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Abstract

We study two fundamental problems that involve massive high-dimensional datasets:
approximate near neighbor search (ANN) and sketching. We obtain a number of new
results including:

∙ An algorithm for the ANN problem over the ℓ1 and ℓ2 distances that, for the
first time, improves upon the Locality-Sensitive Hashing (LSH) framework. The
key new insight is to use random space partitions that depend on the dataset.

∙ An implementation of the core component of the above algorithm, which is
released as FALCONN: a new C++ library for high-dimensional similarity
search.

∙ An efficient algorithm for the ANN problem over any distance that can be
expressed as a symmetric norm.

∙ For norms, we establish the equivalence between the existence of short and
accurate sketches and good embeddings into ℓ𝑝 spaces for 0 < 𝑝 ≤ 2. We use
this equivalence to show the first sketching lower bound for the Earth Mover’s
Distance (EMD).
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3



4



Acknowledgments

Throughout my life I have been extremely lucky to be surrounded with incredible

people: mentors, teachers, colleagues, classmates, friends and family. Without your

support and investment in me I would not be where I am now.

Let me start with my Ph.D. advisor Piotr Indyk. Being Piotr’s student for the

past five years has been both an honor and a pleasure. In addition to being a brilliant

researcher, Piotr has all the other qualities that a great advisor needs: a warm and

enthusiastic personality, a great sense of care for all of his students, extremely high

ethical standards when it comes to collaborations and publishing papers, and a perfect

balance between being hands-on and giving enough freedom. I would also like to point

out Piotr’s talent of finding “just right” problems for each particular student (with

an amazing precision!), and a strong much needed support during my academic job

search. Last but not least, as a well-established professor, Piotr has built a developed

ecosystem of current and former students and postdocs, with many of whom I had

a privilege to work with. . .

. . . which brings me to the second person I would like to thank: Alex Andoni,

a former student of Piotr. Alex has effectively been my informal advisor. Both

scientifically: for instance, all the papers this thesis is based on are co-authored with

Alex, and more generally: he has given me lots of academic and life advice. Alex’s

cheerful personality made our five-year long (extremely fruitful) collaboration very

enjoyable, even during harder times when not all the problems were being solved

to our satisfaction. In fact, I met Alex for the first time even before Piotr: back in

Summer 2011 at Microsoft Research, where I was an intern. Our short conversation

and Alex’s (unintended?) pitch for MIT and Piotr were decisive later when I needed

to choose a school and an advisor for my Ph. D.

My fascination with Theory started during my undergraduate studies at Moscow

State University, and the two people responsible for this are Maxim Babenko and Sasha

Shen, who were kind enough to advise a clueless and naive but eager undergrad. Both

Maxim and Sasha served as great role models both in academic and non-academic

5



matters. Among many other things, I would like to thank Maxim for providing

me with a part-time job at Yandex, when I needed money, and Sasha for teaching

me (by many examples) how to give good talks and lectures and write papers well.

Uncharacteristically for Russian researchers, both Maxim and Sasha encouraged me

to go abroad for a graduate school, which in retrospect was essentially the only viable

option.

Let me turn to my summer internship mentors: Andrew Goldberg, Renato Werneck,

Vahab Mirrokni, Silvio Lattanzi, Alex Andoni, David Woodruff, and Konstantin

Makarychev. Between 2010 and 2016 I spent only one summer outside of a research

lab, and all of the remaining summers were formative for me as a researcher. I would

like to thank Andrew and Renato for strongly influencing my research taste1, and

Andrew for all of the support throughout the years. I thank Vahab and Silvio for

expanding my research horizons. I interned with Alex and Konstantin at Microsoft

Research, and both of these summers were perhaps the most productive time in my

life so far. Finally, I thank David for being a very dedicated mentor.

Summer internships are not as much fun without fellow interns. I would like to

thank Andreea, Avi, Cyrus, Daniel, Dimitris, Fan, Gopi, Irina, Jana, Konstantina,

Melanie, Mika, Mohsen, Nina, Thomas, Tomas, Li-Yang, Rad, Reza, Sadra, Sahil,

Tom, Tselil, and Zhao for great time we spent together. On a loosely related note,

I would like to thank Clement, Dimitris and Erik for a great social atmosphere in

a place, which I am not allowed to name here.

I would like to thank all my co-authors and collaborators, past and present: Thomas

Ahle, Zeyuan Allen-Zhu, Alex Andoni, Misha Andreev, Maxim Babenko, Arturs

Backurs, Daniel Delling, Daniel Fleischman, Rati Gelashvili, Andrew Goldberg, Alexey

Gusakov, Piotr Indyk, Michael Kapralov, Ignat Kolesnichenko, Robi Krauthgamer,

Thijs Laarhoven, Silvio Lattanzi, Stefano Leonardi, Sepideh Mahabadi, Konstantin

Makarychev, Yury Makarychev, Vahab Mirrokni, Huy Nguyen, Sasho Nikolov, Rasmus

Pagh, Eric Price, Ruslan Savchenko, Ludwig Schmidt, Negev Shekel Nosatzki, Sasha

Shen, Francesco Silvestri, Zhao Song, Ameya Velingker, Tal Wagner, Erik Waingarten,

1In particular with their passion for algorithms implementations.

6



Renato Werneck, and David Woodruff. I have learnt a lot from each of you, and all

the collaborations were not only productive, but also very enjoyable.

MIT and especially the Theory group of CSAIL have become my second home

for the past five years. I would like to thank fellow graduate students who made this

place particularly cozy for me: Adrian, Arturs, Badih, Fereshte, G, Govind, Henry,

Madalina, Nicholas, Ninshanth, Rati, Sepideh, Tal, and Zeyuan. No matter what

format our interactions took—going for hikes, walks, runs or drinks, organizing parties

at conferences, participating in ICPC contests or writing papers together—it was all

great fun. I thank Henry for hosting me during the EECS visit day back in 2012 and

showing me what a wonderful place MIT is.

I would like to thank my friends back from Russia: Alexey, Boris, Ilya, Maxim,

Polina, Sasha and Sasha. You are all over the world, and I may not be meeting you

that often, but whenever we meet, I have this feeling that we never really parted.

I thank my sister Eleonora and my parents Lyudmila and Petr for believing in me.

Without your love, support and passion for education and science, nothing would be

possible.

My wife Oksana has been the main person in my life and the best friend for the

past eight years. Thank you for everything!

The person who introduced the world of computer science and programming to me

is Vladimir Denisovich Lelyukh, my school informatics teacher. It all started when my

parents brought me, a ten-year old, to his class almost seventeen years ago. Vladimir

Denisovich was an amazing teacher, a charismatic mentor, and a good friend to all of

his many students. He passed away four years ago, but I still can’t fully believe it

happened. I dedicate this thesis to him.

7



8



Contents

1 Introduction 19

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 Overview of the problems . . . . . . . . . . . . . . . . . . . . 20

1.1.2 Main contributions: a bird’s eye view . . . . . . . . . . . . . . 22

1.2 Near neighbor search (NNS) . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.1 Approximate near neighbor search (ANN) . . . . . . . . . . . 25

1.2.2 Locality-sensitive hashing (LSH) . . . . . . . . . . . . . . . . . 27

1.2.3 Data-dependent LSH . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.4 Time–space trade-offs for ANN . . . . . . . . . . . . . . . . . 31

1.2.5 FALCONN: practical and optimal LSH for unit sphere . . . . 33

1.2.6 ANN for general symmetric norms . . . . . . . . . . . . . . . 35

1.3 Characterization of sketchable distances . . . . . . . . . . . . . . . . 36

1.4 Preliminaries and notation . . . . . . . . . . . . . . . . . . . . . . . . 38

1.4.1 Metric and normed spaces . . . . . . . . . . . . . . . . . . . . 38

1.4.2 Examples of metrics and norms . . . . . . . . . . . . . . . . . 40

1.4.3 Approximate near neighbor search (ANN) . . . . . . . . . . . 41

1.4.4 Locality-sensitive hashing (LSH) . . . . . . . . . . . . . . . . . 42

1.4.5 Gaussian distribution . . . . . . . . . . . . . . . . . . . . . . . 43

2 New ANN algorithms for ℓ1 and ℓ2 45

2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1.1 Parameters and guarantees . . . . . . . . . . . . . . . . . . . . 46

2.2 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9



2.2.1 Locality-sensitive hashing (LSH) . . . . . . . . . . . . . . . . . 47

2.2.2 Time–space trade-offs . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 Comparison with the prior work . . . . . . . . . . . . . . . . . 49

2.4 Overview of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Simplification of the problem . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 Random ANN instances . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7 Gaussians and tail bounds . . . . . . . . . . . . . . . . . . . . . . . . 57

2.8 Data-independent partitions . . . . . . . . . . . . . . . . . . . . . . . 61

2.8.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.8.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.8.4 Setting parameters: idealized version . . . . . . . . . . . . . . 67

2.8.5 Setting parameters: final version . . . . . . . . . . . . . . . . . 72

2.9 Data-dependent partitions . . . . . . . . . . . . . . . . . . . . . . . . 74

2.9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.9.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.9.3 Setting parameters . . . . . . . . . . . . . . . . . . . . . . . . 79

2.9.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.9.5 Fast preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 93

2.9.6 Handling insertions and deletions . . . . . . . . . . . . . . . . 95

3 FALCONN: practical and optimal LSH for unit sphere 97

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.1.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3 Cross-polytope LSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3.1 Making the cross-polytope LSH practical . . . . . . . . . . . . 104

3.4 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10



3.5 Multiprobe LSH for the cross-polytope LSH . . . . . . . . . . . . . . 108

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.7 Appendix: Gaussian measure of a planar set . . . . . . . . . . . . . . 112

3.8 Appendix: Proof of Theorem 3.3.1 . . . . . . . . . . . . . . . . . . . . 114

3.8.1 Idealized proof . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.8.2 Real proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.9 Appendix: Proof of Theorem 3.4.1 . . . . . . . . . . . . . . . . . . . . 117

3.10 Appendix: Further description of experiments . . . . . . . . . . . . . 120

4 ANN algorithms for general symmetric norms 125

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.1.1 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.1.2 Why symmetric norms? . . . . . . . . . . . . . . . . . . . . . 127

4.1.3 Prior work: ANN for norms beyond ℓ1 and ℓ2 . . . . . . . . . 129

4.1.4 Overview of the proof of Theorem 4.1.3 . . . . . . . . . . . . . 130

4.1.5 Optimality of Theorem 4.1.3 . . . . . . . . . . . . . . . . . . . 131

4.1.6 Lower bounds for general norms . . . . . . . . . . . . . . . . . 131

4.1.7 Other related work: dealing with general norms . . . . . . . . 132

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.2.1 Norms and products . . . . . . . . . . . . . . . . . . . . . . . 133

4.2.2 ANN for ℓ∞ and ℓ∞-products . . . . . . . . . . . . . . . . . . 134

4.3 ANN for Orlicz and top-𝑘 norms . . . . . . . . . . . . . . . . . . . . 135

4.4 Embedding into product spaces . . . . . . . . . . . . . . . . . . . . . 139

4.4.1 Proof of Lemma 4.4.14: bounding the net size . . . . . . . . . 145

4.5 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . 149

4.6 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.7 Appendix: Bounding space in Theorem 4.2.9 . . . . . . . . . . . . . . 153

4.8 Appendix: ̃︀𝑂(log 𝑑)-ANN for symmetric norms . . . . . . . . . . . . . 155

4.8.1 The logΩ(1) 𝑑-approximation is necessary . . . . . . . . . . . . 158

4.9 Appendix: Lower bound for arbitrary metrics via expander graphs . . 158

11



5 Sketching and embedding are equivalent for norms 163

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.1.1 The embedding approach . . . . . . . . . . . . . . . . . . . . . 165

5.1.2 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.1.4 Other related work . . . . . . . . . . . . . . . . . . . . . . . . 170

5.1.5 Proof overview . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.2 Preliminaries on functional analysis . . . . . . . . . . . . . . . . . . . 172

5.3 Preliminaries on communication complexity . . . . . . . . . . . . . . 174

5.3.1 Information complexity: private-coins vs. public-coins . . . . . 176

5.3.2 From countable to finite number of coins . . . . . . . . . . . . 177

5.4 From sketches to uniform embeddings . . . . . . . . . . . . . . . . . . 178

5.4.1 Sketching implies the absence of Poincaré inequalities . . . . . 179

5.4.2 The absence of Poincaré inequalities implies threshold maps . 181

5.4.3 Threshold maps imply uniform embeddings . . . . . . . . . . . 187

5.4.4 Putting it all together . . . . . . . . . . . . . . . . . . . . . . 192

5.5 Quantitative bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.6 Embedding into ℓ1 via sum-products . . . . . . . . . . . . . . . . . . 199

5.7 Appendix: EMD reduction . . . . . . . . . . . . . . . . . . . . . . . . 200

6 Hardness results for the ANN problem 203

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.1.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.2.1 Random Hamming instances . . . . . . . . . . . . . . . . . . . 208

6.2.2 Graphical neighbor search and robust expansion . . . . . . . . 209

6.2.3 Locally-decodable codes (LDC) . . . . . . . . . . . . . . . . . 209

6.3 One-probe data structures . . . . . . . . . . . . . . . . . . . . . . . . 210

6.3.1 Robust expansion of the Hamming space . . . . . . . . . . . . 210

6.3.2 One-probe data structures . . . . . . . . . . . . . . . . . . . . 213

12



6.4 List-of-points data structures . . . . . . . . . . . . . . . . . . . . . . 214

6.5 Two-probe data structures . . . . . . . . . . . . . . . . . . . . . . . . 219

6.5.1 Deterministic data structures . . . . . . . . . . . . . . . . . . 221

6.5.2 Making low-contention data structures . . . . . . . . . . . . . 222

6.5.3 Datasets which shatter . . . . . . . . . . . . . . . . . . . . . . 223

6.5.4 Corrupting some cell contents of shattered points . . . . . . . 226

6.5.5 Decreasing the word size . . . . . . . . . . . . . . . . . . . . . 229

6.5.6 Connection to locally-decodable codes . . . . . . . . . . . . . 230

13



14



List of Figures

1-1 The bag of words representation . . . . . . . . . . . . . . . . . . . . . 20

1-2 Near neighbor search . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1-3 Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1-4 The definition of the ANN problem . . . . . . . . . . . . . . . . . . . 26

1-5 Distribution of distances for word embeddings . . . . . . . . . . . . . 27

1-6 Time–space trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1-7 Density of 𝑁(0, 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2-1 Various specializations of the main result . . . . . . . . . . . . . . . . 50

2-2 Illustration of the main result . . . . . . . . . . . . . . . . . . . . . . 51

2-3 Comparison of the main result with the state of the art . . . . . . . . 52

2-4 Plot for the data-independent bound . . . . . . . . . . . . . . . . . . 54

2-5 Illustration of the definition of 𝛼(𝑠) and 𝛽(𝑠). . . . . . . . . . . . . . 58

2-6 Illustration of the definition of 𝐴. . . . . . . . . . . . . . . . . . . . . 58

2-7 Two cases for Δ𝐴 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2-8 Illustration of the definition of 𝜇𝐴(𝑟). . . . . . . . . . . . . . . . . . . 62

2-9 Pseudocode for data-independent partitions . . . . . . . . . . . . . . 65

2-10 Covering a spherical cap of radius (
√
2− 𝜀)𝑅 on a ball of radius 𝑅. . 75

2-11 The definition of Project . . . . . . . . . . . . . . . . . . . . . . . . 76

2-12 The definition of 𝜀′ > 0. . . . . . . . . . . . . . . . . . . . . . . . . . 80

2-13 Pseudocode of the data-dependent data-structure . . . . . . . . . . . 83

3-1 Comparison of the new LSH family and Hyperplane LSH . . . . . . . 100

3-2 Two plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

15



3-3 Gaussian measure of planar sets . . . . . . . . . . . . . . . . . . . . . 123

3-4 Distance to the nearest neighbor for the datasets . . . . . . . . . . . . 124

16



List of Tables

3.1 Average running times . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.2 Comparison of vanilla LSH and Multiprobe LSH . . . . . . . . . . . . 122

3.3 Average running times for random data . . . . . . . . . . . . . . . . . 122

17



18



Chapter 1

Introduction

1.1 Introduction

In this thesis, we show new algorithms and hardness results for fundamental problems

that involve massive high-dimensional data processing. Such datasets are pervasive in

many applications. Let us list just a few immediate examples.

∙ Feature vectors A popular approach in data analysis is to map a dataset into

a feature vector space, and reduce a given task to a geometric computational

problem. The simplest example of this sort is the bag of words representation:

one maps a text document into a vector of word counts (see Figure 1-1). In many

applications, both the number of data items and features is huge. For instance,

Twitter [1] receives around 200 billion tweets per year. Thus, if we wanted

to analyze them using the bag of words approach, we would need to process

200B vectors with hundreds of thousands of dimensions, since the number of

coordinates is equal to the number of distinct words.

∙ Signals Typically, signals of various nature (sound, images, etc.) can be modeled

by real or complex vectors after appropriate sampling/discretization. As in the

previous example, one often needs to deal with extremely high-dimensional

vectors. For instance, if we sample audio at 44.1 kHz, one minute corresponds

to a vector with more than two million dimensions.
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everything

in

moderation

including

excluding

out

1

0

1

1

2

0

Figure 1-1: The bag of words representation of the sentence “Everything in moderation,
including moderation.”

∙ Data streams When processing a long stream of data items that one can not

even store, thinking of the stream as a sequence of updates to a high-dimensional

vector is often useful. For instance, if one needs to process a stream of network

packets and detect potential DDoS attacks, one can imagine a vector indexed by

all possible 232 IP addresses1. Each packet is interpreted as an update to this

vector (“increase the corresponding coordinate by 1”), and the goal is to keep track

of its largest coordinates, which correspond to high-traffic source/destination

addresses.

These and other applications motivate the field of high-dimensional computational

geometry, which this thesis contributes to. It should be contrasted with the classical,

“low-dimensional” computational geometry, where most of the efficient algorithms have

running time exponential in the dimension, thus making their applicability to the

high-dimensional regime limited.

1.1.1 Overview of the problems

This thesis consists of two parts. Each part is devoted to a separate problem, which

we briefly and informally introduce below.

∙ Near neighbor search (see Figure 1-2) Given a dataset of 𝑛 points (vectors)

in a 𝑑-dimensional space R𝑑, we would like to preprocess it and build a data

structure for answering nearest neighbor queries. Each query is a 𝑑-dimensional

point, and the goal is to return the data point closest to it. In a simpler version of
1for IPv4, or 2128 for IPv6
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dataset:
n points in Rd

preprocessing
data structure

(approximately) closest data point

query point

Figure 1-2: Near neighbor search

the problem, we allow answers to be approximate. The parameters we are trying

to optimize are: space used by a data structure, query time, and preprocessing

time.

A naïve solution is the linear scan: omit the preprocessing stage altogether,

and, whenever given a query, try all the data points and choose the closest

one. However, this is too slow for large datasets, and one typically uses the

preprocessing stage to compute and store auxiliary information which allows to

speed up the query procedure.

Perhaps the most “obvious” application of near neighbor search is similarity

search over various kinds of data, which corresponds to nearest neighbor queries

in the feature space [162].

∙ Sketching (succinct summarization) (see Figure 1-3) Sketching involves

(lossy) compression of a massive object into a short summary which can be

used as a proxy in further computations. Sketching has been used for similarity

search [85, 108, 171, 172], fast algorithms for numerical linear algebra [178, 154],

processing data streams [136, 5], and speeding up other algorithms [22, 99].

In this thesis, we study sketching of high-dimensional vectors with the goal of

estimating a given distance function between two vectors from their (succinct)

summaries.
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vector x ∈ Rd

vector y ∈ Rd

sketch(x) ∈ {0, 1}s

sketch(y) ∈ {0, 1}s

estimate the distance between x and y

Figure 1-3: Sketching high-dimensional vectors; here 𝑠≪ 𝑑

Superficially, the common theme among these problems is working with high-

dimensional vectors/datasets. However, the relation is more fundamental. First of

all, the problems are closely related on a technical level: sketching can be used for

near neighbor search. Second, both of these problems build on a coherent toolbox of

mathematical/algorithmic primitives, which can be called “efficient representations

of data”: randomized hashing, dimension reduction, metric embeddings, etc. Hence,

this thesis can be seen as a step towards building a unified theory of such efficient

representations.

1.1.2 Main contributions: a bird’s eye view

Here we briefly describe the main contributions of the thesis. A more detailed

description can be found in the further sections of the introduction.

Near neighbor search We present a number of new algorithms for the near

neighbor search problem. Most notably, our algorithms provide the first improvement

over Locality-Sensitive Hashing (LSH), a popular framework in theory and applications.

We implement a core component of one of the new algorithms and release it as a part of

FALCONN: a new open-source C++ library for similarity search over high-dimensional

data. In addition to algorithms, we show several impossibility results, which we hope

will guide further algorithmic research on the problem.

This part is based on the following papers:

∙ Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, Ludwig

Schmidt, Practical and Optimal LSH for Angular Distance, appeared at NIPS
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2015 [17],

∙ Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, Erik Waingarten, Op-

timal Hashing-Based Time–Space Trade-offs for Approximate Near Neighbors,

appeared at SODA 2017 [24], invited to the special issue of ACM Transactions

on Algorithms; this result heavily builds on:

– Alexandr Andoni, Piotr Indyk, Huy Nguyen, Ilya Razenshteyn, Beyond

Locality-Sensitive Hashing, appeared at SODA 2014 [18],

– Alexandr Andoni, Ilya Razenshteyn, Optimal Data-Dependent Hashing for

Approximate Near Neighbors, appeared at STOC 2015 [26],

∙ Alexandr Andoni, Huy Nguyen, Aleksandar Nikolov, Ilya Razenshteyn, Erik

Waingarten, Approximate Near Neighbors for General Symmetric Norms, ap-

peared at STOC 2017 [25].

Sketching Various distance functions (metrics) behave very differently when it

comes to sketching: for some distances there are extremely efficient compression

techniques (such as the celebrated Johnson–Lindentrauss lemma), for other distances

essentially nothing is possible. For a large class of distances, we characterize completely

when efficient sketching is possible. As a byproduct of this characterization, we obtain

lower bounds on sketches for several distances, including the Earth Mover’s Distance

(EMD). This part of the thesis is based on the paper:

∙ Alexandr Andoni, Robert Krauthgamer, Ilya Razenshteyn, Sketching and Em-

bedding are Equivalent for Norms, appeared at STOC 2015 [23], accepted to the

special issue of SIAM Journal on Computing.

1.2 Near neighbor search (NNS)

The Near Neighbor Search problem (NNS) is defined as follows. Given a dataset of

𝑛 points, preprocess it to prepare for answering queries of the following kind: given
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a query point, find a data point within distance 𝑟 from the query provided that it

exists. Here 𝑟 is a parameter that is known from the beginning and is the same for all

queries.

One can define the NNS problem with respect to any distance function. However,

we will mostly consider the case when the dataset and queries lie in a 𝑑-dimensional

vector space R𝑑 equipped with the ℓ1 or ℓ2 distances2. A useful special case of

the ℓ1 scenario is when the dataset and queries lie in the hypercube {0, 1}𝑑. This

corresponds to the Hamming distance3. An important special case of the ℓ2 setting is

when data points and queries lie on a unit sphere 𝑆𝑑−1 ⊂ R𝑑: this is equivalent to the

near neighbor search with respect to the cosine similarity.

The NNS problem has many applications. Perhaps the most “obvious” one is

similarity search for various types of data: text documents, images, audio files,

proteins, etc. A typical approach is to take a dataset and map it into R𝑑 by computing

a certain feature representation [162]. This step typically requires significant domain

expertise and often utilizes techniques from machine learning and/or optimization.

But after the feature vectors are computed, the similarity search directly corresponds

to executing the NNS queries in the feature space. A sample of other applications

includes faster algorithms for cryptanalysis [109], optimization [67, 79, 8], and training

neural networks [165], to name a few.

The simplest NNS algorithm is the linear scan: omit the preprocessing stage, and

whenever given a query, try all the data points and choose the closest one. However,

linear scan ends up being too slow for large datasets and we will be looking for

algorithms that have query time sublinear in the number of points 𝑛. In order for

this to be possible, we are going to utilize the preprocessing stage to compute some

auxiliary information that will be useful during the query stage.

Three most important parameters of an NNS data structure are:

∙ Space the data structure occupies. Storing the dataset itself requires 𝑂(𝑑𝑛) space,

2The ℓ1 distance is defined as ‖𝑥−𝑦‖1 =
∑︀𝑑

𝑖=1 |𝑥𝑖−𝑦𝑖|, while the ℓ2 distance is
√︁∑︀𝑑

𝑖=1(𝑥𝑖 − 𝑦𝑖)2.
3The Hamming distance between two binary vectors is defined as the number of positions where

they differ.
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but auxiliary information computed during the preprocessing takes additional

space to store;

∙ Time it takes to answer a query. Ideally, processing a query should take time

𝑂(𝑑), but usually the query time depends on 𝑛. In any case, the query time

must be strongly sublinear in 𝑛 (say, at most 𝑛0.99);

∙ Time it takes to build a data structure. Clearly, it cannot be smaller than the

amount of space used, but typically the preprocessing time can be made to be

near-linear in the space.

The NNS problem exhibits the so-called “curse of dimensionality”. Namely, all the

known data structures with query time strongly sublinear in 𝑛 require space 𝑛Ω(𝑑) (see,

e.g., [59, 125]), which is super-polynomial as soon as 𝑑 is super-constant. Moreover,

modulo a plausible hardness assumption, there is no data structure for NNS with

polynomial in 𝑛 and 𝑑 preprocessing time, and query time that is polynomial in 𝑑

and strongly sublinear in 𝑛 [175]4. To overcome the curse of dimensionality, we will

relax the NNS problem somewhat and then observe that the techniques we develop for

the relaxed version can be used to solve the exact NNS problem on many real-world

datasets.

1.2.1 Approximate near neighbor search (ANN)

The relaxed version is called the Approximate Near Neighbor Search problem (ANN)

and is defined similarly to the NNS. However, whenever we receive a query with

a data point within distance 𝑟 from it, we are now allowed to return any data point

within distance 𝑐𝑟 from the query (see Figure 1-4). The new parameter 𝑐 > 1 is

the approximation we are willing to tolerate. Allowing answers to be approximate

overcomes the curse of dimensionality and enables very efficient data structures with

polynomial dependence on the dimension 𝑑, space polynomial in 𝑛 and query time

sublinear in 𝑛 (see [77] for a survey of the state of affairs back in 2012).
4Technically, to get this hardness result, we need to modify the reduction from [175] slightly.

A variant of this modification can be found in [4], but even before it had been a folklore result.
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Figure 1-4: Illustration for the definition of the ANN problem. The red point is
a query. We are guaranteed that the smaller ball is non-empty, but are satisfied with
any point from the larger ball.

Thus, for the ANN problem we will be studying the trade-off between approxima-

tion 𝑐, space, query time and preprocessing time. We would hope to achieve for every

𝑐 > 1:

∙ Space polynomial (ideally, near-linear) in 𝑛 and 𝑑;

∙ Query time polynomial (ideally, near-linear) in 𝑑 and strongly sublinear in 𝑛;

∙ Preprocessing time near-linear in the space used.

How good are approximate answers in practice? It turns out that for many

real-world datasets, approximation is not really necessary and one can quickly find

exact near neighbors. The reason is that oftentimes the following “gap phenomenon”

holds: most of the data points are much further from the query than the nearest

neighbor5 (see Figure 1-5 for an example). Under this gap assumption, most of the

ANN algorithms (including the ones described in this thesis) can be shown to return

exact nearest neighbors in time sublinear in 𝑛.

For the ANN problem over ℓ1 and ℓ2 distances, we can assume that6 𝑑 = ̃︀𝑂(log 𝑛).

Indeed, for the ℓ2 distance we can apply a random projection onto ̃︀𝑂(log 𝑛) dimensions:

by the Johnson–Lindenstrauss lemma [93, 65], this procedure incurs distortion of
5One could go even further and argue that if there is no such a gap, then the ANN instance is not

very interesting to start with, since the nearest neighbors are not distinguishable from the rest of the
points.

6From now on, ̃︀𝑂(𝑓) is defined as 𝑂(𝑓 log𝑂(1) 𝑓).
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distances by a multiplicative factor 1 + 𝑜(1). For the ℓ1 distance the situation is a bit

more delicate, since the dimension reduction as above is known to be impossible [46].

However, since we care only about a single distance scale (“𝑟 vs. 𝑐𝑟”), there are known

procedures for the dimension reduction for this relaxed setting [108]. From now on,

we will be implicitly assuming that 𝑑 = ̃︀𝑂(log 𝑛) unless stated otherwise.

Figure 1-5: A distribution of distances in a dataset of GloVe word embeddings [148];
a random data point used as a query.

1.2.2 Locality-sensitive hashing (LSH)

One of the main techniques for the high-dimensional ANN problem is locality-sensitive

hashing (LSH) [85, 77]. The idea is to design and use a random partition 𝒫 of the

ambient space R𝑑 with the following properties7. For every 𝑥, 𝑦 ∈ R𝑑 the following

conditions are satisfied:

∙ If the distance between 𝑥 and 𝑦 is at most 𝑟, then

Pr𝒫 [𝑥 and 𝑦 end up in the same part of 𝒫 ] ≥ 𝑝1; (1.1)
7There is a one-to-one correspondence between partitions and hash functions ℎ : R𝑑 → Z if we

only care about collisions. We will be using both “languages” interchangeably.
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∙ If the distance between 𝑥 and 𝑦 is more than 𝑐𝑟, then

Pr𝒫 [𝑥 and 𝑦 end up in the same part of 𝒫 ] ≤ 𝑝2. (1.2)

Here 𝑝1 and 𝑝2 are two parameters that characterize the quality of an LSH partition.

Of course, we must have 𝑝1 > 𝑝2, and the bigger the gap between 𝑝1 and 𝑝2 is, the

higher quality a partition is of.

More precisely, as has been shown in [85], the existence of an “efficient”8 partition 𝒫
with parameters 𝑝1 and 𝑝2 implies a data structure for ANN with preprocessing time

and space 𝑛1+𝜌+𝑜(1)/𝑝1 and query time 𝑛𝜌+𝑜(1)/𝑝1, where

𝜌 =
log(1/𝑝1)

log(1/𝑝2)
.

Thus, the bigger the gap between 𝑝1 and 𝑝2 is, the smaller the value of 𝜌 is, and

the better bounds on the data structure parameters one is getting. Typically, 𝜌 = 𝜌(𝑐)

is equal to 1 for 𝑐 = 1 and 𝜌(𝑐)→ 0 as 𝑐→∞.

Having the above reduction in mind, we can try to optimize the value of 𝜌 for

an LSH partition. Of course, the optimal value crucially depends on the underlying

distance metric, and, as it turns out, the best partitions for the ℓ1 and ℓ2 distances are

known. Namely, for ℓ1 the original LSH paper [85] gives 𝜌 ≤ 1
𝑐
+ 𝑜(1), while for the

ℓ2 distance a longer line of work [85, 66, 13] leads to the value 𝜌 ≤ 1
𝑐2
+𝑜(1). Translating

these bounds into query times, we can get, for instance, query time 𝑛1/2+𝑜(1) for ℓ1 and

𝑛1/4+𝑜(1) for ℓ2 for approximation 𝑐 = 2. Moreover, the above values of 𝜌 are optimal

for both ℓ1 and ℓ2 [129, 140]. Thus, we understand LSH almost completely. However:

∙ A data structure for ANN does not have to fit the LSH framework. Can we get

an ANN data structure that bypasses the limitations of LSH?

∙ For many important metrics beyond ℓ1 and ℓ2, LSH with non-trivial guarantees

does not exist; a good example is the ℓ∞ distance9 [81]. How tractable the ANN

8Given a point, we can quickly find a part of 𝒫, which it belongs to.
9Defined as ‖𝑥− 𝑦‖∞ = max𝑑𝑖=1 |𝑥𝑖 − 𝑦𝑖|.
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problem is for such metrics?

∙ The optimal LSH for ℓ2 from [13], which gives the exponent 𝜌 ≤ 1
𝑐2
+ 𝑜(1), is

highly impractical. Is there a practical analog of it?

In this thesis we make significant progress on all of the above questions.

1.2.3 Data-dependent LSH

In [18, 26] we show new data structures for high-dimensional ANN over ℓ1 and ℓ2 that

overcome the above LSH barrier. The new space and time bounds are still of the form

𝑛1+𝜌+𝑜(1) and 𝑛𝜌+𝑜(1), but the new values of 𝜌 are:

𝜌 ≤ 1

2𝑐− 1
+ 𝑜(1) (1.3)

for the ℓ1 distance, and

𝜌 ≤ 1

2𝑐2 − 1
+ 𝑜(1) (1.4)

for ℓ2. For instance, for approximation 𝑐 = 2, the new data structures give query time

𝑛1/3+𝑜(1) for ℓ1 and 𝑛1/7+𝑜(1) for ℓ2. At the same time, we now require less memory

than the best possible LSH-based approaches.

The main idea behind these results is to allow (random) partitions to depend

on the dataset. It turns out that we do not need the full power of conditions (1.1)

and (1.2) for every pair of points 𝑥, 𝑦 ∈ R𝑑 from the ambient 𝑑-dimensional space

that the universal LSH constructions provide. Instead, we can try to design a random

partition that works well for a given dataset of 𝑛 points we know in advance.

At a high level, the new algorithms consist of two parts. First, we design and analyze

Voronoi LSH: a new LSH family that yields improved exponents (1.3) and (1.4) under

the assumption that a dataset is random10. In Voronoi LSH, one samples a number

of random landmark points and hashes a point to the closest landmark. Second, to

handle the general case, we show how to reduce a worst-case dataset to several pieces
10In case of ℓ1, it is assumed to be a random subset of {0, 1}𝑑, while for ℓ2, it must be a random

subset of a unit sphere 𝑆𝑑−1 ⊂ R𝑑, in both cases queries are generated so that there is one data point
that is 𝑐 times closer than all the other ones.
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that look random enough so that Voronoi LSH works well on them. This is done

by removing dense clusters of points iteratively and handling them separately. The

overall algorithm can be seen as a random collection of 𝑛𝜌+𝑜(1) decision trees; during

the query stage, we query all of them.

Let us make two remarks. First, data-dependent hashing (partitioning) has been

ubiquitous in practice (see, e.g., [171, 172]), but, to the best of our knowledge, all

the known constructions implicitly or explicitly exploit some nice structure hidden

in a dataset. In contrast to these, our algorithms give a provable improvement upon

LSH for worst-case datasets. Second, by being data-dependent, we seemingly sacrifice

one important property of LSH: it supports adding and removing data points for free.

However, we can utilize a generic data structure technique of dynamization [142] and

support insertions/deletions of data points in time 𝑛𝜌+𝑜(1).

In a follow-up work [27] we show optimality of the above bounds (1.3) and (1.4)

for any data structure based on data-dependent LSH. We need to be careful which

partitions we allow and which we do not. After all, for every dataset its Voronoi

diagram gives an “unreasonably high-quality” partition, but it is not very useful

algorithmically, since point location for the Voronoi diagram is equivalent to an exact

NNS query. Ideally, we would hope to prove a lower bound against partitions that are

algorithmically efficient. However, this would require showing data structure lower

bounds that are way beyond reach of the currently known techniques. Instead, we

require partitions to have strongly sublinear in 𝑛 description complexity. Indeed, it is

the case for all the known algorithms, including [18, 26], and overcoming this barrier

is a notorious open problem11. The hard distribution used to prove the lower bound

is simply a random instance as introduced above.

However, in this thesis we do not describe the above new results, since after

publishing the results [18, 26, 27], we significantly extended the data-dependent LSH

framework. We introduce this extension next.

11In all the known constructions of high-quality partitions, the point location time is proportional
to space occupied by a partition.
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1.2.4 Time–space trade-offs for ANN

Data-independent and data-dependent LSH both provide a very specific relation

between space and query time: one gets space 𝑛1+𝜌+𝑜(1) and query time 𝑛𝜌+𝑜(1), where

𝜌 is a function of the approximation 𝑐. However, one can ask if it is possible to trade

space for query time and vice versa. For example, in practice space is often a scarcer

resource than time, and one may require the space used by a data structure to be

𝑛1+𝑜(1). Can we still get sublinear query time in this space-constrained regime?

Researchers have studied various time–space trade-offs for ANN [85, 108, 80, 144,

13, 97]. The culmination of the prior work has been the paper [97] by Kapralov, which

shows how to smoothly interpolate between: the space-constrained regime (space

𝑛1+𝑜(1), sublinear query time), the balanced regime (space 𝑛1+𝜌+𝑜(1), query time 𝑛𝜌+𝑜(1)

as for the LSH framework), for which it essentially matches the best data-independent

LSH constructions (from [85] and [13]), and the fast queries regime (query time 𝑛𝑜(1),

polynomial space).

In Chapter 2, which is based on the paper [24], we describe how to extend the

data-dependent LSH framework and show how to get an improved time–space trade-off

for ANN which:

∙ Interpolates between the near-linear space regime, the balanced regime, and the

fast queries regime;

∙ In the balanced regime (space 𝑛1+𝜌+𝑜(1), query time 𝑛𝜌+𝑜(1)), matches the best

data-dependent LSH data structures (achieving (1.3) and (1.4) for ℓ1 and ℓ2,

respectively);

∙ In all the other regimes, significantly improves upon all the previous work,

including the result from [97].

More precisely, we show how to get space 𝑛1+𝜌𝑢+𝑜(1) and query time 𝑛𝜌𝑞+𝑜(1) for

every 𝜌𝑢, 𝜌𝑞 ≥ 0 such that:

𝑐
√
𝜌𝑞 + (𝑐− 1)

√
𝜌𝑢 =

√
2𝑐− 1 (1.5)
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for ℓ1 and

𝑐2
√
𝜌𝑞 + (𝑐2 − 1)

√
𝜌𝑢 =

√
2𝑐2 − 1 (1.6)

for ℓ2.

For example, for approximation 𝑐 = 2 and the ℓ1 distance, we can interpolate

between:

∙ Space 𝑛1+𝑜(1), query time 𝑛3/4+𝑜(1);

∙ Space 𝑛4/3+𝑜(1), query time 𝑛1/3+𝑜(1);

∙ Space 𝑛4+𝑜(1), query time 𝑛𝑜(1).

Similarly, for the ℓ2 distance, we can get:

∙ Space 𝑛1+𝑜(1), query time 𝑛7/16+𝑜(1) = 𝑛0.4375+𝑜(1);

∙ Space 𝑛8/7+𝑜(1), query time 𝑛1/7+𝑜(1);

∙ Space 𝑛16/9+𝑜(1) = 𝑛1.77..., query time 𝑛𝑜(1).

(See Figure 1-6 for the illustration).

In Chapter 6 (also based on [24]), we show that the time–space trade-offs (1.5)

and (1.6) are optimal in two settings:

∙ When a data structure fits a certain general “hashing framework”, which all the

known data structures fit;

∙ If a data structure is arbitrary, but is allowed to inspect at most two memory

locations during a query stage;

In both cases we use random instances mentioned in Section 1.2.3 as a hard

distribution. The latter lower bound shows and uses an interesting connection between

ANN data structures and locally-decodable codes (LDC) (see, e.g., [179] for a survey).

Namely, we show that if there had been a too-good-to-be-true ANN data structure

that touches 𝑡 memory locations, we would have gotten a too-good-to-be-true LDC

that performs 𝑡 queries. Such a reduction allows us to utilize a strong lower-bound
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Figure 1-6: Illustration of the new time–space trade-off for the ℓ2 distance and
approximation 𝑐 = 2. We can interpolate between fast queries (𝜌𝑞 = 0, 𝜌𝑠 = 7/9 =
0.77 . . .), the balanced regime (𝜌𝑞 = 𝜌𝑠 = 1/7 = 0.14 . . .) , and the near-linear space
regime (𝜌𝑞 = 7/16 = 0.43 . . ., 𝜌𝑠 = 0).

for two-query LDCs [101], which gives the desired space lower bound for the ANN

problem. However, this approach breaks down completely for 𝑡 ≥ 3, since there are

strong LDC constructions that make three or more queries. In light of this transition,

one can not help but ask if LDCs might be useful for obtaining upper bounds that

would bypass the abovementioned lower bounds for the “hashing framework”, where

the bounds (1.5) and (1.6) are tight.

1.2.5 FALCONN: practical and optimal LSH for unit sphere

The next natural question is how practical the new algorithms are. After all, data-

dependent partitioning is very popular in practice, so it would be natural to try to

eliminate the gap between the theory and the practice completely. Unfortunately,

in full generality the new algorithms are impractical, especially the reduction from

worst-case datasets to “random looking” pieces12.

However, at the core of the above algorithms there is a simple construction of
12Though, see [28], where we make a first step in making such a reduction practical for the

Hamming space.
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Voronoi LSH, which is a data-independent LSH partition that gives an improved

exponent 𝜌 for random instances. We notice that in order for Voronoi LSH to work

well, a dataset does not have to be completely random. Rather, it is enough that the

dataset lies on a sphere and is not too concentrated in any small region of it. As it

turns out, the latter is a reasonable assumption for many real-world datasets, thus it

makes sense to investigate if Voronoi LSH is practical.

Voronoi LSH can also be seen as a (theoretical) improvement upon the celebrated

and widely-used Hyperplane LSH [55]. Moreover, Voronoi LSH can be shown to give

guarantees similar to the optimal LSH construction for ℓ2 from [13] for worst-case data

in R𝑑. Thus, the question of practicality of Voronoi LSH becomes especially pressing.

But, as it turns out, even Voronoi LSH by itself is not practical due to prohibitively

high hashing time. In Chapter 3, which is based on the paper [17], we show how to

modify it to make it practical, while essentially preserving the theoretical guarantees.

The new construction can be seen as a combination of three ingredients:

∙ Cross-Polytope LSH from [168], where it was proposed but not analyzed. We

show that the Cross-Polytope LSH, which can be seen as a structured version of

the Voronoi LSH, gives the same theoretical guarantees as the vanilla Voronoi

LSH.

∙ Fast pseudo-random rotations based on the Fast Hadamard Transform (FHT)

from [6]. Unlike the first ingredient, this step is heuristic: we conjecture that

the new LSH scheme achieves the same theoretical guarantees as the pure Cross-

Polytope LSH or Voronoi LSH, but we currently do not know how to show it.

However, there have been follow-up works [100, 43], where this issue has been

(partially) addressed.

∙ If a dataset is extremely high-dimensional and very sparse (e.g., bag of words

for text documents), then it pays off to first perform feature hashing [173] down

to the intermediate dimension and then apply the above fast variant of the

Cross-Polytope LSH.
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In practice, the space bound 𝑛1+𝜌+𝑜(1) is usually too high. This is the reason

why we need to adapt the technique of Multiprobe LSH [118] to the Cross-Polytope

LSH, which reduces the space usage at a cost of somewhat increased query time.

Multiprobe LSH can be seen as a practical analog of the space-constrained algorithm

from Section 1.2.4.

We implement the resulting algorithm and release it as a part of FALCONN:

a new C++ library with Python bindings for similarity search over high-dimensional

data [152]. The implementation requires quite a bit of careful engineering: in particular,

we extensively use SIMD to speed up various operations, and we spend lots of effort to

make sure that all the necessary data structures occupy as little space as possible. We

release our implementation of the Fast Hadamard Transform separately [153]: as it

turns out, it is faster than what one can get out of FFTW [75], and we hope it might

be useful for other implementations.

We perform a set of experiments on various kinds of data and conclude that

FALCONN indeed significantly outperforms Hyperplane LSH as the theory predicts,

and is competitive with the state of the art heuristics for high-dimensional similarity

search.

1.2.6 ANN for general symmetric norms

In light of the above results, the ANN problem for ℓ1 and ℓ2 distances has been studied

pretty thoroughly. However, our understanding of ANN for more general classes of

distances is still very rudimentary.

Since for distances other than ℓ1 and ℓ2 there are no known dimension reduction

results, we cannot assume that 𝑑 = ̃︀𝑂(log 𝑛) anymore. However, it is convenient to

assume that 𝑑 = 𝑛𝑜(1), which means that we are fine with any polynomial dependence

on the dimension 𝑑.

For instance, for the ℓ∞ distance, the best known algorithm from [81] achieves

for every 𝜀 > 0 space 𝑛1+𝜀, query time 𝑛𝑜(1) and approximation 𝑂𝜀(log log 𝑑). This is

qualitatively different from ℓ1/ℓ2, where in this regime we would be getting approxi-

mation 𝑂𝜀(1). Somewhat unexpectedly, the 𝑂𝜀(log log 𝑑) approximation turns out to
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be tight for certain restricted models of computation [11, 98].

In Chapter 4, which is based on the paper [25], we present a new general algo-

rithm that solves ANN for any symmetric norm13 (that is, a norm invariant under

permutations of coordinates and sign flips), which achieves space 𝑛1+𝑜(1), query time

𝑛𝑜(1) and approximation (log log 𝑛)𝑂(1).

The approach that does not quite work is to observe that any norm embeds into ℓ∞

with distortion 1 + 𝜀 for every 𝜀 > 014 [176], and then use the data structure for the

ℓ∞ distance from [81]. The problem with this reduction is that the required dimension

of ℓ∞ can be as high as 2Ω(𝑑) even if the original norm is as simple as ℓ2 [32].

The alternative approach is to design an embedding into a space more complicated

than ℓ∞, but which is nevertheless tractable. This would allow us to save on the

dimension making it only polynomial in 𝑑. Indeed, we show that any symmetric

norm embeds into a 𝑑𝑂(1)-dimensional normed space that is a direct sum of certain

sufficiently simple spaces. Then, we invoke a general result from [82, 10] that gives an

ANN data structure for such direct sums.

Finally, we show that for general, not necessarily symmetric norms a similar

approach would not work: any universal normed space with dimension 𝑑𝑂(1) that could

potentially “host” all the 𝑑-dimensional normed spaces must incur distortion 𝑑1/2−𝑜(1).

1.3 Characterization of sketchable distances

Sketching is a general notion of compression of a massive object while preserving its

useful properties. It is typically used either to reduce the amount of space necessary

to store a dataset (in particular, for streaming algorithms [136, 5] or similarity

search [171, 172]) or to speed-up various computations [22, 99, 178].

13A norm is a function ‖ · ‖ : R𝑑 → R+ that satisfies:

∙ ‖𝑥‖ = 0 iff 𝑥 = 0;

∙ ‖𝛼𝑥‖ = |𝛼|‖𝑥‖;
∙ ‖𝑥+ 𝑦‖ ≤ ‖𝑥‖+ ‖𝑦‖.

14That is, there is a map 𝑓 : R𝑑 → R𝑑′
such that for every vector 𝑥 ∈ R𝑑, one has ‖𝑓(𝑥)‖∞ ∈

(1± 𝜀) · ‖𝑥‖.
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In this thesis, we are concerned with sketching distance functions. Given a metric15

on R𝑑, can we compress vectors so that we can accurately estimate the distance

between two vectors given only their compressed versions (sketches)? It turns out

that the answer to this question depends crucially on a metric at hand.

For the ℓ2 distance and for every 𝜀 > 0, one can compress vectors into 𝑂(1/𝜀2) bits

in a randomized manner such that from these sketches we can distinguish ℓ2 distance

at most 1 vs. more than 1 + 𝜀 with high probability. This result follows from the

Johnson–Lindenstrauss Lemma [93, 65] together with a discretization trick from [66].

Note that the sketch size is completely independent of the original dimension 𝑑 and is

determined solely by a desired level of accuracy 𝜀 > 0. The main idea is to project R𝑑

on a random subspace of dimension 𝑂(1/𝜀2); with high probability, this preserves

the Euclidean distance between a given pair of points up to a multiplicative factor of

(1± 𝜀).
For the ℓ𝑝 distances for 0 < 𝑝 < 2 (including ℓ1), the random projections approach

has been generalized by Indyk [84], who showed how to achieve the same bound

(sketch size 𝑂(1/𝜀2) for distinguishing distances at most 1 vs. more than 1 + 𝜀). For

every 0 < 𝑝 ≤ 2, the bound 𝑂(1/𝜀2) on the sketch size is, in fact, tight [177].

On the other hand, for ℓ𝑝 distances with 𝑝 > 2, the situation is not as nice. It

has been shown [9, 34, 87] that in this case the sketch size must be ̃︀Θ(𝑑1−2/𝑝) for

any constant 𝜀. The lower bound is shown using communication complexity. In

particular, the result for ℓ∞ follows from the celebrated linear lower bound for the

disjointness problem [96]. Thus, even the simplest case of ℓ𝑝 distances is quite delicate

and mysterious, which justifies the further study of the problem.

The next observation is that a metric admits efficient sketches if it embeds into

an ℓ𝑝 space with 0 < 𝑝 ≤ 2 with a small distortion 𝐷. That is, there exists a map

𝑓 : R𝑑 → R𝑑′ such that for every 𝑥1, 𝑥2 ∈ R𝑑 it is true that ‖𝑓(𝑥1)− 𝑓(𝑥2)‖𝑝 is within

a multiplicative factor of 𝐷 from the distance between 𝑥1 and 𝑥2 with respect to the
15A metric on a set 𝑋 is a symmetric function 𝑑 : 𝑋 ×𝑋 → R+ such that:

∙ 𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦;

∙ 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).
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metric. If there exists such an embedding, we can sketch our metric with approximation

𝑂(𝐷) and constant sketch size by applying the embedding and then using sketches

for ℓ𝑝 from [84].

In Chapter 5, which is based on the paper [23], we show that these are essentially

the only possibilities if the metric is a norm. More precisely, we show that if a norm ‖.‖
admits sketches of size 𝑠 bits and approximation 𝐷, then one can embed ‖.‖ into ℓ1−𝜀

with distortion 𝑂(𝑠𝐷/𝜀) for every 𝜀 > 0. This provides a complete characterization

of “efficiently sketchable” norms. The proof of this result uses a combination of

information-theoretic and analytic tools.

If we take the result in the contrapositive, we conclude that for a norm non-

embeddability into ℓ𝑝 spaces for 0 < 𝑝 < 2 implies a lower bound on general sketches.

This is very useful, since there are many known tools to show non-embeddability

statements, and our result allows to lift them automatically to lower bounds for

sketches.

As two concrete applications, we show first sketching lower bounds for the Earth

Mover’s Distance (EMD) [155] using a non-embeddability result from [134], and for

the trace norm (a. k. a. the nuclear norm) using a result from [149].

1.4 Preliminaries and notation

We denote by R+ the set of non-negative real numbers. Let us denote ⟨·, ·⟩ the standard

dot product on R𝑑. For a positive integer 𝑛, we define [𝑛] to be the set {1, 2, . . . , 𝑛}.
Whenever we use the notation 𝑜(·), 𝑂(·), 𝜔(·) or Ω(·), we write all the parameters the

implicit constant depends on as subscripts.

1.4.1 Metric and normed spaces

A metric space is a pair 𝑀 = (𝑋, 𝑑), where 𝑋 is an arbitrary set and 𝑑 : 𝑋 ×𝑋 → R+

is a distance function that satisfies the following properties:

∙ For every 𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦;
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∙ For every 𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);

∙ For every 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

We denote 𝐵𝑀 (𝑥,𝑅) a closed ball in a metric space 𝑀 centered in 𝑥 and of radius 𝑅.

More formally, 𝐵𝑀(𝑥,𝑅) = {𝑥′ ∈ 𝑋 | 𝑑𝑋(𝑥, 𝑥′) ≤ 𝑅}. Oftentimes, we will omit the

subscript if the metric space is clear from the context.

An embedding of a metric space (𝑋, 𝑑𝑋) into a metric space (𝑌, 𝑑𝑌 ) with distortion

𝐷 ≥ 1 is a function 𝑓 : 𝑋 → 𝑌 such that there exists a constant 𝐶 > 0 such that for

every 𝑥1, 𝑥2 ∈ 𝑋 one has:

𝐶 · 𝑑𝑋(𝑥1, 𝑥2) ≤ 𝑑𝑌 (𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝐷𝐶 · 𝑑𝑋(𝑥1, 𝑥2).

A normed space is a pair (R𝑑, ‖ · ‖), where the function ‖ · ‖ : R𝑑 → R+ is called

a norm and satisfies the following properties:

∙ For every 𝑥 ∈ R𝑑, ‖𝑥‖ = 0 iff 𝑥 = 0;

∙ For every 𝛼 ∈ R and 𝑥 ∈ R𝑑, ‖𝛼𝑥‖ = |𝛼| · ‖𝑥‖;

∙ For every 𝑥, 𝑦 ∈ R𝑑, ‖𝑥+ 𝑦‖ ≤ ‖𝑥‖+ ‖𝑦‖.

It is immediate to check that any normed space defines a metric on R𝑑 via

the formula 𝑑(𝑥, 𝑦) = ‖𝑥− 𝑦‖.
If we consider embeddings of a normed space into another normed space, we may

want to restrict ourselves to linear embeddings, for which the mapping is given by

a linear operator 𝐴 : R𝑑 → R𝑑′ .

If 𝑋 = (R𝑑, ‖ · ‖) is a normed space, we can define the dual space 𝑋* = (R𝑑, ‖ · ‖*)
as follows:

‖𝑦‖* = sup
‖𝑥‖≤1

|⟨𝑥, 𝑦⟩|.

It is immediate to check that ‖ · ‖* is indeed a norm. Moreover, one has (𝑋*)* = 𝑋.

This follows from a finite-dimensional version of the Hahn–Banach theorem [156].
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For a normed space 𝑋, we denote 𝐵𝑋 the unit ball 𝐵𝑋(0, 1), which is a centrally-

symmetric convex body. Finally, for a ball 𝐵(𝑥,𝑅) in a normed space, we denote by

𝜕𝐵(𝑥,𝑅) its boundary.

1.4.2 Examples of metrics and norms

For every 𝑝 ≥ 1 and 𝑑 ≥ 1 we can define the ℓ𝑝 norm on R𝑑 as follows:

‖𝑥‖𝑝 =
(︃

𝑑∑︁
𝑖=1

|𝑥𝑖|𝑝
)︃1/𝑝

.

We can also define the ℓ∞ norm as follows:

‖𝑥‖∞ = max
1≤𝑖≤𝑑

|𝑥𝑖|.

The proof of the fact that the above functions are indeed norms can be found in any

introductory textbook in real or functional analysis.

For 0 < 𝑝 < 1, the function ‖ · ‖𝑝 is not a norm, since it might be the case that

‖𝑥+ 𝑦‖𝑝 > ‖𝑥‖𝑝 + ‖𝑦‖𝑝. However, one has:

‖𝑥+ 𝑦‖𝑝 ≤ 2
1
𝑝
−1 · (‖𝑥‖𝑝 + ‖𝑦‖𝑝) .

Such functions are called quasi-norms. We denote ℓ𝑑𝑝 the space R𝑑 equipped with the

ℓ𝑝 (quasi-)norm.

The dual to the ℓ𝑑𝑝 space for 𝑝 ≥ 1 is the ℓ𝑑𝑞 space, where 𝑞 ≥ 1 is such that

1

𝑝
+

1

𝑞
= 1.

