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Abstract

As the world becomes increasingly digitally mediated, people can more and more
easily form groups, teams, and communities around shared interests and goals. Yet
there is a constant struggle across forms of social organization to maintain stability
and coherency in the face of disparate individual experiences and agendas. When are
collectives able to function and thrive despite these challenges? In this thesis I propose
a theoretical framework for reasoning about collective intelligence—the ability of peo-
ple to accomplish their shared goals together. A simple result from the literature on
multiagent systems suggests that strong general collective intelligence in the form of
“rational group agency” arises from three conditions: aligned utilities, accurate shared
beliefs, and coordinated actions. However, achieving these conditions can be difficult,
as evidenced by impossibility results related to each condition from the literature on
social choice, belief aggregation, and distributed systems. The theoretical framework
I propose serves as a point of inspiration to study how human groups address these
difficulties. To this end, I develop computational models of facets of human collective
intelligence, and test these models in specific case studies. The models I introduce
suggest distributed Bayesian inference as a framework for understanding shared be-
lief formation, and also show that people can overcome other difficult computational
challenges associated with achieving rational group agency, including balancing the
group “exploration versus exploitation dilemma” for information gathering and infer-
ring levels of “common p-belief” to coordinate actions.
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Chapter 1

Introduction

A response I often get when I say that I study collective intelligence is something along

the lines of “what a peculiar thing to study; there isn’t a lot of that going around”.

Indeed, there are countless examples of collective failure—from market bubbles and

crashes to the spread of false rumors. At the same time, society pushes forward, with

technological, scientific, and cultural changes leading to ever-increasing complexity

in our world; and many communities, organizations, and institutions persist and

better themselves over extended periods of time—from the scientific community to

the denizens of Wikipedia. While the failures are notable, collective intelligence

abounds.

Granted, in a way, my interlocutors are still right to be surprised. Human society,

by and large, is a gigantic mess. People haphazardly stumble through the world

with inevitably partial understandings of the state of things. We can only react to

our surroundings and do the best we can. Members of non-familial groups are only

loosely genetically related and therefore have little biological reason to be linked in

their actions. People have differing, sometimes incommensurable, goals and beliefs.

We each display remarkably complex and heterogeneous behavioral patterns that have

no a priori reason to mesh well together. We lack a centralized controller of individual

action to help us coordinate. Even laws and social norms only create soft constraints

on individual agency. There is nothing that holds groups together except our will,

and the structures and mechanisms we create. The ability of people to spontaneously
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form coherent groups amid this chaos is remarkable.

The central questions of this thesis are: How can we formally characterize the

fundamental challenges that goal-directed groups face in achieving effective collective

action, and how do people overcome these challenges? To answer these questions, I

take a computational perspective. I argue that rational group agency arises from three

processes—alignment of preferences, beliefs, and actions—each of which is associated

with particular challenges. I present computational models that reveal how people

achieve distributed information processing and consensus mechanisms to address these

challenges. The central thesis these claims support is that many aspects of human

collective behavior function to solve the fundamental problems associated with the

establishment of collective agency.

1.1 The Philosophy of the Approach

To speak of coherent group action is to suppose that there is regular structure in

the behavior of certain groups that can be understood in its own right, perhaps even

mathematically modeled, at the group level. To suppose these macro-level regularities

exist does not diminish the importance of the individual behaviors that necessarily

constitute group behavior.

At the fore of this thesis is this tension in the complex relations and interactions

between individual behavior and group behavior. Wrestling with multiple levels of

analysis is inevitable as a student of social systems. Individuals determine the behav-

ior of groups, but the aggregate level can also at times be understood in isolation, and

is sometimes understood more clearly in isolation. A notable example is simultaneous

scientific discovery. The discoveries that are made in a particular period of time are

constrained by the knowledge and technological resources of that time. These sys-

temic variables have led to countless historical cases of major scientific breakthroughs

being achieved nearly simultaneously by competing inventors or scientists. Another

example is the progression of civil rights. Once certain rights are attained, the bat-

tlefront moves towards other unsecured rights. In these examples, the specific actors
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that move society forward seem less critical. The future behavior of a group appears

predetermined by the goals of the group as a whole and the constraints placed on it.

The question of how people address the challenges associated with achieving co-

herent group action requires an answer that spans multiple levels of analysis. This

question is central to the “micro-macro divide”. Yet much like how scientists broadly

do not understand the ways in which cognitive abilities emerge from neuronal activ-

ity, we lack general solutions to this “micro-macro problem” in understanding social

systems.

While the micro-macro problem is widely considered to be unsolved by sociologists

[98], particular paradigms do offer partial solutions. In economics, many macro-level

theories have micro-level foundations [75]. In the case of these economic theories,

macro-level outcomes provably emerge from combinations of certain micro-level in-

dividual behaviors, although the micro-level assumptions are often untested or em-

pirically invalid [17]. Analytical sociology takes a different approach [48]. Analytical

sociologists, as with mathematical and computational sociologists before them, are

more inclined to study aggregate patterns in simulations of agent-based models and

the like. These scholars propose simple heuristic rules, some of which have empirical

support, and study the behavior of simulated social systems composed of agents using

these rules. This approach trades the detailed analytical understanding economists

achieve for a coarser understanding that is grounded in more plausible micro-level

behavioral models.

Computation offers another solution, underappreciated in many of the social sci-

ences. Computer scientists constantly deal with differing levels of analysis. Com-

putational problems are solved by algorithms. Algorithms are written in high-level

programming languages. High-level programming languages are implemented by low-

level programming languages, which themselves ground out in bit operations in a

computer’s machinery. Cognitive scientists recognized that the same sorts of reason-

ing computer scientists use to understand these multi-scale computer systems can

apply to any information processing system [90, 79].
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1.1.1 Levels of Analysis

My application of computational thinking to understanding social systems builds

directly on the Marrian framework of analysis from the cognitive sciences [79]. Marr

proposed that any information processing system could be understood at three levels

of analysis: one that describes the computational problem the system is solving, one

that describes the algorithms and representations being used to solve that problem,

and one that describes how those algorithms and representations are implemented. I

attempt to view groups of people as distributed information processing systems and

apply a similar set of levels of analysis. However, when conceptualizing groups as

distributed information processing systems, an additional complexity arises, which is

the connection between the individual algorithms and the computation of the group

as a whole. Concepts from the theory of distributed algorithms assist in resolving

this complication.

Computational Level

The first level of analysis I consider is directly analogous to Marr’s: the computational

level. In a group context, the computational level of analysis consists of the computa-

tional problem that the group is facing. The contribution of the first part of this thesis

is to characterize generic computational problems that groups face in attempting to

achieve effective goal-directed action, and subsequent chapters study how these prob-

lems are solved. For example, a significant part of this thesis addresses the question of

how groups arrive at accurate shared beliefs. One computational problem associated

with accurate shared belief formation is information aggregation. Establishing that

groups do aggregate information is an accomplishment at the computational level of

analysis. Information aggregation is a part of the computation that groups perform.

Group Algorithm Level

The second level of analysis that Marr considered was the algorithmic level of analysis.

This level consists of understanding how the computations an information process-
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ing system performs are achieved. I break this level of analysis into two, because in

certain distributed computational systems there is a simple way to characterize what

algorithm is being used as well as a more complex way to describe the same algorithm.

That is, it is sometimes possible to understand a distributed algorithm in terms of

an implicit centralized algorithm or implicit centralized representation that is effec-

tively being implemented. This “group algorithm” provides the basis for interpretable

macro-level models of group behavior. For example, in transactive memory systems

[124], knowledge is represented in a distributed manner across individuals, but we

can reason about the group as a whole via what memories are accessible through the

group members’ interactions.

Individual Algorithm Level

In addition to the level of the group algorithm, I also will study the individual level

algorithm. This level of analysis describes the algorithms and representations that

individual group members are using to achieve either the group algorithm or the

computation of the group. This level of analysis is the most directly akin to Marr’s

algorithmic level.

Heuristic Implementation Level

Finally, I also consider how individual algorithms can be achieved through heuristic

implementations. For instance, I will study a case where people act in a way that is

consistent with Bayesian updating but in which this updating can be implemented

by a simple non-Bayesian heuristic behavioral rule. This level of analysis relates to

intermediate levels of analysis proposed recently in cognitive science [35, 42].

1.1.2 Example: Waiting in Line

A simple example that illustrates these four levels of analysis is waiting in line. A

line at the deli implements the computation of a first-in, first-out (FIFO) queue. The

group algorithm that is used to solve the FIFO queue problem is to maintain a linked
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list data structure between elements of the queue, and pop elements off the list as

needed. The individual algorithm that implements this linked list is for each element

of the list (each person in the line) to keep track of who is ahead of them in the list.

The heuristic implementation used to keep track of who is ahead of you in the line is

simply to stand behind that person.

1.2 The Organization of this Thesis

I leverage this computational approach to understanding social information process-

ing systems in order to develop a general framework for understanding certain aspects

of human social and collective behavior. I will begin by presenting the overarching

mathematical framework for characterizing collective intelligence that I use to orga-

nize my own thinking about social systems. A simple result from multiagent system

suggests that coherent group behavior and collective intelligence in the form of ra-

tional collective agency arises from three conditions: aligned utilities, beliefs, and

actions. This framework then serves as an informal point of inspiration to motivate

my modeling efforts. For the remainder of this thesis, I focus predominantly on the

second condition of aligned beliefs. I study how people align their beliefs in processes

of shared belief formation. I first present an illustration of the emergence of collec-

tive agency from an online multi-participant laboratory experiment. In this example,

groups achieve better performance than individuals via implicit communication lead-

ing to more accurate shared beliefs about their environment. I then investigate how

this kind of implicit communication mechanism that people use to learn from each

other manifests in a complex real-world example. Finally, I examine how people ar-

rive at accurate interpersonal beliefs about what actions to expect from each other in

order to achieve coordinated actions. I conclude with a discussion of further directions

in this research program.
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Chapter 2

Three Conditions for Collective

Rationality

When the actions of multiple agents mesh well together, a group can accomplish

much more than the individuals in that group alone. We have built the most complex

society the earth has ever seen together. Cumulative scientific discovery continues

to allow us to accomplish previously unimaginable feats of engineering. We have

collectively refined our cultural sensibilities to distinguish fine differences within a

range of arts. Governments are more or less largely functional. Companies maintain

corporate identities. Community organizers bring people together for action on all

scales. These collective accomplishments motivate the study of how groups solve

problems collectively, much as the remarkable problem-solving abilities of individual

humans motivates the study of cognition.

And indeed, just as we can think about individual cognition as computation or

information processing, we can think about certain types of collective behavior as a

distributed computation. This idea is referred to as “distributed cognition” [55]. The

concept of distributed cognition has the potential to allow us to understand puzzling

phenomena in group behavior, such as the nature of human collective intelligence,

the emergence of structure in society, and cognitive regularities in culture. However,

a purely analogical comparison to individual cognition or computation fails—there

are fundamental differences between how individual computational agents operate
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compared to how distributed systems operate. Distributed systems often do not have

access to physical synchronization mechanisms or shared memory, and may not even

be implementing the same plans.

How do we negotiate our disparate and incommensurable personal worlds to

achieve coherent group behavior? What leads to coherent information processing

and group action from such a mess of individual behaviors? The key to answering

these questions lies in our scientific understanding of agency. Coherent groups are

often modeled or conceptualized as agents. In economics, a prominent model is to

assume firms act rationally (e.g., [57]). In political science, nation states are primary

actors (e.g., [105]). Organization science studies organizational learning and memory

(e.g., [73, 78, 122]).

Rational choice theory is a powerful theory of action that allows us to reason

about coherent agential behavior [11]. A rational agent is endowed with beliefs about

the world and preferences or goals, specified as a utility function. Rational agents act

to maximize their expected utility. Viewing coherent group behavior through the lens

of rational choice theory, the question of how coherent group action arises becomes:

when do groups of rational individual agents achieve rational collective agency?

In the present chapter I explore the implications of a basic mathematical result

from the literature on multiagent systems that offers a simple potential answer to

this question: three intuitive conditions suffice within the rational agent modeling

framework to guarantee rational collective agency—aligned utilities, beliefs, and ac-

tions. Each of these conditions is also associated with impossibility results from social

choice theory, philosophy, and computation. The impossibility results illustrate that

achieving these conditions is not easy, which creates a barrier for accomplishing group

agency. These barriers in combination with the potential benefits of acting together

in groups create pressure for mechanisms that help to achieve the conditions that lead

to rational collective agency. My central proposal is therefore that certain aspects of

human social behavior and human society have been biologically or culturally evolved

to function, at least in part, to achieve the conditions for rational collective agency—

alignment in utilities, beliefs, and actions. I use this proposal as a motivation to
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study mechanisms that might promote each of these conditions.

To support this proposition, I survey several well-established empirical findings

about human social behavior from social psychology, sociology, anthropology, eco-

nomics, and political science. I show how these findings can be understood through

the lens of collective agency. The perspective I introduce unifies several empirical

regularities that have been observed in human social interaction and society. We can

view phenomena as varied as homophily, social influence, social learning, and conven-

tions as promoting rational collective agency by making groups more homogeneous.

I also argue that many of these phenomena are enabled by the power of human the-

ory of mind—one of the attributes of humans that is thought to possibly distinguish

us from other animals [115]. My work brings a mathematical cognitive perspective

to bear on the basic questions of understanding collective intelligence. My primary

aim is to build a bridge between researchers in computational cognitive science, dis-

tributed cognition, collective intelligence, and computational social science. A central

utility of my perspective is as a source of inspiration for research questions, and a

source of clarity in reasoning about collective behavior.

The basis of rational collective agency: aligned utili-

ties, beliefs, and actions

The theoretical result I build upon is that rational collective agency arises from aligned

utilities, beliefs, and actions among individual agents. I offer a formal statement and

an informal proof sketch of this proposition before discussing its implications.

Problem Statement

I assume the setting of a finite time horizon decentralized multiagent partially ob-

servable Markov decision process (Dec-POMDP) [12]. Such a process consists of a

fixed set of 𝑁 agents, discrete time, a finite time horizon 𝑇 , a set of states 𝑆, a set of

actions for each agent 𝐴, an observation distribution 𝑃 (𝑜𝑖 | 𝑠) for each agent 𝑖, and a
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stochastic transition function 𝑃 (𝑠′ | 𝑠,𝑎). I also assume the group has a shared goal

that is represented as a joint reward function 𝑅 : 𝑆×𝐴𝑁 → R. This final assumption

restricts the theory to settings in which the group has a well-defined collaborative ob-

jective. However, the individual agents also have their own personal reward functions,

𝑅𝑖 : 𝑆 × 𝐴𝑁 → R.

The best a group can achieve in this situation is to take the joint actions that

maximize its the expected cumulative reward at each step, according to all of the

observations all group members have received up to that time:

{𝑎*
𝑡} = argmax

𝑎𝑡

𝐸[
𝑇∑︁

𝑡′=𝑡

𝑅(𝑠𝑡′ ,𝑎𝑡′) |𝑜≤𝑡,·].

I say that rational collective agency is achieved when the group of agents takes a

joint action in this optimal set at every time step. Rational collective agency there-

fore corresponds to executing an optimal centralized multiagent POMDP policy. The

challenge in executing such a policy is that the agents are decentralized. In partic-

ular, a priori the agents only have access to their own noisy state observations and

incomplete knowledge of what actions other agents will choose on a particular step.

What abilities must a group possess to achieve this ideal?

It is straightforward to show that aligned utilities, beliefs, and actions are neces-

sary and sufficient attributes for rational individual agents to have in order to achieve

rational collective agency. More precisely, a group can implement an optimal cen-

tralized policy, for an arbitrary Dec-POMDP, if and only if (1) each agent ignores its

personal reward function, acting only to optimize the group reward function, 𝑅; (2)

all agents have accurate shared beliefs, i.e. each agent believes the state of the world

is 𝑠 with probability 𝑃 (𝑠 |𝑜≤𝑡,·) at each time 𝑡; and (3) agents have a coordination

mechanism that allows them to choose a unique joint action among the set {𝑎*
𝑡}.

Proof Sketch

I now present an informal argument for why aligned utilities, beliefs, and actions are

sufficient for rational collective agency. Since the agents have accurate shared beliefs,
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they can all compute the set of optimal actions, {𝑎*
𝑡}. Since the agents ignore their

personal reward functions and act only to optimize 𝑅, all agents will choose an action

consistent with a joint optimal action if they can. The assumption that the agents

have access to a coordination mechanism ensures that a unique joint action can be

selected for the group.

We can also show that these conditions are necessary for rational collective agency.

If any one of the agents’ utilities, beliefs, or actions are unaligned, there will exist a

Dec-POMDP in which the group will fail to achieve rational collective agency. We

can prove this converse statement by providing examples of problems where the group

fails in each case. When agents act according to their own personal reward functions

instead of the group reward function, we only need to postulate a one-step Dec-

POMDP in which the group reward conflicts with agents’ personal rewards. When

agents do not have accurate aligned beliefs, we need only construct a one-step Dec-

POMDP in which agents report their beliefs, and the group reward is a local proper

scoring rule that incentivizes honest reporting. In this case, the group utility is max-

imized by all the agents reporting what would be the optimal shared beliefs—which

the agents do not know and hence cannot achieve. Finally, when agents do not have

a coordination mechanism, they must either attempt choose probabilistically among

the set of optimal joint actions, or choose a suboptimal joint action. Probabilistic

attempts can lead to coordination failure, however. A simple 𝑁 -agent pure coordi-

nation game illustrates the difficulty. In such a game the agents must each choose

one of two actions, but must all choose the same action in order to receive a positive

state-independent group reward. Without access to a coordination mechanism, the

agents can achieve at best a probability 0.5𝑁 of positive reward, which is clearly a

lower expected reward than the optimal joint action given the ability to coordinate.

Example

To illustrate that mechanisms could exist that meet these conditions, I now present an

informal example illustrating how the three conditions of aligned utilities, beliefs, and

actions could be achieved in a specific case. Consider a group of friends who want to go
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out to dinner together. Different friends might have different preferences, but suppose

that the group agrees to try to go to the best burger restaurant in the neighborhood.

The friends then have an aligned utility function on the quality of the burgers they

will eat. If the friends look at all the reviews they can find of each burger joint, and

also share all of their own personal experiences with each restaurant, then the friends

will have aligned shared beliefs about the quality of each restaurant. There may still

be multiple places that seem equally good after this process of information sharing.

To coordinate on which location to choose, the friends could agree on a tie-breaking

mechanism, such as going to the best-looking restaurant that is geographically closest

to the mean of the friends’ locations, or letting the youngest member of the group

decide.

A more complex example, which will be explored in more detail in a later chapter of

this thesis, is an online community that seeks to identify good content. In this case the

shared goal of the group can be viewed as identifying and consuming the best possible

content. One way people can effectively aggregate beliefs about content quality is to

probabilistically sample recommendations from peers in the community, then assess

those recommendations personally. This social sampling mechanism leads to content

popularity reflecting accurate beliefs about content quality [69], which thereby allows

people to arrive at accurate shared beliefs. This social sampling mechanism also

allows individuals to have an optimal probability of consuming good content over

time, since random peers are likely to have good recommendations. This form of

peer recommendation therefore leads individuals to act with the benefit of all of the

accumulated knowledge the community has at its disposal.

Discussion

These examples illustrate weak forms of rational collective agency—rational collec-

tive agency in specific cases. However the definition of rational collective agency I

give—optimal performance across all tasks—is quite strong, and is most applicable

to groups that face a variety of different tasks. Furthermore, certain particular tasks

will not require all three conditions be satisfied. A group therefore may not need all
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three conditions to be satisfied at all times, or potentially at any time, depending on

what tasks are faced by the group. The conditions themselves are also quite strict.

The result states that if agents have exactly equal beliefs and exactly equal utility

functions, they can essentially act like a single agent. This nearly tautological result is

nevertheless interesting as a point of inspiration. Mechanisms for achieving “strong”,

problem-independent rational collective agency may or may not exist. The impossi-

bility results I will review shortly suggest that strong rational collective agency may

only be approached or approximated. We will nevertheless see that human social

behavior and society display a collection of mechanisms that may function to raise

the level of collective agency. Having exactly equal beliefs and utilities among peo-

ple in a group is unreasonable to hope to achieve. Future theoretical investigations

could attempt to determine when and to what extent approximating the alignment

conditions leads to approximately rational collective agency.

How the framework of rational collective agency re-

lates to social systems

We see that mathematically it is straightforward to show that ideal rational group

agency depends on the three conditions of aligned utilities, beliefs, and actions. How-

ever, these mathematics rely on a foundation of pure rational choice that we know to

be empirically questionable. My goal here is to argue that this mathematical result

still provides insight into the structure and function of social systems. Given that util-

ity function alignment, information aggregation, and coordination pose fundamental

computational problems, we can think about what aspects of social systems might

function to help alleviate these problems in effective groups. In particular, each of

these conditions is associated with certain impossibility results. A foremost difficulty

in achieving the conditions for rational collective agency is therefore circumventing

the impossibility results associated with each condition.
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Example
Aligning Utilities Homophily

Social influence
Social preferences
Joint intentions

Aligning Beliefs Social learning
Opinion polls
News/social/public media

Aligning Actions Social norms
Law and conventions

Table 2.1: Examples of social phenomena that promote the conditions for rational
collective agency. See text for details of each example.

Examples of how existing empirical results relate to

this framework

Social processes that align preferences

The first condition for rational collective agency is aligned utility function. In order

for groups to avoid conflicting objectives, the utility functions that people act on

must be aligned. A well-known impossibility result from social choice theory, known

as Arrow’s Impossibility Theorem [6], states that there is no general mechanism for

fairly aggregating arbitrary preferences of group members. Taken at face value, this

result suggests people may never be able to attain rational collective agency with-

out resorting to centralized authority because there will always be cases where a fair

mechanism cannot be identified to resolve differences between individual utility func-

tions. However, natural mechanisms appear to exist for both group formation and

utility function adjustment that could circumvent this theoretical impossibility result.

One of the most widely observed empirical regularities in the study of human

social networks is the phenomena of homophily [83]—the tendency for people who

are similar to each other to tend to interact preferentially. Homophily has been

observed along a range of attributes, from various demographic characteristics [83] to

personality traits [128]. If homophily occurs along the dimensions of people’s utility

functions, then this ubiquitous social process would naturally lead to groups that have
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Figure 2-1: My framework suggests viewing the widely observed social pro-
cess of homophily as functioning to help align utility functions. This figure
displays two networks of nodes representing people that have preferences for one of
two outcomes. Node preferences are shown as the color of the plotted nodes. Results
of community detection illustrating plausible group splits according to network edges
are also shown. (Left) A network with attributes distributed randomly among nodes.
(Right) A network displaying homophily along the plotted node attribute.

better aligned utility functions. My theoretical results therefore suggest a functional

lens for interpreting this well-known social phenomenon. Homophily may help to

circumvent the impossibility of universal social choice mechanisms for agreement on

preferences.

