-selective, with the majority (74% of cells, Figure 4.8A, top) of neurons lying 

within the first and third quadrants (Figure 4.7G). By contrast, the majority (67% of cells, Figure 

4.8A, bottom) of PPC neurons were found in the fourth quadrant, indicating a preference for the 

rewarded target stimulus, regardless of its actual identity (Figure 4.7H). These results indicate 

that the majority of PPC neurons indeed reflect the learned task contingencies. 

 

4.4.7 PPC cells with reversed selectivity exhibit stronger modulation by engagement and 

by error trials. 

 

A small subset of PPC neurons (7%), however, did show stable stimulus selectivity before and 

after reversal. Given that a minority of neurons also exhibited stimulus-driven passive responses 

that were also insensitive to behavioral choice on error trials, we wondered whether these different 

properties (dynamic selectivity, engagement modulation, and error modulation) were related and 

could be used to separate functional cell types. In other words, if PPC neurons could indeed be 

separated into groups of “sensory” and “motor” neurons, then stimulus selectivity after reversal 

should be predictive of modulation strength with engagement and choice.  

To test this hypothesis, we measured the strength of engagement modulation in both 

stimulus-selective (to either Stimulus A or B) neurons and go-selective neurons, as defined by 

their selectivity before and after reversal (Figure 4.8A). We found that go-selective PPC neurons 

had significantly higher modulation by engagement than stimulus-selective neurons (go-selective, 

0.39 ± 0.01; stimulus-selective, 0.08 ± 0.04; p < 10-9, Wilcoxon rank-sum test; Figure 4.8B, 

bottom). Indeed, many PPC neurons that maintained selectivity to Stimulus A after reversal also 

had strong passive responses (Figure 4.8D), and many neurons with reversed selectivity were 

strongly gated by engagement (Figure 4.8E). We also tested to see whether a PPC neuron’s 

responses on error trials related to its selectivity after reversal. Go-selective PPC neurons had 

significantly higher error modulation (computed by comparing False Alarm trials to Correct Reject 

trials) compared to stimulus-selective neurons (go-selective, 0.27 ± 0.01; stimulus-selective, 0.02 
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± 0.02; p < 10-9, Wilcoxon rank-sum test; Figure 4.8C). Interestingly, the small subset of go-

selective neurons in V1 (6% of cells) also differed from stimulus-selective V1 neurons in their 

degree of engagement (Figure 4.8B, top) and error (Figure 4.8C, top) modulation, suggesting 

that these different properties are strongly related and can be used to distinguish functional cell 

types across different areas. 

These findings demonstrate distinct subsets of neurons within PPC. One subset of 

neurons faithfully reflects the sensory input, both in passive conditions and after learning a new 

reward contingency. The larger proportion of PPC neurons, however, switch selectivity after re-

training, and are strongly modulated by behavioral state. The flexibility and heterogeneity of PPC 

responses suggests a role for PPC in the mapping of sensory inputs onto appropriate motor 

actions. 

 

4.5 Discussion 
 

We developed a head-fixed visual decision task for mice with separate stimulus and response 

epochs, and used population imaging to investigate the role of PPC in perceptual decisions. Our 

key findings are that PPC encodes both sensory and motor signals across a heterogeneous pool 

of neurons, and that its activity can change drastically depending on task performance and 

demands. Together these results suggest that mouse PPC is responsible for neither pure sensory 

processing, nor for the control of motor output, but rather is important for the decision process 

itself – the process of mapping sensation to action.  

 

4.5.1 Mouse PPC is more than an extrastriate visual area 

 

The small size of the mouse brain has made it difficult to identify precise borders between different 

functional areas. PPC in the rodent, as classically defined by its thalamic inputs (Reep et al., 

1994), is located in the region between the more posterior V1 and the more anterior 
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somatosensory cortex. However, this location is essentially where both anatomical (Wang and 

Burkhalter, 2007; Wang et al., 2012) and functional (Garrett et al., 2014; Marshel et al., 2011) 

mapping studies have identified the retinotopically-organized areas RL, A, and AM. The degree 

to which PPC overlaps with these secondary visual areas is a matter of debate. Some have 

argued that rodent PPC may have more in common with primate extrastriate cortex, given that 

inactivation specifically disrupts sensitivity on visual decisions (Licata et al., 2016). Indeed, the 

stereotaxic coordinates used by us (Goard et al., 2016) and others (Harvey et al., 2012; Morcos 

and Harvey, 2016) to target mouse PPC most directly overlap with area AM, which exhibits 

directionally-tuned responses even under anesthesia (Marshel et al., 2011). But is PPC simply a 

sensory visual area?  

We have presented multiple pieces of evidence that point to a role for PPC beyond mere 

sensory processing. First, activity in PPC is strongly dependent on behavioral state, with only a 

minority of task-responsive PPC neurons exhibiting significant responses during passive viewing 

of stimuli (Figure 4.2F). Secondly, the selectivity of PPC neurons is strongly biased toward target 

stimuli (Figure 4.2E). This bias is likely due to the asymmetry of the Go/No-go paradigm, and may 

reflect a learned association of stimulus and reward (Fitzgerald et al., 2013). Third, PPC 

responses are modulated during error trials (Figure 4.3, Figure 4.6). Information about the 

eventual choice of the animal can be decoded from the activity of PPC, as previously shown in 

both mice (Goard et al., 2016; Harvey et al., 2012) and rats (Raposo et al., 2014). Finally, and 

most conclusively, the biased selectivity of most PPC neurons towards target stimuli is 

dramatically reversed when the animal is retrained on a different reward contingency (Figure 4.7). 

Together these results demonstrate that the stimulus-period responses in PPC are task-

dependent and not purely sensory.  

 

4.5.2 PPC activity does not merely reflect movement 
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One may argue that the activity patterns we observed in PPC can be most parsimoniously 

explained as movement or action-planning related signals. After all, movement-related activity 

would be present only during engagement, it would exhibit choice selectivity, and it would change 

with reward contingency. It is unlikely that PPC is directly involved in executing motor plans, as 

we have previously shown that optogenetic inactivation of PPC during the response period, or 

even during the delay between stimulus and response, has no effect on behavior (Goard et al., 

2016). However, the possibility remains that the PPC responses recorded in our task reflect 

planning- or movement-related signals that originate elsewhere. Although some PPC neurons 

(29%) do show activity that appears motor-related, due to their contrast-independent nature 

(Figure 4.4E), we provided evidence that PPC is not a purely motor area either.  

First, passive visual stimulation does induce a response in some PPC neurons (20%), as 

previously shown in parietal area AM of anesthetized mice (Marshel et al., 2011). This subset of 

neurons tends to stably reflect the stimulus even with changes in reward contingency (Figure 4.8). 

Second, we find a subset of PPC neurons that reflect the target stimulus on Miss trials when the 

animal fails to lick, even though such neurons are inactive during passive viewing (Figure 4.3). 

Finally, the responses of many PPC neurons (43%) shows modulation with stimulus contrast, 

even for the same decision and motor output (Figure 4.4E). This is reminiscent of previous primate 

(Shadlen and Newsome, 2001) and rodent (Hanks et al., 2015) PPC studies, where it has been 

shown that responses vary with the strength of incoming sensory evidence. 

 

4.5.3 Effects of attention and behavioral state 
 

The posterior parietal cortex has been implicated not only in decision-making, but also in spatial 

attention and visual salience (Colby and Goldberg, 1999). To what degree could our results be 

explained by modulation of attention, arousal, or behavioral state? PPC responses were strongly 
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target-selective, but the reversal experiments demonstrate that this selectivity was not stimulus-

specific but instead reflected a preference for Go trials. These results argue against the possibility 

of a stable sensory representation in PPC that is enhanced by attentional engagement. 

Nonetheless, we cannot fully distinguish whether the Go-selective signals in PPC are primarily 

related to the animal’s choice (whether decision formation or motor planning) or instead to trial-

specific changes in attention or arousal. For example, differences of response amplitude on Go 

versus No-go trials could be mediated by neuromodulatory input in PPC that reflects variations in 

arousal or attentional effort (Sarter et al., 2005). Similarly, the variation of PPC responses with 

contrast could also be explained by changes in attention, rather than by different levels of 

evidence for a decision. To better isolate the decision process from attention, future work should 

utilize forced-choice designs which are more immune to differences in motivation and arousal 

(Carandini and Churchland, 2013), and which are also becoming more amenable for use in 

rodents (Brunton et al., 2013; Guo et al., 2014a; Raposo et al., 2014).  

 

4.5.4 Heterogeneity of PPC responses 

 

In every task condition reported here, PPC responses were heterogeneous. A subset of PPC 

neurons have significant passive visual responses and are modulated by contrast in both engaged 

and passive conditions. These neurons maintain their stimulus selectivity even after reversal of 

reward contingency. These “sensory” neurons are spatially intermingled with the larger proportion 

of “motor” neurons that have task-gated responses, weak contrast modulation, and altered 

selectivity after contingency reversal. 

Heterogeneous response properties have been previously reported in both primate 

(Bennur and Gold, 2011; Meister et al., 2013) and rat (Raposo et al., 2014) PPC during decision 

tasks. Our work adds to this literature, and additionally provides evidence that such 
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heterogeneous responses exist in a spatially intermingled fashion within PPC of the mouse. Do 

these response types form bona-fide cell classes or does PPC represent a category-free 

population, as others have proposed (Raposo et al., 2014)? Although we do find that various 

properties (such as modulation by engagement, contrast, and reversal) are correlated with one 

another, more work needs to be done to determine whether functional neuronal subgroups are 

truly separable. Future work can take advantage of the tools available for the mouse system to 

determine whether these functional properties correlate with molecular markers of cell identity 

(Kvitsiani et al., 2013; Pinto and Dan, 2015) or with projection target (Chen et al., 2013a; Li et al., 

2015). Additionally, while we did not observe clear spatial clustering of response types in our 

experiments, anatomical experiments have demonstrated clear differences in connectivity for the 

medial versus lateral subdivisions of PPC (Wilber et al., 2014). Finer delineation of areal 

boundaries, perhaps using retinotopic mapping (Garrett et al., 2014) or noise correlation analyses 

(Kiani et al., 2015), could help distinguish whether functional properties vary systematically with 

anatomical location within the parietal cortex. 

 

4.5.5 Conclusion and outlook 

 

Our results demonstrate that mouse PPC encodes sensory, decision, and motor variables, 

suggesting a role in sensorimotor transformation during perceptual decisions. Our reversal 

experiments reveal a strong experience-dependent plasticity of representations in PPC. Although 

previous studies have similarly shown that representations in PPC can be altered with re-training 

(Freedman and Assad, 2006), our work unequivocally shows such changes in individual PPC 

neurons. Taking advantage of the stability and consistency of two-photon imaging, we 

demonstrate that not only PPC as a whole, but also many individual neurons show a remarkable 

switch in selectivity after reversal of the task reward structure.  
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The mouse posterior parietal cortex encodes behaviorally-relevant variables in a highly 

task-dependent manner, in analogy to prior work in primates. Our understanding of how decisions 

are computed and sensorimotor transformations are made will be greatly aided by future circuit-

level analyses of PPC function in this powerful model system (Carandini and Churchland, 2013). 
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4.8 Figures 
 

 

Figure 4.1. Imaging calcium responses in V1 and PPC during engaged task performance and 
passive viewing.  

(A) Head-fixed mice were trained to perform a go, no-go lick-based visual discrimination task. A retractable 
lick spout was used to restrict lick responses to a specific epoch of the task. Licks following a target stimulus 
(red, horizontal drifting upwards, Stimulus A) were rewarded with water, while licks to non-target stimulus 
(blue, vertical drifting rightwards, Stimulus B) were punished with quinine. (B) Trial structure for Engaged 
and Passive conditions. After a brief auditory preparatory cue, a drifting grating was presented for 2 s. 
During Engaged trials, the retractable lick spout was presented immediately after stimulus offset for a 
minimum of 1.5 s. During Passive trials, the spout was inaccessible. Engaged and Passive trials were 
presented in blocks which were usually interleaved. (C) Rate of licking on target (T, red) and non-target 
(NT, blue) for each mouse using in imaging experiments (n=15). Behavioral performance was quantified as 
d-prime (mean across mice: 2.22). Error bars in this and all subsequent figures depict mean ± SEM. (D) 
Stimulus-evoked response of two V1 neurons, one target-selective (left column), and one non-target 
selective (right). Top, raw calcium response to multiple presentations of target (red) and non-target (blue) 
stimuli during both Engaged and Passive conditions. Middle, heatmap of trial-to-trial responses to target 
and non-target stimuli, presented in alternating blocks of Engaged (left) and Passive (right) trials, 
normalized to max response. Vertical dashed lines demarcate duration of stimulus. Bottom, overlay of trial-
averaged responses for each stimulus during Engaged (left) and Passive (right) conditions. Line thickness 
indicates mean ± SEM. (E) Same as (D) but for two PPC neurons.  
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Figure 4.2. V1 neurons respond passively, whereas PPC responses are gated by task engagement.  