For 1 ≤ 𝑘 ≤ 𝑑, we define the top-𝑘 norm of a vector to be the sum of 𝑘 largest

absolute values of the coordinates. The top-1 norm coincides with the ℓ∞ norm, while

the top-𝑑 norm coincides with the ℓ1 norm.

For 1 ≤ 𝑝 ≤ ∞, a Schatten-𝑝 norm of a square matrix 𝐴 ∈ R𝑛×𝑛 is defined as the
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ℓ𝑝 norm of the vector of the singular values of 𝐴. The Schatten-1 norm is also called

the trace or the nuclear norm. The Schatten-2 norm coincides with the Frobenius

norm, and the Schatten-∞ norm is also called the spectral or operator norm of a

matrix.

Let 𝑓 : [𝑛]2 → R be a function such that
∑︀

𝑖,𝑗 𝑓((𝑖, 𝑗)) = 0 (such functions form

an (𝑛2 − 1)-dimensional vector space). Then the Lipschitz norm of 𝑓 is defined as:

‖𝑓‖Lip = max
(𝑖1,𝑗1 )̸=(𝑖2,𝑗2)

|𝑓((𝑖1, 𝑗1))− 𝑓((𝑖2, 𝑗2))|
|𝑖1 − 𝑖2|+ |𝑗1 − 𝑗2|

.

The Earth Mover’s Distance (EMD) norm is defined to be the dual of the Lipschitz

norm (see [134] for more information).

For metric spaces 𝑀1 = (𝑋1, 𝑑1), 𝑀2 = (𝑋2, 𝑑2), . . . , 𝑀𝑛 = (𝑋𝑛, 𝑑𝑛) and every

𝑝 ≥ 1, one can define an ℓ𝑝-direct sum of 𝑀1, . . . , 𝑀𝑛 as follows. It is a metric space

denoted by 𝑀1

⨁︀
ℓ𝑝
𝑀2

⨁︀
ℓ𝑝
. . .
⨁︀

ℓ𝑝
𝑀𝑛 whose ground set is 𝑀1 ×𝑀2 × . . .×𝑀𝑛 and

the distance function is defined as follows:

𝑑 ((𝑥1, 𝑥2, . . . , 𝑥𝑛), (𝑦1, 𝑦2, . . . , 𝑦𝑛)) = ‖(𝑑1(𝑥1, 𝑦1), 𝑑2(𝑥2, 𝑦2), . . . , 𝑑𝑛(𝑥𝑛, 𝑦𝑛))‖𝑝 .

The ℓ𝑝-direct sum of normed spaces is also a normed space. Confusingly enough,

ℓ𝑝-direct sums are sometimes called ℓ𝑝-direct products or ℓ𝑝-products.

1.4.3 Approximate near neighbor search (ANN)

Here we introduce one of the two central problems we study in this thesis formally.

Definition 1.4.1 (The (𝑐, 𝑟)-ANN problem). Given an 𝑛-point dataset 𝑃 lying in

a metric space 𝑀 = (𝑋, 𝑑𝑋), the goal is to preprocess it to answer the following

queries. Given a query point 𝑞 ∈ 𝑋 such that there exists a data point within distance

𝑟 from 𝑞, return a data point within distance 𝑐𝑟 from 𝑞. All distances are computed

in 𝑀 using the function 𝑑𝑋(·, ·).

Both approximation 𝑐 and the distance scale 𝑟 are known from the beginning

rather than being a part of a query. Usually the ANN problem is studied for the case
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when 𝑀 is a normed 𝑑-dimensional space, where 𝑑 = 𝑛𝑜(1). We assume that the norm

of a vector 𝑥 ∈ R𝑑 can be computed in time 𝑑𝑂(1) = 𝑛𝑜(1).

1.4.4 Locality-sensitive hashing (LSH)

Here we introduce locality-sensitive hashing, one of the canonical tools to solve the

ANN problem. Next comes the central definition.

Definition 1.4.2. We say that a hash family ℋ on a metric space 𝑀 = (𝑋, 𝑑𝑋)

is (𝑟1, 𝑟2, 𝑝1, 𝑝2)-sensitive, if for every 𝑝, 𝑞 ∈ 𝑋 one has Pr
ℎ∼ℋ

[ℎ(𝑥) = ℎ(𝑦)] ≥ 𝑝1 if

𝑑𝑋(𝑥, 𝑦) ≤ 𝑟1, and Pr
ℎ∼ℋ

[ℎ(𝑥) = ℎ(𝑦)] ≤ 𝑝2 if 𝑑𝑋(𝑥, 𝑦) > 𝑟2,

It is known [85, 77] that an efficient (𝑟, 𝑐𝑟, 𝑝1, 𝑝2)-sensitive hash family on a

𝑛𝑜(1)-dimensional normed space implies a data structure for (𝑐, 𝑟)-ANN with space

𝑛1+𝜌+𝑜(1)/𝑝1 and query time 𝑛𝜌+𝑜(1)/𝑝1, where 𝜌 = log(1/𝑝1)
log(1/𝑝2)

.

Note that sometimes it is more convenient to talk about random partitions of the

metric space 𝑀 . Clearly, random partitions and hash families are equivalent in this

context.

Let us briefly sketch this reduction, see [77] for the further details. The reduction

depends on two integer parameters: a number of tables 𝐿 and a number of hash

functions in a single table 𝐾. In each of the 𝐿 tables, we sample 𝐾 hash functions

ℎ1, ℎ2, . . . , ℎ𝐾 from the LSH family, and hash the dataset using the composite hash

function 𝑝 ↦→
(︀
ℎ1(𝑝), ℎ2(𝑝), . . . , ℎ𝐾(𝑝)

)︀
. Now, to answer a query 𝑞, we iterate over all

the 𝐿 tables, and in each table we retrieve16 the data points that hash to the same

bucket as 𝑞; as soon as we find a point within distance 𝑐𝑟 from the query, we stop

immediately.

Let us show how to set the parameters 𝐾 and 𝐿. First, we choose 𝐾 to be the

smallest integer such that 𝑝𝐾2 is at most 1/𝑛. Then, for a fixed query and a given

table, there will be at most 𝑛 · 𝑝𝐾2 ≤ 1 far points that fall into the same bucket with

the query. Thus, the expected query time is 𝑛𝑜(1) · 𝐿 given that we can evaluate hash

functions from the LSH family efficiently. It remains to choose 𝐿. Since we are a data
16This can be implemented efficiently using classical hash tables.
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Figure 1-7: Density of 𝑁(0, 1).

point within distance 𝑟 from the query, the probability of success for a single table

is at least 𝑝𝐾1 = 𝑝

⌈︁
log𝑛

log(1/𝑝2)

⌉︁
1 ≥ 𝑛−𝜌 · 𝑝1. Thus, to get a high probability of success, one

needs to choose 𝐿 = 𝑂(𝑛𝜌/𝑝1).

1.4.5 Gaussian distribution

Our algorithms crucially use the Gaussian distribution 𝑁(𝑎, 𝜎2), which is defined as

the distribution over the reals R with density:

𝑓(𝑥) =
1√
2𝜋𝜎2

· 𝑒−
(𝑥−𝑎)2

2𝜎2

(see Figure 1-7). The mean and the variance of 𝑁(𝑎, 𝜎2) are 𝑎 and 𝜎2, respectively. We

denote by 𝑁(𝑎, 𝜎2)𝑑 a distribution over R𝑑 where each coordinate is an i.i.d. sample

from 𝑁(𝑎, 𝜎2).

A property of the Gaussian distribution most useful for us is its spherical symmetry.

Namely, the density of 𝑁(0, 1)𝑑 in point 𝑣 ∈ R𝑑 depends only on the norm ‖𝑣‖2.
In particular, if a vector distributed according to 𝑁(0, 1)𝑑 is multiplied by a fixed

orthogonal matrix, the resulting vector is also distributed according to 𝑁(0, 1)𝑑.

Spherical symmetry implies 2-stability: if 𝑣 is distributed according to 𝑁(0, 1)𝑑 and

𝑢 ∈ R𝑑 is an arbitrary vector, then ⟨𝑢, 𝑣⟩ is distributed according to 𝑁(0, ‖𝑢‖22).
Indeed,

⟨𝑢, 𝑣⟩ = ⟨𝐴𝑢,𝐴𝑣⟩
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for any fixed orthogonal matrix 𝐴. We can choose 𝐴 so that 𝐴𝑢 = (‖𝑢‖2, 0, . . . , 0),
and remembering that, by the spherical symmetry, 𝐴𝑣 has the same distribution as 𝑣,

we get the desired 2-stability property.
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Chapter 2

New ANN algorithms for ℓ1 and ℓ2

2.1 Problem definition

In this chapter, we will show new algorithms for the Approximate Nearest Neighbor

search problem for the ℓ𝑝 distances for 1 ≤ 𝑝 ≤ 2. Recall that the ℓ𝑝 distance between

two vectors 𝑥, 𝑦 ∈ R𝑑 is defined as follows:

‖𝑥− 𝑦‖𝑝 =

⎧⎪⎨⎪⎩
(︁∑︀𝑑

𝑖=1 |𝑥𝑖 − 𝑦𝑖|𝑝
)︁1/𝑝

1 ≤ 𝑝 <∞,

max
1≤𝑖≤𝑑

|𝑥𝑖 − 𝑦𝑖| 𝑝 =∞.

For applications, the two most important cases are ℓ1 (a.k.a. Manhattan distance)

and ℓ2 (a.k.a. Euclidean distance).

First, let us define the actual problem we will be solving in this chapter.

Definition 2.1.1 (The (𝑐, 𝑟)-ANN problem). Given an 𝑛-point dataset 𝑃 in R𝑑 with

𝑑 = 𝑛𝑜(1), the goal is to preprocess it to answer the following queries. Given a query

point 𝑞 ∈ R𝑑 such that there exists a data point within ℓ𝑝 distance 𝑟 from 𝑞, return a

data point within ℓ𝑝 distance 𝑐𝑟 from 𝑞.

Both approximation 𝑐 and the distance scale 𝑟 are known from the beginning

rather than being a part of a query.

As we pointed out before, the two most important ℓ𝑝 distances, both for theory
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and for applications, are ℓ1 and ℓ2. There are two further important special cases:

∙ The (𝑐, 𝑟)-ANN problem for the ℓ1 distance, when the dataset and queries are

promised to lie in the hypercube {0, 1}𝑑. The hypercube equipped with the ℓ1

distance is often called the Hamming space. Sometimes, it will be convenient for

us to work with {−1, 1}𝑑 instead of {0, 1}𝑑.

∙ The (𝑐, 𝑟)-ANN problem for the ℓ2 distance, when the dataset and queries are

promised to lie on the unit sphere 𝑆𝑑−1 = {𝑥 ∈ R𝑑 : ‖𝑥‖2 = 1} ⊂ R𝑑.

For the (𝑐, 𝑟)-ANN problem over the whole R𝑑, we can assume w.l.o.g. that 𝑟 = 1

by rescaling the dataset and queries. However, this is not the case for the Hamming

space and the unit sphere settings. As we will see later in this chapter, for both of

these settings, the (𝑐, 𝑟)-ANN problem becomes easier as 𝑟 increases1.

2.1.1 Parameters and guarantees

Data structures for the ANN problem have several characteristics we would like to

optimize over:

∙ Space the data structure occupies;

∙ Query time: time it takes to answer a single query;

∙ Preprocessing time: time it takes to build the data structure;

∙ Insertion/deletion time: in some scenarios we might allow the dataset to change,

and we would like to minimize time it takes to add/remove a single point.

As it turns out, the two most fundamental parameters are space and query time:

we will be mostly focusing on those, briefly addressing the remaining two parameters

towards the end of the chapter. Finally, all the data structures we present are

randomized. We guarantee that we return a correct answer for a given query with

probability, say, 0.9. This probability is taken over both preprocessing and query
1As an extreme example, consider the case of the unit sphere and 𝑐𝑟 ≥ 2. Then, the (𝑐, 𝑟)-ANN

problem becomes trivial, since any data point is an answer to any valid query.
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stages. Such a guarantee is similar to, say, what universal hashing [51] gives for the

dictionary problem.

2.2 Prior work

In this section we briefly survey the state of the art for the ANN algorithms over the

ℓ1 and ℓ2 distances prior to the work from this thesis.

2.2.1 Locality-sensitive hashing (LSH)

A classic technique for ANN over ℓ1 and ℓ2 is Locality-Sensitive Hashing (LSH),

introduced in 1998 [85, 77]. The main idea is to use random space partitions of R𝑑,

for which a pair of close points (at a distance at most 𝑟) is more likely to belong

to the same part than a pair of far points (at a distance more than 𝑐𝑟). Given

such a partition, the data structure splits the dataset 𝑃 according to the partition,

and, given a query, checks all the data points which belong to the same part as the

query. In order to return a near neighbor with high probability, one needs to maintain

several partitions and to check all of them during the query stage. The LSH approach

yields data structures with space 𝑛1+𝜌+𝑜(1) and query time 𝑛𝜌+𝑜(1), where 𝜌 is the key

quantity measuring the quality of a space partition for a particular distance function

and approximation 𝑐 ≥ 1. Usually, 𝜌 = 1 for 𝑐 = 1 and 𝜌→ 0 as 𝑐→∞.

More specifically, the value of 𝜌 is equal to log(1/𝑝1)
log(1/𝑝2)

, where:

∙ 𝑝1 is the lower bound on the probability that two points within distance at most

𝑟 end up in the same part of a random partition;

∙ 𝑝2 is the upper bound on a similar probability for pairs within distance more

than 𝑐𝑟.

For a sketch of the reduction see Section 1.4.4.

Since the introduction of LSH in [85], subsequent research established optimal

values of the LSH exponent 𝜌 for several metrics of interest, including ℓ1 and ℓ2. For

the ℓ1 distance, the optimal value is 𝜌 = 1
𝑐
± 𝑜(1) [85, 129, 140]. For the ℓ2 case, the
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best possible exponent is 𝜌 = 1
𝑐2
± 𝑜(1) [85, 66, 13, 129, 140]. Since the LSH approach

has been really successful both in theory and in practice, it has become a pressing open

problem to break through this barrier and obtain algorithms for the ANN problem

that are better than the best possible LSH-based algorithms.

2.2.2 Time–space trade-offs

Since the early results on LSH, a natural question has been whether one can obtain

query time vs. space trade-offs for a fixed approximation 𝑐. Indeed, data structures

with polynomial space and polylogarithmic query time were introduced [85, 108]

simultaneously with LSH. In practice, the most important regime is that of near-linear

space, since space is usually a harder constraint than time: see, e.g., [118]. This regime

has been studied since [80], with subsequent improvements in [144, 13, 97].

For the ℓ2 distance, the work of Kapralov [97] shows a smooth time–space trade-off

that interpolates between all the three abovementioned regimes: near-linear space,

balanced LSH regime, and the regime of the low query time. In the LSH regime, it

almost matches the best LSH construction by [13], while in other regimes it improves

upon the prior work significantly.

2.3 The main result

The following is the main result of the present chapter.

Theorem 2.3.1. For every 1 ≤ 𝑝 ≤ 2, 𝑐 > 1 and 𝜌𝑠, 𝜌𝑞 ≥ 0 such that:

𝑐𝑝 · √𝜌𝑞 + (𝑐𝑝 − 1) · √𝜌𝑠 ≥
√
2𝑐𝑝 − 1,

there exists a data structure for the 𝑐-ANN problem over the ℓ𝑝 distance and 𝑛-point

datasets in R𝑑 with 𝑑 = 𝑛𝑜(1) that has the following parameters:

∙ space 𝑛1+𝜌𝑠+𝑜(1),

∙ query time 𝑛𝜌𝑞+𝑜(1),
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∙ preprocessing time 𝑛1+𝜌𝑠+𝑜(1),

∙ insertion/deletion time 𝑛𝜌𝑠+𝑜(1).

In Figure 2-1, we illustrate the main result by instantiating it for various settings.

See Figure 2-2 for the plot showing the trade-off between 𝜌𝑠 and 𝜌𝑞 we achieve for

𝑐 = 2 and the ℓ2 distance.

2.3.1 Comparison with the prior work

Balanced regime. For the balanced regime (space 𝑛1+𝜌, query time 𝑛𝜌), the new

result is the first to bypass the LSH barrier. For the ℓ1 distance, the best possible LSH

construction from [85] obtains the exponent 𝜌 = 1
𝑐
+ 𝑜(1), while the new exponent

is 1
2𝑐−1

+ 𝑜(1). Similarly, for the ℓ2 distance the best possible LSH from [13] gives

𝜌 = 1
𝑐2
+ 𝑜(1), while the new bound is 1

2𝑐2−1
+ 𝑜(1). Thus, in the balanced regime we

obtain a polynomial improvement both in space and in query time.

The main insight that allows us to overcome the LSH lower bounds [129, 140] is

to allow random partitions to depend on the dataset. The definition of LSH requires

certain conditions (close pairs collide with probability at least 𝑝1, far pairs collide with

probability at most 𝑝2) to hold for every pair of points from the ambient space R𝑑.

However, for the ANN application, it would be enough if these conditions held for

pairs, where one of the points is one of the 𝑛 dataset points, which we know in advance.

That is exactly the route we take. Data-dependent partitions for similarity search and

related problems are ubiquitous in practice [171, 172], but the main contribution of this

work is to establish their utility for getting improved worst-case bounds. Informally

speaking, we show that every dataset has some structure to exploit.

Other regimes. In other regimes we also significantly improve upon the state of

the art. In particular, for the near-linear space regime, the new algorithm is the first

which achieves sub-linear in 𝑛 query time for every approximation 𝑐 > 1. The previous

best result from [97] gets sub-linear time only for 𝑐 >
√
3.
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Distance Approximation Regime Space Query time

ℓ1

General 𝑐 > 1

Low space 𝑛1+𝑜(1) 𝑛
2
𝑐
− 1

𝑐2
+𝑜(1)

Balanced 𝑛1+ 1
2𝑐−1

+𝑜(1) 𝑛
1

2𝑐−1
+𝑜(1)

Fast queries 𝑛
𝑐2

(𝑐−1)2
+𝑜(1)

𝑛𝑜(1)

𝑐 = 1 + 𝜀, 𝜀→ 0

Low space 𝑛1+𝑜(1) 𝑛1−𝜀2+𝑂(𝜀3)

Balanced 𝑛2−2𝜀+𝑂(𝜀2) 𝑛1−2𝜀+𝑂(𝜀2)

Fast queries 𝑛
1
𝜀2

+𝑂( 1
𝜀) 𝑛𝑜(1)

𝑐 = 2

Low space 𝑛1+𝑜(1) 𝑛
3
4
+𝑜(1) = 𝑛0.75+𝑜(1)

Balanced 𝑛
4
3
+𝑜(1) ≈ 𝑛1.34 𝑛

1
3
+𝑜(1) ≈ 𝑛0.34

Fast queries 𝑛4+𝑜(1) 𝑛𝑜(1)

𝑐→∞
Low space 𝑛1+𝑜(1) 𝑛

2
𝑐
+𝑂( 1

𝑐2
)

Balanced 𝑛1+ 1
2𝑐

+𝑂( 1
𝑐2
) 𝑛

1
2𝑐

+𝑂( 1
𝑐2
)

Fast queries 𝑛1+ 2
𝑐
+𝑂( 1

𝑐2
) 𝑛𝑜(1)

ℓ2

General 𝑐 > 1

Low space 𝑛1+𝑜(1) 𝑛
2
𝑐2

− 1
𝑐4

+𝑜(1)

Balanced 𝑛
1+ 1

2𝑐2−1
+𝑜(1)

𝑛
1

2𝑐2−1
+𝑜(1)

Fast queries 𝑛
𝑐4

(𝑐2−1)2
+𝑜(1)

𝑛𝑜(1)

𝑐 = 1 + 𝜀, 𝜀→ 0

Low space 𝑛1+𝑜(1) 𝑛1−4𝜀2+𝑂(𝜀3)

Balanced 𝑛2−4𝜀+𝑂(𝜀2) 𝑛1−4𝜀+𝑂(𝜀2)

Fast queries 𝑛
1

4𝜀2
+𝑂( 1

𝜀) 𝑛𝑜(1)

𝑐 = 2

Low space 𝑛1+𝑜(1) 𝑛
7
16

+𝑜(1) ≈ 𝑛0.44

Balanced 𝑛
8
7
+𝑜(1) ≈ 𝑛1.15 𝑛

1
7
+𝑜(1) ≈ 𝑛0.15

Fast queries 𝑛
16
9
+𝑜(1) ≈ 𝑛1.78 𝑛𝑜(1)

𝑐→∞
Low space 𝑛1+𝑜(1) 𝑛

2
𝑐2

+𝑂( 1
𝑐4
)

Balanced 𝑛1+ 1
2𝑐2

+𝑂( 1
𝑐4
) 𝑛

1
2𝑐2

+𝑂( 1
𝑐4
)

Fast queries 𝑛1+ 2
𝑐2

+𝑂( 1
𝑐4
) 𝑛𝑜(1)

Figure 2-1: Specializations of the main result (Theorem 2.3.1) for various settings.
This includes: ℓ1 and ℓ2 distances; general approximation 𝑐, 𝑐 close to 1, 𝑐 = 2, large
𝑐; the regime of space 𝑛1+𝑜(1), the balanced regime (space 𝑛1+𝜌, query time 𝑛𝜌) and
the regime of fast query time 𝑛𝑜(1).
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Figure 2-2: Illustration of the main result (Theorem 2.3.1) for the ℓ2 distance and
approximation 𝑐 = 2. The time–space trade-off interpolates between fast queries
(𝜌𝑞 = 0, 𝜌𝑠 = 7/9 = 0.77 . . .), the balanced regime (𝜌𝑞 = 𝜌𝑠 = 1/7 = 0.14 . . .) , and the
near-linear space regime (𝜌𝑞 = 7/16 = 0.43 . . ., 𝜌𝑠 = 0).

We compare the new algorithm with the prior state of the art ([13] in the balanced

regime, and [97] in other regimes) for the ℓ2 distance and 𝑐 = 2 on Figure 2-3.

2.4 Overview of the algorithm

We now describe the proof of Theorem 2.3.1 at a high level. First of all, in Section 2.5,

using by now standard tools, we reduce the general (𝑐, 𝑟)-ANN problem for the ℓ𝑝

distances to the
(︀
𝑐 − 𝑜(1), 𝑟

)︀
-ANN problem for the ℓ2 distance on the unit sphere

𝑆𝑑−1 ⊂ R𝑑, where 𝑑 = log1+𝑜(1) 𝑛 and 𝑟 = 1
log log𝑛

. For this case it is enough to achieve

the following trade-off:

𝑐2 · √𝜌𝑞 + (𝑐2 − 1) · √𝜌𝑠 ≥
√
2𝑐2 − 1, (2.1)

The new algorithm for the unit sphere case consists of two major stages. In the first

stage (Section 2.8), we give an algorithm for random instances (introduced formally

in Section 2.6). To generate such an instance, we sample a dataset uniformly at
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Figure 2-3: Comparison of the main result (Theorem 2.3.1) with the prior state of
the art for the ℓ2 distance and 𝑐 = 2. In the balanced regime, the best prior bound
follows from the work of [13], while in all the other regimes, the best bound has been
shown in [97]. For 𝜌𝑞 = 0, the algorithm from [97] gives 𝜌𝑠 = 4 (this point does not fit
on the plot).

random on a unit sphere 𝑆𝑑−1 ⊂ R𝑑 and plant a query at random within distance
√
2/𝑐 from a randomly chosen data point. In the second stage, we show the claimed

result for the worst-case instances by combining the algorithm from the first stage

with data-dependent partitioning.

Data-independent partitions. To handle random instances, we use a certain

data-independent partitioning process, which we briefly introduce below. It can be

seen as a modification of spherical Locality-Sensitive Filtering from [38], and is related

to a data structure from [146]. While this data-independent approach can be extended

to worst case instances, it gives a bound worse than the desired (2.1).

We now describe the partitioning process which produces a decision tree to solve

an ANN instance on the unit sphere 𝑆𝑑−1. We take our initial dataset 𝑃 ⊂ 𝑆𝑑−1 and

sample 𝑇 i.i.d. standard Gaussian 𝑑-dimensional vectors 𝑧1, 𝑧2, . . . , 𝑧𝑇 ∈ R𝑑. The sets
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𝑃𝑖 ⊆ 𝑃 (not necessarily disjoint) are defined for each 𝑧𝑖 as follows:

𝑃𝑖 = {𝑝 ∈ 𝑃 | ⟨𝑧𝑖, 𝑝⟩ ≥ 𝜂𝑠}.

We then recurse and repeat the above procedure for each non-empty 𝑃𝑖. We stop the

recursion once we reach depth 𝐾. The above procedure generates a tree of depth

𝐾 and degree at most 𝑇 , where each leaf explicitly stores the corresponding subset

of the dataset. To answer a query 𝑞 ∈ 𝑆𝑑−1, we start at the root and descend into

(potentially multiple) 𝑃𝑖’s for which ⟨𝑧𝑖, 𝑞⟩ ≥ 𝜂𝑞. When we eventually reach the 𝐾-th

level, we iterate through all the points stored in the leaf searching for a near neighbor.

The parameters 𝑇 , 𝐾, 𝜂𝑠 and 𝜂𝑞 depend on the distance threshold 𝑟, the approx-

imation factor 𝑐, as well as the desired space and query time exponents 𝜌𝑠 and 𝜌𝑞.

The special case of 𝜂𝑠 = 𝜂𝑞 corresponds to the balanced regime 𝜌𝑠 = 𝜌𝑞; 𝜂𝑠 < 𝜂𝑞

corresponds to the “fast queries” regime 𝜌𝑞 < 𝜌𝑠 (the query procedure is more selective);

and 𝜂𝑠 > 𝜂𝑞 corresponds to the “low memory” regime 𝜌𝑠 < 𝜌𝑞. The analysis of this

algorithm relies on bounds on the Gaussian area of certain two-dimensional sets (see

Section 2.7).

This algorithm has two important consequences. First, we obtain the desired

trade-off (2.1) for random instances by setting 𝑟 =
√
2
𝑐

. Second, we obtain a worse

trade-off trade-off for 𝑟 = 1
log log𝑛

. Namely, we get:

(𝑐2 + 1)
√
𝜌𝑞 + (𝑐2 − 1) · √𝜌𝑠 ≥ 2𝑐. (2.2)

Even though it is worse than the desired bound from (2.1)2, it is already non-trivial.

In particular, (2.2) is already better than all the prior work on time–space trade-offs

for ANN.

Data-dependent partitions. We then improve upon (2.2) for worst-case instances

and obtain the final result, Theorem 2.3.1. For this we employ data-dependent

partitioning.

2See Figure 2-4 for comparison for the case 𝑐 = 2.
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Figure 2-4: Illustration of the data-independent bound (2.2) for 𝑐 = 2. In the balanced
regime, it matches the best LSH from [13], while in other regimes it improves upon
the work of [97]. The final bound is polynomially better than the data-independent
one.

If pairwise distances between data points are distributed roughly like for a random

instance, we could apply the data-independent procedure. In absence of such a

guarantee, we manipulate the dataset in order to reduce it to a random-looking case.

Namely, we search for low-diameter clusters that contain many data points. We

extract these clusters, and we enclose each of them in a ball of radius non-trivially

smaller than one, and we recurse on each cluster. For the remaining points, which

do not lie in any cluster, we perform one step of the data-independent algorithm: we

sample 𝑇 Gaussian vectors, form 𝑇 subsets of the dataset, and recurse on each subset.

Overall, we make progress in two ways: for the clusters, we make them a bit more

isotropic after re-centering and shrinking, which, after several re-centerings, makes the

instance amenable to the data-independent algorithm, and for the remainder of the

points, we can show that the absence of dense clusters makes the data-independent

algorithm work for a single level of the tree (though, when recursing into 𝑃𝑖’s, dense

clusters may re-appear, which we will need to extract again).

While the above intuition is very simple and, in hindsight, natural, the actual

execution requires a good amount of work. For example, we need to formalize “low-
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diameter”, “lots of points”, “more isotropic”, etc.

Finally, getting fast preprocessing time 𝑛1+𝜌𝑠+𝑜(1) and fast insertion/deletion times

𝑛𝜌𝑠+𝑜(1) requires additional work. For the former, we show how to quickly find dense

cluster using sampling (see Section 2.9.5). For the latter we employ a standard

dynamization technique [142] (see Section 2.9.6).

2.5 Simplification of the problem

It can be shown that in order to prove Theorem 2.3.1, it is enough to establish the

following special case of it.

Theorem 2.5.1. For every 𝑐 > 1 and 𝜌𝑠, 𝜌𝑞 ≥ 0 such that:

𝑐2 · √𝜌𝑞 + (𝑐2 − 1) · √𝜌𝑠 ≥
√
2𝑐2 − 1, (2.3)

there exists a data structure for the (𝑐, 𝑟)-ANN problem over the ℓ2 distance with

𝑛-point datasets and queries lying on the unit sphere 𝑆𝑑−1 ⊂ R𝑑 with 𝑑 = log1+𝑜(1) 𝑛

and 𝑟 = 1√
log log𝑛

that has the following parameters:

∙ space 𝑛1+𝜌𝑠+𝑜(1),

∙ query time 𝑛𝜌𝑞+𝑜(1),

∙ preprocessing time 𝑛1+𝜌𝑠+𝑜(1),

∙ insertion/deletion times 𝑛𝜌𝑠+𝑜(1).

In short, it is enough to handle the (𝑐, 𝑟)-ANN problem over the ℓ2 distance on

the unit sphere in R𝑑 for 𝑑 = log1+𝑜(1) 𝑛 and 𝑟 = 1
log log𝑛

= 𝑜(1).

The proof of the fact that Theorem 2.5.1 implies Theorem 2.3.1 is by now standard

if a bit tedious. Let us list the necessary steps and provide pointers to the literature.

∙ We reduce the (𝑐, 𝑟)-ANN problems over the ℓ𝑝 distance to the (𝑐𝑝/2, 1)-ANN

problem over the ℓ2 distance. This reduction is described in detail in [137].
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∙ We reduce the dimension to 𝑑′ = log1+𝑜(1) 𝑛 by using the dimension reduction

lemma of Johnson and Lindenstrauss [93, 65]. This step introduces multiplicative

distortion 1± 𝑜(1) for pairwise distances, which is acceptable for us.

∙ Next, we reduce the diameter of the dataset to 𝑂
(︁
(log log 𝑛)1/4

)︁
. This can be

done by partitioning the dataset using LSH family from [66] and querying the part,

where the query belongs. We need to repeat this procedure 𝑛
𝑂

(︂
1

(log log𝑛)1/4

)︂
= 𝑛𝑜(1)

times to get high probability of success.

∙ Finally, we reduce the problem to the unit sphere case with 𝑟 = 1√
log log𝑛

. This

reduction can be found in [169].

Furthermore, from now on we will mostly focus on bounding the space and query

time, postponing the preprocessing and insertion/deletion times until Sections 2.9.5

and 2.9.6, respectively.

2.6 Random ANN instances

Let us look at the complexity of (𝑐, 𝑟)-ANN on the unit sphere 𝑆𝑑−1 when 𝑐 is fixed.

As we saw in Section 2.5, the case 𝑟 = 𝑜(1) is the hardest, since it implies a 𝑐-ANN

algorithm for the whole R𝑑 with essentially the same guarantees. At the other extreme

is the case 𝑟 ≥ 2
𝑐
. Since the diameter of the sphere is 2, if 𝑐𝑟 ≥ 2, any data point is an

answer for any valid query. Hence, in this case, the (𝑐, 𝑟)-ANN problem is trivial.

As it turns out, there exists an intermediate regime: 𝑟 =
√
2
𝑐

, which corresponds to

the following random instances.

∙ A dataset 𝑃 ⊂ 𝑆𝑑−1 is given by 𝑛 unit vectors, where each vector is drawn

independently and uniformly at random from 𝑆𝑑−1. We assume that 𝑑 = 𝜔(log 𝑛).

∙ A query 𝑞 ∈ 𝑆𝑑−1 is drawn by first choosing a dataset point 𝑝 ∈ 𝑃 uniformly

at random, and then choosing 𝑞 uniformly at random from all points in 𝑆𝑑−1

within distance
√
2
𝑐

from 𝑝.
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∙ The goal of the data structure is to preprocess 𝑃 in order to recover the data

point 𝑝 from the query point 𝑞 quickly.

Any
(︀
𝑐− 𝑜(1),

√
2
𝑐

)︀
-ANN data structure for the unit sphere must be able to find 𝑝

given 𝑞 with high probability. Indeed, the distance between 𝑝 and 𝑞 is at most
√
2
𝑐

,

while all the distances from 𝑞 to other data points are at least
√
2− 𝑜(1) with high

probability, since 𝑑 = 𝜔(log 𝑛)3.

As it turns out, handling these random instances are crucial for getting improved

ANN algorithms for the general case. Namely, the proof of Theorem 2.5.1 proceeds in

two big steps:

∙ We show how to get the desired bounds (2.1) on space and query time for(︀
𝑐− 𝑜(1), 𝑟

)︀
-ANN with 𝑟 =

√
2
𝑐

, and, as discussed above, this setting is enough

to handle random instances;

∙ Then, we will see how to reduce the setting of Theorem 2.5.1, 𝑟 = 𝑜(1), to the

above case of 𝑟 =
√
2
𝑐

by finding subsets of the dataset that “look random”.

Section 2.8 is devoted to the first part, while (a much more involved) Section 2.9

describes the second part.

2.7 Gaussians and tail bounds

Here we develop a bit the theory of the Gaussian distribution introduced in Sec-

tion 1.4.5.

For 0 ≤ 𝑠 ≤ 2, let 𝛼(𝑠) = 1− 𝑠2

2
be the cosine of the angle between two points on

a unit Euclidean sphere 𝑆𝑑−1 with distance 𝑠 between them, and 𝛽(𝑠) =
√︀
1− 𝛼2(𝑠)

be the sine of the same angle (see Figure 2-5).

We introduce two functions that will be useful later. First, for 𝜌 > 0, let

𝐹 (𝜌) = Pr
𝑧∼𝑁(0,1)𝑑

[⟨𝑧, 𝑢⟩ ≥ 𝜌] ,

3This follows from the fact that two random vectors on a high-dimension sphere are nearly
orthogonal with high probability. See, e.g., [32, 121].
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Figure 2-5: Illustration of the definition of 𝛼(𝑠) and 𝛽(𝑠).
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x = ρ

α(s) · x+ β(s) · y = σ

Figure 2-6: Illustration of the definition of 𝐴.

where 𝑢 ∈ 𝑆𝑑−1 is an arbitrary point on the unit sphere. Note that 𝐹 (𝜌) does not

depend on the specific choice of 𝑢 due to the spherical symmetry of 𝑁(0, 1)𝑑.

Second, for 0 ≤ 𝑠 ≤ 2 and 𝜌, 𝜎 > 0, let

𝐺(𝑠, 𝜌, 𝜎) = Pr
𝑧∼𝑁(0,1)𝑑

[⟨𝑧, 𝑢⟩ ≥ 𝜌 and ⟨𝑧, 𝑣⟩ ≥ 𝜎] ,

where 𝑢, 𝑣 ∈ 𝑆𝑑−1 are arbitrary points from the unit sphere with ‖𝑢 − 𝑣‖2 = 𝑠. As

with 𝐹 , the value of 𝐺(𝑠, 𝜌, 𝜎) does not depend on the specific choice of 𝑢 and 𝑣;

it only depends on the distance 𝑠 = ‖𝑢 − 𝑣‖2 between them. Clearly, 𝐺(𝑠, 𝜌, 𝜎) is

non-increasing in 𝑠, for fixed 𝜌 and 𝜎.

We state two useful bounds on 𝐹 (·) and 𝐺(·, ·, ·). The first is a standard tail bound

for the Gaussian distribution and the second can be seen as a certain two-dimensional

generalization of the first.
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Lemma 2.7.1 ([74]). For 𝜌→∞,

𝐹 (𝜌) = 𝑒
−
(︁
1±𝑂
(︀

log 𝜌

𝜌2

)︀)︁
· 𝜌

2

2 .

Proof. By the 2-stability,

𝐹 (𝜌) = Pr
𝑧∼𝑁(0,1)𝑑

[⟨𝑧, 𝑢⟩ ≥ 𝜌] = Pr
𝑥∼𝑁(0,1)

[𝑥 ≥ 𝜌] =
1√
2𝜋

∞∫︁
𝜌

𝑒−𝑥2/2 𝑑𝑥.

We can bound the latter integral as follows:

(︂
1

𝜌
− 1

𝜌3

)︂
· 𝑒

−𝜌2/2

√
2𝜋

=
1√
2𝜋

∞∫︁
𝜌

(︂
1− 3

𝑥4

)︂
𝑒−𝑥2/2 𝑑𝑥

≤ 1√
2𝜋

∞∫︁
𝜌

𝑒−𝑥2/2 𝑑𝑥

≤ 1√
2𝜋

∞∫︁
𝜌

(︂
1 +

1

𝑥2

)︂
𝑒−𝑥2/2 𝑑𝑥 =

1

𝜌
· 𝑒

−𝜌2/2

√
2𝜋

,

which implies the required statement.

Lemma 2.7.2. If 𝜌, 𝜎 →∞, then, for every 0 < 𝑠 < 2, one has:

𝐺(𝑠, 𝜌, 𝜎) = 𝑒
−
(︁
1±𝑂
(︀

logΔ

Δ2

)︀)︁
·Δ

2

2 ,

where:

Δ2 =

⎧⎪⎨⎪⎩max{𝜌2, 𝜎2}, if min{𝜌,𝜎}
max{𝜌,𝜎} < 𝛼(𝑠) ≤ 1;

𝜌2+𝜎2−2𝛼(𝑠)·𝜌𝜎
𝛽2(𝑠)

, otherwise.
(2.4)

Proof. By the spherical symmetry,

𝐺(𝑠, 𝜌, 𝜎) = Pr
𝑧∼𝑁(0,1)𝑑

[⟨𝑧, 𝑢⟩ ≥ 𝜌 and ⟨𝑧, 𝑣⟩ ≥ 𝜎]

= Pr
𝑥,𝑦∼𝑁(0,1)

[𝑥 ≥ 𝜌 and 𝛼(𝑠) · 𝑥+ 𝛽(𝑠) · 𝑦 ≥ 𝜎] .
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(a) The closest point lies “on a side”.
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(b) The closest point is a “corner”.

Figure 2-7: Two cases for Δ𝐴 correspond to the two cases in the statement of
Lemma 2.7.2.

The latter quantity is the Gaussian measure 𝒢(𝐴) of the two-dimensional set

𝐴 = {(𝑥, 𝑦) ∈ R2 | 𝑥 ≥ 𝜌 and 𝛼(𝑠) · 𝑥+ 𝛽(𝑠) · 𝑦 ≥ 𝜎}

(see Figure 2-6). Let us denote Δ𝐴 the distance from the origin to 𝐴. It is not hard to

check that Δ𝐴 is equal to Δ from the statement of the lemma. The two cases in (2.4)

correspond to Figure 2-7a and Figure 2-7b, respectively. Thus, it remains to show

that if 𝜌, 𝜎 →∞, then

𝒢(𝐴) = 𝑒
−
(︁
1±𝑂
(︀

logΔ𝐴
Δ2
𝐴

)︀)︁
·Δ

2
𝐴
2 .

For 𝑟 > 0, let us denote 0 ≤ 𝜇𝐴(𝑟) ≤ 1 the normalized measure of the intersection

𝐴 ∩ 𝜕𝐵(0, 𝑟):

𝜇𝐴(𝑟) =
𝜇(𝐴 ∩ 𝜕𝐵(0, 𝑟))

2𝜋𝑟
,

where 𝜇 is the standard one-dimension Lebesgue measure (see Figure 2-8). Then,

integrating in the polar coordinates, we get:

𝒢(𝐴) =
∞∫︁

Δ𝐴

𝜇𝐴(𝑟) · 𝑟𝑒−𝑟2/2 𝑑𝑟. (2.5)
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We can upper bound (2.5) as follows:

∞∫︁
Δ𝐴

𝜇𝐴(𝑟) · 𝑟𝑒−𝑟2/2 𝑑𝑟 ≤
∞∫︁

Δ𝐴

𝑟𝑒−𝑟2/2 𝑑𝑟 = 𝑒−Δ2
𝐴/2.

On the lower bound side, since 𝜇𝐴(𝑟) is non-decreasing as 𝑟 increases, we get for every

𝜀 > 0:

∞∫︁
Δ𝐴

𝜇𝐴(𝑟) ·𝑟𝑒−𝑟2/2 𝑑𝑟 ≥ 𝜇𝐴

(︁
(1+𝜀)Δ𝐴

)︁ ∞∫︁
(1+𝜀)Δ𝐴

𝑟𝑒−𝑟2/2 𝑑𝑟 = 𝜇𝐴

(︁
(1+𝜀)Δ𝐴

)︁
𝑒−(1+𝜀)2Δ2

𝐴/2.

Thus, to get the desired bound, it is enough to show that as 𝜀 tends to zero, we have:

𝜇𝐴

(︁
(1 + 𝜀)Δ𝐴

)︁
≥
(︂

𝜀

Δ𝐴

)︂𝑂(1)

.

This is a pretty straightforward computation. If we are in the situation of Figure 2-7b,

then one can show that:

𝜇
(︁
(1 + 𝜀)Δ𝐴

)︁
=

1

2𝜋
·
(︂
arccos

(︂
𝜌

(1 + 𝜀)Δ𝐴

)︂
− arccos

(︂
𝜌

Δ𝐴

)︂
+arccos

(︂
𝜎

(1 + 𝜀)Δ𝐴

)︂
− arccos

(︂
𝜎

Δ𝐴

)︂)︂
≥ Ω

(︂
𝜀

Δ2
𝐴

)︂

as required. Otherwise, the situation is like on Figure 2-7a, and we have 𝜇
(︁
(1+𝜀)Δ𝐴

)︁
=

Ω(𝜀1/2), again, as required.

2.8 Data-independent partitions

Here we fulfill the first step of the program outlined in Section 2.4. We show a simple

algorithm based on data-independent partitioning that gives the trade-off (2.2) for

worst-case instances of (𝑐, 𝑟)-ANN on the unit sphere and a better trade-off (2.1)

for random instances (as defined in Section 2.6). Later we will show how to achieve
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Figure 2-8: Illustration of the definition of 𝜇𝐴(𝑟).

the trade-off (2.1) for worst-case instances, which will imply Theorem 2.5.1 and, by

Section 2.5, the final result (Theorem 2.3.1). See Figure 2-4 for the comparison of the

trade-offs for 𝑐 = 2.

2.8.1 Results

Below is the main theorem we prove in Section 2.8.

Theorem 2.8.1. Let 𝜀0 > 0 be a (small) fixed positive constant. For every 𝑐 > 1,
1

log log𝑛
≤ 𝑟 ≤

√
2− 𝜀0, 𝜌𝑞 ≥ 0 and 𝜌𝑠 ≥ 0 such that 𝑐𝑟 ≤ 2− 𝜀0 and

(︀
1− 𝛼(𝑟)𝛼(𝑐𝑟)

)︀
· √𝜌𝑞 +

(︀
𝛼(𝑟)− 𝛼(𝑐𝑟)

)︀
· √𝜌𝑠 ≥ 𝛽(𝑟)𝛽(𝑐𝑟), (2.6)

there exists a data structure for (𝑐, 𝑟)-ANN on a unit sphere 𝑆𝑑−1 ⊂ R𝑑, where 𝑑 = 𝑛𝑜(1),

with space 𝑛1+𝜌𝑠+𝑜(1) and query time 𝑛𝜌𝑞+𝑜(1).

Recall that 𝛼(·) and 𝛽(·) are the functions defined in the beginning of Section 2.7.

Let us see what this theorem gives for 𝑟 = 𝑜(1) and 𝑟 =
√
2
𝑐

.

Corollary 2.8.2. If 1
log log𝑛

≤ 𝑟 = 𝑜(1), then Theorem 2.8.1 holds as soon as:

(𝑐2 + 1) · √𝜌𝑞 + (𝑐2 − 1) · √𝜌𝑠 ≥ 2𝑐. (2.7)
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Proof. We use the following estimates that are easy to check:

1− 𝛼(𝑟)𝛼(𝑐𝑟) = (𝑐2 + 1)𝑟2

2
+𝑂𝑐(𝑟

4)

𝛼(𝑟)− 𝛼(𝑐𝑟) = (𝑐2 − 1)𝑟2

2

𝛽(𝑟)𝛽(𝑐𝑟) = 𝑐𝑟2 +𝑂𝑐(𝑟
3).

Plugging these estimates into (2.6), we obtain the result.

Thus, using the algorithm from this section, one can immediately obtain a version

of Theorem 2.5.1 with the trade-off (2.7) instead of the required (2.1).

Corollary 2.8.3. If 𝑟 =
√
2
𝑐

, then Theorem 2.8.1 holds as soon as:

𝑐2 · √𝜌𝑞 + (𝑐2 − 1) · √𝜌𝑠 ≥
√
2𝑐2 − 1. (2.8)

Proof. Since 𝑐 > 1, one has 𝑟 ≤
√
2 − Ω(1), so we can apply Theorem 2.8.1. We

use the following identities: 𝛼(𝑟) = 1 − 1
𝑐2

, 𝛼(𝑐𝑟) = 𝛼(
√
2) = 0, 𝛽(𝑟) =

√︁
2
𝑐2
− 1

𝑐4
,

𝛽(𝑐𝑟) = 𝛽(
√
2) = 1, which, as one can check, imply the required bound.

This corollary implies that the algorithm from this section applied to random

instances gives the trade-off (2.8), which we would like to get in full generality to

conclude the proof of Theorem 2.5.1. The remainder of Section 2.8 is devoted to

proving Theorem 2.8.1.

2.8.2 Description

Fix 𝐾 and 𝑇 to be positive integers, we determine their exact value later. Our data

structure is a rooted tree where each node corresponds to a spherical cap. The tree

consists of 𝐾 + 1 levels of nodes where each node has out-degree at most 𝑇 . We will

index the levels by 0, 1, . . . , 𝐾, where the 0-th level consists of the root denoted by

𝑣0, and each node up to the (𝐾 − 1)-th level has at most 𝑇 children. Therefore, there

are at most 𝑇𝐾 nodes at the 𝐾-th level.
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For every node 𝑣 in the tree, let ℒ𝑣 be the set of nodes on the path from 𝑣 to the

root 𝑣0 excluding the root (but including 𝑣). Each node 𝑣, except for the root, stores

a random Gaussian vector 𝑧𝑣 ∼ 𝑁(0, 1)𝑑. For each node 𝑣, we define the following

subset of the dataset 𝑃𝑣 ⊆ 𝑃 :

𝑃𝑣 = {𝑝 ∈ 𝑃 | ∀𝑣′ ∈ ℒ𝑣 ⟨𝑧𝑣′ , 𝑝⟩ ≥ 𝜂𝑠} ,

where 𝜂𝑠 > 0 is a parameter to be chosen later.

At the root node 𝑣0, 𝑃𝑣0 = 𝑃 , since ℒ𝑣0 = ∅. Intuitively, each set 𝑃𝑣 corresponds

to a subset of the dataset lying in the intersection of spherical caps centered around

𝑧𝑣′ for all 𝑣′ ∈ ℒ𝑣. Every leaf ℓ at the level 𝐾 stores the subset 𝑃ℓ explicitly.

We build the tree recursively. For a given node 𝑣 in levels 0, . . . , 𝐾 − 1, we first

sample 𝑇 i.i.d. Gaussian vectors 𝑔1, 𝑔2, . . . , 𝑔𝑇 ∼ 𝑁(0, 1)𝑑. Then, for every 𝑖 such

that {𝑝 ∈ 𝑃𝑣 | ⟨𝑔𝑖, 𝑝⟩ ≥ 𝜂𝑠} is non-empty, we create a new child 𝑣′ with 𝑧𝑣′ = 𝑔𝑖 and

recursively process 𝑣′. At the 𝐾-th level, each node 𝑣 stores 𝑃𝑣 as a list of points.

In order to answer a query 𝑞 ∈ 𝑆𝑑−1, we start from the root 𝑣0 and descend down

the tree. We consider every child 𝑣 of the root for which ⟨𝑧𝑣, 𝑞⟩ ≥ 𝜂𝑞, where 𝜂𝑞 > 0 is

another parameter to be chosen later4. After identifying all such children, we proceed

down the children recursively. If we reach leaf ℓ at level 𝐾, we scan through all the

points in 𝑃ℓ and compute their distance to the query 𝑞. If a point lies at a distance at

most 𝑐𝑟 from the query, we return it and stop immediately.

We provide pseudocode for the data structure above in Figure 2-9. The procedure

Build(𝑃 , 0, ⊥) builds the data structure for dataset 𝑃 and returns the root of the

tree, 𝑣0. The procedure Query(𝑞, 𝑣0) queries the data structure with root 𝑣0 at point

𝑞.

4Note that 𝜂𝑠 may not be equal to 𝜂𝑞. It is exactly this discrepancy that will govern the time–space
trade-off.

64



function Build(𝑃 ′, 𝑙, 𝑧)
create a tree node 𝑣
store 𝑙 as 𝑣.𝑙
store 𝑧 as 𝑣.𝑧
if 𝑙 = 𝐾 then

store 𝑃 ′ as 𝑣.𝑃
else

for 𝑖← 1 . . . 𝑇 do
sample a Gaussian vector 𝑧′ ∼ 𝑁(0, 1)𝑑

𝑃 ′′ ← {𝑝 ∈ 𝑃 ′ | ⟨𝑧′, 𝑝⟩ ≥ 𝜂𝑠}
if 𝑃 ′′ ̸= ∅ then

add Build(𝑃 ′′, 𝑙 + 1, 𝑧′) as a child of 𝑣
return 𝑣

function Query(𝑞, 𝑣)
if 𝑣.𝑙 = 𝐾 then

for 𝑝 ∈ 𝑣.𝑃 do
if ‖𝑝− 𝑞‖ ≤ 𝑐𝑟 then

return 𝑝

else
for 𝑣′ : 𝑣′ is a child of 𝑣 do

if ⟨𝑣′.𝑧, 𝑞⟩ ≥ 𝜂𝑞 then
𝑝← Query(𝑞, 𝑣′)
if 𝑝 ̸=⊥ then

return 𝑝

return ⊥
Figure 2-9: Pseudocode for data-independent partitions

2.8.3 Analysis

In this section we analyze the above data structure. During the analysis, we will use

functions 𝐹 (·) and 𝐺(·, ·, ·) defined in Section 2.7.

Probability of success. We first analyze the probability of success of the data

structure. We assume that a query 𝑞 has some 𝑝 ∈ 𝑃 where ‖𝑝− 𝑞‖2 ≤ 𝑟. The data

structure succeeds when Query(𝑞, 𝑣0) returns some point 𝑝′ ∈ 𝑃 with ‖𝑞 − 𝑝′‖2 ≤ 𝑐𝑟.

Lemma 2.8.4. If

𝑇 ≥ 3

𝐺 (𝑟, 𝜂𝑠, 𝜂𝑞)
,

then with probability at least 0.9, Query(𝑞, 𝑣0) finds some point within distance 𝑐𝑟
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from 𝑞.

Proof. We prove the lemma by induction on the depth of the tree. Let 𝑞 ∈ 𝑆𝑑−1 be a

query point and 𝑝 ∈ 𝑃 its near neighbor. Suppose we are within the recursive call

Query(𝑞, 𝑣) for some node 𝑣 in the tree. Suppose we have not yet failed, that is,

𝑝 ∈ 𝑃𝑣. We would like to prove that—if the condition of the lemma is met—the

probability that this call returns some point within distance 𝑐𝑟 is at least 0.9.

When 𝑣 is a node in the last level 𝐾, the algorithm enumerates 𝑃𝑣 and, since we

assume 𝑝 ∈ 𝑃𝑣, some good point will be discovered (though not necessarily 𝑝 itself).

Therefore, this case is trivial. Now suppose that 𝑣 is not from the 𝐾-th level. Using

the inductive assumption, suppose that the statement of the lemma is true for all 𝑇

potential children of 𝑣, i.e., if 𝑝 ∈ 𝑃𝑣′ , then with probability 0.9, Query(𝑞, 𝑣′) returns

some point within distance 𝑐𝑟 from 𝑞. Then,

Pr[failure] ≤
𝑇∏︁
𝑖=1

(︂
1− Pr

𝑔∼𝑁(0,1)𝑑
[⟨𝑔, 𝑝⟩ ≥ 𝜂𝑠 and ⟨𝑔, 𝑞⟩ ≥ 𝜂𝑞] · 0.9

)︂
≤ (1−𝐺 (𝑟, 𝜂𝑠, 𝜂𝑞) · 0.9)𝑇 ≤ 𝑒−𝐺(𝑟,𝜂𝑠,𝜂𝑞)·0.9·𝑇 ≤ 0.1,

where the first step follows from the inductive assumption and independence be-

tween the children of 𝑣 during the preprocessing phase. The second step follows

by monotonicity of 𝐺(𝑠, 𝜌, 𝜎) in 𝑠, and the fourth is due to the assumption of the

lemma.

Space. We now analyze the space consumption of the data structure.

Lemma 2.8.5. The expected space consumption of the data structure is at most

𝑛1+𝑜(1) ·𝐾 ·
(︀
𝑇𝐹 (𝜂𝑠)

)︀𝐾
.

Proof. We compute the expected total size of the sets 𝑃ℓ for leaves ℓ at 𝐾-th level.

There are at most 𝑇𝐾 such nodes, and for a fixed point 𝑝 ∈ 𝑃 and a fixed leaf ℓ the

probability that 𝑝 ∈ 𝑃ℓ is equal to 𝐹 (𝜂𝑠)𝐾 . Thus, the expected total size is at most

𝑛 ·
(︀
𝑇𝐹 (𝜂𝑠)

)︀𝐾 . Since we only store a node 𝑣 if 𝑃𝑣 is non-empty, the number of nodes

66



stored is at most 𝐾 +1 times the number of points stored at the leaves. The Gaussian

vectors stored at each node require space 𝑂(𝑑), which is at most 𝑛𝑜(1).

Query time. Finally, we analyze the query time.

Lemma 2.8.6. If 𝑇𝐹 (𝜂𝑞) ≥ 3, then the expected query time is at most

𝑛𝑜(1) · 𝑇 · (𝑇𝐹 (𝜂𝑞))𝐾 + 𝑛1+𝑜(1) · (𝑇𝐺(𝑐𝑟, 𝜂𝑠, 𝜂𝑞))𝐾 . (2.9)

Proof. First, we compute the expected query time spent going down the tree, without

scanning the leaves. The expected number of nodes the query procedure reaches is:

1 + 𝑇𝐹 (𝜂𝑞) + (𝑇𝐹 (𝜂𝑞))
2 + . . .+ (𝑇𝐹 (𝜂𝑞))

𝐾 = 𝑂(1) · (𝑇𝐹 (𝜂𝑞))𝐾 ,

since we assume that 𝑇𝐹 (𝜂𝑞) ≥ 3. In each of node, we spend time 𝑛𝑜(1) · 𝑇 . The

product of the two expressions gives the first term in (2.9).