In addition to homophily, social influence on preferences is another widely ob-

served phenomenon [25]. When people are not self-selecting social partners based

on attribute similarity, they influence each others’ preferences directly. Again, social

influence has been shown to occur across a wide range of types of preferences, from

exercise habits [4] to online content [89]. Social influence and homophily together

may provide a powerful force to align utility functions.

Another hypothesized feature of human behavior that would lead to better aligned

utilities is social preferences. Social preferences are a postulated modification to

individual utility calculus that incorporates the utility functions of other actors into

one’s personal utility function [36]. Social preferences have some empirical support,

and are advocated as a solution to puzzles in observed human behavior, such as excess

levels of cooperation as compared to the predictions of pure individual rational action

[97].
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A related but distinct thread of literature hypothesizes that people are able to

adopt shared group utility functions via joint intentions. These joint intentions involve

group members reasoning about what would be best for everyone if they agreed to act

as a group, and thereby allows the group to attain Pareto optimal actions. This logic

appears in economics under the label “team reasoning” [109] and in philosophy and

psychology as joint or shared intentions [16, 116]. These models have recently been

empirically tested in psychology experiments, establishing that people may indeed

participate in a kind of virtual bargaining that leads to fair shared utility functions

being adopted by individuals in group contexts [63].

The underlying cognitive capabilities that enable these various social processes

is likely to be the powerful inference mechanisms that allow us to infer each others’

intentions and preferences. These cognitive abilities, part of our theory of mind, are

likely to underlie the processes of homophily, social influence, social utility, and joint

intentions.

Social processes that align beliefs

The second condition for rational collective agency is accurate aligned beliefs. In

order for groups to make accurate decisions, information must be aggregated. As

with preference aggregation, there are impossibility results about belief aggregation.

In particular, the Discursive Dilemma shows how majority vote on beliefs can lead to

inconsistent sets of aggregate beliefs [74]. However, the picture here is somewhat more

optimistic, at least as long as people update their beliefs rationally, and information is

plentiful. Aumann’s agreement theorem states agents will always come to agreement if

they have common priors [8]. Elementary asymptotic probability shows that if agents

have unlimited information and identical mental models of the world, they will also

eventually agree, even if their specific priors differ. At the same time, people may

easily differ in their priors or mental models of the world, or lack infinite information

about a situation.

Several features of human cognition support belief agreement processes. Social

learning—the ability of people to learn from observing each other—is widespread
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Figure 2-2: Social learning helps resolve aggregate inconsistencies in group
judgements. The Discursive Dilemma describes a paradoxical situation in which the
truth value of three propositions—𝑃 , 𝑄, and 𝑃&𝑄—are decided based on majority
vote. Beliefs about P and Q can be distributed amongst the population in such a way
that a majority of the population believes 𝑃 , and a majority believes 𝑄, but only a
minority believe 𝑃&𝑄. I simulated this situation to see if individuals influencing each
others beliefs in a random network would resolve this dilemma. At each time step,
individuals update their beliefs according to the Degroot learning rule [29], which is
a common model of heuristic social learning. (Top) Beliefs of each individual over
time. (Bottom) Aggregate votes over time. The horizontal dotted lines indicate the
majority-rule decision boundary.

and has been hypothesized to underlie human society’s remarkable ability at cultural

accumulation [15]. There is still debate about whether people engage in social learn-

ing through rational mechanisms, heuristic mechanisms, or semi-rational mechanisms

[106]. Regardless, these models all share the characteristic of bringing peoples’ beliefs

to be closer to one another.

In addition to learning by obtaining information from others, people also have a

tendency to align their mental models of the world through exposure with each other.

Philosophers have argued that the construction and maintenance of the ontologies

that we use to understand the world are socially determined and reinforced [10]. As-

pects of management and organizational training focus on this process of onboarding

by aligning mental models [86]. Presumably, once people’s mental models and priors
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are aligned, then social learning can lead to agreement on specific beliefs as needed.

Once again, these social mechanisms are all likely supported by complex cognitive

abilities. Just as our theory of mind allows us to infer others’ preferences, so does it

allows us to infer others’ beliefs. Humans develop an ability to reason about others’

beliefs at an early age. These mind reading abilities undoubtedly facilitate a range

of our social learning mechanisms. Models of social learning—whether rational or

heuristic—invariably assume exposure to and knowledge of others’ beliefs, but beliefs

per se are never directly observable—they are abstractions that must be inferred.

We as a society have also established aggregation mechanisms that facilitate shared

belief formation. Opinion polls are a mechanism for information aggregation. The

news media and the entire publishing industry serves to communicate accumulated

knowledge. Modern developments such as social media and social recommendation

systems also serve the function of aligning beliefs. Recent research has shown that

these systems are remarkably efficient at aggregating information [20], suggesting that

an implicit force favoring accurate shared belief formation may be helping to shape

the design of these platforms.

Social processes that align actions

The final condition for rational collective agency is aligned actions. Individuals must

be able to select actions that mesh well together. The group must be able to select

one joint action from the set of optimal joint actions. Certain components of an op-

timal joint action may be risky in the sense that an individual’s action can be bad if

others do something unexpected, and hence the individual taking a risky action must

be supported by the rest of the group in that joint action. Once again, there are

impossibility results associated with perfect coordination. Computer scientists have

shown that exact coordination in asynchronous systems cannot be guaranteed [45, 76].

Fortunately, although perfect coordination is impossible, rational coordination is the-

oretically achievable. Rational coordination can occur when the risk of attempting to

coordinate is balanced by the utility gained by successful coordination [87]. However,

even rational coordination appears to require impossibly complex mental representa-
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tions. Rational coordination requires infinitely recursive interpersonal beliefs similar

to the logical concept of “common knowledge”—I know that you know that I know,

etc. that you will act how I expect you to act.

As in aligning utilities and beliefs, social influence may play a role in aligning ac-

tions. Classic studies display human susceptibility to social norms [7, 85], a tendency

which has also been confirmed in large-scale observational studies [81]. Moreover, re-

cent computational work has shown that norms and norm learning are feasible ways

to achieve multiagent coordination [52].

Another possibility is that people use tractable finite representations of common

knowledge [65]. Such representations could support richly structured joint intentions.

Joint intentions are thought to underlie many types of coordination behavior and

have also been hypothesized as another factor in what makes human unique among

animals in our complex society.

Laws and societal conventions also clearly play an important role in solving many

coordination problems. A classic example is deciding on which side of the road cars

should drive. The perspective that I highlight here is that these laws and conventions

might not just assist in coordination, but may also facilitate the more general emer-

gence of rational collective agency, for example in achieving a distributed solution to

the computational problem of routing inherent in traffic.

Collective agency and previous accounts of “group mind”

The framework I propose extends a long line of research in sociology, social psychol-

ogy, and organization science. Early theories of collective agency once played an

important role in debates about the workings of society, but were largely discredited

in sociological discourse. The general character of these theories was that groups

had some inherent agential properties, or at least causal force, which would influence

how the individuals in those groups behaved. For instance, Durkheim speaks about

“social facts” that exist only in the collective consciousness, not in any particular in-

dividual, but nonetheless exert causal forces on individual action [30]. Some twenty
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years after Durkheim’s writings, this type of perspective was forcefully criticized by

Allport, who argued that there is no inherent explanatory power in macro-level de-

scriptions of social processes [2]. Allport’s perspective continues to be dogma among

most sociologists today.

My approach to understanding collective agency does not require that groups have

any inherent agency or causal power above and beyond that of the constituent group

members. I simply seek to characterize when groups as a whole act in accordance

with the constraints of rational collective action. The tack I take is still not without

controversy. A complex systems or network perspective of groups and society suggests

that people will never fit so neatly together as to form perfectly coherent groups, just

as people individually rarely conform perfectly to the predictions of rational choice

theory. Other complications include defining group boundaries and demarcating what

actions of an individual are taken in that individual’s capacity as a group member.

While collective agency may still be a simplified representation of the complexities

of collective behavior, there are certain areas of social life that clearly rely on the

formation and maintenance of approximately coherent groups. Organizations, teams,

and group problem solving are all prominent examples. Even Allport conceded that

certain features of collectives, such as cultural phenomena, had coherent macro-level

process descriptions. Indeed, recent authors in the literature on human collective

intelligence have shown empirically that there are measurable attributes of human

team ability that are distinct from individual member ability [126]. Together these

facts suggest that coherent group agency may indeed be a useful concept for reasoning

about at least some facets of human collective behavior.

Beyond the classical literature relating to these topics, several computational the-

ories of coherent group behavior besides my own have been previously proposed that

ground the dynamics of collective action in micro-level foundations. One early frame-

work was coordination theory [77]. Coordination theory provides abstract represen-

tations of complex coordination problems, as well as components that are useful in

solving those coordination problems.

A notable contribution from the computer science literature is the SharedPlans
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framework [44]. SharedPlans is a normative framework that describes a set of suf-

ficient, computationally tractable conditions for collaborative activity. The focus of

SharedPlans is the complex web of interpersonal intentions that leads individual plans

to mesh into coherent group behavior. SharedPlans is not explicitly related to collec-

tive agency, but could serve as a representation for complex joint intentions, which

aid in alignment of utilities and actions.

The deeply related topic of distributed cognition has also been offered recently

as a lens for understanding an array of social and collective behaviors. Distributed

cognition occurs when groups of people implicitly perform computations together,

perhaps assisted by artifacts and tools in their environment. The word “cognition”

is used because the computation that group are performing is analogous to the com-

putation that is viewed as underlying individual cognitive processes. Hutchins, who

coined the term, studied what is now a classic example of the crew of a navy ship

solving the computational problem of navigation on the open waters [55]. The idea

that Hutchins proposed was that we could think of the crew, in combination with

the tools and procedures in their environment, as unified information processing sys-

tem. Viewing groups as information processing systems allows them to be amenable

to Marrian multiscale analysis [79]. Others have taken up Hutchins’ program in the

context of modern digital systems [53].

A similar perspective appears in a prominent thread of work within social psy-

chology, the study of transactive memory [124]. The idea of transactive memory is

that people can enhance their memory as a group by engaging in behaviors such as

selective distributed storage and retrieval. People as a group then appear to have a

cognitive ability analogous to an individual cognitive ability, but with higher capacity,

implemented at the group level.

A distributed cognition perspective also appears in the area of “social comput-

ing” within computer science [23]. Social computing is sometimes used literally to

mean crowdsourcing, where a curated group of people explicitly execute a distributed

computational task together. The term is also sometimes used to describe collective

behavior within sociotechnical systems such as social recommendation systems, in
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which the community of users of a platform collective discover or curate information.

The usefulness of the concept of distributed cognition stems from its relationship

to distributed computation, in combination with the computational understanding of

the mind. Our modern understanding is therefore that there is not a “group mind”

that operates with a kind of downward causality controlling what individual people

do, but that groups can execute cognitive processes distinct from individual cognitive

processes via distributed computation implemented by the combination of individual

actions. Yet, despite these theoretical advances, there is minimal formal basis out-

side of philosophy for these ideas of “distributed cognition”, “social computing”, or

“collective intelligence”. My contribution is to lay out a general formal framework for

collective agency, and to show we can derive new insights into the nature of human

behavior and the structure of human society from this framework.

Concluding remarks and future directions

The formal lens of rational collective agency provides a broad and concise framework

for reasoning about collective behavior and collective intelligence. I have argued that

this framework (1) yields a formal way to understand the concept of a “group mind”

without sacrificing reductionism, and (2) suggests a macro-level functional interpre-

tation of disparate social phenomena. My framework can also serve as a source of

inspiration for research questions. What aspects of society promote collective agency?

How do individuals leverage or manipulate collective agency in order to enrich their

own power? Can aspects of strategy in warfare, crowd control, or espionage be un-

derstood as undermining conditions for collective agency in opposing groups? Can

we promote effective collective behavior by designing mechanisms to support the con-

ditions for rational collective agency?

The fact that we can show that the three conditions of aligned utilities, beliefs,

and actions are both necessary and sufficient for collective agency also shows that,

at least within the rational agent account of human behavior, groups need not worry

about other factors besides these three to achieve rational collective agency. Aligned
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utilities, beliefs, and actions are “all a group needs”. Of course, other factors also seem

to be important to group behavior, such as individual motivation, team culture, and

emotional factors. Although my current framework precludes the primal importance

of these factors for establishing effective groups, perhaps richer theories of individual

agency that better incorporate these factors could also be extended to enrich my

framework of collective agency.

What forces shape human social behavior and the structure of human society?

Here I have identified three endogenous forces—attributes that, if achieved, can trans-

form a group of isolated individual into a rational collective that can achieve much

more than the individuals alone. These attributes themselves require underlying cog-

nitive capacities. Although there is controversy around the arguments (e.g., [71]), two

of these capacities—human theory of mind and joint intention—have been offered as

traits that are in fact distinctly human, distinguishing us from other animal species

[115]. However, we have also seen that people are endowed with a number of other

behavioral mechanisms, such as various forms of social influence, that can be viewed

as promoting rational collective agency. Perhaps not just joint intentions, but the

unique combination of flexible solutions to all three conditions for rational collective

agency is part of what makes human unique. Perhaps part of what makes humans

special is our ability to create coherent collective agency on-the-fly with unrelated

individuals in a variety of contexts due to the solutions we have for achieving the

conditions for rational collective agency.
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Chapter 3

Observing The Emergence of Group

Agency

In this chapter I present an example that illustrates the emergence of collective agency

in an experimental setting [67]. I focus on analyzing the behavioral mechanism that

leads to accurate shared belief formation in this context. Despite its importance,

human collective intelligence remains enigmatic. We know what features are predic-

tive of collective intelligence in human groups, but we do not understand the specific

mechanisms that lead to the emergence of this distributed information processing

ability. In contrast, there is a well-developed literature of experiments that have ex-

posed the mechanisms of collective intelligence in nonhuman animal species. I adapt

a recent experiment designed to study collective sensing in groups of fish in order to

better understand the mechanisms that may underly the emergence of collective in-

telligence in human groups. I find that humans in this experiments act at a high level

like fish but with two additional behaviors: independent exploration and targeted

copying. These distinctively human activities may partially explain the emergence of

collective sensing in this task environment at group sizes and on times scales orders

of magnitudes smaller than were observed in fish.
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3.1 Introduction

Many common examples of collective behavior illustrate apparent failures of collec-

tive intelligence. Mobs, market panics, and mass hysteria draw attention because

of their perceived irrationality and drastic consequences. However, the successes of

collective intelligence are as remarkable as the failures are devastating. The richness

of human culture, the incredible pace of our technological developments, and the

gradual progression of our scientific understanding of the universe stand out as both

distinctively human and heavily reliant on the emergent behavior of the interactions

of many individuals. Even at a less grandiose level, humans regularly agree to work

together to accomplish tasks that no individual could accomplish alone via dynamic

cooperative interactions that are hypothesized to be uniquely human [115]. Yet lit-

tle is known about the specific mechanisms underlying these synergistic processes of

self-organization.

Many mathematical and computational of models collective behavior have been

proposed. However, as a result of the logistical difficulties in conducting real-time

human experiments involving multiple participants, and as a result of a broader lack

of data analysis aimed at understanding collective behavior, the quantitative study

of collective behavior has largely lacked an empirical basis. Recently, researchers

have begun conducting carefully controlled laboratory experiments to test and refine

models of collective behavior [27, 38]. Yet many of these experiments, with some

notable exceptions [39, 60], have been conducted using nonhuman animal subjects.

We are therefore quickly developing a better understanding of the collective behavior

of ants [95], bees [103], cockroaches [3], and fish [123], but our empirically-grounded

quantitative understanding of human collective behavior remains limited.

In the present chapter I harness recent technical advances in running real-time,

networked experiments on the web [47] to develop and test a model of collective human

behavior. I build on a recent experiment designed to study the collective behavior

of a particular species of fish [9] that is one of the clearest illustrations of collective

intelligence in a nonhuman animal group. In this previous experiment, the researchers
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studied a type of fish called the golden shiner that prefers to spend time in dark areas

of the water, presumably to avoid predators. Aware of this natural propensity of

the fish, the researchers projected time-varying spatially correlated light fields into

a fish tank. The researchers then studied the effectiveness of the fish at finding the

darker areas of the tank as a function of the number of fish participating in the task.

The researchers found that average group performance increased significantly as a

function of group size, and they identified two simple behavioral mechanisms driving

this improvement: First, individual fish tended to move more slowly in darker areas.

Second, individual fish also tended to turn towards conspecifics. The researchers

argued that the combination of these mechanisms generated an emergent collective

gradient sensing ability in groups of fish that had been absent in individual fish.

This experiment provides a beautiful example of a higher level of intelligence at

the group level emerging from minimal intelligence at the individual level. However,

while these simple mechanisms did appear to give rise to surprisingly effective group

behavior, they only lead to substantial gains in performance for large groups of 50 or

more fish. In contrast, we expect humans in a similar task to show significant gains

with much smaller group sizes. In particular, we expect that humans should be able to

make use of theory of mind, an ability to draw inferences about the underlying mental

states of other players, to better utilize social information in a similar environment.

To elucidate these potential differences between humans and fish, I developed a

version of the gradient-sensing task for human participants. Specifically, I recreated

the environment used by [9] as an online real-time multi-player game. In this experi-

ment, participants controlled avatars in a virtual world. Every location in this world

corresponded to a score value that changed over time, and participants were awarded

bonuses proportional to their cumulative scores in the game. The score of a player at

a particular point in time was simply determined by the location of that player in the

virtual world. The incentives for participants to achieve high scores were designed

to parallel the fishes’ preferences for darker areas in their environment. The players

either played alone or in groups of varying sizes. I used this virtual environment

to investigate how the gradient-tracking performance of human groups changed as
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Figure 3-1: Example score fields from the low noise (left) and medium noise (right)
conditions at particular points in time. Red areas indicate higher scoring areas.

group size increased, and to attempt to identify behavioral mechanisms underlying

collective sensing in human groups.

3.2 Methods

Participants

We recruited 563 unique participants from Amazon Mechanical Turk to participate

in our experiment. All participants were from the United States. After excluding 72

participants due to inactivity or latency, and 6 others for disconnecting in the first

half of the game, we were left with usable data from 437 participants in 224 groups.

These groups ranged in size from one to six individuals. Since we were only able to

collect one group of size six, we ignored this group in our analysis.

Stimuli

The game scores of the participants in our experiments were determined by underlying

“score fields”. These score fields consisted of 480× 285 arrays of score values for each

125ms time interval in our game. We generated these score fields using the method

reported by Berdahl et al. [9]. First, a “spotlight” of high value was created that

moved in straight paths between uniformly randomly chosen locations. This spotlight

was then combined with a field of spatially correlated noise. This procedure yields a

complex landscape with many transient maxima and a single persistent time-varying

global maximum.
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We manipulated the weighting between the noise field and the spotlight to gener-

ate different task conditions. We used two weight values, corresponding to the “low”

and “medium” noise levels reported by Berdahl et al. Examples of score fields are

shown in Figure 3-1. 113 individuals (63 groups) were assigned to the low noise con-

dition and 324 individuals (161 groups) were assigned to the medium noise condition.

To decrease variability and increase statistical power, we generated only four distinct

score fields per noise level, so multiple groups experienced the same fields. To dis-

courage inactivity, players were awarded a score of zero, corresponding to zero bonus,

if their avatars were touching a wall.

We attempted to give our participants perceptual and motor capabilities in this

environment similar to the capabilities that Berdahl et al. observed in the fish in their

experiments. In terms of perception, we restricted the information that participants

received about the underlying score fields in the games. We allowed participants to

see only the scores at their avatars’ locations. The participants could not see the

scores that other players were obtaining or the scores at any other locations besides

their own. However, the positions, directions, and speeds of all other players were

visible to each player. All of this information was updated in real-time every eighth

of a second. A screenshot of the interface we used for the game is shown in Figure

3-2.

Players controlled their avatars using the left and right arrow keys to turn (at

a rate of 40∘ per second) and could hold the spacebar to accelerate. The avatars

automatically moved forward at a constant velocity of 136 pixels per second whenever

the spacebar was not depressed. The avatars instantaneously increased to a constant

velocity of 456 pixels per second for the duration of time that the spacebar was held

down. We chose these speed values to match the speeds that Berdahl et al. reported

observing in their fish, and we also matched the playing area dimensions and game

duration to the parameters of their experiments. Each participant played in a single

continuous game lasting for 6 minutes.

51



Figure 3-2: A screenshot of the interface that participants saw. The score displayed
corresponds to the value of the score field at the location that the player’s avatar is
occupying.

Procedure

After agreeing to participate in our experiment, participants were presented with a

set of instructions. These instructions simply described the mechanics of the game.

The participants were not informed about the nature of the underlying score fields

and were not encouraged to work together. After successfully completing a compre-

hension test, participants were then redirected to a waiting room. In the waiting room

participants would wait for up to 5 minutes or until a pre-assigned number of other

players joined the game. While in the waiting room, participants could familiarize

themselves with the controls of the game. Players were not shown any score in the

waiting room unless the participant was against a wall, in which case the displayed

score would change from a dashed line to a red “0%”. We found no evidence for the

amount time a player spent in the waiting room having any effect on individual per-

formance in the game (linear regression slope 1.993e-06, with 95% confidence interval

[-1e-05, 1.4e-05]). As in the actual game, participants in the waiting room would

be removed for inactivity if the player’s browser was active in another tab for more
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than 15 seconds or if the player’s avatar was unmoving against a wall for 30 seconds.

We also removed players if their ping response latencies were greater than 125ms for

more than 36 seconds. We paid participants 50 cents for reading our instructions,

and the participants could receive a bonus of up to $1.25 during the six minutes of

gameplay. Final bonuses were computed to be the players’ cumulative scores divided

by the total length of the game times the total possible bonus. Following the current

convention on Mechanical Turk, each participant was also paid 12 cents per minute

for any time spent in the waiting room, minus any time that player spent against a

wall. These numbers were chosen so that the participants were expected to receive at

least the U.S. federal minimum wage of $7.25 per hour for the totality of their time

active in the experiment.

We implemented this experiment using the MWERT framework [47]. The MW-

ERT framework uses a set of recent web technologies capable of handling the chal-

lenges of real-time, multi-player web experiments, including Node.js, the Socket.io

module, and HTML5 canvases. Since MWERT was originally used for two-player

games, we had to extend the MWERT framework in several ways to handle the chal-

lenges posed by hosting larger groups of players.