(A) Trial-averaged responses of all task-responsive V1 neurons (n = 1915). Heatmap of all trial-averaged 

responses (preferred stimulus only) in both Engaged (left) and Passive (right) conditions, normalized by 

peak response. Neurons are separated into target-preferring (red) and non-target preferring (blue), and 

then into passive-responding (solid) and task-gated (hatched). Vertical dashed lines demarcate duration of 

stimulus. (B) Bottom, average response across V1 neurons to the target (red) and non-target (blue) in 

Engaged (left) and Passive (right) conditions. Line thickness indicates mean ± SEM. (C-D) Same as (A-B), 

but for PPC neurons (n = 3524). (E) Percentage of neurons in V1 (left) and PPC (right) that prefer target 

(T) or non-target (NT) stimulus. Error bars represent bootstrapped SEM across sessions. (F) Percentage 

of target-preferring neurons in V1 (left) and PPC (right) that are task-gated, i.e. that respond only during 

engagement (E-only), or that respond during both engaged and passive conditions (E+P). (G) Histogram 

of stimulus selectivity index for V1 (left) and PPC (right) during Engaged (filled bars) and Passive conditions 

(gray line). Positive selectivity indicates preference for Target. Colored bars indicate neurons with significant 

individual selectivity during Engaged trials. (H) Histogram of engagement modulation index for V1 (left) and 

PPC (right) for target- (red) and nontarget-preferring (blue) neurons.  
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Figure 4.3. Error trials reveal sensitivity of PPC to both stimulus and choice. 

(A) Population trial-averaged responses (top) during Miss trials, for recordings with at least five Miss trials, 

in V1 (left; 202 neurons across 3 sessions) and in PPC (right; 1157 neurons across 8 sessions). Average 

lick rate (bottom). (B) Percentage of neurons with significant responses on Passive Target (P), Miss (M), 

and Hit (H) trials for V1 (left) and PPC (right). Error bars represent bootstrapped SEM across sessions. (C) 

Population trial-averaged responses (top) during False Alarm (FA) trials, for recordings with at least five FA 

trials, in V1 (left; 1053 neurons across 16 sessions) and in PPC (right; 2996 neurons across 21 sessions). 

Average lick rate (bottom). (D) Percentage of neurons with significant responses on CR, FA and Hit trials 

for V1 (left) and PPC (right). (E) Miss trials are compared with CR trials to assess “Stimulus” encoding 

(purple), and are compared with Hit trials to assess “Choice” encoding (green). (F-G) Average selectivity 

(F) and percentage of selective neurons (G), as measured using a frame-by-frame ROC analysis to 

compare trial types, quantified as area under the ROC curve (auROC). Line thickness indicates mean ± 

SEM. Light gray shaded regions demarcate duration of stimulus. Dotted line indicates the expected 

performance/percentage by chance. (H) FA trials are compared with Hit trials to assess “Stimulus” encoding 

(purple), and are compared with CR trials to assess “Choice” encoding (green). (I-J) Same as (F-G) but for 

comparisons with FA trials.  
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Figure 4.4. PPC reflects both stimulus contrast and behavioral state. 

(A) Mice discriminated between orthogonally oriented Target and Non-target stimuli with contrast varying 

from 2 to 64%. (B) Behavioral performance (d-prime) on the variable contrast discrimination task, averaged 

across 19 sessions from 6 mice. Error bars indicate SEM. (C) PPC population trial-averaged response 

across contrasts during correct Engaged (left) and Passive (right) target (red) and nontarget (blue) trials. 

Responses are averaged across low (2 or 4%, light shade), medium (8 or 16%, medium shade), and high 

(32 or 64%, dark shade) contrast. Light gray shaded regions demarcate duration of stimulus. (D) Scatter 

plot and histograms of contrast modulation versus engagement modulation for all target-selective PPC 

neurons (n = 611) imaged during the variable contrast task. Colored bars in histograms (see also Figure 

4.5C,D) indicate neurons with significantly positive modulation by contrast (cyan) or engagement (yellow). 

Colored dots on scatter plot demarcate neurons with significantly positive modulation by contrast alone 

(cyan), engagement alone (yellow), or both contrast and engagement (green). Individual examples in (E) 

are marked with the corresponding number. (E) Trial-averaged responses (top row) and contrast-response 

functions (middle and bottom rows) of example PPC neurons that were significantly modulated by contrast 

(left column), engagement (middle column), or both (right column). Modulation index values for each 

example can be found by referring to (D). (F) Group-averaged contrast-response functions. Percentages 

indicates proportion of PPC neurons within each group. 
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Figure 4.5. Comparison with V1 contrast responses. 

(A) V1 population (n = 250 target-selective cells) trial-averaged response across contrasts during 

Engaged (left) and Passive (right) target (red) and nontarget (blue) trials. Responses are averaged across 

low (2 or 4%, light shade), medium (8 or 16%, medium shade), and high (32 or 64%, dark shade) 

contrast. Only correct trials are shown for Engaged condition. Light gray shaded regions demarcate 

duration of stimulus. (B) Trial-averaged responses (top row) and contrast-response functions (middle and 

bottom rows) of example V1 neurons that were significantly modulated by contrast (left column), 

engagement (middle column), or both (right column). (C) Histograms comparing engagement modulation 

in V1 and PPC, computed by comparing responses on Engaged versus Passive high contrast trials. 

Colored bars indicate neurons with significant modulation. (D) Histograms comparing contrast modulation 

in V1 and PPC, computed by comparing responses on high versus low contrast Engaged trials. Colored 

bars indicate neurons with significant modulation. (E) Venn diagrams indicating proportions of target-

selective neurons in V1 and PPC with significantly positive modulation by contrast alone (cyan), 

engagement alone (yellow), or both contrast and engagement (green). 
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Figure 4.6. PPC encodes both contrast-dependent sensory signals and contrast-independent 
choice signals. 

(A) Population average of PPC responses across contrasts during Hit, False Alarm (FA), and Correct Reject 

(CR) trials (top). Responses are averaged across low (2 or 4%, left), medium (8 or 16%, middle), and high 

(32 or 64%, right) contrast. Average lick rate (bottom). Light gray shaded regions demarcate duration of 

stimulus. (B) Time-averaged population response as a function of contrast during the Stimulus period (left, 

0 to 2 s) or during the Choice period (right, 2 to 3.5 s) for Hit, FA, and CR trials. Choice period responses 

were measured relative to preceding Stimulus period response. (C) Response of an example PPC neuron 

during Hit trials (left), False Alarm trials (middle), and Correct Reject trials (right), across different contrasts, 

from low (L, dotted) to medium (M, dashed), to high (H, solid). (D) False Alarm (FA) trials were compared 

with Hit trials to assess Stimulus encoding (left), and with CR trials to assess Choice encoding (right) at a 

single time-point but across multiple contrasts. Best-fit line across contrasts is plotted along with its slope. 

At this time-point (2.6 s after stimulus onset), this neuron has significant (*, p<0.05) stimulus and choice 

encoding at multiple contrasts. Stimulus encoding is contrast-dependent, as seen with the significant 

positive slope, whereas choice encoding is not. (E) Average stimulus encoding (left) and choice encoding 

(right) across all PPC neurons as a function of time and of contrast, from low (L, dotted) to medium (M, 

dashed), to high (H, solid). Shading indicates SEM. (F) Fraction of PPC neurons with significant contrast-

dependence in stimulus encoding (left) or choice encoding (right), as measured by slope of auROC with 

respect to contrast. Dashed line indicates fraction expected by chance.  



145 
 

 
Figure 4.7. PPC reflects changes in stimulus-reward contingency.  

(A) Mice were trained on a go/no-go discrimination task with a reversed reward contingency. (B) Behavioral 

performance before and after reversal. Left, response rate for Stimulus A (red) and Stimulus B (blue). Right, 

d-prime assuming Stimulus A as target. Performance after reversal was significantly different from zero (p 

< 0.001, Wilcoxon signed-rank test). (C) Neural response of two example V1 neurons before and after 

reversal of reward contingency. Colors indicate stimulus (red, A; blue, B) and line styles indicate whether 

the stimulus is target (solid) or non-target (dashed). Top row, response of a neuron selective to Stimulus A 
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both before (left) and after (right) reversal. Bottom row, response of a neuron selective to Stimulus B. Insets 

indicate the average projection image before and after reversal, and ROI (dashed red line) that was used 

to extract the neural response. (D) Same as (C) but for two PPC neurons. These neurons show a switch in 

selectivity with reversal of reward contingency. (E) Histogram of selectivity index before and after reversal 

for V1 neurons with significant responses both before and after reversal (n=488). Positive values indicate 

selectivity to the original Target, Stimulus A (red). Colored bars indicated neurons with significant selectivity. 

(F) Same as (E) but for PPC neurons (n=509). (G) Scatter plot comparing selectivity index in V1 before and 

after reversal. Colored points indicate neurons with significant selectivity both before and after reversal. 

Neurons in the first and third quadrants are stimulus-selective, as they prefer Stimulus A (red) or Stimulus 

B (blue) both before and after reversal. Neurons in the second and third quadrants are choice-selective, as 

they prefer either the Go stimulus (green) or the No-Go stimulus (yellow) in both conditions. (H) Same as 

(G), but for PPC. 
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Figure 4.8. PPC cells with reversed selectivity exhibit stronger modulation by engagement and by 

error trials. 

(A) Proportion of significantly responsive V1 (top) and PPC (bottom) neurons with stable stimulus selectivity 

(Stim A, 0°; or Stim B, 90°) or reversed selectivity (Go or No-Go). Cells with non-significant selectivity either 

before or after reversal are categorized as non-selective (NS). (B) Boxplots (showing median, interquartile 

range, and range) of engagement modulation index for each response group, computed as the mean before 

and after reversal. “Go”-selective neurons (green) show stronger engagement modulation, i.e. weaker 

passive responses, than stimulus-selective neurons (red or blue). (C) Boxplots of error modulation index 

for each response group, computed by comparing False Alarm trials with Correct Reject trials both before 

and after reversal. “Go”-selective PPC neurons show stronger error modulation (green) than stimulus-

selective neurons (red or blue). (D) Responses of two PPC neurons with stable selectivity to Stimulus A 

both before and after reversal of reward contingency. Colors indicate stimulus (red, A; blue, B) and dark, 

dashed lines indicate passive trials. These neurons show a robust passive response in both conditions, and 

have a low engagement modulation index. (E) Same as (D) but for two PPC neurons with reversed 

selectivity after reversal of reward contingency. These neurons show virtually no passive response in both 

conditions, and have a high engagement modulation index. 
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Chapter 5: Dynamics of population encoding and decoding in 

parietal cortex during a sensorimotor decision. 
 

5.1 Summary 
 

Single neurons in higher cognitive regions like the posterior parietal cortex (PPC) can be widely 

variable in both the selectivity and temporal dynamics of their responses. Such heterogeneity of 

task-related signals is challenging to interpret at the level of individual responses, and may be 

better understood in the context of a distributed population-level code. Using a combination of 

statistical approaches and decoding analyses, we examined how populations of neurons in 

mouse PPC and primary visual cortex (V1) encoded information during performance of a visual 

discrimination task, and during passive viewing of the same stimuli. Although linear models using 

task-related signals could predict single-neuron calcium responses to some degree, model 

performance was greatly improved by the inclusion of inter-neuronal correlations, particularly for 

PPC. We thus moved to a population-level analysis of information coding in V1 and PPC. Using 

a time-dependent decoding approach, we find that task-specific information is encoded 

dynamically in PPC but not in V1, with different patterns of activity coding for the stimulus at 

different times within a trial. Mouse PPC therefore differs from V1 not only in its greater 

heterogeneity of individual responses, but also in the dynamic nature of its population code. 

 

5.2 Introduction 
 

Great progress has been made over the past decades of systems neuroscience by relating the 

responses of single neurons to externally measurable or controlled variables. This approach has 

been especially fruitful for the early sensory system, where individual neurons can express strong 

selectivity to sensory parameters such as orientation (Hubel and Wiesel, 1962), direction of 

motion (Britten et al., 1996), or disparity (Nienborg and Cumming, 2006). However, in higher 
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cognitive areas, such as the prefrontal cortex or the posterior parietal cortex (PPC), relating single 

neuron activity to individual task components is more challenging. Although some neurons in 

these areas may be tuned to a single task parameter, many others (and perhaps the majority) 

express mixed selectivity to multiple task components, and often with heterogeneous time-

courses (Jun et al., 2010; Mante et al., 2013; Meister et al., 2013; Raposo et al., 2014; Rigotti et 

al., 2013). For example, during perceptual decision-making tasks, the activity of some PPC 

neurons appears to directly encode the accumulated evidence for a particular choice (Hanks et 

al., 2015; Roitman and Shadlen, 2002), leading some to suggest a primary role of PPC in the 

process of mapping sensory information onto appropriate motor actions (Andersen and Cui, 2009; 

Gold and Shadlen, 2007). However, closer examination of responsive PPC neurons during these 

decision tasks reveals a great deal of heterogeneity in both selectivity (Raposo et al., 2014; Rishel 

et al., 2013) and dynamics (Goard et al., 2016; Harvey et al., 2012; Morcos and Harvey, 2016). 

Individual neurons in PPC can simultaneously but separately encode both sensory accumulation 

and action selection signals (Bennur and Gold, 2011), and even decision-irrelevant visual signals 

can be mixed in with decision-relevant ones (Meister et al., 2013). Reading out task-relevant 

signals from a distributed and multiplexed population code would therefore require de-mixing 

them from other signals (Murakami and Mainen, 2015; Park et al., 2014).  