The expected time spent scanning points in the leaves is at most 𝑛𝑜(1) times the

number of points scanned at the leaves reached. The number of points scanned is

always at most one more than the number of far points, i.e., lying a distance greater

than 𝑐𝑟 from 𝑞, that reached the same leaf. There are at most 𝑛− 1 far points and

𝑇𝐾 leaves. For each far point 𝑝′ and each leaf ℓ the probability that both 𝑝′ and 𝑞

end up in 𝑃ℓ is at most 𝐺(𝑐𝑟, 𝜂𝑠, 𝜂𝑞)
𝐾 . For each such pair, we spend time at most 𝑛𝑜(1)

processing the corresponding 𝑝′. This gives the second term in (2.9).

2.8.4 Setting parameters: idealized version

We end the section by describing how to set parameters 𝑇 , 𝐾, 𝜂𝑠 and 𝜂𝑞 to prove

Theorem 2.8.1. We first show how we would do it under the following simplifying

assumptions:

∙ Lemma 2.7.1 holds in the form 𝐹 (𝜌) = 𝑒−𝜌2/2;

∙ Lemma 2.7.2 holds as 𝐺(𝑠, 𝜌, 𝜎) = 𝑒−Δ2/2;
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∙ There is no additional factor of 𝑇 in the first term of (2.9): that is, the query

time is 𝑛𝑜(1) · (𝑇𝐹 (𝜂𝑞))𝐾 + 𝑛1+𝑜(1) · (𝑇𝐺(𝑐𝑟, 𝜂𝑠, 𝜂𝑞))𝐾 .

After we will be done under these assumptions, we will argue that in reality we

can achieve similar guarantees by essentially setting parameters to their “ideal” values.

For the idealized setting, the value of 𝐾 will not be too important, we will only

need to have 𝐾 = 𝑜(log 𝑛). For 𝜏𝑞, 𝜏𝑠 > 0 (which we fix later), we choose 𝜂𝑞, 𝜂𝑠 such

that: 𝐹 (𝜂𝑞)𝐾 = 𝑛−𝜏𝑞 and 𝐹 (𝜂𝑠)
𝐾 = 𝑛−𝜏𝑠 . By the idealized version of Lemma 2.7.1

(𝐹 (𝜌) = 𝑒−𝜌2/2), this means the following:

𝜂𝑠 =

√︂
2𝜏𝑠 ln𝑛

𝐾
, (2.10)

𝜂𝑞 =

√︂
2𝜏𝑞 ln𝑛

𝐾
. (2.11)

We will set 𝜏𝑠, 𝜏𝑞 > 0 such that:

𝛼(𝑐𝑟) ≤ 𝛼(𝑟) ≤ min{𝜂𝑞, 𝜂𝑠}
max{𝜂𝑞, 𝜂𝑠}

=
min

{︀√
𝜏𝑠,
√
𝜏𝑞
}︀

max
{︀√

𝜏𝑠,
√
𝜏𝑞
}︀ (2.12)

(the last step follows from (2.10) and (2.11)), so the idealized version of Lemma 2.7.2

(𝐺(𝑠, 𝜌, 𝜎) = 𝑒−
Δ2

2 ) combined with (2.10) and (2.11) gives:

𝐺(𝑟, 𝜂𝑠, 𝜂𝑞)
𝐾 = 𝑒

−
𝜂2𝑠+𝜂2𝑞−2𝛼(𝑟)·𝜂𝑠𝜂𝑞

2𝛽2(𝑟)
·𝐾

= 𝑛
− 𝜏𝑠+𝜏𝑞−2𝛼(𝑟)·√𝜏𝑠𝜏𝑞

𝛽2(𝑟) , (2.13)

𝐺(𝑐𝑟, 𝜂𝑠, 𝜂𝑞)
𝐾 = 𝑒

−
𝜂2𝑠+𝜂2𝑞−2𝛼(𝑐𝑟)·𝜂𝑠𝜂𝑞

2𝛽2(𝑐𝑟)
·𝐾

= 𝑛
− 𝜏𝑠+𝜏𝑞−2𝛼(𝑐𝑟)·√𝜏𝑠𝜏𝑞

𝛽2(𝑐𝑟) . (2.14)

Now let us check that we set the parameters such that the terms in (2.9) are

approximately the same. Namely, we aim at satisfying the following:

𝐹 (𝜂𝑞)
𝐾 = 𝑛 ·𝐺(𝑐𝑟, 𝜂𝑠, 𝜂𝑞)𝐾 , (2.15)

which by (2.14) and the relation between 𝜂𝑞 and 𝜏𝑞 means that:

𝑛−𝜏𝑞 = 𝑛
1− 𝜏𝑠+𝜏𝑞−2𝛼(𝑐𝑟)·√𝜏𝑠𝜏𝑞

𝛽2(𝑐𝑟) ,
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or, looking at the exponents:

−𝜏𝑞 = 1− 𝜏𝑠 + 𝜏𝑞 − 2𝛼(𝑐𝑟) · √𝜏𝑠𝜏𝑞
𝛽2(𝑐𝑟)

.

Remembering that 1− 𝛽2(𝑐𝑟) = 𝛼2(𝑐𝑟), we get that, in order to balance the terms in

the idealized version of (2.9) we need to have:

⃒⃒√
𝜏𝑠 − 𝛼(𝑐𝑟)

√
𝜏𝑞
⃒⃒
= 𝛽(𝑐𝑟). (2.16)

We set 𝑇 = 3
𝐺(𝑟,𝜂𝑠,𝜂𝑞)

. By Lemma 2.8.4 it means that the probability of success of the

data structure is at least 0.9. By (2.13) and 𝐾 = 𝑜(log 𝑛), we get:

𝑇𝐾 = 𝑛
𝜏𝑠+𝜏𝑞−2𝛼(𝑟)·√𝜏𝑠𝜏𝑞

𝛽2(𝑟)
+𝑜(1)

. (2.17)

Now let us look at space and query time. By Lemma 2.8.5, the space can be upper

bounded as follows:

𝑛1+𝑜(1) ·
(︀
𝑇𝐹 (𝜂𝑠)

)︀𝐾
= 𝑛

1+
𝜏𝑠+𝜏𝑞−2𝛼(𝑟)·√𝜏𝑠𝜏𝑞

𝛽2(𝑟)
−𝜏𝑠+𝑜(1)

= 𝑛
1+

(√𝜏𝑞−𝛼(𝑟)·√𝜏𝑠)
2

𝛽2(𝑟)
+𝑜(1)

,

where the first step follows from (2.13), (2.17) and the relation between 𝜂𝑠 and 𝜏𝑠 and

the second step follows from 1− 𝛽2(𝑟) = 𝛼2(𝑟). Thus, we get the following identity

for the space exponent:
√
𝜌𝑠 =

|√𝜏𝑞 − 𝛼(𝑟)
√
𝜏𝑠|

𝛽(𝑟)
. (2.18)

Finally, let us look at the query time. By the assumed idealized version of the

Lemma 2.8.6 (no factor 𝑇 in the first term of (2.9)) and (2.15), we get the following

upper bound on the query time:

𝑛𝑜(1) ·
(︀
𝑇𝐹 (𝜂𝑞)

)︀𝐾
= 𝑛

𝜏𝑠+𝜏𝑞−2𝛼(𝑟)·√𝜏𝑠𝜏𝑞

𝛽2(𝑟)
−𝜏𝑞+𝑜(1)

= 𝑛
1+

(
√
𝜏𝑠−𝛼(𝑟)·√𝜏𝑞)

2

𝛽2(𝑟)
+𝑜(1)

,
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where the first step follows from (2.13), (2.17) and the relation between 𝜂𝑞 and 𝜏𝑞 and

the second step follows from 1− 𝛽2(𝑟) = 𝛼2(𝑟). Thus, we get the following identity

for the query time exponent:

√
𝜌𝑞 =

|√𝜏𝑠 − 𝛼(𝑟)√𝜏𝑞|
𝛽(𝑟)

. (2.19)

Now by varying positive 𝜏𝑠, 𝜏𝑞 > 0 such that (2.16) and (2.12) hold, we can vary

the exponents 𝜌𝑠, 𝜌𝑞 according to (2.18) and (2.19), respectively. The equation (2.12)

restricts us to the range: √
𝜏𝑠√
𝜏𝑞
∈
[︂
𝛼(𝑟);

1

𝛼(𝑟)

]︂
. (2.20)

Note that 𝛼(𝑟) > 0, since 𝑟 ≤
√
2−Ω(1). But for this range, (2.16), (2.18), and (2.19)

turn into:

√
𝜏𝑠 = 𝛼(𝑐𝑟) · √𝜏𝑞 + 𝛽(𝑐𝑟),

√
𝜌𝑠 =

√
𝜏𝑞 − 𝛼(𝑟)

√
𝜏𝑠

𝛽(𝑟)
,

√
𝜌𝑞 =

√
𝜏𝑠 − 𝛼(𝑟)√𝜏𝑞

𝛽(𝑟)
,

respectively. Thus, if we move √𝜌𝑞 between 0 and 𝛽(𝑟)𝛽(𝑐𝑟)
1−𝛼(𝑟)𝛼(𝑐𝑟)

> 0, we get:

√
𝜏𝑠 =

𝛼(𝑟)𝛽(𝑐𝑟)− 𝛼(𝑐𝑟)𝛽(𝑟)√𝜌𝑞
𝛼(𝑟)− 𝛼(𝑐𝑟) , (2.21)

√
𝜏𝑞 =

𝛽(𝑐𝑟)− 𝛽(𝑟)√𝜌𝑞
𝛼(𝑟)− 𝛼(𝑐𝑟) , (2.22)

√
𝜌𝑠 =

𝛽(𝑟)𝛽(𝑐𝑟)− (1− 𝛼(𝑟)𝛼(𝑐𝑟))√𝜌𝑞
𝛼(𝑟)− 𝛼(𝑐𝑟) . (2.23)

We need to show that for this range of √𝜌𝑞 the constraint (2.20) holds and,

moreover, the right-hand sides of (2.21) and (2.22) are positive. Let us start with the

former. We have: √
𝜏𝑠√
𝜏𝑞

=
𝛼(𝑟)𝛽(𝑐𝑟)− 𝛼(𝑐𝑟)𝛽(𝑟)√𝜌𝑞

𝛽(𝑐𝑟)− 𝛽(𝑟)√𝜌𝑞
. (2.24)

If we treat √𝜌𝑞 as a formal variable, then the derivative of (2.24) with respect to it
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is positive. At the boundary points, the ratio is equal to 𝛼(𝑟) and 1
𝛼(𝑟)

. Thus, (2.20)

holds. Now let us check that the right-hand sides of (2.21) and (2.22) are indeed

positive. They are linear functions of √𝜌𝑞, so it is enough to check non-negativity for
√
𝜌𝑞 ∈

{︁
0, 𝛽(𝑟)𝛽(𝑐𝑟)

1−𝛼(𝑟)𝛼(𝑐𝑟)

}︁
. For √𝜌𝑞 = 0, we have:

√
𝜏𝑠 =

𝛼(𝑟)𝛽(𝑐𝑟)

𝛼(𝑟)− 𝛼(𝑐𝑟) ,

√
𝜏𝑞 =

𝛽(𝑐𝑟)

𝛼(𝑟)− 𝛼(𝑐𝑟) .

For √𝜌𝑞 = 𝛽(𝑟)𝛽(𝑐𝑟)
1−𝛼(𝑟)𝛼(𝑐𝑟)

, we have:

√
𝜏𝑠 =

𝛽(𝑐𝑟)

1− 𝛼(𝑟)𝛼(𝑐𝑟) ,

√
𝜏𝑞 =

𝛼(𝑟)𝛽(𝑐𝑟)

1− 𝛼(𝑟)𝛼(𝑐𝑟) .

All four values are positive, since 𝛼(𝑟) > 0 due to 𝑟 ≤
√
2− Ω(1), and 𝛽(𝑐𝑟) > 0,

since 0 < 𝑐𝑟 < 2. The smallest of these values is:

𝛼(𝑟)𝛽(𝑐𝑟)

1− 𝛼(𝑟)𝛼(𝑐𝑟) ,

since 𝛼(𝑟)− 𝛼(𝑐𝑟) ≤ 1− 𝛼(𝑟)𝛼(𝑐𝑟) and 𝛼(𝑟) ≤ 1. The largest is:

𝛽(𝑐𝑟)

𝛼(𝑟)− 𝛼(𝑐𝑟) .

Finally, (2.23) gives the desired trade-off (2.6). When √𝜌𝑞 changes between 0 and
𝛽(𝑟)𝛽(𝑐𝑟)

1−𝛼(𝑟)𝛼(𝑐𝑟)
, √𝜌𝑠 changes from 𝛽(𝑟)𝛽(𝑐𝑟)

𝛼(𝑟)−𝛼(𝑐𝑟)
to 0 (and remains non-negative).
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2.8.5 Setting parameters: final version

Here we get rid of the (unrealistic) assumptions we made before. Namely, we need

to make sure that the identities (2.13) and (2.14) (approximately) hold, and that

𝑇 = 𝑛𝑜(1) if we set all the parameters appropriately. We start with fixing 𝐾 =
√
ln𝑛.

Suppose that the query exponent we would like to achieve is 0 ≤ √𝜌𝑞 ≤ 𝛽(𝑟)𝛽(𝑐𝑟)
1−𝛼(𝑟)𝛼(𝑐𝑟)

.

Let us choose
√
𝜏𝑠 and √𝜏𝑞 according to the formulas (2.21) and (2.22), respectively.

From Section 2.8.4, we know that:

𝛼(𝑟)𝛽(𝑐𝑟)

1− 𝛼(𝑟)𝛼(𝑐𝑟) ≤
√
𝜏𝑠,
√
𝜏𝑞 ≤

𝛽(𝑐𝑟)

𝛼(𝑟)− 𝛼(𝑐𝑟) . (2.25)

The lower bound in (2.25) is at least Ω𝑐(𝜀
3/2
0 ), since 𝑟 ≤

√
2 − 𝜀0 and 𝑐𝑟 ≤ 2 − 𝜀0,

while the upper bound is at most 𝑂𝑐(log log 𝑛), since 𝑟 ≥ 1
log log𝑛

. Thus, we have:

Ω𝑐(𝜀
3
0) ≤ 𝜏𝑠, 𝜏𝑞 ≤ 𝑂𝑐(log

2 log 𝑛). (2.26)

Now we need to choose 𝜂𝑠, 𝜂𝑞 > 0. Let us choose them as in the idealized scenario:

𝜂𝑠 =

√︂
2𝜏𝑠 ln𝑛

𝐾
=
√
2𝜏𝑠 · ln1/4 𝑛, (2.27)

𝜂𝑞 =

√︂
2𝜏𝑞 ln𝑛

𝐾
=
√︀
2𝜏𝑞 · ln1/4 𝑛. (2.28)

Now, we have by Lemma 2.7.1:

𝐹 (𝜂𝑠)
𝐾 = 𝑛−𝜏𝑠 · 𝑒±𝑂𝑐(𝐾·log log𝑛)

∈ 𝑛−𝜏𝑠 · 𝑒±𝑂𝑐(
√
log𝑛·· log log𝑛), (2.29)

𝐹 (𝜂𝑞)
𝐾 = 𝑛−𝜏𝑞 · 𝑒±𝑂𝑐(𝐾·log log𝑛)

∈ 𝑛−𝜏𝑞 · 𝑒±𝑂𝑐(
√
log𝑛·· log log𝑛), (2.30)

since 𝜏𝑠, 𝜏𝑞 = 𝑂𝑐(log
2 log 𝑛) by (2.26). Finally, as in the idealized scenario, we have:

min{𝜂𝑠, 𝜂𝑞}
max{𝜂𝑠, 𝜂𝑞}

=
min{√𝜏𝑠,√𝜏𝑞}
max{√𝜏𝑠,√𝜏𝑞}

≥ 𝛼(𝑟) ≥ 𝛼(𝑐𝑟),
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thus we can use Lemma 2.7.2 the same way as in Section 2.8.4. Namely, if we denote:

Δ2
𝑟 =

𝜂2𝑠 + 𝜂2𝑞 − 2𝛼(𝑟) · 𝜂𝑠𝜂𝑞
𝛽2(𝑟)

,

Δ2
𝑐𝑟 =

𝜂2𝑠 + 𝜂2𝑞 − 2𝛼(𝑐𝑟) · 𝜂𝑠𝜂𝑞
𝛽2(𝑐𝑟)

,

we get:

𝐺(𝑟, 𝜂𝑠, 𝜂𝑞) = 𝑒−
Δ2
𝑟
2

±𝑂(logΔ𝑟),

𝐺(𝑐𝑟, 𝜂𝑠, 𝜂𝑞) = 𝑒−
Δ2
𝑐𝑟
2

±𝑂(logΔ𝑐𝑟).

Since Δ2
𝑟,Δ

2
𝑐𝑟 ≤ 𝑂𝑐(

√
log 𝑛 · log4 log 𝑛), we have logΔ𝑟, logΔ𝑐𝑟 ≤ 𝑂𝑐(log log 𝑛). Thus,

𝐺(𝑟, 𝜂𝑠, 𝜂𝑞)
𝐾 = 𝑛

− 𝜏𝑠+𝜏𝑞−2𝛼(𝑟)·√𝜏𝑠𝜏𝑞

𝛽2(𝑟) · 𝑒±𝑂𝑐(
√
log𝑛·log log𝑛), (2.31)

𝐺(𝑐𝑟, 𝜂𝑠, 𝜂𝑞)
𝐾 = 𝑛

− 𝜏𝑠+𝜏𝑞−2𝛼(𝑐𝑟)·√𝜏𝑠𝜏𝑞

𝛽2(𝑐𝑟) · 𝑒±𝑂𝑐(
√
log𝑛·log log𝑛). (2.32)

Thus, using (2.29), (2.30), (2.31) and (2.32), we can bound the query and the space

exponents exactly the same way as in the idealized setting. The only thing remains to

be checked is that 𝑇 = 𝑛𝑜(1). But this is immediate:

𝑇 =
3

𝐺(𝑟, 𝜂𝑠, 𝜂𝑞)
= 𝑂(1) · 𝑒

Δ2
𝑟
2

±𝑂(logΔ𝑟) ≤ 𝑒𝑂𝑐(
√
log𝑛·log4 log𝑛) ≤ 𝑛𝑜(1).

Finally, to prepare for the next section, let us state the relation between parameters

we can use as a black box later.

Lemma 2.8.7. If 𝑐 > 1 and 1
log log𝑛

≤ 𝑟 ≤
√
2− Ω(1), then for every 𝜌𝑠, 𝜌𝑞 ≥ 0 such

that (2.6) holds there exist 𝜂𝑠, 𝜂𝑞 > 0 such that:

∙ 𝐹 (𝜂𝑠)/𝐺(𝑟, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛

(︀
𝜌𝑠+𝑜(1)

)︀
/𝐾;

∙ 𝐹 (𝜂𝑞)/𝐺(𝑟, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛

(︀
𝜌𝑞+𝑜(1)

)︀
/𝐾;
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∙ 𝐺(𝑐𝑟, 𝜂𝑠, 𝜂𝑞)/𝐺(𝑟, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛

(︀
𝜌𝑞−1+𝑜(1)

)︀
/𝐾;

∙ 1/𝐺(𝑟, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛𝑜(1),

where 𝐾 =
√
ln𝑛.

2.9 Data-dependent partitions

In this section we prove Theorem 2.5.1, which we restate below:

Theorem 2.9.1. For every 𝑐 > 1, 𝜌𝑞 ≥ 0 and 𝜌𝑠 ≥ 0 such that

𝑐2
√
𝜌𝑞 +

(︀
𝑐2 − 1

)︀√
𝜌𝑠 ≥

√
2𝑐2 − 1, (2.33)

there exists a data structure for (𝑐, 𝑟)-ANN for the unit sphere 𝑆𝑑−1 with 𝑟 = 1√
log log𝑛

and 𝑑 = log1+𝑜(1) 𝑛 with space 𝑛1+𝜌𝑠+𝑜(1) and query time 𝑛𝜌𝑞+𝑜(1).

2.9.1 Overview

We start with a high-level overview. Consider a dataset 𝑃0 of 𝑛 points. We

partition 𝑃0 into various components: 𝑠 dense components, denoted by 𝐶1, 𝐶2,

. . . , 𝐶𝑠, and one pseudo-random component, denoted by ̃︀𝑃 . The partition is de-

signed to satisfy the following properties. Each dense component 𝐶𝑖 satisfies |𝐶𝑖| ≥
𝜏 · |𝑃0 ∖ (𝐶1 ∪ 𝐶2 ∪ . . . ∪ 𝐶𝑖−1) | and can be covered by a spherical cap of radius

√
2− 𝜀

(see Figure 2-10). Here 𝜏, 𝜀 > 0 are small quantities to be chosen later. One should

think of 𝐶𝑖’s as clusters consisting of many points which are closer than random points

would be. The pseudo-random component ̃︀𝑃 consists of the remaining points without

any dense clusters inside.

We process each 𝐶𝑖 and ̃︀𝑃 separately. We enclose every dense component 𝐶𝑖 in a

smaller ball 𝐸𝑖 of radius 1− Ω(𝜀2) (see Figure 2-10). For simplicity, we first ignore

the fact that 𝐶𝑖 does not necessarily lie on the boundary 𝜕𝐸𝑖. Once we enclose each

dense cluster with a smaller ball, we recurse on each resulting spherical instance

of radius 1 − Ω(𝜀2). We treat the pseudo-random component ̃︀𝑃 similarly to the
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(
√

2− ε)R

(1−Θ(ε2))R

Figure 2-10: Covering a spherical cap of radius (
√
2− 𝜀)𝑅 on a ball of radius 𝑅.

random instance described in Section 2.6. Namely, we sample 𝑇 Gaussian vectors

𝑧1, 𝑧2, . . . , 𝑧𝑇 ∼ 𝑁(0, 1)𝑑, and form 𝑇 subsets of ̃︀𝑃 :

̃︀𝑃𝑖 = {𝑝 ∈ ̃︀𝑃 | ⟨𝑧𝑖, 𝑝⟩ ≥ 𝜂𝑠𝑅},

where 𝜂𝑠 > 0 is a parameter to be chosen later (for each pseudo-random remainder

separately). Then, we recurse on each ̃︀𝑃𝑖. Note that after we recurse, new dense

clusters may appear in some ̃︀𝑃𝑖 since it becomes easier to satisfy the minimum size

constraint.

During the query procedure, we recursively query each 𝐶𝑖
5 with the query point 𝑞.

For the pseudo-random component ̃︀𝑃 , we identify all 𝑖’s such that ⟨𝑧𝑖, 𝑞⟩ ≥ 𝜂𝑞𝑅, and

query all the corresponding children recursively. Here 𝜂𝑞 > 0 is a new parameter that

need to be chosen carefully (for each pseudo-random remainder separately).

Our algorithm makes progress in two ways. For dense clusters, we reduce the

radius of the enclosing sphere by a factor of (1− Ω(𝜀2)). Since initially 𝑟 = 1√
log log𝑛

,

in 𝑂(log log log 𝑛/𝜀2) iterations we would arrive to the regime, where Corollary 2.8.3

begins to apply. For the pseudo-random component ̃︀𝑃 , most points will lie within a

distance at least
√
2− 𝜀 from each other. In particular, a typical inter-point distance

is approximately
√
2, exactly like for the random case. For this reason, we call ̃︀𝑃

pseudo-random. In this setting, the data structure from Section 2.8 performs well, at

least for one step. However, after we recurse, we will need to extract dense clusters

5There will be at most 𝑂
(︁

log𝑛
𝜏

)︁
= 𝑛𝑜(1) of 𝐶𝑖’s.
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Project(R1, R2, r)

R2

R1

S1

S2

Figure 2-11: The definition of Project

again.

We now address the issue deferred in the above high-level description: a dense

component 𝐶𝑖 does not generally lie on 𝜕𝐸𝑖, but rather can occupy the interior of

𝐸𝑖. In this case, we partition 𝐸𝑖 into thin annuli of carefully chosen width and treat

each annulus as a sphere. This discretization adds to the complexity of the analysis,

but does not seem to be too fundamental. However, now it becomes harder to argue

about clusters making progress, since the value of 𝑟 may decrease. As a result, we

need quite a delicate potential function argument to reason about it. In particular,

we need to make sure that 𝑟 does not drop below 1
log log𝑛

in order for the techniques

from Section 2.8 to be applicable.

2.9.2 Description

We are now ready to describe the data structure formally. It depends on the (small

positive) parameters 𝜏 , 𝜀, 𝜀′ and 𝛿, an integer parameter 𝐾 ∼
√
ln𝑛 and a large

parameter 𝛾stop > 1. We also need to choose parameters 𝑇 , 𝜂𝑠 > 0, 𝜂𝑞 > 0 for

each pseudo-random remainder separately. Figure 2-13 provides pseudocode for the

algorithm.

Preprocessing. Our preprocessing algorithm consists of the following functions:

∙ ProcessSphere(𝑃 , 𝑟1, 𝑟2, 𝑜, 𝑅, 𝑙) builds the data structure for a dataset

𝑃 lying on a sphere 𝜕𝐵(𝑜,𝑅), assuming we need to solve ANN with distance
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thresholds 𝑟1 and 𝑟2. Moreover, we are guaranteed that queries will lie on the

sphere 𝜕𝐵(𝑜,𝑅) as well. The parameter 𝑙 counts the number of non-cluster

nodes in the recursion stack we have encountered so far. Similarly to the data-

independent algorithm from Section 2.8, we stop as soon as we encounter 𝐾 of

them. We start the preprocessing with calling ProcessSphere(𝑃0, 𝑟, 𝑐𝑟, 0, 1,

0).

∙ ProcessBall(𝑃 , 𝑟1, 𝑟2, 𝑜, 𝑅, 𝑙) builds the data structure for a dataset 𝑃

lying inside the ball 𝐵(𝑜,𝑅), assuming we need to solve ANN with distance

thresholds 𝑟1 and 𝑟2. Unlike ProcessSphere, here queries can be arbitrary.

The parameter 𝑙 has the same meaning as for ProcessSphere.

∙ Project(𝑅1, 𝑅2, 𝑟) is an auxiliary function used when we discretize a ball into

annuli. Suppose we have two spheres 𝑆1 and 𝑆2 with a common center and

radii 𝑅1 and 𝑅2, respectively. Suppose there are points 𝑝1 ∈ 𝑆1 and 𝑝2 ∈ 𝑆2

with ‖𝑝1 − 𝑝2‖ = 𝑟. Project(𝑅1, 𝑅2, 𝑟) returns the distance between 𝑝1 and

the point ̃︀𝑝2 that lies on 𝑆1 and is the closest to 𝑝2 (see Figure 2-11). This is

implemented by a formula.

We now elaborate on the above descriptions of ProcessSphere and Process-

Ball.

ProcessSphere. We consider three base cases.

1. If 𝑙 = 𝐾, we stop and store 𝑃 explicitly. This corresponds to having reached a

leaf in the algorithm from Section 2.8.

2. If 𝑟2 ≥ 2𝑅, then we may only store one point, since any point in 𝑃 is a valid

answer to any query made on a sphere of radius 𝑅 containing 𝑃 .

3. If 𝑟22/𝑟21 ≥ 𝛾stop, then the instance can be handled by using an LSH-based

data structure from [66]. We will set 𝛾stop to be super-constant, thus the data

structure occupies space |𝑃 | · 𝑛𝑜(1), and allows query time 𝑛𝑜(1).
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If none of the above cases apply, we proceed by removing the dense components and

then handling the pseudo-random remainder. The dense components 𝐶𝑖 are clusters

of at least 𝜏 |𝑃 ∖ (𝐶1 ∪ 𝐶2 ∪ . . . ∪ 𝐶𝑖−1) | points lying in a ball of radius (
√
2 − 𝜀)𝑅

with its center on 𝜕𝐵(𝑜,𝑅). These balls can be enclosed by smaller balls of radius̃︀𝑅 ≤ (1 − Ω(𝜀2))𝑅 (with unrestricted centers). For each of these smaller balls, we

invoke ProcessBall with the same 𝑙.

After we extract the dense components, we consider two cases. If 𝑟2 ≥ (
√
2+ 𝜀′) ·𝑅

(where 𝜀′ = Θ(𝜀)), we are essentially done. Indeed, in this case for every query either

an answer lies in one of the dense components, or Ω(1)-fraction of the remainder

can serve as a valid answer. We can check the latter (during the query stage) using

uniform subsampling.

Finally, if 𝑟2 < (
√
2+𝜀′) ·𝑅, then we build a single level of the tree from Section 2.8

for the remaining pseudo-random remainder. We pick the appropriate 𝜂𝑠, 𝜂𝑞 > 0 and

𝑇 and recurse on each part with ProcessSphere with 𝑙 increased by 1.

ProcessBall. Similarly to ProcessSphere, if 𝑟1 + 2𝑅 ≤ 𝑟2, then any point

from 𝐵(𝑜,𝑅) is a valid answer to any query in 𝐵(𝑜,𝑅 + 𝑟2).

If we are not in the trivial setting above, we reduce the ball to the spherical case

via a discretization of the ball 𝐵(𝑜,𝑅) into thin annuli of width 𝛿𝑟1. First, we round all

distances from points and queries to 𝑜 to a multiple of 𝛿𝑟1. This rounding can change

the distance between any pair of points by at most 2𝛿𝑟1 by the triangle inequality.

Then, we handle each non-empty annulus separately. In particular, for a fixed

annulus at distance 𝛿𝑖𝑟1 from 𝑜, a possible query can lie at most a distance 𝛿𝑗𝑟1 from 𝑜,

where 𝛿𝑟1|𝑖− 𝑗| ≤ 𝑟1 + 2𝛿𝑟1. For each such case, we recursively build a data structure

with ProcessSphere. However, when projecting points, the distance thresholds of

𝑟1 and 𝑟2 change, and this change is computed using Project.

Overall, the preprocessing creates a rooted tree. The root corresponds to the first

ProcessSphere call, and subsequent nodes correspond to procedures Process-

Sphere and ProcessBall. We refer to the tree nodes correspondingly, using the
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labels in the description of the query algorithm from below.

Query algorithm. Consider a query point 𝑞 ∈ R𝑑. We run the query on the tree,

starting with the root node, and applying the following algorithms depending on the

label of the nodes:

∙ For a ProcessSphere node, we first handle the three base cases in a straight-

forward way. If 𝑙 = 𝐾, then we just enumerate the whole 𝑃 until we find a point

within distance 𝑟2. If 𝑟2 ≥ 2𝑅, we simply return an arbitrary data point. If

𝑟22/𝑟
2
1 ≥ 𝛾stop, then we query the data structure from [66] we build for this case

and stop.

If none of the base cases apply, we start with querying the data structures

corresponding to the clusters recursively.

Then, if 𝑟2 ≥ (
√
2+𝜀′)𝑅, we check 𝑂(1) uniformly random points from 𝑃 against

the query point 𝑞. If 𝑟2 < (
√
2 + 𝜀′)𝑅, we locate 𝑞 in the spherical caps (with

threshold 𝜂𝑞, like in Section 2.8), and query data structures we built for the

corresponding subsets of 𝑃 . If one of these calls finds a near neighbor, we return.

∙ In ProcessBall, we first consider the base case, where we just return the

stored point if it is close enough. In general, we check whether ‖𝑞− 𝑜‖2 ≤ 𝑅+ 𝑟1.

If not, we return with no neighbor, since each dataset point lies within a ball

of radius 𝑅 from 𝑜, but the query point is at least 𝑅 + 𝑟1 away from 𝑜. If

‖𝑞 − 𝑜‖2 ≤ 𝑅 + 𝑟1, we round 𝑞 so the distance from 𝑜 to 𝑞 is a multiple of

𝛿𝑟1 and enumerate all possible distances from 𝑜 to the potential near neighbor

we are looking for. For each possible distance, we query the corresponding

ProcessSphere children after projecting 𝑞 on the sphere with a tentative near

neighbor using Project.

2.9.3 Setting parameters

We complete the description of the data structure by setting the remaining parameters.

Recall that the dimension is 𝑑 = log1+𝑜(1) 𝑛 and 𝐾 ∼
√
ln𝑛. We set 𝜀, 𝜀′, 𝛿, 𝜏, 𝛾stop as
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(
√
2 + ε′)R(

√
2− ε)R

Figure 2-12: The definition of 𝜀′ > 0.

follows:

∙ 𝜀 = 1
(log log log𝑛)0.01

;

∙ 𝜀′ = Θ(𝜀) according to Figure 2-12;

∙ 𝛿 = 1
log𝑛

;

∙ 𝜏 = 1

exp
(︀
log2/3 𝑛

)︀ ;
∙ 𝛾stop = (log log log 𝑛)0.01.

Now we specify how to set 𝜂𝑠, 𝜂𝑞 > 0 and 𝑇 for each pseudo-random remainder. The

idea will be to try to replicate the parameter settings of Section 2.8.4 corresponding to

the random instance. Since we remove all the dense components, we can use (
√
2−𝜀)𝑅

as an “effective 𝑟2.” In particular, we let

𝑇 =
3

𝐺(
√
2− 𝜀, 𝜂𝑠, 𝜂𝑞)

in order to achieve a high probability of success. Then we let 𝜂𝑠 and 𝜂𝑞 such that

∙ 𝐹 (𝜂𝑠)/𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛(𝜌𝑠+𝑜𝑐(1))/𝐾 ;

∙ 𝐹 (𝜂𝑞)/𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛(𝜌𝑞+𝑜𝑐(1))/𝐾 ;

∙ 𝐺(
√
2− 𝜀, 𝜂𝑠, 𝜂𝑞)/𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛(𝜌𝑞−1+𝑜𝑐(1))/𝐾 ;

∙ 1/𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛𝑜𝑐(1).
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which correspond to the parameter settings achieving the trade-off of Section 2.8.3. It

is not immediate why we can accomplish this, we will show this later in Lemma 2.9.7

(namely, we will need to show that 1
log log𝑛

≤ 𝑟1
𝑅
≤ (1 + 𝑜𝑐(1)) ·

√
2
𝑐

, and then we simply

invoke Lemma 2.8.7).

A crucial relation between the parameters is that 𝜏 should be much smaller than

𝐺(
√
2− 𝜀, 𝜂𝑠, 𝜂𝑞). This implies that the “effective 𝑟2” is equal to (

√
2− 𝜀)𝑅, at least

for the sake of a single step of the random partition.

We collect some basic facts from the data structure which will be useful for the

analysis. These facts follow trivially from the pseudocode in Figure 2-13.

∙ The children to ProcessSphere may contain at most 𝑂
(︀
log𝑛
𝜏

)︀
many calls to

ProcessBall, corresponding to cluster nodes, and 𝑇 calls to ProcessSphere.

Each ProcessBall call of ProcessSphere handles a disjoint subset of the

dataset. Points can be replicated in the pseudo-random remainder, when a point

lies in the intersection of two or more caps.

∙ A ProcessBall node has many children, all of which are ProcessSphere

which do not increment 𝑙. Each of these children corresponds to a call for a

specific annulus of width 𝛿𝑟1 as well as a possible distance for a query. For each

annulus, there are at most 2
𝛿
+ 4 = 𝑂

(︀
1
𝛿

)︀
“notable distances”: after rounding

by 𝛿𝑟1, a valid query can be at most 𝑟1 + 2𝛿𝑟1 away from a particular annulus

in both directions, thus, each point gets duplicated at most 𝑂
(︀
1
𝛿

)︀
= 𝑂(log 𝑛)

many times.

∙ For each possible point 𝑝 ∈ 𝑃 , we may consider the subtree of nodes which

process that particular point. We make the distinction between two kinds of calls

to ProcessSphere: calls where 𝑝 lies in a dense cluster, and calls where 𝑝 lies

in a pseudo-random remainder. If 𝑝 lies in a dense cluster, 𝑙 is not incremented;

if 𝑝 lies in the pseudo-random remainder, 𝑙 is incremented. The point 𝑝 may be

processed by various rounds of calls to ProcessBall and ProcessSphere

without incrementing 𝑙; however, there will be a moment when 𝑝 is not in a

dense cluster and will be part of the pseudo-random remainder. In that setting,
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𝑝 will be processed by a call to ProcessSphere which increments 𝑙.

2.9.4 Analysis

In this section we will analyze the above data structure. We start with a somewhat

technical part.

Lemma 2.9.2. Suppose we are within a call to ProcessSphere and none of the

three base cases took place. Then:

∙ 𝑟2
𝑟1
≥
(︀
1− 𝑜𝑐(1)

)︀
· 𝑐;

∙ 𝑟1
𝑅
≥ 1

log log𝑛
;

∙ The number of calls to ProcessBall in the recursion stack is at most

𝑂𝑐

(︀
(log log log 𝑛)2

)︀
.

The values of 𝑟1, 𝑟2 and 𝑅 can only change when we call ProcessBall (from

which ProcessSphere is called): namely, 𝑅 changes when we call ProcessBall,

and then all three parameters change during a subsequent ProcessSphere call.

Let us outline the proof of Lemma 2.9.2. Suppose that we are within a call

to ProcessSphere such that none of the three base cases took place. Consider

the sequence of the triples (𝑟
(𝑖)
1 , 𝑟

(𝑖)
2 , 𝑅

(𝑖)) as they evolved from the root of the tree

to the current node (the total number of the triples is equal to the number of the

ProcessBall calls in the recursion stack). For this sequence, we will consider a new

“idealized” sequence (̃︀𝑟1(𝑖), ̃︀𝑟2(𝑖), 𝑅(𝑖)) defined as follows. We rerun the same branch of

the recursion, but in ProcessBall we do not add 𝛿𝑟1 to 𝑟1 and do not subtract 𝛿𝑟1

from 𝑟2 when computing new thresholds (but we use the same values of 𝑖 and 𝑗). Note

that at some point the idealized sequence may stop being well-defined, but the actual

sequence still is: for instance, when in the idealized sequence 𝑟1 < 𝛿|𝑗−𝑖|𝑟1 ≤ (1+2𝛿)𝑟1.

Now the proof of Lemma 2.9.2 consists of two steps. First, we show it for the idealized

sequence by keeping track of the following quantities: 𝛾 =
𝑟22
𝑟21

and 𝜉 = 𝑟22
𝑅2 . Then, we
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1: function ProcessSphere(𝑃 , 𝑟1, 𝑟2, 𝑜, 𝑅, 𝑙)
2: if 𝑙 = 𝐾 then
3: store 𝑃 explicitly
4: return
5: if 𝑟2 ≥ 2𝑅 then
6: store any point from 𝑃
7: return
8: if 𝑟22/𝑟

2
1 ≥ 𝛾stop then

9: build a data structure for 𝑃 from [66]
10: return
11: ̂︀𝑅← (

√
2− 𝜀)𝑅

12: while ∃𝑥 ∈ 𝜕𝐵(𝑜,𝑅) : |𝐵(𝑥, ̂︀𝑅) ∩ 𝑃 | ≥ 𝜏 |𝑃 | do
13: 𝐵(̃︀𝑜, ̃︀𝑅)← the seb for 𝑃 ∩𝐵(𝑥, ̂︀𝑅)

14: ProcessBall(𝑃 ∩𝐵(𝑥, ̂︀𝑅), 𝑟1, 𝑟2, ̃︀𝑜, ̃︀𝑅, 𝑙)
15: 𝑃 ← 𝑃 ∖𝐵(𝑥, ̂︀𝑅)

16: if 𝑟2 ≥ (
√
2 + 𝜀′)𝑅 then

17: return ◁ We will compare queries against a (small) uniform subsample of 𝑃 .
18: choose 𝜂𝑠 and 𝜂𝑞 such that:

∙ 𝐹 (𝜂𝑠)/𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛(𝜌𝑠+𝑜(1))/𝐾 ;

∙ 𝐹 (𝜂𝑞)/𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛(𝜌𝑞+𝑜(1))/𝐾 ;

∙ 𝐺(
√
2− 𝜀, 𝜂𝑠, 𝜂𝑞)/𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛(𝜌𝑞−1+𝑜(1))/𝐾 ;

∙ 1/𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛𝑜(1).

19: 𝑇 ← 3/𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞)
20: for 𝑖← 1 . . . 𝑇 do
21: sample 𝑧 ∼ 𝑁(0, 1)𝑑

22: 𝑃 ′ ← {𝑝 ∈ 𝑃 | ⟨𝑧, 𝑝⟩ ≥ 𝜂𝑠𝑅}
23: if 𝑃 ′ ̸= ∅ then
24: ProcessSphere(𝑃 ′, 𝑟1, 𝑟2, 𝑜, 𝑅, 𝑙 + 1)
25: function ProcessBall(𝑃 , 𝑟1, 𝑟2, 𝑜, 𝑅, 𝑙)
26: if 𝑟1 + 2𝑅 ≤ 𝑟2 then
27: store any point from 𝑃
28: return
29: 𝑃 ← {𝑜+ 𝛿𝑟1⌈‖𝑝−𝑜‖

𝛿𝑟1
⌉ · 𝑝−𝑜

‖𝑝−𝑜‖ | 𝑝 ∈ 𝑃}
30: for 𝑖← 1 . . . ⌈ 𝑅

𝛿𝑟1
⌉ do

31: ̃︀𝑃 ← {𝑝 ∈ 𝑃 : ‖𝑝− 𝑜‖ = 𝛿𝑖𝑟1}
32: if ̃︀𝑃 ̸= ∅ then
33: for 𝑗 ← 1 . . . ⌈𝑅+𝑟1+2𝛿𝑟1

𝛿𝑟1
⌉ do

34: if 𝛿|𝑖− 𝑗| ≤ 𝑟1 + 2𝛿𝑟1 then
35: ̃︀𝑟1 ← Project(𝛿𝑖𝑟1, 𝛿𝑗𝑟1, 𝑟1 + 2𝛿𝑟1)
36: ̃︀𝑟2 ← Project(𝛿𝑖𝑟1, 𝛿𝑗𝑟1, 𝑟2 − 2𝛿𝑟1)
37: ProcessSphere( ̃︀𝑃 , ̃︀𝑟1, ̃︀𝑟2, 𝑜, 𝛿𝑖𝑟1, 𝑙)
38: function Project(𝑅1, 𝑅2, 𝑟)
39: return

√︀
𝑅1(𝑟2 − (𝑅1 −𝑅2)2)/𝑅2

Figure 2-13: Pseudocode of the data structure (seb stands for smallest enclosing ball)
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show that the actual sequence can not diverge too much from the idealized one (or

stop being well-defined) unless one of the base cases in ProcessSphere is triggered

for the actual sequence.

Let us start with the idealized sequence. First of all, the initial values of 𝛾 and

𝜉 are 𝑐2 and 𝑐2

log log𝑛
, respectively. Second, the largest 𝛾 and 𝜉 can be are 𝛾stop and

4, respectively, since otherwise base cases in ProcessSphere are triggered. Now

supposed we call ProcessBall followed by ProcessSphere for some values 𝑖 and

𝑗. Suppose that 𝛾 and 𝜉 evolved into ̃︀𝛾 and ̃︀𝜉, respectively. We have the following

claims which immediately follow from the formula for Project.

Claim 2.9.3. ̃︀𝛾 =
𝑟22 − 𝛿2(𝑖− 𝑗)2𝑟21
𝑟21 − 𝛿2(𝑖− 𝑗)2𝑟21

.

Claim 2.9.4. ̃︀𝜉 = 𝑟22 − 𝛿2(𝑖− 𝑗)2𝑟21
𝛿2𝑖𝑗𝑟21

.

We observe that 𝛾 never decreases. On the other hand, 𝜉 can decrease but not

drastically.

Claim 2.9.5. ̃︀𝜉
𝜉
≥ Ω𝑐(1).

Proof. We have: 𝛿𝑖𝑟1 ≤ (1− Ω(𝜀2)) ·𝑅 + 𝛿𝑟1 ≤ 𝑂(𝑅), since 𝑟1 ≤ 𝑂(𝑅) and 𝛿 = 𝑂(1).

Besides that, 𝛿𝑗𝑟1 ≤ 𝛿𝑖𝑟1+ 𝑟1 ≤ 𝑂(𝑅). Thus, by Claim 2.9.4, since 𝛾 is non-decreasing

and starts with 𝑐2, and since 𝛿2(𝑖− 𝑗)2 ≤ 1,

̃︀𝜉
𝜉
=

(𝑟22 − 𝛿2(𝑖− 𝑗)2𝑟21)/𝛿2𝑖𝑗𝑟21
𝑟22/𝑅

2
≥ (𝑟22 − 𝑟21)/𝑂(𝑅2)

𝑟22/𝑅
2

≥ Ω(𝑐2 − 1) ≥ Ω𝑐(1).

The following claim is the key to the overall analysis for the idealized case.

Claim 2.9.6. If ̃︀𝜉
𝜉
≤ 1 + Θ(𝜀2), then ̃︀𝛾

𝛾
≥ 1 + Ω𝑐(𝜀

4).
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Proof. By Claim 2.9.4 one has:

̃︀𝜉
𝜉
=

(𝑟22 − 𝛿2(𝑖− 𝑗)2𝑟21)𝑅2

𝛿2𝑖𝑗𝑟21𝑟
2
2

.

We have 𝛿𝑖𝑟1 ≤ (1− Ω(𝜀2) + 𝛿)𝑅 and

𝛿𝑗𝑟1 ≤ 𝛿𝑖𝑟1 + 𝛿|𝑖− 𝑗|𝑟1 ≤
(︀
1− Ω(𝜀2) + 𝛿

)︀
𝑅 + 𝛿|𝑖− 𝑗|𝑟1.

Thus, ̃︀𝜉
𝜉
≥

1− 𝛿2(𝑖−𝑗)2𝑟21
𝑟22

(1− Ω(𝜀2) + 𝛿)
(︁
1− Ω(𝜀2) + 𝛿 + 𝛿|𝑖−𝑗|𝑟1

𝑅

)︁ .
Since 𝛿 ≪ 𝜀2, 𝑟2 ≥ 𝑟1, and 𝑅 ≥ Ω(𝑟1), we have that ̃︀𝜉

𝜉
≤ 1 + Θ(𝜀2) implies

𝛿|𝑖− 𝑗| = Ω𝑐(𝜀
2).

But this implies by Claim 2.9.3:

̃︀𝛾
𝛾
=

1− 𝛿2(𝑖− 𝑗)2 · 𝑟21
𝑟22

1− 𝛿2(𝑖− 𝑗)2 ≥ 1 + Ω𝑐(𝜀
4),

since 𝑟1
𝑟2
≤ 1

𝑐
< 1.

Thus, the number of times 𝜉 increases by at most 1 +Θ(𝜀2) is at most the number

of times 𝛾 increases by at least 1 + Ω𝑐(𝜀
4). Since 𝛾 is non-decreasing, starts at 𝑐2 and

grows until 𝛾stop, the number of such steps is at most 𝑂𝑐

(︁
log 𝛾stop

𝜀4

)︁
. Since 𝜉 decreases

by at most 𝑂𝑐(1) each step, in the worst case it can go down to:

𝑐2

log log 𝑛
· 2−𝑂𝑐

(︁
log 𝛾stop

𝜀4

)︁
≥ 1

log log 𝑛
· 2−𝑂𝑐((log log log𝑛)0.05) ≫ 𝛾stop

log2 log 𝑛
.

Thus,
𝑟21
𝑅2
≥ 𝜉

𝛾stop
≥ 1

log2 log 𝑛
.

Since during the remaining steps, 𝜉 increases by a factor at least 1 + Ω(𝜀2), and can
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be at most 4, the number of the remaining iterations is at most:

𝑂𝑐

(︂
1

𝜀2
·
(︂

1

𝜀4
+ log 𝛾stop + log log log 𝑛

)︂)︂
≪ 𝑂𝑐

(︀
(log log log 𝑛)2

)︀
.

Thus, we proved Lemma 2.9.2 for the idealized sequence. Let us now argue about the

actual sequence. In order to do this, we will consider both sequences side by side.

Namely, let (𝑟1, 𝑟2, 𝑅) be an element of the idealized sequence, and let (̃︀𝑟1, ̃︀𝑟2, 𝑅) be

the corresponding element of the real sequence. Let us assume that we have already

shown that:

∙ ̃︀𝑟1 ∈ (1± 𝜏1) · 𝑟1, where 𝜏1 = 𝑜(1);

∙ ̃︀𝑟2 ∈ (1± 𝜏2) · 𝑟2, where 𝜏2 = 𝑜(1);

∙ In particular, ̃︀𝑟2̃︀𝑟1 ≥
(︀
1− 𝑜(1)

)︀
· 𝑐.

Let us see how these conditions evolve during one step. Let us show that the new gap

between ̃︀𝑟1 and 𝑟1 is
(︀
1± 𝜏2

)︀(︀
1±𝑂(

√
𝛿)
)︀

unless a base case within ProcesssPhere

is triggered. One of the two undesired things can happen:

∙ First, it can be the case that 𝛿|𝑖 − 𝑗| > 1. In this case, the next step for the

idealized sequence is not defined.

∙ One has

Project(𝛿𝑖𝑟1, 𝛿𝑗𝑟1, 𝑟1)2

Project(𝛿𝑖̃︀𝑟1, 𝛿𝑗 ̃︀𝑟1, ̃︀𝑟1 + 2𝛿 ̃︀𝑟1)2 /∈
(︁
1±Θ(

√
𝛿)
)︁
· 𝑟

2
1̃︀𝑟12 . (2.34)

In this case the idealized and the real 𝑟1’s diverge too much.

We will show that in both of these cases, for the real sequence, during the next

iteration a base case will be triggered. First, we will show that in both cases,

𝛿|𝑖− 𝑗| ≥
(︁
1−𝑂

(︁√
𝛿
)︁)︁

. For the first case, this is immediate. Let us handle the case

of (2.34) now:

Project(𝛿𝑖𝑟1, 𝛿𝑗𝑟1, 𝑟1)2

Project(𝛿𝑖̃︀𝑟1, 𝛿𝑗 ̃︀𝑟1, ̃︀𝑟1 + 2𝛿 ̃︀𝑟1)2 =
𝑟21 − 𝛿2(𝑖− 𝑗)2𝑟21̃︀𝑟12(1 + 2𝛿)2 − 𝛿2(𝑖− 𝑗)2 ̃︀𝑟12 /∈

(︁
1±Θ(

√
𝛿)
)︁
· 𝑟

2
1̃︀𝑟12
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iff
1− 𝛿2(𝑖− 𝑗)2

(1 + 2𝛿)2 − 𝛿2(𝑖− 𝑗)2 /∈
(︁
1±Θ(

√
𝛿)
)︁

iff

𝛿2(𝑖− 𝑗)2 ≥ 1−𝑂
(︁√

𝛿
)︁

iff

𝛿|𝑖− 𝑗| ≥ 1−𝑂
(︁√

𝛿
)︁
.

But if 𝛿|𝑖− 𝑗| ≥ 1−𝑂
(︁√

𝛿
)︁
, then at the next iteration the new value of 𝛾 is:

Project(𝛿𝑖̃︀𝑟1, 𝛿𝑗 ̃︀𝑟1, ̃︀𝑟2 − 2𝛿 ̃︀𝑟1)2
Project(𝛿𝑖̃︀𝑟1, 𝛿𝑗 ̃︀𝑟1, ̃︀𝑟1 + 2𝛿 ̃︀𝑟1)2 =

(̃︀𝑟2 − 2𝛿 ̃︀𝑟1)2 − 𝛿2(𝑖− 𝑗)2 ̃︀𝑟12
(̃︀𝑟1 + 2𝛿 ̃︀𝑟1)2 − 𝛿2(𝑖− 𝑗)2 ̃︀𝑟12

= Ω𝑐

(︂
1√
𝛿

)︂
= Ω𝑐(

√︀
log 𝑛)≫ 𝛾stop,

where we use that ̃︀𝑟22̃︀𝑟12 ≥ (1− 𝑜(1))𝑐.
Overall, the gap between 𝑟1 and ̃︀𝑟1 grows by at most a factor of

(︁
1±𝑂(

√
𝛿)
)︁
.

Now let us handle the relation between 𝑟2 and ̃︀𝑟2.
Project(𝛿𝑖𝑟1, 𝛿𝑗𝑟1, 𝑟2)2

Project(𝛿𝑖̃︀𝑟1, 𝛿𝑗 ̃︀𝑟1, ̃︀𝑟2 − 2𝛿 ̃︀𝑟1)2 =
𝑟22 − 𝛿2(𝑖− 𝑗)2𝑟21

(̃︀𝑟2 − 2𝛿 ̃︀𝑟1)2 − 𝛿2(𝑖− 𝑗)2 ̃︀𝑟12 ∈ 1±𝑂𝑐(𝜏2 + 𝛿).

Thus, after all the 𝑂𝑐(log log log 𝑛) iterations we will have:

𝑟1̃︀𝑟1 =
(︁
1 +𝑂(

√
𝛿)
)︁𝑂𝑐(log log log𝑛)

= 1 + 𝑜𝑐(1) (2.35)

and
𝑟2̃︀𝑟2 = 1 + 𝛿 · 2𝑂𝑐(log log log𝑛) = 1 + 𝑜𝑐(1). (2.36)

Thus, ̃︀𝑟2̃︀𝑟1 ≥ (1− 𝑜𝑐(1)) · 𝑐

as required. Other desired statements follow from their counterparts for the idealized

sequence, (2.35) and (2.36).

Lemma 2.9.7. During the algorithm we are always able to choose 𝜂𝑠 and 𝜂𝑞 such
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that:

∙ 𝐹 (𝜂𝑠)/𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛(𝜌𝑠+𝑜𝑐(1))/𝐾;

∙ 𝐹 (𝜂𝑞)/𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛(𝜌𝑞+𝑜𝑐(1))/𝐾;

∙ 𝐺(
√
2− 𝜀, 𝜂𝑠, 𝜂𝑞)/𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞) ≤ 𝑛(𝜌𝑞−1+𝑜𝑐(1))/𝐾;

∙ 1/𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞) = 𝑛𝑜𝑐(1).

Proof. If we need to choose 𝜂𝑠 and 𝜂𝑞, then 𝑟2 ≤ (
√
2+𝜀′)𝑅. Since by Lemma 2.9.2, 𝑟2

𝑟1
≥

(1− 𝑜𝑐(1))𝑐, we have 𝑟1 ≤ (1+𝑜𝑐(1))(
√
2+𝜀′)𝑅

𝑐
(in particular, it is at most (

√
2−Ω𝑐(1))𝑅).

Besides, by Lemma 2.9.2, we have 𝑟1 ≥ 𝑅
log log𝑛

. This allows us to choose the required

𝜂𝑠, 𝜂𝑞 by using Lemma 2.8.7, since 𝜀, 𝜀′ = 𝑜(1).

Lemma 2.9.8. The probability of success of the data structure is at least 0.9.

Proof. There are three places the preprocessing and query procedures are not deter-

ministic.

First, when we build a data structure from [66] (in case 𝑟22/𝑟21 ≥ 𝛾stop). In this case

the probability of success is at least 0.9 by construction.