3.3 Results

We find that group size is positively related to group performance in this game in

the low noise condition. However, we find that there was little effect of group size

in the medium noise condition. Average performance as a function of group size in

each of these conditions is shown in Figure 3-3. A linear regression on the individuals

in the low noise condition produces a significant positive slope of 0.0238 and a 95%

confidence interval (CI) of [0.006, 0.041]. A linear regression on the individuals in the

medium noise condition produces a marginally significant positive slope of 0.0068,

95% CI [−0.001, 0.015], and this trend is weakened substantially with the inclusion of

the single 6-person group. Moreover, the marginally significant result in the medium

noise condition is driven entirely by the effect of group size in one of the four distinct
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Figure 3-3: Mean performance as a function of group size in the low and medium
noise levels. Error bars are 95% bootstrap confidence intervals using the group as
the primary bootstrap unit. All points are averages over at least two groups. This
plot excludes the single group we were able to collect of size six. Including this group
weakens the trend in the medium noise condition.

score fields we used. This particular score field displays a significant effect of group

size with a positive slope of 0.0306, 95% CI: [0.015, 0.046], while none of the others

do. Qualitative inspection revealed that this particular score field seemed to share

spatial properties more similar to the low noise score fields, which may explain the

strength of the effect in that particular score field. Overall these results indicate that

larger groups do tend to perform systemically better on our task than those in smaller

groups, at least in the low noise condition.1

In order to understand the factors that may have contributed to the increases in

performance achieved by larger groups in the low noise condition, we examine the

behavior of the players in our games. We assume a simple state-based representation

of player behavior. We then attempt to identify how participants choose to occupy

particular behavioral states at each point in time, and we examine the relationship

between the players’ decisions to occupy particular states and the performance of

1Results were similar using a mixed-effects regression including group and score field as random
effects, and also revealed larger variability due to score field in the “medium” noise condition than
the “low” noise condition.
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those players. Specifically, we assume that at any particular point in time a player

is either “exploring”, “exploiting”, or “copying” (cf. [99]). Conceptually, a player is

exploring if that player is looking for a good location to exploit, a player is exploiting

if that player has found a location where the player wants to remain, and a player is

copying if that player is intending to move to the location of another player.

We empirically determine the state of each player at each point in time using a set

of hand-tuned filters. All of these filters depend only on information that is observable

to any player in the game (i.e., the filters do not depend directly on the scores of any

individuals), and hence we can use the inferred states of players as proxies for what

other players might infer as the states of those players. Also, since the states are

not defined in terms of scores, we can meaningfully quantify the relationship between

state and performance.

We now define the three states: exploiting, copying, and exploring. Exploiting

a particular location in the environment is not completely trivial for players since

the avatars always move at least at a slow constant velocity. In order to attempt to

stay in a single location, a player can either meander around a particular location

or can persistently hold down one of the arrow keys while moving at a slow speed,

which creates a tight circular motion around a particular location. We call this

second activity “spinning” because of its distinctive appearance. We then classify a

player as exploiting if the player is spinning for 500ms or if the player moves at the

slow speed for 3 seconds and has not traveled more than two thirds of the possible

distance that the player could have traveled in that time. The second condition is

supposed to capture the meandering behavior of individuals who have not discovered

how to spin. Copying behavior is more difficult to identify, but appears to often be

characterized by fast directed movements towards other players. We thus classify a

player as copying if the player is moving in a straight line at the fast speed towards

any particular other player consistently for 500ms. We classify a player as moving

towards another player if the second player is within 60∘ on either side of the first

player’s straight-line trajectory. Finally, we classify a player as exploring if the player

is neither exploiting nor copying. Thus a player will be classified as exploring if that
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Figure 3-4: The probability of an individual being in a particular behavioral state as
a function of the individual’s score.

player is either moving slowly but not staying in the same general location, if the

player is moving quickly but not towards any particular person, or if the player is

moving quickly and turning.

We use these filters to analyze how players behave in our game. First, we compute

the probability of a player being in a particular state conditional on the current score

that the player is receiving. We find that the probability of a player occupying a

particular state is closely related to that player’s score. Specifically, players in higher

scoring locations are more likely to be exploiting than exploring or copying, but

the probability that a player is exploring or copying increases as the player’s score

decreases. These results, which are visualized in Figure 3-4, suggest that players are

choosing their states relatively rationally. Players will tend to remain in good areas

and will leave bad areas quickly either by exploring independently or by copying other

individuals.

Second, we find substantial variation in the types of copying behavior that dif-

ferent individuals display. Some individuals appear to focus their copying behavior
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Figure 3-5: Average group performance as a function of the fraction of copying in the
group that consists of “intelligent copying”—copying of an individual with a higher
score. Lines are individually fitted regression lines.

on other players who tend to have higher scores, whereas other individuals appear to

be less discriminating in their copying behavior. Moreover, as shown in Figure 3-5,

groups that contain individuals who focus their copying behavior on higher scoring

individuals achieve significantly higher performance in our task (slope: 0.2639, 95%

CI: [0.145, 0.383]). This result, though subject to the confounding of correlation and

causation, could be explained by theory of mind assisting in individual and group per-

formance. A player who is able to accurately infer whether another player is receiving

a high score may be able to achieve higher performance on our task by leveraging

these inferences to more effectively copy others.

3.4 Behavioral Model

The trends we observe suggest a potential set of behavioral mechanisms that effective

human groups may use in our task. We propose that each player in an effective group

chooses a state based on the following rules:

1. If the player is in a good area, the player will remain in that area exploiting.
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2. If the player in not in a good area and the player perceives another person as

possibly having a higher score, the player may choose to copy that person.

3. Otherwise the player will explore independently.

According to this model, players in bad locations improve their scores by copy-

ing exploiting individuals instead of wasting time by copying low scoring players or

wasting time by exploring many poor quality areas. The model also has interesting

emergent collective properties. When any individual finds a good area, that player

will attract the other players to that location by exploiting. Then, when all the play-

ers are together in a group exploiting a particular area, one of the players will start

to lose bonus as the score field shifts. This player will then either move closer to the

others who are still exploiting or will shift to an exploring state. If that player starts

exploring but doesn’t find any good locations, the player will return to the group if

the group is still exploiting. If that player does find a new good area, though, the

player will start exploiting that area. The rest of the group will then follow after the

highest scoring region shifts to where the exploiting player is. This mechanism creates

a kind of gradual crawling that effectively tracks the moving score field. Thus, by

using this mechanism players are improving both their own performances directly and

also that of the entire group by participating in this process of emergent collective

sensing. An example of this process occurring in participant gameplay is shown in

Figure 3-6.

3.5 Discussion

In our experiment, we observed that humans were able to achieve increases in perfor-

mance at much smaller group sizes than fish. Fish exhibited mild improvements in

group performance at groups of 16 and more substantial improvements at groups of

64 and 128. However, we see significant improvements in human performance at just

five players. This difference may be at least partially explained by the differences in

the mechanism that humans appear to use in this task as compared to fish.
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Figure 3-6: Reconstructions of actual gameplay in a five-person group illustrating
both failed exploration leading to intelligent copying and successful exploration lead-
ing to collective movement. Colors indicate the individuals’ scores, with red being
higher and orange/yellow being lower. The player labels indicate both player IDs and
also the player states our feature extraction procedure inferred. Other annotations
are provided to give a sense for the game dynamics. At 34 seconds, in the first panel,
most of the group has converged on exploiting a particular area while one individual is
exploring independently. To the right, at 36 seconds, the exploring individual appears
to have failed to find a good location and ceases exploring by copying the group. At
40 seconds, the final panel in the first row, the score field has shifted and some of
the group begins exploring while others continue to exploit. By 49 seconds, the first
panel in the second row, one of the exploring individuals found a good location, and
other players have begun to move towards that individual. At 54 seconds, the entire
group is exploiting the new area. In the final panel, at 55 seconds, the background
has shifted enough again that one of the individuals begins to explore.
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Interestingly, the mechanism we identify in humans is similar to that of fish in

some ways, but it is also distinct important ways. Similar to the behavior of humans

in choosing appropriate states based on current score, fish modulated their speeds

based on the level of darkness that they were experiencing. Fish moved slower in their

preferred darker areas and faster in lighter areas. Similar to the copying behavior we

observe, fish had a tendency for turning towards other fish. However, Berdahl et

al.’s model of the behavior of their fish did not require any reference to the kind of

discerning social awareness that we see in humans. Whereas fish appear to equally

weight information from all nearby conspecifics, effective humans appear to modulate

their copying behavior based on the inferred scores of other players. The strategic use

of independent exploration (a form of asocial learning) was also key to the mechanism

enabling human success. These key differences support recent work in social learning

[125, 82], which find an impressive flexibility in the strategic deployment of imitation

in humans. Of course, it is difficult to compare human performance directly to that

of fish given the differences between the perceptual and motor abilities of fish in an

actual fish tank and the abilities of the participants in our simulated environment.

Nevertheless, our comparison hints at a superior capacity for distributed cognition in

humans, possibly enabled by our ability for theory of mind.

Perhaps an even more interesting difference that emerged between humans and

fish has to do with the time scale over which the collective intelligence mechanism

evolved. For fish, the ability to gain from group performance in these collective sensing

tasks is likely based on innate behaviors, selected over many generations of fish facing

exactly this problem over their whole lifespans. In contrast, some of our humans

groups, facing this particular problem for the first time, appear to have discovered

reasonable collective sensing strategies in just a matter of minutes.

Beyond the recent literature on collective intelligence in nonhuman animal groups,

there has been a long line of work studying the factors that predict the performance of

human groups in various scenarios [62]. Our findings are consistent with previous work

suggesting that having a larger group is beneficial in complex, uncertain environments

[107]. Unlike much of this previous work, however, we focus here on the possibility in
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larger groups of new emergent group abilities and behaviors, and on the mechanisms

leading to these emergent properties.

This work therefore may shed light on one of the pressing puzzles of human collec-

tive intelligence and human distributed cognition. What are the specific mechanisms

by which humans establish effective coordinated distributed information processing

agents that can accomplish more than any individual alone, and how do our abilities

play a role in these mechanisms? The perspective of group behavior as distributed

processing [55] suggests the importance of communication for collective intelligence

because of the importance of communication in distributed systems. Moreover, the-

ory of mind—an enabler of implicit communication—has been shown to be predictive

of collective intelligence [126, 31]. While this work does not have a powerful enough

experimental design to be definitive, this work at least further suggests that one

of the roles that theory of mind plays in the emergence of collective intelligence is

facilitating implicit communication that allows for coordination on good collective

actions. Moreover, this work also suggests that the benefit of a group’s coordinating

on good actions could be more than simply the benefit to each individual indepen-

dently. By combining a natural human tendency for independent exploration with a

discerning social awareness, humans appear to be able to fluctuate between exploiting

known good actions, independently exploring new options, and intelligently copying

the promising choices of other individuals. A simultaneous combination of these ac-

tivities by a cohesive group appears to lead to a collective memory of recently good

actions from individuals who continue to exploit, and a collective movement towards

actions that promise to be good in the near future driven by independently exploring

individuals. The reactive distributed sensing ability that appears to emerge from this

process may confer a unique benefit to working together in tightly knit groups.
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Chapter 4

Information Aggregation in Shared

Belief Formation

So far we have seen that in a stylized example, collective agency can emerge from

a simple social imitation mechanism. In this chapter, I investigate a richer example

[69] from a real-world data set. From deciding how to invest to deciding what career

to choose, people are faced with many complex decisions among large sets of options.

These decisions are often further complicated by the fact that new information is con-

stantly arising about the large number of options available. How do boundedly ratio-

nal people synthesize this overwhelming amount of information to make well-informed

decisions? Previous research has shown that people have a strong propensity to im-

itate decisions that others make [7, 25, 89]. However, the aggregation properties of

these imitative heuristics are sensitive and poorly understood—too much or too little

imitation can lead to failures in information aggregation [94], and it is not known if

or how people balance this trade-off. I use a unique large-scale behavioral dataset

from an online social network of 50,000 amateur investors to provide evidence that

people engage in an imitative heuristic equivalent to directly incorporating decision

popularity as a naïve Bayesian prior distribution in shared decision-making settings.

This heuristic, while boundedly rational from an individual perspective, collectively

balances exploration and exploitation to achieve highly effective, and evolutionarily

adaptive, information aggregation: I show that the heuristic implicitly implements
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a near-optimal Bayesian decision algorithm called Thompson sampling [114]. By re-

vealing this relationship between heuristic imitative behavior and collective Bayesian

belief formation, I illuminate how the emergence of rational collective learning can be

precisely characterized as a kind of distributed Bayesian inference. At the same time,

the heuristic behavior I observe can be fragile, suggesting that the structure of the

sociotechnical systems in which decision-making occurs can promote or undermine

rational collective belief formation.

4.1 Introduction

There are thousands of companies listed on the New York Stock Exchange and the

NASDAQ alone. The number of options a person has for what career to choose or

what path to take in life are uncountable. Even in decisions as mundane as where

to buy a cup of coffee or where to go out to eat dinner, a city dweller is faced

with a dizzying array of options—Boston’s North End neighborhood has over 50

Italian restaurants; downtown Manhattan has hundreds of bars. Furthermore, the

information available about the options in each of these cases changes over time.

News and financial statements about companies are released daily. Certain careers or

life paths appear more or less tenable in different world conditions. New reviews are

written about cafés, restaurants, and bars every day. We are faced with innumerable

complex decisions over the course of life.

Fortunately, we do not face these decisions alone. Entire communities of people

are faced with the same sets of options, and can communicate information about

different options available. Decision-making with the benefit of the accumulated

knowledge of a community can result in far superior decisions compared to what

people could achieve alone [99, 50, 15, 80]. Yet, groups still face two coupled challenges

in accumulating knowledge to make good decisions: aggregating information, and

addressing an informational public goods problem known as the exploration versus

exploitation dilemma [78, 117, 51]. Ideally, we could all pool the experiences we

have had to determine the best possible rational beliefs about the qualities of the
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options available. Obviously a naïve implementation of this ideal—directly sharing all

personal preferences and experiences—is not achievable due to limitations in human

memory, communication bandwidth, and self-awareness. The second fundamental

challenge occurs even if we were able to do ideal information aggregation. If everyone

focuses on the best-looking options at a given time according to all the available

information available, we learn little about less-explored potentially better options.

The science on how human groups address these challenges is scattered. A huge

body of empirical work shows that people imitate each others’ decisions in a wide

range of scenarios [102, 46, 89, 118, 24], and countless mathematical models of how

social signals affect decision-making have been proposed. A subset of these models

explicitly deal with how people in groups process information available [14, 21]. Some

of these information processing models, as well as others that do not explicitly rep-

resent information processing, examine whether groups eventually converge on good

or bad decisions [13, 40]. However, this asymptotic reasoning leaves a gap between

the mathematical analysis and our day-to-day experiences. Showing that a decision-

making mechanism eventually leads to a good decision says nothing about how long

the process takes to get there. Eventually identifying a good decision is quite different

from making the best decision you can at each step of the way. Relatedly, these prior

models fail to address how well groups are able solve the exploration-exploitation

dilemma. Other models have been proposed to reason about exploration-exploitation

[72, 80], but sidestep the issue of information aggregation by focusing on discovery

of options with known quality rather than requiring repetition to identify the true

quality of options.

Here I propose a model that accurately captures how people perform informa-

tion aggregation and also balance exploration with exploitation in millions of de-

cisions performed within an online social financial trading platform. This model

reveals that ideal groups can aggregate information efficiently, while collectively bal-

ancing exploration and exploitation, by using a simple heuristic probabilistic decision-

making strategy that approximately implements a near-optimal Bayesian learning and

decision-making algorithm in the aggregate. In other words, I show that groups can
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achieve highly effective decision-making as a community without requiring individu-

als to do any sophisticated calculations. Individuals use a simple rule that acts like

a component of a distributed algorithm. The computational properties of this dis-

tributed algorithm precisely characterize the information processing abilities of the

group. Even though individuals are not fully Bayesian themselves, the community

as a whole can implement a Bayesian decision algorithm. The advantages of this

decision-making strategy lead it to be favored in evolutionary simulations. These

results shed light on the mechanisms, properties, and evolution of human collective

intelligence.

4.2 Environment Model

We consider a widely used abstract representation of large decision-making problems

in order to formulate our model. We represent people as making decisions among

a set of options that probabilistically generate rewards over time. These rewards

correspond to the benefits that a person who takes an option at a particular time

would obtain—for example, the performance of a stock on a particular day. For

simplicity in developing our model, we assume that a fixed set of 𝑀 options is available

over time, that rewards are perceived just as either good or bad (represented as 1

or -1), and that rewards are generated independently at random. Mathematically,

each option 𝑗 is associated with a probability 𝜃𝑗 of generating a positive reward,

𝑥𝑗𝑡, at each time 𝑡: 𝑃 (𝑥𝑗𝑡 = 1) = 𝜃𝑗. In the idealized case, each option produces a

reward at each discrete time step—for example, each day. The historical rewards of an

option up to a particular time 𝑡 forms a set of information about that option, 𝑥𝑗,≤𝑡 =

{𝑥𝑗1, 𝑥𝑗2, . . . , 𝑥𝑗𝑡}. We denote the set of information about all options at time 𝑡 as

𝑋≤𝑡 = {𝑥1,≤𝑡,𝑥2,≤𝑡, . . . ,𝑥𝑀,≤𝑡}. In engineering, an environment satisfying this set of

assumptions is commonly referred to as a stochastic multiarmed bandit. The “single-

agent” case, in which only a single decision-maker is present in the environment, is a

well-studied problem in computer science and discrete optimization, with important

applications ranging from medical trials [119] to online advertising [59]. The “multi-
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agent” case is a growing area of interest in these communities.

4.3 Problem Formulation

Effective decision-making in this environment requires maintaining representations of

information available. Bayesian posterior distributions are information-theoretically

optimal representations [91]. One way to formulate the information aggregation prob-

lem is therefore as computing the Bayesian posterior distributions over the reward

probabilities of each option, 𝑃 (𝜃𝑗 |𝑥𝑗,≤𝑡). One main challenge comes when different

people observe different pieces of information. If each person observes a subset of

𝑋≤𝑡, then people must communicate to combine their information in order to base

their decisions on all the information that the group has available. The problem of

information aggregation is therefore to establish a communication procedure that en-

ables each decision-maker to compute all the full posterior distributions, 𝑃 (𝜃𝑗 |𝑥𝑗,≤𝑡),

from the information locally available to each decision-maker.

There is also another challenge in this sort of environment. Just being able to ag-

gregate and represent information is not enough to achieve effective decision-making.

There is also a problem of collecting useful information. Given access to a represen-

taiton of the information a group has available, it is straightforward for a person to

make the best-looking decision given that information. However, this “best-looking”

decision may not be the best decision possible. In order for individuals to make good

decisions compared to the best possible decisions they could be making, the group

must continually gather information to learn about options of uncertain quality. At

the same time, people should not suffer an undue opportunity cost by exploring un-

certain options too much. This challenge is referred to as the exploration-exploitation

dilemma [111].

A great deal is known about computational solutions to the engineering prob-

lem of the single-agent exploration-exploitation dilemma in stochastic multi-armed

bandit problems. Upper bounds on achievable performance have been discovered,

and provably optimal algorithms exist that meet these upper bounds. One popu-
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lar algorithm for solving multi-armed bandits that works well in practice [22] and

was recently proven to be at least near-optimal [1, 58] is called Thompson sam-

pling. The Thompson sampling algorithm maintains representations of the Bayesian

posterior distributions over the quality of each option available. To make a deci-

sion on a particular time step, the algorithm probabilistically samples an option

with probability equal to the probability that option is the best option available,

𝑃 (𝑗 is best |𝑋≤𝑡) = 𝑃 (𝜃𝑗 > 𝜃𝑘 ∀𝑘 |𝑋≤𝑡). Of course, the single-agent case does not

involve aggregating information across individuals, and hence does not solve both

challenges associated with decision-making in the multi-agent case.

The extension of Thompson sampling to the context of a group of decision-makers,

which couples the exploration-exploitation dilemma with the information aggregation

problem, remains an active area of research [50]. One potential extension of single-

agent Thompson sampling is for individuals to somehow aggregate information so

they can implement Thompson sampling on all of the information the group has ob-

tained, rather than just the information that the individual has collected personally.

If people can achieve this “group Thompson sampling” via some information aggre-

gation procedure, they will essentially be making decisions at least as effectively as

an individual could with the benefit of all the accumulated knowledge of the group.

This possbile solution to the dual challenges of the collective exploration-exploitation

dilemma and the information aggregation problem therefore involves accumulating

knowledge into Bayesian beliefs, and using these beliefs in order to implement a group

Thompson sampling procedure. While simple to state, achieving these aims appears

difficult for boundedly rational individuals, who might have too limited memory to

store all the information a group has received, too limited processing power to use it

all, and potentially too limited communication bandwidth to even receive it all. A

large group faced with a large number of options will accumulate a huge amount of

information, and Bayesian posterior distributions can be computationally costly to

compute. The question we proceed to investigate is whether it is possible for a group

of boundedly rational individuals to achieve this form of rational collective behavior.
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4.4 Behavioral Model

We introduce a behavioral model of human decision-making in the context of a group

of decision-makers faced with a shared set of options, and we compare this behavior to

the normative standard of group Thompson sampling. Our approach to behavioral

modeling is to start with existing descriptive accounts of human decision-making,

refine these accounts with the benefit of modern computational cognitive theory, and

reinterpret them in light of our normative standard. Strong evidence for specific

behavioral models of group decision-making is still relatively sparse in the existing

literature, but there is literature based on the evidence that we have that identifies

plausible decision mechanisms people might use for decision-making in group contexts.

As a starting point, we observe that two-stage decision-making models are com-

mon [54, 93, 70, 103, 96]. These models suppose that people filter the options they

might want to consider according to some initial criteria, and then choose which de-

cision to make among this smaller set of options according to another set of criteria.

The mechanism we propose is a member of this class of models. As in some of these

related models [70, 103, 96], we suppose that a person first selects an option to con-

sider according to the current popularity of that option, and then decides whether to

commit to that option according to a recent signal of the option’s quality. The model

we propose refines the existing accounts that have this structure with a more cogni-

tively grounded procedure in the second step. Our key technical refinement allows

us for the first time to incorporate a specific account of how people use information

signals in their decision-making, which was lacking in these prior two-stage models.

We are thereby able to understand the information processing features of this type

of two-stage decision-making heuristic, both in terms of information aggregation and

collective learning.

Specifically, the model we propose, which we call “social sampling”, consists of

the following two-stage procedure. A person who wants to make a new decision first

selects an option to consider at random with probability proportional to the current

popularity of that option, 𝑝𝑗𝑡. A natural way for this first step to implemented is
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to choose a person who has already made the decision uniformly at random, and to

ask about what option that person selected. The step could also be implemented via

a stochastic response to a list of options ranked according to popularity. This step

reduces the cognitive burden of evaluating many options by allowing the decision-

maker to consider only a small set of options, rather than all the options available.

The second step is for the person to decide whether to commit to the initially

selected option. Here we propose that the person performs an abbreviated Bayesian

computation to assess the quality of the option being considered. To formulate this

second step, we suppose that each person has an idea about what sort of rewards

constitute a good option in a particular decision at hand. That is, people have

certain expectations about what type of payoffs good options will produce, and how

often. The way this assumption manifests in our behavioral model is that people

suppose that a “good” option is one that has a certain option-invariant probability of

producing positive rewards, 𝑃𝑖(𝑥𝑗𝑡 = 1 | 𝑗 is good) = 𝜂𝑖. This probability might vary

from person to person, as indicated by the index 𝑖, but is shared for that person by

all options that are considered good.