 Although there are many approaches to de-mixing various task signals from neuronal 

responses (Kobak et al., 2016; Machens et al., 2010; Mante et al., 2013), one of the simplest is 

to directly relate them to neural activity via an encoding model. Generalized linear models have 

been used to describe information encoding in early sensory areas (Pillow et al., 2005; Pillow et 

al., 2008), motor areas (Paninski et al., 2004; Truccolo et al., 2005) as well as higher cognitive 

regions (Barbieri et al., 2005; Park et al., 2014; Rorie et al., 2010), whether using recorded spiking 

data or surrogates such as imaged calcium responses (Chen et al., 2016; Pinto and Dan, 2015). 

These models have shown some success in dissociating the contributions of different task-related 

signals to neuronal activity (Park et al., 2014), even for areas like PPC which may encode more 
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elusive cognitive signals like attention (Bisley and Goldberg, 2010) or choice (Gold and Shadlen, 

2007).  

 Understanding how neurons encode diverse sets of information is further complicated by 

the knowledge that the activity of cells in a network is often strongly coupled (Averbeck and Lee, 

2006; Zohary et al., 1994). Trial-to-trial fluctuations in activity are often highly correlated between 

neurons, and these dependencies, often termed noise correlations, are usually seen as 

detrimental to population coding (Averbeck et al., 2006; Cohen and Kohn, 2011; Ecker et al., 2011; 

Zohary et al., 1994), but see (Kohn et al., 2016; Moreno-Bote et al., 2014). Although encoding 

models of early sensory (Pillow et al., 2008) and motor areas (Truccolo et al., 2005) have been 

built to incorporate inter-neuronal correlations, such models are rare for higher cognitive areas in 

the context of behavioral tasks. 

In this work, we developed encoding models using population imaging data from mice 

performing a visual decision task. Heterogeneous neuronal responses were recorded from V1 

and PPC during engaged task performance as well as during passive viewing of the same stimuli. 

Although linear models using task-related variables were successful in describing V1 activity to 

some degree, they performed more poorly for PPC. Measurements of noise correlations 

suggested that stronger correlations in PPC may have led to the poor prediction performance. By 

then extending the models to incorporate network fluctuations, we greatly improved our ability to 

explain single neuron activity, particularly for PPC.  

In addition to an encoding perspective, which seeks to explain the responses of neurons 

given measured variables, one must also ask the complementary question of decoding: how might 

downstream neurons read-out task-relevant information from a population using biologically 

plausible mechanisms? This question is not trivial, given the heterogeneity and time-varying 

dynamics of responses in areas like PPC. Decoding of information may be relatively 

straightforward if the seemingly complex population responses are actually low-dimensional in 

nature (Ganguli et al., 2008; Murray et al., 2017). In this scenario, stable coding of information 
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allows for relatively straightforward readout using a set of fixed decoding weights. However, in 

some situations, coding in higher cognitive areas has been shown to be dynamic (Crowe et al., 

2010; Harvey et al., 2012; Meyers et al., 2008; Stokes et al., 2013), with different patterns of 

neurons encoding the same information at different times. Readout in this scenario may be more 

challenging, as it may require time-varying weights which would be difficult to implement 

biologically. Whether such dynamic, high-dimensional codes are specific to certain brain areas or 

to particular types of tasks remains unclear.   

To assess how information is encoded in V1 and PPC during a visual discrimination task, 

we employed a population decoding approach. We assessed whether V1 and PPC encoded 

information about the stimulus in a static or dynamic manner using a cross-temporal decoding 

approach. We find that task-specific information was encoded dynamically in PPC but not in V1, 

and that the dynamic code was present only in the context of task performance.  

 

5.3 Experimental Procedures 
 

5.3.1 Behavioral tasks, imaging data, and basic analyses 

 

The behavioral tasks, imaging experiments, cell selection and preprocessing steps used to 

generate the experimental data used in this chapter are described in detail in Section 4.3. Briefly, 

mice were trained to perform a head-fixed, go/no-go visual discrimination task. Mice were trained 

to lick after presentation (2 s) of a target stimulus (horizontal grating drifting 0º from vertical) for 

reward (Hit), and to suppress licking (Correct Reject, CR) after a non-target (grating drifting 90º 

from vertical) stimulus. Incorrect licks to the non-target stimulus were punished (False Alarm, FA), 

whereas failure to lick to the target stimulus was not punished (Miss). A retractable lick spout was 

used to restrict licking responses to the period after stimulus offset (1.5 s) during Engaged trials, 

and was not presented at all to the animal during blocks of Passive trials. In a subset of imaging 
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sessions, the contrast of the stimuli was varied randomly from trial to trial between one of six 

values (2, 4, 8, 16, 32, or 64%). Those sessions are included only in some of the decoding 

analyses (Figure 5.4E,F; Figure 5.6B,C; Figure 5.7C,F). Finally, in a separate set of imaging 

sessions, the delay between stimulus offset and spout presentation was varied randomly from 

trial to trial between 0, 3, and 6 seconds (see Section 2.3). Stimulus contrast was held constant 

in these sessions. This data was analyzed only in one of the decoding analyses (Figure 5.6D,E). 

Calcium imaging was performed on large populations of neurons from either V1 or PPC 

using volumetric imaging (5 Hz). Blocks of engaged task performance were interleaved with 

blocks of passive viewing of the same sequence of stimuli. After image preprocessing and F/F 

extraction, traces were sorted by trial type and condition. A neuron was considered task 

responsive and included for further analysis if its mean ΔF/F during the last 1.6 s (8 frames) of 

the stimulus period was significantly (p < 0.01, t-test) greater than the pre-stimulus baseline (1 s), 

for either hit or correct reject trials. Neurons also had to meet a signal-to-noise criterion, needing 

a trial-averaged response that exceeded a threshold of at least 2 standard deviations above 

baseline during either the stimulus or choice period. For data acquired during the variable contrast 

task, neurons were considered significantly responsive if the mean ΔF/F during the stimulus 

period was significantly above threshold for at least two of the six contrasts of the same stimulus 

(target or non-target). Neurons were marked as target- or non-target-preferring based on their 

mean response during Engaged trials. 

 Response latencies for each neuron (Figure 5.5A) were estimated by first up-sampling 

trial-averaged responses to 500 Hz. The latency was computed as the time at which a neuron’s 

response exceeded 1 standard deviation above the baseline distribution. Responses that did not 

reach the threshold of 2 standard deviations were not included in latency distributions. Histograms 

were plotted using the latency of each neuron in response to its preferred stimulus.  
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5.3.2 Signal and noise correlations 

 

Signal correlations between pairs of simultaneously recorded neurons were calculated as the 

Pearson CC between trial-averaged responses. Noise correlations were computed by first 

subtracting the trial average from single trial responses and then computing the Pearson CC 

between the mean-subtracted responses (Hofer et al., 2011). Correlations were computed 

separately for Engaged and Passive conditions, and using only correct trials for the Engaged 

condition. All cumulative histograms (Figure 5.2C, F) were computed by finding the median 

correlation for each cell with all other simultaneously recorded cells with the same stimulus 

preference (measured during Engaged trials), and then pooling across all imaging sessions. The 

distance dependence of noise correlations was computed by binning all pairs of simultaneously 

recorded neurons (with the same stimulus preference) by their Euclidean distance in 20 µm bins 

up to 300 µm, and then taking the average within each bin. 

 

5.3.3 Generalized linear model: using task predictors only 

 

We used a generalized linear model (GLM) to regress recorded calcium signals against a 

time series of task events (Chen et al., 2016; Miri et al., 2011; Pinto and Dan, 2015). Because 

spike inference was not performed and a linear relationship between calcium activity and the 

predictors was assumed, this modeling approach is equivalent to multiple linear regression with 

lagged predictors.  

Calcium responses for each cell were Z-scored and modeled as the linear combination of 

various task events, each convolved with a filter:  

𝑦̂𝑡 = 𝛽0 + ∑ 𝛽𝑖
𝑆_𝑡𝑎𝑟𝑥𝑡−𝑖

𝑆_𝑡𝑎𝑟

15

𝑖=0

+ ∑ 𝛽𝑖
𝑆_𝑛𝑡𝑥𝑡−𝑖

𝑆_𝑛𝑡

15

𝑖=0

+ 𝛽0
𝐸𝑥𝐸 + ∑ 𝛽𝑖

𝐸_𝑡𝑎𝑟𝑥𝑡−𝑖
𝐸_𝑡𝑎𝑟

15

𝑖=0

+ ∑ 𝛽𝑖
𝐸_𝑛𝑡𝑥𝑡−𝑖

𝐸_𝑛𝑡

15

𝑖=0

+ ∑ 𝛽𝑖
𝐿𝑥𝑡−𝑖

𝐿
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𝑖=−7
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The response of a neuron at frame 𝑡 is modelled (𝑦̂𝑡) by the sum of a bias term (𝛽0) and the 

weighted (𝛽𝑖) sum of various additional binary predictors at different lags (𝑖). Binary predictors for 

the target stimulus (𝑥𝑡
𝑆_𝑡𝑎𝑟) and non-target stimulus (𝑥𝑡

𝑆_𝑛𝑡) indicated the duration of stimulus 

presentation in either engaged or passive trials. Binary predictors for engagement included a 

constant offset (𝑥𝐸 ) that was 1 during engaged trials and 0 otherwise, as well as stimulus 

predictors (𝑥𝑡
𝐸_𝑡𝑎𝑟, 𝑥𝑡

𝐸_𝑛𝑡) that indicated the duration of stimulus presentation during engaged trials 

only. Binary predictors (𝑥𝑡
𝐿) for licking indicated the duration of lick bouts, which were defined as 

groups of licks with an inter-lick interval less than 1 second. The number of lags (15 samples = 3 

seconds) were chosen to capture the full dynamics of the calcium response (GCaMP6s has slow 

offset kinetics (Chen et al., 2013)). Lags were chosen to be strictly positive (causal) for stimulus 

and engagement predictors, but both positive and negative (anti-causal) for licking predictors. The 

final model had 88 coefficients including a constant bias term.  

 Models were fit using ridge regression using procedures similar to that of previous studies 

(Chen et al., 2016; Huth et al., 2012; Pinto and Dan, 2015). We first set aside 20% of trials from 

each condition (Hit, Correct Reject, Miss, False Alarm, Passive Target, Passive Nontarget) for 

testing. A regularization parameter 𝜆 was estimated for each cell from among a range of 𝜆 values 

( 10−2 to 104 ) using cross-validation. Model performance was measured by computing the 

correlation coefficient (CC) between predicted and measured activity. Five-fold cross-validation 

was used to choose the 𝜆 that maximized the performance on the remaining 80% of training trials. 

The final model for each cell was fit using the best 𝜆, and then performance was evaluated by 

measuring CC of predictions for the holdout test set. Statistical significance of the predictions was 

evaluated by bootstrapping the test data set 1000 times and obtaining a distribution of CC values. 

A p-value was calculated as the proportion of iterations with CC ≤ 0, and neurons with p < 0.05 

were considered to have significant model fits. 
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5.3.4 Generalized linear model: using task and network predictors 

 

Before explaining the combined task and network model, we will first switch to a simplified 

matrix description of the task-only model laid out in Section 5.3.3 for clarity. The task-only GLM 

models the responses of a population of 𝑛 neurons across 𝑡 time bins with 𝑝 predictors as follows: 

𝑌 = 𝑋𝐵 + 𝑅 

Where 𝑌 is a 𝑡 × 𝑛 matrix of z-scored calcium responses, 𝑋 is a 𝑡 × 𝑝 matrix of predictors, 𝐵 is a 

𝑝 × 𝑛 matrix of task-related coefficients and 𝑅 is a 𝑡 × 𝑛 matrix of residuals. The model prediction 

for the task-only GLM is simply 𝑌̂1 = 𝑋𝐵. 

In order to incorporate network predictors in the GLM, we considered two possible 

approaches. A simultaneous approach (Pillow et al., 2008; Truccolo et al., 2005) would 

incorporate the network terms as an additional term in the above equation: 

𝑌 = 𝑋𝐵 + 𝑌𝑊 + 𝑅 

Where 𝑊 is a 𝑛 × 𝑛 matrix of inter-neuronal network coupling weights, with the diagonal of 𝑊 

constrained to be equal to 0. In such a model, weights for task and network predictors would 

directly compete against each other. Given the presence of high signal correlations between 

neurons (Figure 5.2C), this model would dramatically reduce the task weights, and also make 

interpretation of network weights difficult.  

 An alternative approach is a sequential model (Malik et al., 2011), in which network 

weights were estimated using the residuals of the task model: 

𝑌 = 𝑋𝐵 + 𝑅 

𝑅 = 𝑅𝑊 + 𝐸 
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Where 𝑊 is again a 𝑛 × 𝑛 matrix of inter-neuronal network coupling weights with a zero diagonal, 

and 𝐸 is the remaining error. The final prediction can thus be computed by summing the outputs 

of the two models:  

 𝑌̂1 = 𝑋𝐵 

𝑅̂ = 𝑅𝑊 = (𝑌 − 𝑌̂1)𝑊 

𝑌̂2 = 𝑌̂1 + 𝑅̂ = 𝑌̂1 + (𝑌 − 𝑌̂1)𝑊 

In this sequential model, which is depicted and evaluated in Figure 5.3, network weights can be 

naturally related to noise correlations, as both represent residual trial-to-trial fluctuations after 

“signal” components have been removed. 