Second, when in ProcessSphere we have 𝑟2 ≥ (
√
2+𝜀′)𝑅, and, after querying the

dense components, we check the query against a uniform subsample of the remainder.

Let us show that if a near neighbor is in the reminder, we succeed with high probability.

Indeed, if in this case we have more than 𝜏 -fraction of the remainder further than

(
√
2 + 𝜀′)𝑅 from the query, it means that there is a dense component (see Figure 2-

12), which contradicts the definition of a remainder. Thus, a (1− 𝜏)-fraction of the

remainder can serve as a valid answer to the query, which means that uniform sampling

finds it with probability at least 1− 𝜏 > 0.9.

Third, when we perform a single step of the algorithm from Section 2.8. In this

case, we can repeat the proof of Lemma 2.8.4 and conclude that we succeed with

probability at least 0.9, since 𝑇 = 3/𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞).

Lemma 2.9.9. The total space the data structure occupies is at most 𝑛1+𝜌𝑠+𝑜(1) in

expectation.
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Proof. We will prove that the total number of explicitly stored points (when 𝑙 = 𝐾) is

at most 𝑛1+𝜌𝑠+𝑜(1). We will count the contribution from each point separately, and use

linearity of expectation to sum up the contributions. In particular, for a point 𝑝 ∈ 𝑃0,

we want to count the number of lists where 𝑝 appears in the data structure. Each root

to leaf path of the tree has at most 𝐾 calls to ProcessSphere which increment 𝑙,

and at most 𝑂𝑐 ((log log log 𝑛)
2) calls to ProcessBall, and thus 𝑂𝑐 ((log log log 𝑛)

2)

calls to ProcessSphere which do not increment 𝑙. Thus, once we count the number

of lists, we may multiply by 𝐾 +𝑂𝑐 ((log log log 𝑛)
2) = 𝑛𝑜(1) to count the size of the

whole tree.

For each point, we will consider the subtree of the data structure where the

point was processed. In particular, we may consider the tree corresponding to calls

to ProcessSphere and ProcessBall which process 𝑝. As discussed briefly in

Section 2.9.3, we distinguish between calls to ProcessSphere which contain 𝑝 in a

dense cluster, and calls to ProcessSphere which contain 𝑝 in the pseudo-random

remainder. We increment 𝑙 only when 𝑝 lies in the pseudo-random remainder.

Claim 2.9.10. It suffices to consider the data structure where each node is a function

call to ProcessSphere which increments 𝑙, i.e., when 𝑝 lies in the pseudo-random

remainder, since the total amount of duplication of points corresponding to other nodes

is 𝑛𝑜(1).

We will account for the duplication of points in calls to ProcessBall and calls to

ProcessSphere which do not increment 𝑙. Consider the first node 𝑣 in a path from

the root which does not increment 𝑙, this corresponds to a call to ProcessSphere

which had 𝑝 in some dense cluster. Consider the subtree consisting of descendants

of 𝑣 where the leaves correspond to the first occurrence of ProcessSphere which

increments 𝑙. We claim that every internal node of the tree corresponds to alternating

calls to ProcessBall and ProcessSphere which do not increment 𝑙. Note that

calls to ProcessSphere which do not increment 𝑙 never replicate 𝑝. Each call to

ProcessBall replicates 𝑝 in 𝑏 := 𝑂(1/𝛿) = 𝑂(log 𝑛) many times. We may consider

contracting the tree and at edge, multiplying by the number of times we encounter
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ProcessBall.

Note that 𝑝 lies in a dense cluster if and only if it does not lie in the pseudo-random

remainder. Thus, our contracted tree looks like a tree of 𝐾 levels, each corresponding

to a call to ProcessSphere which contained 𝑝 in the pseudo-random remainder.

The number of children of some nodes may be different; however, the number of

times ProcessBall is called in each branch of computation is

𝑈 := 𝑂𝑐

(︀
(log log log 𝑛)2

)︀
,

the total amount of duplication of points due to ProcessBall is at most 𝑏𝑈 = 𝑛𝑜(1).

Now, the subtree of nodes processing 𝑝 contains 𝐾 levels with each 𝑇 children, exactly

like the data structure for Section 2.8.

Claim 2.9.11. A node 𝑣 corresponding to ProcessSphere(𝑃, 𝑟1, 𝑟2, 𝑜, 𝑅, 𝑙) has, in

expectation, 𝑝 appearing in 𝑛((𝐾−𝑙)𝜌𝑠+𝑜𝑐(1))/𝐾 many lists in the subtree of 𝑣.

The proof is an induction over the value of 𝑙 in a particular node. For our base

case, consider some node 𝑣 corresponding to a function call of ProcessSphere which

is a leaf, so 𝑙 = 𝐾, in this case, each point is only stored at most once, so the claim

holds.

Suppose for the inductive assumption the claim holds for some 𝑙, then for a

particular node at level 𝑙−1, consider the point when 𝑝 was part of the pseudo-random

remainder. In this case, 𝑝 is duplicated in

𝑇 · 𝐹 (𝜂𝑠) =
3 · 𝐹 (𝜂𝑠)

𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞)
≤ 𝑛(𝜌𝑠+𝑜𝑐(1))/𝐾

many children, and in each child, the point appears 𝑛((𝐾−𝑙)𝜌𝑠+𝑜(1))/𝐾 many times.

Therefore, in a node 𝑣, 𝑝 appears in 𝑛((𝐾−𝑙+1)𝜌𝑠+𝑜(1))/𝐾 many list in its subtree. Letting

𝑙 = 0 for the root gives the desired outcome.

Lemma 2.9.12. The expected query time is at most 𝑛𝜌𝑞+𝑜(1).

Proof. We need to bound the expected number of nodes we traverse as well as the

number of points we enumerate for nodes with 𝑙 = 𝐾.
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We first bound the number of nodes we traverse. Let 𝐴(𝑢, 𝑙) be an upper bound

on the expected number of visited nodes when we start in a ProcessSphere node

such that there are 𝑢 ProcessBall nodes in the stack and 𝑙 non-cluster nodes. By

Lemma 2.9.2,

𝑢 ≤ 𝑈 := 𝑂𝑐

(︀
(log log log 𝑛)2

)︀
,

and from the description of the algorithm, we have 𝑙 ≤ 𝐾. We will prove 𝐴(0, 0) ≤
𝑛𝜌𝑞+𝑜𝑐(1), which corresponds to the expected number of nodes we touch starting from

the root.

We claim

𝐴(𝑢, 𝑙) ≤ exp(log2/3+𝑜(1) 𝑛) · 𝐴(𝑢+ 1, 𝑙) + 𝑛(𝜌𝑞+𝑜𝑐(1))/𝐾 · 𝐴(𝑢, 𝑙 + 1). (2.37)

There are at most 𝑂(log 𝑛/𝜏) = exp(log2/3+𝑜(1) 𝑛) cluster nodes, and in each node,

we recurse on 𝑂(1/𝛿) = exp(log𝑜(1) 𝑛) possible annuli with calls to ProcessSphere

nodes where 𝑢 increased by 1 and 𝑙 remains the same. On the other hand, there are

𝑇 · 𝐹 (𝜂𝑞) =
3 · 𝐹 (𝜂𝑞)

𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞)
≤ 𝑛(𝜌𝑞+𝑜𝑐(1))/𝐾

caps, where the query falls, in expectation. Each calls ProcessSphere where 𝑢

remains the same and 𝑙 increased by 1.

Solving (2.37):

𝐴(0, 0) ≤
(︂
𝑈 +𝐾

𝐾

)︂
exp(𝑈 · log2/3+𝑜(1) 𝑛) · 𝑛𝜌𝑞+𝑜𝑐(1) ≤ 𝑛𝜌𝑞+𝑜𝑐(1).

We now give an upper bound on the number of points the query algorithm will

test at level 𝐾. Let 𝐵(𝑢, 𝑙) be an upper bound on the expected fraction of the dataset

in the current node that the query algorithm will eventually test at level 𝐾 (where

we count multiplicities). The variables 𝑢 and 𝑙 have the same meaning as discussed

above.
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We claim

𝐵(𝑢, 𝑙) ≤ 𝑂

(︂
log 𝑛

𝜏

)︂
·𝐵(𝑢+ 1, 𝑙) + 𝑛(𝜌𝑞−1+𝑜𝑐(1))/𝐾 ·𝐵(𝑢, 𝑙 + 1)

The first term comes from recursing down dense clusters. The second term, which

corresponds to random spherical caps, is a bit more subtle. We have 𝑇 spherical caps.

For each cap, where the query belongs to, we have some number of close points (closer

than (
√
2 − 𝜀)𝑅 to the query) and some number of far points. Thus, the expected

number on the fraction of the tested points in this case is at most:

𝑇 ·
(︁
𝐹 (𝜂𝑞) · 𝜏 +𝐺(

√
2− 𝜀, 𝜂𝑠, 𝜂𝑞)

)︁
·𝐵(𝑢, 𝑙 + 1)

≤ 3 ·
(︀
𝐹 (𝜂𝑞) · 𝜏 +𝐺(

√
2− 𝜀, 𝜂𝑠, 𝜂𝑞)

)︀
𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞)

·𝐵(𝑢, 𝑙 + 1)

≤ 4 ·𝐺(
√
2− 𝜀, 𝜂𝑠, 𝜂𝑞)

𝐺(𝑟1/𝑅, 𝜂𝑠, 𝜂𝑞)
·𝐵(𝑢, 𝑙 + 1)

≤ 𝑛(𝜌𝑞−1+𝑜𝑐(1))/𝐾 ·𝐵(𝑢, 𝑙 + 1),

where the second step follows from the fact that

𝐺(
√
2− 𝜀, 𝜂𝑠, 𝜂𝑞) = 2−𝑂𝑐(

√
log𝑛·log𝑂(1) log𝑛)

and that 𝜏 = 2−Θ(log2/3 𝑛). Unraveling the recursion, we note that 𝑢 ≤ 𝑈 and

𝑙 ≤ 𝐾 ∼
√
ln𝑛. Additionally, we have that 𝐵(𝑢,𝐾) ≤ 1, since we do not store

duplicates in the last level. Therefore,

𝐵(0, 0) ≤
(︂
𝑈 +𝐾

𝑈

)︂
𝑂

(︂
log 𝑛

𝜏

)︂𝑈

·
(︀
𝑛(𝜌𝑞−1+𝑜(1))/𝐾

)︀𝐾
= 𝑛𝜌𝑞−1+𝑜𝑐(1).

92



2.9.5 Fast preprocessing

A priori, it is not even clear how to implement the preprocessing in polynomial time,

let alone near-linear in the space. We will first show how to get preprocessing time to

𝑛2+𝜌𝑠+𝑜𝑐(1) and then reduce it to 𝑛1+𝜌𝑠+𝑜𝑐(1).

Near-quadratic time

To get preprocessing time 𝑛2+𝜌𝑠+𝑜𝑐(1) we need to observe that during the clustering

step in ProcessSphere we may look only for balls with centers being points from 𝑃 .

We build upon the following lemma.

Proposition 2.9.13 (van der Corput Lemma). For any 𝑣*, 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ 𝑆𝑑−1 one

has ∑︁
𝑖,𝑗

⟨𝑣𝑖, 𝑣𝑗⟩ ≥
⃒⃒⃒∑︁

𝑖

⟨𝑣*, 𝑣𝑖⟩
⃒⃒⃒2
.

Proof. We have

⃒⃒⃒∑︁
𝑖

⟨𝑣*, 𝑣𝑖⟩
⃒⃒⃒2

=
⃒⃒⃒⟨︀
𝑣*,
∑︁
𝑖

𝑣𝑖
⟩︀⃒⃒⃒2
≤ ‖𝑣*‖2 ·

⃦⃦∑︁
𝑖

𝑣𝑖
⃦⃦2

=
⃦⃦∑︁

𝑖

𝑣𝑖
⃦⃦2

=
∑︁
𝑖,𝑗

⟨𝑣𝑖, 𝑣𝑗⟩,

where the second step is an application of the Cauchy-Schwartz inequality.

The following claim is the main estimate we use to analyze the variant of Process-

Sphere, where we are looking only for clusters with centers in data points. Informally,

we prove that if a non-trivially small spherical cap covers 𝑛 points, then there is a

non-trivially small cap centered in one of the points that covers a substantial fraction

of points.

Claim 2.9.14. Fix 𝜀 > 0. Suppose that 𝑈 ⊂ 𝑆𝑑−1 with |𝑈 | = 𝑛. Suppose that there

exists 𝑢* ∈ 𝑆𝑑−1 such that ‖𝑢* − 𝑢‖ ≤
√
2 − 𝜀 for every 𝑢 ∈ 𝑈 . Then, there exists

𝑢0 ∈ 𝑈 such that

⃒⃒⃒
{𝑢 ∈ 𝑈 : ‖𝑢− 𝑢0‖ ≤

√
2− Ω(𝜀2) }

⃒⃒⃒
≥ Ω(𝜀2𝑛).
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Proof. First, observe that ‖𝑢* − 𝑢‖ ≤
√
2− 𝜀 iff ⟨𝑢*, 𝑢⟩ ≥ Ω(𝜀). By van der Corput

Lemma (Proposition 2.9.13),

∑︁
𝑢,𝑣∈𝑈

⟨𝑢, 𝑣⟩ ≥
⃒⃒⃒⃒
⃒∑︁
𝑢∈𝑈

⟨𝑢*, 𝑢⟩
⃒⃒⃒⃒
⃒
2

≥ Ω(𝜀2𝑛2).

Thus, there exists 𝑢0 ∈ 𝑈 such that

∑︁
𝑢∈𝑈

⟨𝑢0, 𝑢⟩ ≥ Ω(𝜀2𝑛).

This implies ⃒⃒
{𝑢 ∈ 𝑈 | ⟨𝑢0, 𝑢⟩ ≥ Ω(𝜀2) }

⃒⃒
≥ Ω(𝜀2𝑛),

which is equivalent to

⃒⃒⃒
{𝑢 ∈ 𝑈 | ‖𝑢− 𝑢0‖ ≤

√
2− Ω(𝜀2) }

⃒⃒⃒
≥ Ω(𝜀2𝑛).

It means that if in ProcessSphere we search for clusters of radius
√
2− Ω(𝜀2)

centered in data points that cover at least Θ(𝜀2𝜏)-fraction of the remaining data

points, then after we remove all of them, we are sure that there are no clusters of

radius
√
2− 𝜀 with arbitrary centers that cover at least 𝜏 -fraction of the remaining

points. It is immediate to check that we can adjust the analysis of the data structure

accordingly to accommodate this change.

It is easy to see that by reducing the time of each clustering step to near-quadratic,

we reduce the total preprocessing time to 𝑛2+𝜌𝑠+𝑜𝑐(1). This follows from the proof of

the space bound (intuitively, each point participates in 𝑛𝑜𝑐(1) instances of the clustering

subroutine).
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Near-linear time

To get 𝑛1+𝜌𝑠+𝑜𝑐(1) preprocessing time, we just subsample the dataset before finding each

dense component. Indeed, since we care about the clusters with at least 𝜀2𝜏 = 𝑛−𝑜𝑐(1)

fraction of the remaining points, we can sample 𝑛𝑜𝑐(1) points from the dataset and find

dense components for the sample. Then, using the fact that the VC-dimension for

balls in R𝑑 is 𝑂(𝑑), we can argue that this sample is accurate enough with probability

at least 1− 𝑛−10𝜌𝑠 . Thus, with high probability, all the clustering steps are correct.

2.9.6 Handling insertions and deletions

The paper [142] shows how to convert a static data structure into a dynamic one if

the following two conditions hold:

∙ The problem we are solving is decomposable. This means that if we partition a

dataset into two parts and answer a query for both of the parts, we can compute

the answer for the whole dataset efficiently. This condition clearly holds for the

ANN problem.

∙ The preprocessing time of the static data structure must be small.

Then, [142] shows how to obtain a dynamic data structure whose query time is the

static query time times log 𝑛, and insertion/deletion time is the preprocessing time

times log𝑛
𝑛

. This gives query time 𝑛𝜌𝑞+𝑜𝑐(1) and insertion/deletion time 𝑛𝜌𝑠+𝑜(1).
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Chapter 3

FALCONN: practical and optimal

LSH for unit sphere

3.1 Introduction

In Chapter 2 we developed a (𝑐, 𝑟)-ANN data structure over the ℓ𝑝 distance with

strong guarantees (Theorem 2.3.1). A natural question is how practical the resulting

data structure is. More specifically, we will focus on the case of the unit sphere

𝑆𝑑−1 ⊂ R𝑑, thus asking for a practical counterpart of Theorem 2.5.1. Indeed, in

theory Theorem 2.5.1 implies Theorem 2.3.1, while in practice, the unit sphere

case corresponds to similarity search with respect to the cosine similarity, which is

widely used in applications such as comparing image feature vectors [91], speaker

representations [158], and tf-idf data sets [166].

Unfortunately, the data structure we developed to prove Theorem 2.5.1 (for an

overview, see Section 2.4) is far from being practical, the biggest problem being the

“worst case to random” reduction from Section 2.91. But can we at least make the data

structure based on data-independent partitions (Theorem 2.8.1 or, more specifically,

Figure 2-9) practical? This is the problem we address in the present chapter.

As it turns out, as described in Section 2.8, even the simple data-independent

approach is impractical. One immediate problem is the following: in order to get good
1To get an idea why this is the case, see Section 2.9.3 or the proof of Lemma 2.9.2.
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space and query exponents 𝜌𝑠, 𝜌𝑞, we must allow tree nodes to have many2 children,

and during the query stage, we have to enumerate all of them.

Let us focus on the balanced regime (space 𝑛1+𝜌+𝑜(1) and query time 𝑛𝜌+𝑜(1)). In

this regime, the data-independent approach from Section 2.8 gives the bound:

√
𝜌 =

𝛽(𝑟)𝛽(𝑐𝑟)(︀
1 + 𝛼(𝑟)

)︀(︀
1− 𝛼(𝑐𝑟)

)︀ ,
where functions 𝛼(·) and 𝛽(·) are defined in the beginning of Section 2.7, or, expanding

𝛼(·) and 𝛽(·),
𝜌 =

4− 𝑐2𝑟2
4− 𝑟2 ·

1

𝑐2
. (3.1)

Thus, we can ask: can one achieve the exponent (3.1) with a practical data structure?

3.1.1 Our results

In this chapter we obtain a practical data structure that achieves the exponent (3.1) for

the (𝑐, 𝑟)-ANN on the unit sphere. In particular, when 𝑟 = 𝑜(1), we get 𝜌 = 1
𝑐2
+ 𝑜𝑐(1)

matching the best possible data-independent LSH for ℓ2 from [13]. Matching the

guarantee from [13] by a practical algorithm has been an open problem since 2006

and here we essentially resolve it.

New practical LSH family for the unit sphere

The new data structure fits the Locality-Sensitive Hashing (LSH) framework outlined

in Section 1.2.2 and Section 2.2.1. We describe the relation between LSH and the

ANN problem in more detail in Section 1.4.4, but for now we just recall the definition

of LSH partitions. We say that a random partition 𝒫 of the unit sphere 𝑆𝑑−1 is

(𝑟, 𝑐𝑟, 𝑝1, 𝑝2)-sensitive, if for every 𝑥, 𝑦 ∈ 𝑆𝑑−1 one has:

∙ if ‖𝑥− 𝑦‖2 ≤ 𝑟, then Pr
𝒫
[𝑥 and 𝑦 fall into the same part of 𝒫 ] ≥ 𝑝1;

∙ if ‖𝑥− 𝑦‖2 > 𝑐𝑟, then Pr
𝒫
[𝑥 and 𝑦 fall into the same part of 𝒫 ] ≤ 𝑝2.

2More quantitatively, we need to set 𝑇 = 2Ω(
√
log𝑛) in order for the exponents 𝜌𝑠, 𝜌𝑞 to deviate

from their limits by 𝑂
(︁

1√
log𝑛

)︁
. See Section 2.8.4 and Section 2.8.5 for the details.
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It is known [85, 77] that an efficient (𝑟, 𝑐𝑟, 𝑝1, 𝑝2)-sensitive LSH family implies a data

structure for (𝑐, 𝑟)-ANN with space 𝑛1+𝜌+𝑜(1)/𝑝1 and query time 𝑛𝜌+𝑜(1)/𝑝1, where:

𝜌 =
log(1/𝑝1)

log(1/𝑝2)
.

In light of this reduction, it is enough to construct an efficient (𝑐, 𝑐𝑟, 𝑝1, 𝑝2)-sensitive

LSH family for the unit sphere, for which

log(1/𝑝1)

log(1/𝑝2)
≤ 4− 𝑐2𝑟2

4− 𝑟2 ·
1

𝑐2
+ 𝑜𝑐,𝑟(1). (3.2)

This is essentially what we do in this chapter. Let us compare the new LSH family

with the existing families.

∙ Voronoi LSH from [18, 26] also achieves (3.2), but it is impractical for more or

less the same reason as the data-independent approach from Section 2.8. Thus,

our result can be seen as a practical counterpart of the Voronoi LSH.

∙ Hyperplane LSH from [55] gives the exponent worse than (3.2). See Figure 3-1

for the comparison for the case 𝑐 = 2. Nevertheless, Hyperplane LSH is very

simple and is widely used (see, e.g., [118, 166]). The new LSH family described

in this chapter significantly outperforms Hyperplane LSH in practice.

∙ Cross-polytope LSH introduced in [168] (and then appeared in [72]) is one

of the main building blocks of the new family. To sample a cross-polytope

LSH partition, we consider a randomly rotated set {±𝑒𝑖}𝑑𝑖=1, where 𝑒𝑖 are the

standard basis vectors in R𝑑; then we use their Voronoi diagram as a partitions.

Prior to this work, this LSH construction has not been analyzed, but in this

chapter we analyze it rigorously and show that it achieves (3.2). However, by

itself, the Cross-polytope LSH is still impractical, and we need to improve it

using additional algorithmic ideas.

Thus, the new LSH family can be seen as the Cross-polytope LSH “on steroids”.
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Figure 3-1: The dependence of the exponent 𝜌 on 𝑟 for the Hyperplane LSH and
the LSH family developed in this chapter for 𝑐 = 2. The dots on the left correspond
to 𝑟 = 0, while the ones on the right correspond to 𝑟 =

√
2
2

(the regime of random
instances).

Fine-grained lower bound for LSH for unit sphere

Let us note that the bound on the exponent (3.2) is known to be optimal for LSH

over the sphere in the case 𝑟 =
√
2
𝑐
± 𝑜(1), which corresponds to the random case [27].

But in this chapter we obtain a somewhat finer lower bound.

To highlight the difficulty of obtaining optimal and practical LSH schemes, we

prove the first non-asymptotic lower bound on the trade-off between the collision

probabilities 𝑝1 and 𝑝2 for 𝑟 =
√
2
𝑐
± 𝑜(1). So far, the optimal LSH upper bound

𝜌 = 1
2𝑐2−1

(Voronoi LSH from [18, 26] and the Cross-polytope LSH from this chapter)

attain this bound only in the limit, as 𝑝1, 𝑝2 → 0. Very small 𝑝1 and 𝑝2 are undesirable

since the hash evaluation time is often proportional to 1/𝑝2. Our lower bound proves

this is unavoidable: if we require 𝑝2 to be large, 𝜌 has to be suboptimal.

This result has two important implications for designing practical hash functions.

First, it shows that the trade-offs achieved by the cross-polytope LSH and the Voronoi

LSH from [18, 26] are essentially optimal. Second, the lower bound guides design of

future LSH functions: if one is to significantly improve upon the cross-polytope LSH,
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one has to design a hash function that is computed more efficiently than by explicitly

enumerating its range (see Section 3.4 for a more detailed discussion).

Multiprobe scheme for the cross-polytope LSH

The space complexity of an LSH data structure is sub-quadratic, but even this is often

too large (i.e., strongly super-linear in the number of points), and several methods

have been proposed to address this issue. Empirically, the most efficient scheme is

multiprobe LSH [118], which leads to a significantly reduced memory footprint for the

hyperplane LSH. In order to make the cross-polytope LSH competitive in practice

with the multiprobe hyperplane LSH, we propose a novel multiprobe scheme for the

cross-polytope LSH.

This part of the algorithm can be seen as a heuristic analogue of the time–space

trade-off from Chapter 2 (rather, the half of the trade-off, which corresponds to

𝜌𝑠 ≤ 𝜌𝑞).

Experimental evaluation

We complement these contributions with an experimental evaluation on both real and

synthetic data (SIFT vectors, tf-idf data, and a random point set). In order to make

the cross-polytope LSH practical, we combine it with fast pseudo-random rotations [6]

via the Fast Hadamard Transform, and feature hashing [173] to exploit sparsity of data.

Our results show that for data sets with around 105 to 108 points, our multiprobe

variant of the cross-polytope LSH is up to 10× faster than an efficient implementation

of the hyperplane LSH, and up to 700× faster than a linear scan. To the best of

our knowledge, our combination of techniques provides the first “exponent-optimal”

algorithm that empirically improves over the hyperplane LSH in terms of query time

for an exact nearest neighbor search.

We also conducted preliminary comparison with other practical ANN algorithms

and concluded that the algorithm from this chapter is competitive with the state of

the art. However, we will report on these experiments in future work.
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Finally, we release the implementation as a new C++ library with Python bindings

called FALCONN [153].

3.1.2 Related work

The cross-polytope LSH functions were originally proposed in [168]. However, the

analysis in that paper was mostly experimental. Specifically, the probabilities 𝑝1 and

𝑝2 of the proposed LSH functions were estimated empirically using the Monte Carlo

method. Similar hash functions were later proposed in [72]. The latter paper also uses

DFT to speed-up the random matrix-vector matrix multiplication operation. Both of

the aforementioned papers consider only the single-probe algorithm.

There are several works that show lower bounds on the quality of LSH hash

functions [129, 70, 140, 27]. However, those papers provide only a lower bound on

the 𝜌 parameter for asymptotic values of 𝑝1 and 𝑝2, as opposed to an actual trade-

off between these two quantities. In this paper we provide such a trade-off, with

implications as outlined in the introduction.

Finally, let us point out that the algorithm developed in this chapter has strong

parallels with the algorithm from Chapter 2 as well as with Product Quantization [91].

We will elaborate on these similarities in the future work.

3.2 Preliminaries

In this chapter we use ‖.‖ to denote the Euclidean (a.k.a. ℓ2) norm on R𝑑. The

Gaussian distribution with mean zero and variance of one is denoted by 𝑁(0, 1). Let

𝜇 be a normalized Haar measure on 𝑆𝑑−1 (that is, 𝜇(𝑆𝑑−1) = 1). Note that 𝜇 it

corresponds to the uniform distribution over 𝑆𝑑−1. We also let 𝑢 ∼ 𝑆𝑑−1 be a point

sampled from 𝑆𝑑−1 uniformly at random. For 𝜂 ∈ R we denote

Φ𝑐(𝜂) = Pr
𝑋∼𝑁(0,1)

[𝑋 ≥ 𝜂] =
1√
2𝜋

∫︁ ∞

𝜂

𝑒−𝑡2/2 𝑑𝑡.

This chapter relies heavily on the definition of Locality-Sensitive Hashing (LSH)
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and the relation between LSH and the ANN problem. See Section 1.4.4 or [77] for the

introduction.

3.3 Cross-polytope LSH

In this section, we describe the cross-polytope LSH, analyze it, and show how to make

it practical. First, we recall the definition of the cross-polytope LSH [168]: Consider

the following hash family ℋ for points on a unit sphere 𝑆𝑑−1 ⊂ R𝑑. Let 𝐴 ∈ R𝑑×𝑑

be a random matrix with i.i.d. Gaussian entries (“a random rotation”). To hash a

point 𝑥 ∈ 𝑆𝑑−1, we compute 𝑦 = 𝐴𝑥/‖𝐴𝑥‖ ∈ 𝑆𝑑−1 and then find the point closest to 𝑦

from {±𝑒𝑖}1≤𝑖≤𝑑, where 𝑒𝑖 is the 𝑖-th standard basis vector of R𝑑. We use the closest

neighbor as a hash of 𝑥.

The following theorem bounds the collision probability for two points under the

above family ℋ.

Theorem 3.3.1. Suppose that 𝑝, 𝑞 ∈ 𝑆𝑑−1 are such that ‖𝑝−𝑞‖ = 𝜏 , where 0 < 𝜏 < 2.

Then,

ln
1

Pr
ℎ∼ℋ

[︀
ℎ(𝑝) = ℎ(𝑞)

]︀ = 𝜏 2

4− 𝜏 2 · ln 𝑑+𝑂𝜏 (ln ln 𝑑) .

Before we show how to prove this theorem, we briefly describe its implications.

Theorem 3.3.1 shows that the cross-polytope LSH achieves almost the same bounds on

the collision probabilities as the (theoretically) optimal LSH for the sphere from [26]

(see Section “Spherical LSH” there). In particular, substituting the bounds from

Theorem 3.3.1 for the cross-polytope LSH into the standard reduction from Near

Neighbor Search to LSH (see [77] or Section 1.4.4), we obtain the following data

structure with sub-quadratic space and sublinear query time for Near Neighbor Search

on a sphere.

Corollary 3.3.2. The (𝑐, 𝑟)-ANN on a unit sphere 𝑆𝑑−1 can be solved in space

𝑂(𝑛1+𝜌 + 𝑑𝑛) and query time 𝑂(𝑑 · 𝑛𝜌), where 𝜌 = 1
𝑐2
· 4−𝑐2𝑟2

4−𝑟2
+ 𝑜(1) .

We now outline the proof of Theorem 3.3.1. For the full proof, see Section 3.8.
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Due to the spherical symmetry of Gaussians, we can assume that 𝑝 = 𝑒1 and

𝑞 = 𝛼𝑒1 + 𝛽𝑒2, where 𝛼, 𝛽 are such that 𝛼2 + 𝛽2 = 1 and (𝛼− 1)2 + 𝛽2 = 𝜏 2. Then,

we expand the collision probability:

Pr
ℎ∼ℋ

[ℎ(𝑝) = ℎ(𝑞)]

= 2𝑑 · Pr
ℎ∼ℋ

[ℎ(𝑝) = ℎ(𝑞) = 𝑒1]

= 2𝑑 · Pr
𝑢,𝑣∼𝑁(0,1)𝑑

[∀𝑖 |𝑢𝑖| ≤ 𝑢1 and |𝛼𝑢𝑖 + 𝛽𝑣𝑖| ≤ 𝛼𝑢1 + 𝛽𝑣1]

= 2𝑑 · E
𝑋1,𝑌1

[︂
Pr

𝑋2,𝑌2

[︁
|𝑋2| ≤ 𝑋1 and |𝛼𝑋2 + 𝛽𝑌2| ≤ 𝛼𝑋1 + 𝛽𝑌1

]︁𝑑−1
]︂
, (3.3)

where 𝑋1, 𝑌1, 𝑋2, 𝑌2 ∼ 𝑁(0, 1). Indeed, the first step is due to the spherical symmetry

of the hash family, the second step follows from the above discussion about replacing

a random orthogonal matrix with a Gaussian one and that one can assume w.l.o.g.

that 𝑝 = 𝑒1 and 𝑞 = 𝛼𝑒1 + 𝛽𝑒2; the last step is due to the independence of the entries

of 𝑢 and 𝑣.

Thus, proving Theorem 3.3.1 reduces to estimating the right-hand side of (3.3).

Note that the probability Pr[|𝑋2| ≤ 𝑋1 and |𝛼𝑋2 + 𝛽𝑌2| ≤ 𝛼𝑋1 + 𝛽𝑌1] is equal to the

Gaussian area of the planar set 𝑆𝑋1,𝑌1 shown in Figure 3-2a. The latter is heuristically

equal to 1 − 𝑒−Δ2/2, where Δ is the distance from the origin to the complement of

𝑆𝑋1,𝑌1 , which is easy to compute (see Section 3.7 for the precise statement of this

argument). Using this estimate, we compute (3.3) by taking the outer expectation.

3.3.1 Making the cross-polytope LSH practical

As described above, the cross-polytope LSH is not quite practical. The main bottleneck

is sampling, storing, and applying a random rotation. In particular, to multiply a

random Gaussian matrix with a vector, we need time proportional to 𝑑2, which is

infeasible for large 𝑑.

Pseudo-random rotations. To rectify this issue, we instead use pseudo-random

rotations. Instead of multiplying an input vector 𝑥 by a random Gaussian matrix,
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we apply the following linear transformation: 𝑥 ↦→ 𝐻𝐷3𝐻𝐷2𝐻𝐷1𝑥, where 𝐻 is the

Hadamard transform, and 𝐷𝑖 for 𝑖 ∈ {1, 2, 3} is a random diagonal ±1-matrix. Clearly,

this is an orthogonal transformation, which one can store in space 𝑂(𝑑) and evaluate

in time 𝑂(𝑑 log 𝑑) using the Fast Hadamard Transform. This is similar to pseudo-

random rotations used in the context of LSH [64], dimensionality reduction [6], or

compressed sensing [7]. While we are currently not aware how to prove rigorously that

such pseudo-random rotations perform as well as the fully random ones, empirical

evaluations show that three applications of 𝐻𝐷𝑖 are exactly equivalent to applying a

true random rotation (when 𝑑 tends to infinity). We note that only two applications

of 𝐻𝐷𝑖 are not sufficient.

Feature hashing. While we can apply a pseudo-random rotation in time 𝑂(𝑑 log 𝑑),

even this can be too slow. E.g., consider an input vector 𝑥 that is sparse: the number

of non-zero entries of 𝑥 is 𝑠 much smaller than 𝑑. In this case, we can evaluate the

hyperplane LSH from [55] in time 𝑂(𝑠), while computing the cross-polytope LSH

(even with pseudo-random rotations) still takes time 𝑂(𝑑 log 𝑑). To speed-up the cross-

polytope LSH for sparse vectors, we apply feature hashing [173]: before performing

a pseudo-random rotation, we reduce the dimension from 𝑑 to 𝑑′ ≪ 𝑑 by applying a

linear map 𝑥 ↦→ 𝑆𝑥, where 𝑆 is a random sparse 𝑑′ × 𝑑 matrix, whose columns have

one non-zero ±1 entry sampled uniformly. This way, the evaluation time becomes

𝑂(𝑠+ 𝑑′ log 𝑑′). 3

“Partial” cross-polytope LSH. In the above discussion, we defined the cross-

polytope LSH as a hash family that returns the closest neighbor among {±𝑒𝑖}1≤𝑖≤𝑑 as

a hash (after a (pseudo-)random rotation). In principle, we do not have to consider

all 𝑑 basis vectors when computing the closest neighbor. By restricting the hash

to 𝑑′ ≤ 𝑑 basis vectors instead, Theorem 3.3.1 still holds for the new hash family

(with 𝑑 replaced by 𝑑′) since the analysis is essentially dimension-free. This slight

3Note that one can apply Lemma 2 from the arXiv version of [173] to claim that—after such a
dimension reduction—the distance between any two points remains sufficiently concentrated for the
bounds from Theorem 3.3.1 to still hold (with 𝑑 replaced by 𝑑′).

105



Figure 3-2

x = −X1

x = X1

αx+ βy = αX1 + βY1

αx+ βy = −(αX1 + βY1)

(a) The set appearing in the analysis of
the cross-polytope LSH: 𝑆𝑋1𝑌1 = {|𝑥| ≤
𝑋1 and |𝛼𝑥+ 𝛽𝑦| ≤ 𝛼𝑋1 + 𝛽𝑌1}.
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generalization of the cross-polytope LSH turns out to be useful for experiments (see

Section 3.6). Note that the case 𝑑′ = 1 corresponds to the hyperplane LSH.

3.4 Lower bound

Let ℋ be a hash family on 𝑆𝑑−1. For 0 < 𝑟1 < 𝑟2 < 2 we would like to understand

the trade-off between 𝑝1 and 𝑝2, where 𝑝1 is the smallest probability of collision under

ℋ for points at distance at most 𝑟1 and 𝑝2 is the largest probability of collision for

points at distance at least 𝑟2. We focus on the case 𝑟2 ≈
√
2 because setting 𝑟2 to

√
2− 𝑜(1) (as 𝑑 tends to infinity) allows us to replace 𝑝2 with the following quantity

that is somewhat easier to handle:

𝑝*2 = Pr
ℎ∼ℋ

𝑢,𝑣∼𝑆𝑑−1

[ℎ(𝑢) = ℎ(𝑣)].

This quantity is at most 𝑝2 + 𝑜(1), since the distance between two random points on a

unit sphere 𝑆𝑑−1 is tightly concentrated around
√
2. So for a hash family ℋ on a unit

sphere 𝑆𝑑−1, we would like to understand the upper bound on 𝑝1 in terms of 𝑝*2 and

0 < 𝑟1 <
√
2.
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For 0 ≤ 𝜏 ≤
√
2 and 𝜂 ∈ R, we define Λ(𝜏, 𝜂) to be:

Pr
𝑋,𝑌∼𝑁(0,1)

[︃
𝑋 ≥ 𝜂 and

(︂
1− 𝜏 2

2

)︂
·𝑋 +

√︂
𝜏 2 − 𝜏 4

4
· 𝑌 ≥ 𝜂

]︃ ⧸︁
Pr

𝑋∼𝑁(0,1)
[𝑋 ≥ 𝜂] .

We are now ready to formulate the main result of this section.

Theorem 3.4.1. Let ℋ be a hash family on 𝑆𝑑−1 such that every function in ℋ
partitions the sphere into at most 𝑇 parts of measure at most 1/2. Then we have

𝑝1 ≤ Λ(𝑟1, 𝜂) + 𝑜(1), where 𝜂 ∈ R is such that Φ𝑐(𝜂) = 𝑝*2 and 𝑜(1) is a quantity that

depends on 𝑇 and 𝑟1 and tends to 0 as 𝑑 tends to infinity.

The idea of the proof is first to reason about one part of the partition using the

isoperimetric inequality from [73], and then to apply a certain averaging argument by

proving concavity of a function related to Λ using a delicate analytic argument. For

the full proof, see Section 3.9.

We note that the above requirement of all parts induced by ℋ having measure at

most 1/2 is only a technicality. We conjecture that Theorem 3.4.1 holds without this

restriction. In any case, as we will see below, in the interesting range of parameters

this restriction is essentially irrelevant.

One can observe that if every hash function in ℋ partitions the sphere into at

most 𝑇 parts, then 𝑝*2 ≥ 1
𝑇

(indeed, 𝑝*2 is precisely the average sum of squares of

measures of the parts). This observation, combined with Theorem 3.4.1, leads to

the following interesting consequence. Specifically, we can numerically estimate Λ in

order to give a lower bound on 𝜌 = log(1/𝑝1)
log(1/𝑝2)

for any hash family ℋ in which every

function induces at most 𝑇 parts of measure at most 1/2. See Figure 3-2b, where we

plot this lower bound for 𝑟1 =
√
2/2,4 together with an upper bound that is given

by the cross-polytope LSH5 (for which we use numerical estimates for (3.3)). We

can make several conclusions from this plot. First, the cross-polytope LSH gives an

almost optimal trade-off between 𝜌 and 𝑇 . Given that the evaluation time for the

4The situation is qualitatively similar for other values of 𝑟1.
5More specifically, for the “partial” version from Section 3.3.1, since 𝑇 should be constant, while 𝑑

grows
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cross-polytope LSH is 𝑂(𝑇 log 𝑇 ) (if one uses pseudo-random rotations), we conclude

that in order to improve upon the cross-polytope LSH substantially in practice, one

should design an LSH family with 𝜌 being close to optimal and evaluation time that

is sublinear in 𝑇 . We note that none of the known LSH families for a sphere has

been shown to have this property. This direction looks especially interesting since the

convergence of 𝜌 to the optimal value (as 𝑇 tends to infinity) is extremely slow (for

instance, according to Figure 3-2b, for 𝑟1 =
√
2/2 and 𝑟2 ≈

√
2 we need more than

105 parts to achieve 𝜌 ≤ 0.2, whereas the optimal 𝜌 is 1/7 ≈ 0.143).

3.5 Multiprobe LSH for the cross-polytope LSH

We now describe our multiprobe scheme for the cross-polytope LSH, which is a method

for reducing the number of independent hash tables in an LSH data structure. Given

a query point 𝑞, a “standard” LSH data structure considers only a single cell in each of

the 𝐿 hash tables (the cell is given by the hash value ℎ𝑖(𝑞) for 𝑖 ∈ [𝐿]). In multiprobe

LSH, we consider candidates from multiple cells in each table [118]. The rationale is

the following: points 𝑝 that are close to 𝑞 but fail to collide with 𝑞 under hash function

ℎ𝑖 are still likely to hash to a value that is close to ℎ𝑖(𝑞). By probing multiple hash

locations close to ℎ𝑖(𝑞) in the same table, multiprobe LSH achieves a given probability

of success with a smaller number of hash tables than “standard” LSH. Multiprobe

LSH has been shown to perform well in practice [118, 164].

The main ingredient in multiprobe LSH is a probing scheme for generating and

ranking possible modifications of the hash value ℎ𝑖(𝑞). The probing scheme should be

computationally efficient and ensure that more likely hash locations are probed first.

For a single cross-polytope hash, the order of alternative hash values is straightforward:

let 𝑥 be the (pseudo-)randomly rotated version of query point 𝑞. Recall that the

“main” hash value is ℎ𝑖(𝑞) = argmax𝑗∈[𝑑] |𝑥𝑗|.6 Then it is easy to see that the second

highest probability of collision is achieved for the hash value corresponding to the

6In order to simplify notation, we consider a slightly modified version of the cross-polytope LSH
that maps both the standard basis vector +𝑒𝑗 and its opposite −𝑒𝑗 to the same hash value. It is
easy to extend the multiprobe scheme defined here to the “full” cross-polytope LSH from Section 3.3.
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coordinate with the second largest absolute value, etc. Therefore, we consider the

indices 𝑖 ∈ [𝑑] sorted by their absolute value as our probing sequence or “ranking” for

a single cross-polytope.

The remaining question is how to combine multiple cross-polytope rankings when

we have more than one hash function. As in the analysis of the cross-polytope LSH

(see Section 3.3, we consider two points 𝑞 = 𝑒1 and 𝑝 = 𝛼𝑒1 + 𝛽𝑒2 at distance 𝑅. Let

𝐴(𝑖) be the i.i.d. Gaussian matrix of hash function ℎ𝑖, and let 𝑥(𝑖) = 𝐴(𝑖)𝑒1 be the

randomly rotated version of point 𝑞. Given 𝑥(𝑖), we are interested in the probability of

𝑝 hashing to a certain combination of the individual cross-polytope rankings. More

formally, let 𝑟(𝑖)𝑣𝑖 be the index of the 𝑣𝑖-th largest element of |𝑥(𝑖)|, where 𝑣 ∈ [𝑑]𝑘

specifies the alternative probing location. Then we would like to compute

Pr
𝐴(1),...,𝐴(𝑘)

[︀
ℎ𝑖(𝑝) = 𝑟(𝑖)𝑣𝑖

for all 𝑖 ∈ [𝑘] | 𝐴(𝑖)𝑞 = 𝑥(𝑖)
]︀

=
𝑘∏︁

𝑖=1

Pr
𝐴(𝑖)

[︁
argmax𝑗∈[𝑑]

⃒⃒
(𝛼 · 𝐴(𝑖)𝑒1 + 𝛽 · 𝐴(𝑖)𝑒2)𝑗

⃒⃒
= 𝑟(𝑖)𝑣𝑖

⃒⃒⃒
𝐴(𝑖)𝑒1 = 𝑥(𝑖)

]︁
.

If we knew this probability for all 𝑣 ∈ [𝑑]𝑘, we could sort the probing locations by

their probability. We now show how to approximate this probability efficiently for a

single value of 𝑖 (and hence drop the superscripts to simplify notation). WLOG, we

permute the rows of 𝐴 so that 𝑟𝑣 = 𝑣 and get

Pr
𝐴

[︁
argmax𝑗∈[𝑑]

⃒⃒
(𝛼𝑥+ 𝛽 · 𝐴𝑒2)𝑗

⃒⃒
= 𝑣

⃒⃒⃒
𝐴𝑒1 = 𝑥

]︁
= Pr

𝑦∼𝑁(0,𝐼𝑑)

[︁
argmax𝑗∈[𝑑]

⃒⃒
(𝑥+

𝛽

𝛼
· 𝑦)𝑗

⃒⃒
= 𝑣
]︁
.

The RHS is the Gaussian measure of the set 𝑆 = {𝑦 ∈ R𝑑 | argmax𝑗∈[𝑑]
⃒⃒
(𝑥+ 𝛽

𝛼
𝑦)𝑗
⃒⃒
= 𝑣}.

Similar to the analysis of the cross-polytope LSH, we approximate the measure of 𝑆 by

its distance to the origin. Then the probability of probing location 𝑣 is proportional

to exp(−‖𝑦𝑥,𝑣‖2), where 𝑦𝑥,𝑣 is the shortest vector 𝑦 such that argmax𝑗 |𝑥+ 𝑦|𝑗 = 𝑣.

Note that the factor 𝛽/𝛼 becomes a proportionality constant, and hence the probing

scheme does not require to know the distance 𝑅. For computational performance and
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simplicity, we make a further approximation and use 𝑦𝑥,𝑣 = (max𝑖 |𝑥𝑖| − |𝑥𝑣|) · 𝑒𝑣, i.e.,

we only consider modifying a single coordinate to reach the set 𝑆.

Once we have estimated the probabilities for each 𝑣𝑖 ∈ [𝑑], we incrementally

construct the probing sequence using a binary heap, similar to the approach in

[118]. For a probing sequence of length 𝑚, the resulting algorithm has running time

𝑂(𝐿 ·𝑑 log 𝑑+𝑚 log𝑚). In our experiments, we found that the 𝑂(𝐿 ·𝑑 log 𝑑) time taken

to sort the probing candidates 𝑣𝑖 dominated the running time of the hash function

evaluation. In order to circumvent this issue, we use an incremental sorting approach

that only sorts the relevant parts of each cross-polytope and gives a running time of

𝑂(𝐿 · 𝑑+𝑚 log𝑚).

3.6 Experiments

We now show that the cross-polytope LSH, combined with our multiprobe extension,

leads to an algorithm that is also efficient in practice and improves over the hyperplane

LSH on several data sets. The focus of our experiments is the query time for an

exact nearest neighbor search. Since hyperplane LSH has been compared to other

nearest-neighbor algorithms before [158], we limit our attention to the relative speed-up

compared with hyperplane hashing.

We evaluate the two hashing schemes on three types of data sets. We use a

synthetic data set of randomly generated points because this allows us to vary a

single problem parameter while keeping the remaining parameters constant. We also

investigate the performance of our algorithm on real data: two tf-idf data sets [113]

and a set of SIFT feature vectors [91]. We have chosen these data sets in order to

illustrate when the cross-polytope LSH gives large improvements over the hyperplane

LSH, and when the improvements are more modest. See Section 3.10 for a more

detailed description of the data sets and our experimental setup (implementation

details, CPU, etc.).

In all experiments, we set the algorithm parameters so that the empirical probability

of successfully finding the exact nearest neighbor is at least 0.9. Moreover, we set the
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number of LSH tables 𝐿 so that the amount of additional memory occupied by the

LSH data structure is comparable to the amount of memory necessary for storing

the data set. We believe that this is the most interesting regime because significant

memory overheads are often impossible for large data sets. In order to determine

the parameters that are not fixed by the above constraints, we perform a grid search

over the remaining parameter space and report the best combination of parameters.

For the cross-polytope hash, we consider “partial” cross-polytopes in the last of the 𝑘

hash functions in order to get a smooth trade-off between the various parameters (see

Section 3.3.1).

Multiprobe experiments. In order to demonstrate that the multiprobe scheme is

critical for making the cross-polytope LSH competitive with hyperplane hashing, we

compare the performance of a “standard” cross-polytope LSH data structure with our

multiprobe variant on an instance of the random data set (𝑛 = 220, 𝑑 = 128). As can

be seen in Table 3.2 (Section 3.10), the multiprobe variant is about 13× faster in our

memory-constrained setting (𝐿 = 10). Note that in all of the following experiments,

the speed-up of the multiprobe cross-polytope LSH compared to the multiprobe

hyperplane LSH is less than 11×. Hence without our multiprobe addition, the cross-

polytope LSH would be slower than the hyperplane LSH, for which a multiprobe

scheme is already known [118].

Experiments on random data. Next, we show that the better time complexity

of the cross-polytope LSH already applies for moderate values of 𝑛. In particular, we

compare the cross-polytope LSH, combined with fast rotations (Section 3.3.1) and

our multiprobe scheme, to a multi-probe hyperplane LSH on random data. We keep

the dimension 𝑑 = 128 and the distance to the nearest neighbor 𝑅 =
√
2/2 fixed, and

vary the size of the data set from 220 to 228. The number of hash tables 𝐿 is set to

10. For 220 points, the cross-polytope LSH is already 3.5× faster than the hyperplane

LSH, and for 𝑛 = 228 the speedup is 10.3× (see Table 3.3 in Section 3.10). Compared

to a linear scan, the speed-up achieved by the cross-polytope LSH ranges from 76×
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Data set Method Query
time (ms)

Speed-up
vs HP Best 𝑘

Number of
candidates

Hashing
time (ms)

Distances
time (ms)

NYT HP 120 ms 19 57,200 16 96
NYT CP 35 ms 3.4× 2 (64) 17,900 3.0 30

pubmed HP 857 ms 20 1,480,000 36 762
pubmed CP 213 ms 4.0× 2 (512) 304,000 18 168

SIFT HP 3.7 ms 30 18,628 0.2 3.0
SIFT CP 3.1 ms 1.2× 6 (1) 13,000 0.6 2.2

Table 3.1: Average running times for a single nearest neighbor query with the hy-
perplane (HP) and cross-polytope (CP) algorithms on three real data sets. The
cross-polytope LSH is faster than the hyperplane LSH on all data sets, with significant
speed-ups for the two tf-idf data sets NYT and pubmed. For the cross-polytope LSH,
the entries for 𝑘 include both the number of individual hash functions per table and
(in parenthesis) the dimension of the last of the 𝑘 cross-polytopes.

for 𝑛 = 220 to about 700× for 𝑛 = 228.

Experiments on real data. On the SIFT data set (𝑛 = 106 and 𝑑 = 128), the

cross-polytope LSH achieves a modest speed-up of 1.2× compared to the hyperplane

LSH (see Table 3.1). On the other hand, the speed-up is is 3− 4× on the two tf-idf

data sets, which is a significant improvement considering the relatively small size of

the NYT data set (𝑛 ≈ 300, 000). One important difference between the data sets

is that the typical distance to the nearest neighbor is smaller in the SIFT data set,

which can make the nearest neighbor problem easier (see Section 3.10). Since the

tf-idf data sets are very high-dimensional but sparse (𝑑 ≈ 100, 000), we use the feature

hashing approach described in Section 3.3.1 in order to reduce the hashing time of the

cross-polytope LSH (the standard hyperplane LSH already runs in time proportional

to the sparsity of a vector). We use 512 and 2048 as feature hashing dimensions for

NYT and pubmed, respectively.

3.7 Appendix: Gaussian measure of a planar set

In this Section we formalize the intuition that the standard Gaussian measure of a

closed subset 𝐴 ⊆ R2 behaves like 𝑒−Δ2
𝐴/2, where Δ𝐴 is the distance from the origin
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to 𝐴, unless 𝐴 is quite special.

For a closed subset 𝐴 ⊆ R2 and 𝑟 > 0 denote 0 ≤ 𝜇𝐴(𝑟) ≤ 1 the normalized

measure of the intersection 𝐴 ∩ 𝑟𝑆1 (𝐴 with the circle centered in the origin and of

radius 𝑟):

𝜇𝐴(𝑟) :=
𝜇(𝐴 ∩ 𝑟𝑆1)

2𝜋𝑟
;

here 𝜇 is the standard one-dimensional Lebesgue measure (see Figure 3-3a). Denote

Δ𝐴 := inf{𝑟 > 0 : 𝜇𝐴(𝑟) > 0} the (essential) distance from the origin to 𝐴. Let 𝒢(𝐴)
be the standard Gaussian measure of 𝐴.

Lemma 3.7.1. Suppose that 𝐴 ⊆ R2 is a closed set such that 𝜇𝐴(𝑟) is non-decreasing.

Then,

sup
𝑟>0

(︁
𝜇𝐴(𝑟) · 𝑒−𝑟2/2

)︁
≤ 𝒢(𝐴) ≤ 𝑒−Δ2

𝐴/2.

Proof. For the upper bound, we note that

𝒢(𝐴) =
∫︁ ∞

0

𝜇𝐴(𝑟) · 𝑟𝑒−𝑟2/2 𝑑𝑟 ≤
∫︁ ∞

Δ𝐴

𝑟𝑒−𝑟2/2 𝑑𝑟 = 𝑒−Δ2
𝐴/2.

For the lower bound, we similarly have, for every 𝑟* > 0,

𝒢(𝐴) =
∫︁ ∞

0

𝜇𝐴(𝑟) · 𝑟𝑒−𝑟2/2 𝑑𝑟 ≥ 𝜇𝐴(𝑟
*) ·
∫︁ ∞

𝑟*
𝑟𝑒−𝑟2/2 𝑑𝑟 = 𝜇𝐴(𝑟

*)𝑒−(𝑟*)2/2,

where we use that 𝜇𝐴(𝑟
*) is non-decreasing.

Now we derive two corollaries of Lemma 3.7.1.

Lemma 3.7.2. Let 𝐾 ⊆ R2 be the complement of an open convex subset of the plane

that is symmetric around the origin. Then, for every 0 < 𝜀 < 1/3,

Ω
(︁
𝜀1/2 · 𝑒−(1+𝜀)·Δ2

𝐾/2
)︁
≤ 𝒢(𝐾) ≤ 𝑒−Δ2

𝐾/2.

Proof. This follows from Lemma 3.7.1: indeed, due to the convexity of the complement

of 𝐾, 𝜇𝐾(𝑟) is non-decreasing. It is easy to check that

𝜇𝐾

(︁
(1 + 𝜀)Δ𝐾

)︁
= Ω

(︁
𝜀1/2
)︁
,
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again, due to the convexity (see Figure 3-3b). Thus, the required bounds follow.

Lemma 3.7.3. Let 𝐾 ⊆ R2 be an intersection of two closed half-planes such that:

∙ 𝐾 does not contain a line;

∙ the “corner” of 𝐾 is the closest point of 𝐾 to the origin;

∙ the angle between half-planes equals to 0 < 𝛼 < 𝜋.

Then, for every 0 < 𝜀 < 1/2,

Ω𝛼

(︁
𝜀 · 𝑒−(1+𝜀)·Δ2

𝐾

)︁
≤ 𝒢(𝐾) ≤ 𝑒−Δ2

𝐾/2.

Proof. This, again, follows from Lemma 3.7.1. The second condition implies that

𝜇𝐾(𝑟) is non-decreasing, and an easy computation shows that

𝜇𝐾((1 + 𝜀)Δ𝐾) ≥ Ω𝛼(𝜀)

(see Figure 3-3c).