In this second step, each person observes a recent quality signal 𝑥𝑗𝑡 associated

with the option that person has sampled to consider during this step. Each person

then assesses how likely that signal is given that the option is good, and commits to

the option if the signal is likely assuming the option is good. This step is analogous

to probability matching on the posterior that the option being considered is good,

𝑃𝑖(𝑗 is good |𝑥𝑗𝑡), but ignores the normalizing constant 𝑃𝑖(𝑥𝑗𝑡). This step is moti-

vated by recent results in the cognitive science literature arguing that people resort

to approximate Bayesian computations in many decision-making scenarios [120, 35].

Normalizing constants can be difficult to compute. Likelihood-based sampling strate-

gies circumvent this computational burden, while also helping account for stochastic-

ity observed in human behavioral data.

In summary, the social sampling model supposes that people select options to

consider by consulting others’ decisions, and then commit to options being considered

by privately evaluating whether the options seem good according to recent information
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Figure 4-1: Social sampling can easily be implemented on eToro. This fig-
ure displays images of the eToro interface illustrating how social sampling could be
implemented on eToro. The search interface is the most prominent mechanism for
finding users on eToro. Social sampling could be implemented by users sorting by
popularity, probabilistically choosing a trader to consider according to that list, then
assessing the recent performance of that user more careful before deciding to follow
the user. The fact that the eToro interface affords users the ability to implement so-
cial sampling does not diminish the importance or generalizability of the mechanism.
Similar mechanisms have been hypothesized across a range of species and contexts.

available. Together, these steps yield the following probability of a person committing

to a particular option 𝑗 at time 𝑡:

𝑝𝛾𝑗𝑡𝑃𝑖(𝑥𝑗𝑡 | 𝑗 is good)∑︀
𝑘 𝑝

𝛾
𝑘𝑡𝑃𝑖(𝑥𝑘𝑡 | 𝑘 is good)

=
𝑝𝛾𝑗𝑡𝜂

𝑥𝑗𝑡

𝑖 (1 − 𝜂𝑖)
1−𝑥𝑗𝑡∑︀

𝑘 𝑝
𝛾
𝑘𝑡𝜂

𝑥𝑘𝑡
𝑖 (1 − 𝜂𝑖)1−𝑥𝑘𝑡

.

The 𝛾 parameter determines how much weight people give to popularity. When 𝛾 = 0,

people ignore popularity entirely. When 𝛾 → ∞, people always decide on the most

popular option.

4.5 Evidence

To test this model, we use a large-scale dataset from users of an online social network

of amateur investors called eToro.[92] eToro’s platforms allows users to make trades

on their own, predominantly in foreign exchange markets, or to choose other users

on the site to follow. When one user chooses to follow another, the follower allocates

a fixed amount of funds to automatically mirroring the trades that the followed user

makes. eToro then proportionally executes all of the trades of the followed user

on the follower’s behalf. A substantial fraction of people on eToro use this social
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Figure 4-2: Daily changes in popularity on eToro tend to be positive for
those traders who are performing well and negative for those traders who
are performing poorly, and the magnitude of those changes are greater as
popularity increases. (Left) A scatter plot illustrating the observed relationship
between daily change in popularity on eToro with past popularity and recent perfor-
mance. There is one data point shown for each trader on each day. Points are colored
by whether recent performance is positive or negative. (Right) A bar plot visualizing
the same data to highlight the trends we model.

investing functionality. At the time our data was collected, the site had over 50,000

users. People are hence faced with a large number of options of who to follow. In

order to assist in users’ decisions about who to follow, eToro provides information

about the trades and trading performance of each user via a search interface and

public profiles. These statistics vary over time and must be carefully integrated to

form a complete picture of each trader’s performance. Users on eToro are therefore

faced with a difficult decision problem of choosing who to follow among a large set of

options, given unreliable, multidimensional, temporally varying performance signals.

eToro also presents the current popularity of each user, i.e., the number of people

currently following that user. A plausible way the social sampling mechanism could

be used on eToro via these social and non-social signals is illustrated in Figure 4-1.

To map the eToro context onto our abstract environment model, we treat each user

on eToro as an “option” of someone who could be followed. We analyze the data at

a daily temporal granularity, and we model the new follow decisions each user makes

on each day. We summarize trading performance with expected return on investment
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Figure 4-3: Social sampling replicates the observed patterns in eToro’s pop-
ularity dynamics better than several plausible alternative models. We ret-
rospectively predicted how new follow decisions would be distributed according to
social sampling, as well as according to several alternative models. Models that rely
more on performance information tend to underestimate the impact of popularity,
while models that rely more on popularity tend to underestimate the impact of per-
formance.
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Figure 4-4: Our model fit provides a consistent estimate of the performance
of the best traders on eToro. The fitted value of 𝜂 is shown along with direct
estimates of the probability each of the best traders on eToro has of making winning
trades.
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(ROI) from closed trades over a 30-day rolling window, which is similar to the “gain”

performance metric presented to the site’s users. We consider the reward signal

associated with following a person on a particular day to be positive if that person’s

performance is greater than zero that particular day, and negative if performance is

less than zero.

We first observe that as predicted by the social sampling model, people appear

to rely heavily on popularity in deciding who to follow (Figure 4-2). To observe this

pattern, we look at changes in the popularity of each user from one day to the next.

Users who perform well tend to gain followers, and users who perform poorly tend

to lose followers. At the same time, the magnitude of these changes becomes larger

as the popularity of the user increases. People with few followers are unlikely to

gain many followers, even when they perform well. People with higher popularity

gain more new followers when they perform well, but lose more followers when they

perform poorly.

For a more rigorous test of the social sampling model, we fit the parameters of

the model and compare the quantitative predictions of the model to those of several

plausible alternative models. When fitting the social sampling model, we assume

𝜂𝑖 = 𝜂 for a fixed 𝜂 since this collapsed model yields the same aggregate behavior in

the idealized case. We examine five alternative models: A “performance regression”

attempts to predict follow decisions based on a logistic regression model using the

ROI performance metric as a dependent variable. A “full regression” attempts to pre-

dict follow decisions based on a logistic regression model using the ROI performance

metric, popularity, and a multiplicative interaction term between these two signals

as dependent variables. The “popularity model” corresponds to the social sampling

model with 𝜂 = 0.5, which neglects performance signals completely. The “perfor-

mance model” corresponds to the social sampling model with 𝛾 = 0, which neglects

popularity information. The “additive model” corresponds to an additive mixture

of the popularity and the performance model (as compared to the social sampling

model, which is a multiplicative combintion of these two “lesion” models). After fit-

ting these models according to the new follow decisions that users on eToro make, we
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find that only the social sampling model is able to reproduce the empirical patterns

in the dynamics of popularity from our behavioral data.

We also examine the internal consistency of the fitted social sampling model. The

𝜂 parameter in the social sampling model represents the probability that a trader

will generate positive performance signal on a particular day. Since we fitted this

parameter directly to the follow decisions that were made, rather than to the empirical

probabilities of traders achieving positive performance signals, we can examine if the

fitted 𝜂 value corresponds to these empirical probabilities. We find that the fitted 𝜂

value does indeed correspond closely to the probability of the best traders achieving

positive performance (Figure 4-4).

Anecdotal reports from users of eToro also corroborate the social sampling model.

One website states: “Here are some tips and things we look at when selecting the

Professional Investors/Traders we copy: Most people will still want to start with

looking at the ‘most copied traders’... Popularity is obviously a decent ‘starting’ point

for finding traders to analyse further... putting in some time and effort to analyse

the additional statistics is likely to lead to better long term results.”1 Another user

explains: “[Ranking by gain] is what eToro’s [standard] ranking system is showing.

And but this is not so much the way to really choose who’s a good trader because you

just don’t know how long these traders have been trading until you go into details.

Another good idea is to do this: What I’ll do is, you just go to ‘Copiers’, you just

select the ‘Copiers’ tab and show the ones who have the most copiers. Now, this

isn’t a full-on good guide either, just choosing the amount of copiers. Cuz as you see,

there are other traders in this line who have been making more. Like an example,

over 300%, over 300%, and they’re down the line just cuz they’ve got less copiers.”2

These users are both describing how to use popularity as a kind of first-pass filter,

before looking at performance information. Social sampling is clearly an intuitive and

appealing decision-making heuristic.

1“eToro Tips: Find Best Gurus” from SocialTradingGuru.com
(http://socialtradingguru.com/tips/etoro-tips/select-etoro-gurus).

2“How to Choose Good Traders or Gurus to Copy in Etoro? - Video Guide” YouTube
(https://www.youtube.com/watch?v=di7Sw587has, 3:02)
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Figure 4-5: The social sampling model predicts that popularity should track
a normative posterior distribution, and this prediction is borne out in
our data. (Top) An illustration of the predicted relationship between popularity
and the normative beliefs about which traders are good. (Left) A plot showing the
general relationship between popularity and performance. (Right) A plot showing the
match between the normalized posterior and popularity on eToro. A linear regression
between normalized popularity and the normative posterior has a fitted value of about
1.5 (𝑝 < 0.001), which is quite close to the predicted value of 1.0.

4.6 Model Analysis

Remarkably, despite it’s simplicity and heuristic appearance, the social sampling

model achieves both excellent information aggregation and a highly efficient balance

between exploration and exploitation. In order to analyze the social sampling model,

we consider a simplified model of the world. In this simplified model, known as a

“hide-and-seek” problem [104], there is a single best option that has a probability 𝜂*

of producing positive rewards, while all other options produce positive and negative

rewards uniformly at random. When the number of options is large or 𝜂* = 0.5+𝜖 for
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Figure 4-6: A schematic illustration of the “social sampling” mechanism we propose
as a model of human social decision-making, and an illustration of how this mecha-
nism yields collectively rational belief formation at the group level. Individuals treat
current popularity as a prior distribution, and sample according to this prior in order
to choose an option to consider taking. An individual then commits to a considered
option with probability proportional to the likelihood that the option is best given
a recent objective signal of quality. If current popularity approximates the current
optimal posterior distribution that each option is best given all previous quality sig-
nals, then when a large group of decision-makers continues to use the social sampling
mechanism, popularity will continue to approximate the optimal posterior.

small 𝜖 > 0, this hide-and-seek setting can be thought of as a pessimistic assumption

about the identifiability of the best option in the environment. In other words, this

setting can be interpreted as one in which good options are rare or difficult to identify.

A companion piece of work shows that our results also generalize to other contexts

[19].

In this case, the Bayesian posterior required for Thompson sampling simpli-

fies to 𝑃 (𝑗 is best |𝑋≤𝑡) = (𝜂*)𝑥𝑗𝑡 (1−𝜂*)1−𝑥𝑗𝑡𝑃 (𝑗 is best |𝑋<𝑡)∑︀
𝑘(𝜂

*)𝑥𝑘𝑡 (1−𝜂*)1−𝑥𝑘𝑡𝑃 (𝑘 is best |𝑋<𝑡)
. This probability bears

a striking resemblance to the probability of choosing option 𝑗 under social sam-

pling. In fact, when 𝛾 = 1 in an infinite population of decision-makers who im-

plement social sampling using 𝜂𝑖 = 𝜂*, the following invariant will be maintained:

𝑝𝑗𝑡 = 𝑃 (𝑗 is best |𝑋<𝑡). Popularity can therefore be precisely understood as com-

pactly summarizing the past information about the options available to decision-

makers under a pessimistic assumption about the environment. In other words, pop-

ularity under social sampling with 𝛾 = 1 has an exact correspondence to a Bayesian

posterior distribution that each option is best, and social sampling leads decision-
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makers to sample exactly according to the group Thompson sampling probability

𝑃 (𝑗 is best |𝑋≤𝑡), with the benefit of all of the information the group has accumu-

lated.

4.7 Theoretical Predictions

The theoretical results of our model analysis generate sharp testable predictions.

First, we can compute the posteriors 𝑃 (𝑗 is best |𝑋≤𝑡) empirically and test whether

popularity tracks these distributions. To compute these posteriors in the complex en-

vironment of the eToro data, we relax the assumption that there is only a single best

option, so that 𝑃 (𝑗 is best |𝑋≤𝑡) = 𝑃 (𝑗 is good |𝑋≤𝑡) = 𝑃 (𝑗 is good |𝑥𝑗,≤𝑡). With-

out this relaxation, computing the posterior is complicated by missing data on days

without observations. We find that not only is popularity generally related to perfor-

mance, popularity on average matches these normative posterior values remarkably

well.

The relationship between social sampling and group Thompson sampling also

indicates that social sampling should be able to achieve a highly effective balance

between exploration and exploitation, leading to fast discovery of good options and

high overall performance. However, since the relationship requires 𝛾 = 1, these

features may require that popularity is weighted linearly as opposed to superlinearly

or sublinearly. We do find in idealized simulations that social sampling achieves

excellent performance when 𝛾 = 1 and that this performance declines quickly when

𝛾 < 1 or 𝛾 > 1.

4.8 Implications for Design

Our results have implications for the design of sociotechnical systems. On eToro, we

would expect traders to make the most money from following others if they are using

social sampling with 𝛾 = 1. Remarkably, we find that users on eToro sometimes

achieve this ideal when we fit the 𝛾 parameter over time, to the subset of follow
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Figure 4-7: Social sampling with 𝛾 = 1 is far more effective than sampling
sampling with sublinear or superlinear use of popularity, suggesting that
the Bayesian interpretation of social sampling is critical to its performance.
An idealized simulation experiments. Each line represents a different combination of
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type, width, color, and transparency) each representing a simulation parameter.
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Figure 4-8: Social sampling far outperforms how quickly an individual could
learn alone, and nearly achieves the performance of group Thompson sam-
pling. (Left) An schematic illustration of the difficulty of finding the best option
among a large set of options. One box has a number greater than 0.5. (Right)
Results from an idealized simulations using 100 options and 10,000 social sampling
agents to illustrate differences in convergence time.
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Figure 4-9: Social sampling is favored over individual decision-making in an
evolutionary simulation. Starting from a population of 99% non-social agents and
1% social sampling agents, social sampling agents gradually grow to overcome the
population in an evolutionary simulation.

decisions made on each day. However, on many days—and if we fit 𝛾 on all the

data together—we find that 𝛾 is usually fitted to be less than one. Our retrospective

simulations indicate that the overall fitted value of about 0.73 is highly suboptimal

for the population as a whole. However, this value does not do much worse than the

optimal value of 𝛾 = 1 when considering the actual observed popularity values on

eToro, rather than ideal values in a population of social samplers. Therefore, people

are roughly individually best-responding to the social signals in their environment,

but there is a systemic problem, perhaps caused by variability in the set of near-best

response strategies. These findings indicate that eToro could better serve its users

by altering its interface to encourage users to utilize popularity linearly, rather than

sublinearly. More generally, these results show how the efficiency of collective learning

in an environment can be susceptible to small changes in contextual variables. In

other systems, advertising or manipulation of popularity could similarly disrupt the

collective. Care must be taken in order to avoid undermining the simple mechanisms

we have at our fingertips for promoting efficient accurate shared belief formation.
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Figure 4-10: Users on eToro sometimes achieve the optimal 𝛾 value but
many times do not. (Top) A plot 𝛾 fitted over time on each day, with bootstrap
confidence intervals. (Left) Results from retrospective simulations of a population
of social samplers on the eToro data. As in our idealized simulations, 𝛾 = 1 would
be the optimal value for collective learning on eToro, assuming the entire population
of followers is using social sampling. The value of 𝛾 from fitting to all the data
simultaneously is shown. (Right) Results from simulations of social sampling given
the observed popularity values on each day, rather than ideal values from a population
of social samplers. When popularity is not generated by a population of individuals
using social sampling with 𝛾 = 1, then a wider range of 𝛾 values achieves similar
levels of performance.
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4.9 Discussion

Human groups have an incredible capacity for technological, scientific, and cultural

creativity. Our historical accomplishments and the opportunity of modern networked

society to stimulate ever larger-scale collaboration have spurred broad interest in

understanding the problem-solving abilities of groups—their collective intelligence.

The phenomenon of collective intelligence has now been studied extensively across

animal species [27]; collective intelligence has been argued to exist as a phenomenon

distinct from individual intelligence in small human groups [126]; and the remarkable

abilities of large human collectives have been extensively documented [110]. However,

while the work in this area has cataloged what groups can do, and in some cases the

mechanisms behind how they do it, we still lack a coherent formal perspective on what

human collective intelligence actually is. There is a growing view of group behavior

as implementing distributed algorithms [55, 61, 26, 32], which goes a step beyond the

predominant analytical framework of agent-based models in that it formalizes specific

information processing tasks that groups are solving. Yet this perspective provides

little insight into one of the key features of human group cognition—the formation of

shared beliefs [84, 18, 112, 99, 80, 101].

Recent work in cognitive science has provided a way to understand belief formation

at the level of individual intelligence. One productive framework treats people as

approximately Bayesian agents with rich mental models of the world [43, 41]. Beliefs

that individuals hold are viewed as posterior distributions, or samples from these

distributions, and the content and structure of those beliefs come from the structure

of people’s mental models as well as their objective observations. Belief formation

is viewed as approximate Bayesian updating, conditioning these mental models on

an individual’s observations. We propose to model human collective intelligence as

distributed Bayesian inference, and we present the first empirical evidence for such a

model from a large behavioral dataset. Our model shows how shared beliefs of groups

can be formed at the individual level through interactions with others and private

boundedly rational Bayesian updating, while in aggregate implementing a rational
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Bayesian inference procedure.

The more general utility of this framework will come from providing a principled

constraint on individual-level mechanisms in modeling collective behavior, and from

providing a rigorous way to relate these individual-level mechanisms to group-level

models. Looking to the literatures on computer science, statistics, and signal pro-

cessing for relevant distributed inference algorithms is likely to yield a fruitful path

towards a new class of models of human collective behavior. At the same time, in-

stances of this new class of models, such as our social sampling model, will bring

novel algorithms to the area of distributed Bayesian inference.

4.10 Materials and Methods

4.10.1 Data Source

We received our data from a company called eToro. The data was generated from

the normal activity of users of their website, etoro.com. The two main features of the

eToro website during the time our dataset was being collected were a platform that

allowed users to conduct individual trades and a platform for finding and following

other users of the site. We will refer to the site’s users interchangeably as either users

or traders—having these two terms will ultimately reduce the ambiguity in some of

our descriptions. The internal algorithms and the website design have changed over

time, but the following description represents to the best of our knowledge the main

contents and features of the website during the time period of our data.

The eToro website includes basic functionality for use as a simple trading platform.

This platform allows users to enter long or short positions in a variety of assets.

Entering a long position simply consists of buying a particular asset with a chosen

currency. Entering a short position consists of borrowing the same asset to sell on

the spot, with a promise to buy that asset at a later time. Taking a long position is

profitable if the price of the asset increases, while taking a short position is profitable if

the price of the asset decreases. Users can also enter leveraged positions. A leveraged
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position is one in which an user borrows funds in order to multiply returns. Leveraged

positions have more risk because users will lose their own investment at a faster rate

if the price of the asset decreases.

At the time our data was collected, eToro focused on the foreign exchange market,

so the trading activity mainly consisted of users trading in currency pairs—buying

and selling one currency with another currency. However, users were also able to buy

or sell other commodities such as gold, silver, and oil, and eventually certain stocks

and bundled assets. The average amount of money invested in individual trades on

eToro was about $30, and, after accounting for leverage, individual trades on average

result in about $4000 of purchasing power. These amounts are small compared to the

trillions of dollars traded daily in the foreign exchange and commodity markets3, so

individual traders are unlikely to have substantial market impact with their trades.

Besides providing a platform for individual trading, eToro also offers users the

ability to view and mimic the trades of other users on their website. To be clear

in our terminology, when referring to one user following another user to mimic their

trades, we will call the first user the “following user” and the second the “target user”.

When referring to a specific mimicked trade, we will refer to the original trade as the

“parent trade” and the copy as the “mimicked trade”. eToro refers to “following” as

“copying”, and “mimickers” as “copiers”. We use the term “follow” rather than “copy”

so that we can reserve the word “copy” for social influence due to information about

popularity, as in “copying the crowd in making decisions about whom to follow”. eToro

also offers an option to “follow” users without mimicking their trades, but we do not

have data on these follow relationships.

While there is functionality for mimicking individual trades on eToro, we focus

on the website’s functionality for mirroring all the trades of specific users. Mirroring

works as follows. First, a following user allocates funds that will be used for mirroring

a target user. The following user’s account then automatically executes all of the

trades that the target user executes. The sizes of these trades are scaled up or down

3According to the Bank for International Settlements’ 2013 “Triennial Central Bank Survey”, the
foreign exchange market (in which most of the trading on eToro occurs) has a daily trading volume
of trillions of USD.
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according to how much money the following user has allocated as funds for that

follow relationship. When beginning a follow relationship, the following user can

specify either to only mimic new trades of the target user or to also open positions

that mirror all the target user’s existing open positions. When a user stops following

a target user, the following user can choose to either close all the open mimicked

trades associated with that relationship or to keep those trades open.

There are certain limitations that eToro places on mimic trading. For example,

users can follow no more than 20 target users with no more than 40% of available

account funds allocated to a single target user. Users can also make certain adjust-

ments to their mimicked trades. For example, following users can close a trade early

or adjust a trade’s “stop loss” amount.

eToro also offers an interface to assist users in finding traders to follow. The central

feature of this interface at the time our data was collected was a tool that presented

a list of other users on the site. This list could be sorted either by the number of

followers those users had or by various performance metrics, such as percentage of

profitable weeks or a metric called “gain”. In a separate part of the site, users also

had realtime or near realtime access to details of individual trades being executed by

other users of the site.

In addition to searching for basic information using these tools, the website also

allows users to view more detailed profiles of other traders on the site. These profiles

present information such as the number of followers the user has had over time, the

“gain” of the user over time, and information about opened and closed trades.

4.10.2 Data Processing

The dataset provided to us by eToro consists of a set of trades from the eToro website.

The aggregated data we used in our analyses will be released upon publication. The

entire dataset contains trades that were closed between June 1, 2011 and November 21,

2013. Our initial explorations (which multiple authors engaged in) must be assumed

to have touched all of the data. When we began systematic analysis, in order to have

a held-out confirmatory validation set for this analysis, we split the dataset into two

85



years. We use the first year of data for all our main analysis. We use the second year

for a robustness check.

Each entry in the dataset we received includes a unique trade ID, a user ID,

the open date of the trade, the close date of the trade, the names of the particular

assets being traded, the amount of funds being invested, the number of units being

purchased, the multiplying amount of leverage being used to obtain those units, the

open rate of the pair of assets being traded, the close rate of that pair, and the net

profit from the trade. For entries associated with mimickied trades, there is additional

information. For individually mimicked trades, the parent trade ID is included. For

trades resulting from follow relationships between users, “mirror IDs” are included in

addition to parent trade IDs. A mirror ID is an integer that uniquely identifies a

specific follow relationship. When a user begins to follow another user, a new mirror

ID for that pair is created.