 To fit the “task + network” model, the same training trials (consisting 80% of the data) were 

used as for the “task-only” model (Section 5.3.3). Residuals for each neuron were computed by 

subtracting model predictions from the training data. We z-scored the residuals by dividing by the 

standard deviation to normalize all network weights, but kept the normalization factor for each cell 

in memory. For each cell, the simultaneous (lag = 0) residual activity of all other cells in the 

network (𝑅) were used as predictors. We avoided using additional lags to keep model complexity 

low, which we considered reasonable given the low time-resolution of calcium responses (200 

ms). Models were fit using ridge regression, as with the task-only model (Section 5.3.3). We 

computed a single regularization coefficient 𝜆 for each population of cells, estimated using a 

random 20% subset of the cells to save computation time. Prediction performance was not 

significantly improved using individual values of 𝜆 for each cell for a handful of test populations 

(data not shown). As before, 𝜆  was estimated using five-fold cross-validation and prediction 

performance was evaluated using the CC between predicted and measured responses in the 

training dataset. The 𝜆 that maximized the average CC across the random subset of cells used 

for cross-validation was then used to fit the network model for all cells.  
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Final prediction performance was evaluated on the test dataset. Residuals were generated 

by subtracting the predictions of the task-only model from the test data (𝑅 = 𝑌 − 𝑌̂1). The residuals 

of a given cell were then predicted using the network model and the residuals of other cells in the 

network (𝑅̂ = 𝑅𝑊). The predicted residuals for each cell were multiplied by the normalization 

constant and the summed with the output of the task-only model (𝑌̂1) to generate final model 

prediction (𝑌̂2 = 𝑌̂1 + 𝑅̂). As described in Section 5.3.3, statistical significance of predictions was 

evaluated using a bootstrap test (1000 iterations). 

To assess the relationship of model performance to noise correlations (Figure 5.3E), we 

binned neurons based on their median absolute noise correlation with other cells (bin size 0.05) 

and averaged the model performance within each bin. We also trained models using subsets of 

the network inputs (Figure 5.3F). For each cell, we sorted all other cells (which we refer to as 

“network inputs” for clarity) based on their absolute noise correlation with the modelled cell, in 

ascending order. The 20, 40, 60, and 80% of inputs with the weakest noise correlation strength 

were each used to train a separate model of the cell’s residual response (𝑅). Model performance 

for each of these sub-network models was evaluated by summing with the task-only model 

predictions, as with the full-network model.  

 

5.3.5 General decoding analyses 

 

All decoders were linear support vector machines (SVM) (Cortes and Vapnik, 1995) 

implemented using the libsvm library in MATLAB. We chose SVM because it is a state-of-the-art 

machine learning classifier that yields high performance while minimizing overfitting to training 

data, and has been shown to perform well on neural population data (Graf et al., 2011). A linear 

kernel was chosen because its architecture could be easily implemented using biologically 

plausible mechanisms as a thresholded sum of weighted synaptic weights.  
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Data was preprocessed by first z-scoring the data for each cell, sorting into trials, and then 

smoothing single-trial responses across 3 consecutive time bins (600 ms window) to reduce noise. 

For display purposes, all performance curves are plotted with respect to the last time bin in the 

600ms window. Performance was evaluated using at least 10 iterations of five-fold cross-

validation. On each iteration, the number of trials in each condition (e.g.: Target versus Nontarget 

trials) were equalized by pseudo-random subsampling from the condition with the larger number 

of trials. The subsampling procedure was pseudo-random in that all individual trials were selected 

evenly, such that the number of iterations per trial were roughly equal. This was particularly 

important in the case of error trial decoding (Figure 5.7) because some sessions had as few as 

five error trials. We increased the number of iterations beyond 10 (up to 25) to ensure that every 

trial of the subsampled condition was used in at least one iteration. 

We used a C-support vector classifier, and initially tested the performance of various 

values of the regularization variable C on a few test datasets using cross-validation. We found 

that a value of C = 10 performed optimally across these datasets, and used this optimized value 

for all other datasets.  

In each iteration of five-fold cross-validation, decoders were trained using the population 

activity at a single time bin using 80% of the trials and then tested on the remaining 20% of trials 

at the same time bin. Performance was averaged across the five folds, and then across the 10+ 

iterations. Significance of performance was assessed by shuffling trial labels 1000 times and 

generating a distribution of accuracies given a random 50/50 guess. Significant (p<0.05) decoding 

was achieved if the true performance exceeded the range spanned by the center 95% of values 

from this shuffled distribution. For decoding of Target versus Non-target (Figure 5.4, Figure 5.5), 

in which there were many trials available for decoding, this significance threshold was around 

58%. For decoding with error trials (Figure 5.7), there were less trials available, resulting in a 

significance threshold of about 66% for False Alarm trials and 74% for Miss trials. 
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 To assess decoding performance with subsets of neurons during Engaged or Passive 

conditions (Figure 5.4C, D), we first sorted neurons in ascending order (Morcos and Harvey, 

2016) based on their absolute selectivity index, which was directly related to the area under the 

ROC curve (see Figure 4.2G, Section 4.3.6). The selectivity index was computed based on 

responses during the latter part of the stimulus period (0.8 to 2 s). Neurons with the lowest 

magnitude selectivity were successively added in 20% percentiles (20%, 40%, 60%, 80%, 100%), 

and five separate decoders were trained for each time bin, and each condition. Sorting was done 

separately for the two conditions (Engaged, Passive) based on individual selectivity during each 

condition. Average performance for each subset and condition (Figure 5.4D) was computed by 

averaging across the latter part of the stimulus period (0.8 to 2 s) and across populations.   

To assess decoding performance across various contrasts (Figure 5.4E; Figure 5.7C, F), 

decoders were trained using all cells in a population and were not given information about contrast. 

Performance was assessed separately for trials of each contrast level, and average performance 

for each contrast and condition (Figure 5.4F) was computed by averaging across the latter part 

of the stimulus period (0.8 to 2 s) and across populations. 

 

5.3.6 Time-dependent decoding analyses 

 

To assess time-dependent coding (Figure 5.5, Figure 5.6), we used a cross-temporal decoding 

approach (Crowe et al., 2010; Meyers et al., 2008; Stokes et al., 2013). In addition to training and 

testing decoders at the same time bin (“Within” time bin decoding), we also trained decoders at 

various single time bins and then tested their performance across all time bins (“Across” time bin 

decoding). Specifically, we trained 12 different “Across” time bin decoders per dataset and 

condition, each trained at a different, non-overlapping 600 ms time window (centered at -0.6, 0, 

0.6, 1.2, etc., up to 6.0 s relative to stimulus onset), and then tested the performance of each on 
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all time bins. Performance was evaluated using 10+ iterations of five-fold cross-validation as 

described above. Therefore if a given trial was used for training a model, it was never re-used for 

testing that model, even if the data for training and testing came from different time bins.  

To test whether a stable readout could be used even in the context of a dynamic code 

(Figure 5.6A,B), we trained a decoder to discriminate Target from Non-target trials using data 

from multiple time-bins (“Multiple” time bin decoding). Specifically, population activity from six 

different non-overlapping 600ms time windows (centered at 0.6, 1.2, 1.8, 2.4, 3.0, and 3.6 s 

relative to stimulus onset) was taken from a subset of trials to train the decoder, with data from 

each time bin used as separate training trials. A single Target trial, for example, would contribute 

six different population patterns for the decoder to contrast with patterns from Non-target trials. 

Performance was evaluated using ten iterations of five-fold cross-validation as described above. 

This approach differs from “Within” time bin decoding because it represents a single weight vector 

that is tested across different time bins. It also differs from the “Across” time bin decoding 

approach in that the decoder is not optimized for one particular time window. 

Time-dependent decoding was also performed on data acquired during the variable 

contrast task (Figure 5.6B,C), or during the variable delay task (Figure 5.6D,E). Choice decoders 

were trained on the variable contrast data to distinguish Hit versus Correct Reject trials 

irrespective of contrast. Contrast decoders were trained to distinguish High contrast Hit trials (32% 

and 64%) from Low contrast Hit trials (2% and 4%). Decoding in the variable delay task was 

performed separately for each delay (0, 3, and 6 s) by comparing Hit versus Correct Reject trials. 

A total of 22 separate “Across” time bin decoders were trained for the 6 s delay trials, each using 

a different non-overlapping 600 ms time window. 

 

5.4 Results 
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5.4.1 Relating V1 and PPC responses to task events using a generalized linear model  

 

As previously described in Chapter 4, calcium responses were obtained from populations of 

neurons in mouse V1 and PPC during a head-fixed, go/no-go visual discrimination task using two-

photon calcium imaging. In this task, mice were trained to lick after presentation (2 s) of a target 

stimulus (horizontal grating drifting 0º from vertical) for reward (Hit), and to suppress licking 

(Correct Reject, CR) after a non-target (grating drifting 90º from vertical) stimulus. Incorrect licks 

to the non-target stimulus were punished (False Alarm, FA), whereas failure to lick to the target 

stimulus was not punished (Miss). Blocks of engaged task performance (Engaged) were 

interleaved with blocks of passive viewing of the same sequence of stimuli (Passive). A retractable 

lick spout was used to restrict licking responses to the period after stimulus offset during Engaged 

trials, and was not presented at all to the animal to signal blocks of Passive trials. 

We first sought to determine the degree to which single neuron responses could be 

explained by a linear combination of task parameters. To disambiguate the contributions of 

various task events to V1 and PPC responses, we used a well-established paradigm, the 

generalized linear model (GLM), which has been used to model both spiking data (Park et al., 

2014; Pillow et al., 2008) and calcium responses (Chen et al., 2016; Miri et al., 2011; Pinto and 

Dan, 2015). Z-scored calcium responses of each cell were fit to a linear combination of ongoing 

task events, including stimulus presentation, task engagement, and licking (Figure 5.1A). We 

simultaneously fit the responses of cells during Engaged and Passive trials, and then measured 

the performance of the model on a separate test dataset using the correlation coefficient (CC) 

between model predictions and the actual data (Figure 5.1B). Using neurons previously identified 

as significantly responsive (see Section 5.3.1), the average CC was higher for V1 (0.54 ± 0.01, 

mean ± SEM, n = 1915 cells) than for PPC (0.42 ± 0.01, n = 3524 cells), corresponding to an 

average explained variance of 33% for V1 versus 20% for PPC. V1 neurons are therefore better 

described by a linear model based on task-related events. 
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We illustrate the performance of the “task-only” model, named thus because it uses only 

task events as predictors, on two example neurons from each area (Figure 5.1C-F). Trial-

averaged responses for each trial type (Hit, CR, Miss, FA, Passive Target, and Passive Nontarget) 

were decomposed into three components: a Stimulus component, an Engagement component, 

and a Licking component. Both example V1 cells had a large Stimulus component, as they 

responded similarly to stimuli in both Engaged and Passive conditions (Figure 5.1C). In contrast, 

both example PPC cells had very weak Passive responses, and therefore weak Stimulus 

components (Figure 5.1E).  

Responses on Engaged trials incorporated the other two model components. The second 

component, task engagement, was modeled using the sum of a constant offset and a stimulus-

locked signal that exclusively occurred on Engaged trials. The third component, licking, also 

included lags that were anti-causal, such that calcium responses that preceded or followed licking 

bouts were incorporated. One V1 neuron (see Cell 1 in Figure 5.1C) exhibited weak modulation 

of their responses with engagement, but both V1 neurons had weak licking components, as 

neither neuron exhibited much activity on False Alarm trials. In contrast, both PPC neurons had 

a strong licking component (Figure 5.1E), which predicted the increase of activity on FA trials. In 

the case of one PPC neuron (see Cell 4 in Figure 5.1E), licking alone was not sufficient to 

describe the enhancement of response on Hit trials, and therefore a target-selective engagement 

component is included. The models for all four example cells have relatively high CC on holdout 

test data trials (Figure 5.1D, F). These examples demonstrate face validity for the model’s ability 

to separate different task-related components to responses in V1 and PPC neurons. 

We quantified the strength of each of these three components by measuring the median 

absolute weight value, which is normalized and thus can be directly compared across cells 

(Figure 5.1G). On average, V1 neurons have much stronger stimulus weights than PPC neurons 

(V1: 0.067 ± 0.001; PPC: 0.027 ± 0.001; mean ± SEM), whereas PPC neurons have slightly 

stronger engagement (V1: 0.058 ± 0.001; PPC: 0.068 ± 0.001) and much stronger licking weights 
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(V1: 0.057 ± 0.001; PPC: 0.101 ± 0.001). The qualitative differences in model weights between 

areas match the conclusions from previous single neuron analyses of responses in passive 

conditions (see Figure 4.2) and on error trials (see Figure 4.3), lending further validity to the 

model’s ability to dissociate the contributions of stimulus, engagement, and licking.  