3.8 Appendix: Proof of Theorem 3.3.1

In this section we complete the proof of Theorem 3.3.1, following the outline from

Section 3.3. Our starting point is the collision probability bound from Eqn. (3.3).

For 𝑢, 𝑣 ∈ R with 𝑢 ≥ 0 and 𝛼𝑢+ 𝛽𝑣 ≥ 0 define,

𝜎(𝑢, 𝑣) = Pr
𝑋2,𝑌2∼𝑁(0,1)

[|𝑋2| ≤ 𝑢 and |𝛼𝑋2 + 𝛽𝑌2| ≤ 𝛼𝑢+ 𝛽𝑣].

Then, the right-hand side of (3.3) is equal to

2𝑑 · E
𝑋1,𝑌1∼𝑁(0,1)

[𝜎(𝑋1, 𝑌1)
𝑑−1].

Let us define

Δ(𝑢, 𝑣) = min{𝑢, 𝛼𝑢+ 𝛽𝑣}.
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Lemma 3.8.1. For every 0 < 𝜀 < 1/3,

1− 𝑒−Δ(𝑢,𝑣)2/2 ≤ 𝜎(𝑢, 𝑣) ≤ 1− Ω
(︁
𝜀1/2 · 𝑒−(1+𝜀)Δ(𝑢,𝑣)2/2

)︁
.

Proof. This is a combination of Lemma 3.7.2 together with the following obvious

observation: the distance from the origin to the set {(𝑥, 𝑦) : |𝑥| ≥ 𝑢 or |𝛼𝑥+ 𝛽𝑦| ≥
𝛼𝑢+ 𝛽𝑣} is equal to Δ(𝑢, 𝑣) (see Figure 3-2a).

Lemma 3.8.2. For every 𝑡 ≥ 0 and 0 < 𝜀 < 1/3,

Ω𝜏

(︂
𝜀 · 𝑒−(1+𝜀)· 4

4−𝜏2
· 𝑡

2

2

)︂
≤ Pr

𝑋1,𝑌1∼𝑁(0,1)
[Δ(𝑋1, 𝑌1) ≥ 𝑡] ≤ 𝑒

− 4
4−𝜏2

· 𝑡
2

2 .

Proof. Similar to the previous lemma, this is a consequence of Lemma 3.7.3 together

with the fact that the squared distance from the origin to the set {(𝑥, 𝑦) : 𝑥 ≥
𝑡 and 𝛼𝑥+ 𝛽𝑦 ≥ 𝑡} is equal to 4

4−𝜏2
· 𝑡2.

3.8.1 Idealized proof

Let us expand (3.3) further, assuming that the “idealized” versions of Lemma 3.8.1

and Lemma 3.8.2 hold. Namely, we assume that

𝜎(𝑢, 𝑣) = 1− 𝑒−Δ(𝑢,𝑣)2/2; (3.4)

and

Pr
𝑋1,𝑌1∼𝑁(0,1)

[Δ(𝑋1, 𝑌1) ≥ 𝑡] = 𝑒
− 4

4−𝜏2
· 𝑡

2

2 . (3.5)

In the next section we redo the computations using the precise bounds for 𝜎(𝑢, 𝑣)

and Pr[Δ(𝑋1, 𝑌1) ≥ 𝑡].
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Expanding Eqn. (3.3), we have

E
𝑋1,𝑌1∼𝑁(0,1)

[𝜎(𝑋1, 𝑌1)
𝑑−1] =

∫︁ 1

0

Pr
𝑋1,𝑌1∼𝑁(0,1)

[𝜎(𝑋1, 𝑌1) ≥ 𝑡
1

𝑑−1 ] 𝑑𝑡

=

∫︁ 1

0

Pr
𝑋1,𝑌1∼𝑁(0,1)

[𝑒−Δ(𝑋1,𝑌1)2/2 ≤ 1− 𝑡 1
𝑑−1 ] 𝑑𝑡

=

∫︁ 1

0

(1− 𝑡 1
𝑑−1 )

4
4−𝜏2 𝑑𝑡

= (𝑑− 1) ·
∫︁ 1

0

(1− 𝑢)
4

4−𝜏2 𝑢𝑑−2 𝑑𝑡

= (𝑑− 1) ·𝐵
(︂
8− 𝜏 2
4− 𝜏 2 ; 𝑑− 1

)︂
= Θ𝜏 (1) · 𝑑−

4
4−𝜏2 , (3.6)

where:

∙ the first step is a standard expansion of an expectation;

∙ the second step is due to (3.4);

∙ the third step is due to (3.5);

∙ the fourth step is a change of variables;

∙ the fifth step is a definition of the Beta function;

∙ the sixth step is due to the Stirling approximation.

Overall, substituting (3.6) into (3.3), we get:

ln
1

Pr
ℎ∼ℋ

[ℎ(𝑝) = ℎ(𝑞)]
=

𝜏 2

4− 𝜏 2 · ln 𝑑±𝑂𝜏 (1).

3.8.2 Real proof

We now perform calculations using the bounds (involving 𝜀) from Lemma 3.8.1 and

Lemma 3.8.2. We set 𝜀 = 1/𝑑 and obtain the following asymptotic statements:

𝜎(𝑢, 𝑣) = 1− 𝑑±𝑂(1) · 𝑒−(1±𝑑−Ω(1))·Δ(𝑢,𝑣)2/2;
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and

Pr
𝑋,𝑌∼𝑁(0,1)

[Δ(𝑋, 𝑌 ) ≥ 𝑡] = 𝑑±𝑂(1) · 𝑒−(1±𝑑−Ω(1))· 4
4−𝜏2

· 𝑡
2

2 .

Then, we can repeat the “idealized” proof (see Eqn. (3.6)) verbatim with the new

estimates and obtain the final form of Theorem 3.3.1:

ln
1

Pr
ℎ∼ℋ

[ℎ(𝑝) = ℎ(𝑞)]
=

𝜏 2

4− 𝜏 2 · ln 𝑑±𝑂𝜏 (ln ln 𝑑).

Note the difference in the low order term between idealized and the real version. As

we argue in Section 3.4, the latter 𝑂𝜏 (ln ln 𝑑) is, in fact, tight.

3.9 Appendix: Proof of Theorem 3.4.1

Lemma 3.9.1. Let 𝐴 ⊂ 𝑆𝑑−1 be a measurable subset of a sphere with 𝜇(𝐴) = 𝜇0 ≤ 1/2.

Then, for 0 < 𝜏 <
√
2, one has

Pr
𝑢,𝑣∼𝑆𝑑−1

[︀
𝑣 ∈ 𝐴

⃒⃒
𝑢 ∈ 𝐴, ‖𝑢− 𝑣‖ ≤ 𝜏

]︀
=

Pr
𝑋,𝑌∼𝑁(0,1)

[𝑋 ≥ 𝜂 and 𝛼𝑋 + 𝛽𝑌 ≥ 𝜂] + 𝑜(1)

Pr
𝑋∼𝑁(0,1)

[𝑋 ≥ 𝜂] + 𝑜(1)
, (3.7)

where:

∙ 𝛼 = 1− 𝜏2

2
;

∙ 𝛽 =
√︁
𝜏 2 − 𝜏4

4
;

∙ 𝜂 ∈ R is such that Pr
𝑋∼𝑁(0,1)

[𝑋 ≥ 𝜂] = 𝜇0.

In particular, if 𝜇0 = Ω(1), then

Pr
𝑢,𝑣∼𝑆𝑑−1

[︀
𝑣 ∈ 𝐴

⃒⃒
𝑢 ∈ 𝐴, ‖𝑢− 𝑣‖ ≤ 𝜏

]︀
= Λ(𝜏,Φ−1

𝑐 (𝜇0)) + 𝑜(1).

Proof. First, the left-hand side of (3.7) is maximized by a spherical cap of measure 𝜇0.

This follows from Theorem 5 of [73]. So, from now on we assume that 𝐴 is a spherical
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cap.

Second, one has

Pr
𝑢,𝑣∼𝑆𝑑−1

[︀
𝑣 ∈ 𝐴

⃒⃒
𝑢 ∈ 𝐴, ‖𝑢− 𝑣‖ ≤ 𝜏

]︀
= Pr

𝑢,𝑣∼𝑆𝑑−1

[︀
𝑣 ∈ 𝐴

⃒⃒
𝑢 ∈ 𝐴, ‖𝑢− 𝑣‖ = 𝜏 ± 𝑜(1)

]︀
+ 𝑜(1)

=
Pr

𝑢∼𝑆𝑑−1

[︀
𝑢1 ≥ ̃︀𝜂 and (𝛼± 𝑜(1))𝑢1 + (𝛽 ± 𝑜(1))𝑢2 ≥ ̃︀𝜂]︀

Pr
𝑢∼𝑆𝑑−1

[𝑢1 ≥ ̃︀𝜂] + 𝑜(1)

=

Pr
𝑋,𝑌∼𝑁(0,1)

[𝑋 ≥ 𝜂 and 𝛼𝑋 + 𝛽𝑌 ≥ 𝜂] + 𝑜(1)

Pr
𝑋∼𝑁(0,1)

[𝑋 ≥ 𝜂] + 𝑜(1)
,

where ̃︀𝜂 is such that Pr
𝑢∼𝑆𝑑−1

[𝑢1 ≥ ̃︀𝜂] = 𝜇0 and:

∙ the first step is due to the concentration of measure on the sphere;

∙ the second step is expansion of the conditional probability;

∙ the third step is due to the fact that a 𝑂(1)-dimensional projection of the

uniform measure on a sphere of radius
√
𝑑 in R𝑑 converges in total variation to

a standard Gaussian measure [68].

Lemma 3.9.2. For every 0 < 𝜏 <
√
2, the function 𝜇 ↦→ Λ(𝜏,Φ−1

𝑐 (𝜇)) is concave for

0 < 𝜇 < 1/2.

Proof. Abusing notation, for this proof we denote Λ(𝜂) = Λ(𝜏, 𝜂) and

𝐼(𝜂) = Pr
𝑋,𝑌∼𝑁(0,1)

[𝑋 ≥ 𝜂 and 𝛼𝑋 + 𝛽𝑌 ≥ 𝜂]

(that is, Λ(𝜂) = 𝐼(𝜂)/Φ𝑐(𝜂)). One has Φ′
𝑐(𝜂) = − 𝑒−𝜂2/2

√
2𝜋

and

𝐼 ′(𝜂) = −
√︂

2

𝜋
· 𝑒−𝜂2/2 · Φ𝑐

(︂
(1− 𝛼)𝜂

𝛽

)︂
.
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Combining, we get

Λ′(𝜂) =
𝑒−𝜂2/2

√
2𝜋
·
𝐼(𝜂)− 2Φ𝑐(𝜂)Φ𝑐

(︁
(1−𝛼)𝜂

𝛽

)︁
Φ𝑐(𝜂)2

and

𝑑Λ(Φ−1
𝑐 (𝜇))

𝑑𝜇
=

2Φ𝑐(𝜂
*)Φ𝑐

(︁
(1−𝛼)𝜂*

𝛽

)︁
− 𝐼(𝜂*)

Φ𝑐(𝜂*)2
=: Π(𝜂*),

where 𝜂* = 𝜂*(𝜇) = Φ−1
𝑐 (𝜇). It is sufficient to show that Π(𝜂*) is non-decreasing in 𝜂*

for 𝜂* ≥ 0.

We have

Π′(𝜂) =

√︂
2

𝜋
· 𝑒

−𝜂2/2

Φ𝑐(𝜂)3

(︂
2 · Φ𝑐(𝜂)Φ𝑐

(︂
(1− 𝛼)𝜂

𝛽

)︂
− 𝐼(𝜂)− 1− 𝛼

𝛽
· 𝑒

𝛼(1−𝛼)

𝛽2
·𝜂2
Φ𝑐(𝜂)

2

)︂
=:

√︂
2

𝜋
· 𝑒

−𝜂2/2

Φ𝑐(𝜂)3
· Ω(𝜂).

We need to show that Ω(𝜂) ≥ 0 for 𝜂 ≥ 0. We will do this by showing that

Ω′(𝜂) ≤ 0 for 𝜂 ≥ 0 and that lim𝜂→∞Ω(𝜂) = 0. The latter is obvious, so let us show

the former.

Ω′(𝜂) = −2𝛼(1− 𝛼)2
𝛽3

· 𝑒
𝛼(1−𝛼)

𝛽2
𝜂2 · Φ𝑐(𝜂)

2 · 𝜂 ≤ 0

for 𝜂 ≥ 0.

Now we are ready to prove Theorem 3.4.1. Let us first assume that all the parts

have measure Ω(1). Later we will show that this assumption can be removed. W.l.o.g.
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we assume that functions from the family have subsets integers as a range. We have,

𝑝1 ≤ Pr
𝑢,𝑣∼𝑆𝑑−1

ℎ∼ℋ

[︀
ℎ(𝑢) = ℎ(𝑣)

⃒⃒
‖𝑢− 𝑣‖ ≤ 𝜏

]︀
= E

ℎ∼ℋ

[︃∑︁
𝑖

𝜇(ℎ−1(𝑖))Pr[𝑣 ∈ ℎ−1(𝑖) | 𝑢 ∈ ℎ−1(𝑖), ‖𝑢− 𝑣‖ ≤ 𝜏 ]

]︃

≤ E
ℎ∼ℋ

[︃∑︁
𝑖

𝜇(ℎ−1(𝑖))Λ(𝜏,Φ−1
𝑐 (𝜇(ℎ−1(𝑖))))

]︃
+ 𝑜(1)

≤ Λ

(︃
𝜏,Φ−1

𝑐

(︃
E

ℎ∼ℋ

[︃∑︁
𝑖

𝜇(ℎ−1(𝑖))2

]︃)︃)︃
+ 𝑜(1)

≤ Λ(𝜏,Φ−1
𝑐 (𝑝*(ℋ))) + 𝑜(1),

where:

∙ the first step is by the definition of 𝑝1;

∙ the third step is due to the condition 𝜇(ℎ−1(𝑖)) = Ω(1) and Lemma 3.9.1;

∙ the fourth step is due to Lemma 3.9.2 and the assumption 𝜇(ℎ−1(𝑖)) ≤ 1/2;

∙ the final step is due to the definition of 𝑝*(ℋ).

To get rid of the assumption that a measure of every part is Ω(1) observe that all

parts with measure at most 𝜀 contribute to the expectation at most 𝜀 · 𝑇 , since there

are at most 𝑇 pieces in total. Note that if 𝜀 = 𝑜(1), then 𝜀 · 𝑇 = 𝑜(1), since we assume

𝑇 being fixed.

3.10 Appendix: Further description of experiments

In order to compare meaningful running time numbers, we have written fast C++

implementations of both the cross-polytope LSH and the hyperplane LSH. This enables

a fair comparison since both implementations have been optimized by us to the same

degree. In particular, hyperplane hashing can be implemented efficiently using a

matrix-vector multiplication sub-routine for which we use the Eigen library (Eigen is
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also used for all other linear algebra operations). For the fast pseudo-random rotation

in the cross-polytope LSH, we have written a SIMD-optimized version of the Fast

Hadamard Transform (FHT). We compiled our code with g++ 4.9 and the -O3 flag.

All experiments except those in Table 3.3 ran on an Intel Core i5-2500 CPU (3.3 - 3.7

GHz, 6 MB cache) with 8 GB of RAM. Since 8 GB of RAM was too small for the

larger values of 𝑛, we ran the experiments in Table 3.3 on a machine with an Intel

Xeon E5-2690 v2 CPU (3.0 GHz, 25 MB cache) and 512 GB of RAM.

In our experiments, we evaluate the performance of the cross-polytope LSH on

the following data sets. Figure 3-4 shows the distribution of distances to the nearest

neighbor for the four data sets.

random For the random data sets, we generate a set of 𝑛 points uniformly at random

on the unit sphere. In order to generate a query, we pick a random point 𝑞′ from

the data set and generate a point at distance 𝑅 from 𝑞′ on the unit sphere. In

our experiments, we vary the dimension of the point set between 128 and 1,024.

Experiments with the random data set are useful because we can study the impact

of various parameters (e.g., the dimension 𝑑 or the number of points 𝑛) while

keeping the remaining parameters constant.

pubmed / NYT The pubmed and NYT data sets contain bag-of-words represen-

tations of medical paper abstracts and newspaper articles, respectively [113]. We

convert this representation into standard tf-idf feature vectors with dimensionality

about 100,000. The number of points in the pubmed data set is about 8 million,

for NYT it is 300,000. Before setting up the LSH data structures, we set 1000 data

points aside as query vectors. When selecting query vectors, we limit our attention

to points for which the inner product with the nearest neighbor is between 0.3

and 0.8. We believe that this is the most interesting range since near-duplicates

(inner product close to 1) can be identified more efficiently with other methods,

and points without a close nearest neighbor (inner product less than 0.3) often do

not have a semantically meaningful match.

SIFT We use the standard data set of one million SIFT feature vectors from [91],
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which also contains a set of 10,000 query vectors. The SIFT feature vectors have

dimension 128 and (approximately) live on a sphere. We normalize the feature

vectors to unit length but keep the original nearest neighbor assignments—this is

possible because only a very small fraction of nearest neighbors changes through

normalization. We include this data set as an example where the speed-up of the

cross-polytope LSH is more modest.

Method 𝑘
Last CP

dimension
Extra
probes

Query
time (ms)

Number of
candidates

CP hashing
time (ms)

Distances
time (ms)

Single-probe 1 128 0 6.7 39800 0.01 6.3
Multiprobe 3 16 896 0.51 867 0.22 0.16

Table 3.2: Comparison of “standard” LSH using the cross-polytope (CP) hash vs. our
multiprobe variant (𝐿 = 10 in both cases). On a random data set with 𝑛 = 220, 𝑑 = 128,
and 𝑅 =

√
2/2, the single-probe scheme requires 13× more time per query. Due to

the larger value of 𝑘, the multiprobe variant performs fewer distance computations,
which leads to a better trade-off between the hash computation time and the time
spent on computing distances to candidates from the hash tables.

Data set size 𝑛 220 222 224 226 228

HP query time (ms) 2.6 7.4 25 63 185
CP query time (ms) 0.75 1.4 3.1 8.8 18

Speed-up 3.5× 5.3× 8.1× 7.2× 10.3×
𝑘 for CP 3 (16) 3 (64) 3 (128) 4 (2) 4 (64)

Table 3.3: Average running times for a single nearest neighbor query with the hyper-
plane (HP) and cross-polytope (CP) algorithms on a random data set with 𝑑 = 128
and 𝑅 =

√
2/2. The cross-polytope LSH is up to 10× faster than the hyperplane LSH.

The last row of the table indicates the optimal choice of 𝑘 for the cross-polytope LSH
and (in parenthesis) the dimension of the last of the 𝑘 cross-polytopes; all other cross-
polytopes have full dimension 128. Note that the speed-up ratio is not monotonically
increasing because the cross-polytope LSH performs better for values of 𝑛 where the
optimal setting of 𝑘 uses a last cross-polytope with high dimension.
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Figure 3-3: Gaussian measure of planar sets
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Figure 3-4: Distance to the nearest neighbor for the four data sets used in our
experiments. The SIFT data set has the closest nearest neighbors.
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Chapter 4

ANN algorithms for general

symmetric norms

4.1 Introduction

In this chapter we will study the ANN problem for a general class of metrics. The

best-studied metrics are the Hamming (ℓ1) and the Euclidean (ℓ2) distances. There

are good reasons for this: ℓ1 and ℓ2 are very common in applications and admit

very efficient algorithms based on hashing, in particular, Locality-Sensitive Hashing

(LSH) [85, 13] and its data-dependent versions [18, 26]. Hashing-based algorithms

for ANN over ℓ1/ℓ2 have now been the subject of a two-decade-long line of work,

leading to a very good understanding of algorithms and their limitations. All such

algorithms for 𝑐-approximate ANN obtain space 𝑛1+𝜌𝑢+𝑜(1) and query time 𝑛𝜌𝑞+𝑜(1) for

some exponents 𝜌𝑢 and 𝜌𝑞 < 1 dependent on 𝑐; e.g., the most recent algorithm from

Chapter 2 gives tight time–space trade-offs for every approximation factor 𝑐 > 1.1 We

point the reader the introduction and Chapter 2, which summarize the state of affairs

of the high-dimensional ANN over ℓ1/ℓ2. A practical perspective is presented in the

surveys [171, 172].

Beyond ℓ1 and ℓ2, the landscape of ANN is much more mysterious, despite having

1The exact dependence, for ℓ2, is that one can achieve any 𝜌𝑢, 𝜌𝑞 ≥ 0 satisfying 𝑐2
√
𝜌𝑞 + (𝑐2 −

1)
√
𝜌𝑢 =

√
2𝑐2 − 1.
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received significant attention. In 1998, [81] showed an efficient data structure for ℓ∞

for 𝑐 = 𝑂(log log 𝑑) approximation. There are a few extensions of this result to other

metrics, some of which proceed via embedding a metric into ℓ∞ (see Section 4.1.3).

However, we are still very far from having a general recipe for ANN data structures

for general metrics with a non-trivial approximation; this is in stark contrast with the

success of the low-dimensional regime. This state of affairs motivates the following

broad question.

Problem 4.1.1. For a given approximation 𝑐 > 1, which metric spaces allow efficient

ANN algorithms?

An algorithm for general metrics is highly desirable both in theory and in practice.

From the theoretical perspective, we are interested in a common theory of ANN

algorithms for a wide class of distances. Such a theory would yield data structures (or

impossibility results) for a variety of important distance measures for which we still do

not know efficient ANN algorithms (e.g., matrix norms, the Earth Mover’s Distance

(EMD), the edit distance, etc.). Perhaps even more tantalizing is understanding what

exactly makes some distances harder than others, and how to quantify that hardness.

From the practical perspective, it is also desirable to have a generic algorithm: one

that either uses the underlying distance measure as a black box, or provides a “knob”

to easily specialize to any desired distance. In practice, one must oftentimes tune

the distance to the specifics of the application, and hence algorithms that allow such

tuning without major re-implementations are preferred.

In this paper, we focus on the following important case of Problem 4.1.1.

Problem 4.1.2. Solve Problem 4.1.1 for high-dimensional normed spaces.

(See Section 1.4.1 for the definition of a norm).

Norms are important for two reasons. First, most metric spaces arising in applica-

tions are actually norms (e.g., the Earth-Mover Distance [134]). Second, norms are

geometrically nicer than general metrics, so there is hope for a coherent theory (e.g.,

for the problems of sketching and streaming norms, see the generic results of Chapter 5

and [42]). Using embeddings into ℓ2 [92, 32], one can solve ANN for any norm with
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approximation 𝑂
(︁√︀

𝑑/𝜀
)︁
, space 𝑛1+𝜀, and query time 𝑛𝜀, where 0 < 𝜀 < 1/2 is a

constant; however, no better results are known in general.

4.1.1 The main result

In this paper we nearly settle Problem 4.1.2 for symmetric norms, i.e., norms that are

invariant under all permutations and changes of signs of the coordinates of a vector.

We show the following general result:

Theorem 4.1.3. For every 𝑛, 𝑑 = 𝑛𝑜(1), and every 𝑑-dimensional symmetric norm ‖·‖,
there exists a data structure for ANN over ‖ · ‖ for 𝑛-point datasets with approximation

(log log 𝑛)𝑂(1) space 𝑛1+𝑜(1), and query time 𝑛𝑜(1).

We note that the techniques behind Theorem 4.1.3 cannot be extended to general

norms; see details in Section 4.1.6.

4.1.2 Why symmetric norms?

The class of symmetric norms is, in some sense, a sweet spot. On the one hand,

symmetric norms are mathematically nice and, as we show, allow for a clean charac-

terization that leads to an efficient ANN data structure (see the proof overview from

Section 4.1.4). On the other hand, symmetric norms vastly generalize ℓ𝑝 distances

and enable many new interesting examples, some of which arise in applications. We

first consider the following two examples of symmetric norms, which are crucial for

the subsequent discussion.

The first important example is the top-𝑘 norm: the sum of 𝑘 largest absolute

values of the coordinates of a vector; 𝑘 = 1 corresponds to ℓ∞, while 𝑘 = 𝑑 corresponds

to ℓ1. Another rich set of examples is that of Orlicz norms: for any non-zero convex

function 𝐺 : R+ → R+ such that 𝐺(0) = 0, we define the unit ball of a norm ‖ · ‖𝐺 to

be: {︁
𝑥 ∈ R𝑑

⃒⃒⃒ 𝑑∑︁
𝑖=1

𝐺
(︀
|𝑥𝑖|
)︀
≤ 1
}︁
.

Clearly, for 1 ≤ 𝑝 <∞ the ℓ𝑝 norm is Orlicz via 𝐺(𝑡) = 𝑡𝑝.
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In statistics and machine learning, Orlicz norms are known as 𝑀-estimators (for

the case of convex losses) [60]. A specific example is the Huber loss. Even though

non-convex losses do not correspond to norms, our algorithm still can handle them

(see Section 4.3).

Other examples of symmetric norms used in applications include:

∙ 𝑘-support norm [29] used for the sparse regression problem; its unit ball is the convex

hull of {𝑥 | 𝑥 is 𝑘-sparse, ‖𝑥‖2 ≤ 1},
∙ box-Θ norm [123] (again, used for sparse regression), defined for 0 < 𝑎 < 𝑏 ≤ 𝑐 and

Θ = {𝜃 ∈ [𝑎, 𝑏]𝑑 | ‖𝜃‖1 ≤ 𝑐} as ‖𝑥‖ = min𝜃∈Θ

(︁∑︀𝑑
𝑖=1

𝑥2
𝑖

𝜃𝑖

)︁1/2
, and its dual;

∙ 𝐾-functional [69] used to show tight tail bounds, defined for 𝑡 > 0 as ‖𝑥‖ =

min
{︁
‖𝑥1‖1 + 𝑡 · ‖𝑥2‖2

⃒⃒⃒
𝑥1 + 𝑥2 = 𝑥

}︁
,

∙ ‖ · ‖1,2,𝑠 norms [105] used for dimension reduction, defined as ‖𝑥‖ = (
∑︀

𝑖 ‖𝑥𝑆𝑖
‖21)

1/2
,

where 𝑆1 is the set of 𝑠 largest absolute values of coordinates of 𝑥, 𝑆2 is the set of

next 𝑠 largest coordinates, etc.

Finally, we show two simple ways to construct many interesting examples of

symmetric norms. Let 0 = 𝑎0 ≤ 𝑎1 ≤ 𝑎2 ≤ . . . ≤ 𝑎𝑑 be a non-decreasing sub-additive2

sequence. We can define two norms associated with it [40]: a minimal norm is defined

as

‖𝑥‖ = max
1≤𝑘≤𝑑

𝑎𝑘 · (average of the largest 𝑘 absolute values of the coordinates of 𝑥) ,

and a maximal norm is equal to

‖𝑥‖ =
𝑑∑︁

𝑘=1

(𝑎𝑘 − 𝑎𝑘−1) · (𝑘-th largest absolute value of a coordinate of 𝑥) .

The minimal norm is the smallest norm such that for every 𝑘 one has:

⃦⃦⃦
(1, 1, . . . , 1⏟  ⏞  

𝑘

, 0, 0, . . . , 0)
⃦⃦⃦
= 𝑎𝑘.

2For every 𝑛,𝑚, one has 𝑎𝑛+𝑚 ≤ 𝑎𝑛 + 𝑎𝑚.
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Similarly, the maximal norm is the largest such norm. Minimal norms will provide

hard examples of symmetric norms that preclude some simple(r) approaches to ANN

(see Section 4.8.1). We also note that the dual (with respect to the standard dot

product) of any symmetric norm is symmetric as well.

4.1.3 Prior work: ANN for norms beyond ℓ1 and ℓ2

For norms beyond ℓ1 and ℓ2, the cornerstone result in ANN is a data structure for ℓ∞

due to Indyk [81]. For every 𝜀 > 0, the data structure achieves space 𝑛1+𝜀, query time

𝑛𝑜(1), and approximation 𝑂𝜀(log log 𝑑). This is a doubly-exponential improvement over

embeddings of ℓ∞ into ℓ1/ℓ2 which require distortion Ω
(︀√

𝑑
)︀
.

It is well-known [176] that any 𝑑-dimensional normed space embeds into ℓ∞ with

distortion (1 + 𝜀), which raises the question: can we combine this embedding with the

result from [81] to solve ANN for any norm? It turns out that the answer is negative:

accommodating a norm of interest may require embedding into a very high-dimensional

ℓ∞. In the worst case, we need 2𝑂𝜀(𝑑) dimensions, and this bound is known to be

tight [32], even for spaces as simple as ℓ2. Even though this approach would give a

non-trivial approximation of 𝑂(log log 2𝑂(𝑑)) = 𝑂(log 𝑑), the resulting data structure

has query time which is exponential in 𝑑; thus, this approach is interesting only for

the low-dimensional regime 𝑑 = 𝑜(log 𝑛).

The result of [81] has been extended as follows. In [82, 83, 16, 10] it was shown how

to build data structures for ANN over arbitrary ℓ𝑝-products of metrics given that there

exists an ANN data structure for every factor. Recall that the ℓ𝑝-product of metric

spaces 𝑀1, 𝑀2, . . . , 𝑀𝑘 is a metric space with the ground set 𝑀1 ×𝑀2 × . . .×𝑀𝑘

and the following distance function:

𝑑
(︀
(𝑥1, 𝑥2, . . . , 𝑥𝑘), (𝑦1, 𝑦2, . . . , 𝑦𝑘)

)︀
=
⃦⃦⃦(︀
𝑑𝑀1(𝑥1, 𝑦1), 𝑑𝑀2(𝑥2, 𝑦2), . . . , 𝑑𝑀𝑘

(𝑥𝑘, 𝑦𝑘)
)︀⃦⃦⃦

𝑝
.

In a nutshell, if we can build efficient ANN data structures for every 𝑀𝑖 with approxi-

mation 𝑐, there exist an efficient data structure for ANN over the product space with

approximation 𝑂(𝑐 · log log 𝑛). Note that the above also implies ANN for the standard
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ℓ𝑝, though for this case a better approximation 𝑂(log log 𝑑) is possible via randomized

embeddings into ℓ∞ [10]. For small values of 𝑝, one can also get approximation

𝑐 = 2𝑂(𝑝) [133, 36] for ANN for the ℓ𝑝 distance using different techniques.

4.1.4 Overview of the proof of Theorem 4.1.3

We prove Theorem 4.1.3 in three steps.

∙ First, we build a data structure for 𝑑-dimensional top-𝑘 norms. We proceed by

constructing a randomized embedding into 𝑑-dimensional ℓ∞ with constant distortion,

and then invoke the data structure for ANN over ℓ∞ from [81].

Our embedding is a refinement of the technique of max-𝑝-stable distributions used

in [10] to embed ℓ𝑝 into ℓ∞. Surprisingly, the technique turns out to be very general,

and can handle top-𝑘 norms as well an arbitrary Orlicz norm.

While this technique can handle even arbitrary symmetric norms (see Section 4.8),

there exist symmetric norms, for which this approach leads to merely a logΩ(1) 𝑑-

approximation, which is exponentially worse than the bound we are aiming at (see

Section 4.8.1).

∙ To bypass the above limitation and obtain the desired (log log 𝑛)𝑂(1)-approximation,

we show the following structural result: any 𝑑-dimensional symmetric norm allows a

constant-distortion (deterministic) embedding into a low-dimensional iterated product

of top-𝑘 norms. More specifically, the host space 𝑌 is an ℓ∞-product of 𝑑𝑂(1) copies of

the ℓ1-product of 𝑋1, 𝑋2, . . . , 𝑋𝑑, where 𝑋𝑘 is R𝑑 equipped with the top-𝑘 norm.

The dimension of 𝑌 is 𝑑𝑂(1) which is significantly better than the bound 2Ω(𝑑) necessary

to embed symmetric norms (even ℓ2) into ℓ∞. It is exactly this improvement over the

naïve approach that allows us to handle any dimension 𝑑 = 𝑛𝑜(1) as opposed to the

trivial 𝑜(log 𝑛).

∙ Finally, we use known results [82, 10], which allow us to construct a data structure for

ANN over a product space if we have ANN data structures for the individual factors.

Each such step incurs an additional log log 𝑛 factor in the resulting approximation.
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Since we have built a data structure for top-𝑘 norms, and can embed a symmetric

norm into an iterated product of top-𝑘 norms, we are done!

Embeddings into iterated product spaces have been successfully used before for

constructing data structures for ANN over Fréchet distance [82], edit distance [83],

and Ulam distance [16]. Theorem 4.1.3 gives yet another confirmation of the power of

the technique.

4.1.5 Optimality of Theorem 4.1.3

There remains one aspects of Theorem 4.1.3 that can potentially be improved: the

approximation factor (log log 𝑛)𝑂(1).

One bottleneck for our algorithm is the ANN data structure for ℓ∞ from [81],

which gives 𝑂(log log 𝑑) approximation. This bound is known to be tight [11, 98] for

certain models of computation (in particular, for decision trees, which captures the

result of [81]). Thus, going beyond approximation Ω(log log 𝑑) in Theorem 4.1.3 might

be hard; however, it remains entirely possible to improve the approximation from

(log log 𝑛)𝑂(1) to 𝑂(log log 𝑑), which we leave as an open question.

4.1.6 Lower bounds for general norms

The second step of the proof of Theorem 4.1.3 (see Section 4.1.4) shows how to embed

any 𝑑-dimensional symmetric norm into a universal normed space of dimension 𝑑𝑂(1)

with a constant distortion. In contrast, we show that for general norms a similar

universal construction is impossible. More formally, for a fixed 0 < 𝜀 < 1/3, suppose

𝑈 is a normed space such that for every 𝑑-dimensional normed space 𝑋 there exists a

randomized linear embedding of 𝑋 into 𝑈 with distortion 𝑂(𝑑1/2−𝜀). Then, 𝑈 must

have dimension at least exp
(︀
𝑑Ω𝜀(1)

)︀
. By John’s theorem [92], 𝑑-dimensional ℓ2 is

a universal space for distortion
√
𝑑, so our lower bound is tight up to sub-polynomial

factors. See Section 4.6 for details.

To take this a step further, it would be highly desirable to prove stronger hardness

results for ANN over general norms. One approach would be to show that such a
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norm 𝑋 has high robust expansion, which is a property used to deduce ANN lower

bounds [146, 24]. There exist metrics 𝑀 that have high robust expansion, such as the

shortest path metric of a spectral expander (see Section 4.9). To obtain a hard norm,

it suffices to embed such an 𝑁 -point metric 𝑀 into a log𝑂(1)𝑁 -dimensional norm with

a constant distortion. The result of [120] shows that there exist 𝑁 -point metrics 𝑀

which cannot be embedded into any norm of dimension 𝑁 𝑜(1). However, these metrics

are not expanders, and for expanders such a dimension reduction procedure might be

possible. 3

4.1.7 Other related work: dealing with general norms

The recent result of [42] completely characterizes the streaming complexity of any

symmetric norm. Even though many symmetric norms (including ℓ∞) are hard in the

streaming model, the state of affairs with ANN is arguably much nicer. In particular,

our results imply that all symmetric norms have highly efficient ANN data structures.

We also point out that streaming algorithms for the special case of Orlicz norms have

been studied earlier [45].

Another related work is [23], which shows that for norms, the existence of good

sketches is equivalent to uniform embeddability into ℓ2. Sketches are known to imply

efficient ANN data structures, but since many symmetric norms do not embed into ℓ2

uniformly, we conclude that ANN is provably easier than sketching for a large class of

norms.

Finally, we also mention the work of [2], who study ANN under the class of high-

dimensional distances which are Bregman divergences. These results are somewhat

disjoint since the Bregman divergences are not norms.

3In a recent work, Naor [132] showed that this approach is impossible. He shows that embedding
an 𝑁 -point spectral expander with constant distortion into any normed space requires poly(𝑁)
dimensions.
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4.2 Preliminaries

4.2.1 Norms and products

For any subset 𝐴 ⊆ R, we let 𝜒𝐴 : R → {0, 1} be the indicator function of 𝐴. For

a vector 𝑥 ∈ R𝑑 we define |𝑥| = (|𝑥1|, |𝑥2|, . . . , |𝑥𝑑|) to be the vector of the absolute

values of the coordinates of 𝑥.

Definition 4.2.1. For any vector 𝑥 ∈ R𝑑, we let 𝑥* = 𝑃 |𝑥| be the vector obtained

by applying the permutation matrix 𝑃 to |𝑥| so coordinates of 𝑥* are sorted in

non-increasing absolute value.

Definition 4.2.2 (Symmetric norm). A norm ‖ · ‖𝑋 : R𝑑 → R is symmetric if for

every 𝑥 ∈ R𝑑, ‖𝑥‖𝑋 =
⃦⃦⃦
|𝑥|
⃦⃦⃦
𝑋
= ‖𝑥*‖𝑋 .

See the introduction for examples of symmetric norms. We note once again that

the dual norm of a symmetric norm is also symmetric.

A natural way to combine norms is via product spaces, which we will heavily exploit

in this paper.

Definition 4.2.3 (Product space). Let 1 ≤ 𝑝 ≤ ∞. Let (𝑋1, 𝑑𝑋1), (𝑋2, 𝑑𝑋2), . . . ,

(𝑋𝑘, 𝑑𝑋𝑘
) be metric spaces. We define the ℓ𝑝-product space, denoted

⨁︀
ℓ𝑝
𝑋𝑖, to be a

metric space whose ground set is 𝑋1 ×𝑋2 × . . . ×𝑋𝑘, and the distance function is

defined as follows: the distance between (𝑥1, 𝑥2, . . . , 𝑥𝑘) and (𝑥′1, 𝑥
′
2, . . . , 𝑥

′
𝑘) is defined

as the ℓ𝑝 norm of the vector
(︀
𝑑𝑋1(𝑥1, 𝑥

′
1), 𝑑𝑋2(𝑥1, 𝑥

′
2), . . . , 𝑑𝑋𝑘

(𝑥𝑘, 𝑥
′
𝑘)
)︀
.

Next we define the top-𝑘 norm:

Definition 4.2.4. For any 𝑘 ∈ [𝑑], the top-𝑘 norm, ‖ · ‖𝑇 (𝑘) : R𝑑 → R, is the sum of

the absolute values of the top 𝑘 coordinates. In other words,

‖𝑥‖𝑇 (𝑘) =
𝑘∑︁

𝑖=1

|𝑥*𝑖 |,

where 𝑥* is the vector obtained in Definition 4.2.1.
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Definition 4.2.5. Given vectors 𝑥, 𝑦 ∈ R𝑑, we say 𝑥 weakly majorizes 𝑦 if for all

𝑘 ∈ [𝑑],
𝑘∑︁

𝑖=1

|𝑥*𝑖 | ≥
𝑘∑︁

𝑖=1

|𝑦*𝑖 |.

Lemma 4.2.6 (Theorem B.2 in [119]). If 𝑥, 𝑦 ∈ R𝑑 where 𝑥 weakly majorizes 𝑦, then

for any symmetric norm ‖ · ‖𝑋 ,

‖𝑥‖𝑋 ≥ ‖𝑦‖𝑋 .

Definition 4.2.7. For 𝑖 ∈ [𝑑], let 𝜉(𝑖) ∈ R𝑑 be the vector

𝜉(𝑖) = (1, . . . , 1⏟  ⏞  
𝑖

, 0, . . . , 0⏟  ⏞  
𝑑−𝑖

)

consisting of exactly 𝑖 1’s, and 𝑑− 𝑖 0’s.

4.2.2 ANN for ℓ∞ and ℓ∞-products

We will crucially use the following two powerful results of Indyk. The first result is

for the standard 𝑑-dimensional ℓ∞ space.

Theorem 4.2.8 ([81, Theorem 1]). For any 𝜀 ∈ (0, 1/2), there exists a data structure

for ANN for 𝑛-points datasets in the ℓ𝑑∞ space with approximation 𝑂
(︀
log log 𝑑

𝜀

)︀
, space

𝑂(𝑑 · 𝑛1+𝜀), and query time 𝑂(𝑑 · log 𝑛).

The second is a generalization of the above theorem, which applies to an ℓ∞-

product of 𝑘 metrics 𝑋1, . . . 𝑋𝑘, and achieves approximation 𝑂(log log 𝑛). It only

needs black-box ANN schemes for each metric 𝑋𝑖.

Theorem 4.2.9 ([82, Theorem 1]). Let 𝑋1, 𝑋2, . . . , 𝑋𝑘 be metric space, and let 𝑐 > 1

be a real number. Suppose that for every 1 ≤ 𝑖 ≤ 𝑘 and every 𝑛 there exists a data

structure for ANN for 𝑛-point datasets from 𝑋𝑖 with approximation 𝑐, space 𝑆(𝑛) ≥ 𝑛,

query time 𝑄(𝑛), and probability of success 0.99. Then, for every 𝜀 > 0, there exists

ANN under
⨁︀𝑘

ℓ∞
ℳ with:
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∙ 𝑂(𝜀−1 log log 𝑛) approximation,

∙ 𝑂(𝑄(𝑛) log 𝑛+ 𝑑𝑘 log 𝑛) query time, where 𝑑 is the time to compute distances in

each 𝑋𝑖, and

∙ 𝑆(𝑛) ·𝑂(𝑘𝑛𝜀) space/preprocessing.

Strictly speaking, we need to impose a technical condition on the ANN for each

𝑋𝑖 — that it reports the point with the smallest priority — which is satisfied in all

our scenarios; see [82, Section 2] for details. Also, the original statement of [82] gave a

somewhat worse space bound. The better space results simply from a better analysis

of the algorithm, as was observed in [16]; we include a proof in Section 4.7.

4.3 ANN for Orlicz and top-𝑘 norms

Before showing a data structure for general symmetric norms, we give an algorithm

for general Orlicz norms. We then show how to apply these ideas to top-𝑘 norms.

This restricted setting has a simple analysis and illustrates one of the main techniques

used in the rest of the paper. A similar approach was used in prior work to construct

randomized embeddings of ℓ𝑝 norms into ℓ∞, and solve the ANN search problem; here

we show that these techniques are in fact applicable in much greater generality.

Lemma 4.3.1. Let ‖·‖𝐺 be an Orlicz norm. For every 𝐷,𝛼 > 1 and every 𝜇 ∈ (0, 1/2)

there exists a randomized linear map 𝑓 : R𝑑 → R𝑑 such that for every 𝑥 ∈ R𝑑:

∙ if ‖𝑥‖𝐺 ≤ 1, then Pr𝑓

[︁⃦⃦
𝑓(𝑥)

⃦⃦
∞ ≤ 1

]︁
≥ 𝜇;

∙ if ‖𝑥‖𝐺 > 𝛼𝐷, then Pr𝑓

[︁⃦⃦
𝑓(𝑥)

⃦⃦
∞ > 𝐷

]︁
≥ 1− 𝜇𝛼.

Proof. Let the distribution 𝒟 over R+ have the following CDF 𝐹 : R+ → [0, 1]:

𝐹 (𝑡) = Pr
𝑢∼𝒟

[𝑢 ≤ 𝑡] = 1− 𝜇𝐺(𝑡).
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Consider the following randomized linear map 𝑓 : R𝑑 → R𝑑:

(𝑥1, 𝑥2, . . . , 𝑥𝑑)
𝑓↦→
(︂
𝑥1
𝑢1
,
𝑥2
𝑢2
, . . . ,

𝑥𝑑
𝑢𝑑

)︂

where 𝑢1, . . . , 𝑢𝑑 ∼ 𝒟 are i.i.d. samples from 𝒟. Suppose that ‖𝑥‖𝐺 ≤ 1. Then,∑︀𝑑
𝑖=1𝐺(|𝑥𝑖|) ≤ 1. This, in turn, implies:

Pr
𝑓

[︁
‖𝑓(𝑥)‖∞ ≤ 1

]︁
=

𝑑∏︁
𝑖=1

Pr
𝑢𝑖∼𝒟

[︂⃒⃒⃒⃒
𝑥𝑖
𝑢𝑖

⃒⃒⃒⃒
≤ 1

]︂
=

𝑑∏︁
𝑖=1

𝜇𝐺(|𝑥𝑖|) = 𝜇
∑︀𝑑

𝑖=1 𝐺(|𝑥𝑖|) ≥ 𝜇.

Now suppose that ‖𝑥‖𝐺 > 𝛼𝐷. This, together with the convexity of 𝐺(·), implies:

𝑑∑︁
𝑖=1

𝐺

(︂ |𝑥𝑖|
𝐷

)︂
≥ (1− 𝛼)𝐺(0) + 𝛼 ·

𝑑∑︁
𝑖=1

𝐺

(︂ |𝑥𝑖|
𝛼𝐷

)︂
≥ 𝛼.

Thus, we have:

Pr
𝑓

[︁
‖𝑓(𝑥)‖∞ ≤ 𝐷

]︁
=

𝑑∏︁
𝑖=1

Pr
𝑢𝑖∼𝒟

[︂⃒⃒⃒⃒
𝑥𝑖
𝑢𝑖

⃒⃒⃒⃒
≤ 𝐷

]︂
=

𝑑∏︁
𝑖=1

𝜇𝐺(|𝑥𝑖|/𝐷) = 𝜇
∑︀𝑑

𝑖=1 𝐺(|𝑥𝑖|/𝐷) ≤ 𝜇𝛼.

Theorem 4.3.2. For every 𝑑-dimensional Orlicz norm ‖ · ‖𝐺 and every 𝜀 ∈ (0, 1/2),

there exists a data structure for ANN over ‖ · ‖𝐺, which achieves approximation

𝑂
(︀
log log 𝑑

𝜀2

)︀
using space 𝑂 (𝑑𝑛1+𝜀) and query time 𝑂 (𝑑𝑛𝜀).

Proof. Let 𝑃 ⊂ R𝑑 be a dataset of 𝑛 points. Consider the data structure which does

the following:

1. For all 1 ≤ 𝑖 ≤ 𝑛𝜀, we independently apply the randomized linear map 𝑓 from

Lemma 4.3.1 with parameters 𝜇 = 𝑛−𝜀, 𝐷 = 𝑂
(︀
log log 𝑑

𝜀

)︀
, and 𝛼 = 2

𝜀
. We define

𝑃𝑖 = {𝑓𝑖(𝑥) | 𝑥 ∈ 𝑃}

to be the image of the dataset under 𝑓𝑖, where 𝑓𝑖 is the 𝑖-th independent copy

of 𝑓 .
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2. For each 1 ≤ 𝑖 ≤ 𝑛𝜀, we use Theorem 4.2.8 to build a data structure for ANN

over ℓ∞ with approximation 𝐷 for dataset 𝑃𝑖. We refer to the 𝑖-th data structure

as 𝑇𝑖.

Each 𝑇𝑖 occupies space 𝑂(𝑑𝑛1+𝜀) and achieves approximation 𝐷 with query time

𝑂(𝑑 log 𝑛). To answer a query 𝑞 ∈ R𝑑, we query 𝑇𝑖 with 𝑓𝑖(𝑞) for each 𝑖 ∈ [𝑛𝜀]. Let

𝑥𝑖 be the point returned by 𝑇𝑖, and let 𝑝𝑖 ∈ 𝑃 be the pre-image of 𝑥𝑖 under 𝑓𝑖, so

that 𝑓𝑖(𝑝𝑖) = 𝑥𝑖. If for some 𝑇𝑖, the point returned satisfies ‖𝑝𝑖 − 𝑞‖𝐺 ≤ 𝛼𝐷, then we

return 𝑝𝑖.

∙ If there exists some 𝑝 ∈ 𝑃 with ‖𝑝 − 𝑞‖𝐺 ≤ 1, then by Lemma 4.3.1, with

probability 1− (1− 𝑛−𝜀)
𝑛𝜀 ≥ 3

5
, some 𝑓𝑖 has ‖𝑓𝑖(𝑝− 𝑞)‖∞ ≤ 1. Since 𝑓𝑖 is linear,

‖𝑓𝑖(𝑝)− 𝑓𝑖(𝑞)‖∞ ≤ 1 as well.

∙ Let 𝑖 ∈ [𝑛𝜀] be an index where some 𝑝 ∈ 𝑃 with ‖𝑝 − 𝑞‖𝐺 ≤ 1 has ‖𝑓𝑖(𝑝) −
𝑓𝑖(𝑞)‖∞ ≤ 1. Every other 𝑝′ ∈ 𝑃 with ‖𝑝′ − 𝑞‖𝐺 ≥ 𝛼𝐷 satisfies

Pr
[︁
‖𝑓𝑖(𝑝′)− 𝑓𝑖(𝑞)‖∞ ≤ 𝐷

]︁
≤ 1

𝑛2
.

A union bound over at most 𝑛 points with distance greater than 𝛼𝐷 to 𝑞

shows that except with probability at most 1
𝑛
, 𝑇𝑖 returns some 𝑝𝑖 ∈ 𝑃 with

‖𝑝𝑖 − 𝑞‖𝐺 ≤ 𝛼𝐷. Thus, the total probability of success of the data structure is

at least 3
5
− 1

𝑛
.

The total query time is 𝑂 (𝑑𝑛𝜀 · log 𝑛) and the total space used is 𝑂 (𝑑𝑛1+2𝜀). This

data structure achieves approximation 𝛼𝐷 = 𝑂
(︀
log log 𝑑

𝜀2

)︀
. Decreasing 𝜀 by a constant

factor, we get the desired guarantees.

Remark. The construction of the randomized embedding in Lemma 4.3.1 and the

data structure from Theorem 4.3.2 work in a somewhat more general setting, rather

than just for Orlicz norms. For a fixed norm ‖ · ‖, we can build a randomized map

𝑓 : R𝑑 → R𝑑 with the guarantees of Lemma 4.3.1 if there exists a non-decreasing

𝐺 : R+ → R+ where 𝐺(0) = 0, 𝐺(𝑡)→∞ as 𝑡→∞, and for every 𝑥 ∈ R𝑑:
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∙ if ‖𝑥‖ ≤ 1, then
∑︀𝑑

𝑖=1𝐺(|𝑥𝑖|) ≤ 1, and

∙ if ‖𝑥‖ ≥ 𝛼𝐷, then
∑︀𝑑

𝑖=1𝐺
(︁

|𝑥𝑖|
𝐷

)︁
≥ 𝛼.

The data structure itself just requires the existence of a randomized linear map

satisfying the conditions of Lemma 4.3.1.

We now describe how to obtain a data structure for ANN for any top-𝑘 norm.

Lemma 4.3.3. Fix any 𝑘 ∈ [𝑑]. For every 𝐷,𝛼 > 1 and every 𝜇 ∈ (0, 1/2), there

exists a randomized linear map 𝑓 : R𝑑 → R𝑑 such that for every 𝑥 ∈ R𝑑:

∙ if ‖𝑥‖𝑇 (𝑘) ≤ 1, then Pr𝑓

[︁
‖𝑓(𝑥)‖∞ ≤ 1

]︁
≥ 𝜇;

∙ if ‖𝑥‖𝑇 (𝑘) > 𝛼𝐷, then Pr𝑓

[︁
‖𝑓(𝑥)‖∞ > 𝐷

]︁
≥ 1− 𝜇𝛼−1.

Proof. We define 𝐺 : R+ → R+ where for every 𝑥 ∈ R𝑑,

𝐺(𝑡) = 𝑡 · 𝜒[ 1
𝑘
,∞)(𝑡)

If ‖𝑥‖𝑇 (𝑘) ≤ 1, there are at most 𝑘 coordinates where |𝑥𝑖| ≥ 1
𝑘
. Therefore,

𝑑∑︁
𝑖=1

𝐺(|𝑥𝑖|) ≤ ‖𝑥‖𝑇 (𝑘) ≤ 1.

If ‖𝑥‖𝑇 (𝑘) ≥ 𝛼𝐷, then
∑︀𝑘

𝑖=1 |𝑥*𝑖 | ≥ 𝛼𝐷. Therefore,
∑︀𝑑

𝑖=1𝐺
(︁

|𝑥*
𝑖 |
𝐷

)︁
≥∑︀𝑘

𝑖=1𝐺
(︁

|𝑥*
𝑖 |
𝐷

)︁
≥

𝛼− 1. The proof now follows in the same way as Lemma 4.3.1.

Lemma 4.3.3 gives us a data structure for any top-𝑘 norm with approximation

𝑂(log log 𝑑) applying Theorem 4.3.2.

One could imagine using a similar argument to design an algorithm for general

symmetric norms. This idea indeed works and yields an algorithm with approximatioñ︀𝑂(log 𝑑) for a general symmetric norm (see Section 4.8 for a detailed analysis of this

approach). However, we show this strategy cannot achieve an approximation better

than Ω(
√
log 𝑑) (see the end of the same Section 4.8).
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4.4 Embedding into product spaces

In this section, we construct an embedding of general symmetric norms into product

spaces of top-𝑘 norms. To state the main result of this section, we need the following

definition.

Definition 4.4.1. For any 𝑐1, . . . , 𝑐𝑑 ≥ 0, let
⨁︀𝑑

ℓ1
𝑇 (𝑐) ⊂ R𝑑2 be the space given by

the seminorm ‖ · ‖(𝑐)𝑇,1 ·R𝑑2 → R where for 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑2 and 𝑥1, . . . , 𝑥𝑑 ∈ R𝑑:

‖𝑥‖(𝑐)𝑇,1 =
𝑑∑︁

𝑘=1

𝑐𝑘‖𝑥𝑘‖𝑇 (𝑘).

Theorem 4.4.2 (Embedding into a product space). For any constant 𝛿 ∈ (0, 1/2),

any symmetric norm ‖ · ‖𝑋 : R𝑑 → R can be embedded linearly with distortion 1 + 𝛿

into
⨁︀𝑡

ℓ∞

⨁︀𝑑
ℓ1
𝑇 (𝑐) where 𝑡 = 𝑑𝑂(log(1/𝛿)𝛿−1). In particular, there exists 𝑐 ∈ R𝑡×𝑑

+ such

that for every 𝑥 ∈ R𝑑,

(1− 𝛿)‖𝑥‖𝑋 ≤ max
𝑖∈[𝑡]

(︃
𝑑∑︁

𝑘=1

𝑐𝑖,𝑘‖𝑥‖𝑇 (𝑘)

)︃
≤ (1 + 𝛿)‖𝑥‖𝑋 . (4.1)

The vectors in
⨁︀𝑡

ℓ∞

⨁︀𝑑
ℓ1
𝑇 (𝑐) ⊂ R𝑡𝑑2 can be broken up into 𝑡𝑑 blocks of 𝑑 coordinates

each. The embedding referenced above will simply map 𝑥 ∈ R𝑑 into R𝑡𝑑2 by making

each of the 𝑡𝑑 many blocks equal to a copy of 𝑥. The non-trivial part of the above

theorem is setting the constants 𝑐𝑖,𝑘 for 𝑖 ∈ [𝑡] and 𝑘 ∈ [𝑑] so (4.1) holds. Before going

on to give the proof of Theorem 4.4.2, we establish some definitions and propositions

which will be used in the proof. For the subsequent sections, let 𝛽 ∈ (1, 2) be considered

a constant close to 1.