In order to study the relationship between previous popularity, perceived quality,

and the follow decisions of users on eToro using this dataset, we first had to extract

the popularity and the performance of each user on each day. For our main analysis,

to best match the statistics that the eToro interface presented to users, we defined per-

formance as investing performance measured as average return on investment (ROI)

from closed trades over a 30-day period. In this computation, the ROI for a trade is

determined by the profit generated from the trade divided by the amount withdrawn

from the user’s account to make the trade. If on a particular day a user did not make

any trades in the previous 30 days, the performance of that user is not defined and

the user is removed from the analysis for that day. This exclusion criterion removes

inactive users from the analysis.

We use ROI rather than a risk-adjusted performance metric because the most

prominent performance metric presented to users on eToro is what eToro calls “gain”.

eToro states this metric is computed using a type of “modified Dietz formula”, an equa-

tion closely related to ROI. Thus ROI should better capture the perceived objective

quality of following each user, though perhaps not true underlying quality.

We estimated the number of followers each user had on each day from the “mirror
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IDs” present in the data we received. We first identify which two users are participat-

ing in each mirror ID, and we then determine the duration of the follow relationship

between those two individuals as beginning on the first date we observe that mirror

ID and ending on the last date we observe that mirror ID. From these time intervals

we can then estimate the number of followers each user has on each day, as well as

when each follow relationship begins.

We conduct our main analysis using approximately one year of data, from June

1, 2011 to June 30, 2012. However, we skip the first month of data when analyzing

changes in popularity so that we are only using the period of time for which we have

accurate estimates of previous popularity and changes in popularity. We also do not

analyze changes in popularity that occur over weekends. Only a small percentage of

trades occur on weekends since trading on eToro is closed on Saturdays and opens

late on Sundays. Since the way we measure changes in popularity depends on having

observed trades, days on which there is little to no trading can lead to inaccurate

estimates of changes in popularity.

The data frames that we ultimately use for our statistical analyses, modeling, and

model predictions are then constructed as follows. Each user is given a row in the data

frame for each day on which that user had any trades in the previous 30 days. The

columns associated with this row are the performance score of the user (the expected

ROI from closed trades from the previous 30 days), the number of followers the user

had on the previous day, the number of new followers that user gained on that day,

and the number of followers that the user lost.

We also include two additional columns for each row, i.e. for each user-day pair,

that include partially disaggregated trading information for each day. The first ad-

ditional column is the actual amount of funds invested in new trades on that day by

that user. This “actual amount” is the amount in USD invested in each trade initiated

on that day after accounting for the leverage the trader used in those trades. The

second additional column we use contains the sum of the realized and unrealized gains

and losses from all new trades each user made on each day. To obtain the realized

profit or loss for a user on a particular day, we simply sum the profit from each trade
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that the user opened on that day and subsequently closed on the same day. To obtain

the unrealized profit or loss, we take each trade that the user opened on that day

but did not close. We then compute the unrealized profit or loss of those trades as

the profit or loss that would have resulted from those trades being closed at the end

of the day. To obtain the close rates for these trades, we use an external database

of foreign exchange rates for all the currency pairs, and for other assets (whose close

rates we don’t have from an external database) we use the last observed rate on that

day from the eToro data.

4.10.3 Imputing Missing Trades

There are a small number of observed mimicked trades that lack parent trades in

the dataset. Since these missing parent trades are predominantly unprofitable, and

since overestimating the performance of popular traders could substantially bias our

results, we developed a method for recovering these missing parent trades. Certain

fields of mimicked trades (including the open dates, close dates, assets traded, trade

directions, and associated open and close rates) are typically almost identical to the

fields of their associated parent trades. These similarities allow us to recover the

direction of profit of these missing trades with high reliability. However, the initial

amounts invested and the units purchased in missing parent trades are more difficult

to infer. To estimate the amounts invested in each missing parent trade, we use

the fact that the ratios between the units invested in mimicked trades and the units

invested in their associated parent trades are relatively stable for a particular mirror

ID. Specifically, we use the following procedure. We first, for each mirror ID, compute

the median ratio between the units invested in each of the observed mimicked trades

associated with that mirror ID and the units in each of those trades’ parents. For a

particular missing parent, we then find all of the mimicked trades in our data with

this missing trade as a parent. We then gather what the units invested in the parent

trade would be according to each of the median ratios associated with those mimicked

trades, and we take the median of those unit values. We use this final quantity as

the number of units we presume were purchased in the original trade. We finally
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Figure 4-11: Statistics on the amount invested by all users on eToro per day.

compute the amount of funds invested in each missing trade and the ultimate profit

made from each of those trades from the inferred units purchased and the open and

close rates of a single observed mimicked trade. We conduct our main analysis using

these imputed trades.

4.10.4 Descriptive Statistics

We now provide descriptive statistics of the eToro data in our main analysis. Figure

4-11 indicates that many users are sporadic in their investment activities, but the

total amount of money invested per day on eToro remains fairly stable over time.

Figure 4-12 indicates that mean ROI on eToro varies around zero but tends to be

slightly negative and appears to have a slightly increasing trend over time. Figure

4-13 indicates that the total number of followers on eToro increases over time, but the

maximum popularity on a particular day divided by the total number of followers on

that day remains relatively stable over time. Figure 4-14 shows that the vast majority

of users have zero followers, and the distribution of followers is long-tailed.

4.10.5 Regression Analysis

We now provide statistical evidence that there is a positive multiplicative interac-

tion between previous popularity and performance in relation to future popularity.

To support this hypothesis we perform both a simple analysis using ordinary linear

models and a more robust analysis that accounts for dependence between data points

and individual user-level effects. Our model comparisons described in the subsequent

sections provide further evidence for this interaction effect. For the following analy-
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Figure 4-12: Statistics on user return on investment.
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Figure 4-13: Statistics on the number of followers and maximum popularity over time.
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Figure 4-14: Statistics of user popularity.
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ses, we use the data format as described at the end of the “Data Processing” section

above, and we use two-sided hypothesis tests for all 𝑝-values.

Table 4.1: Results from an ordinary linear regression.
Independent Variable Coefficient 𝑝-value
Intercept 8.226e-03 <2e-16
Popularity 6.499e-03 <2e-16
Performance 1.720e-02 3.01e-06
Interaction 4.748e-02 <2e-16

Initially, we perform a basic statistical analysis assuming that the observed changes

in popularity within each user and within each day are conditionally independent of

each other given previous popularity and performance. That is, this first analysis

assumes that the only pieces of information that affects follow decisions are popularity

and performance information, and there are no systematic preferences for particular

users and no systematic differences in changes in popularity on particular days. The

results of this ordinary linear regression using all of the active users on each day

are given in Table 4.1. The dependent variable in this regression is the change in

popularity of each user on each day computed as the user’s popularity on that day

minus the user’s popularity on the previous day. The independent variables are the

performance scores of each user computed from the previous 30 days, the number of

followers that the user had on the previous day, and an interaction term multiplying

these two values. The results of this regression indicate that there is a significant

positive interaction effect between previous popularity and previous performance in

relation to changes in popularity.

Table 4.2: Results from fixed effects model with robust standard errors.
Independent Variable Coefficient 𝑝-value
Popularity 1.3301e-03 0.4007003
Performance 1.0583e-02 0.1814710
Interaction 4.3830e-02 0.0115439

For a more robust statistical analysis, we used a fixed effects model with Arellano

robust standard errors [5]. We included fixed effects for users and days. Including

fixed effects for users and days allows us to rule out the possibility that the effects
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we observe are driven by a few peculiar users or days, and the robust standard errors

correct the 𝑝-value for non-equal variance and correlated error terms. Besides these

changes, the models are the same as the previous ordinary linear models. The results

of these fixed effect models are given in Table 4.2.

4.10.6 Predicting Follow Decisions

Our model comparison analysis relied on computing the follow decisions users on

eToro would have been expected to have made according to the social sampling model

and alternative models. In all cases we examine aggregations of these decisions in the

form of predicting the total number of new followers each trader on eToro obtains.

More specifically, we predict the number of new followers each user gets on each

day given the performance and popularity of that user (and of every other user) on

the previous day, and given the total number of new follow events we observe on

those days. To get these aggregates, we predict individual follow decisions, which are

constrained by the traders each user is already following.

In the social sampling model, decision-makers make decisions independently, so

the probability that a given decision-maker 𝑖 chooses a specific new option 𝑗 at time

𝑡 is given by the decision probability 𝜑𝑚𝑎𝑖𝑛
𝑗𝑡 ,

𝜑𝑚𝑎𝑖𝑛
𝑖𝑗𝑡 =

𝜂𝑥𝑗𝑡(1 − 𝜂)1−𝑥𝑗𝑡 · (𝑝𝑗𝑡 + 𝜖𝑡)
𝛾∑︀

𝑘/∈𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑑𝑖𝑡
𝜂𝑥𝑘𝑡(1 − 𝜂)1−𝑥𝑘𝑡 · (𝑝𝑘𝑡 + 𝜖𝑡)𝛾

,

where 𝜖𝑡 > 0 is a small smoothing parameter that ensures all users have some proba-

bility of gaining followers, 𝑥𝑗𝑡 in the case of the eToro data simply indicates whether

user 𝑗 has positive or negative performance on day 𝑡, and followed𝑖𝑡 tracks the traders

user 𝑖 is currently following at time 𝑡 (since a trader cannot be followed twice). We

arbitrarily choose 𝜖𝑡 = 1
𝑀𝑡

, where 𝑀𝑡 is the number of active users on day 𝑡. Given

𝜑𝑚𝑎𝑖𝑛
𝑖𝑗𝑡 = 0 if 𝑗 ∈ 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑑𝑖𝑡, the expected number of new followers user 𝑗 gets at time

𝑡 is then
∑︀

𝑖/∈𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠𝑗𝑡
𝜑𝑚𝑎𝑖𝑛
𝑖𝑗𝑡 , where 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠𝑗𝑡 = {𝑖 | 𝑗 /∈ 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑑𝑖𝑡} is the set of

followers of 𝑗 at time 𝑡.
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4.10.7 Alternative Models

We consider a set of alternative models in order to identify how well the social sam-

pling model is able to account for structure in the follow decisions present in our

data compared to alternative plausible models. We specify these alternative models

in terms of “decision probabilities” analogous to 𝜑𝑚𝑎𝑖𝑛
𝑖𝑗𝑡 . These decision probabilities

provide the probability under each model that an individual will decide to commit to

a particular option (or follow a particular trader in the case of eToro). It is possible

to specify all our alternative models in this way because every model we consider

assumes that all decisions are conditionally independent given the popularity and

performance of every option.

The first of these alternatives is a proxy for a probability matching rational agent

model that we call the “Performance Regression” model. This model uses only per-

formance information, and does not reduce the performance signals to being binary

as our social sampling model does. The decision probability under this model is

𝜑𝑝𝑒𝑟𝑓
𝑖𝑗𝑡 ∝ 𝜎(𝛽0 + 𝛽1𝑞𝑗𝑡),

where 𝜎 is the logistic function, the 𝛽𝑖 variables are free parameters, and 𝑞𝑗𝑡 is a

real-valued performance signal (30-day rolling average daily ROI on closed trades for

our main analysis). The performance regression allows us to evaluate the predictive

power of using performance information alone to predict follow decisions.

The next alternative we consider is an extended regression model that we call

the “Full Regression” model. This alternative consists of a generalized linear model

that includes an interaction term between popularity and performance. Such a model

could conceivably generate the multiplicative interaction effects we observe in the

eToro data, but lacks some of the additional structure that the social sampling model

has. The full regression assumes that a decision-maker chooses to commit to option

𝑗 with probability

𝜑𝑓𝑢𝑙𝑙
𝑖𝑗𝑡 ∝ 𝜎(𝛽0 + 𝛽1𝑞𝑗𝑡 + 𝛽2𝑝𝑗𝑡 + 𝛽3𝑞𝑗𝑡𝑝𝑗𝑡),
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where the notation is as above. The purpose of comparing to this alternative is to

test whether having the additional structure of including popularity as a prior in the

social sampling model lends additional predictive power, as compared to having a

heuristic combination of popularity and performance.

We also consider a reduction of the social sampling model that does not use

performance information. We call this model the “Popularity Model”. Under the

popularity model the decision probability becomes

𝜑𝑝𝑜𝑝
𝑗𝑡 ∝ (𝑝𝑗𝑡 + 𝜖𝑡)

𝛾,

and again we use 𝜖𝑡 = 1
𝑀𝑡

as the smoothing parameter. Comparing to this preferential

attachment model allows us to understand how much predictive power we get from

including performance information while controlling for the structure of how social

information is used in the social sampling model. This preferential attachment model

is a canonical simple heuristic model of social decision-making.

We also consider an alternative model that is a reduction of the social sampling

model that uses only performance information. This model, which we refer to as the

“Performance Model”, uses the decision probability

𝜑𝑝𝑒𝑟𝑓𝑚
𝑖𝑗𝑡 ∝ 𝜂𝑥𝑗𝑡(1 − 𝜂)1−𝑥𝑗𝑡 .

Since the performance model is the one that would be obtained from the social sam-

pling model when all options have the same popularity, this model allows us to predict

how decision-makers might behave if they did not have social information.

Our final alternative model is an additive combination of the popularity model

and the performance model. This model, which we call the “Additive Model”, repre-

sents a situation in which some agents choose whom to follow based on preferential

attachment while other choose based on performance. Under this model the decision

probability becomes

𝜑𝑎𝑑𝑑
𝑖𝑗𝑡 ∝ 𝛼𝜑𝑝𝑜𝑝

𝑖𝑗𝑡 + (1 − 𝛼)𝜑𝑝𝑒𝑟𝑓𝑚
𝑖𝑗𝑡 ,
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where 𝛼 ∈ [0, 1] is a free parameter and again we use 𝜖𝑡 = 1
𝑀𝑡

as the smoothing

parameter. Comparing to the additive model allows us to verify that popularity and

performance are combined multiplicatively rather than additively.

4.10.8 Parameter Fitting

To estimate the parameters of these models we use a maximum likelihood procedure.

Letting 𝑇 denote the number of days we observe, letting 𝐹𝑡 denote the total of new

follow decisions on day 𝑡, letting 𝑠𝑜𝑢𝑟𝑐𝑒𝑓𝑡 denote the index of the follower in follow

decision 𝑓 on on day 𝑡, letting 𝑡𝑎𝑟𝑔𝑒𝑡𝑓𝑡 denote the index of the trader followed in

follow decision 𝑓 on on day 𝑡, the likelihood of the parameters given all of the new

follow decisions is
𝑇∏︁
𝑡=1

𝐹𝑡∏︁
𝑓=1

𝜑𝑠𝑜𝑢𝑟𝑐𝑒𝑓𝑡,𝑡𝑎𝑟𝑔𝑒𝑡𝑓𝑡,𝑡,

where the 𝜑 is determined by whichever of the models we are fitting. We then use

numerical optimization to maximize this likelihood and obtain the best fitting 𝛼, 𝛽𝑖,

𝛾, and 𝜂 parameters. When we fit the parameters of the social sampling model over

time, we simply compute the likelihood function restricted to the data points for each

day individually.

4.10.9 Model Fits

To quantitatively compare the fit of social sampling with our alternative models,

we compare the mean squared prediction error (MSE) of each model. Prediction

error is given by the difference between the expected number of new followers each

trader obtains and the actual number. The eToro dataset is highly unbalanced, with

most users having zero followers. To adjust for this imbalance, in addition to using

marginal mean squared error we also look a weighted mean squared prediction error,

with weights given by the inverse of the probability of sampling each data point.

We estimate the probability of sampling a data point by binning the popularity and

performance of each user on each day (according to the bins used in Figure 4-3), and

counting the number of user-day pairs that fall into each bin.
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Table 4.3: Results of model comparison.
Model Unadjusted MSE Adjusted MSE
Popularity Model 2.18805045175 618.976488667
Additive Model 2.11109662634 636.617485337
Social Sampling 2.15097403109 596.668627703
Performance Regression 3.07280958801 923.112970477
Full Regression 2.66340190835 767.600539636
Performance Model 3.07293303493 923.090627025

4.10.10 Robustness Checks

We also examine the adjusted MSE model fits using alternative performance metrics,

and on our confirmatory dataset. We look shorter and longer windows for the rolling

averages (7-day rolling average daily ROI and 60-day rolling average daily ROI), we

test whether we obtain similar results when we do not deal with missing data, and we

fit the social sampling model and the alternative models on our confirmatory dataset.

Social sampling obtains the best fit on the longer rolling average window, but obtains

slightly worse fit than the popularity model and the additive model on the shorter

rolling average window. A reason for this difference could be that the statistics pre-

sented to users were 30-day, 60-day, and 90-day aggregates, so we would expect to

see decisions being based on these longer time windows. Social sampling also obtains

the best fit when we do not deal with missing data. On our confirmatory set with the

30-day ROI performance metric, social sampling is less competitive with the popu-

larity model and the additive model. Social sampling still captures the multiplicative

interaction effect between popularity and performance better on the confirmatory

set, but the has poor overall performance due to social sampling underestimating the

positive effect of high popularity in the second year of our data. It is possible that

changes in the interface led to different behavior in this second year, or perhaps that

the performance statistics eToro used were changed so that ours are no longer a good

proxy, as with the shorter rolling average window results.
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4.10.11 Consistency Checks

We executed two tests to provide further evidence for the specific parametric form of

the social sampling model. We first examined the inferred value of the 𝜂 parameter

in the social sampling model. 𝜂 represents the expected reward from committing

to the best option, or in the case of the eToro data, the skill of the best trader as

measured by the expected proportion of performance signals that will be greater than

zero. To arrive at plausible actual values for what the skill of the “best trader” on

eToro might be, we first rank all traders according to the amount of evidence for

their success. For this ranking we use an aggregated single-day net profit values. We

achieve the ranking of the traders by taking the total number of days each trader

had positive single-day profit and subtracting the total number of days those traders

had negative single-day profit. This metric simultaneously considers both the total

amount of positive or negative evidence for trader skill in addition to the proportion

of positive evidence. For each of the top ten traders according to this metric, we then

compute a 95% Bayesian confidence interval (under a uniform prior) of the probability

that those users will achieve positive performance, assuming a Bernoulli model. These

confidence intervals are then plotted in Figure 4-7 along with the actual inferred “best

skill” 𝜂 parameter.

We also directly test a key assumption of the social sampling model. An ideal-

ized social sampling model predicts that the popularity-normalized number of new

followers each trader is expected to obtain should be constant given performance.

To check this assumption, we first calculate the number of new followers each trader

obtains on each day, divided by those traders’ popularity values on those days. We

then compute a logarithmic binning of trader popularity and our usual binary binning

our performance, and we plot the average popularity-normalized number of followers

in each bin. These values are plotted in Figure ??. The predicted constant value

of popularity-normalized new followers for high performing individuals is obtained

by taking the average number for poor performing individuals and multiplying that

number by 𝜂
1−𝜂

, as would be the case in the social sampling model in a fixed-size
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population.

4.10.12 Normative Posterior

To assess the macro-level predictions of the social sampling model we compute

𝑃 (𝑗 is good |𝑥𝑗,≤𝑡) =
(𝜂*)𝑤𝑗𝑡(1 − 𝜂*)𝑙𝑗𝑡

(𝜂*)𝑤𝑗𝑡(1 − 𝜂*)𝑙𝑗𝑡 + 0.5𝑤𝑗𝑡+𝑙𝑗𝑡
,

the probability each trader is good. Here, 𝑤𝑗𝑡 =
∑︀𝑑≤𝑡

𝑑=1 1(𝑥𝑗𝑑 = 1) is the number of

positive signals a trader has, and 𝑙𝑗𝑡 =
∑︀𝑑≤𝑡

𝑑=1 1(𝑥𝑗𝑑 = 0) is the number of negative

signals a trader has. We then normalize these values to obtain the probability given

by Thompson sampling on this posterior: 𝑃 (𝑗 is good |𝑥𝑗,≤𝑡)∑︀
𝑘 𝑃 (𝑘 is good |𝑥𝑘,≤𝑡)

.

4.10.13 Idealized Simulations

To perform our idealized simulation, we implement the environment assumed in a

theoretical justification of our model. In these simulations, there are 𝑀 options

that 𝑁 agents can choose to commit to on each of 𝑇 steps. Each of these options

generates a reward, either 0 or 1 on each round, with the rewards chosen according to

independent Bernoulli draws. We suppose that committing to a decision has a cost

of 0.5. Then 𝑀 − 1 of these options have expected return 0, while one option—the

“best option”—has positive expected return. In our simulations the best option has

Bernoulli parameter 𝜂*, which can be different from the agents’ assumed 𝜂. At time

𝑡, the agents are able to observe the decisions made in round 𝑡 − 1, as well as the

reward signals from round 𝑡−1. The agents in these simulations make their decisions

according to the social sampling model strategy either with 𝛾 = 1 or with alternative

scalings on popularity. In each round, every agent first selects an option to consider

with probability proportional to 𝑝𝛾𝑗𝑡 + 1
𝑀

, where the notation is as above. Each

agent then chooses to commit to the option that agent is considering with probability

𝜂𝑥𝑗𝑡(1 − 𝜂)1−𝑥𝑗𝑡 . When 𝛾 = 0 this process becomes the performance model. When

𝜂 = 0.5 this process becomes the popularity model.
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Figure 4-15: Performance of social sampling as a function of the number of agents in
the population.

We conduct several sets of simulations. The first set examined the impact of

alternative 𝛾 scaling exponents. For this experiment we look at the average reward

in the final round achieved by agents who committed to some option in that round,

which we call the “Mean Follower Performance”. The results of these simulations are

shown in Figure 4-7. Each line in this figure represents a different combination of

simulation parameters. We look at all combinations of 𝑁 ∈ [1000, 5000, 10000], 𝑀 ∈

[5, 10, 100], 𝑇 ∈ [100, 500, 1000], 𝜂* ∈ [0.6, 0.7, 0.8]. For this simulation experiment, we

assume 𝜂 = 𝜂*. Each data point is an average over 500 repetitions for that particular

combination of simulation parameters. The panels of the figure are separated by 𝜂*

value. Line color also indicates 𝜂*, line size indicates 𝑁 , line type indicates 𝑀 , and

transparency indicates 𝑇 .

We also compare convergence over time across single-agent Thompson sampling,

social sampling (with 𝛾 = 1), and group Thompson sampling. Here we fix the number

of options to 100, and look at the case when one option has 𝜂* = 0.8. We then plot the

mean performance of each agent using each algorithm at each time step, and observe

how this mean performance varies over time. The impact of varying the number of

agents in this simulation in shown in Figure 4-15. Social sampling performs most

consistently best when the number of agents is large compared to the number of

options.

To conduct our evolutionary simulations, we simulate a number of generations

of an infinite population. This population begins with 1% social samplers, and the

rest independent decision-makers (social samplers with 𝛾 = 0. Each generation is
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Figure 4-16: Performance of social sampling (𝛾 = 1) with 𝜂 values that do not match
the idealized environment.

faced with 10 options and 50 time steps to learn about those options. A different

option each generation has positive expected value, while the other options in each

generation have equal change of positive or negative signals. The percentage of social

samplers in each following generation is chosen according to the relative performance

of the group of social samplers versus the group of independent decision-makers.