 

5.4.2 Noise correlations are stronger in PPC than in V1 

 

The task-only model was sufficient to predict response properties of neurons from both areas, but 

a large proportion of variance was left unexplained, particularly for PPC neurons (20% variance 

explained). One possible source of unexplained variance is the fluctuation of network activity from 

trial-to-trial. These inter-neuronal dependencies, often termed noise correlations, can be relatively 

strong in sensory cortex, especially during inattentive states (Cohen and Kohn, 2011; Cohen and 

Maunsell, 2009; Zohary et al., 1994). Before incorporating them in our model, we first 

characterized the strength of noise correlations in V1 and PPC during task performance and 

passive viewing. 

 We first separated each population based on their stimulus preference during Engaged 

trials. Neurons with the same stimulus preference naturally exhibited large signal correlations 

(computed as the correlation between trial-averaged responses during correct Engaged trials) in 

both V1 (Figure 5.2A) and PPC (Figure 5.2B), though there was a much larger proportion of 

Target-preferring neurons in PPC (see Figure 4.2E). In both areas, signal correlations between 

neurons with the same stimulus preference increased with engagement (V1, passive: 0.65 ± 0.01; 

engaged: 0.78 ± 0.01; PPC, passive: 0.45 ± 0.01; engaged: 0.81 ± 0.01; Figure 5.2C), especially 

in PPC which exhibits very weak passive responses (see Figure 4.2C,F). 

We then computed noise correlations in both Engaged and Passive conditions by 

correlating trial-to-trial fluctuations across simultaneously recorded neurons. Noise correlations 

between neurons with the same stimulus preference tended to be stronger than noise correlations 
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between pairs with opposite stimulus preferences (data not shown). Focusing on pairs with the 

same stimulus preference, V1 neurons exhibited similar strength of noise correlations in Engaged 

versus Passive conditions (passive: 0.11 ± 0.01; engaged: 0.11 ± 0.01; Figure 5.2D). In contrast, 

PPC cells tended to have stronger noise correlations in Passive versus Engaged conditions 

(passive: 0.25 ± 0.01; engaged: 0.19 ± 0.01; Figure 5.2E). Comparing across all cells and all 

populations, noise correlations were stronger in PPC compared to V1, especially during Passive 

trials (Figure 5.2F). These correlations depended on the anatomical distance between neurons 

(Figure 5.2G) (Rikhye and Sur, 2015). These results indicate that network correlations strongly 

affect neural responses, particularly in PPC.  

 

5.4.3 Addition of network coupling terms in GLM improves model prediction 

 

We then sought to incorporate correlations between neurons in our GLM as network coupling 

terms to see if they would improve prediction performance (Pillow et al., 2008; Truccolo et al., 

2005). We reasoned that because of large signal correlations between neurons (Figure 5.2A-C), 

directly incorporating the network terms into the original model would mask the contribution of the 

various task events. Therefore, we first fit the data to a task-only model which captured the “signal” 

components (Malik et al., 2011), and then fit the residual errors for each neuron using a network 

model (Figure 5.3A). An added advantage of this framework is that it allows direct comparison of 

network weights with noise correlations, as they are similarly computed by first subtracting off the 

trial-averaged “signal”. Prediction performance using this sequential fitting procedure was similar 

to results using simultaneous fitting of task and network terms (data not shown). To keep the 

number of regressors in the model low, we used only a single (0-frame) lag for each neuron in 

the network, which we considered reasonable given the low time resolution of the calcium 

responses (200 ms). 
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We measured the performance of the “task + network” GLM and compared it to the “task-

only” model, again using the correlation coefficient of the model predictions with test data not 

used to train either model (Figure 5.3B). Prediction performance improved for cells in V1 (CC, 

task-only: 0.54 ± 0.01; task+net: 0.75 ± 0.01), but even more so for neurons in PPC (CC, task-

only: 0.42 ± 0.01; task+net: 0.77 ± 0.01), leading to an average explained variance of 57% for V1 

and 60% for PPC. The large improvement in PPC was expected given the high level of noise 

correlations measured in PPC responses. Model performance was higher for Passive trials 

compared to Engaged trials (data not shown), also predicted by the higher levels of noise 

correlations on Passive trials. 

We illustrate the improved performance of the “task + network” model using a few single-

trial responses from one V1 neuron (Figure 5.3C) and one PPC neuron (Figure 5.3D). Although 

the “task-only” GLM was proficient at predicting trial-averaged responses, it failed to capture 

variations in responses between trials with the same behavioral outcome, e.g. two different Hit 

trials. However, as seen in both example cells, incorporation of network coupling terms improved 

the model’s ability to predict responses on single trials.  

We examined the relationship between model performance and the strength of noise 

correlations for a given cell (Figure 5.3E). There was a strong positive correlation for both V1 (r 

= 0.21, p < 10-9) and PPC (r = 0.42, p < 10-9), indicating that cells that were more strongly 

influenced by network inputs could be better explained using the “task + network” model. 

Interestingly, noise correlation strength was inversely correlated with task-only model 

performance for V1 (r = -0.22, p < 10-9) but not for PPC (r = 0.04, p > 0.01). This suggests that for 

V1 neurons, the ability of a linear model to predict responses based on task parameters (i.e. 

stimulus) is corrupted by the presence of noise correlations (Zohary et al., 1994).  

How much of the network is needed to improve model performance? It’s possible, for 

example, that the improved performance using network terms is due to a small fraction of highly 

correlated inputs. Indeed, for many PPC cells, a few inputs with the strongest noise correlation 
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were often given disproportionately high model weights (data not shown). To examine the 

relationship between model performance and network size, we first sorted the inputs for each 

modeled cell in ascending order based on the strength of its noise correlation with the cell (Figure 

5.3F, left). We then trained new models for each cell, using only a subset of the network which 

contained the inputs with the weakest noise correlations (Figure 5.3F, right). Models using 80% 

of the cells (thus eliminating the 20% of inputs with the strongest noise correlations) performed 

nearly as well as the full network model for both V1 (CC: 0.69 versus 0.75 for full model) and PPC 

(CC: 0.71 versus 0.77 for full model). This suggests that the network inputs onto a cell are largely 

redundant, and specific inputs are not required in order to improve prediction performance. Indeed, 

model performance was dramatically improved for PPC even using just the 20% of network inputs 

with the weakest noise correlation (CC: 0.57 versus 0.42 for task-only model).   

Overall these results demonstrate that both V1 and PPC responses can be better 

described when incorporating network correlations, indicating the importance of population-level 

descriptions of neural data.  

 

5.4.4 Decoding stimulus from V1 and PPC during engaged and passive conditions 

 

The large influence of network correlations on single neural responses led us to reevaluate the 

data from a population-level perspective. In previous analyses (see Chapter 4), we evaluated the 

information coding properties of V1 and PPC neurons, which could vary widely in their individual 

sensitivity to engagement, contrast, or contingency reversal. But can an observer read out the 

appropriate information given a whole population of heterogeneous neurons? To answer this 

question, we used a decoding approach to assess how information was coded in V1 and PPC 

population activity during engaged and passive conditions. We chose a machine learning 

classifier, the linear support vector machine (SVM) (Cortes and Vapnik, 1995), both because of 
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its robustness to overfitting and because its architecture could be realistically implemented by a 

downstream readout neuron using a weighted sum of synaptic weights.  

 We first built decoders that could classify Target versus Nontarget trials during either 

Engaged or Passive conditions, to test how stimulus information in V1 and PPC were affected by 

engagement (Figure 5.4). Separate decoders were trained for each time bin and each condition. 

If we used all cells to train the decoder, performance rapidly achieved ceiling levels for V1 in both 

Passive and Engaged conditions (Figure 5.4A). This is expected given high numbers of selective 

neurons in V1 during both conditions (see Figure 4.2G). PPC neurons typically had weak 

responses on Passive trials, and so we expected decoding performance to be correspondingly 

weak. However, PPC decoder performance was significant in both Engaged and Passive 

conditions (Figure 5.4A). Variability across individual populations was much greater in PPC than 

in V1, but across conditions there was significant performance even during Passive trials (Figure 

5.4B). 

 Is information about the stimulus distributed across the population or can it be recovered 

using just a subset of neurons? To address this question, we first sorted neurons by their absolute 

selectivity index (see Figure 4.2G), and trained decoders with successively more and more 

neurons, starting with the 20% neurons with the weakest selectivity (Figure 5.4C, D). V1 neurons 

generally had strong selectivity and so even the 20-40% least selective V1 neurons could perform 

well above chance at predicting stimulus identity in both Engaged and Passive conditions. By 

contrast the 60% least selective PPC cells could not be used to predict the stimulus above chance 

levels in Passive conditions. This implies that passive coding of stimuli is limited to a small subset 

of neurons in PPC (see also Figure 4.2F). Decoding performance with a given subset was not 

significantly higher than performance using the best neuron in that subset (data not shown), in 

contrast to recent findings in mouse PPC during a navigational accumulation of evidence task 

(Morcos and Harvey, 2016). This suggests that in our task, information about stimulus within 

single neurons is strong enough that a distributed population code may not be necessary. 



169 
 

 Could PPC populations encode stimulus differently under conditions of lower input 

strength? In some sessions we varied the stimulus contrasts from trial to trial, and so we trained 

decoders on these datasets to discriminate stimulus identity, independent of contrast (Figure 

5.4E, F). We found that performance improved with contrast across areas and conditions, 

although V1 performed at near ceiling levels even at the very lowest contrasts (4-8%). Overall, 

these results indicate that information about stimulus is therefore encoded very reliably in V1 

populations regardless of behavioral state. However, stimulus information in PPC populations is 

less reliable, particularly during Passive conditions. 

 

5.4.5 Time-dependent decoding in PPC but not V1 

 

The decoding approach described above revealed that stimulus information can be easily read-

out from both V1 and PPC, especially during Engaged conditions. But is there any difference in 

the way these areas encode this information? Prior work examining PPC responses in the context 

of decision tasks have revealed that activity patterns can vary dramatically in time across neurons 

(Meister et al., 2013; Raposo et al., 2014), and in some cases even forming choice-specific 

sequences (Harvey et al., 2012; Morcos and Harvey, 2016). Indeed, our own prior work using a 

variable delay task (Goard et al., 2016) has shown that PPC neurons exhibit a wide range of 

heterogeneity in the temporal profile of their responses (see Figure 2.3).  

One possibility is that information in PPC may be encoded dynamically, with different 

neural activity patterns coding for the same information at different times during the task. Such 

time-dependent coding could be revealed using a cross-temporal analysis (Crowe et al., 2010; 

Meyers et al., 2008; Stokes et al., 2013), in which a decoder is trained at one time bin but tested 

at different time bins. If information is encoded using a single, stationary pattern of activity, high 

decoding performance at one time bin should generalize when tested across a wide range of time 

bins. By contrast, if information is encoded dynamically, then high decoding accuracy when 
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trained at one time bin should be limited to just that time bin or to a narrow range of neighboring 

time bins.  

One preliminary piece of evidence that PPC may differ from V1 in temporal coding of 

information comes from examining the distribution of response onset latencies in both areas 

(Figure 5.5A). V1 neurons fired within a narrow range of latencies relative to stimulus onset in 

both Engaged and Passive conditions. By contrast, PPC neurons exhibited a broad range of 

latencies spanning the full 2-second stimulus period. This suggests the possibility that information 

may be carried by different PPC neurons at different points in time during the trial. 

We then trained decoders to discriminate Target and Nontarget trials using V1 or PPC 

population data from a single time bin, and then tested performance across all other time bins 

(Figure 5.5B-F, “Across” time bin decoders). We trained separate decoders for Engaged and 

Passive conditions, and compared performance with decoders trained and tested within the same 

time bin (Figure 5.5B, “Within” time bin decoders, same as Figure 5.4A). As predicted, training 

and testing within the same time bin provided a ceiling level of performance for each condition. 

For V1, decoders trained at a single time bin and tested across different time bins performed very 

similarly, with high levels of accuracy across a wide range of time bins in both Engaged and 

Passive conditions. The average performance across populations is also plotted in a heatmap in 

which the different rows represent the training times of different decoders (Figure 5.5C). The 

region of high accuracy for V1 is large and does not shift much with training time. 

By contrast, for PPC, “across” time bin decoders exhibited a narrower range of high 

decoding performance when trained on Engaged trials, with the peak in accuracy shifting forward 

in time as different time bins were used for training the decoder (Figure 5.5B). This can be seen 

in the heatmap (Figure 5.5C) as a relatively narrow band of high accuracy that follows the 

diagonal of the matrix. Dynamic coding was limited to the Engaged condition, as decoders trained 

on Passive trials at different time bins exhibited similar performance curves that did not shift with 

training time.  
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To quantify the dynamic or static nature of the decoders and its variability across individual 

populations, we measured different features of the decoding performance curves for each brain 

area and condition, as a function of training time (Figure 5.5D-F). As shown previously (see 

Figure 5.4A-B), the peak performance of the decoder was higher in V1 compared to PPC, and 

higher during Engaged trials compared to Passive (Figure 5.5D). Of note is that performance 

levels were relatively low when using the first few time bins within PPC. Low performance levels 

introduce noise in the following two measurements and thus these time bins should be interpreted 

with caution.  