Definition 4.4.3 (Levels and Level Vectors). For any fixed vector 𝑥 ∈ R𝑑 and any

𝑘 ∈ Z, we define level 𝑘 with respect to 𝑥 as 𝐵𝑘(𝑥) = {𝑖 ∈ [𝑑] | 𝛽−𝑘−1 < |𝑥𝑖| ≤ 𝛽−𝑘}.
Additionally, we let 𝑏𝑘(𝑥) = |𝐵𝑘(𝑥)| be the size of level 𝑘 with respect to 𝑥. The level
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vector of 𝑥, 𝑉 (𝑥) ∈ R𝑑 is given by

𝑉 (𝑥) = (𝛽𝑘, . . . , 𝛽𝑘⏟  ⏞  
𝑏−𝑘(𝑥) times

, 𝛽𝑘−1, . . . , 𝛽𝑘−1⏟  ⏞  
𝑏−𝑘+1(𝑥) times

, . . . , 𝛽−𝑘, . . . , 𝛽−𝑘⏟  ⏞  
𝑏𝑘(𝑥) times

, 0, . . . 0)

where 𝑘 is some integer such that all non-zero coordinates lie in some level between

−𝑘 and 𝑘. We say the 𝑖-th level vector 𝑉𝑖(𝑥) ∈ R𝑑 is given by

𝑉𝑖(𝑥) = (𝛽−𝑖, . . . , 𝛽−𝑖⏟  ⏞  
𝑏𝑖(𝑥) times

, 0, . . . , 0).

The notation used for level vectors appears in [42]; however, we refer to level 𝑘

as the coordinates of 𝑥 lying in (𝛽−𝑘−1, 𝛽−𝑘]; whereas [42] refers to level 𝑘 as the

coordinates of 𝑥 lying in [𝛽𝑘−1, 𝛽𝑘).

Definition 4.4.4. Fix some 𝜏 > 0. For any vector 𝑥 ∈ R𝑑, let 𝐶(𝑥) ∈ R𝑑 be the

vector where each 𝑖 ∈ [𝑑] sets

𝐶(𝑥)𝑖 =

⎧⎨⎩ 𝑥𝑖 |𝑥𝑖| ≥ 𝜏

0 |𝑥𝑖| < 𝜏
.

Proposition 4.4.5 (Proposition 3.4 in [42]). Let ‖ · ‖𝑋 be any symmetric norm and

𝑥 ∈ R𝑑 be any vector. Then

1

𝛽
‖𝑉 (𝑥)‖𝑋 ≤ ‖𝑥‖𝑋 ≤ ‖𝑉 (𝑥)‖𝑋 .

Proposition 4.4.6. Let ‖ · ‖𝑋 be any symmetric norm. For any vector 𝑥 ∈ R𝑑,

‖𝑥‖𝑋 − 𝜏𝑑 ≤ ‖𝐶(𝑥)‖𝑋 ≤ ‖𝑥‖𝑋 .

Proof. Note that 𝑥 weakly majorizes 𝐶(𝑥), so ‖𝐶(𝑥)‖𝑋 ≤ ‖𝑥‖𝑋 . For the other

direction, let 𝑣 = 𝑥− 𝐶(𝑥). Then 𝑣 has all coordinates with absolute value at most 𝜏 ,
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so 𝜏𝑑𝜉(1) weakly majorizes 𝑣. Therefore,

‖𝑥‖𝑋 ≤ ‖𝐶(𝑥)‖𝑋 + ‖𝑣‖𝑋 ≤ ‖𝐶(𝑥)‖𝑋 + 𝜏𝑑.

Intuitively, the above two propositions say that up to multiplicative loss 𝛽 and

additive loss 𝜏𝑑 in the norm of the vector, we may assume that all coordinates are

exactly 𝛽𝑗 for 𝑗 ≥ log𝛽(𝜏). Thus, if 𝑥 ∈ R𝑑, then

‖𝑥‖𝑋 − 𝜏𝑑 ≤ ‖𝑉 (𝐶(𝑥))‖𝑋 ≤ 𝛽‖𝑥‖𝑋 .

If additionally, we let 𝜏 = 𝛽
𝑑2

, so when ‖𝑥‖𝑋 ≤ 1 there are at most 2 log𝛽 𝑑 non-empty

levels in 𝑉 (𝐶(𝑥)).

Definition 4.4.7 (Rounded counts vector). Fix any level vector 𝑥 ∈ R𝑑. The rounded

counts vector of 𝑥, 𝑊 (𝑥) ∈ R𝑑 is given by 𝑦 where the 𝑦 ∈ R𝑑 is constructed using

the following procedure:

1: Initialize 𝑦 = (0, . . . , 0) ∈ R𝑑 and 𝑐 = 𝑑.

2: for 𝑘 = −∞, . . . , 2 log𝛽(𝑑)− 1 do

3: if 𝑏𝑘(𝑥) ≥ 0 then

4: Let 𝑗 ∈ Z+ be the integer where 𝛽𝑗−1 < 𝑏𝑘(𝑥) ≤ 𝛽𝑗.

5: if 𝑐 ≥ ⌊𝛽𝑗⌋ then

6: Set the first ⌊𝛽𝑗⌋ zero-coordinates of 𝑦 with 𝛽−𝑘. Update 𝑐← 𝑐−⌊𝛽−𝑘⌋.

7: Return 𝑦

Intuitively, 𝑊 (𝑥) represents the level vector of 𝑥 where we ignore coordinates

smaller than 𝛽
𝑑2

, and additionally, we round the counts of coordinates to powers of 𝛽.

Lemma 4.4.8. For every vector 𝑥 ∈ R𝑑 and any symmetric norm ‖ · ‖𝑋 ,

‖𝑥‖𝑋 − 𝜏𝑑 ≤ ‖𝑊 (𝑉 (𝐶(𝑥)))‖𝑋 ≤ 𝛽2‖𝑥‖𝑋 .
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Proof. The bound ‖𝑥‖𝑋 − 𝜏𝑑 ≤ ‖𝑊 (𝑉 (𝐶(𝑥)))‖𝑋 follows by combining Proposi-

tion 4.4.5 and Proposition 4.4.6, as well as the monotonicity of norms. The bound

‖𝑊 (𝑉 (𝐶(𝑥)))‖𝑋 ≤ 𝛽2‖𝑥‖𝑋 follows from Proposition 4.4.5, Proposition 4.4.6, as well

as Lemma 3.5 from [42].

In order to simplify notation, we let 𝑅 : R𝑑 → R𝑑 given by 𝑅(𝑥) = 𝑊 (𝑉 (𝐶(𝑥))).

Definition 4.4.9. Let the set ℒ ⊂ R𝑑
+ be given by

ℒ = {𝑦 ∈ R𝑑
+ | 𝑦1 ≥ . . . 𝑦𝑑 ≥ 0}.

Additionally, for an arbitrary symmetric norm ‖ · ‖𝑋 with dual norm ‖ · ‖𝑋* , we let

the set ℛ ⊂ ℒ be given by

ℛ = {𝑅(𝑦) ∈ R𝑑
+ | 𝑦 ∈ ℒ ∩𝐵𝑋*}.

Definition 4.4.10. Fix a vector 𝑦 ∈ ℒ ∖ {0} (𝑦 has non-negative, non-increasing

coordinates). Let the maximal seminorm with respect to 𝑦, ‖ · ‖𝑦 : R𝑑 → R be the

seminorm where for every 𝑥 ∈ R𝑑,

‖𝑥‖𝑦 = ⟨|𝑥*|, 𝑦⟩.

We first show there exists some setting of 𝑐 ∈ R𝑑 such that we may compute ‖𝑥‖𝑦
as ⊕𝑑

ℓ1
𝑇 (𝑐).

Lemma 4.4.11. For every vector 𝑦 ∈ ℒ ∖ {0}, there exists 𝑐1, . . . , 𝑐𝑑 ≥ 0 where for

all 𝑥 ∈ R𝑑,

‖𝑥‖𝑦 = ‖𝑥‖(𝑐)𝑇,1.

Proof. For 𝑘 ∈ [𝑑], we let 𝑐𝑘 = 𝑦𝑘 − 𝑦𝑘+1, where 𝑦𝑑+1 = 0.

⟨|𝑥*|, 𝑦⟩ =
𝑑∑︁

𝑖=1

|𝑥*𝑖 |𝑦𝑖 =
𝑑∑︁

𝑖=1

|𝑥*𝑖 |
(︃

𝑑∑︁
𝑘=𝑖

𝑐𝑘

)︃
=

𝑑∑︁
𝑘=1

𝑐𝑘

(︃
𝑘∑︁

𝑖=1

|𝑥*𝑖 |
)︃

=
𝑑∑︁

𝑘=1

𝑐𝑘‖𝑥‖𝑇 (𝑘)
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Given Lemma 4.4.11, it suffices to show that for an arbitrary symmetric norm ‖·‖𝑋 ,

we may compute ‖𝑥‖𝑋 (with some distortion) as a maximum over many maximal

seminorms. In the following lemma, we show that taking the maximum over maximal

norms from ℛ suffices, but gives sub-optimal parameters. We then improve the

parameters to prove Theorem 4.4.2.

Lemma 4.4.12. Let ‖ · ‖𝑋 be an arbitrary symmetric norm and let ‖ · ‖𝑋* be its dual

norm. Then for any ‖𝑥‖𝑋 ≤ 1,

‖𝑥‖𝑋 − 𝜏𝑑 ≤ max
𝑦∈ℛ
‖𝑥‖𝑦 ≤ 𝛽2‖𝑥‖𝑋 .

Proof. Without loss of generality, we rescale the norm so that ‖𝑒1‖𝑋* = 1, where 𝑒1

is the first standard basis vector. Consider any 𝑥 ∈ R𝑑 with ‖𝑥‖𝑋 ≤ 1. Then since

‖ · ‖𝑋 is symmetric, we may assume without loss of generality that all coordinates of

𝑥 are non-negative and in non-increasing order. Thus for each 𝑦 ∈ ℒ ∩ {0}, we have

‖𝑥‖𝑦 = ⟨𝑥, 𝑦⟩.
The lower bound simply follows from the fact that 𝑅(𝑧), other than coordinates

less than 𝜏 , is monotonically above 𝑧, and all coordinates in 𝑥 are non-negative. More

specifically,

‖𝑥‖𝑋 = sup
𝑧∈ℒ∩𝐵𝑋*

⟨𝑥, 𝑧⟩ ≤ sup
𝑧∈ℒ∩𝐵𝑋*

⟨𝑥,𝑅(𝑧)⟩+ 𝜏𝑑 = max
𝑦∈ℛ
⟨𝑥, 𝑦⟩+ 𝜏𝑑,

where 𝜏𝑑 comes from the fact that because ‖𝑥‖𝑋 ≤ 1, every coordinate of 𝑥 is at most

1. On the other hand, we have

max
𝑦∈ℛ
⟨𝑥, 𝑦⟩ = 𝛽2max

𝑦∈ℛ
⟨𝑥, 𝑦

𝛽2
⟩ ≤ 𝛽2 sup

𝑧∈𝐵𝑋*
⟨𝑥, 𝑧⟩ = 𝛽2‖𝑥‖𝑋 ,

where we used the fact that ‖ 𝑦
𝛽2‖𝑋* ≤ 1 by Lemma 4.4.8.

Given Lemma 4.4.12, it follows that we may linearly embed 𝑋 into ⊕𝑡
ℓ∞
⊕𝑑

ℓ1
𝑇 (𝑐)

where 𝑡 = |ℛ|, with distortion 𝛽2

1−𝜏𝑑
≤ 𝛽3 (where we used the fact 𝜏 = 𝛽

𝑑
and that

1 + 𝛽/𝑑 ≤ 𝛽 for a large enough 𝑑). The embedding follows by copying the vector 𝑥
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into the 𝑡 spaces ⊕𝑑
ℓ1
𝑇 (𝑐) corresponding to each vector 𝑦 ∈ ℛ given in Lemma 4.4.11.

The one caveat is that this embedding requires 𝑡 copies of ⊕𝑑
ℓ1
𝑇 (𝑐), and 𝑡 is as large as(︀

log𝛽 𝑑+ 1
)︀2 log𝛽 𝑑

= 𝑑𝑂(log log 𝑑). This is because there are at most 2 log𝛽 𝑑 many levels,

and each contains has number of coordinates being some value in {𝛽𝑖}log𝛽 𝑑

𝑖=0 . Thus, our

algorithm becomes inefficient once 𝑑 ≥ 2𝜔(
log𝑛

log log𝑛).

In order to avoid this problem, we will make the embedding more efficient by

showing that we do not need all of ℛ, but rather a fine net of ℛ. In addition, our

net will be of polynomial size in the dimension, which gives an efficient algorithm for

all 𝜔(log 𝑛) ≤ 𝑑 ≤ 𝑛𝑜(1). We first show that it suffices to consider fine nets of ℛ, and

then build a fine net of ℛ of size poly(𝑑).

Lemma 4.4.13. Fix an 𝛾 ∈ (0, 1/2). Let ‖ · ‖𝑋 be an arbitrary symmetric norm and

‖ · ‖𝑋* be its dual norm. If 𝑁 is a 𝛾-net of ℛ with respect to distance given by ‖ · ‖𝑋*,

then

(1− 𝛾 − 𝜏𝑑)‖𝑥‖𝑋 ≤ max
𝑦∈𝑁
‖𝑥‖𝑦 ≤ (𝛽2 + 𝛾)‖𝑥‖𝑋

Proof. Since the embedding we build is linear, it suffices to show that every vector

𝑥 ∈ R𝑑 with ‖𝑥‖𝑋 = 1 has

1− 𝛾 − 𝜏𝑑 ≤ max
𝑦∈𝑁
‖𝑥‖𝑦 ≤ (𝛽2 + 𝛾).

Consider a fixed vector 𝑥 ∈ R𝑑 with ‖𝑥‖𝑋 = 1. Additionally, we may assume the

coordinates of 𝑥 are non-negative and in non-increasing order. We simply follow the

computation:

‖𝑥‖𝑋 = ‖|𝑥*|‖𝑋 ≤ max
𝑦∈ℛ
⟨|𝑥*|, 𝑦⟩+ 𝜏𝑑

= max
𝑦∈𝑁

(⟨|𝑥*|, 𝑦⟩+ ⟨|𝑥*|, 𝑣⟩) + 𝜏𝑑 ≤ max
𝑦∈𝑁
⟨|𝑥*|, 𝑦⟩+ 𝛾‖𝑥‖𝑋 + 𝜏𝑑,

where we used Lemma 4.4.12 and the fact that ‖𝑣‖𝑋* ≤ 𝛾 in a 𝛾-net of ℛ with respect

to the distance given by ‖ · ‖𝑋* . On the other hand,

max
𝑦∈𝑁
‖𝑥‖𝑦 = max

𝑦∈ℛ
(⟨|𝑥*|, 𝑦⟩+ ⟨|𝑥*|, 𝑣⟩) ≤ max

𝑦∈ℛ
‖𝑥‖𝑦 + 𝛾‖𝑥‖𝑋 ≤ (𝛽2 + 𝛾)‖𝑥‖𝑋 ,
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where again, we used Lemma 4.4.12 and the fact that ‖𝑣‖𝑋* ≤ 𝛾.

Finally, we conclude the theorem by providing a 𝛾-net for ℛ of size 𝑑𝑂(log(1/𝛾)𝛾−1).

Lemma 4.4.14. Fix any symmetric space 𝑋 with dual 𝑋*. There exists an 8(𝛽 − 1)-

net of size 𝑑𝑂(log(1/(𝛽−1))/ log 𝛽) for ℛ with respect to distances given by ‖ · ‖𝑋*.

We defer the proof of Lemma 4.4.14 to the next section. The proof of Theorem 4.4.2

follows by combining Lemma 4.4.11, Lemma 4.4.13, and Lemma 4.4.14. In particular,

given a 𝛽−1
8

-net of ℛ, we get an embedding with distortion at most (𝛽2 + 8(𝛽 −
1))(1 + (8(𝛽 − 1) + 𝜏𝑑)2) from Lemma 4.4.13. We let 𝜏 = 𝛽

𝑑2
and 𝛽 =

√︀
1 + 𝛿/100 to

get the desired linear embedding with distortion 1 + 𝛿. We now proceed to proving

Lemma 4.4.14, which gives the desired upper bound on the size of the net.

4.4.1 Proof of Lemma 4.4.14: bounding the net size

We now give an upper bound on the size of a fine net of ℛ. We proceed by constructing

a further simplification of 𝑅(𝑥). Intuitively we show that one can ignore the higher

levels if there are fewer coordinates in the higher levels than some lower level.

Lemma 4.4.15. Let ‖ · ‖𝑋 be a symmetric norm. Consider any nonnegative vector

𝑥 ∈ R𝑑
+ as well as two indices 𝑢, 𝑣 ∈ [𝑑]. Let 𝑦 ∈ R𝑑

+ be the vector with:

𝑦𝑘 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥𝑘 𝑘 ∈ [𝑑] ∖ {𝑢, 𝑣}

𝑥𝑢 + 𝑥𝑣 𝑘 = 𝑢

0 𝑘 = 𝑣

.

Then ‖𝑦‖𝑋 ≥ ‖𝑥‖𝑋 .

Proof. Consider the vector 𝑧 ∈ 𝐵𝑋* where ⟨𝑥, 𝑧⟩ = ‖𝑥‖𝑋 . Now, we let 𝑧′ ∈ R𝑑 be

given by

𝑧′𝑘 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧𝑘 𝑘 ∈ [𝑑] ∖ {𝑢, 𝑣}

max{𝑧𝑢, 𝑧𝑣} 𝑘 = 𝑢

min{𝑧𝑢, 𝑧𝑣} 𝑘 = 𝑣
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Note that 𝑧′ is a permutation of 𝑧, so 𝑧′ ∈ 𝐵𝑋* . Now,

⟨𝑦, 𝑧′⟩ = (𝑥𝑢 + 𝑥𝑣)max{𝑧𝑢, 𝑧𝑣}+
∑︁

𝑘∈[𝑑]∖{𝑢,𝑣}

𝑥𝑘𝑧𝑘 ≥
∑︁
𝑘∈[𝑑]

𝑥𝑘𝑧𝑘 = ⟨𝑥, 𝑧⟩ = ‖𝑥‖𝑋 .

Definition 4.4.16. Consider a vector 𝑥 ∈ ℛ. We define the simplified rounded vector

𝑆(𝑥) as the vector returned by the following procedure.

1: Initialize 𝑧 = 𝑥

2: for 𝑘 = 0, 1, . . . , 2 log𝛽(𝑑)− 1 do

3: if 𝑏𝑘(𝑧) ≤ max𝑗<𝑘+3 log𝛽(𝛽−1) 𝑏𝑗(𝑧) then

4: Set all coordinates of 𝑧 of value 𝛽−𝑘 to 0 i.e. set 𝑏𝑘(𝑧) = 0.

5: Sort the coordinates of 𝑧 in non-increasing order and return 𝑧.

Next we show that the simplified rounded vector is close to the rounded counts

vector.

Lemma 4.4.17. Let ‖ · ‖𝑋 be a symmetric norm and let 𝑥 ∈ ℛ. Then ‖𝑆(𝑥)−𝑥‖𝑋 ≤
2(𝛽 − 1)‖𝑥‖𝑋 .

Proof. Consider some 𝑘 ∈ [2 log𝛽 𝑑−1] and let 𝐶𝑘(𝑥) ⊂ [𝑑] be set of coordinates where

𝑥 is at level 𝑘 and does not equal 𝑆(𝑥) = 𝑧, i.e.,

𝐶𝑘(𝑥) = {𝑖 ∈ [𝑑] | 𝑥𝑖 = 𝛽−𝑘 and 𝑥𝑖 ̸= 𝑧𝑖}.

Additionally, for each 𝑘 ∈ [2 log𝛽 𝑑 − 1], let 𝑇𝑘 ⊂ [𝑑] be the coordinates at level

𝑘 in 𝑥 which trigger line 3 of 𝑆(𝑥), and thus become 0’s in 𝑧 (we do not need to

consider the case 𝑘 = 0 since line 3 never triggers, in fact, we do not need to consider

𝑘 ∈ [−3 log𝛽(𝛽 − 1)] either). In other words,

𝑇𝑘(𝑥) = {𝑖 ∈ [𝑑] | 𝑥𝑖 = 𝛽−𝑘 and at iteration 𝑘 of 𝑆(𝑥), 𝑏𝑘(𝑧) ≤ max
𝑗<𝑘+3 log𝛽(𝛽−1)

𝑏𝑗(𝑧)}.

Note that 𝑇1(𝑥), . . . , 𝑇2 log𝛽 𝑑−1(𝑥) are all disjoint, and |𝐶𝑘(𝑥)| ≤
∑︀

𝑗∈[𝑘] |𝑇𝑗(𝑥)|, since

whenever we zero out coordinates in levels less than or equal to 𝑘, 𝑆(𝑥) will shift
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the coordinates when we sort, causing 𝑥𝑖 ̸= 𝑧𝑖. Thus, we may consider an injection

𝑠𝑘 : 𝐶𝑘(𝑥) →
⋃︀

𝑗∈[𝑘] 𝑇𝑗(𝑥), which charges coordinates in 𝐶𝑘(𝑥) to coordinates which

were zeroed out in line 3 of 𝑆(𝑥).

Additionally, for each 𝑗 ∈ [2 log𝛽 𝑑− 1] where 𝑇𝑗(𝑥) ̸= ∅, we let 𝑞𝑗 be the integer

between 0 and 𝑗 + 3 log𝛽(𝛽 − 1) which triggered line 3 of 𝑆(𝑥) at 𝑘 = 𝑗. More

specifically, 0 ≤ 𝑞𝑗 ≤ 𝑗 + 3 log𝛽(𝛽 − 1) is the smallest integer for which 𝑏𝑗(𝑥) ≤ 𝑏𝑞𝑗(𝑥).

Finally, for each 𝑗 ∈ [2 log𝛽 𝑑 − 1] where 𝑇𝑗(𝑥) ̸= ∅, we let 𝑔𝑗 : 𝑇𝑗(𝑥) → 𝐵𝑞𝑗(𝑥)

(recall that 𝐵𝑞𝑗(𝑥) ⊂ [𝑑] are the indices of 𝑥 at level 𝑞𝑗) be an arbitrary injection.

Such an injection exists because 𝑏𝑗(𝑥) ≤ 𝑏𝑞𝑗(𝑥). We may consider the mapping

𝐹 :
⋃︀

𝑘∈[2 log𝛽 𝑑−1]𝐶𝑘(𝑥)→ [𝑑] where

𝐹 (𝑖) = 𝑔𝑗(𝑠𝑘(𝑖)) where 𝑘 and 𝑗 are such that 𝑖 ∈ 𝐶𝑘(𝑥) and 𝑠𝑘(𝑖) ∈ 𝑇𝑗(𝑥).

Let 𝑦 be the vector where we “aggregate” coordinates of
⋃︀

𝑘∈[2 log𝛽(𝑑)−1]𝐶𝑘(𝑥) of 𝑥

according to the map 𝐹 according to Lemma 4.4.15. In particular, we define 𝑦 ∈ R𝑑

where for 𝑖 ∈ [𝑑], we let

𝑦𝑖 =
∑︁

𝑖′∈𝐹−1(𝑖)

𝑥𝑖′ .

Note that for each 𝑖 ∈ [𝑑], 0 ≤ (𝑥 − 𝑧)𝑖 ≤ 𝑥𝑖, and
⋃︀

𝑘∈[2 log𝛽(𝑑)−1]𝐶𝑘(𝑥) ⊂ [𝑑] are

the non-zero coordinates of 𝑥 − 𝑧. Thus, from Lemma 4.4.15, we conclude that

‖𝑥− 𝑧‖𝑋 ≤ ‖𝑦‖𝑋 . We now turn to upper-bounding ‖𝑦‖𝑋 .

Fix some 𝑖 ∈ [𝑑] where 𝑥𝑖 = 𝛽−𝑗. Then

𝑦𝑖 =
∑︁

𝑘>𝑗−3 log𝛽(𝛽−1)

(︃∑︁
𝑘′≥𝑘

𝑥𝑠−1
𝑘′ (𝑔−1

𝑘 (𝑖))

)︃
,

where we interpret 𝑥𝑠−1
𝑘′ (𝑔−1

𝑘 (𝑖)) as 0 when 𝑔−1
𝑘 (𝑖) = ∅, or 𝑠−1

𝑘′ (𝑔
−1
𝑘 (𝑖)) = ∅. Note that
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whenever 𝑥𝑠−1
𝑘′ (𝑔−1

𝑘 (𝑖)) ̸= 0, 𝑥𝑠−1
𝑘′ (𝑔−1

𝑘 (𝑖)) = 𝛽−𝑘′ . Thus,

𝑦𝑖 ≤
∑︁

𝑘>𝑗−3 log𝛽(𝛽−1)

(︃∑︁
𝑘′≥𝑘

𝛽−𝑘′

)︃

≤
∑︁

𝑘>𝑗−3 log𝛽(𝛽−1)

𝛽1−𝑘

𝛽 − 1
≤ 𝛽1−𝑗+3 log𝛽(𝛽−1)

(𝛽 − 1)2
≤ 𝛽(𝛽 − 1) · 𝛽−𝑗.

Recall that 𝑥𝑖 = 𝛽−𝑗, so 𝛽(𝛽 − 1)𝑥 weakly majorizes 𝑦, and thus

‖𝑥− 𝑧‖𝑋 ≤ ‖𝑦‖𝑋 ≤ 𝛽(𝛽 − 1) · ‖𝑥‖𝑋 .

Hence, when 𝛽 ≤ 2, we have ‖𝑥− 𝑧‖𝑋 ≤ 2(𝛽 − 1)‖𝑥‖𝑋 .

Proof of Lemma 4.4.14. We now prove the theorem by showing that the set

𝑁 = {𝑆(𝑥) ∈ R𝑑 | 𝑥 ∈ ℛ}

is a 𝛾-net of ℛ, and we give an upper bound on the size. By Lemma 4.4.17, ‖𝑥 −
𝑆(𝑥)‖𝑋 ≤ 2(𝛽 − 1)‖𝑥‖𝑋 ≤ 8(𝛽 − 1). So it suffices to give an upper bound on the size

of 𝑁 .

We bound from above the number of net points by an encoding argument. Let

𝑧 = 𝑆(𝑥) and let

𝑡𝑘 =
𝑏𝑘(𝑧)

max𝑗<𝑘+3 log𝛽(𝛽−1) 𝑏𝑗(𝑧)
.

Let 𝑘* ∈ {0, . . . , 2 log𝛽 𝑑 − 1} be the smallest level 𝑘 with non-zero 𝑏𝑘(𝑧). For all

𝑗 > 𝑘* − 3 log𝛽(𝛽 − 1), we either have 𝑡𝑗(𝑧) = 0 or 𝑡𝑗(𝑧) ≥ 1. Additionally, 𝑧 has 𝑑

coordinates, so
2 log𝛽 𝑑−1∏︁

𝑗=𝑘*−3 log𝛽(𝛽−1)

max(𝑡𝑗, 1) ≤ 𝑑−3 log𝛽(𝛽−1),

since terms of the product “cancel” except for at most −3 log𝛽(𝛽 − 1), which are each

at most 𝑑.

We will encode 𝑧 ∈ 𝑁 in three steps. In the first step, we use 2 log𝛽 𝑑 − 1 bits
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in order to encode whether 𝑏𝑘(𝑧) = 0 or 𝑏𝑘(𝑧) > 0. In the second step, we then

encode the values 𝑏𝑘*+𝑗(𝑧) for 𝑗 ∈ {0, . . . , 3 log𝛽(1/(𝛽 − 1))}. Finally, we go through

𝑗 > 𝑘* + 3 log𝛽

(︁
1

𝛽−1

)︁
, and encode 𝑡𝑖 using a prefix-free code, where writing 𝑡𝑖 uses at

most 𝑂 (logmax(𝑡𝑖, 1)) many bits. Thus, in total, the number of bits we use is

𝑂

⎛⎝log𝛽 𝑑+ log 𝑑 log𝛽

(︂
1

𝛽 − 1

)︂
+

2 log𝛽 𝑑−1∑︁
𝑗=𝑘*−3 log𝛽(𝛽−1)

logmax(𝑡𝑗, 1)

⎞⎠
= 𝑂

⎛⎝ log 𝑑 · log
(︁

1
𝛽−1

)︁
log 𝛽

+ log

⎛⎝ 2 log𝛽 𝑑−1∏︁
𝑗=𝑘*−3 log𝛽(𝛽−1)

max(𝑡𝑗, 1)

⎞⎠⎞⎠
= 𝑂

⎛⎝ log 𝑑 · log
(︁

1
𝛽−1

)︁
log 𝛽

⎞⎠ .

Thus, we obtain 𝑁 is a 8(𝛽 − 1)-net, and the size of 𝑁 is 𝑑𝑂(log(1/(𝛽−1))/ log 𝛽).

4.5 Proof of the main theorem

We now prove our main result, Theorem 4.1.3. The algorithm here achieves approxi-

mation

𝑂

(︂
log2 log 𝑛 · log log 𝑑

𝜀5

)︂
.

We proceed by giving an algorithm for
⨁︀𝑡

ℓ∞

⨁︀𝑑
ℓ1
𝑇 (𝑐) using Theorem 4.2.8, Theorem

5.1.2 from [10], and Theorem 4.2.9.

Lemma 4.5.1. Fix some 𝑐1, . . . , 𝑐𝑑 ≥ 0. Let
⨁︀

ℓ∞
𝑇 (𝑐) be the space with

‖ · ‖(𝑐)𝑇,∞ : R𝑑2 → R

seminorm where for every 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑2,

‖𝑥‖(𝑐)𝑇,∞ = max
𝑘∈[𝑑]

𝑐𝑘‖𝑥𝑘‖𝑇 (𝑘).

For every 𝜀 ∈ (0, 1/2), there exists a data structure for ANN over ‖ · ‖(𝑐)𝑇,∞ which
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achieves approximation 𝑂
(︀
log log𝑛·log log 𝑑

𝜀3

)︀
using space 𝑂 (𝑑2 · 𝑛1+𝜀) and query time

𝑂 (𝑑2 · 𝑛𝜀).

Proof. Given the randomized embedding from Lemma 4.3.3, we can build a data

structure for 𝑐𝑘‖ · ‖𝑇 (𝑘) achieving approximation 𝑂( log log 𝑑
𝜀2

) using space 𝑂(𝑑2𝑛1+𝜀/2)

and query time 𝑂(𝑑2𝑛𝜀/2). This data structure works in the same way as in the proof

of Theorem 4.3.2. We handle the constant 𝑐𝑘 by rescaling the norm, and since the

embeddings are linear, it does not affect the correctness of the data structure. Then

we apply Theorem 4.2.8.

Lemma 4.5.2. Fix some 𝑐1, . . . , 𝑐𝑑 ≥ 0. Let
⨁︀

ℓ1
𝑇 (𝑐) be the space with ‖ ·‖(𝑐)𝑇,1 : R𝑑2 →

R seminorm where 𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ R𝑑2,

‖𝑥‖(𝑐)𝑇,1 =
𝑑∑︁

𝑘=1

𝑐𝑘‖𝑥𝑘‖𝑇 (𝑘).

For every 𝜀 ∈ (0, 1/2), there exists a data structure for ANN over ‖·‖(𝑐)𝑇,1 which achieves

approximation 𝑂
(︀
log log𝑛·log log 𝑑

𝜀4

)︀
using space 𝑂(𝑑2 · 𝑛1+𝜀) and query time 𝑂(𝑑2 · 𝑛𝜀).

Proof. The proof follows from Theorem 5.1.2 in [10] and Lemma 4.5.1.

Finally, we are combine the above results to get an improved algorithm for general

symmetric norms.

Theorem 4.5.3. For every 𝑑-dimensional symmetric norm ‖ · ‖𝑋 and every 𝜀 ∈
(0, 1/2), there exists a data structure for ANN over ‖·‖𝑋 which achieves approximation

𝑂( log
2 log𝑛 log log 𝑑

𝜀5
) using space 𝑑𝑂(1) ·𝑂(𝑛1+𝜀) and query time 𝑑𝑂(1) ·𝑂(𝑛𝜀).

Proof. Given Theorem 4.4.2, we embed ‖ · ‖𝑋 into
⨁︀

ℓ∞

⨁︀
ℓ1
𝑇 (𝑐) with approximation

(1± 1
10
). The result from Lemma 4.5.2 allows we to apply Theorem 4.2.9 to obtain

the desired data structure.

Theorem 4.5.3 implies our main result Theorem 4.1.3 stated in the introduction.
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4.6 Lower bounds

In this section, we show that our techniques do not extend to general norms. In

particular, we show there does not exist a universal norm 𝑈 for which any norm embeds

(possibly randomized) with constant distortion, unless the blow-up in dimension is

exponential. Hence the result from below applies to cases of 𝑈 = ℓ∞ as well as an

(low-dimensional) product spaces.

Theorem 4.6.1. For any 𝜀 > 0, let 𝑈 be a 𝑑′-dimensional normed space such that

for any 𝑑-dimensional normed space 𝑋, there exists a distribution 𝒟 supported on

linear embeddings 𝑓 : R𝑑 → R𝑑′ where for every 𝑥 ∈ R𝑑,

‖𝑥‖𝑋 ≤ ‖𝑓(𝑥)‖𝑈 ≤ 𝐷‖𝑥‖𝑈

holds with probability at least 2
3

over the draw of 𝑓 ∼ 𝒟, for 𝐷 = 𝑂(𝑑1/2−𝜀). Then

𝑑′ = exp (Ω(𝑑2𝜀)).

We will prove the above theorem by showing that if there exists a universal normed

space 𝑈 satisfying the conditions of Theorem 4.6.1 above, then two parties, call them

Alice and Bob, can use the embeddings to solve the communication problem Index

with only a few bits. Let 𝑈 be a proposed 𝑑′-dimensional normed space satisfying

the conditions of Theorem 4.6.1. By the John’s theorem [32], we may apply a linear

transform so that:

𝐵ℓ2 ⊂ 𝐵𝑈 ⊂
√
𝑑′𝐵ℓ2

Lemma 4.6.2. For any 𝜀 > 0, there exists a set of exp (Ω(𝑑2𝜀)) many points on the

unit sphere 𝑆𝑑−1 such that pairwise inner-products are at most 1
𝑑1/2−𝜀 . In fact, these

points may consist of points whose coordinates are ± 1√
𝑑
.

Proof. Consider picking two random points 𝑥, 𝑦 ∈ 𝑆𝑑−1 where each entry is ± 1√
𝑑
.

Then by Bernstein’s inequality,

Pr
𝑥,𝑦

[︂
|⟨𝑥, 𝑦⟩| ≥ 1

𝑑1/2−𝜀

]︂
≤ 2 exp

(︀
−Ω(𝑑2𝜀)

)︀
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We may pick exp (Ω(𝑑2𝜀)) random points and union bound over the probability that

some pair has large inner product.

Fix 𝜀 > 0 and 𝐶 = 𝑑1/2−𝜀, and let 𝑃 be set a set of unit vectors with pairwise

inner-product at most 1
𝐶

of size exp(Ω(𝑑2𝜀)). For each 𝑎 ∈ {0, 1}𝑃 consider the

following norm:

‖𝑥‖𝑎 = 𝐶 · max
𝑦∈𝑃 :𝑎𝑦=1

|⟨𝑥, 𝑦⟩|.

Assume there exists a randomized linear embedding 𝑓 : R𝑑 → R𝑑′ with the following

guarantees:

∙ For every 𝑥 ∈ R𝑑, ‖𝑥‖𝑎 ≤ ‖𝑓(𝑥)‖𝑈 ≤ 𝐷‖𝑥‖𝑎 with probability at least 2
3
.

Note the embedding 𝑓 can be described by 𝑀 , a 𝑑′ × 𝑑 matrix of real numbers.

Additionally, we consider rounding each entry of 𝑀 by to the nearest integer multiple

of 1
poly(𝑑)

to obtain 𝑀 ′. For each 𝑥 ∈ 𝑆𝑑−1, ‖(𝑀 −𝑀 ′)𝑥‖𝑈 ≤ ‖(𝑀 −𝑀 ′)𝑥‖2 ≤ 1
poly(𝑑)

.

Thus, we may assume each entry of 𝑀 is an integer multiple of 1
poly(𝑑)

, and lose

(1± 1
poly(𝑑)

) factor in the distortion of the embedding for vectors in 𝐵2.

We now show that the existence of the randomized embedding implies a one-way

randomized protocol for the communication problem Index. We first describe the

problem. In an instance of Index:

∙ Alice receives a string 𝑎 ∈ {0, 1}𝑛.

∙ Bob receives an index 𝑖 ∈ [𝑛].

∙ Alice communicates with Bob so that he can output 𝑎𝑖.

Theorem 4.6.3 ([107]). The randomized one-way communication complexity of In-

dex is Ω(𝑛).

We give a protocol for Index:

1. Suppose Alice has input 𝑎 ∈ {0, 1}𝑃 . She will generate the norm ‖ · ‖𝑎 described

above. Note that 𝑓 ∼ 𝒟 has that for each 𝑥 ∈ R𝑑, the embedding preserves the

norm of 𝑥 up to 𝐷 with probability 2
3
. In particular, if Bob’s input is 𝑖 ∈ |𝑃 |,
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corresponding to point 𝑦, then an embedding 𝑓 ∈ 𝒟, which we represent as a

𝑑′ × 𝑑 matrix 𝑀 , satisfies:

‖𝑦‖𝑎 ≤ ‖𝑀𝑦‖𝑈 ≤ 𝐷‖𝑦‖𝑎

with probability 2
3
. In particular, with probability 2

3
:

∙ If 𝑎𝑖 = 0, then ‖𝑦‖𝑎 ≤ 1, which implies ‖𝑀𝑦‖𝑈 ≤ 𝐷.

∙ If 𝑎𝑖 = 1, then ‖𝑦‖𝑎 ≥ 𝐶, which implies ‖𝑀𝑦‖𝑈 ≥ 𝐶.

Alice computes the set 𝑃𝑐 ⊂ 𝑃 of vectors which satisfy the above property (i.e.

the embedding 𝑀 preserves increases the norm by at most a factor 𝐷).

2. Alice finds a subset 𝐵 ⊂ 𝑃𝑐 of linearly independent vectors such that every

𝑥 ∈ 𝑃𝑐 we have 𝑥 ∈ span(𝐵). Note that |𝐵| ≤ 𝑑 and for all 𝑥 ∈ 𝐵, ‖𝑀𝑥‖2 ≤
√
𝑑′‖𝑀𝑥‖𝑈 ≤ 𝐶 ·𝐷 ·

√
𝑑′. Therefore, each 𝑀𝑥 ∈ R𝑑′ can be written with 𝑂̃(𝑑′)

bits. So Alice sends the set 𝐵, as well as 𝑀𝑥 for each 𝑥 ∈ 𝐵 using 𝑂̃(𝑑𝑑′) bits.

3. In order for Bob to decode 𝑎𝑖, he first checks whether 𝑦 ∈ span(𝐵), and if not,

he guesses. If 𝑦 ∈ span(𝐵), which happens with probability 2
3
, then Bob writes

𝑦 =
∑︁
𝑏𝑖∈𝐵

𝑐𝑖𝑏𝑖

and 𝑀𝑦 =
∑︀

𝑏𝑖∈𝐵 𝑐𝑖𝑀𝑏𝑖. If ‖𝑀𝑦‖𝑈 ≤ 𝐷, then 𝑎𝑖 = 0 and if ‖𝑀𝑦‖𝑈 ≥ 𝐶 then

𝑎𝑖 = 1. Thus, if 𝐷 < 𝐶
2
, Bob can recover 𝑎𝑖 with probability 2

3
.

Alice communicates 𝑂̃(𝑑𝑑′) bits, and Bob is able to recover 𝑎𝑖 with probability 2
3
.

By Theorem 4.6.3, 𝑑𝑑′ ≥ Ω̃ (|𝑃 |), which in turn implies 𝑑′ ≥ exp (Ω(𝑑2𝜀)).

4.7 Appendix: Bounding space in Theorem 4.2.9

Here we justify the space bound of the algorithm from Theorem 4.2.9 (from [82]). We

note that the improved bound was also claimed in [16], albeit without a proof.
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First of all, as suggested at the end of Section 3 of [82], one modifies the algorithm

to obtain space of the form of 𝑛1+𝜀, at the expense of increasing the approximation

to 𝑂(𝜀−1 log log 𝑛). This is done by replacing the conditions in Case 2 and 3 by

respectively:

[︂ |𝐵(𝑠, 𝑅(𝑠) + 𝑐+ 1) ∩ 𝑆|𝑖|
|𝑆|𝑖|

]︂1+𝜀

<
|𝐵(𝑠, 𝑅(𝑠)) ∩ 𝑆|𝑖|

|𝑆|𝑖|
,

and [︂ |𝑆|𝑖 −𝐵(𝑝,𝑅′)|
|𝑆|

]︂1+𝜀

<
|𝑆|𝑖 −𝐵(𝑠, 𝑅′ + 2)|

|𝑆| .

With the remaining algorithm being precisely the same, our only task here is to

argue the space bound. First of all we bound the sum of the number of points stored

in all the leaves. For a tree with 𝑚 nodes, let 𝐿(𝑚) be an upper bound on this count.

We would like to prove that 𝐿(𝑚) ≤ 𝑚1+𝜀. As in [82], we only need to focus on cases

2 and 3 of the construction, as case 1 does not replicate the points. We will consider

the case 2 (case 3 is exactly similar).

Let 𝑚𝑗 = |𝑆𝑗| and 𝑚′
𝑗 = |𝑆|𝑖∩∪𝑠∈𝑆𝑗

𝐵(𝑠, 𝑐+1)|, whereas |𝑆| = 𝑚. By construction,

we have that
∑︀
𝑚𝑗 = 𝑚 and 𝑚𝑗/𝑚 > (𝑚′

𝑗/𝑚)1+𝜀 for all 𝑗.

By induction, assume 𝐿(𝑚′
𝑗) ≤ (𝑚′

𝑗)
1+𝜀 for all children. Then, we have that:

𝐿(𝑚) ≤
∑︁
𝑗

𝐿(𝑚′
𝑗) ≤

∑︁
𝑗

(𝑚′
𝑗)

1+𝜀 < 𝑚𝜀
∑︁
𝑗

𝑚𝑗 = 𝑚1+𝜀.

We now argue the total space is 𝑂(𝑆(𝑛) · 𝑘 log 𝑛 ·𝑛𝜖). Since the depth of the tree is

𝑂(𝑘 log 𝑛), we have that the total number of points stored in the ANN data structures

is 𝑂(𝑘 log 𝑛 · 𝐶(𝑛)) = 𝑂(𝑘 log 𝑛 · 𝑛1+𝜖). Since each ANN is on at most 𝑛 points, we

have that, for each occurrence of a point in the ANN data structure, we have an

additional factor of 𝑆(𝑛)/𝑛.4 Hence the total space occupied by all the ANN data

structures is 𝑂(𝑆(𝑛)/𝑛 · 𝑘 log 𝑛 · 𝑛1+𝜖). Using a smaller 𝜀 (to hide the log 𝑛 factor), we

obtain the stated space bound of 𝑂(𝑆(𝑛) · 𝑘 · 𝑛𝜖).

4Here we assume the natural condition that 𝑆(𝑛) is increasing, which is, otherwise, easy to
guarantee.
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4.8 Appendix: ̃︀𝑂(log 𝑑)-ANN for symmetric norms

We provide a simple ANN algorithm for general symmetric norms with approximation

𝑂(log 𝑑 log log 𝑑) using near-linear space and sub-linear query time. The algorithm

will leverage the results in the previous section by relating general symmetric norms

to Orlicz norms. Recall the definition of level vectors in Definition 4.4.3.

Definition 4.8.1. Let ‖ · ‖𝑋 be any symmetric norm. Let 𝐿𝑘 > 0 be the minimum

number of coordinates needed at level 𝑘 to have norm at least 1. In other words,

𝐿𝑘 = min{𝑗 ∈ [𝑑] | ‖𝛽−𝑖𝜉(𝑗)‖𝑋 > 1}.

At a high level, we will relate the norm of a vector 𝑥 ∈ R𝑑 to the norm of its

level vectors 𝑉𝑘(𝑥). The definition above gives a way to measure the contribution of

level 𝑘 to the norm. For example, if 𝑥 ∈ R𝑑 has norm ‖𝑥‖𝑋 ≥ 𝐷, and there are only

2 log𝛽 𝑑 non-zero levels with respect to 𝑥, then some level vector ‖𝑉𝑘(𝑥)‖𝑋 ≥ 𝐷
2 log𝛽 𝑑

.

This implies 𝑏𝑘 = Ω( 𝐷𝐿𝑘

log𝛽 𝑑
), since we may divide 𝑉𝑘(𝑥) into a sum of vectors with 𝐿𝑘

coordinates at level 𝑘.

On the other hand, if 𝑥 ∈ R𝑑 has ‖𝑥‖𝑋 ≤ 1, then 𝑏𝑘 < 𝐿𝑘 for each 𝑘. Since we

consider only 2 log𝛽 𝑑 relevant levels, for ‖𝑥‖𝑆 ≤ 1,

2 log𝛽 𝑑−1∑︁
𝑘=0

𝑏𝑘
𝐿𝑘

≤ 2 log𝛽 𝑑.

Additionally,
∑︀2 log𝛽 𝑑−1

𝑘=0 (𝑏𝑘/𝐿𝑘) can be decomposed as an additive contribution of

coordinates. In particular, coordinate 𝑥𝑖 contributes 1/𝐿𝑘 if 𝑖 ∈ 𝐵𝑘. Therefore, we

can hope to approximate the symmetric norm by an Orlicz norms and apply the

arguments from Lemma 4.3.1.

The lemma below formalizes the ideas discussed above.

Lemma 4.8.2. Let ‖ · ‖𝑋 be any symmetric norm. For any 𝐷,𝛼 > 1, there exists a

non-decreasing function 𝐺 : R+ → R+ with 𝐺(0) = 0 and 𝐺(𝑡)→∞ as 𝑡→∞, where

every vector 𝑥 ∈ R𝑑 satisfies the following:
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∙ If ‖𝑥‖𝑋 ≤ 1, then
∑︀𝑑

𝑖=1𝐺(|𝑥𝑖|) ≤ 2 log𝛽 𝑑.

∙ If ‖𝑥‖𝑋 > 𝛼𝐷 · 7 log𝛽 𝑑, then
∑︀𝑑

𝑖=1𝐺
(︁

|𝑥𝑖|
𝐷

)︁
≥ 𝛼 · 2 log𝛽 𝑑.

Proof. For 𝑖 ≥ 0, let 𝐴𝑖 = (𝛽−𝑖−1, 𝛽−𝑖]. The function 𝐺 : R+ → R+ is defined as

𝐺(𝑡) =

2 log𝛽 𝑑−1∑︁
𝑖=0

𝜒𝐴𝑖
(𝑡)

𝐿𝑖

+ 𝛼 · 2 log𝛽 𝑑 · 𝑡 · 𝜒(1,∞)(𝑡) (4.2)

Note that 𝐺(0) = 0 and 𝐺(𝑡)→∞ as 𝑡→∞.

Recall the norm satisfies, ‖𝜉(1)‖𝑋 = 1, so if ‖𝑥‖𝑋 ≤ 1, then |𝑥𝑖| ≤ 1 for all 𝑖 ∈ [𝑑].

This means 𝜒(1,∞)(|𝑥𝑖|) = 0 so the second term of the RHS of (4.2) is zero. Therefore,

𝑑∑︁
𝑖=1

𝐺(|𝑥𝑖|) =
𝑑∑︁

𝑖=1

2 log𝛽 𝑑−1∑︁
𝑘=0

𝜒𝐴𝑘
(|𝑥𝑖|)
𝐿𝑘

=

2 log𝛽 𝑑−1∑︁
𝑘=0

𝑏𝑘
𝐿𝑘

where 𝑏𝑘 is defined with respect to 𝑥. Since, 𝑏𝑘 < 𝐿𝑘 for all 0 ≤ 𝑘 < 2 log𝛽 𝑑,

𝑑∑︁
𝑖=1

𝐺(|𝑥𝑖|) ≤ 2 log𝛽 𝑑.

If 𝑥 ∈ R𝑑 where ‖𝑥‖𝑋 > 𝛼𝐷 · 7 log𝛽 𝑑, then the vector ‖ 𝑥
𝐷
‖𝑋 > 𝛼 · 7 log𝛽 𝑑. So it

suffices to prove that for any vector 𝑥 ∈ R𝑑 with ‖𝑥‖𝑋 > 𝛼 · 7 log𝛽 𝑑,

𝑑∑︁
𝑖=1

𝐺(|𝑥𝑖|) ≥ 𝛼 · 2 log𝛽 𝑑

Additionally, for any vector 𝑥 ∈ R𝑑, we may consider the vector 𝐶(𝑥) ∈ R𝑑 for 𝜏 = 𝛽
𝑑2

from Definition 4.4.4. By Proposition 4.4.6, ‖𝐶(𝑥)‖𝑋 ≥ ‖𝑥‖𝑋 − 𝛽
𝑑
> 𝛼 · 6 log𝛽 𝑑.

Therefore, we may assume 𝑥 ∈ R𝑑 has ‖𝑥‖𝑋 > 𝛼 · 6 log𝛽 𝑑, and that all non-zero

coordinates have absolute values greater than 𝛽
𝑑2

. Equivalently, 𝑏𝑘 = 0 for all 𝑘 ≥
2 log𝛽 𝑑. If for some 𝑖 ∈ [𝑑], |𝑥𝑖| ≥ 1, then the second term in the RHS of (4.2) is

non-zero, and 𝐺(|𝑥𝑖|) ≥ 𝛼 · 2 log𝛽 𝑑. So we may further assume all coordinates of 𝑥 lie
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in levels 𝑘 = 0, . . . , 2 log𝛽 𝑑− 1. Note that

𝑑∑︁
𝑖=1

𝐺(|𝑥𝑖|) =
2 log𝛽 𝑑−1∑︁

𝑘=0

𝑑∑︁
𝑖=1

𝐺(|𝑉𝑘(𝑥)𝑖|),

and for each 0 ≤ 𝑘 < 2 log𝛽 𝑑,
∑︀𝑑

𝑖=1𝐺(|𝑉𝑘(𝑥)𝑖|) =
𝑏𝑘
𝐿𝑘

.

We partition the levels into two groups,

𝐴 =

{︂
𝑘 | 𝑏𝑘

𝐿𝑘

< 1

}︂
and 𝐵 =

{︂
𝑘 | 𝑏𝑘

𝐿𝑘

≥ 1

}︂
.

For all 𝑘 ∈ 𝐵,

‖𝑉𝑘(𝑥)‖𝑋 ≤
⌈︂
𝑏𝑘
𝐿𝑘

⌉︂
≤ 2𝑏𝑘

𝐿𝑘

since by the triangle inequality, we can break 𝑉𝑘(𝑥) into at most
⌈︂
𝑏𝑘
𝐿𝑘

⌉︂
vectors with

𝐿𝑘 coordinates at level 𝑘 each having norm at least 1.

Suppose for the sake of contradiction that
∑︀

𝑘∈𝐵
𝑏𝑘
𝐿𝑘
≤ 𝛼 · 2 log𝛽 𝑑. Then

𝛼 · 4 log𝛽 𝑑 ≥
∑︁
𝑘∈𝐵

2𝑏𝑘
𝐿𝑘

≥
∑︁
𝑘∈𝐵

‖𝑉𝑘(𝑥)‖𝑋 .

Additionally, since ‖𝑥‖𝑋 > 𝛼 · 6 log𝛽 𝑑, and

𝛼 · 6 log𝛽 𝑑 < ‖𝑥‖𝑋 ≤
∑︁
𝑘∈𝐴

‖𝑉𝑘(𝑥)‖𝑋 +
∑︁
𝑘∈𝐵

‖𝑉𝑘(𝑥)‖𝑋 ,

it follows that ∑︁
𝑘∈𝐴

‖𝑉𝑘(𝑥)‖𝑋 > 𝛼 · 2 log𝛽 𝑑.

However, this is a contradiction for since |𝐴| ≤ 2 log𝛽 𝑑 and ‖𝑉𝑘(𝑥)‖𝑋 ≤ 1.

Lemma 4.8.3. For any 𝜀 ∈ (0, 1/2), there exists a data structure for ANN over

any symmetric norm ‖ · ‖𝑋 which achieves approximation 𝑂
(︀
log 𝑑 log log 𝑑

𝜀2

)︀
using space

𝑂(𝑑𝑛1+𝜀) and query time 𝑂(𝑑𝑛𝜀).

Proof. We fix 𝛽 = 3
2
. The proof of this lemma follows in the same way as the proof
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of Theorem 4.3.2. The one difference is that we rescale the ℓ∞ norm by 1
2 log𝛽 𝑑

after

applying the embedding.

4.8.1 The logΩ(1) 𝑑-approximation is necessary

Let us remark that we cannot push the technique much further. Namely, any 𝐺(·)
(even non-convex) requires approximation Ω(

√
log 𝑑) for the following norm. Define

the norm of a vector to be

‖𝑥‖ = max
1≤𝑘≤𝑑

(︂
𝑥*1 + 𝑥*2 + . . . 𝑥*𝑘√

𝑘

)︂
.

This is the minimal norm for 𝑎𝑘 =
√
𝑘 (see Section 4.1.2 for the definition). It is

not hard to check that an approximation with any 𝐺(·) ends up having a distortion

Ω(
√
log 𝑑).

The idea is to consider the following vectors: for every 1 ≤ 𝑘 ≤ 𝑑, we consider a

vector (︁
1, 1, . . . , 1⏟  ⏞  

𝑘

, 0, 0, . . . , 0
)︁
,

and besides, we consider a vector

(︁
1,
√
2− 1,

√
3−
√
2, . . . ,

√
𝑑−
√
𝑑− 1

)︁
.

The remaining calculation is a simple exercise.

4.9 Appendix: Lower bound for arbitrary metrics

via expander graphs

We give an example of a metric that is hard for current approaches to ANN search.

The lower bound is based on the notion of robust expansion, which implies all known

lower bounds for ANN [146, 24]. In what follows, we will refer to 𝑑 = log𝑁 as the

dimension of a finite metric space of size 𝑁 .
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Our example of a hard metric will be the shortest path metric on any spectral

expander graph. We note that a similar theorem to the one below is also known for a

finite subset of the high-dimensional Earth-Mover Distance [98].

Fix 𝑀 to be the metric induced by the shortest path distance on a 3-regular

expander 𝐺 on 𝑁 nodes. In particular, assume that 1 − 𝜆(𝐺) > 𝑐, where 𝑐 is an

absolute constant, and 𝜆(𝐺) ∈ (0, 1) is the second-largest eigenvalue of the normalized

adjacency matrix of 𝐺. Let 𝑑 be the dimension 𝑑 = log𝑁 .