We also test how well the social sampling model performs in a setting where the

environment model differs from the model assumed by the agents in our Bayesian

justification. We again look at mean mimicker performance in the final round of

each simulation. Here, though, we fix 𝛾 = 1 and consider 𝜂 values ranging from 0.5

to 0.9, independent of the environment value of 𝜂*. (Note, 𝜂 = 0.5 corresponds to

ignoring performance information.) The results of these simulations are shown in

Figure 4-16. Each line in this figure represents a different combination of simulation

parameters, and the parameter sweep is over the same space as our first set of simu-

lations. The panels and line characteristics are also determined as in the first set of

simulations. These simulations indicate that social sampling is relatively robust to

deviations between agent’s assumed environment model and the actual environment

model.

We also report on a final set of simulations here to examine the extent to which a

population can be manipulated by an initial artificial boost in popularity of an inferior

option. In these simulations, rather than all options starting out with popularity

𝑝𝑗0 = 0, one option 𝑗′ ̸= 𝑗* is initialized with 𝑝𝑗′0 = 𝑏, where 𝑏 represents a temporary
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Figure 4-17: Simulated manipulations of social sampling.

“bump” in popularity. This bump in popularity is removed after the first round. In

these simulations we also introduce another parameter of the simulations, which we

call the “data rate”. The data rate 𝑑 represents the amount of performance information

agents get about each option. In the simulations, the reward of each option in each

round is hidden with probability 𝑑. If an agent samples an option to consider based

on popularity that then turns out to have a hidden reward, the agent simply chooses

to commit to the option with probability 0.5. As the outcome measure in these

simulations we examine the difference in popularity in the final round between the

best option and the “bumped” inferior option, while normalizing by the total number

of agents, i.e. 𝑝𝑗*𝑇−𝑝𝑗′𝑇
𝑁

.

In this final set of simulations we take 𝛾 = 1. We also consider 𝑏 ∈ [1, 10, 100]

and 𝑑 ∈ [0.01, 0.1, 1] in addition to the same parameter sweep as in the first set of

simulations. The results of these simulations are shown in Figure 4-17. Each point

in this figure is an average over 500 repetitions of the combination of simulation

parameters the point represents. The border color of the points indicates 𝜂*, the

fill color indicates 𝑁 , the shape indicates 𝑀 , the transparency indicates 𝑇 , the size

indicates 𝑏, and the panel indicates 𝑑. Social sampling is robust to manipulation when

enough data is available, but fragile otherwise.
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4.10.14 Simulating Performance on eToro Data

In addition to our idealized simulations, we also retrospectively simulate the perfor-

mance of social sampling using the actual profits and losses from trades on eToro. We

do these simulations in two ways. The first way does not use popularity information

as it is observed in the behavioral data at all. For this simulation, we compute what

the expected popularity of each trader would be if an infinite population of social

sampling agents was choosing between them, given the actual performance signals of

those traders. These social sampling agents then use this simulated popularity for

their own decisions. The second way uses the observed popularity values from eToro

instead of ideal popularity values. We can think about the first simulation as the

performance of a population of social samplers in the eToro environment, and we can

think about the second type of simulation as what a single social sampler using the

social information from the actual followers on eToro.
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Chapter 5

Shared Belief Formation for

Coordination

In the prior two chapters I have investigated mechanisms that promote accurate

shared belief formation about the external world. A final modeling challenge I take

up in this thesis is how a mechanism for forming accurate interpersonal shared belief

contributes to coordination—solving the problem of aligned actions [65]. Whether in

groups of humans or groups of computer agents, collaboration is most effective be-

tween individuals who have the ability to coordinate on a joint strategy for collective

action. However, in general a rational actor will only intend to coordinate if that actor

believes the other group members have the same intention. This circular dependence

makes rational coordination difficult in uncertain environments if communication be-

tween actors is unreliable and no prior agreements have been made. An important

normative question with regard to coordination in these ad hoc settings is therefore

how one can come to believe that other actors will coordinate, and with regard to

systems involving humans, an important empirical question is how humans arrive

at these expectations. I introduce an exact algorithm for computing the infinitely

recursive hierarchy of graded beliefs required for rational coordination in uncertain

environments, and I introduce a novel mechanism for multiagent coordination that

uses it. This algorithm is valid in any environment with a finite state space, and

extensions to certain countably infinite state spaces are likely possible. I test this
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mechanism for multiagent coordination as a model for human decisions in a simple

coordination game using existing experimental data. I then explore via simulations

whether modeling humans in this way may improve human-agent collaboration.

5.1 Introduction

Forming shared plans that support mutually beneficial behavior within a group is

central to collaborative social interaction and collective intelligence [44]. Indeed,

many common organizational practices are designed to facilitate shared knowledge of

the structure and goals of organizations, as well as mutual recognition of the roles

that individuals in the organizations play. Once teams become physically separated

and responsiveness or frequency of communication declines, the challenge of forming

shared plans increases. Part of this difficulty is fundamentally computational. In

theory, coming to a fully mutually recognized agreement on even a simple action

plan among two choices can be literally impossible if communication is even mildly

unreliable, even if an arbitrary amount of communication is allowed [45, 76].

This problem is well-studied within the AI literature (e.g., [37]), though the

core difficulties still manifest in contemporary research on “ad hoc coordination”—

collaborative multiagent planning with previously unknown teammates [108]. How-

ever, surprisingly little is known about the strategies that humans use to overcome

the difficulties of coordination [113]. Understanding how and when people try to

coordinate is critical to furthering our understanding of human group behavior, as

well as to the design of agents for human-agent collectives [56]. Existing attempts at

modeling human coordination have focused either on unstructured predictive mod-

els (e.g., [33]) or bounded depth socially recursive reasoning models (e.g., [34, 127]),

but there is reason to believe that these accounts miss important aspects of human

coordination.

One concept that appears repeatedly in formal treatments of coordination but

has not appeared meaningfully in empirical modeling is common knowledge. Two

agents have common knowledge if both agents have infinitely nested knowledge of
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the other agent’s knowledge of a proposition, i.e. the first agent knows the second

agent knows, the first agent knows the second agent knows the first agent knows,

etc. Common knowledge has been shown to be necessary for exact coordination [45],

and a probabilistic generalization of common knowledge, called common p-belief, has

been been shown to be necessary for approximate coordination [87]. While these

notions are clearly important normatively, it is not entirely clear how important they

are empirically in human coordination. Indeed, supposing that humans are able to

mentally represent an infinitely recursive belief state seems a priori implausible, and

the need to represent and infer this infinite recursive belief state has also been a

barrier to empirically testing models involving common knowledge.

Nevertheless, building on the existing normative results, a group of researchers

recently designed a set of experiments to test whether people are able to recognize

situations in which common knowledge might obtain [113] (hereafter referred to as the

“Thomas experiments”). These researchers argued that people do possess a distinct

mental representation of common knowledge by showing that people will attempt

to coordinate more often in situations where common knowledge can be inferred.

However, this previous work did not formalize this claim in a model or rigorously test

it against plausible alternative computational models of coordination. This existing

empirical work therefore leaves open several important scientific questions that a

modeling effort can help address. In particular: How might people mentally represent

common p-belief? Do people reason about graded levels of common p-belief, or just

“sufficiently high” common p-belief? Finally, what computational processes could

people use to infer common p-belief?

In this work I use a previously established fixed point characterization of common

p-belief [87] to formulate a novel model of human coordination. In finite state spaces

this characterization yields an exact finite representation of common p-belief, which I

use to develop an efficient algorithm for computing common p-belief. This algorithm

allows me to simulate models that rely on common p-belief. Because of the normative

importance of common p-belief in coordination problems, this algorithm may also be

independently useful for coordination in artificial multiagent systems. I show using

105



data from the Thomas experiments that this model provides a better account of

human decisions than three alternative models in a simple coordination task. Finally,

I show via simulations based on the data from the Thomas experiments that modeling

humans in this way may improve human-agent coordination.

5.2 Background

We first provide a description of the coordination task we will study in this chapter:

the well-known coordinated attack problem. We then provide an overview of the

formal definitions of common knowledge and common p-belief, and their relationship

to the coordinated attack problem.

5.2.1 Coordinated Attack Problem

The coordination task that we study in this chapter is alternatively called the coor-

dinated attack problem, the two generals problem, or the email game. The original

formulation of this task was posed in the literature on distributed computer systems

to illustrate the impossibility of achieving consensus among distributed computer

processors that use an unreliable message-passing system [45], and the problem was

later adapted by economists to a game theoretic context [100]. Here we focus on the

game theoretic adaptation, as this formulation is more amenable to decision-theoretic

modeling and thus more relevant for modeling human behavior.1

In this task the world can be in one of two states, 𝑥 = 1 or 𝑥 = 0. The state of

the world determines which of two games two players will play together. The payoff

matrices for these two games are as follows (𝑎 > 𝑐 > max(𝑏, 𝑑)):

𝑥 = 1 𝐴 𝐵

𝐴 𝑎,𝑎 𝑏,𝑐

𝐵 𝑐,𝑏 𝑐,𝑐

𝑥 = 0 𝐴 𝐵

𝐴 𝑑,𝑑 𝑏,𝑐

𝐵 𝑐,𝑏 𝑐,𝑐

1Our exposition largely assumes familiarity with rudimentary game theory, and familiarity with
measure-theoretic probability as it appears in incomplete information games.
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The players receive the optimal payoff if they coordinate on both playing 𝐴 when

𝑥 = 1, but playing 𝐴 is risky. Playing 𝐴 is inferior to playing 𝐵 if 𝑥 = 0 or if there

is a mismatch between the players’ actions. Playing 𝐵 is safe with a sure payoff of

𝑐. Thus in order for it to be rational to play 𝐴, a player must believe with sufficient

confidence both that the world state is 𝑥 = 1 and that the other player will play 𝐴.

5.2.2 Common p-Belief

In order for a player to believe the other player will play 𝐴 in this game, it is not

enough for that player to believe that the other player knows 𝑥 = 1. If the second

player does not believe that the first player knows 𝑥 = 1, then the second player will

not try to coordinate. Therefore the first player must also at least believe that the

second player believes the first player knows 𝑥 = 1. However, it turns out even this

amount of knowledge does not suffice. In fact, an infinite hierarchy of recursive belief

is needed [88]. This infinite hierarchy of beliefs has been formalized using a construct

called common p-belief, which we now define.

Using standard definitions from game theory, we define a two-player finite Bayesian

game to be a tuple ((Ω, 𝜇, (Π0,Π1)), (𝒜0,𝒜1), (𝑢0, 𝑢1)) consisting of a finite state space

Ω = {𝜔1, . . . , 𝜔|Ω|}, a probability measure 𝜇 defined over that state space, the infor-

mation partition Π𝑖 of each player 𝑖, the action set 𝒜𝑖 of each player, and the utility

function 𝑢𝑖 of each player. Elements of Ω are called states, and subsets of Ω are

called events. For a given world state 𝜔 and player 𝑖 the partition of Ω, Π𝑖, uniquely

specifies the beliefs of player 𝑖 in the form of posterior probabilities. Π𝑖(𝜔), which

indicates the unique element of Π𝑖 containing 𝜔, can be thought of as the observation

that player 𝑖 receives when the true state 𝜔 occurs. Specifically for any event 𝐸 ⊆ Ω,

𝜇(𝐸 |Π𝑖(𝜔)) is the probability that player 𝑖 assigns to 𝐸 having occurred given 𝜔 has

occurred. As a shorthand, we write 𝑃𝑖(𝐸 |𝜔) = 𝜇(𝐸 |Π𝑖(𝜔)). Using another common

shorthand, we will treat propositions and events satisfying those propositions inter-

changeably. For example, in the coordinated attack problem we will be interested in

whether there is “common p-belief” that 𝑥 = 1, which will refer to common p-belief

in the event 𝐶 = {𝜔 ∈ Ω : 𝑥(𝜔) = 1}, where 𝑥 formally is a random variable mapping
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Ω → {0, 1}.

Following [28], we say that player 𝑖 𝑝-believes2 an event 𝐸 at 𝜔 if 𝑃𝑖(𝐸 |𝜔) ≥ 𝑝. An

event 𝐸 is said to be 𝑝-evident if for all 𝜔 ∈ 𝐸 and for all players 𝑖, player 𝑖 𝑝-believes

𝐸 at 𝜔. In a slight divergence from the standard terminology of this literature, we say

an event 𝐸 is super-𝑝-evident if for all 𝜔 ∈ 𝐸 and for all players 𝑖, 𝑃𝑖(𝐸 |𝜔) > 𝑝 (the

only difference being strict inequality). We say there is common 𝑝-belief in an event

𝐶 at state 𝜔 if there exists a 𝑝-evident event 𝐸 with 𝜔 ∈ 𝐸, and for all 𝜔′ ∈ 𝐸 and

all players 𝑖, player 𝑖 𝑝-believes 𝐶 at 𝜔′. Common knowledge is defined as common

𝑝-belief for 𝑝 = 1.

A critically important result of [87] states that this definition of common p-belief

is equivalent to a more intuitive infinitely recursive formulation. The importance of

this definition of common p-belief is therefore that it provides a fixed point characteri-

zation of common p-belief strictly in terms of beliefs about events rather than directly

in terms of beliefs about other players. When Ω is finite, common p-belief can thus

be represented in terms of a finite set of states, rather than an infinite hierarchy of

beliefs.

5.3 Models

We now describe four strategies for coordination in the coordinated attack game

we study. Two of these strategies involve the computation of p-evident events and

common p-belief, which we will use to test whether human coordination behavior

could be explained in terms of reasoning about p-evident events. The other two

strategies serve as baselines.

5.3.1 Rational p-Belief

The first strategy we consider represents an agent who maximizes expected utility

at an equilibrium point of the coordinated attack problem we study. The strategy

2We use an italicized “𝑝” when referring to specific values of p-belief and a non-italicized “p” when
referring to the terms in general.
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is implemented as follows: player 𝑖 plays action 𝐴 if and only if the player believes

with probability at least 𝑝* = 𝑐−𝑏
𝑎−𝑏

that both players have common 𝑝*-belief that

𝑥 = 1. This strategy forms an equilibrium of the coordinated attack problem if

𝑝* > 𝑃𝑖(𝑥 = 1) and if evidence that 𝑥 = 1 always leads to certain belief that 𝑥 = 1,

i.e. 𝑃𝑖(𝑥 = 1 |𝜔) > 𝑃𝑖(𝑥 = 1) ⇒ 𝑃𝑖(𝑥 = 1 |𝜔) = 1 for all 𝜔. These conditions will

be satisfied by the specific state spaces and payoffs we use to represent the Thomas

experiments. We call this model the rational p-belief strategy. The proof that this

strategy forms an equilibrium, including a derivation for the specific form of 𝑝*, is

included in our supplementary materials.

5.3.2 Matched p-Belief

The second strategy we consider is a novel probabilistic relaxation of the rational

p-belief strategy. Humans have been shown to exhibit a behavior called probability

matching in many decision-making settings [49, 121]. Probability matching consists of

taking the probability 𝑝 that a decision is the best decision available, and choosing to

make that decision with probability 𝑝. While probability matching is not utility max-

imizing, it can be viewed as rational if players are performing sample-based Bayesian

inference and if taking samples is costly [120]. Motivated by this frequently observed

behavior, we propose a model we call the matched p-belief strategy. A player 𝑖 using

this strategy chooses action 𝐴 at 𝜔 with probability 𝑝 equal to the maximal common

p-belief that the player perceives at 𝜔, i.e. the largest value such that 𝑖 𝑝-believes at

𝜔 that there is common 𝑝-belief that 𝑥 = 1.

5.3.3 Iterated Maximization

Next we consider a well-known model of boundedly rational behavior sometimes called

a “level-𝑘” depth of reasoning model. This family of models has been shown to be

consistent with human behavior in a diversity of settings, including some coordination

games (e.g., [127]), and hence is a strong baseline. Since the term “level-𝑘” is used

for many slightly different models, we call our instantiation of this model the iterated
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maximization strategy. This strategy assumes that players have a certain fixed level of

recursive social reasoning 𝑘. A player using the level-𝑘 iterated maximization strategy

chooses the action that maximizes that player’s expected utility when playing with a

player using the level-(𝑘−1) strategy. The level-0 player takes action 𝐴 at 𝜔 if 𝑃𝑖(𝑥 =

1 |𝜔) > 𝑐−𝑏
𝑎−𝑏

. This level-0 strategy corresponds to the player maximizing expected

utility assuming the player can control the actions of both players, or equivalently

that the optimal joint action is taken according to that player’s beliefs. While in

general the predictions of level-𝑘 models depend strongly on the specification of the

level-0 strategy, in informal exploration we found that the qualitative conclusions

of our work are robust to whether we instead specify the level-0 strategy as always

playing 𝐴 or choosing between 𝐴 and 𝐵 uniformly randomly.

5.3.4 Iterated Matching

Finally, we also consider a less common depth of reasoning model that combines the

iterated maximization strategy with probability matching behavior, which we call

iterated matching. Like the iterated maximization strategy, this strategy assumes that

players have a certain fixed level of recursive social reasoning 𝑘. However, instead of

choosing the action that maximizes expected utility, a level-𝑘 player using the iterated

matching strategy chooses to take action 𝐴 with probability equal to that player’s

belief that 𝑥 = 1, times the expected probability that a level-(𝑘−1) companion player

would play 𝐴. The level-0 player probability matches on 𝑃𝑖(𝑥 = 1 |𝜔).

5.4 Algorithms

In this section we present the algorithms we use to implement each of the models we

consider. To the best of our knowledge the existing literature on common p-belief has

yet to offer algorithms for computing common p-belief (or in our case the perceived

maximal common p-belief) for a given world state and observation model. This

computation is central to the rational and matched p-belief strategies. Hence we offer

the first fully computational account of coordination via reasoning about p-evident
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events. Algorithms for iterated reasoning are straightforward and well-known.

The challenge in developing an algorithm for computing a player’s perception of

the maximal common p-belief is avoiding enumeration over all exponentially many

possible subsets of Ω. While it is straightforward to evaluate whether a particular

given event is 𝑝-evident, the definition of common 𝑝-belief requires only the exis-

tence of some such event. Computing perceived maximal common p-belief therefore

requires jointly searching over values of 𝑝 and over subsets of Ω. We leverage the

generic mathematical structure of p-evident events in finite state spaces in order to

develop an exact algorithm that avoids enumerating all subsets. Our algorithm only

requires a search that is polynomial in the size of the state space. Of course, the state

spaces in many problems are often themselves exponential in some underlying param-

eter variables, and hence future improvements on this algorithm would be desirable.

Extensions to at least certain countably infinite or continuous state spaces are likely

possible as well, such as perhaps by refining the search to only consider events that

have non-zero probability given the player’s observations.

5.4.1 Computing Information Partitions

Our algorithms require access to the information partitions of each player. However,

directly specifying the information partitions that people have in a naturalistic set-

ting, such as in the data we use from the Thomas experiments, is difficult. Instead,

we take the approach of specifying a plausible generative probabilistic world model,

and we then construct the information partitions from this factored representation

via a straightforward algorithm. The generative world model specifies the pieces of

information, or “observations”, that each player receives. The algorithm for generating

information partitions, which is specified precisely in our supplementary materials,

consists of iterating over all combinations of random values of variables in the genera-

tive world model, treating each such combination as a state in Ω, and for each player

grouping together the states that yield identical observations.
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Algorithm 1 common_p_belief(𝐶, 𝑖, 𝜔)

𝐸 := Ω; 𝐹 := Ω
while 𝑃𝑖(𝐹 |𝜔) > 0 do

𝑝 := evidence_level(𝐹,𝐶)
𝐸 := 𝐹
𝐹 := super_p_evident(𝐸,𝐶, 𝑝)

𝑝 := evidence_level(𝐸,𝐶)
return 𝑝

Algorithm 2 evidence_level(𝐸, 𝐶)
return min𝜔∈𝐸 min_belief(𝐸,𝐶, 𝜔)

5.4.2 Computing Common p-Belief

Algorithms 1-4 present the functions needed to compute perceived maximal common

p-belief. Formally, given a player 𝑖, a particular state 𝜔, and an event 𝐶, Algorithm

1 computes the largest value 𝑝 for which player 𝑖 𝑝-believes that there is common

𝑝-belief in 𝐶. Note that it is insufficient to compute the largest value of 𝑝 for which

there is common 𝑝-belief in 𝐶 at 𝜔, since in general at state 𝜔 player 𝑖 only knows

that the event Π𝑖(𝜔) has occurred, not that 𝜔 specifically has occurred. Relatedly,

note that while Algorithm 1 takes 𝜔 as input for convenience, the algorithm only

depends on Π𝑖(𝜔), and hence could be executed by a player.

Formal proofs of the correctness of these algorithms are included in our supplemen-

tary materials. The basic logic of the algorithms is to maintain a candidate p-evident

event 𝐸, and to gradually remove elements from 𝐸 to make it more p-evident until a

point where player 𝑖 believes the event to be impossible because the elements of the

event are no longer consistent with that player’s observations. By only removing ele-

ments that either cause 𝐸 to be unlikely or cause 𝐶 to be unlikely, we are guaranteed

to arrive at a more p-evident event at each iteration, and one that preserves belief

in 𝐶. By starting with 𝐸 as the entire state space, the final candidate event must

be the largest, most p-evident event that player 𝑖 𝑝-believes at state 𝜔 in which 𝐶

is common 𝑝-belief. This algorithm can also be viewed as traversing a unique nested

sequence of maximally evident events (independent of 𝑖 and 𝜔) induced by 𝐶 and the

structure of (Ω, 𝜇, (Π0,Π1)), halting at the first event in this sequence that does not
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Algorithm 3 min_belief(𝐸, 𝐶, 𝜔)
return min𝑖∈{0,1} min(𝑃𝑖(𝐸 |𝜔), 𝑃𝑖(𝐶 |𝜔))

Algorithm 4 super_p_evident(𝐸, 𝐶, 𝑝)
while 𝐸 has changed do

if ∃ 𝜔 ∈ 𝐸 : min_belief(𝐸,𝐶, 𝜔) ≤ 𝑝 then
𝐸 := 𝐸 ∖ {𝜔}

return 𝐸

include any elements of Π𝑖(𝜔).

The rational p-belief strategy consists of player 𝑖 taking action 𝐴 if common_p_belief(𝑥 =

1, 𝑖, 𝜔) > 𝑐−𝑏
𝑎−𝑏

. The matched p-belief strategy consists of player 𝑖 choosing 𝐴 with

probability common_p_belief(𝑥 = 1, 𝑖, 𝜔).