We then measured the width of the decoding peak for each curve as the time above a 

threshold performance of 75% (Figure 5.5E). Decoding width was consistently larger in V1 than 

in PPC, in both Engaged and Passive conditions. However, smaller decoding widths alone do not 

indicate dynamic coding, as they may simply reflect weaker overall performance, as in the case 

of PPC during Passive trials. We therefore also measured the time of the decoding peak as a 

function of training time, measured as the center-of-mass of the decoding curve (Figure 5.5F). 

The center-of-mass was largely stable for V1 across conditions, and for PPC during Passive 

conditions. By contrast, the center-of-mass for PPC during Engaged trials was highly dependent 

on training time. The narrower decoding width (Figure 5.5E) and shifting decoding peak (Figure 

5.5F) suggests that dynamic coding is specific to PPC during Engaged conditions. PPC therefore 

exhibits a clear difference from V1 in that stimulus information is encoded in dynamic activity 

patterns, specifically during task performance.  

 

5.4.6 Time-dependent coding during variable contrast and variable delay tasks 

 

To further probe the nature of time-dependent coding in PPC, we performed three additional 

analyses. First we asked whether the dynamic activity patterns in PPC necessitated a dynamic 

readout mechanism. Others have demonstrated in prefrontal cortex that an apparently dynamic 
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code can coexist with stable readout (Murray et al., 2017). This could occur, for instance, if the 

population trajectories are distinct enough that a single linear hyperplane can separate them in 

neural state-space (Buonomano and Maass, 2009). While our cross-temporal approach trained 

decoders to be optimal at a single time-bin, it’s possible that a decoder trained across multiple 

time bins would achieve high performance that is stable with time, even though it may be sub-

optimal for any specific time point.  

 To test the possibility of stable readout, we trained decoders to discriminate Target from 

Non-target trials using population activity sampled at multiple distinct time-bins (Figure 5.6A). 

Importantly, individual time-bins were counted as separate instances for training, and 

performance was evaluated using cross-validation (see Section 5.3.6). This “Multiple” time-bin 

decoder performed nearly as well as “Within” time-bin decoding across time, with a very broad 

performance width, even though it utilized weights that did not vary with time. This was true for 

both areas and conditions, including in PPC during Engaged conditions, where “Across” time-bin 

decoders had relatively narrow widths. This argues that the presence of dynamic activity patterns 

can coexist with stable readout mechanisms. 

 In a second analysis, we took advantage of the variable contrast task to see whether 

signals reflecting stimulus contrast were also encoded in a dynamic manner (Figure 5.6B,C). We 

trained separate decoders to discriminate choice (Hit versus Correct Reject) and contrast (High 

contrast Hit versus Low contrast Hit) using the same V1 and PPC populations. Choice decoders 

were agnostic to stimulus contrast, and behaved similarly to the single contrast data. Specifically, 

coding of choice appeared to be dynamic in PPC but not in V1, nor in passive conditions (data 

not shown). By contrast, coding of contrast appeared to be stable in both PPC and in V1, although 

overall decoding performance was weaker in PPC. While more work needs to be done to 

determine the robustness of this phenomenon, these results suggest that the same PPC 
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population may be able to dynamically encode one variable, while stably encoding another 

(Crowe et al., 2010). 

 Lastly, the presence of dynamic coding in PPC in this task may appear to conflict with our 

previous results using a variable delay task, where PPC neurons exhibited stable activity during 

the delay period (see Figures 2.3, 2.5). We thus re-analyzed data from the variable delay task 

using the same cross-temporal analyses to decode Hit versus Correct Reject trials across the 

three delays (Figure 5.6D,E). Decoders trained on the 0 s delay trials behaved similarly to those 

trained on the single delay data (see Figure 5.5B), with more dynamism in PPC than in V1. 

However, increasing the delay between stimulus and response revealed a more complicated 

picture in both areas. Decoders trained in the stimulus epoch behaved very differently from those 

trained in the response epoch for both PPC and V1. This finding is consistent with the presence 

of response-period neurons in V1 (Figure 2.3) that are easier to identify in the longer delay task. 

In addition, decoders trained in the delay period exhibited large decoding widths for both areas, 

arguing against dynamic changes in activity during the delay. While more work needs to be done 

to characterize these findings, this preliminary analysis makes clear that dynamic coding is not 

present during the delay period of the task in either PPC or V1. Instead it is possible that the more 

rapid evolution of responses during the stimulus and response epochs accounts for the dynamic 

coding observed during 0 s delay trials. 

 

5.4.7 Decoding stimulus and choice using error trials 

 

What is the nature of the information carried by V1 and PPC populations during the task? The 

above decoding approach was limited to correctly performed trials, in which animals both 

observed a different stimulus (Target or Nontarget) and made a different choice (Lick or No-lick). 

Thus, the above decoding accuracy curves could represent either stimulus or choice information, 

or a combination of two separate signals, potentially with differing time-courses.  
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 We had previously analyzed whether single neurons were sensitive to stimulus or choice 

using error trials to disambiguate stimulus and choice (see Figure 4.4, Figure 4.6). We now take 

a population decoding approach to see whether such information may be distributed across 

neurons. We again took V1 and PPC responses from behavioral sessions in which the mouse 

committed at least five misses or five false alarms (FA). We then trained population decoders to 

separately distinguish FA trials from Hit trials to assess stimulus coding, and from Correct Reject 

(CR) trials to assess choice coding (Figure 5.7A). All error trial decoders were trained and tested 

using the same time bins, and the performance across all behavioral sessions with sufficient 

numbers of error trials was averaged together. We performed this analysis using sessions with a 

single contrast (Figure 5.7B) as well as sessions with variable contrast (Figure 5.7C), keeping 

decoders agnostic to contrast. In both V1 and PPC, stimulus coding rose quickly to high levels 

within the stimulus period. This information was weaker at low contrasts compared to high 

contrasts. Choice coding peaked during the spout presentation period after stimulus offset, with 

weak levels of choice information during the stimulus period. Choice coding varied little with 

contrast, and there was no obvious difference between V1 and PPC. 

We also trained decoders to distinguish Miss trials from CR trials to assess stimulus coding, 

and from Hit trials to assess stimulus coding (Figure 5.7D).  The results were qualitatively similar 

to FA trial decoding, although we did not analyze sessions with varying contrast due to the low 

number of Miss trials at some individual contrasts. Stimulus information again rose to robust levels 

within the stimulus period in both regions (Figure 5.7E). Choice coding was strongest after 

stimulus offset, though it began to increase within the stimulus period.  

Overall, a population decoding approach did not dramatically improve the level of 

predictive choice coding compared to that of single neuron analyses (Figure 4.4, Figure 4.6), even 

in PPC which has been shown to exhibit pre-movement choice signals (Hanks et al., 2015; Harvey 

et al., 2012; Raposo et al., 2014). It is likely that the asymmetry of the go/no-go design is to blame 

here, as error trials could result as often from impulsivity or lapses of attention as from errors in 
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perceptual judgment. Nonetheless, the presence of weak but significant choice signals in PPC is 

consistent with the previously described error trial analysis (see Figure 2.6) in our variable delay 

task (Goard et al., 2016).  

 

 

5.5 Discussion 
 
Understanding how information is encoded and readout from neural activity is a primary goal of 

systems neuroscience. Although individual neuron response properties can be highly variable, 

heterogeneous, and dynamic, population-level descriptions can often make better sense of this 

complexity. Using an encoding and decoding framework, our work has made two major 

contributions to our understanding of PPC. First, by adding inter-neuronal correlations to an 

encoding model of V1 and PPC responses, we were able to dramatically improve our ability to 

predict neuronal activity in the context of a visual decision task. Second, by using a cross-temporal 

decoding approach we were able to identify differences in the information coding dynamics of V1 

and PPC.  

 

5.5.1 Importance of network coupling in encoding models of PPC and V1 

 
Generalized linear models have increasingly been used to describe the statistical dependences 

of neural activity on measured sensory or task variables, not only in early sensory areas (Pillow 

et al., 2008) but also in more cognitive areas like PPC (Park et al., 2014; Pinto and Dan, 2015). 

Our task-only model was able to predict responses to some degree, explaining on average 33% 

of the variance of V1 responses, but only 20% of the variability in PPC. Interpreting differences 

or failures in model performance is a challenge for all linear encoding models as they suffer from 

two major caveats. First, the assumption of linear superposition is strong, particularly when 

neurons in these areas can have mixed selectivity that may combine different task components 

in a nonlinear manner. For example, it is possible that the poorer performance of PPC models 
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could be blamed on an inability to capture nonlinear mixtures of stimulus, engagement, and choice 

signals. Second, it is never entirely clear whether the chosen explanatory variables are the 

appropriate ones to use in the first place. For example, PPC neurons may appear to be sensitive 

to stimulus contrast when it is in fact tuned to a more elusive cognitive variable like decision 

confidence (Gold and Shadlen, 2007). In addition, it is highly likely that there are other 

unmeasured variables that drive neural activity which would otherwise be treated as noise.  

 The additional source of variability that we chose to incorporate was the activity of other 

neurons in the network. As previously shown by many others (Cohen and Maunsell, 2009; Zohary 

et al., 1994), a population of neurons can express strong inter-neuronal dependencies that result 

in correlated activity fluctuations from trial to trial, but see (Ecker et al., 2010; Renart et al., 2010). 

Our results extend these findings by demonstrating that noise correlations are more prominent in 

PPC than in V1, are reduced by task engagement, and can improve prediction performance when 

incorporated into linear models of responses. The possibility that higher cognitive regions may in 

general express larger correlations than early sensory areas is intriguing and deserves further 

investigation.  

 One caveat is that these models and measured correlations were based on calcium 

responses, an indirect measure of spiking activity. While our lab (Rikhye and Sur, 2015) and 

others (Cossell et al., 2015; Hofer et al., 2011; Lur et al., 2016) have observed relative changes 

in correlations using calcium imaging that are qualitatively similar to those obtained from 

electrophysiological recordings, it must be acknowledged that the absolute strength of 

correlations cannot be directly related across recording modalities. One particular concern is that 

contamination of somatic calcium signals by surrounding neuropil can artificially increase the 

measured mean correlation strength between neurons (Harris et al., 2016). Such errors would 

lead to a systematic overestimation of correlations, but we observed specific relative differences 

between PPC and V1, and between Engaged and Passive conditions, which cannot be explained 

by such overestimation. However, we cannot rule out the possibility that overestimated 
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correlations due to such artifacts could be partially responsible for the improvement in model 

performance that we observe. 

   Another concern is that the lower time resolution of our calcium data makes interpretation 

of the coupling inputs difficult to interpret. Indeed, previous encoding models using spiking data 

have described the direct effects of spikes on other neurons on much smaller timescales (Pillow 

et al., 2008; Truccolo et al., 2005). However, in both cases the coupling interactions are merely 

phenomenological and should not be interpreted as reflecting biophysical or synaptic mechanisms. 

Instead, the improvement of performance with the addition of coupling filters (whether at single-

spike or spike-rate timescales) reflects the dependence of the responses on network activity, 

whether it comes from specific sources within the network or a shared external input. In fact, 

models that incorporate a common input term in addition to inter-neuronal coupling often observe 

reduced pairwise interactions between neurons (Vidne et al., 2012), further arguing that such 

models should be taken as being merely descriptive in nature. In our case, this suggests that 

network fluctuations at longer (hundreds of ms) timescales can account for much of the variability 

in PPC responses, whether such fluctuations arise from internal or external sources.  

 

5.5.2 Dynamic coding in PPC during task performance 

 

Our analysis of information coding in PPC further suggests that stimulus information can be 

represented in a dynamic manner in the context of task performance. This contrasts both with V1 

and with passive trials in which coding is stable (albeit with a much smaller population of active 

neurons). Such dynamic population responses have been previously observed in the prefrontal 

cortex and PPC of primates performing complex decision tasks (Crowe et al., 2010; Meyers et al., 

2008; Stokes et al., 2013). Dynamic coding has also been observed in PPC of mice, but only in 

the context of more complex virtual navigation tasks in which sensory inputs are changing 

constantly throughout task performance (Harvey et al., 2012; Morcos and Harvey, 2016). Our 
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data and analyses suggest that such dynamic coding could be a general signature of association 

cortex, even in the context of more simple non-navigational decision tasks. It also provides 

evidence that a brain region can switch between dynamic and stable representations depending 

on task engagement. Finally, preliminary analyses contribute additional evidence that PPC may 

be able to represent one task-relevant variable (choice) with a dynamic code, while 

simultaneously encoding another (contrast) using a stationary code (Crowe et al., 2010). 

However, a few caveats need to be addressed before definitively making the conclusion 

that PPC exhibits dynamic coding. First, the width of optimal performance for the across time-bin 

decoders, while narrower for PPC than V1, are still quite large, on the order of 4 seconds. A major 

contributor to these large widths is the nature of the calcium signal, which was generated using 

an indicator with particularly slow offset dynamics, on the timescale of seconds (Chen et al., 2013). 

Future work could apply appropriate deconvolution or spike inference algorithms (Pnevmatikakis 

et al., 2016; Theis et al., 2016; Vogelstein et al., 2009) to mitigate this problem, but recent 

benchmarking tests indicate that even the best available algorithms make substantial errors in 

predicting spiking activity (Theis et al., 2016). We would argue that our ability to recover some 

features of dynamic coding even in a low time-resolution calcium dataset suggests that this 

phenomenon is robust, and that deconvolution would only improve the strength of our findings. 