Theorem 4.9.1. For any approximation 𝛼 > 1, and data set size 𝑛 ≥ 1 with

𝑑Ω(1) ≤ 𝑛 ≤ 𝑁𝑂(1), any 𝛼-ANN data structure on 𝑛 points which makes 𝑡 cell probes

(with cells of size at most 𝑤 ≤ (𝑑 log 𝑛)𝑂(1)), and has success probability at least

𝛾 > 𝑛−1+𝑜(1), must use space 𝑚 = 𝛾Ω(1/𝑡)𝑁Ω(1/(𝛼𝑡)) = 𝛾Ω(1/𝑡)2Ω(𝑑/(𝛼𝑡)).

We proceed by introducing a few definitions from [146], and then prove lower

bounds on the robust expansion.

Definition 4.9.2 ([146]). In the Graphical Neighbor Search problem (GNS), we are

given a bipartite graph 𝐻 = (𝑈, 𝑉,𝐸) where the dataset comes from 𝑈 and the queries

come from 𝑉 . The dataset consists of pairs 𝑃 = {(𝑝𝑖, 𝑥𝑖) | 𝑝𝑖 ∈ 𝑈, 𝑥𝑖 ∈ {0, 1}, 𝑖 ∈ [𝑛]}.
On query 𝑞 ∈ 𝑉 , if there exists a unique 𝑝𝑖 with (𝑝𝑖, 𝑞) ∈ 𝐸, then we want to return

𝑥𝑖.

One can use the GNS problem to prove lower bounds on 𝑐-ANN as follows: build

a GNS graph 𝐻 by taking 𝑈 = 𝑉 = [𝑁 ], and connecting two points 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 iff

they are at a distance at most 𝑟 (see details in [146]). We will also need to make sure

that in our instances 𝑞 is not closer than 𝑐𝑟 to other points except the near neighbor.

We now introduce the notion of robust expansion, used in [146] to prove lower

bounds.

Definition 4.9.3 (Robust Expansion [146]). For a GNS graph 𝐻 = (𝑈, 𝑉,𝐸), fix a

distribution 𝑒 on 𝐸 ⊂ 𝑈 × 𝑉 , and let 𝜇 be the marginal on 𝑈 and 𝜂 be the marginal

on 𝑉 . For 𝛿, 𝛾 ∈ (0, 1], the robust expansion Φ𝑟(𝛿, 𝛾) is defined as follows:

Φ𝑟(𝛿, 𝛾) = min
𝐴⊂𝑉 :𝜂(𝐴)≤𝛿

min
𝐵⊂𝑈 :

𝑒(𝐴×𝐵)
𝑒(𝐴×𝑉 )

≥𝛾

𝜇(𝐵)

𝜂(𝐴)
.
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We now prove a lower bound on the robust expansion Φ𝑟(𝛿, 𝛾) for a GNS graph

arising from the shortest path metric on the expander graph 𝐺. Fix 𝑟 = 𝑑/𝛼. The

hard distribution 𝑒 is defined as follows: pick 𝑝 at random from 𝑀 and obtain 𝑞

by running a random walk of length 𝑟 starting at 𝑝. Note that for 𝑛 < 𝑁1/4 and

sufficiently high constant 𝛼, the distribution satisfies the weak-independence condition

required for applying the results in [146].

Fix any sets 𝐴,𝐵 ⊂𝑀 , where 𝑎 = |𝐴|/𝑁 and 𝑏 = |𝐵|/𝑁 . By the expander mixing

lemma applied to 𝐺𝑟, we obtain that:

⃒⃒⃒
𝐸𝐺𝑟(𝐴,𝐵)− |𝐴|·|𝐵|

3𝑟𝑁

⃒⃒⃒
≤ 𝜆33𝑟

√︀
|𝐴| · |𝐵|.

Considering that Pr[𝑞 ∈ 𝐵 | 𝑝 ∈ 𝐴] = 𝐸𝐺𝑟 (𝐴,𝐵)
𝑎𝑁 ·3𝑟 , we have that:

Pr[𝑞 ∈ 𝐵 | 𝑝 ∈ 𝐴] ≤ 𝑏+ 𝜆𝑟
√︀
𝑏/𝑎.

Restricting to sets 𝐴,𝐵 such that Pr[𝑞 ∈ 𝐵 | 𝑝 ∈ 𝐴] ≥ 𝛾, for which we must have that

Φ𝑟 = Φ𝑟(𝑎, 𝛾) ≥ 𝑏/𝑎 (by definition), we conclude:

𝛾 ≤ Φ𝑟 · 𝑎+ 𝜆𝑟
√︀

Φ𝑟.

Hence, either Φ𝑟 = Ω(𝛾/𝑎) or Φ𝑟 = Ω(𝛾2/𝜆2𝑟).

Proof of Theorem 4.9.1. Applying Theorem 1.5 from [146], we have that, for 𝑡 ≥ 1

cell probes, either:

∙ 𝑚𝑡𝑤/𝑛 ≥ Ω(𝛾 ·𝑚𝑡), an impossibility;

∙ or 𝑚𝑡𝑤/𝑛 ≥ Ω(𝛾2/𝜆2𝑟), or 𝑚𝑡 = Ω( 𝑛
𝑤
𝛾2/𝜆2𝑟), implying 𝑚 = 𝛾2/𝑡𝑁Ω(1/(𝛼𝑡)).

To show how bad the situation for expander metrics is, we state a lower bound

on for 𝛼-ANN on the expander metric described above in the list-of-points model,

which captures the hashing-based algorithms of [24] and in the decision tree model
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of [81]. The proofs follow from a simple derivation using the robust expansion lower

bounds in Section 7 of [24] and a reduction of decision trees to 𝑂(log𝑚)-cell-probe

data structures similar to Appendix A in [11].

Theorem 4.9.4. Any list-of-points data structure for (𝑐, 𝑟)-ANN for random instances

of 𝑛 points in the expander metric of dimension 𝑑 (described above) with query time 𝑡

and space 𝑚 has either 𝑡 = Ω(𝑛), or 𝑚 = exp (Ω(𝑑)).

Theorem 4.9.5. Let 𝑑 = Ω(log1+𝜀 𝑛) for some 𝜀 > 0. Any decision tree of size 𝑚

and depth 𝑡 and word size 𝑤 succeeding with probability 𝛾 satisfies:

𝑚𝑂(log𝑚)𝑡𝑤

𝑛
≥ Φ𝑟

(︂
1

𝑚𝑂(log𝑚)
,

𝛾

𝑂(log𝑚)

)︂
.

In particular, for any 𝜌 > 0, if 𝑤 ≤ 𝑛𝜌, either

𝑡 ≥ ̃︀Ω(𝑛1−𝜌)

or

𝑚 = exp
(︀
Ω(𝑑𝜀/(1+𝜀))

)︀
poly(𝑛).
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Chapter 5

Sketching and embedding are

equivalent for norms

5.1 Introduction

One of the most exciting notions in the modern algorithm design is that of sketching,

where an input is summarized into a small data structure. Perhaps the most prominent

use of sketching is to estimate distances between points, one of the workhorses of

similarity search. For example, some early uses of sketches have been designed for

detecting duplicates and estimating resemblance between documents [47, 48, 55].

Another example is Nearest Neighbor Search, where many algorithms rely heavily

on sketches, under the labels of dimension reduction (like the Johnson-Lindenstrauss

Lemma [93]) or Locality-Sensitive Hashing (see e.g. [85, 108, 14]). Sketches see

widespread use in streaming algorithms, for instance when the input implicitly defines

a high-dimensional vector (via say frequencies of items in the stream), and a sketch is

used to estimate the vector’s ℓ𝑝 norm. The situation is similar in compressive sensing,

where acquisition of a signal can be viewed as sketching. Sketching—especially of

distances such as ℓ𝑝 norms—was even used to achieve improvements for classical

computational tasks: see e.g. recent progress on numerical linear algebra algorithms

[178], or dynamic graph algorithms [5, 99]. Since sketching is a crucial primitive that

can lead to many algorithmic advances, it is important to understand its power and
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limitations.

A primary use of sketches is for distance estimation between points in a metric

space (𝑋, 𝑑𝑋), such as the Hamming space. The basic setup here asks to design a

sketching function sk : 𝑋 → {0, 1}𝑠, so that the distance 𝑑𝑋(𝑥, 𝑦) can be estimated

given only the sketches sk(𝑥), sk(𝑦). In the decision version of this problem, the goal

is to determine whether the inputs 𝑥 and 𝑦 are “close” or “far”, as formalized by the

Distance Threshold Estimation Problem [157], denoted DTEP𝑟(𝑋,𝐷), where, for a

threshold 𝑟 > 0 and approximation 𝐷 ≥ 1 given as parameters in advance, the goal is

to decide whether 𝑑𝑋(𝑥, 𝑦) ≤ 𝑟 or 𝑑𝑋(𝑥, 𝑦) > 𝐷𝑟. Throughout, it will be convenient to

omit 𝑟 from the subscript.1 Efficient sketches sk almost always need to be randomized,

and hence we allow randomization, requiring (say) 90% success probability.

The diversity of applications gives rise to a variety of natural and important

metrics 𝑀 for which we want to solve DTEP: Hamming space, Euclidean space,

other ℓ𝑝 norms, the Earth Mover’s Distance, edit distance, and so forth. Sketches for

Hamming and Euclidean distances are now classic and well-understood [85, 108]. In

particular, both are “efficiently sketchable”: one can achieve approximation 𝐷 = 𝑂(1)

using sketch size 𝑠 = 𝑂(1) (most importantly, independent of the dimension of 𝑋).

Indyk [84] extended these results to efficient sketches for every ℓ𝑝 norm for 𝑝 ∈ (0, 2].

In contrast, for ℓ𝑝-spaces with 𝑝 > 2, efficient sketching (constant 𝐷 and 𝑠) was proved

impossible using information-theoretic arguments [157, 34]. Extensive subsequent

work investigated sketching of other important metric spaces,2 or refined bounds (like

a trade-off between 𝐷 and 𝑠) for “known” spaces.3

These efforts provided beautiful results and techniques for many specific settings.

Seeking a broader perspective, a foundational question has emerged [124, Question

#5]:

Question 5.1.1. Characterize metric spaces which admit efficient sketching.

1When 𝑋 is a normed space it suffices to consider 𝑟 = 1 by simply scaling the inputs 𝑥, 𝑦.
2Other metric spaces include edit distance [33, 37, 141, 21] and its variants [63, 131, 62, 61, 56, 16],

the Earth Mover’s Distance in the plane or in hypercubes [55, 86, 117, 102, 15, 12], cascaded norms
of matrices [90], and the trace norm of matrices [111].

3These refinements include the Gap-Hamming-Distance problem [177, 89, 49, 50, 54, 163, 170],
and LSH in ℓ1 and ℓ2 spaces [129, 140].
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To focus the question, efficient sketching will mean constant 𝐷 and 𝑠 for us. Since

its formulation circa 2006, progress on this question has been limited. The only known

characterization is by [76] for distances that are decomposable by coordinates, i.e.,

𝑑𝑋(𝑥, 𝑦) =
∑︀𝑛

𝑖=1 𝜙(𝑥𝑖, 𝑦𝑖) for some 𝜙. In particular, they show a number of general

conditions on 𝜙 which imply an Ω(𝑛) sketching complexity for 𝑑𝑋 .

5.1.1 The embedding approach

To address DTEP in various metric spaces more systematically, researchers have

undertaken the approach of metric embeddings. A metric embedding of 𝑋 is a map

𝑓 : 𝑋 → 𝑌 into another metric space (𝑌, 𝑑𝑌 ). The distortion of 𝑓 is the smallest

𝐷′ ≥ 1 for which there exists a scaling factor 𝑡 > 0 such that

∀𝑥, 𝑦 ∈ 𝑋, 𝑑𝑌 (𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑡 · 𝑑𝑋(𝑥, 𝑦) ≤ 𝐷′ · 𝑑𝑌 (𝑓(𝑥), 𝑓(𝑦)).

If the target metric 𝑌 admits sketching with parameters 𝐷 and 𝑠, then 𝑋 admits

sketching with parameters 𝐷 ·𝐷′ and 𝑠, by the simple composition sk′ : 𝑥 ↦→ sk(𝑓(𝑥)).

This approach of “reducing” sketching to embedding has been very successful, including

for variants of the Earth Mover’s Distance [55, 86, 117, 134, 15], and for variants of edit

distance [37, 141, 56, 16, 63, 131, 62, 61]. The approach is obviously most useful when

𝑌 itself is efficiently sketchable, which holds for all 𝑌 = ℓ𝑝, 𝑝 ∈ (0, 2] [84] (we note

that ℓ𝑝 for 0 < 𝑝 < 1 is not a metric space, but rather a quasimetric space; the above

definitions of embedding and distortion make sense even when 𝑌 is a quasimetric,

and we will use this extended definition liberally). In fact, the embeddings mentioned

above are all into ℓ1, except for [16] which employs a more complicated target space.

We remark that in many cases the distortion 𝐷′ achieved in the current literature is

not constant and depends on the “dimension” of 𝑋.

Extensive research on embeddability into ℓ1 has resulted in several important

distortion lower bounds. Some address the aforementioned metrics [102, 134, 106, 21],

while others deal with metric spaces arising in rather different contexts such as

Functional Analysis [149, 57, 58], or Approximation Algorithms [114, 30, 104, 103].
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Nevertheless, obtaining (optimal) distortion bounds for ℓ1-embeddability of several

metric spaces of interest, are still well-known open questions [122].

Yet sketching is a more general notion, and one may hope to achieve better

approximation by bypassing embeddings into ℓ1. As mentioned above, some limited

success in bypassing an ℓ1-embedding has been obtained for a variant of edit distance

[16], albeit with a sketch size depending mildly on the dimension of 𝑋. Our results

disparage these hopes, at least for the case of normed spaces.

5.1.2 Our results

Our main contribution is to show that efficient sketchability of norms is equivalent to

embeddability into ℓ1−𝜀 with constant distortion. Below we only assert the “sketching

=⇒ embedding” direction, as the reverse direction follows from [84], as discussed

above.

Theorem 5.1.2. Let 𝑋 be a finite-dimensional normed space, and suppose that 0 <

𝜀 < 1/3. If 𝑋 admits a sketching algorithm for DTEP(𝑋,𝐷) for approximation 𝐷 > 1

with sketch size 𝑠, then 𝑋 linearly embeds into ℓ1−𝜀 with distortion 𝐷′ = 𝑂(𝑠𝐷/𝜀).

One can ask whether it is possible to improve Theorem 5.1.2 by showing that 𝑋,

in fact, embeds into ℓ1. Since many non-embeddability theorems are proved for ℓ1,

such a statement would “upgrade” such results to lower bounds for sketches. Indeed,

we show results in this direction too. First of all, the above theorem also yields the

following statement.

Theorem 5.1.3. Under the conditions of Theorem 5.1.2, 𝑋 linearly embeds into ℓ1

with distortion 𝑂(𝑠𝐷 · log(dim𝑋)).

Ideally, we would like an even stronger statement: efficient sketchability for norms

is equivalent to embeddability into ℓ1 with constant distortion (i.e., independent of the

dimension of 𝑋 as above). Such a stronger statement in fact requires the resolution of

an open problem posed by Kwapien in 1969 (see [95, 41]). To be precise, Kwapien asks

whether every finite-dimensional normed space 𝑋 that embeds into ℓ1−𝜀 for 0 < 𝜀 < 1
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with distortion 𝐷0 ≥ 1 must also embed into ℓ1 with distortion 𝐷1 that depends only

on 𝐷0 and 𝜀 but not on the dimension of 𝑋 (this is a reformulation of the finite-

dimensional version of the original Kwapien’s question). In fact, by Theorem 5.1.2,

the “efficient sketching =⇒ embedding into ℓ1 with constant distortion” statement is

equivalent to a positive resolution of the Kwapien’s problem. Indeed, for the other

direction, consider a potential counter-example to the Kwapien’s problem, i.e., a

normed space 𝑋 that embeds into ℓ1−𝜀 with a constant distortion 𝐷0 ≥ 1, but every

embedding of 𝑋 into ℓ1 incurs a distortion 𝐷1 = 𝜔(1), where the asymptotics is with

the dimension of 𝑋 (it is really a sequence of normed spaces). Hence, 𝑋 admits an

efficient sketch obtained by combining the embedding into ℓ1−𝜀 with the sketch of [84],

but does not embed into ℓ1 with constant distortion. Thus, if the answer to Kwapien’s

question is negative, then our desired stronger statement is false.

To bypass the resolution of the Kwapien’s problem, we prove the following variant

of the theorem using a result of Kalton [95]: efficient sketchability is equivalent to

ℓ1-embeddability with constant distortion for norms that are “closed” under sum-

products. A sum-product of two normed spaces 𝑋 and 𝑌 , denoted 𝑋 ⊕ℓ1 𝑌 , is the

normed space 𝑋 × 𝑌 endowed with ‖(𝑥, 𝑦)‖ = ‖𝑥‖ + ‖𝑦‖. It is easy to verify that

ℓ1, the Earth Mover’s Distance, and the trace norm are all closed under taking sum-

products (potentially with an increase in the dimension). Again, we only need to show

the “sketching =⇒ embedding” direction, as the reverse direction follows from the

arguments above — if a normed space 𝑋 embed into ℓ1 with constant distortion, we

can combine it with the ℓ1 sketch of [84] and obtain an efficient sketch for 𝑋. We

discuss the application of this theorem to the Earth Mover’s Distance in Section 5.1.3.

Theorem 5.1.4. Let (𝑋𝑛)
∞
𝑛=1 be a sequence of finite-dimensional normed spaces.

Suppose that for every 𝑖1, 𝑖2 ≥ 1 there exists 𝑚 = 𝑚(𝑖1, 𝑖2) ≥ 1 such that 𝑋𝑖1 ⊕ℓ1 𝑋𝑖2

embeds isometrically into 𝑋𝑚. Assume that every 𝑋𝑛 admits a sketching algorithm for

DTEP(𝑋𝑛, 𝐷) for fixed approximation 𝐷 > 1 with fixed sketch size 𝑠 (both independent

of 𝑛). Then, every 𝑋𝑛 linearly embeds into ℓ1 with bounded distortion (independent of

𝑛).
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Overall, we almost completely characterize the norms that are efficiently sketchable,

thereby making a significant progress on Question 5.1.1. In particular, our results

suggest that the embedding approach (embed into ℓ𝑝 for some 𝑝 ∈ (0, 2], and use the

sketch from [84]) is essentially unavoidable for norms. It is interesting to note that for

general metrics (not norms) the implication “efficient sketching =⇒ embedding into

ℓ1 with constant distortion” is false: for example the Heisenberg group embeds into

ℓ2-squared (with bounded distortion) and hence is efficiently sketchable, but it is not

embeddable into ℓ1 [110, 57, 58] (another example of this sort is provided by Khot

and Vishnoi [104]). At the same time, we are not aware of any counter-example to

the generalization of Theorem 5.1.2 to general metrics.

5.1.3 Applications

To demonstrate the applicability of our results to concrete questions of interest, we

consider two well-known families of normed spaces, for which we obtain the first

non-trivial lower bounds on the sketching complexity.

Trace norm. Let 𝒯𝑛 be the vector space R𝑛×𝑛 (all real square 𝑛 × 𝑛 matrices)

equipped with the trace norm (also known as the nuclear norm and Schatten 1-norm),

which is defined to be the sum of singular values. It is well-known that 𝒯𝑛 embeds into

ℓ2 (and thus also into ℓ1) with distortion
√
𝑛 (observe that the trace norm is within

√
𝑛 from the Frobenius norm, which embeds isometrically into ℓ2). Pisier [149] proved

a matching lower bound of Ω(
√
𝑛) for the distortion of any embedding of 𝒯𝑛 into ℓ1.

This non-embeddability result, combined with our Theorem 5.1.3, implies a sketch-

ing lower bound for the trace norm. Before, only lower bounds for specific types of

sketches (linear and bilinear) were known [111].

Corollary 5.1.5. For any sketching algorithm for DTEP(𝒯𝑛, 𝐷) with sketch size 𝑠

the following bound must hold:

𝑠𝐷 = Ω

(︂ √
𝑛

log 𝑛

)︂
.
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Earth Mover’s Distance. The (planar) Earth Mover’s Distance (also known as the

transportation distance, Wasserstein-1 distance, and Monge-Kantorovich distance) is

the vector space EMD𝑛 = {𝑝 ∈ R[𝑛]2 :
∑︀

𝑖 𝑝𝑖 = 0} endowed with the norm ‖𝑝‖EMD

defined as the minimum cost needed to transport the “positive part” of 𝑝 to the

“negative part” of 𝑝, where the transportation cost per unit between two points in the

grid [𝑛]2 is their ℓ1-distance (for a formal definition see [134]). It is known that this

norm embeds into ℓ1 with distortion 𝑂(log 𝑛) [86, 55, 134], and that any ℓ1-embedding

requires distortion Ω(
√
log 𝑛) [134].

We obtain the first sketching lower bound for EMD𝑛, which in particular addresses

a well-known open question [124, Question #7]. Its proof is a direct application of

Theorem 5.1.4 (which we can apply, since EMD𝑛 is obviously closed under taking

sum-products), to essentially “upgrade” the known non-embeddability into ℓ1 [134] to

non-sketchability.

Corollary 5.1.6. No sketching algorithm for DTEP(EMD𝑛, 𝐷) can achieve approxi-

mation 𝐷 and sketch size 𝑠 that are constant (independent of 𝑛).

The reason we can not apply Theorem 5.1.3 and get a clean quantitative lower

bound for sketches of EMD𝑛 is the factor log(dim𝑋) in Theorem 5.1.3. Indeed, the

lower bound on the distortion of an embedding of EMD𝑛 into ℓ1 proved in [134] is

Ω(
√
log 𝑛), which is smaller than log(dim𝑋) = Θ(log 𝑛).

We note that EMD𝑛 is a (slight) generalization of the EMD metric version com-

monly used in computer science applications. In the latter, given two weighted sets

𝐴,𝐵 ⊂ [𝑛]2 of the same total weight, one has to solve, using only their sketches

sk(𝐴), sk(𝐵), the DTEP(EMD, 𝐷) problem where the EMD distance is the min-cost

matching between 𝐴 and 𝐵. Observe that the weights used in the sets 𝐴,𝐵 ⊂ [𝑛]2 are

all positive. The slight difference is that in 𝐷𝑇𝐸𝑃 (EMD𝑛, 𝐷), which asks analogously

to estimate ‖𝑝− 𝑞‖EMD, each of 𝑝, 𝑞 ∈ R[𝑛]2 has both “positive” and “negative” parts.

Nevertheless, we show in Section 5.7 that efficient sketching of EMD on weighted sets

implies efficient sketching of the EMD𝑛 norm. Hence, the non-sketchability of EMD𝑛

norm applies to EMD on weighted sets as well.
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5.1.4 Other related work

Another direction for “characterizing tractable metrics” is in the context of streaming

algorithms, where the input is an implicit vector 𝑥 ∈ R𝑛 given in the form of updates

(𝑖, 𝛿), with the semantics that coordinate 𝑖 has to be increased by 𝛿 ∈ R.

There are two known results in this vein. First, [45] characterized the streaming

complexity of computing the sum
∑︀

𝑖 𝜙(𝑥𝑖), for some fixed 𝜙 (e.g., 𝜙(𝑥) = 𝑥2 for

ℓ2 norm), when the updates are positive. They gave a precise property of 𝜙 that

determines whether the complexity of the problem is small. Second, [112] showed

that, in certain settings, streaming algorithms may as well be linear, i.e., maintain a

sketch 𝑓(𝑥) = 𝐴𝑥 for a matrix 𝐴, and the size of the sketch is increased by a factor

logarithmic in the dimension of 𝑥.

Furthermore, after the appearance of the conference version of the current article,

there has been another characterization result that significantly generalizes and

extends [45]. Specifically, for every symmetric norm ‖ · ‖𝑋 , it is proved in [42] that

the sketching (and streaming) complexity of computing ‖𝑥‖𝑋 is characterized by the

norm’s (maximum) modulus of concentration, up to polylogarithmic factors in the

dimension of 𝑋. Finally, we mention a related work [25], where an efficient data

structure for the Approximate Nearest Neighbor search (ANN) is constructed for

every symmetric norm. It is known [85, 108] that efficient sketches imply good data

structures for ANN, however, the result of [25] shows that having efficient ANN data

structure is a way more general property of an underlying norm.

5.1.5 Proof overview

Following common practice, we think of sketching as a communication protocol. In

fact, our results hold for protocols with an arbitrary number of rounds (and access to

public randomness).

Our proof of Theorem 5.1.2 can be divided into two parts: information-theoretic

and analytic. First, we use information-theoretic tools to convert an efficient protocol

for DTEP(𝑋,𝐷) into a so-called threshold map from 𝑋 to a Hilbert space. Our notion
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of a threshold map can be viewed as a very weak definition of embeddability (see

Definition 5.4.5 for details). Second, we use techniques from nonlinear functional

analysis to convert a threshold map to a linear map into ℓ1−𝜀.

Information-theoretic part. To get a good threshold map from a protocol for

DTEP(𝑋,𝐷), we proceed in three steps. First, using the fact that 𝑋 is a normed space,

we are able to give a good protocol for DTEP(ℓ𝑘∞(𝑋), 𝐷𝑘) (Lemma 5.4.3). The space

ℓ𝑘∞(𝑋) is a product of 𝑘 copies of𝑋 equipped with the norm ‖(𝑥1, . . . , 𝑥𝑘)‖ = max𝑖 ‖𝑥𝑖‖.
Then, invoking the main result from [20], we conclude non-existence of certain Poincaré-

type inequalities for 𝑋 (Theorem 5.4.4, in the contrapositive).

Finally, we use convex duality together with a compactness argument to conclude

the existence of a desired threshold map from 𝑋 to a Hilbert space (Lemma 5.4.6,

again in the contrapositive).

Analytic part. We proceed from a threshold map by upgrading it to a uniform

embedding (see Definition 5.2.1) of 𝑋 into a Hilbert space (Theorem 5.4.12). For

this we adapt arguments from [94, 151]. We use two tools from nonlinear functional

analysis: an extension theorem for 1/2-Hölder maps from a (general) metric space to

a Hilbert space [128] (Theorem 5.4.16), and a symmetrization lemma for maps from

metric abelian groups to Hilbert spaces [3] (Lemma 5.4.14).

Then we convert a uniform embedding of 𝑋 into a Hilbert space to a linear

embedding into ℓ1−𝜀 by applying the result of Aharoni, Maurey and Mityagin [3]

together with the result of Nikishin [138]. A similar argument has been used in [134].

To prove a quantitative version of this step, we examine the proofs from [3]

and [138], and obtain explicit bounds on the distortion of the resulting map. We

accomplish this in Section 5.5.

Embeddings into ℓ1. To prove Theorem 5.1.3 (which has dependence on the

dimension of 𝑋), we note that it is a simple corollary of Theorem 5.1.2 and a result of

Zvavitch [181], which gives a dimension reduction procedure for subspaces of ℓ1−𝜀.

Norms closed under sum-product. Finally, we prove Theorem 5.1.4 — embed-

dability into ℓ1 for norms closed under sum-product — by proving and using a finitary
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version of the theorem of Kalton [95] (Lemma 5.6.1), instead of invoking Nikishin’s

theorem as above. We prove the finitary version by reducing it to the original statement

of Kalton’s theorem via a compactness argument.

Let us point out that Naor and Schechtman [134] showed how to use (the original)

Kalton’s theorem to upgrade a uniform embedding of EMD𝑛 into a Hilbert space to a

linear embedding into ℓ1 (they used this reduction to exclude uniform embeddability of

EMD𝑛). Their proof used certain specifics of EMD. In contrast, to get Theorem 5.1.4

for general norms, we seem to need a finitary version of Kalton’s theorem.

We also note that in Theorems 5.1.2, 5.1.3 and 5.1.4, we can conclude embeddability

into ℓ𝑑1−𝜀 and ℓ𝑑1 respectively, where 𝑑 is near-linear in the dimension of the original

space. This conclusion uses the known dimension reduction theorems for subspaces

from [167, 181].

5.2 Preliminaries on functional analysis

We remind a few definitions and standard facts from functional analysis that will

be useful for our proofs. A central notion in our proofs is the notion of uniform

embeddings, which is a weaker version of embeddability.

Definition 5.2.1. For two metric spaces 𝑋 and 𝑌 , we say that a map 𝑓 : 𝑋 → 𝑌 is

a uniform embedding, if there exist two non-decreasing functions 𝐿,𝑈 : R+ → R+ such

that for every 𝑥1, 𝑥2 ∈ 𝑋 one has 𝐿(𝑑𝑋(𝑥1, 𝑥2)) ≤ 𝑑𝑌 (𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝑈(𝑑𝑋(𝑥1, 𝑥2)),

𝑈(𝑡) → 0 as 𝑡 → 0 and 𝐿(𝑡) > 0 for every 𝑡 > 0. The functions 𝐿(·) and 𝑈(·) are

called moduli of the embedding.

Definition 5.2.2. An inner-product space is a real vector space 𝑋 together with an

inner product ⟨·, ·⟩ : 𝑋 ×𝑋 → R, which is a symmetric positive-definite bilinear form.

A Hilbert space is an inner-product space 𝑋 that is complete as a metric space.

Every inner-product space is a normed space: we can set ‖𝑥‖ =
√︀
⟨𝑥, 𝑥⟩. For a

normed space 𝑋 we denote by 𝐵𝑋 its closed unit ball. The main example of a Hilbert

space is ℓ2, the space of all real sequences {𝑥𝑛} with
∑︀

𝑖 𝑥
2
𝑖 < ∞, where the inner
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product is defined as

⟨𝑥, 𝑦⟩ =
∑︁
𝑖

𝑥𝑖𝑦𝑖.

Definition 5.2.3. For a set 𝑆, a function 𝐾 : 𝑆 × 𝑆 → R is called a kernel if

𝐾(𝑠1, 𝑠2) = 𝐾(𝑠2, 𝑠1) for every 𝑠1, 𝑠2 ∈ 𝑆. We say that the kernel 𝐾 is positive-definite

if for every 𝛼1, 𝛼2, . . . , 𝛼𝑛 ∈ R and 𝑠1, 𝑠2, . . . , 𝑠𝑛 ∈ 𝑆, one has

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝐾(𝑠𝑖, 𝑠𝑗) ≥ 0.

We say that 𝐾 is negative-definite if for every 𝛼1, . . . , 𝛼𝑛 ∈ R with 𝛼1+𝛼2+. . .+𝛼𝑛 = 0

and 𝑠1, 𝑠2, . . . , 𝑠𝑛 ∈ 𝑆, one has

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝐾(𝑠𝑖, 𝑠𝑗) ≤ 0.

The following are standard facts about positive- and negative-definite kernels.

Fact 5.2.4 ([160]). For a kernel 𝐾 : 𝑆×𝑆 → R, there exists an embedding 𝑓 : 𝑆 → 𝐻,

where 𝐻 is a Hilbert space, such that 𝐾(𝑠1, 𝑠2) = ⟨𝑓(𝑠1), 𝑓(𝑠2)⟩𝐻 for every 𝑠1, 𝑠2 ∈ 𝑆,

iff 𝐾 is positive-definite.

Fact 5.2.5 ([161]). For a kernel 𝐾 : 𝑆×𝑆 → R, there exists an embedding 𝑓 : 𝑆 → 𝐻,

where 𝐻 is a Hilbert space, such that 𝐾(𝑠1, 𝑠2) = ‖𝑓(𝑠1)−𝑓(𝑠2)‖2𝐻 for every 𝑠1, 𝑠2 ∈ 𝑆,

iff 𝐾(𝑠, 𝑠) = 0 for every 𝑠 ∈ 𝑆 and 𝐾 is negative-definite.

Definition 5.2.6. For an abelian group 𝐺, we say that a function 𝑓 : 𝐺 → R is

positive-definite if a kernel 𝐾(𝑔1, 𝑔2) = 𝑓(𝑔1 − 𝑔2) is positive-definite. Similarly, 𝑓 is

said to be negative-definite if 𝐾(𝑔1, 𝑔2) = 𝑓(𝑔1 − 𝑔2) is negative-definite.

The following lemma essentially says that an embedding of an abelian group 𝐺

into a Hilbert space can be made translation-invariant.

Lemma 5.2.7 (see the proof of Lemma 3.5 in [3]). Suppose that 𝑓 is a map from an

abelian group 𝐺 to a Hilbert space such that for every 𝑔 ∈ 𝐺 we have

sup
𝑔1−𝑔2=𝑔

⟨𝑓(𝑔1), 𝑓(𝑔2)⟩ < +∞.
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Then, there exists a map 𝑓 ′ from 𝐺 to a Hilbert space such that ⟨𝑓 ′(𝑔1), 𝑓
′(𝑔2)⟩ depends

only on 𝑔1 − 𝑔2 and for every 𝑔1, 𝑔2 ∈ 𝐺 we have

inf
𝑔′1−𝑔′2=𝑔1−𝑔2

⟨𝑓(𝑔′1), 𝑓(𝑔′2)⟩ ≤ ⟨𝑓 ′(𝑔1), 𝑓
′(𝑔2)⟩ ≤ sup

𝑔′1−𝑔′2=𝑔1−𝑔2

⟨𝑓(𝑔′1), 𝑓(𝑔′2)⟩.

Finally, let dim𝑋 denote the dimension of a finite-dimensional vector space 𝑋.

5.3 Preliminaries on communication complexity

Let 𝑋 be a metric space, on which we would like to solve DTEP𝑟(𝑋,𝐷) defined as

follows for some 𝑟 > 0 and 𝐷 ≥ 1. Alice has a point 𝑥 ∈ 𝑋, Bob has a point 𝑦 ∈ 𝑋,

and they would like to decide between the two cases: 𝑑𝑋(𝑥, 𝑦) ≤ 𝑟 and 𝑑𝑋(𝑥, 𝑦) > 𝐷𝑟.

To accomplish this goal, Alice and Bob exchange at most 𝑠 bits of communication.

There are several types of communication protocols that we consider, depending

on the randomness used, which we present below in the order of their power. Our

main result applies to the most powerful type. We will later show some connections

between the protocols of different types.

∙ Deterministic protocols. This is a simple two-way communication protocol

with no randomness. First, Alice sends a bit to Bob that depends only on 𝑥.

Then, Bob sends a bit to Alice that depends on Alice’s first communication

bit and on 𝑦. Then, Alice sends a bit to Bob that depends on 𝑥 and the two

previous communication bits, etc. Finally, whoever sends the 𝑠-th bit must

decide the answer to the DTEP problem. We define a transcript Π𝑥,𝑦 to be the

sequence of 𝑠 bits sent by the two parties for a given pair of inputs 𝑥 and 𝑦.

∙ Private-coin protocols with bounded number of coins. This is a ran-

domized version of the previous definition. Alice and Bob each have access to an

independent random string, denoted 𝑎 ∈ {0, 1}𝑅 and 𝑏 ∈ {0, 1}𝑅, respectively.

Communication bits sent by Alice are allowed to depend on 𝑎, and those sent by

Bob may depend on 𝑏. We require that for every pair of inputs, the probability
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(over the random coins 𝑎, 𝑏) of the answer being correct is at least, say, 2/3.

Whenever we allow randomness, the transcript Π𝑥,𝑦 becomes a random variable

(depending on 𝑥 and 𝑦). For fixed 𝑎, 𝑏 ∈ {0, 1}𝑅, we denote by Π𝑥,𝑦(𝑎, 𝑏) the

(deterministic) transcript for inputs 𝑥 and 𝑦 when the random strings are set to

be 𝑎 and 𝑏, respectively.

∙ Public-coin protocols with finitely many coins. This is a variant of the

previous definition, where Alice and Bob have access to a common random

string sampled uniformly from {0, 1}𝑅, and the bits sent by both Alice and Bob

can depend on this random string. Again, we require the probability (over the

public coins) of the answer being correct to be at least, say, 2/3 for every pair of

inputs. Also, we denote by Π𝑥,𝑦(𝑢) the deterministic transcript for fixed inputs

and public coins 𝑢.

Clearly, a public-coin protocol with 2𝑅 public coins can emulate a private-coin

protocol with 𝑅 random bits for each of Alice and Bob.

∙ Public-coin protocols with countably many coins. The protocols defined

above are standard in the communication complexity literature. However, we

need a definition that is stronger: we allow countably many public coins. The

reason to consider the stronger notion is that the known protocols for DTEP

based on [84] fall into this category. Since we allow infinitely many coins, we

need to be careful when defining a class of allowed protocols. A sequence of

coin tosses 𝑢 can be identified with a point in the Cantor space Ω = {0, 1}𝜔

equipped with the standard Lebesgue measure. We require that for every pair of

inputs 𝑥, 𝑦 ∈ 𝑋, the function 𝑢 ↦→ Π𝑥,𝑦(𝑢) is measurable. This restriction allows

us to consider probabilities of the form Pr[Π𝑥,𝑦 ∈ 𝐴], where 𝐴 ⊆ {0, 1}𝑠 is an

arbitrary set of possible transcripts. In particular, the probability of success is

well-defined, and we require it, as before, to be at least 2/3.

The results in this paper apply to the most general protocols: public-coin protocols

with countably many coins.
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We now show some connections between these notions. A crucial tool in our result

is a theorem of [20], which is itself based on the tools from [34]. The latter shows a

lower bound for private-coin protocols with finitely many coins. We show next how

the lower bounds from [20, 34] extend to the most general type, public-coin protocols

with countably many coins.

5.3.1 Information complexity: private-coins vs. public-coins

In general, a lower bound for private-coins protocols does not imply a lower bound for

public-coins protocols (without a loss in the parameters). However, such an implication

does hold for the particular lower bound technique that we are employing. In particular,

we use and exploit the notion of information complexity from [34], defined as follows.

Let (𝑥, 𝑦, 𝜆) be distributed according to a distribution 𝒟 over 𝑋 ×𝑋 × Λ, where Λ

is an auxiliary set. We will assume that the support of 𝒟 is finite. Then, we can

define the information complexity with respect to 𝒟, denoted IC𝒟(DTEP𝑟(𝑋,𝐷)), to

be the infimum of 𝐼(𝑥, 𝑦 : Π𝑥,𝑦 | 𝜆) over all private-coin protocols for DTEP𝑟(𝑋,𝐷),

which succeed on every valid input with probability at least 2/3, where 𝐼(· : · | ·) is

the (conditional) mutual information.

It is a standard fact that IC𝒟(DTEP𝑟(𝑋,𝐷)) is a lower bound on the communica-

tion complexity of DTEP𝑟(𝑋,𝐷) with private-coin protocols since

𝐼(𝑥, 𝑦 : Π𝑥,𝑦 | 𝜆) ≤ sup
𝑥,𝑦,𝑎,𝑏

|Π𝑥,𝑦(𝑎, 𝑏)|.

However, we are interested in using the information complexity (as defined above) to

lower bound the communication complexity of DTEP𝑟(𝑋,𝐷) for public-coin protocols

with finite number of coins. It turns out that IC𝒟(DTEP𝑟(𝑋,𝐷)) is a valid lower

bound for this case as well, as argued in the claim below.

Lemma 5.3.1. The communication complexity of DTEP𝑟(𝑋,𝐷) for public-coin pro-

tocols with finite number of coins is at least IC𝒟(DTEP𝑟(𝑋,𝐷)).

Proof. Consider any protocol with public randomness, denoted Π𝑥,𝑦(𝑢), where 𝑥, 𝑦 are
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the two inputs and 𝑢 is the public random string. Then

sup
𝑥,𝑦,𝑢
|Π𝑥,𝑦(𝑢))| ≥ 𝐻(Π𝑥,𝑦(𝑢) | 𝜆, 𝑢) ≥ 𝐼(𝑥, 𝑦 : Π𝑥,𝑦(𝑢) | 𝜆, 𝑢).

Now consider the following private-coins protocol Π′
𝑥,𝑦(𝑎, 𝑏), where 𝑎, 𝑏 are the two

private random strings of Alice and Bob, respectively. In the first round, Alice sends

𝑎 to Bob to be used as public randomness 𝑢 = 𝑎. Then they run Π𝑥,𝑦(𝑢). In other

words, the transcript of Π′
𝑥,𝑦(𝑎, 𝑏) is ⟨𝑎,Π𝑥,𝑦(𝑎)⟩. We claim that

𝐼(𝑥, 𝑦 : Π′
𝑥,𝑦(𝑎, 𝑏) | 𝜆) = 𝐼(𝑥, 𝑦 : Π𝑥,𝑦(𝑢) | 𝜆, 𝑢).

Indeed, by definition of Π′,

𝐼(𝑥, 𝑦 : Π′
𝑥,𝑦(𝑎, 𝑏) | 𝜆) = 𝐼(𝑥, 𝑦 : 𝑎,Π𝑥,𝑦(𝑎) | 𝜆),

and using the chain rule for mutual information,

𝐼(𝑥, 𝑦 : 𝑎,Π𝑥,𝑦(𝑎) | 𝜆) = 𝐼(𝑥, 𝑦 : 𝑎 | 𝜆) + 𝐼(𝑥, 𝑦 : Π𝑥,𝑦(𝑎) | 𝜆, 𝑎).

The first term is exactly zero since 𝑥, 𝑦 and 𝑎 are independent (conditioned on 𝜆).

The remaining term gives the equality we are looking for, and proves the lemma. In

particular, we see that the length of a public-coin protocol is at least the information

complexity 𝐼(𝑥, 𝑦 : Π′
𝑥,𝑦(𝑎, 𝑏) | 𝜆) of any private-coin protocol Π′.

5.3.2 From countable to finite number of coins

We now observe that if we focus only on a finite number of possible inputs to our

DTEP problem, then the existence of a protocol with countably-many coins implies

the existence of a protocol with bounded number of coins. This claim will be sufficient

to generalize our theorem to the most general type of protocols—public-coin protocols

with countably many coins: see the remark after Theorem 5.4.4.

Claim 5.3.2. Fix a public-coin protocol with countably many coins and 𝑠 bits of
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communication. Let (𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)), . . . , (𝑥(𝑁), 𝑦(𝑁)) be 𝑁 fixed pairs of inputs

for the DTEP problem, and let 𝜀 > 0 be a positive parameter. Then there exists a

public-coin protocol with 𝑅 = 𝑅(𝑠,𝑁, 𝜀) <∞ coins and 𝑠 bits of communication, such

that for every 1 ≤ 𝑖 ≤ 𝑁 , the success probabilities of the original and the new protocols

on (𝑥(𝑖), 𝑦(𝑖)) differ by at most 𝜀.

Proof. Since we care about correctness of the protocol only on the inputs (𝑥(𝑖), 𝑦(𝑖)),

we can think of the protocol as a distribution over a bounded (as a function of 𝑠 and

𝑁) number of deterministic protocols (there is only a finite number of distinct protocol

transcripts). Then, we can approximate this distribution within a statistical distance

𝜀 using a bounded number of public coins.

5.4 From sketches to uniform embeddings

Our main technical result shows that, for a finite-dimensional normed space 𝑋, good

sketches for DTEP(𝑋,𝐷) imply a good uniform embedding of 𝑋 into a Hilbert space

(Definition 5.2.1). Below is the formal statement.

Theorem 5.4.1. Suppose a finite-dimensional normed space 𝑋 admits a public-coin

randomized communication protocol for DTEP(𝑋,𝐷) of size 𝑠 for approximation

𝐷 > 1. Then, there exists a map 𝑓 : 𝑋 → 𝐻 to a Hilbert space such that for all

𝑥1, 𝑥2 ∈ 𝑋,

min

{︂
1,
‖𝑥1 − 𝑥2‖𝑋

𝑠 ·𝐷

}︂
≤ ‖𝑓(𝑥1)− 𝑓(𝑥2)‖𝐻 ≤ 𝐾 · ‖𝑥1 − 𝑥2‖1/2𝑋 ,

where 𝐾 > 1 is an absolute constant.

Theorem 5.4.1 implies a qualitative version of Theorem 5.1.2 using the results of

Aharoni, Maurey, and Mityagin [3] and Nikishin [138] (see Theorem 5.4.2).

Theorem 5.4.2 ([3, 138]). For every fixed 0 < 𝜀 < 1, any finite-dimensional normed

space 𝑋 that is uniformly embeddable into a Hilbert space is linearly embeddable into

ℓ1−𝜀 with a distortion that depends only on 𝜀 and the moduli of the assumed uniform

embedding.
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To prove the full (quantitative) versions of Theorems 5.1.2 and 5.1.3, we adapt the

proofs from [3] and [138] in Section 5.5 to get an explicit bound on the distortion.

In the rest of this section, we prove Theorem 5.4.1 according to the outline in

Section 5.1.5, putting the pieces together in Section 5.4.4.

5.4.1 Sketching implies the absence of Poincaré inequalities

Sketching is often viewed from the perspective of a two-party communication complex-

ity. Alice receives input 𝑥, Bob receives 𝑦, and they need to communicate to solve the

DTEP problem. In particular, a sketch of size 𝑠 implies a communication protocol

that transmits 𝑠 bits: Alice just sends her sketch sk(𝑥) to Bob, who computes the

output of DTEP (based on that message and his sketch sk(𝑦)). We assume here a

public-coins model, i.e., Alice and Bob have access to a common (public) random

string that determines the sketch function sk.

To characterize sketching protocols, we build on results of Andoni, Jayram and

Pǎtraşcu [20, Sections 3 and 4]. This works in two steps: first, we show that a protocol

for DTEP(𝑋,𝐷) implies a sketching algorithm for DTEP(ℓ𝑘∞(𝑋), 𝑘𝐷), with a loss of

factor 𝑘 in approximation (Lemma 5.4.3, see the proof in the end of the section). As

usual, ℓ𝑘∞(𝑋) is a normed space derived from 𝑋 by taking the vector space 𝑋𝑘 and

letting the norm of a vector (𝑥1, . . . 𝑥𝑘) ∈ 𝑋𝑘 be the maximum of the norms of its 𝑘

components. The second step is to apply a result from [20] (Theorem 5.4.4), which

asserts that sketching for ℓ𝑘∞(𝑋) precludes certain Poincaré inequalities for the space

𝑋.

Lemma 5.4.3. Let 𝑋 be a finite-dimensional normed space that for some 𝐷 ≥ 1

admits a communication protocol for DTEP(𝑋,𝐷) of size 𝑠. Then for every integer 𝑘,

the space ℓ𝑘∞(𝑋) admits sketching with approximation 𝑘𝐷 and sketch size 𝑠′ = 𝑂(𝑠).

Proof. Fix a threshold 𝑡 > 0, and recall that we defined the success probability of

sketching to be 0.9. By our assumption, there is a sketching function sk for 𝑋

that achieves approximation 𝐷 and sketch size 𝑠 for threshold 𝑘𝑡. Now define a

“sketching” function sk′ for ℓ𝑘∞(𝑋) by choosing random signs 𝜀1, . . . , 𝜀𝑘 ∈ {±1}, letting
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sk′ : 𝑥 ↦→ sk(
∑︀𝑘

𝑖=1 𝜀𝑖𝑥𝑖), and using the same decision procedure used by sk (for 𝑋).

Now to examine the performance of sk′, consider 𝑥, 𝑦 ∈ ℓ𝑘∞(𝑋). If their distance

is at most 𝑡, then we always have that ‖∑︀𝑘
𝑖=1 𝜀𝑖𝑥𝑖 −

∑︀𝑘
𝑖=1 𝜀𝑖𝑦𝑖‖ ≤

∑︀𝑘
𝑖=1‖𝑥𝑖 − 𝑦𝑖‖ ≤ 𝑘𝑡

(i.e., for every realization of the random signs). Thus with probability at least 0.9 the

sketch will declare that 𝑥, 𝑦 are “close”.

If the distance between 𝑥, 𝑦 is greater than 𝑘𝐷 · 𝑡, then for some coordinate, say

𝑖 = 1, we have ‖𝑥1 − 𝑦1‖ > 𝑘𝐷 · 𝑡. Letting 𝑧 =
∑︀

𝑖≥2 𝜀𝑖(𝑥𝑖 − 𝑦𝑖), we can write

‖∑︀𝑘
𝑖=1 𝜀𝑖𝑥𝑖 −

∑︀𝑘
𝑖=1 𝜀𝑖𝑦𝑖‖ = ‖𝜀1(𝑥1 − 𝑦1) + 𝑧‖ = ‖(𝑥1 − 𝑦1) + 𝜀1𝑧‖. The last term must

be at least ‖𝑥1 − 𝑦1‖ under at least one of the two possible realizations of 𝜀1, because

by the triangle inequality 2‖𝑥1− 𝑦1‖ ≤ ‖(𝑥1− 𝑦1) + 𝑧‖+ ‖(𝑥1− 𝑦1)− 𝑧‖. We see that

with probability 1/2 we have ‖∑︀𝑘
𝑖=1 𝜀𝑖𝑥𝑖 −

∑︀𝑘
𝑖=1 𝜀𝑖𝑦𝑖‖ ≥ ‖𝑥1 − 𝑦1‖ > 𝐷 · 𝑘𝑡, and thus

with probability at least 1/2 · 0.9 = 0.45 the sketch will declare that 𝑥, 𝑦 are “far”.

This last guarantee is not sufficient for sk′ to be called a sketch, but it can easily be

amplified.

The final sketch sk′′ for ℓ𝑘∞(𝑋) is obtained by 𝑂(1) independent repetitions of sk′,

and returning “far” if at least 0.3-fraction of the repetitions come up with this decision.

These repetitions amplify the success probability to 0.9, while increasing the sketch

size to 𝑂(𝑠).

We now state a slight modification of the theorem from [20]. We will actually use

its contrapositive, to conclude the absence of Poincaré inequalities.

Theorem 5.4.4 (modification of [20]). Let 𝑋 be a metric space, and fix 𝑟 > 0, 𝐷 ≥ 1.

Suppose there are 𝛼 > 0, 𝛽 ≥ 0, and two symmetric probability measures 𝜇1, 𝜇2 on

𝑋 ×𝑋 such that

∙ The support of 𝜇1 is finite and is only on pairs with distance at most 𝑟;

∙ The support of 𝜇2 is finite and is only on pairs with distance greater than 𝐷𝑟;

and

∙ For every 𝑓 : 𝑋 → 𝐵ℓ2 (where 𝐵ℓ2 is the unit ball of ℓ2),

E
(𝑥,𝑦)∼𝜇1

‖𝑓(𝑥)− 𝑓(𝑦)‖2 ≥ 𝛼 · E
(𝑥,𝑦)∼𝜇2

‖𝑓(𝑥)− 𝑓(𝑦)‖2 − 𝛽.
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Then for every integer 𝑘, the communication complexity of DTEP(ℓ𝑘∞(𝑋), 𝐷) for

protocols with countably many public coins (see Section 5.3 for precise definitions)

and with probability of error 𝛿0 > 0 is at least Ω(𝑘) ·
(︀
𝛼(1− 2

√
𝛿0)− 𝛽

)︀
.

In [20], almost the same theorem is proved with only one difference: the protocols

for DTEP(ℓ𝑘∞(𝑋), 𝐷) are only allowed to use finitely many private coins. Here we use

Claims 5.3.1 and 5.3.2 to generalize their theorem to Theorem 5.4.4.

Indeed, because the “hard distributions” 𝜇1 and 𝜇2 are finitely-supported, an

inspection of the proofs from [20] shows that there is a finite set of inputs ℐ such that

any private-coin protocol for DTEP(ℓ𝑘∞(𝑋), 𝐷) that is correct on ℐ with probability

at least 1− 𝛿0 must have information complexity at least Ω(𝑘) ·
(︀
𝛼(1− 2

√
𝛿0)− 𝛽

)︀
.

But by Claim 5.3.1, we get that any protocol with bounded number of public coins

correct on ℐ must have communication complexity at least Ω(𝑘) ·
(︀
𝛼(1− 2

√
𝛿0)− 𝛽

)︀
.

Finally, Claim 5.3.2 implies that the same is true for protocols with countably many

public coins that are correct on all valid inputs with probability at least 1− 𝛿0.

5.4.2 The absence of Poincaré inequalities implies threshold

maps

We proceed to prove that non-existence of Poincaré inequalities implies the existence

a “threshold map”, as formalized in Lemma 5.4.6 below. The proof is similar to

duality arguments that one often encounters in embedding theory: for instance, see

Proposition 15.5.2 in [121]. First we define the notion of threshold maps.

Definition 5.4.5. A map 𝑓 : 𝑋 → 𝑌 between metric spaces (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌 ) is

said to be (𝑠1, 𝑠2, 𝜏1, 𝜏2, 𝜏3)-threshold for 0 < 𝑠1 < 𝑠2, 0 < 𝜏1 < 𝜏2 < 𝜏3, if for all

𝑥1, 𝑥2 ∈ 𝑋:

∙ if 𝑑𝑋(𝑥1, 𝑥2) ≤ 𝑠1, then 𝑑𝑌 (𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝜏1;

∙ if 𝑑𝑋(𝑥1, 𝑥2) ≥ 𝑠2, then 𝑑𝑌 (𝑓(𝑥1), 𝑓(𝑥2)) ≥ 𝜏2; and

∙ 𝑑𝑌 (𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝜏3.

181



We now provide the main lemma of this section, stated in the contrapositive: the

non-existence of threshold maps implies a Poincaré inequality.

Lemma 5.4.6. Suppose 𝑋 is a metric space that has no (𝑠1, 𝑠2, 𝜏1, 𝜏2,+∞)-threshold

map to a Hilbert space. Then, for every 𝛿 > 0 there exist two symmetric probability

measures 𝜇1, 𝜇2 on 𝑋 ×𝑋 such that

∙ The support of 𝜇1 is finite and is only on pairs with distance at most 𝑠1;

∙ The support of 𝜇2 is finite and is only on pairs with distance at least 𝑠2; and

∙ For every 𝑓 : 𝑋 → 𝐵ℓ2,

E
(𝑥,𝑦)∼𝜇1

‖𝑓(𝑥)− 𝑓(𝑦)‖2 ≥
(︂
𝜏1
𝜏2

)︂2

· E
(𝑥,𝑦)∼𝜇2

‖𝑓(𝑥)− 𝑓(𝑦)‖2 − 𝛿. (5.1)

We prove Lemma 5.4.6 via the following three claims. The first one uses standard

arguments about embeddability of finite subsets (see, e.g., Proposition 8.12 in [41],

or Lemma 1.1 from [31]). We note that this claim requires a finite value for 𝜏3, as

opposed to 𝜏3 = +∞, which is the only reason the definition of a threshold embedding

(Definition 5.4.5) needs the parameter 𝜏3. In the following claims, we denote by
(︀
𝑋
2

)︀
the set of all unordered pairs {𝑥, 𝑦} with 𝑥, 𝑦 ∈ 𝑋, 𝑥 ̸= 𝑦.

Claim 5.4.7. For every metric space 𝑋 and every 0 < 𝑠1 < 𝑠2, 0 < 𝜏1 < 𝜏2 < 𝜏3

there exists an (𝑠1, 𝑠2, 𝜏1, 𝜏2, 𝜏3)-threshold map of 𝑋 to a Hilbert space iff the same is

true for every finite subset of 𝑋.

The proof of Claim 5.4.7 uses standard definitions and facts from general topology:

product topology, Tychonoff’s theorem, as well as convergence and accumulation

points along nets. These definitions can be found in a general topology textbook (see,

e.g., [130]).