5.4.3 Iterated Reasoning

We now present our algorithms for the iterated reasoning strategies. For level 𝑘 > 0,

given a player 𝑖 and a state 𝜔, the iterated maximization strategy computes

𝑓𝑘
𝑖 (𝜔) = 1

(︁ ∑︁
𝜔′∈Π𝑖(𝜔)

𝑃𝑖(𝜔
′ |𝜔)

(︁
𝑃𝑖(𝑥 = 1 |𝜔′)𝑓𝑘−1

1−𝑖 (𝜔′)𝑎

+ 𝑃𝑖(𝑥 = 0 |𝜔′)𝑓𝑘−1
1−𝑖 (𝜔′)𝑑 +

(︀
1 − 𝑓𝑘−1

1−𝑖 (𝜔′)
)︀
𝑏
)︁
> 𝑐

)︁
,

where 1() is the indicator function, and 𝑓 0
𝑖 (𝜔) = 1(𝑃𝑖(𝑥 = 1 |𝜔) > 𝑐−𝑏

𝑎−𝑏
). If 𝑓𝑘

𝑖 (𝜔) = 1,

then player 𝑖 plays 𝐴, and otherwise player 𝑖 plays 𝐵. For the iterated matching

strategy,

𝑞𝑘𝑖 (𝜔) = 𝑃𝑖(𝑥 = 1 |𝜔) ·
∑︁

𝜔′∈Π𝑖(𝜔)

𝑃𝑖(𝜔
′ |𝜔)𝑞𝑘−1

1−𝑖 (𝜔′).

𝐴 is then played with probability 𝑞𝑘𝑖 , 𝑞0𝑖 = 𝑃𝑖(𝑥 = 1 |𝜔).
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Figure 5-1: Data from the Thomas experiments and the predictions of each of the
models we consider.

5.5 Data

We now present the data we use for our empirical results. The dataset comes from

the Thomas experiments [113]. These experiments presented participants with a

stylized coordinated attack problem couched in a story about the butcher and the

baker of a town. In their story, these merchants can either work together to produce

hot dogs, or they can work separately to produce chicken wings and dinner rolls,

respectively. The merchants can sell chicken wings and dinner rolls separately for a

constant profit of 𝑐 each on any day, but the profit of hot dogs varies from day-to-day.

The merchants make a profit of 𝑎 each if 𝑥 = 1 on a particular day or 𝑑 if 𝑥 = 0. There

is also a loudspeaker that sometimes publicly announces the prices of hot dogs, and

a messenger who runs around the town delivering messages. The experiments had

four different knowledge conditions that specified the information that participants

received:

1. Private Knowledge: “The Messenger Boy [sic] has not seen the Butcher today,

so he cannot tell you anything about what the Butcher knows.”

2. Secondary Knowledge: “The Messenger Boy says he stopped by the butcher
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shop before coming to your bakery. He tells you that the Butcher knows what

today’s hot dog price is. However, he says that he forgot to mention to the

Butcher that he was coming to see you, so the Butcher is not aware that you

know today’s hot dog price.”

3. Tertiary Knowledge: “The Messenger Boy mentions that he is heading over

to the butcher shop, and will let the Butcher know today’s price as well. The

Messenger Boy will also tell the Butcher that he just came from your bakery

and told you the price. However, the Messenger Boy will not inform the Butcher

that he told you he would be heading over there. So, while the Butcher is aware

that you know today’s price, he is not aware that you know that he knows that.”

4. Common Knowledge: “The loudspeaker broadcast the market price . . .

The messenger boy did not come by. Because the market price was broadcast

on the loudspeaker, the Butcher knows today’s price, and he knows that you

know this information as well.”

After being shown this information as well as additional information indicating

that 𝑥 = 1, the participants were asked whether they would like to try to make hot

dogs or not. The dataset from this experiment is visualized in Figure 5-1. Since the

researchers provided evidence that the behavior of participants in their two-player

experiments was invariant to payoffs, here we focus on their first payoff condition, in

which 𝑎 = 1.1, 𝑏 = 0, 𝑐 = 1, and 𝑑 = 0.4.

We use this dataset to test whether the coordination strategies we have described

are good models of human coordination in this setting. In order to be able to generate

predictions for these models, we must determine a state space that represents the story

in the Thomas experiments. We designed the following two probabilistic generative

world models (one for the messenger, and one for the loudspeaker) to be consistent

with a reading of the knowledge conditions from those experiments. The observe(𝑖,𝑜)
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function indicates that player 𝑖 observes 𝑜.

Messenger:

𝑥 ∼ Bernoulli(𝛿)

visit0 ∼ Bernoulli(0.5)

visit1 ∼ Bernoulli(0.5)

tell_plan0 ∼ visit0 ∧ Bernoulli(0.5)

tell_plan1 ∼ visit1 ∧ Bernoulli(0.5)

if visit0:

observe(0, 𝑥)

if tell_plan0:

observe(0, (visit1, tell_plan1))

if visit1:

observe(1, (𝑥, visit0))

if tell_plan1:

observe(1, tell_plan0)

Loudspeaker:

𝑥 ∼ Bernoulli(𝛿)

broadcast ∼ Bernoulli(0.5)

if broadcast:

observe(0, 𝑥), observe(1, 𝑥)

These models share a free parameter 𝛿. We take 𝛿 = 0.25. This setting provides

a closer fit to the empirical data than the maximum entropy setting of 𝛿 = 0.5. We

interpret statements that one player is “not aware” as meaning that the player could

have been made aware, and assign a maximum entropy probability of 0.5 to these

events.

The state spaces corresponding to these world models consist of the sets of all
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Figure 5-2: The mean-squared error of each model’s predictions on the Thomas ex-
periments’ data.

possible combinations of variables in the models’ generative processes: (𝑥, visit0,

visit1, tell_plan0, tell_plan0) for Ωmessenger and (𝑥, broadcast) for Ωloudspeaker. The

generative processes also uniquely specify probability measures over each state space.

The knowledge conditions correspond to the following states. Private: (1, 1, 0, 1, 0) ∈

Ωmessenger, Secondary: (1, 1, 1, 0, 1) ∈ Ωmessenger, Tertiary: (1, 1, 1, 1, 0) ∈ Ωmessenger,

and Common Knowledge: (1, 1) ∈ Ωloudspeaker. The participants act as player 0 in all

but the secondary condition. Due to high ambiguity in the wording of the private

knowledge condition, we considered two plausible readings. Either the messenger is

communicating an intention to not visit the other player, or the messenger is being

unhelpful in not offering any information about the messenger’s plan. By using the

state (1, 1, 0, 1, 0) we assume the first interpretation. This interpretation results in a

better empirical fit.

5.6 Results

We now present our empirical results. We first examine the predictions of each of

the coordination strategies we consider given the generative processes representing

the Thomas experiments. We then examine the extent to which a computer agent

equipped with the best fitting model of human coordination is able to achieve higher

payoffs in a simulated human-agent coordination problem. All of our code is available
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online at https://github.com/pkrafft/modeling-human-ad-hoc-coordination.

5.6.1 Model Comparison

To perform model comparison we compute the probability of choosing 𝐴 that each

model predicts given our formal representations of each of the four knowledge con-

ditions. We then compare these predicted probabilities to the actual probabilities

observed in the Thomas experiments. For the two iterated reasoning models we use

a grid search over [0, 1, 2, 3, 4, 5] to find the best fitting 𝑘 for each model (ultimately

𝑘 = 1 in iterated maximization and 𝑘 = 3 in iterated matching). The specific predic-

tions of each model are shown in Figure 5-1. As shown in Figure 5-2, the matched

p-belief model achieves the lowest mean-squared error. Qualitatively, the most strik-

ing aspect of the data that the matched p-belief model successfully captures is the

similarity in the probability of coordination between the secondary and tertiary knowl-

edge conditions. The two models that involve maximizing agents (rational p-belief

and iterated maximization) both make predictions that are too extreme. The iter-

ated matching model offers a competitive second place fit to the data, but it fails to

capture the similarity between the middle two knowledge conditions.

The reason that the matched p-belief model makes good predictions for the two

middle conditions is that the player in both of those conditions has the same amount

of uncertainty appearing at some level of that player’s infinite recursive hierarchy of

interpersonal beliefs. Common p-belief essentially represents a minimum taken over

all these levels, and thus the common p-belief in each of those two conditions is the

same. The rational p-belief model is aware of the uncertainty at higher levels of

recursive belief, but its predictions are too coarse due to the assumption of utility

maximization. An interesting avenue for future work is to examine whether the

rational p-belief model can be relaxed in any other way to allow for intermediate

predictions, such as by allowing for heterogeneity in interpretations of the world

model across agents. It is possible that the matched p-belief model is approximating

such a case.
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Figure 5-3: Performance of agents in our simulated human-agent coordination ex-
periments. A strategy’s marginal value is the expected sum of payoffs the strategy
obtained in each of the four knowledge conditions, minus the payoffs that could have
been obtained by always playing 𝐵.

5.6.2 Human-Agent Coordination

Besides testing the fit of the models of human coordination that we have proposed,

we are also interested in whether the best fitting model helps us improve outcomes

in human-agent coordination. We use the data from the Thomas experiments to

evaluate this possibility. For this task our computer agents implement what we call

a “cognitive strategy”. An agent using the cognitive strategy chooses the action that

maximizes expected utility under an assumption that the agent’s companion is using

the matched p-belief model. These agents play the humans’ companion player in each

of the four knowledge conditions of the Thomas experiments (player 1 in all but the

Secondary condition). We evaluate the payoffs from the agents’ actions using the

human data from the Thomas experiments. In this simulation we vary the payoffs

(𝑎, 𝑏, 𝑐, 𝑑), and we assume that the humans would remain payoff invariant across the

range of payoffs that we use. This assumption is reasonable given that participants in

the Thomas experiments displayed payoff invariance in the two-agent case. We vary

the payoffs according to risk, taking the payoffs to be (1, 0, 𝑝*, 0) for a particular risk

level 𝑝* = 𝑐−𝑏
𝑎−𝑏

. As shown in Figure 5-3, we find that having the matched p-belief model

of human coordination may help in human-agent coordination. We compared to two

baseline strategies: an agent using a “private heuristic” who always coordinates if the
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agent knows 𝑥 = 1, and an agent using a “pair heuristic” who always coordinates if the

agent knows that both the agent and the human know 𝑥 = 1. The private heuristic

achieves good performance for low risk levels, and the pair heuristic achieves good

performance for high risk levels. The cognitive strategy achieves good performance

at both low and high levels of risk, and only has negative marginal value over always

playing the safe action B at very high levels of risk.

5.7 Discussion

In the present chapter I focused on laying the groundwork for using common p-belief

in AI and cognitive modeling. In particular, I developed an efficient algorithm for

the inference of maximal perceived common p-belief, I showed that the coordination

strategy of probability matching on common p-belief explains certain surprising qual-

itative features of existing data from a previous human experiment, and I showed

that this model may also help improve agent outcomes in human-agent coordination.

This work has three main limitations. Due to the small amount of human data I had

and the lack of a held-out test set, my empirical results are necessarily only sugges-

tive. While the data are inconsistent with the rational p-belief model and the iterated

maximization model, the predictions of the iterated matching model and the matched

p-belief model are both reasonably good. The strongest evidence we have favoring the

matched p-belief model is this model’s ability to produce equal amounts of coordina-

tion in the secondary and tertiary knowledge conditions as well as a low amount with

private knowledge and a high amount with common knowledge. No iterated reason-

ing model under any formulation we could find of the Thomas experiments was able

to capture the equality between the two middle conditions while maintaining good

predictions at the extremes. Two other important limitations of my work are that

the coordination task I consider did not involve intentional communication, and that

the state and action spaces of the task were simple. While these features allowed me

to easily test the predictions of each of my alternative models, it would be interesting

to see how the models I considered would compare in more complex environments. A
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related interesting direction for future work is the application of inference of common

p-belief through reasoning about p-evident events to artificial distributed systems,

such as for developing or analyzing bitcoin/blockchain-like protocols, synchronizing

remote servers, or distributed planning in ad hoc multi-robot teams.

5.8 Proofs

These supplementary sections present the proofs of the correctness of our algorithms.

Our key proofs are self-contained, but they rely on some preliminary results involving

the structure of p-evident events in finite probability spaces. We first offer proofs

of these preliminary results in the “Initial Results” section. We then prove that the

rational p-belief strategy is an equilibrium in the “Models” section. Finally, we show

the correctness of our algorithm for computing perceived maximal common p-belief in

the “Algorithms” section. This final section also includes our algorithm for computing

information partitions from a given probabilistic generative world model.

All of the proofs are original. Some of the less trivial lemmas and propositions may

be novel contributions to the literature on p-evident events. In particular, we know

of no work that explores the structure of what we will call “maximally evident 𝐶-

indicating events”, i.e. maximally p-evident events in which 𝐶 is common knowledge

at a given state 𝜔. Our main result along these lines will be that any finite state space

has a unique representation as a nested sequence of maximally evident 𝐶-indicating

events. This result is central to understanding our algorithm for computing common

p-belief.

5.8.1 Definitions

We first restate the most relevant definitions from our main text in a clearer format,

and we give several additional definitions that will be helpful in our proofs. As

described in the main text, we assume a Bayesian game with a finite state space

Ω = {𝜔1, . . . , 𝜔|Ω|} and information partitions Π0 and Π1, which are simply partitions

of the state space Ω. The notation Π𝑖(𝜔) indicates the unique element of Π𝑖 that
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includes the state 𝜔. These information partitions and a measure 𝜇 defined over Ω

induce the conditional distribution 𝑃𝑖(𝐸 |𝜔) = 𝜇(𝐸 |Π𝑖(𝜔)) =
∑︀

𝜔′∈𝐸∩Π𝑖(𝜔) 𝜇(𝜔
′)∑︀

𝜔′∈Π𝑖(𝜔) 𝜇(𝜔
′)

, which

specifies the belief about an event 𝐸 that the player 𝑖 holds at state 𝜔.

Definition 1 ([87]). Player 𝑖 is said to 𝑝-believe an event 𝐸 ⊆ Ω at 𝜔 if 𝑃𝑖(𝐸 |𝜔) ≥

𝑝.

Definition 2 ([87]). An event 𝐸 is 𝑝-evident if for each 𝜔 ∈ 𝐸, all players 𝑝-believe

𝐸 at 𝜔.

Definition 3. An event 𝐸 is super-𝑝-evident if for all 𝜔 ∈ 𝐸 and for all players 𝑖,

𝑃𝑖(𝐸 |𝜔) > 𝑝.

Definition 4. An event 𝐸 is said to be a 𝑝-evident 𝐶-indicating event if 𝐸 is a

𝑝-evident event and if 𝑃𝑖(𝐶 |𝜔) ≥ 𝑝 for all 𝑖 and for all 𝜔 ∈ 𝐸.

Definition 5 ([87]). The players have common 𝑝-belief in an event 𝐶 at state 𝜔 if

there exists a 𝑝-evident 𝐶-indicating event 𝐸 that includes 𝜔.

Definition 6. An event 𝐸 is the largest 𝑝-evident 𝐶-indicating event (for a

particular 𝑝) if 𝐸 is a 𝑝-evident 𝐶-indicating event and for all events 𝐹 , either 𝐹 is

not a 𝑝-evident 𝐶-indicating event, or 𝐹 ⊆ 𝐸.

Definition 7. The 𝐶-evidence level of an event 𝐸 is the maximum value of 𝑝 for

which 𝐸 is a 𝑝-evident 𝐶-indicating event.

Definition 8. An event 𝐸 is the maximally evident 𝐶-indicating superset of 𝐹

if there exists a 𝑝 such that 𝑝 is the 𝐶-evidence level of 𝐸, 𝐸 is the largest 𝑝-evident

𝐶-indicating event, and for all other events 𝐺, either 𝐺 does not contain 𝐹 or 𝐺 has

a lower 𝐶-evidence level than 𝐸.

Definition 9. An event 𝐸 is the largest super-evident 𝐶-indicating subset of

𝐹 if there exists a 𝑝 such that 𝑝 is the 𝐶-evidence level of 𝐹 , 𝐸 is a super-𝑝-evident

𝐶-indicating event, and for all other events 𝐺, either 𝐺 is not a subset of 𝐹 , 𝐺 is a

subset of 𝐸, or the 𝐶-evidence level of 𝐺 is less than or equal to 𝑝.
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5.8.2 Initial Results

Our first result is a simple lemma showing that the family of 𝑝-evident 𝐶-indicating

events is closed under unions.

Lemma 1. For a given event 𝐶, if 𝐸 and 𝐹 are 𝑝-evident 𝐶-indicating events, then

𝐸 ∪ 𝐹 is also a 𝑝-evident 𝐶-indicating event.

Proof. Consider 𝜔 ∈ 𝐸∪𝐹 . For any player 𝑖, 𝑃𝑖(𝐸∪𝐹 |𝜔) ≥ min(𝑃𝑖(𝐸 |𝜔), 𝑃𝑖(𝐹 |𝜔)) ≥

𝑝 (since 𝐸 and 𝐹 are 𝑝-evident). Therefore 𝐸∪𝐹 is 𝑝-evident. Now suppose 𝜔 ∈ 𝐸. In

this case 𝑃𝑖(𝐶 |𝜔) ≥ 𝑝 since 𝐸 is 𝐶-indicating. But also, if 𝜔 ∈ 𝐹 , then 𝑃𝑖(𝐶 |𝜔) ≥ 𝑝

since 𝐹 is 𝐶-indicating. Therefore 𝐸 ∪ 𝐹 is 𝐶-indicating.

Our next result is an immediate corollary and establishes the existence and unique-

ness of largest 𝑝-evident 𝐶-indicating events for any 𝑝.

Corollary 1. For a given event 𝐶, if there exists a 𝑝-evident 𝐶-indicating event 𝐸,

then there exists a unique largest 𝑝-evident 𝐶-indicating event.

Proof. Assume there exists a 𝑝-evident 𝐶-indicating event. Take ℱ to be the set of

all 𝑝-evident 𝐶-indicating events. By lemma 1, the set 𝐺 = ∪𝐹∈ℱ𝐹 consisting of

the union of all of these events is also a 𝑝-evident 𝐶-indicating event. Therefore 𝐺

is a 𝑝-evident 𝐶-indicating event containing all other 𝑝-evident 𝐶-indicating events.

Moreover, 𝐸 must be unique since it contains all other 𝑝-evident events that indicate

𝐶.

The next lemma establishes a containment relationship between largest 𝑝-evident

𝐶-indicating events associated with different values of 𝑝.

Lemma 2. For a given event 𝐶, if 𝐸 is the largest 𝑝-evident 𝐶-indicating event, and

𝐹 is the largest 𝑝′-evident 𝐶-indicating event, with 𝑝 ≥ 𝑝′, then 𝐸 ⊆ 𝐹 .

Proof. Suppose 𝐸 is the largest 𝑝-evident 𝐶-indicating event. Since 𝑝′ ≤ 𝑝, 𝐸 is also

a 𝑝′-evident 𝐶-indicating event. Thus 𝐸 must be contained by the largest 𝑝′-evident

𝐶-indicating event.
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We now show that a unique maximally evident 𝐶-indicating event exists around

any subset of Ω.

Lemma 3. For a given event 𝐶, and for any event 𝐸, there exists a unique maximally

evident 𝐶-indicating superset of 𝐸.

Proof. Consider an event 𝐸. The 𝐶-evidence level of 𝐸 is given by 𝑝 = min𝑖∈[0,1],𝜔∈𝐸 min(𝑃𝑖(𝐸 |𝜔), 𝑃𝑖(𝐶 |𝜔)),

and therefore exists. Moreover, since 𝐸 is a 𝑝-evident 𝐶-indicating event, 𝐸 must be

contained by the unique largest 𝑝-evident 𝐶-indicating event 𝐹 (which is guaranteed

to exist by corollary 1). Further, by definition 𝐹 must also contain all other 𝑝-evident

supersets of 𝐸, and therefore 𝐹 is the maximally evident 𝐶-indicating superset of

𝐸.

The following lemma, which will be useful in proving our main theoretical result,

shows that the family of maximally evident 𝐶-indicating events is highly constrained.

Lemma 4. For a given event 𝐶, for any event 𝐸, there exists some 𝜔 ∈ 𝐸 such that

the maximally evident 𝐶-indicating superset of 𝐸 is equal to the maximally evident

𝐶-indicating superset of {𝜔}.

Proof. Let 𝐹 be the maximally evident 𝐶-indicating superset of 𝐸, guaranteed to

exist by lemma 3. Let 𝑝𝐹 be the 𝐶-evidence level of 𝐹 . Consider an 𝜔 ∈ 𝐸. Let 𝐺𝜔

be the maximally evident 𝐶-indicating superset of {𝜔}, and let 𝑝𝐺𝜔 be the 𝐶-evidence

level of 𝐺𝜔. We must have that 𝑝𝐺𝜔 ≥ 𝑝𝐹 for all 𝜔 (Since 𝐹 contains 𝜔, 𝑝𝐹 > 𝑝𝐺𝜔

would violate the fact that 𝐺𝜔 is maximally evident.) Suppose 𝑝𝐺𝜔 > 𝑝𝐹 for all 𝜔.

Then, by lemma 1, 𝐻 = ∪𝜔∈𝐸𝐺𝜔 would be a 𝑝𝐻-evident 𝐶-indicating event with

𝑝𝐻 ≥ min𝜔 𝑝𝐺𝜔 > 𝑝𝐹 . However, 𝐻 clearly contains 𝐸, and thus 𝑝𝐻 > 𝑝𝐹 violates the

fact that 𝐹 is the maximally evident 𝐶-indicating superset of 𝐸. Therefore, there

must exist some 𝜔 such that 𝑝𝐺𝜔 = 𝑝𝐹 . Since largest p-evident 𝐶-indicating events

are unique by corollary 1, we must have 𝐻 = 𝐺𝜔.

The following theorem is our main theoretical result, and drives the correctness of

our algorithms. This theorem, which is also illustrated in Figure 5-4, states that any
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Figure 5-4: Any finite state space can be uniquely represented as a nested sequence
of maximally evident 𝐶-indicating events. The diagram in this figure represents the
generative process of the messenger described in the main text of this chapter (with
𝛿 = 0.25). Each contiguous rectangle of blocks represents a state in Ω, and the
measure of the state is given by the area of the rectangle. States that are shaded
are members of 𝐶 = {𝜔 ∈ Ω : 𝑥(𝜔) = 1}. The solid lines between states represent
the information partition of player 0, while the the dotted lines represent that of
player 1. Two states belong to the same element of a player’s information partition
if they are connected by some path in the graph induced by that player’s edges.
Self-loops indicate that a player has no uncertainty about the state when the state
obtains. The four nested ovals are the four maximally evident 𝐶-indicating events
in this state space (ℱ in theorem 1), and the grey shading in the ovals represents
the 𝐶-evidence levels of those events (0, 0.25, 0.5, and 1.0). Our algorithm iterates
over these maximally evident events rather than over all possible events, and at 𝜔 for
player 𝑖 returns the 𝐶-evidence level associated with the last such event containing
some element of Π𝑖(𝜔). For instance, at the circled state the algorithm will find the
third nested event for player 0 and the second for player 1.
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finite Ω has a unique representation as a nested sequence of maximally evident 𝐶-

indicating events. The efficiency of our algorithm stems from only searching through

this sequence of subsets, rather than all possible subsets, in order to compute common

p-belief at any state 𝜔.