A second, more serious concern is how to reconcile dynamic coding in PPC with the more 

static delay-period responses observed in PPC during our delayed response task (Goard et al., 

2016) (see Figures 2.3, 2.5 for delay-period responses). In this task we were able to summarize 

the temporal response profiles of task-enhanced PPC neurons with just four distinct types (Figure 

2.3), with no neurons responding with transients in the middle of the delay period. Indeed, 

preliminary cross-temporal decoding analyses of these datasets indicate that although coding is 

more dynamic during the stimulus and response periods, activity patterns are largely stable during 

the delay period. One possible explanation of this difference comes from comparisons with the 
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olfactory system. Studies in the locust antennal lobe have observed that activity patterns encoding 

odor identity are transiently dynamic at odor onset and offset, but relatively stable during the 

intervening odor presentation time (Mazor and Laurent, 2005). PPC dynamics in our task may 

therefore differ from the sequential dynamics observed in virtual navigation tasks (Harvey et al., 

2012; Morcos and Harvey, 2016) because changes in sensory input are limited to the stimulus 

and response periods of our task, in analogy to odor onset and offset in the olfactory system 

(Mazor and Laurent, 2005). Because the analyses we present in Figure 5.5 come from a 0-s delay 

task, dynamic coding is expressed throughout the trial, with no intervening stability during the 

delay period.  

PPC thus expresses dynamic patterns of activity during task performance, but does this 

necessitate mechanisms to readout information in a time-varying manner? Recent work in 

primates has demonstrated that dynamic coding can coexist with stable readout if there exists a 

low-dimensional subspace from which information can be decoded (Druckmann and Chklovskii, 

2012; Murray et al., 2017). To test for this possibility in our data, we trained decoders to 

discriminate population activity at multiple time points within a trial, and found that such decoders 

perform nearly as well across all time points on a held-out test dataset. This suggests that the 

narrow performance width of the cross-temporal decoders may be due to “overfitting” to the PPC 

activity patterns in a particular time-bin. Such overfitting did not occur, however, for V1, which had 

broad performance for decoders trained at most time-bins. This indicates that PPC in our task 

does have time-varying activity, but it may lie in an intermediate regime between stable activity 

patterns (as in V1) and truly dynamic codes which would necessitate time-varying readout, as in 

the case of liquid state machines (Buonomano and Maass, 2009).    

 

5.5.3 Conclusions and outlook 
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Our results argue that progress in understanding how higher cognitive areas like PPC encode 

and process information requires a population-level approach. PPC responses are not only 

dominated by neuronal correlations, but they are also highly dynamic in task-specific ways. These 

findings were made on the basis of largely separate encoding and decoding analyses. However, 

encoding models are most successful when they can be leveraged to develop model-based 

decoders (Park et al., 2014; Pillow et al., 2008), rather than the empirical decoders used here. 

Before Bayesian model-based decoders can be used, one must demonstrate that the encoding 

models are successful in predicting responses with a high degree of accuracy. Although such 

performance levels have been achieved for spiking data using GLMs, accurate modelling of 

calcium responses remains an active area of research (Lutcke et al., 2013; Mishchenko et al., 

2011). Further development of the approaches put forth here for modeling population calcium 

data holds great promise for yielding deeper insight to how large neuronal populations encode 

and transform information during behavior. 
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5.8 Figures 

 

Figure 5.1. Relating V1 and PPC responses to task events using a generalized linear model (GLM).  

(A) Schematic illustrating GLM formulation for the task-only model. Individual z-scored calcium responses 

(𝑦) were modeled using lagged predictors for stimulus, engagement, and licking (𝑥). A set of weights (𝛽) 

were fit for each neuron to generate predictions (𝑦̂) on holdout trials. (B) Cumulative histogram of prediction 

performance on holdout trials, quantified for each cell as correlation coefficient (CC) of predictions with 

actual calcium response. (C) GLM model components for two example V1 neurons. These three (Stimulus, 

Engagement, and Licking) components are summed to generate the model prediction in (D). Trial-averaged 

components are plotted for six different trial types in Engaged (left) and Passive (right) conditions, with 

Target trials in red, Non-target trials in blue, and error trials in darker shades. Black bar indicates timing of 

stimulus (in Stimulus and Engagement components) and licking (in Licking component). Cell 1 and 2 are 

have large stimulus components for either Target or Non-target stimuli. (D) Model predictions and trial-

averaged holdout data for Cells 1 and 2. Both cells have high CC. (E) Same as (C) but for two PPC cells. 

Cell 3 has a large licking component, whereas Cell 4 has a larger engagement component. (F) Same as 

(D) but for PPC cells 3 and 4. (G) Cumulative histograms of median absolute weight values for V1 and PPC 

cells. Stimulus weights are larger in V1, whereas licking and engagement weights are larger in PPC. 
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Figure 5.2. Noise correlations are stronger in PPC than in V1. 

(A) Heatmap showing strength of signal correlations during Engaged trials in a population of V1 cells (n=81). 

Cells are clustered by stimulus preference, and then sorted by mean within-cluster correlation. (B) Same 

as (A) but for a population of PPC cells (n=125). Most neurons are target-preferring. (C) Cumulative 

histogram of within-cluster signal correlations in V1 (blue) and PPC (red) during Engaged (solid) and 

Passive (dashed) trials. Signal correlations increase in both areas with engagement, especially in PPC. (D) 

Noise correlations during Engaged (left) and Passive (right) trials in the same population of V1 cells. Within-

cluster noise correlations are largely unchanged with engagement. (E) Same as (D) but for a population of 

PPC cells. Within-cluster noise correlations are reduced with engagement. (F) Cumulative histogram of 

within-cluster noise correlations in V1 and PPC during Engaged and Passive trials. Noise correlations are 

higher in PPC, especially during Passive trials. (G) Noise correlations as a function of between-cell distance 

in V1 and PPC during Engaged and Passive trials. Cells tend to have stronger noise correlation within 

50µm, but the distance-dependence is reduced beyond 100µm. 
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Figure 5.3. Addition of network coupling terms in GLM improves model prediction. 

(A) Schematic illustrating GLM formulation for the Task + Network GLM (Model 2). The network GLM is fit 

using residuals from the Task-only GLM (Model 1). Network weights (𝑤) are computed by fitting the 

residuals of one cell to a weighted sum of residuals from all other simultaneously recorded cells in the 

network. The predicted residuals for a given cell are then added to the Model 1 prediction to generate a 

new prediction (Model 2, 𝑦̂2). (B) Cumulative histogram of prediction performance on holdout trials in V1 

(blue) and PPC (red) for both the Task-only model (dashed, same as Figure 5.1B) and the Task + Network 

model (solid). Prediction performance improves for both areas with Model 2, but especially for PPC. (C) 

Comparison of performance of Task-only model (top, dashed), and Task + Network model (bottom, solid) 

for one example V1 cell on six holdout trials. Raw z-scored data is in black, and model prediction is colored. 

Colored bars indicated stimulus timing and type (Target is red, Non-target is blue), and gray bar indicates 

spout presentation. (D) Same as (C) but for one PPC cell. (E) Task + Network model performance is 

correlated with the strength of noise correlations for a given cell. Cells were binned based on their median 

absolute noise correlations with other cells, and shading indicates SEM. For V1, task-only model 

performance was inversely correlated with noise correlation strength. (F) Network inputs were sorted by 

noise correlation (left) in ascending order to train models on subsets of the network. Performance of models 

(right) trained using subsets with the weakest noise correlations (20, 40, 60, and 80% of cells) as compared 

with task-only (0%) and full network (100%) models.  
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Figure 5.4. Decoding stimulus from V1 and PPC during engaged and passive conditions. 

Population decoders (linear SVM) were trained to discriminate target from non-target stimuli using passive 

trials or correct engaged trials. All plots represent average cross-validated performance across different V1 

and PPC populations. Significant (p<0.05) decoding accuracy was achieved at 58%. (A) Separate decoders 

for Engaged (purple) and Passive (gray) trials were trained using all cells in each V1 (n=18 populations) 

and PPC (n=22) population to discriminate Target versus Nontarget trials at each time bin. (B) Average 

decoder performance during the stimulus period (0.8 to 2 s) for each individual V1 and PPC population (thin 

lines), and on average (thick lines), during Passive (P) and Engaged (E) conditions. (C) Same as (A), but 

decoders were trained on increasing numbers of neurons, added from least to most selective (shade 

indicates 20, 40, 60, 80 or 100% of neurons), in either Engaged or Passive conditions. Using the 60% least 

selective PPC neurons on Passive trials leads to chance levels of prediction (bootstrapped chance level is 

58% at p<0.05). (D) Average performance during the stimulus period for different subsets of neurons in V1 

(blue) and PPC (red), during Engaged (solid) or Passive (dashed) conditions. (E) Same as (A), but decoders 

were trained on V1 (n=8) and PPC (n=11) datasets in which stimulus contrast was varied from trial-to-trial. 

Decoders were trained without information about contrast, but performance is plotted as a function of 

contrast (shade indicates Low, Medium or High contrast). (F) Average performance during the stimulus 

period for different stimulus contrasts in V1 or PPC, during Engaged and Passive conditions. 
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Figure 5.5. Time-dependent decoding in PPC but not V1. 

(A) Histogram of response onset latency, relative to stimulus onset, in V1 and PPC. Cells are separated 

into target- (red) and nontarget-preferring (blue), and only cells with significant responses during Engaged 

or Passive trials are counted. PPC exhibits a much broader distribution of latencies in V1, specifically during 

Engaged trials. (B-F) To test for time-dependent coding, a cross-temporal decoding approach was used. 

Decoders were trained to distinguish population activity during Target versus Nontarget trials at one time 

bin, and then tested across all time bins. (B) Performance of decoders in V1 and PPC during Engaged and 

Passive trials. “Within” time bin decoding performance is plotted in black (same as Figure 5.4A). “Across” 

time bin decoding performance is plotted in color, with vertical dashed lines indicated training time of each 

decoder. (C) Heatmaps of decoder performance, with each row representing a decoder trained at one time 

bin. Red dashed lines indicate stimulus onset and offset.  (D) Peak performance of decoders in V1 (blue) 

and PPC (red) during Engaged (solid) and Passive (dashed) trials, as a function of training bin. (E) Width 

of decoding peak (above a performance threshold of 75%), as a function of training bin. Width is consistently 

narrower for PPC compared to V1. (F) Center-of-mass of decoding peak as a function of training bin. 

Center-of-mass does not change much across training bins, except for PPC during Engaged trials. 
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Figure 5.6. Time-dependent coding during variable contrast and variable delay tasks.  

(A) A decoder was trained to discriminate Hit versus Correct Reject trials on multiple time-bins (red) for 
both V1 and PPC during Engaged and Passive conditions. The “Multiple” time-bin decoder was trained 
using the population vectors across six time-bins (blue dashed lines), and then tested on all time-bins of a 
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validation set. “Within” (black) and “Across” (blue) time-bin decoders are identical to those presented in 
Figure 5.5B. Blue dashed lines also indicate training time for individual “Across” time-bin decoders. (B-C) 
Decoding choice and stimulus contrast in the variable contrast task. Decoders for choice discriminated Hit 
and Correct Reject trials and ignored contrast information. Decoders for contrast discriminated High 
contrast Hit trials from Low Contrast Hit trials (B) Performance of “Within” (black), “Across”, and “Multiple” 
decoders in V1 and PPC. Decoding performance appears dynamic in PPC for choice but not for contrast. 
(C) Heatmap of decoder performance for both choice and contrast in V1 and PPC, with each row 
representing a decoder trained at a particular time-bin. Red lines indicate stimulus onset and offset. (D-E) 
Decoding choice (Hit versus Correct Reject) in the variable delay task. Separate decoders were trained for 
each delay duration. (D) Performance of “Across” time-bin decoders trained during the stimulus period 
(blue), during the delay period (purple), and during the response period (red), for 0 s, 3 s, and 6 s delay 
trials. Dashed lines indicate decoder training time. Gray shading indicates the stimulus period and the 
response period. (E) Heatmap of decoder performance for 6 s delay trials. Red lines indicate stimulus onset, 

stimulus offset, and spout onset (beginning of response period). 

  



193 
 

 

 

 

 
Figure 5.7. Decoding stimulus and choice using error trials. 

All population decoders in this figure were trained and tested at the same time bins. (A) Decoders were 

trained to discriminate FA trials from Hit trials to assess “Stimulus” encoding (purple), or to discriminate FA 

trials with CR trials to assess “Choice” encoding (green). (B-C) Performance of stimulus and choice 

decoders using FA trials in V1 and PPC. Significant (p<0.05) decoding accuracy was achieved at ~66%. 

(B) Decoders were trained using sessions in which one contrast was used. (C) Decoders were trained using 

sessions in which multiple contrasts were used. Decoders were trained without information about contrast, 

but performance is plotted as a function of contrast (shade indicates Low, Medium or High contrast). (D) 

Decoders were trained to discriminate Miss trials from CR trials to assess “Stimulus” encoding (purple), or 

to discriminate Miss trials with Hit trials to assess “Choice” encoding (green). (E) Same as (B) but using 

Miss trials instead of FA trials. Significant (p<0.05) decoding accuracy was achieved at ~74%. No equivalent 

analysis to (C) was performed for Miss trials due to low numbers of trials at individual contrasts. 
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Chapter 6: Discussion 
 

6.1 Summary of key findings 
 

In this thesis we investigated the neural mechanisms underlying a visual decision task in mice by 

recording and manipulating neural activity in three cortical areas: primary visual cortex (V1), 

posterior parietal cortex (PPC), and frontal motor cortex (fMC). We asked three major questions 

in the context of this task: 1) How is information relevant to a decision encoded across the cortex? 