Theorem 1. Given an information structure (Ω, 𝜇, (Π0,Π1)) with |Ω| < ∞ and any

event 𝐶 ⊆ Ω, let ℱ = {𝐸 ′
1, . . . , 𝐸

′
𝑛} be the set of maximally evident 𝐶-indicating

events of Ω, i.e. the set of events 𝐸 ′
𝑖 for which there exists some 𝐹 ⊆ Ω such that 𝐸 ′

𝑖

is the maximally evident 𝐶-indicating superset of 𝐹 . ℱ can be ordered into a nested

sequence of subsets, 𝐸1 ⊃ 𝐸2 ⊃ . . . ⊃ 𝐸𝑛 such that 𝐸𝑖 is the largest super-evident

𝐶-indicating subset event of 𝐸𝑖−1 for any 𝑖 > 1.

Proof. We prove this theorem by construction. We know from lemma 3 that for each

𝜔𝑗 ∈ Ω, there exists a maximally evident 𝐶-indicating superset of {𝜔𝑗}. We label this

event 𝐸 ′
𝜔𝑗

. Lemma 4 implies that collection of events {𝐸 ′
𝜔𝑗

: 𝜔𝑗 ∈ Ω} is equal to ℱ ,

the entire set of maximally evident 𝐶-indicating events. We also know from lemma

3 that each 𝐸 ′
𝜔𝑗

is associated with a particular 𝐶-evidence level, which we will label

𝑝𝜔𝑗
. Without loss of generality, we can assume that the index 𝑗 sorts these 𝐶-evidence

levels by their magnitudes. This produces a finite non-decreasing sequence of values

in [0, 1]: 𝑝𝜔1 ≤ 𝑝𝜔2 ≤ . . . ≤ 𝑝𝜔|Ω| . By lemma 2 the events 𝐸 ′
𝜔𝑗

thus form a nested

sequence of subsets: 𝐸 ′
𝜔1

⊇ 𝐸 ′
𝜔2

⊇ . . . ⊇ 𝐸 ′
𝜔|Ω|

. We can collapse the events that are

equal to each other to arrive at a sequence of strict subsets: 𝐸1 ⊃ 𝐸2 ⊃ . . . ⊃ 𝐸𝑛.

Now consider 𝐸𝑖 for some 𝑖 > 1. By construction 𝐸𝑖 is a super-𝑝𝜔𝑖−1
-evident

𝐶-indicating event, and 𝐸𝑖 ⊂ 𝐸𝑖−1. Now take 𝐹 to be another super-𝑝𝜔𝑖−1
-evident

𝐶-indicating event, and let 𝑝𝐹 be the 𝐶-evidence level of 𝐹 . If 𝑝𝐹 ≥ 𝑝𝜔𝑖
, then we

must have 𝐸𝑖 ⊇ 𝐹 by lemma 2 since 𝐸𝑖 is the largest 𝑝𝜔𝑖
-evident event. Now suppose

𝑝𝐹 < 𝑝𝜔𝑖
, so 𝑝𝜔𝑖−1

< 𝑝𝐹 < 𝑝𝜔𝑖
. Let 𝐺 be the maximally evident 𝐶-indicating superset

of 𝐹 , and let 𝑝𝐺 be the 𝐶-evidence level of 𝐺. Clearly 𝑝𝐺 ≥ 𝑝𝐹 , and by construction

we must also have 𝑝𝐺 = 𝑝𝜔𝑗
since ℱ contains all maximally evident 𝐶-indicating

supersets, and hence 𝐺 = 𝐸𝑗, for some 𝑗. But since 𝑝𝜔𝑗
= 𝑝𝐺 ≥ 𝑝𝐹 > 𝑝𝜔𝑖−1

, we must

have 𝑗 ≥ 𝑖, and so 𝐹 ⊆ 𝐺 = 𝐸𝑗 ⊆ 𝐸𝑖. Therefore again 𝐹 ⊆ 𝐸𝑖. Hence 𝐸𝑖 must be
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the largest 𝐶-indicating subset of 𝐸𝑖−1.

The following corollary to this theorem provides the basis for our iterative algo-

rithm.

Corollary 2. Given a maximally evident 𝐶-indicating event 𝐸, either there exists

a unique largest super-evident 𝐶-indicating subset of 𝐸, or no super-𝑝-evident 𝐶-

indicating subsets exist.

Proof. Since 𝐸 is a maximally evident 𝐶-indicating event, 𝐸 is equal to some 𝐸𝑖 in the

sequence ℱ given by theorem 1. Therefore, if 𝑖 < 𝑛, 𝐸𝑖+1 is the unique largest super-

evident 𝐶-indicating subset of 𝐸 or no such subsets exist, as indicated in theorem

1.

Finally, we have four technical lemmas that will be useful for analyzing our specific

algorithms and player strategies. The first lemma is a simple constraint on belief

about p-evident events that follows from how information partitions work.

Lemma 5. For any 𝑝-evident event 𝐸, either 𝑃𝑖(𝐸 |𝜔) = 0 or 𝑃𝑖(𝐸 |𝜔) ≥ 𝑝 for all

𝜔 and for all 𝑖.

Proof. If 𝑃𝑖(𝐸 |𝜔) > 0, then there must exist an 𝜔′ ∈ Π(𝜔) such that 𝜔′ ∈ 𝐸. Since

𝐸 is 𝑝-evident, then 𝑃𝑖(𝐸 |𝜔′) ≥ 𝑝. But then since Π𝑖(𝜔) = Π𝑖(𝜔
′) by the definition of

an information partition, 𝑃𝑖(𝐸 |𝜔) = 𝜇(𝐸 |Π𝑖(𝜔)) = 𝜇(𝐸 |Π𝑖(𝜔
′)) = 𝑃𝑖(𝐸 |𝜔′), and

hence 𝑃𝑖(𝐸 |𝜔) ≥ 𝑝.

The second lemma connects the containment relationships between p-evident

events to the relationship between beliefs about those events.

Lemma 6. If player 𝑖 𝑝-believes a 𝑝-evident 𝐶-indicating event, then player 𝑖 𝑝-

believes the largest 𝑝-evident 𝐶-indicating event.

Proof. Let 𝐹 be a 𝑝-evident 𝐶-indicating event and let 𝐸 be the largest 𝑝-evident

𝐶-indicating event. Since 𝐸 is largest, 𝐹 ⊆ 𝐸, so we must have 𝑃𝑖(𝐸 |𝜔) = 𝑃𝑖(𝐸 ∪

𝐹 |𝜔) ≥ 𝑃𝑖(𝐹 |𝜔). Hence if 𝑖 𝑝-believes 𝐹 , 𝑖 must also 𝑝-believe 𝐸.
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The next lemma states that p-belief is transitive.

Lemma 7. If player 𝑖 𝑝-believes 𝐹 at all elements of an event 𝐸, and player 𝑖 𝑝-

believes 𝐺 at all elements of 𝐹 , then player 𝑖 𝑝-believes 𝐺 at all elements of 𝐸.

Proof. Let 𝜔 be an element of E. Since 𝑖 𝑝-believes 𝐹 at 𝜔, 𝑃𝑖(𝐹 |𝑤) ≥ 𝑝. Therefore

we must have some 𝜔′ ∈ Π𝑖(𝜔) ∩ 𝐹 . Since player 𝑖 𝑝-believes 𝐺 at all states in 𝐹 , we

must have 𝑃𝑖(𝐺 |𝜔′) ≥ 𝑝. By the definition of an information partition, we must then

also have 𝑃𝑖(𝐺 |𝜔) = 𝑃𝑖(𝐺 |𝜔′) ≥ 𝑝. Hence player 𝑖 𝑝-believes 𝐺 at all 𝜔 ∈ 𝐸.

The final lemma states, roughly, that with regard to p-evident events a player’s

beliefs about another player cannot be too inconsistent with the first player’s own

beliefs.

Lemma 8. If player 𝑖 𝑝-believes that player 1 − 𝑖 𝑝-believes the largest 𝑝-evident

𝐶-indicating event 𝐸, and player 𝑖 𝑝-believes 𝐶, then player 𝑖 must 𝑝-believe 𝐸.

Proof. Consider an arbitrary 𝜔 ∈ Ω and an arbitrary 𝑝. Take the largest 𝑝-evident

𝐶-indicating event 𝐸. Suppose at 𝜔 player 𝑖 𝑝-believes that player 1− 𝑖 𝑝-believes 𝐸,

and player 𝑖 𝑝-believes 𝐶. To generate the first belief, there must be an element of the

information partition of player 1−𝑖, 𝑇 ∈ Π1−𝑖, such that 𝑃1−𝑖(𝐸 |𝑇 ) ≥ 𝑝, and another

set of states 𝑆 ⊆ Π𝑖(𝜔) ∩ 𝑇 such that 𝑃𝑖(𝑆 |𝜔) ≥ 𝑝. But then, since states within a

player’s information partition are indistinguishable and since 𝑆 ⊆ Π𝑖(𝜔)∩𝑇 , we must

have for all 𝜔′ ∈ 𝑆, 𝑃1−𝑖(𝐸 |𝜔′) = 𝑃1−𝑖(𝐸 |𝑇 ) ≥ 𝑝 and 𝑃𝑖(𝑆 |𝜔′) = 𝑃𝑖(𝑆 |𝜔) ≥ 𝑝.

Therefore, since 𝐸 is 𝑝-evident, 𝑆 ∪ 𝐸 is also a 𝑝-evident event (if 𝜔′′ ∈ 𝑆, then

player 1− 𝑖 𝑝-believes 𝐸 and player 𝑖 𝑝-believes 𝑆, while if 𝜔′′ ∈ 𝐸, then both players

𝑝-believe 𝐸). Moreover, since player 𝑖 𝑝-believes 𝐶 at 𝜔 (and therefore at Π(𝜔) and

𝑆) and since 1− 𝑖 𝑝-believes 𝐶 at 𝐸 (and hence at 𝑆 by lemma 7), then both players

𝑝-believe 𝐶 at all states in 𝑆 ∪ 𝐸. Therefore 𝑆 ∪ 𝐸 is a 𝑝-evident 𝐶-indicating event

(and, moreover, player 𝑖 𝑝-believes 𝑆 ∪ 𝐸 at 𝜔 since player 𝑖 𝑝-believes 𝑆 at 𝜔).

But 𝐸 was assumed to be the largest 𝑝-evident 𝐶-indicating event, so we must have

𝑆 ∪ 𝐸 = 𝐸. Hence player 𝑖 𝑝-believes 𝐸.
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5.8.3 Models

Strategic Coordination

In this section we show the rational p-belief strategy forms an equilibrium in the

coordination game we study. Recall the rational p-belief strategy is that player 𝑖

plays action 𝐴 if and only if player 𝑖 believes with at least probability 𝑝* = 𝑐−𝑏
𝑎−𝑏

that

both players have common 𝑝*-belief that 𝑥 = 1.

Proposition 1. Assuming noiseless messages and assuming 𝑝* > 𝜇(𝑥 = 1), the

rational p-belief strategy maximizes the expected return of player 𝑖 at every 𝜔 ∈ Ω,

given player 1 − 𝑖 also uses the same strategy.

Proof. Suppose that messages are noiseless, i.e. 𝑃𝑖(𝑥 = 1 |𝜔) > 𝑃𝑖(𝑥 = 1) ⇒ 𝑃𝑖(𝑥 =

1 |𝜔) = 1 for all 𝜔. Take 𝜔 ∈ Ω.

Take 𝐹 to be some 𝑝*-evident (𝑥 = 1)-indicating event. Take 𝐸 to be the largest

such event. Suppose player 𝑖 𝑝*-believes 𝐹 . By lemma 6, player 𝑖 also 𝑝*-believes 𝐸.

By the definition of p-evident events, for any 𝜔′ ∈ 𝐸, we must then have that player

1 − 𝑖 also 𝑝*-believes 𝐸 at 𝜔′. Therefore by lemma 7 player 𝑖 also 𝑝*-believes that

player 1−𝑖 𝑝*-believes 𝐸. Since player 1−𝑖 is assumed to be using the rational p-belief

strategy, player 𝑖 therefore 𝑝*-believes player 1− 𝑖 will play 𝐴. Since we have assumed

𝑝* > 𝑃𝑖(𝑥 = 1) and messages are noiseless, we must have 𝑃𝑖(𝑥 = 1 |Π𝑖(𝜔)) = 1. Then

the expected return for 𝑖 of playing 𝐴 must be at least 𝑝*·𝑎+(1−𝑝*)𝑏 = 𝑐−𝑏
𝑎−𝑏

𝑎+𝑎−𝑐
𝑎−𝑏

𝑏 = 𝑐.

Therefore, playing 𝐴 maximizes player 𝑖’s expected return (and if player 𝑖 𝑝′-believes

a 𝑝′-evident (𝑥 = 1)-indicating event, 𝑝′ > 𝑝*, then the expected return from 𝐴 is

strictly greater than for 𝐵).

Now suppose player 𝑖 𝑝*-believes 𝑥 = 1 but that there is no 𝑝*-evident (𝑥 = 1)-

indicating event 𝐹 such that 𝑃𝑖(𝐹 |𝜔) ≥ 𝑝*. Take 𝐸 to be the largest 𝑝*-evident

(𝑥 = 1)-indicating event. Then player 𝑖 cannot 𝑝*-believe that player 1− 𝑖 𝑝*-believes

𝐸 (since otherwise player 𝑖 would 𝑝*-believe 𝐸 by lemma 8). Thus, since player

1 − 𝑖 is assumed to be using the rational p-belief strategy, player 𝑖 believes with

probability at most 𝑝′ < 𝑝* that player 1− 𝑖 will play 𝐴. Then since 𝑝′ ·𝑎+(1−𝑝′)𝑏 <
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𝑝* · 𝑎+ (1− 𝑝*)𝑏 = 𝑐, the expected utility from playing 𝐴 to player 𝑖 is less than from

playing 𝐵. (And if 𝑖 does not 𝑝*-believe 𝑥 = 1, the same arithmetic holds.)

5.8.4 Algorithms

Computing Information Partitions

In this section we state the simple algorithm for converting the generative process

descriptions of the probabilistic models in our main text to information partitions.

The “run(𝑖, 𝜔)” function takes as input a player 𝑖 and a state 𝜔 expressed as a

tuple, uses the variables in the tuple for each random draw within the generative

process, and returns a composition of the 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 calls for player 𝑖 (For example,

run(0, (1,1,0,1,0)) would return [(1),(0,0)] in the messenger model). Our algorithm

groups together states with the same observations into elements of the information

partitions.

Algorithm 5 information_partition(𝑖)
partition := dict()
for 𝜔 ∈ Ω do

obs := run(𝑖, 𝜔)
if obs ∈ partition then

partitions[obs].append(𝜔)
else

partitions[obs] := [𝜔]
return partitions

Computing Common p-Belief

We now prove the correctness of the common_p_belief algorithm given in the main

text. We first prove a lemma stating the correctness of the super_p_evident algo-

rithm.

Lemma 9. Assuming 𝐸 is a maximally evident 𝐶-indicating event, and assuming 𝑝 is

the 𝐶-evidence level of 𝐸, then the set returned by evaluating “super_p_evident(𝐸, 𝑝)”

130



is the largest super-evident 𝐶-indicating subset of 𝐸, or the empty set if and only if

such an event does not exist.

Proof. First note that from the condition in the “if” statement of the function, all

states that remain in 𝐸 when the function returns will have the properties 𝑃𝑖(𝐸 |𝜔) >

𝑝 and 𝑃𝑖(𝐶 |𝜔) > 𝑝. Therefore, the function only returns super-𝑝-evident 𝐶-indicating

subsets of 𝐸 (and since 𝑝 is the 𝐶-evidence level of 𝐸, strict subsets must be returned),

or the empty set if no super-𝑝-evident subsets exists. Next, note that the “while”

loop only removes elements of 𝐸 that cannot belong to the largest super-evident 𝐶-

indicating subset of 𝐸, if such an event exists. We can see this by induction on the

items removed. Suppose that the first 𝜔 removed belonged to 𝐹 , the largest super-

evident 𝐶-indicating subset of 𝐸. Then we would have 𝑃𝑖(𝐹 |𝜔) > 𝑝 since 𝐹 must be

super-𝑝-evident. But since 𝐹 ⊆ 𝐸, by lemma 2 we would then also have 𝑃𝑖(𝐸 |𝜔) > 𝑝,

which contradicts the fact that 𝜔 was removed. Now assume that the first 𝑘 elements

removed do not belong to 𝐹 , and let 𝐸 ′ be the set 𝐸 minus those elements. Then

suppose the (𝑘 + 1)st element removed, if it exists, belonged to 𝐹 . Since all the

previous elements removed did not belong to 𝐹 by the inductive assumption, 𝐹 ⊆ 𝐸 ′.

But then analogous to the base case, the (𝑘 + 1)st element, 𝜔𝑘+1, belonging to 𝐹

implies 𝑃𝑖(𝐸
′ |𝜔𝑘+1) > 𝑝, which contradicts the fact that this element was removed.

Therefore this function returns exactly the largest super-evident 𝐶-indicating subset

of 𝐸. Finally, since Ω is assumed to be finite, and at least one element of 𝐸 is removed

in each iteration of the while loop, the function must terminate.

Lastly, we show the correctness of our main algorithm.

Proposition 2. The value returned by evaluating “common_p_belief(𝐶, 𝑖, 𝜔)” is the

𝐶-evidence level of the maximally evident 𝐶-indicating event 𝐸 containing some ele-

ment of Π𝑖(𝜔).

Proof. First note “evidence_level(F, C)” computes the 𝐶-evidence level of 𝐹 (which

must exist by lemma 3). Also note Ω is the maximally evident 𝐶-indicating superset

of Ω. Thus by lemma 9, the calls to “super_p_evident()” iteratively return the nested

sequence of subsets of maximally evident subsets described in theorem 1.
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If there does not exist a 𝑝-evident 𝐶-indicating event for 𝑝 > 0, then by lemma

9 the first call to super_p_evident will return the empty set. In this case the 𝐶-

evidence level of Ω will be 0, and hence the function will return 0.

Since the “while” loop will continue iterating until either 𝐹 is empty or 𝐹 is an

event that player 𝑖 believes to be impossible (i.e., that does not contain any elements in

Π𝑖(𝜔)), the last 𝐸 before either of these cases occurred must be the maximally evident

𝐶-indicating event containing some element of Π𝑖(𝜔). The call to evidence_level then

computes the 𝐶-evidence level of 𝐸.

Our final result interprets the last result in terms of common-p-belief.

Corollary 3. The value returned by evaluating “common_p_belief(𝐶, 𝑖, 𝜔)” is the

maximum value of 𝑝 such that player 𝑖 𝑝-believes there is common-𝑝-belief in 𝐶 at 𝜔.

Proof. By proposition 2, common_p_belief(𝐶, 𝑖, 𝜔) returns the 𝐶-evidence level of

some event 𝐸 that player 𝑖 believes with probability greater than 0. Let 𝑝 equal the

𝐶-evidence level of 𝐸. By lemma 5, player 𝑖 must therefore 𝑝-believe 𝐸. Player 𝑖

thus 𝑝-believes there is common-𝑝-belief in 𝐶 at 𝜔 since 𝐸 is a 𝑝-evident 𝐶-indicating

event. Now suppose there was some 𝑝′ > 𝑝 such that player 𝑖 𝑝′-believes that there

is common-𝑝′-belief in 𝐶. Then by definition of common-p-belief there must exist a

𝑝′-evident event 𝐹 that player 𝑖 𝑝′-believes. But then player 𝑖 must also 𝑝′-believe

the maximally evident 𝐶-indicating superset of 𝐹 . However, this contradicts the fact

that 𝑝 was returned by common_p_belief(𝐶, 𝑖, 𝜔), since if player 𝑖 𝑝′-believes 𝐹 , then

𝐹 is a maximally evident event containing some element of Π𝑖(𝜔).
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Chapter 6

Conclusion

In this thesis I investigated the question of how disparate individuals combine into

coherent groups. I presented a theoretical answer to this question: that three condi-

tions suffice for rational collective agency, and that people are endowed with abilities,

mechanisms, and propensities, perhaps biologically or culturally evolved, that allow

us to achieve these conditions. I then focused on understanding the mechanisms that

people use to address one of the three conditions, the formation of accurate shared

beliefs.

In investigating specific mechanisms that people use for shared belief formation, a

major theme arose. Theory of mind appears to be critical to the solutions that people

have discovered to address the fundamental computational challenges of establishing

rational collective agency. This finding informs another puzzle in the literature on

collective intelligence—theory of mind as measured by emotional intelligence has been

reliably associated with collective intelligence in groups [126, 31]. This result is also

related to hypotheses about the importance of theory of mind to the uniqueness of

the human species among animals [115].

The overall picture that emerges from these investigations is almost mystical in

its beauty. People are connected by nothing. We are isolated independent biological

agents who act alone. We have no physical connections and sparse biological con-

nections to each other. Our saving grace is our skill as mind readers. Our “psychic”

powers allow us to spontaneously create highly robust rational collective agency out of
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highly heterogeneous people. We infer each others preferences, beliefs, and intentions.

We imagine mechanisms to solidify our connections in our minds.

Another theme that emerged was the prominence of probability matching—a

widely observed behavioral decision-making strategy. In the real-world case study I

presented, probability matching was critical to the emergence of collective intelligence.

Acting stochastically communicates more information than acting deterministically

based on local optimization, and thereby allows for efficient information aggregation

at the collective level.

A final major theme was the use of distributed computation to understand collec-

tive behavior. Researchers recently began using distributed algorithms to understand

natural systems, such as networks of cells and colonies of ants and bees [32]. My

work can be viewed as extending this line of work further into the study of human

collective behavior. Distributed computation provides us with an elegant solution to

the micro-macro problem because macro-level computation can provably be shown

to emerge from micro-level algorithms. I provided several examples of this line of

reasoning. A specific class of distributed algorithms that seems to hold promise for

understanding coherent group behavior and collective intelligence is algorithms for

distributed Baysian inference. I provided two examples of heuristic mechanisms that

people use implicitly implementing Baysian inference in a distributed capacity. In

other recent work not described in this thesis, I have begun investigating how to ex-

tend this framework of collective intelligence as distributed Bayesian inference to more

complex real-world examples, such as rumor spreading during collective sensemaking

[64].

The examples that I studied in this thesis also make interesting predictions about

collective intelligence in other sociotechnical systems. Other work I have completed

that is not described in this thesis has validated these predictions experimentally in

the laboratory and the field. In particular, the social sampling model I introduced

predicts that naïve herding leads to fragility in the dynamics of popularity. Together

with Nicolás Della Penna, I tested this prediction in a set of cryptocurrency markets

using a new experimental methodological [68], showing the first experimental evi-
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dence for herding in financial markets [66]. The social sampling model also predicts

that if popularity is well-calibrated, then social influence can lead to high levels of

collective intelligence. Together with L. Elisa Celis, I confirmed this prediction in

laboratory versions of online educational courses on computer science and art [20].

Future work could attempt to apply the insights from these predictions for engineering

new sociotechnical systems.
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