2) What cortical areas are necessary for perceptual decision-making? And finally, 3) What neural 

mechanisms underlie the process of mapping sensory percepts to appropriate motor outputs? 

 

6.1.1 How is information relevant to a decision encoded across the cortex? 

 

Experiments in Chapter 2 yielded two key insights towards answering this question. First, 

neurons in sensory, association, and motor cortices can have widely heterogeneous response 

properties. While the majority of V1 neurons respond during stimulus presentation and the 

majority of fMC neurons respond during motor output, there was a significant proportion of 

neurons in each area that responded during the other task epochs. PPC neurons were the most 

heterogeneous, as explored in further detail in Chapter 4, containing both contrast-dependent 

sensory and contrast-insensitive motor neurons.  

Second, despite this heterogeneity, each region had distinct encoding dynamics. V1 

primarily encoded the stimulus, and time-dependent decoding analyses in Chapter 5 revealed 

that this coding is stable with time. PPC encoded the stimulus at first, which was rapidly 

transformed into information about choice. Time-dependent decoding revealed that PPC can 

exhibit dynamic coding, but whether this information primarily represents stimulus or choice is 

unclear. However, this dynamic code was specific to performance of the task, suggesting that it 
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may be more related to the animal’s choice. Finally, information in fMC primarily encoded choice, 

even though it arose quite early during the stimulus period. The encoding analyses suggest that 

sensorimotor transformation can occur rapidly in this delayed response task.  

While this work establishes the encoding properties of these three areas in a delayed 

response task, future work remains to determine whether similar signals are present in other 

visuomotor areas of the mouse. Other areas of interest include secondary visual areas (Makino 

and Komiyama, 2015), the prefrontal cortex (Zhang et al., 2014), as well as subcortical regions 

like the striatum (Znamenskiy and Zador, 2013) and superior colliculus (Duan et al., 2015). 

Additionally, future experiments should be performed using more sophisticated decision tasks 

(e.g. forced-choice instead of go/no-go) that allow for better isolation of signals relating to stimulus, 

choice, attention and reward. 

 

6.1.2 What cortical areas are necessary for perceptual decision-making? 

 

Optogenetic experiments in Chapter 3 established the necessity of each area in performance of 

the task. All three areas were necessary for performance of the task during the stimulus period, 

even with very short (250 ms) stimulus presentations. The necessity of V1 is consistent with its 

known role in processing orientation. However, the role of PPC is difficult to assess independently 

from V1, as we demonstrated using simultaneous recording and inactivation. Whether PPC plays 

an instructive versus merely permissive role could be definitely established in future work using 

pharmacological lesion experiments. The early involvement of fMC is consistent with a rapid 

sensorimotor transformation process. However, it is also possible that similar to PPC, fMC 

provides permissive signals to other areas that are critical for the sensorimotor transformation. 

The frontal motor cortex was the only area tested that was necessary during the delay and 

response epochs. Whether the memorized motor plan is maintained solely within the fMC, or 
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whether it participates with other regions during the delay period is unclear. Additionally, the 

involvement of other areas like PPC may be necessary when stimulus information must be kept 

in memory, as in the case of a delayed match-to-sample task. Nonetheless, our results point to a 

critical role for the frontal motor cortex is maintaining and executing decisions in a delayed 

response task (Liu et al., 2014). Future work remains to identify whether other cortical (Erlich et 

al., 2015) or subcortical (Duan et al., 2015) areas are causally involved in this and similar decision 

tasks.  

  

6.1.3 What neural mechanisms underlie the process of mapping sensory percepts to 

appropriate motor outputs? 

 

To address the question of sensorimotor transformation, we focused on the posterior parietal 

cortex using a combination of behavioral manipulations and computational tools (Chapter 4 and 

Chapter 5). The strong task dependence of PPC responses argue against a primary role in 

sensory processing, but do not prove its role in sensorimotor transformation. Additional evidence 

comes from the presence of heterogeneous sensory, motor, and sensorimotor neurons, 

intermingled within PPC. One speculative hypothesis is that this heterogeneity reflects a 

sensorimotor transformation occurring between separate subpopulations of PPC neurons. 

However, a more parsimonious explanation may be that PPC, as shown in other higher cortical 

regions, encodes multiple task-relevant signals simultaneously that can be read-out separately 

as needed by downstream circuits.  

Our strongest evidence for PPC’s role in sensorimotor transformations comes from the 

reversal experiments, in which most PPC neurons reflect the learned sensorimotor contingency. 

However, this experiment does not show that PPC neurons are actually involved in the 

sensorimotor re-mapping process. Future work remains to demonstrate whether PPC and/or 
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other areas including prefrontal cortex or the basal ganglia (Pasupathy and Miller, 2005) are 

critical for the sensorimotor transformation, and what mechanisms underlie the process itself. 

 

6.2 Future directions 
 

It is remarkable what can be learned using the modern tools of population imaging and 

optogenetic manipulation in the context of even a very simple visual decision task. Experiments 

like ours, which involve measurement and perturbation of multiple brain regions, were once 

prohibitively difficult, but are now accessible to many laboratories interested in the neurobiology 

of perceptual decisions. This is what the mouse system and our modern age of neurotechnology 

promises (O'Connor et al., 2009): recordings from more neurons across more areas (Sofroniew 

et al., 2016), distinctions between molecularly identified cell-types (Pinto and Dan, 2015), 

projection-specific recording and manipulation (Chen et al., 2013; Wimmer et al., 2015), and even 

targeted perturbation of functionally identified ensembles (Liu et al., 2012). 

 However, as exciting as these novel tools are, I would argue that deeper insights into the 

mechanisms of perceptual decisions will not achieved primarily by utilizing more and more 

powerful and specific tools. Instead, achieving true understanding into how the brain performs a 

behavior must start with a deep understanding (Krakauer et al., 2017) and experimental control 

(Fetsch, 2016) of the behavior itself. While many of the limitations of this thesis come from the 

simplicity of the task design, the future is bright for combining our multi-areal interrogation 

approach with rich and carefully designed experimental tasks (Brunton et al., 2013), and higher 

dimensional descriptions of the behavior itself (Wiltschko et al., 2015).  

Finally, as our capacity to record from more and more neurons increases, we must develop 

stronger theoretical and computational frameworks for interpreting such data (Cunningham and 

Yu, 2014; Gao and Ganguli, 2015). Developing a conceptual understanding of how the brain 
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performs behavior cannot be achieved by merely gathering more and better data. After all, even 

for networks in which we do have near complete information, such as artificial neural networks for 

deep learning (Gao and Ganguli, 2015) or even the humble microprocessor (Jonas and Kording, 

2017), meaningful understanding of their function is not achievable with current bottom-up 

analytical approaches. Better theoretical approaches are therefore more important than ever, and 

we in particular need frameworks that can provide specific predictions to guide experimental 

intervention (Panzeri et al., 2017). By extending the approach of this thesis to combine richer 

behavioral descriptions, computational theory, and interventional experiments, we as a field can 

hope to arrive at a deeper conceptual understanding of how the brain controls behavior. 
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Supplementary Materials 
 

Behavioral training stages 
 

Mice were trained once a day, 5-6 days per week. Mice were trained in successive stages, with 

advancement to the next stage contingent on correct performance (Table 1): 1) Mice receiving 

reward any time they licked the spout. 2) Trial structure was initiated by having an auditory cue 

tone, followed by a visual stimulus (100% targets), followed by an inter-trial interval. Mice were 

only rewarded for licks during the visual stimulus. 3) Once mice exhibited preferential licking 

during the stimulus, the target rate was reduced over several sessions from 100% to 50%. At this 

point, the non-target was a static grating orientated orthogonally to the target. Licks during non-

targets were punished with white noise or white noise plus quinine. 4) Once mice exhibited the 

ability to discriminate target and non-target gratings (d’ > 1 and RHIT - RFA > 30% for several 

sessions, where RHIT and RFA are the hit and false alarm rate, respectively), the temporal 

frequency of the non-target grating was increased. 5) Spout withdrawal was introduced. At first 

the spout was extended within range before the stimulus appeared, then spout extend time was 

gradually delayed until after the stimulus had turned off. 6) Some mice were also trained on the 

variable contrast version of the task. Stimuli of lower contrast were gradually added and randomly 

interleaved in with higher contrast stimuli, until mice could achieve significant performance even 

at the lowest contrast (2%). Mice that failed to fully learn the task within 150 sessions or showed 

signs of infection were removed from the study. Some mice were additionally trained on a delayed 

response version of the task which added to the training time. 

 

Video analysis of movement during delay period 
 

We performed a video analysis (Figure S1) to show that mice did not exhibit postural changes or 

increased movement during the delay period (Goard et al., 2016). Cropped video frames (300 x 
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200 pixels; width x height) from Hit and CR trials were compared to a “template” CR image to 

measure postural changes or changes (increases or decreases) in movement during each epoch 

of the task (Pre-stimulus, Delay, Response). Since some amount of movement is expected in all 

conditions, a pixel-wise map of the absolute difference between single CR frames and the CR 

template within-condition (DCR) was calculated as a measure of baseline movement: 

𝐷𝐶𝑅(𝑥, 𝑦) = |𝐶𝑅𝑓(𝑥, 𝑦) − 𝐶𝑅𝐹≠𝑓(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅| 

Where f is the index of a single CR frame and F≠f is the set of all CR frames except f, and where 

x and y are pixel indices. The absolute difference map was calculated separately for each epoch 

(Pre-stimulus, Delay, Response). A pixel-wise map of the absolute difference between single Hit 

frames and the CR template (DHit) was calculated in the same manner:  

𝐷𝐻𝑖𝑡(𝑥, 𝑦) = |𝐻𝑖𝑡𝑓(𝑥, 𝑦) − 𝐶𝑅𝐹≠𝑓(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅| 

In cases where the number of Hit frames exceeded the number of CR frames, the excluded frame 

was chosen at random from the CR frames. Finally, the difference in movement on Hit trials 

relative to CR trials (DSub) was calculated by taking the absolute value of the subtracted difference 

maps (Figure S1B): 

𝐷𝑆𝑢𝑏(𝑥, 𝑦) =  |𝐷𝐻𝑖𝑡(𝑥, 𝑦) − 𝐷𝐶𝑅(𝑥, 𝑦)| 

Note that since the frames are compared against a CR template, this approach will capture not 

only transient movement but also stable postural changes specific to Hit trials. To compare 

between sessions, the subtracted difference maps (DSub) were averaged across all pixels for each 

epoch (Figure S1C). 
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Supplementary Figures and Tables 
 

 

 

 

 

Stage Goal Sessions  
(Mean ± SEM) 

Habituation and lick training Acclimate to licking while head-fixed 3.9 ± 0.3 

Target stimuli only Introduce trial structure; Lick at 
appropriate time after stimulus 

6.6 ± 1.0 

Static non-targets (from 25% to 
50% of stimuli) 

Discriminate target from non-targets 11.7 ± 1.7 

Moving non-targets (from 0 Hz to 
2 Hz temporal frequency) 

Discriminate target from non-targets 28.3 ± 4.0 

Spout withdrawal (from 1 second 
before to 2 seconds after stimulus 
onset) 

Wait until spout extends to lick 21.2 ± 5.0 

Variable contrast (from medium 
contrasts 16-64% to low 2-64%) 

Discriminate at low and variable 
contrasts 

4.8 ± 2.6 

Contingency reversal (immediate) Lick to  new target and suppress 
licking to new non-target 

8.7 ± 0.3 

 

Table S1 

Description of different behavioral training stages, their goals, and average training time (daily sessions, 

usually 5 or 6 days a week). Not all mice were advanced to the last two stages (variable contrast and 

contingency reversal). 
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Figure S1: Video analysis of movement during delay period.  

(A) Pixel-wise absolute difference map between CR template (average of CR frames) and individual CR 

frames (top row) or Hit frames (bottom) for pre-stimulus, delay, and response epochs of task. Movements 

relative to template will appear as bright spots on the difference map. (B) Absolute difference of CR-

template difference map (A, top row) from Hit-template difference map (A, bottom row) to reveal pixels that 

changed during Hit trials. Movement or postural adjustments during Hit trials will appear as hot spots on 

the difference map (e.g., see hot spots near mouth, eye, and ear for Response epoch). (C) Box plot (red, 

median; blue, quartile; black, range) of average pixel-wise differences for pre-stimulus epoch (Pre), delay 

epoch (Delay) and response epoch (Resp) across sessions. The average pixel-wise difference during the 

Delay epoch was not significantly different from the Pre epoch, (p = 0.39), but both Pre and Delay were 

significantly different from the Response epoch (p = 0.005 and p = 0.009, respectively; t-test; n = 5 sessions, 

consisting of 3040 frames from 41 trials across 3 mice; all mice at plateau performance levels).   
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