Proof. The “only if” direction is obvious, so let us turn to the “if” part. Consider the

topological space

𝑈 =
∏︁

{𝑥,𝑦}∈(𝑋2 )

[−𝜏 23 , 𝜏 23 ].
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By Tychonoff’s theorem 𝑈 is compact. For every finite 𝑋 ′ ⊂ 𝑋 there exists an

(𝑠1, 𝑠2, 𝜏1, 𝜏2, 𝜏3)-threshold map 𝑓𝑋′ from 𝑋 ′ to a Hilbert space. It gives rise to a point

𝑢𝑋′ ∈ 𝑈 whose coordinates are given by

(𝑢𝑋′)𝑥,𝑦 =

⎧⎪⎨⎪⎩‖𝑓𝑋
′(𝑥)− 𝑓𝑋′(𝑦)‖2, if 𝑥, 𝑦 ∈ 𝑋 ′;

0, otherwise.

Since 𝑈 is compact, 𝑢𝑋′ has an accumulation point 𝑢* ∈ 𝑈 along the net of finite

subsets of 𝑋. Let us reformulate what it means.

Claim 5.4.8. For every {𝑥1, 𝑦1}, {𝑥2, 𝑦2}, . . . , {𝑥𝑘, 𝑦𝑘} ∈
(︀
𝑋
2

)︀
and every 𝜀 > 0, there

exists a finite set 𝐴 ⊂ 𝑋 such that for all 1 ≤ 𝑖 ≤ 𝑘, both 𝑥𝑖, 𝑦𝑖 ∈ 𝐴 and
⃒⃒⃒
(𝑢*)𝑥𝑖,𝑦𝑖 −

‖𝑓𝐴(𝑥𝑖)− 𝑓𝐴(𝑦𝑖)‖2
⃒⃒⃒
< 𝜀 .

Now we define a kernel 𝐾 : 𝑋 ×𝑋 → R, given by (recall Definition 5.2.3):

𝐾(𝑥, 𝑦) =

⎧⎪⎨⎪⎩0, if 𝑥 = 𝑦;

(𝑢*)𝑥,𝑦, otherwise.

Claim 5.4.9. The kernel 𝐾(·, ·) is negative-definite.

Proof. Suppose that 𝐾 is not negative-definite. It means that there exist real numbers

𝛼1, 𝛼2, . . . , 𝛼𝑛 ∈ R with
∑︀

𝑖 𝛼𝑖 = 0, and 𝑡1, 𝑡2, . . . , 𝑡𝑛 ∈ 𝑋 such that

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝐾(𝑡𝑖, 𝑡𝑗) = 𝛾 > 0.

There exists 𝜀 > 0 such that for every (𝑎𝑖𝑗)
𝑛
𝑖,𝑗=1 with |𝑎𝑖𝑗 −𝐾(𝑡𝑖, 𝑡𝑗)| < 𝜀 one has

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑎𝑖𝑗 ≥ 𝛾/2 > 0. (5.2)

Now apply Claim 5.4.8 to get a finite set 𝐴 ⊂ 𝑋 that contains all 𝑠𝑖’s such that
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‖𝑓𝐴(𝑡𝑖)− 𝑓𝐴(𝑡𝑗)‖2 is within 𝜀 from 𝐾(𝑡𝑖, 𝑡𝑗) for every 𝑖, 𝑗. But by (5.2), it means that

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗‖𝑓𝐴(𝑡𝑖)− 𝑓𝐴(𝑡𝑗)‖2 ≥ 𝛾/2 > 0,

which contradicts Fact 5.2.5. This proves Claim 5.4.9.

Thus, by Fact 5.2.5, there exists a map 𝑓 : 𝑋 → 𝐻 to a Hilbert space 𝐻 such that

for every 𝑥, 𝑦 ∈ 𝑋 one has ‖𝑓(𝑥)− 𝑓(𝑦)‖2 = 𝐾(𝑥, 𝑦). The final step is to verify that

𝑓 is indeed a required (𝑠1, 𝑠2, 𝜏1, 𝜏2, 𝜏3)-map (according to Definition 5.4.5). This can

be done exactly the same way as in the proof of Claim 5.4.9. This completes the proof

of Claim 5.4.7.

Claim 5.4.10. Suppose that (𝑋, 𝑑𝑋) is a finite metric space and 0 < 𝑠1 < 𝑠2,

0 < 𝜏1 < 𝜏2 < 𝜏3. Assume that there is no (𝑠1, 𝑠2, 𝜏1, 𝜏2, 𝜏3)-threshold map of 𝑋 to ℓ2.

Then, there exist two symmetric probability measures 𝜇1, 𝜇2 on 𝑋 ×𝑋 such that

∙ 𝜇1 is supported only on pairs with distance at most 𝑠1, while 𝜇2 is supported only

on pairs with distance at least 𝑠2; and

∙ for every 𝑓 : 𝑋 → ℓ2,

E
(𝑥,𝑦)∼𝜇1

‖𝑓(𝑥)− 𝑓(𝑦)‖2

≥
(︂
𝜏1
𝜏2

)︂2

· E
(𝑥,𝑦)∼𝜇2

‖𝑓(𝑥)− 𝑓(𝑦)‖2 −
(︂
2𝜏1
𝜏3

)︂2

· sup
𝑥∈𝑋
‖𝑓(𝑥)‖2. (5.3)

Proof. Let ℒ2 ⊂ R(
𝑋
2 ) be the cone of squared Euclidean metrics (also known as

negative-type distances) on 𝑋. Let 𝒦 ⊂ R(
𝑋
2 ) be the polytope of non-negative

functions 𝑙 :
(︀
𝑋
2

)︀
→ R+ such that for every 𝑥, 𝑦 ∈ 𝑋 we have

∙ 𝑙({𝑥, 𝑦}) ≤ 𝜏 23 ;

∙ if 𝑑𝑋(𝑥, 𝑦) ≤ 𝑠1, then 𝑙({𝑥, 𝑦}) ≤ 𝜏 21 ;

∙ if 𝑑𝑋(𝑥, 𝑦) ≥ 𝑠2, then 𝑙({𝑥, 𝑦}) ≥ 𝜏 22 .
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Notice that ℒ2 ∩ 𝒦 = ∅, as otherwise 𝑋 allows an (𝑠1, 𝑠2, 𝜏1, 𝜏2, 𝜏3)-threshold map

to ℓ2. We will need the following claim, which is just a variant of the Hyperplane

Separation Theorem.

Claim 5.4.11. There exists 𝑎 ∈ R(
𝑋
2 ) such that

∀𝑙 ∈ ℒ2, ⟨𝑎, 𝑙⟩ ≤ 0; (5.4)

∀𝑙 ∈ 𝒦, ⟨𝑎, 𝑙⟩ > 0. (5.5)

Proof. Since both ℒ2 and 𝒦 are convex and closed, and, in addition, 𝒦 is compact,

there exists a separating (affine) hyperplane between ℒ2 and 𝒦. Specifically, there

is a non-zero 𝑎 such that for every 𝑙 ∈ ℒ2 one has ⟨𝑎, 𝑙⟩ ≤ 𝜂, and for every 𝑙 ∈ 𝒦
one has ⟨𝑎, 𝑙⟩ > 𝜂. Since ℒ2 is a cone, one can assume without loss of generality that

𝜂 = 0. Indeed, the case 𝜂 < 0 is impossible because 0 ∈ ℒ2, so suppose that 𝜂 > 0. If

for all 𝑙 ∈ ℒ2 we have ⟨𝑎, 𝑙⟩ ≤ 0, then we are done. Otherwise, take any 𝑙 ∈ ℒ2 such

that ⟨𝑎, 𝑙⟩ > 0, and scale it by sufficiently large 𝐶 > 0 to get a point 𝐶𝑙 ∈ ℒ2 so that

⟨𝑎, 𝐶𝑙⟩ = 𝐶⟨𝑎, 𝑙⟩ > 𝜂, arriving to a contradiction.

We now continue the proof of Claim 5.4.10. We may assume without loss of

generality that

∀ {𝑥, 𝑦} ∈
(︀
𝑋
2

)︀
, if 𝑑𝑋(𝑥, 𝑦) < 𝑠2 then 𝑎{𝑥,𝑦} ≤ 0. (5.6)

To see this, let us zero every such 𝑎{𝑥,𝑦} > 0, and denote the resulting point 𝑎̂. Then

for every 𝑙 ∈ ℒ2 (which clearly has non-negative coordinates), ⟨𝑎̂, 𝑙⟩ ≤ ⟨𝑎, 𝑙⟩ ≤ 0. And

for every 𝑙 ∈ 𝒦, let 𝑙̂ be equal to 𝑙 except that we zero the same coordinates where we

zero 𝑎 (which in particular satisfy 𝑑𝑋(𝑥, 𝑦) < 𝑠2); observe that also 𝑙̂ ∈ 𝒦, and thus

⟨𝑎̂, 𝑙⟩ = ⟨𝑎, 𝑙̂⟩ > 0. We get that 𝑎̂ separates 𝒦 and ℒ2 and also satisfies (5.6).
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Now we define non-negative functions ̃︀𝜇1, ̃︀𝜇2, ̃︀𝜇3 :
(︀
𝑋
2

)︀
→ R+ as follows:

̃︀𝜇1({𝑥, 𝑦}) = −𝑎({𝑥, 𝑦}) 1{𝑑𝑋(𝑥,𝑦)≤𝑠1};̃︀𝜇2({𝑥, 𝑦}) = 𝑎({𝑥, 𝑦}) 1{𝑑𝑋(𝑥,𝑦)≥𝑠2 and 𝑎𝑥,𝑦≥0};

̃︀𝜇3({𝑥, 𝑦}) = −𝑎({𝑥, 𝑦}) 1{𝑑𝑋(𝑥,𝑦)>𝑠1 and 𝑎𝑥,𝑦<0}.

By (5.6), these ̃︀𝜇𝑖 “cover” all cases, i.e.,

∀ {𝑥, 𝑦} ∈
(︀
𝑋
2

)︀
, 𝑎({𝑥, 𝑦}) = −̃︀𝜇1({𝑥, 𝑦}) + ̃︀𝜇2({𝑥, 𝑦})− ̃︀𝜇3({𝑥, 𝑦}).

For 𝑖 ∈ {1, 2, 3} define 𝜆𝑖 =
∑︀

{𝑥,𝑦} ̃︀𝜇𝑖({𝑥, 𝑦}) and 𝜇𝑖({𝑥, 𝑦}) = ̃︀𝜇𝑖({𝑥, 𝑦})/𝜆𝑖. We

argue that 𝜇1 and 𝜇2 are as required by Claim 5.4.10, and indeed the only non-trivial

property to check is the second item. From the condition that ⟨𝑎, 𝑙⟩ ≤ 0 for every

𝑙 ∈ ℒ2 we get that for every map 𝑓 : 𝑋 → ℓ2,

0 ≥
∑︁
{𝑥,𝑦}

𝑎({𝑥, 𝑦}) · ‖𝑓(𝑥)− 𝑓(𝑦)‖2

=
∑︁
{𝑥,𝑦}

[︁
− ̃︀𝜇1({𝑥, 𝑦}) + ̃︀𝜇2({𝑥, 𝑦})− ̃︀𝜇3({𝑥, 𝑦})

]︁
· ‖𝑓(𝑥)− 𝑓(𝑦)‖2,

which, in turn, implies

𝜆1 · E
(𝑥,𝑦)∼𝜇1

‖𝑓(𝑥)− 𝑓(𝑦)‖2 ≥ 𝜆2 · E
(𝑥,𝑦)∼𝜇2

‖𝑓(𝑥)− 𝑓(𝑦)‖2 − 4𝜆3 · sup
𝑥
‖𝑓(𝑥)‖2. (5.7)

Consider the point 𝑙 ∈ 𝒦 with value 𝜏 21 on supp(𝜇1), value 𝜏 22 on supp(𝜇2), value 𝜏 23
on supp(𝜇3), and 0 otherwise; the condition ⟨𝑎, 𝑙⟩ > 0 gives

−𝜆1𝜏 21 + 𝜆2𝜏
2
2 − 𝜆3𝜏 23 > 0,

which implies 𝜆1 < 𝜆2 · 𝜏 22 /𝜏 21 and 𝜆3 < 𝜆2 · 𝜏 22 /𝜏 23 (in particular, 𝜆2 > 0). Plugging

into (5.7), we get the inequality required for Claim 5.4.10.

We are now ready to prove Lemma 5.4.6.
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Proof of Lemma 5.4.6. Consider a metric space 𝑋, for which there is no threshold

map with parameters (𝑠1, 𝑠2, 𝜏1, 𝜏2,+∞). We prove that this implies the Poincaré

inequality (5.1).

Indeed, 𝑋 has no (𝑠1, 𝑠2, 𝜏1, 𝜏2, 𝜏3)-threshold map to a Hilbert space for any finite

value 𝜏3. We set 𝜏3 > 𝜏2 be sufficiently large so that (2𝜏1/𝜏3)2 < 𝛿. Then, by Claim 5.4.7

there exists a finite subset 𝑋 ′ ⊂ 𝑋 that has no (𝑠1, 𝑠2, 𝜏1, 𝜏2, 𝜏3)-threshold map to a

Hilbert space (which without loss of generality can be chosen to be ℓ2, since 𝑋 ′ is

finite). Now, using Claim 5.4.10, we obtain finitely-supported probability measures

𝜇1 and 𝜇2, which satisfy (5.3). This concludes the proof of Lemma 5.4.6, since its

statement only considers 𝑓 such that the image of 𝑓 is the unit ball of ℓ2, and, thus,

sup𝑥∈𝑋 ‖𝑓(𝑥)‖2 ≤ 1. Note that the measures 𝜇1, 𝜇2 depend on the value of 𝜏3 (and, as

a result, on 𝛿).

5.4.3 Threshold maps imply uniform embeddings

We now prove that threshold embeddings imply uniform embeddings, formalized as

follows.

Theorem 5.4.12. Suppose that 𝑋 is a finite-dimensional normed space such that

there exists a map to a Hilbert space, which is (1, 𝐷, 𝜏1, 𝜏2,+∞)-threshold for some

𝐷 > 1 and for some 0 < 𝜏1 < 𝜏2 with 𝜏2 > 8𝜏1. Then there exists a map ℎ of 𝑋 into

a Hilbert space such that for every 𝑥1, 𝑥2 ∈ 𝑋,

(𝜏
1/2
2 − (8𝜏1)

1/2) ·min

{︂
1,
‖𝑥1 − 𝑥2‖
2𝐷 + 4

}︂
≤ ‖ℎ(𝑥1)− ℎ(𝑥2)‖ ≤ (2𝜏1‖𝑥1 − 𝑥2‖)1/2. (5.8)

In particular, ℎ is a uniform embedding of 𝑋 into a Hilbert space with moduli that

depend only on 𝜏1, 𝜏2 and 𝐷.

Let us point out that in [94, 151], Johnson and Randrianarivony prove that for

a Banach space coarse embeddability into a Hilbert space is equivalent to uniform

embeddability. Our definition of a threshold map is weaker than that of a coarse

embedding (for the latter see [94] say), but we show that we can adapt the proof of
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[94, 151] to our setting as well (at least whenever the gap between 𝜏1 and 𝜏2 is large

enough). Since we only need one direction of the equivalence, we present a part of the

argument from [94] with one (seemingly new) addition: Claim 5.4.19. The resulting

proof is arguably simpler than the combination of [94] and [151], and yields a clean

quantitative bound (5.8).

Intuition. Let us provide some very high-level intuition of the proof of Theorem 5.4.12.

We start with a threshold map 𝑓 from 𝑋 to a Hilbert space. First, we show that 𝑓 is

Lipschitz on pairs of points that are sufficiently far. In particular, 𝑓 , restricted on a

sufficiently crude net 𝑁 of 𝑋, is Lipschitz. This allows us to use a certain extension

theorem to extend the restriction of 𝑓 on 𝑁 to a Lipschitz function on the whole 𝑋,

while preserving the property that 𝑓 does not contract too much distances that are

sufficiently large. Then, we get a required uniform embedding by performing a certain

symmetrization step.

The actual proof is different in a number of details; in particular, instead of being

Lipschitz the actual property we will be trying to preserve is different.

Useful facts. To prove Theorem 5.4.12, we need the following three results.

Lemma 5.4.13 ([159]). For a set 𝑆 and a map 𝑓 from 𝑆 to a Hilbert space, there

exists a map 𝑔 from 𝑆 to a Hilbert space such that ‖𝑔(𝑥1)−𝑔(𝑥2)‖ = ‖𝑓(𝑥1)−𝑓(𝑥2)‖1/2

for every 𝑥1, 𝑥2 ∈ 𝑆.

Lemma 5.4.14 (essentially Lemma 3.5 from [3]). Suppose that 𝑓 is a map from an

abelian group 𝐺 to a Hilbert space such that for every 𝑔 ∈ 𝐺 we have

sup
𝑔1−𝑔2=𝑔

‖𝑓(𝑔1)− 𝑓(𝑔2)‖ < +∞.

Then, there exists a map 𝑓 ′ from 𝐺 to a Hilbert space such that ‖𝑓 ′(𝑔1) − 𝑓 ′(𝑔2)‖
depends only on 𝑔1 − 𝑔2 and for every 𝑔1, 𝑔2 ∈ 𝐺 we have

inf
𝑔′1−𝑔′2=𝑔1−𝑔2

‖𝑓(𝑔′1)− 𝑓(𝑔′2)‖ ≤ ‖𝑓 ′(𝑔1)− 𝑓 ′(𝑔2)‖ ≤ sup
𝑔′1−𝑔′2=𝑔1−𝑔2

‖𝑓(𝑔′1)− 𝑓(𝑔′2)‖. (5.9)

Proof. This lemma is similar to Lemma 5.2.7 with one twist: in the statement, we
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now have distances instead of dot products. The proof of Lemma 5.2.7 relies on the

characterization from Fact 5.2.4. If instead we use Fact 5.2.5, we can reuse the proof

of Lemma 3.5 from [3] verbatim to prove the present lemma.

Let us sketch here the symmetrization procedure. Let 𝐵(𝐺) be the vector space of

bounded functions ℎ : 𝐺→ R. Then, one can show that there exists a finitely additive

invariant mean 𝑀 : 𝐵(𝐺)→ R: a linear functional such that

∙ for every ℎ ∈ 𝐵(𝐺) such that ℎ ≥ 0 one has 𝑀ℎ ≥ 0;

∙ for every ℎ ∈ 𝐵(𝐺) and 𝑔 ∈ 𝐺 one has 𝑀ℎ =𝑀(𝑥 ↦→ ℎ(𝑥+ 𝑔));

∙ 𝑀(𝑥 ↦→ 1) = 1.

The existence of such 𝑀 is non-trivial and requires the axiom of choice (see, e.g.,

Theorem 17.5 from [78]).

Let us now consider a map 𝑓 from the statement of the lemma and consider the

kernel 𝐾(𝑔1, 𝑔2) = ‖𝑓(𝑔1)− 𝑓(𝑔2)‖2. Let us define a new function 𝐾 ′(𝑔1, 𝑔2) as follows:

𝐾 ′(𝑔1, 𝑔2) =𝑀(𝑥 ↦→ 𝐾(𝑥+ 𝑔1 − 𝑔2, 𝑥)).

Now we need to check that:

∙ 𝐾 ′ is a kernel (that is, it is non-negative and symmetric) and 𝐾 ′(𝑔, 𝑔) = 0 for

every 𝑔 ∈ 𝐺;

∙ 𝐾 ′ is negative-definite (see Definition 5.2.3), assuming that 𝐾 is negative-definite

(which is true by Fact 5.2.5);

∙ for every 𝑔1, 𝑔2 ∈ 𝐺 one has

inf
𝑔′1−𝑔′2=𝑔1−𝑔2

‖𝑓(𝑔′1)− 𝑓(𝑔′2)‖2 ≤ 𝐾 ′(𝑔1, 𝑔2) ≤ sup
𝑔′1−𝑔′2=𝑔1−𝑔2

‖𝑓(𝑔′1)− 𝑓(𝑔′2)‖2

assuming (5.9).
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This can be done exactly the same way as in the proof of Lemma 3.5 from [3]. Finally,

we observe that 𝐾 ′(𝑔1, 𝑔2) depends only on 𝑔1 − 𝑔2 and via Fact 5.2.5 gives a map 𝑓 ′

from 𝐺 to a Hilbert space with the required properties.

Definition 5.4.15. We say that a map 𝑓 : 𝑋 → 𝑌 between metric spaces is 1/2-Hölder

with constant 𝐶, if for every 𝑥1, 𝑥2 ∈ 𝑋 one has 𝑑𝑌 (𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝐶 · 𝑑𝑋(𝑥1, 𝑥2)1/2.

Theorem 5.4.16 ([128], see also Theorem 19.1 in [174]).). Let (𝑋, 𝑑𝑋) be a metric

space and let 𝐻 be a Hilbert space. Suppose that 𝑓 : 𝑆 → 𝐻, where 𝑆 ⊂ 𝑋, is a

1/2-Hölder map with a constant 𝐶 > 0. Then there exists a map 𝑔 : 𝑋 → 𝐻 that

coincides with 𝑓 on 𝑆 and is 1/2-Hölder with the constant 𝐶.

We are now ready to prove Theorem 5.4.12.

Proof of Theorem 5.4.12. We prove the theorem via the following sequence of claims.

Suppose that 𝑋 is a finite-dimensional normed space. Let 𝑓 be a (1, 𝐷, 𝜏1, 𝜏2,+∞)-

threshold map to a Hilbert space.

The first claim is well-known and is a variant of Proposition 1.11 from [41].

Claim 5.4.17. For every 𝑥1, 𝑥2 ∈ 𝑋 we have

‖𝑓(𝑥1)− 𝑓(𝑥2)‖ ≤ max {1, 2 · ‖𝑥1 − 𝑥2‖} · 𝜏1.

Proof. If ‖𝑥1 − 𝑥2‖ ≤ 1, then ‖𝑓(𝑥1)− 𝑓(𝑥2)‖ ≤ 𝜏1, and we are done. Otherwise, let

us take 𝑦0, 𝑦1, . . . , 𝑦𝑙 ∈ 𝑋 such that 𝑦0 = 𝑥1, 𝑦𝑙 = 𝑥2, ‖𝑦𝑖 − 𝑦𝑖+1‖ ≤ 1 for every 𝑖, and

𝑙 = ⌈‖𝑥1 − 𝑥2‖⌉. In particular, we can take 𝑦𝑖 = 𝑥1 + 𝑖 · 𝑥1−𝑥2

‖𝑥1−𝑥2‖ for 𝑖 = 0, 1, . . . 𝑙 − 1,

and 𝑦𝑙 = 𝑥2. We have

‖𝑓(𝑥1)− 𝑓(𝑥2)‖ ≤
𝑙−1∑︁
𝑖=0

‖𝑓(𝑦𝑖)− 𝑓(𝑦𝑖+1)‖ ≤ 𝑙𝜏1 = ⌈‖𝑥1 − 𝑥2‖⌉ · 𝜏1 ≤ 2‖𝑥1 − 𝑥2‖ · 𝜏1,

where the first step is by the triangle inequality, the second step follows from ‖𝑦𝑖 −
𝑦𝑖+1‖ ≤ 1, and the last step follows from ‖𝑥1 − 𝑥2‖ ≥ 1.

The proof of the next claim essentially appears in [94].
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Claim 5.4.18. There exists a map 𝑔 from 𝑋 to a Hilbert space such that for every

𝑥1, 𝑥2 ∈ 𝑋,

∙ ‖𝑔(𝑥1)− 𝑔(𝑥2)‖ ≤ (2𝜏1 · ‖𝑥1 − 𝑥2‖)1/2;

∙ if ‖𝑥1 − 𝑥2‖ ≥ 𝐷 + 2, then ‖𝑔(𝑥1)− 𝑔(𝑥2)‖ ≥ 𝜏
1/2
2 − (8𝜏1)

1/2;

Proof. From Claim 5.4.17 and Lemma 5.4.13 we can get a map 𝑔′ from 𝑋 to a Hilbert

space such that for every 𝑥1, 𝑥2 ∈ 𝑋

∙ ‖𝑔′(𝑥1)− 𝑔′(𝑥2)‖ ≤ max
{︀
1, (2‖𝑥1 − 𝑥2‖)1/2

}︀
· 𝜏 1/21 ;

∙ if ‖𝑥1 − 𝑥2‖ ≥ 𝐷, then ‖𝑔′(𝑥1)− 𝑔′(𝑥2)‖ ≥ 𝜏
1/2
2 .

Let 𝑁 ⊂ 𝑋 be a 1-net of 𝑋 such that all the pairwise distances between points

in 𝑁 are more than 1. The map 𝑔′ is 1/2-Hölder on 𝑁 with a constant (2𝜏1)
1/2, so

we can apply Theorem 5.4.16 and get a map 𝑔 that coincides with 𝑔′ on 𝑁 and is

1/2-Hölder on the whole 𝑋 with a constant (2𝜏1)
1/2. That is, for every 𝑥1, 𝑥2 ∈ 𝑋 we

have

∙ ‖𝑔(𝑥1)− 𝑔(𝑥2)‖ ≤ (2𝜏1 · ‖𝑥1 − 𝑥2‖)1/2;

∙ if 𝑥1 ∈ 𝑁 , 𝑥2 ∈ 𝑁 and ‖𝑥1 − 𝑥2‖ ≥ 𝐷, then ‖𝑔(𝑥1)− 𝑔(𝑥2)‖ ≥ 𝜏
1/2
2 .

To conclude that 𝑔 is as required, let us lower bound ‖𝑔(𝑥1) − 𝑔(𝑥2)‖ whenever

‖𝑥1 − 𝑥2‖ ≥ 𝐷 + 2. Suppose that 𝑥1, 𝑥2 ∈ 𝑋 are such that ‖𝑥1 − 𝑥2‖ ≥ 𝐷 + 2. Let

𝑢1 ∈ 𝑁 be the closest net point to 𝑥1 and, similarly, let 𝑢2 ∈ 𝑁 be the closest net

point to 𝑥2. Observe that

‖𝑢1 − 𝑢2‖ ≥ ‖𝑥1 − 𝑥2‖ − ‖𝑥1 − 𝑢1‖ − ‖𝑥2 − 𝑢2‖ ≥ (𝐷 + 2)− 1− 1 = 𝐷.

We have

‖𝑔(𝑥1)−𝑔(𝑥2)‖ ≥ ‖𝑔(𝑢1)−𝑔(𝑢2)‖−‖𝑔(𝑢1)−𝑔(𝑥1)‖−‖𝑔(𝑢2)−𝑔(𝑥2)‖ ≥ 𝜏
1/2
2 −2(2𝜏1)1/2,

as required, where the second step follows from the inequality ‖𝑔(𝑢1)− 𝑔(𝑢2)‖ ≥ 𝜏
1/2
2 ,

which is true, since 𝑢1, 𝑢2 ∈ 𝑁 , and that 𝑔 is 1/2-Hölder with a constant (2𝜏1)
1/2.
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The following claim completes the proof of Theorem 5.4.12.

Claim 5.4.19. There exists a map ℎ from 𝑋 to a Hilbert space such that for every

𝑥1, 𝑥2 ∈ 𝑋:

∙ ‖ℎ(𝑥1)− ℎ(𝑥2)‖ ≤ (2𝜏1 · ‖𝑥1 − 𝑥2‖)1/2;

∙ ‖ℎ(𝑥1)− ℎ(𝑥2)‖ ≥ (𝜏
1/2
2 − (8𝜏1)

1/2) ·min {1, ‖𝑥1 − 𝑥2‖/(2𝐷 + 4)}.

Proof. We take the map 𝑔 from Claim 5.4.18 and apply Lemma 5.4.14 to it. Let

us call the resulting map ℎ. The first desired condition for ℎ follows from a similar

condition for 𝑔 and Lemma 5.4.14. Let us prove the second one.

If 𝑥1 = 𝑥2, then there is nothing to prove. If ‖𝑥1−𝑥2‖ ≥ 𝐷+2, then by Claim 5.4.18

and Lemma 5.4.14, ‖ℎ(𝑥1) − ℎ(𝑥2)‖ ≥ 𝜏
1/2
2 − (8𝜏1)

1/2, and we are done. Otherwise,

let us consider points 𝑦0, 𝑦1, . . . , 𝑦𝑙 ∈ 𝑋 such that 𝑦0 = 0, 𝑦𝑖 − 𝑦𝑖−1 = 𝑥1 − 𝑥2 for every

𝑖, and 𝑙 =
⌈︁

𝐷+2
‖𝑥1−𝑥2‖

⌉︁
. Since ‖𝑦𝑙 − 𝑦0‖ = ‖𝑙(𝑥1 − 𝑥2)‖ = 𝑙‖𝑥1 − 𝑥2‖ ≥ 𝐷 + 2, we have

𝜏
1/2
2 − (8𝜏1)

1/2 ≤ ‖ℎ(𝑦𝑙)− ℎ(𝑦0)‖ ≤
𝑙∑︁

𝑖=1

‖ℎ(𝑦𝑖)− ℎ(𝑦𝑖−1)‖

= 𝑙 · ‖ℎ(𝑥1)− ℎ(𝑥2)‖ ≤
2𝐷 + 4

‖𝑥1 − 𝑥2‖
· ‖ℎ(𝑥1)− ℎ(𝑥2)‖,

where the equality follows from the conclusion of Lemma 5.4.14.

Finally, observe that Theorem 5.4.12 is merely a reformulation of Claim 5.4.19.

5.4.4 Putting it all together

We now show that Theorem 5.4.1 follows by applying Lemma 5.4.3, Theorem 5.4.4,

Lemma 5.4.6, and Theorem 5.4.12, in this order, with an appropriate choice of

parameters.

Proof of Theorem 5.4.1. Suppose DTEP(𝑋,𝐷) admits a protocol of size 𝑠. By setting

𝑘 = 𝐶𝑠 in Lemma 5.4.3 (𝐶 is a large absolute constant, to be chosen later), we conclude

that DTEP(ℓ𝐶𝑠
∞ (𝑋), 𝐶𝑠𝐷) admits a protocol of size 𝑠′ = 𝑂(𝑠).
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Now choosing 𝐶 large enough and applying Theorem 5.4.4 (in contrapositive), we

conclude that 𝑋 has no Poincaré inequalities for distance scales 1 and 𝐶𝑠𝐷, with

𝛼 = 0.01 and 𝛽 = 0.001.

Applying Lemma 5.4.6 (in contrapositive), we conclude that 𝑋 allows a threshold

map to a Hilbert space with parameters (1, 𝐶𝑠𝐷, 1, 10,+∞).

Using Theorem 5.4.12, it follows that there is a map ℎ from 𝑋 to a Hilbert space,

such that for all 𝑥1, 𝑥2 ∈ 𝑋,

min

{︂
1,
‖𝑥1 − 𝑥2‖
𝑠 ·𝐷

}︂
≤ ‖ℎ(𝑥1)− ℎ(𝑥2)‖ ≤ 𝐾 · ‖𝑥1 − 𝑥2‖1/2,

where 𝐾 > 1 is an absolute constant, and this proves the theorem.

Remark: Instead of applying Lemma 5.4.3 and Theorem 5.4.4, we could have

attempted to apply the reduction from [21] to get a threshold map from 𝑋 to a Hilbert

space directly. That approach is much simpler technically, but has two fatal drawbacks.

First, we end up with a threshold map with a gap between 𝜏1 and 𝜏2 being arbitrarily

close to 1, and thus, we are unable to invoke Theorem 5.4.12, which requires the

gap to be more than 8. Second, the parameters of the resulting threshold map are

exponential in the number of bits in the communication protocol, which is bad for the

quantitative bounds from Section 5.5.

5.5 Quantitative bounds

In this section we prove the quantitative version of our results, namely Theorem 5.1.2

and Theorem 5.1.3, for which we will reuse Theorem 5.4.1. In particular, we prove

the following theorem.

Theorem 5.5.1. For a finite-dimensional normed space 𝑋 and Δ > 1, assume we

have a map 𝑓 : 𝑋 → 𝐻 to a Hilbert space 𝐻, such that, for an absolute constant

𝐾 > 0 and for every 𝑥1, 𝑥2 ∈ 𝑋:

∙ ‖𝑓(𝑥1)− 𝑓(𝑥2)‖𝐻 ≤ 𝐾 · ‖𝑥1 − 𝑥2‖1/2𝑋 ; and
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∙ if ‖𝑥1 − 𝑥2‖𝑋 ≥ Δ, then ‖𝑓(𝑥1)− 𝑓(𝑥2)‖𝐻 ≥ 1.

Then, for any 𝜀 ∈ (0, 1/3), the space 𝑋 linearly embeds into ℓ1−𝜀 with distortion

𝑂(Δ/𝜖).

Note that Theorem 5.1.2 now follows from applying Theorem 5.4.1 together with

Theorem 5.5.1 for Δ = 𝑠𝐷. We can further prove Theorem 5.1.3 by using the following

result of Zvavitch from [181].

Lemma 5.5.2 ([181]). Every 𝑑-dimensional subspace of 𝐿1−𝜀 embeds linearly into

ℓ
𝑑·poly(log 𝑑)
1−𝜀 with distortion 𝑂(1).

Indeed, applying Lemma 5.5.2 together with Theorem 5.5.1, we get that for every

0 < 𝜀 < 1/3 the space 𝑋 linearly embeds into ℓ
poly(dim𝑋)
1−𝜀 with distortion 𝑂(Δ/𝜀).

Thus, 𝑋 is embeddable into ℓ1 with distortion

𝑂
(︀
Δ · (dim𝑋)𝑂(𝜀)/𝜀

)︀
.

Setting 𝜀 = Θ(1/ log(dim𝑋)), we obtain Theorem 5.1.3.

It remains to prove Theorem 5.5.1. Its proof proceeds by adjusting the arguments

from [3] and [138].

Proof of Theorem 5.5.1. Fix 𝑋, Δ > 0, and the corresponding map 𝑓 : 𝑋 → 𝐻. We

first prove the following lemma.

Lemma 5.5.3. There exists a probability measure 𝜇 on Rdim𝑋 symmetric around the

origin such that its (real-valued) characteristic function 𝜙 : 𝑋 → R has the following

properties for every 𝑥 ∈ 𝑋:

∙ 𝜙(𝑥) ≥ 𝑒−
̃︀𝐾·‖𝑥‖𝑋 ; and

∙ if ‖𝑥‖𝑋 ≥ Δ, then 𝜙(𝑥) ≤ 1/𝑒.

Here ̃︀𝐾 > 0 is an absolute constant.

Proof. It is known from [161] that for a Hilbert space 𝐻 the function 𝑔 : ℎ ↦→ 𝑒−‖ℎ‖2𝐻

is positive-definite. Thus, there exists a function ̃︀𝑔 : 𝐻 → ̃︀𝐻 to a Hilbert space ̃︀𝐻 such
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that for every ℎ1, ℎ2 ∈ 𝐻 one has
⟨︀̃︀𝑔(ℎ1), ̃︀𝑔(ℎ2)⟩︀ ̃︀𝐻 = 𝑒−‖ℎ1−ℎ2‖2𝐻 . Setting ̃︀𝑓 = ̃︀𝑔 ∘ 𝑓 , we

get a function ̃︀𝑓 : 𝑋 → ̃︀𝐻 to a Hilbert space such that for an absolute constant ̃︀𝐾 > 0

for every 𝑥1, 𝑥2 ∈ 𝑋, we have:

∙
⃦⃦⃦ ̃︀𝑓(𝑥1)⃦⃦⃦ ̃︀𝐻 = 1;

∙
⟨ ̃︀𝑓(𝑥1), ̃︀𝑓(𝑥2)⟩ ̃︀𝐻 ≥ 𝑒−

̃︀𝐾·‖𝑥1−𝑥2‖𝑋 ; and

∙ if ‖𝑥1 − 𝑥2‖𝑋 ≥ Δ, then
⟨ ̃︀𝑓(𝑥1), ̃︀𝑓(𝑥2)⟩ ̃︀𝐻 ≤ 1/𝑒.

Applying Lemma 5.2.7 and Lemma 5.2.4, we obtain a positive-definite function

𝜙 : 𝑋 → R such that:

∙ 𝜙(0) = 1;

∙ for every 𝑥 ∈ 𝑋 one has 𝜙(𝑥) ≥ 𝑒−
̃︀𝐾·‖𝑥‖𝑋 ; and

∙ if ‖𝑥‖𝑋 ≥ Δ, then 𝜙(𝑥) ≤ 1/𝑒.

We can now use Bochner’s theorem, which is the following characterization of

continuous positive-definite functions, via the Fourier transform.

Theorem 5.5.4 (Bochner’s theorem, see, e.g., [74]). If a map 𝑓 : R𝑑 → R is positive-

definite, continuous in zero, and 𝑓(0) = 1, then there exists a probability measure 𝜇

on R𝑑 such that 𝑓 is the 𝜇’s characteristic function. That is, for every 𝑥 ∈ R𝑑,

𝑓(𝑥) =

∫︁
R𝑑

𝑒𝑖⟨𝑥,𝑣⟩ 𝜇(𝑑𝑣).

In particular, note that we have that 𝜙(0) = 1, 𝜙 is positive-definite and is

continuous at zero. Hence, by Bochner’s theorem, we get a probability measure 𝜇 over

Rdim𝑋 whose characteristic function equals to 𝜙. That is, for every 𝑥 ∈ 𝑋 we get

𝜙(𝑥) =

∫︁
Rdim𝑋

𝑒𝑖⟨𝑥,𝑣⟩ 𝜇(𝑑𝑣),

where ⟨·, ·⟩ is the standard dot product in Rdim𝑋 . Clearly, 𝜇 is symmetric around the

origin, since 𝜙 is real-valued. This completes the proof of Lemma 5.5.3.
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Our next goal is to show that 𝜇 gives rise to a one-measurement linear sketch for 𝑋

with approximation 𝑂(Δ) and a certain additional property that will be useful to us.

The following lemma contains two standard facts about one-dimensional characteristic

functions (see, e.g., [143]). We include the proof for completeness.

Lemma 5.5.5. Let 𝜈 be a symmetric probability measure over the real line, and let

𝜓(𝑡) =

∫︁
R
𝑒𝑖𝑣𝑡 𝜈(𝑑𝑣)

be its characteristic function (which is real-valued due to the symmetry of 𝜈). Then,

∙ if for some 𝑅 > 0 and 0 < 𝜀 < 1 we have |𝜓(𝑅)| ≤ 1− 𝜀, then

𝜈
(︁{︀
𝑣 ∈ R : |𝑣| ≥ Ω𝜀(1/𝑅)

}︀)︁
≥ Ω𝜀(1); (5.10)

∙ for every 𝛿 > 0 one has

𝜈
(︁{︀
𝑣 ∈ R : |𝑣| ≥ 1/𝛿

}︀)︁
≤ 𝑂(1/𝛿) ·

∫︁ 𝛿

−𝛿

(︀
1− 𝜓(𝑡)

)︀
𝑑𝑡. (5.11)

Proof. Let us start with proving the first claim. We have for every 𝛼 > 0

1− 𝜀 ≥ |𝜓(𝑅)| ≥
∫︁
R
cos(𝑣𝑅) 𝜈(𝑑𝑣)

≥ cos𝛼 · 𝜈
(︁
{𝑣 ∈ R : |𝑣𝑅| ≤ 𝛼}

)︁
− 𝜈
(︁
{𝑣 ∈ R : |𝑣𝑅| > 𝛼}

)︁
= (1 + cos𝛼) · 𝜈

(︁
{𝑣 ∈ R : |𝑣𝑅| ≤ 𝛼}

)︁
− 1,

where the second step uses the fact that 𝜓 is real-valued. Thus, we have

𝜈
(︁
{𝑣 ∈ R : |𝑣𝑅| ≤ 𝛼}

)︁
≤ 2− 𝜀

1 + cos𝛼
.

Setting 𝛼 = Θ
(︀√

𝜀
)︀
, we get the desired bound.
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Now let us prove the second claim. We have, for every 𝛿 > 0,

∫︁ 𝛿

−𝛿

(︀
1− 𝜓(𝑡)

)︀
𝑑𝑡 =

∫︁ 𝛿

−𝛿

∫︁
R

(︀
1− 𝑒𝑖𝑣𝑡

)︀
𝜈(𝑑𝑣) 𝑑𝑡 = 2𝛿 ·

∫︁
R

(︂
1− sin(𝛿𝑣)

𝛿𝑣

)︂
𝜈(𝑑𝑣)

≥ 2(1− sin 1) · 𝛿 · 𝜈
(︁
{𝑣 ∈ R : |𝛿𝑣| ≥ 1}

)︁
,

where we use that (1− sin 𝑦/𝑦) > (1− sin 1) for every 𝑦 such that |𝑦| > 1.

Now we will show that the probability measure 𝜇 from Lemma 5.5.3 gives a good

linear sketch for 𝑋. To see this we use the conditioning on the characteristic function

of 𝜇, namely, we exploit them using the above Lemma 5.5.5. In order to do this, we

look at the one-dimensional projections of 𝜇 as follows. Let 𝑥 ∈ 𝑋 be a fixed vector.

For a measurable subset 𝐴 ⊆ R we define

𝜈(𝐴) = 𝜇
(︁{︀
𝑣 ∈ Rdim𝑋 : ⟨𝑥, 𝑣⟩ ∈ 𝐴

}︀)︁
.

It is immediate to check that the characteristic function 𝜓 of 𝜈 is as follows: 𝜓(𝑡) =

𝜙(𝑡 · 𝑥) (recall that 𝜙 is the characteristic function of 𝜇). Next we apply Lemma 5.5.5

to 𝜓 and use the properties of 𝜙 from the conclusion of Lemma 5.5.3. Namely, we get

for every 𝑥 ∈ 𝑋:

𝜇
(︁{︀
𝑣 ∈ Rdim𝑋 : |⟨𝑥, 𝑣⟩| ≥ Ω(‖𝑥‖𝑋/Δ)

}︀)︁
= Ω(1); (5.12)

and for every 𝑡 > 0,

𝜇
(︁{︀
𝑣 ∈ Rdim𝑋 : |⟨𝑥, 𝑣⟩| ≥ 𝑡 · ‖𝑥‖𝑋

}︀)︁
≤ 𝑂(1/𝑡). (5.13)

Indeed, (5.12) follows from the bound 𝜙(𝑥) ≤ 1/𝑒 whenever ‖𝑥‖𝑋 ≥ Δ and (5.10).

The inequality (5.13) follows from the estimate 𝜙(𝑥) ≥ 𝑒−
̃︀𝐾·‖𝑥‖𝑋 and (5.11) (for
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1/𝛿 = 𝑡‖𝑥‖𝑋) that together give

𝜇
(︁{︀
𝑣 ∈ Rdim𝑋 : |⟨𝑥, 𝑣⟩| ≥ 𝑡 · ‖𝑥‖𝑋

}︀)︁
= 𝜈({𝑟 ∈ R : |𝑟| ≥ 𝑡‖𝑥‖𝑋})

≤ 𝑂(𝑡‖𝑥‖𝑋)
∫︁ 1/𝑡‖𝑥‖𝑋

−1/𝑡‖𝑥‖𝑋
(1− 𝑒−𝐾̃𝑠‖𝑥‖𝑋 ) 𝑑𝑠,

as well as from the inequality

𝑡

∫︁ 1/𝑡

−1/𝑡

(︀
1− 𝑒−𝐶𝑠

)︀
𝑑𝑠 ≤ 𝑡

∫︁ 1/𝑡

−1/𝑡

(︀
1− (1− 𝐶𝑠)

)︀
𝑑𝑠 = 𝐶/𝑡.

Hence, 𝜇 gives rise to a one-measurement linear sketch of 𝑋 with approximation

𝑂(Δ), whose “upper tail” is not too heavy.

Finally, we are ready to describe a desired linear embedding of 𝑋 into 𝐿1−𝜀; we

map 𝑋 into 𝐿1−𝜀(𝜇) as follows: 𝑥 ↦→ (𝑣 ↦→ ⟨𝑥, 𝑣⟩). The following Lemma states that

the distortion of this embedding is 𝑂(Δ/𝜀), as required.

Lemma 5.5.6. For 0 < 𝜀 < 1/3 and every 𝑥 ∈ 𝑋,

Ω
(︀
‖𝑥‖𝑋/Δ

)︀
≤ ‖𝑣 ↦→ ⟨𝑥, 𝑣⟩‖𝐿1−𝜀(𝜇) ≤ 𝑂

(︀
‖𝑥‖𝑋/𝜀

)︀
.

Proof. The lower bound is straightforward:

‖𝑣 ↦→ ⟨𝑥, 𝑣⟩‖1−𝜀
𝐿1−𝜀(𝜇)

=

∫︁
Rdim𝑋

⃒⃒
⟨𝑥, 𝑣⟩

⃒⃒1−𝜀
𝜇(𝑑𝑣) ≥ Ω(1) · Ω(‖𝑥‖𝑋/Δ)1−𝜀,

where the last step follows from (5.12).

For the upper bound, we have for every 𝛼 > 0,

‖𝑣 ↦→ ⟨𝑥, 𝑣⟩‖1−𝜀
𝐿1−𝜀(𝜇)

=

∫︁
Rdim𝑋

⃒⃒
⟨𝑥, 𝑣⟩

⃒⃒1−𝜀
𝜇(𝑑𝑣)

=

∫︁ ∞

0

𝜇
(︁
{𝑣 ∈ Rdim𝑋 : |⟨𝑥, 𝑣⟩|1−𝜀 ≥ 𝑠}

)︁
𝑑𝑠

≤ 𝛼 +𝑂(1) · ‖𝑥‖𝑋 ·
∫︁ ∞

𝛼

𝑠−
1

1−𝜀 𝑑𝑠 ≤ 𝛼 +𝑂(1) · ‖𝑥‖𝑋
𝜀
· 𝛼− 𝜀

1−𝜀 ,
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where the third step follows from (5.13). Choosing 𝛼 = ‖𝑥‖1−𝜀
𝑋 /𝜀1−𝜀, we get

‖𝑣 ↦→ ⟨𝑥, 𝑣⟩‖𝐿1−𝜀(𝜇) ≤ 𝑂(1) · 2 1
1−𝜀 · ‖𝑥‖𝑋

𝜀
.

This concludes the proof of Theorem 5.5.1.

5.6 Embedding into ℓ1 via sum-products

Finally, we prove Theorem 5.1.4: good sketches for norms closed under the sum-product

imply embeddings into ℓ1 with constant distortion. First we invoke Theorem 5.4.1

and get a sequence of good uniform embeddings into a Hilbert space, whose moduli

depend only on the sketch size and the approximation. Then, we use the main result

of this section: Lemma 5.6.1. Before stating the lemma, let us remind a few notions.

For a metric space 𝑋, recall that the metric space ℓ𝑘1(𝑋) =
⨁︀𝑘

ℓ1
𝑋𝑛 is the direct sum

of 𝑘 copies of 𝑋, with the associated distance defined as a sum-product (ℓ1-product)

over the 𝑘 copies. We define ℓ1(𝑋) similarly. We also denote 𝑋⊕ℓ1 𝑌 the sum-product

of 𝑋 and 𝑌 .

Lemma 5.6.1. Let (𝑋𝑛)
∞
𝑛=1 be a sequence of finite-dimensional normed spaces. Sup-

pose that for every 𝑖1, 𝑖2 ≥ 1 there exists 𝑚 = 𝑚(𝑖1, 𝑖2) ≥ 1 such that 𝑋𝑖1 ⊕ℓ1 𝑋𝑖2 is

isometrically embeddable into 𝑋𝑚. If every 𝑋𝑛 admits a uniform embedding into a

Hilbert space with moduli independent of 𝑛, then every 𝑋𝑛 is linearly embeddable into

ℓ1 with distortion independent of 𝑛.

Note that Theorem 5.1.4 just follows from combining Lemma 5.6.1 with Theorem

5.4.1.

Before proving Lemma 5.6.1, we state the following two useful theorems. The

first one (Theorem 5.6.2) follows from the fact that uniform embeddability into a

Hilbert space is determined by embeddability of finite subsets [41]. The second one

(Theorem 5.6.3) follows by composing results of Aharoni, Maurey, and Mityagin [3]

and Kalton [95].
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Theorem 5.6.2 (Proposition 8.12 from [41]). Let 𝐴1 ⊂ 𝐴2 ⊂ . . . be metric spaces and

let 𝐴 =
⋃︀

𝑖𝐴𝑖. If every 𝐴𝑛 is uniformly embeddable into a Hilbert space with moduli

independent of 𝑛, then the whole 𝐴 is uniformly embeddable into a Hilbert space.

Theorem 5.6.3 ([3, 95]). A Banach space 𝑋 is linearly embeddable into 𝐿1 iff ℓ1(𝑋)

is uniformly embeddable into a Hilbert space.

We are now ready to proceed with the proof of Lemma 5.6.1.

Proof of Lemma 5.6.1. Let 𝑋 = 𝑋1 ⊕ℓ1 𝑋2 ⊕ℓ1 . . .. More formally,

𝑋 =
{︁
(𝑥1, 𝑥2, . . .) : 𝑥𝑖 ∈ 𝑋𝑖,

∑︁
𝑖

‖𝑥𝑖‖ <∞
}︁
,

where the norm is defined as follows:

⃦⃦
(𝑥1, 𝑥2, . . .)

⃦⃦
=
∑︁
𝑖

‖𝑥𝑖‖.

We claim that the space ℓ1(𝑋) embeds uniformly into a Hilbert space. To see this,

consider 𝑈𝑝 = ℓ𝑝1(𝑋1⊕ℓ1 𝑋2⊕ℓ1 . . .⊕ℓ1 𝑋𝑝), which can be naturally seen as a subspace

of ℓ1(𝑋). Then, 𝑈1 ⊂ 𝑈2 ⊂ . . . ⊂ 𝑈𝑝 ⊂ . . . ⊂ ℓ1(𝑋) and
⋃︀

𝑝 𝑈𝑝 is dense in ℓ1(𝑋). By

the assumption of the lemma, 𝑈𝑝 is isometrically embeddable into 𝑋𝑚 for some 𝑚,

thus, 𝑈𝑝 is uniformly embeddable into a Hilbert space with moduli independent of 𝑝.

Now, by Theorem 5.6.2,
⋃︀

𝑝 𝑈𝑝 is uniformly embeddable into a Hilbert space. Since⋃︀
𝑝 𝑈𝑝 is dense in ℓ1(𝑋), the same holds also for the whole ℓ1(𝑋), as claimed.

Finally, since ℓ1(𝑋) embeds uniformly into a Hilbert space, we can apply Theo-

rem 5.6.3 and conclude that 𝑋 is linearly embeddable into 𝐿1. The lemma follows

since 𝑋 contains every 𝑋𝑖 as a subspace.

5.7 Appendix: EMD reduction

Recall that EMD𝑛 is a normed space on all signed measures on [𝑛]2 (that sum up to

zero). We also take the view that a weighted set in [𝑛]2 is in fact a measure on [𝑛]2.
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Lemma 5.7.1. Suppose the EMD metric between non-negative measures (of the

same total measure) admits a sketching algorithm sk with approximation 𝐷 > 1 and

sketch size 𝑠. Then the normed space EMD𝑛 admits a sketching algorithm sk′ with

approximation 𝐷 and sketch size 𝑂(𝑠).

Proof. The main idea is that if 𝑥, 𝑦 are signed measures and we add a sufficiently large

term 𝑀 > 0 to all of their coordinates, then the resulting vectors 𝑥′ = 𝑥+𝑀 · 1⃗ and

𝑦′ = 𝑦 +𝑀 · 1⃗ are measures (all their coordinates are non-negative) of the same total

mass, and ‖𝑥 − 𝑦‖EMD is equal to the EMD distance between measures 𝑥′, 𝑦′. The

trouble is in identifying a large enough 𝑀 . We use the values of 𝑥 and 𝑦 themselves

to agree on 𝑀 . Details follow.

Without loss of generality we can fix the DTEP threshold to be 𝑟 = 1.

We design the sketch sk′ as follows. First choose a hash function ℎ : N→ {0, 1}9

(using public randomness). Fix an input 𝑥 ∈ R𝑛2 of total measure zero, i.e.,
∑︀

𝑖 𝑥𝑖 = 0.

Let 𝑚(𝑥) = min𝑖 𝑥𝑖, and let 𝑏(𝑥) be the largest multiple of 2 that is smaller than

𝑚(𝑥). Since 𝑥 has total measure zero, 𝑏(𝑥) < 𝑚(𝑥) ≤ 0. Now let 𝑏(1)(𝑥) = 𝑏(𝑥) and

𝑏(2)(𝑥) = 𝑏(𝑥) − 2, and then 𝑥(𝑞) = 𝑥 − 𝑏(𝑞)(𝑥) · 1⃗ for 𝑞 = 1, 2. Notice that in both

cases 𝑥(𝑞) > 𝑥 ≥ 0 (component-wise). Now let the sketch sk′(𝑥) be the concatenation

of sk(𝑥(𝑞)), ℎ(𝑏(𝑞)(𝑥)) for 𝑞 = 1, 2.

The distinguisher works as follows, given two sketches

sk′(𝑥) = (sk(𝑥(𝑞)), ℎ(𝑏(𝑞)(𝑥)))𝑞=1,2

and

sk′(𝑦) = (sk(𝑦(𝑞)), ℎ(𝑏(𝑞)(𝑥)))𝑞=1,2.

If there are 𝑞𝑥, 𝑞𝑦 ∈ {1, 2} whose hashes agree ℎ(𝑏(𝑞)(𝑥)) = ℎ(𝑏(𝑞)(𝑦)) (breaking ties

arbitrarily if there are multiple possible agreements), then output whatever the EMD

metric distinguisher would output on sk(𝑥(𝑞𝑥)), sk(𝑦(𝑞𝑦)). Otherwise output “far” (i.e.,

that ‖𝑥− 𝑦‖EMD > 𝐷).

To analyze correctness, consider the case when ‖𝑥− 𝑦‖EMD ≤ 1. Without loss of

generality, suppose 𝑚(𝑥) ≥ 𝑚(𝑦). Then 𝑚(𝑥)−𝑚(𝑦) ≤ 1 (otherwise 𝑥, 𝑦 are further
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away in EMD norm than 1). Hence either 𝑏(𝑥) = 𝑏(𝑦) or 𝑏(𝑥) = 𝑏(𝑦) + 2. Then there

exists a corresponding 𝑞 ∈ { 1, 2 } for which the hashes agree ℎ(𝑏(1)(𝑥)) = ℎ(𝑏(𝑞)(𝑦)).

By properties of the hash function, with sufficiently large constant probability the

hashes match only when the 𝑏’s match, in which case the values 𝑞𝑥, 𝑞𝑦 used by the

distinguisher satisfy 𝑏(𝑞𝑥)(𝑥) = 𝑏(𝑞𝑦)(𝑦). In this case, ‖𝑥− 𝑦‖EMD = 𝑑EMD(𝑥
(𝑞𝑥), 𝑦(𝑞𝑦)),

and the correctness now depends on sk, and the distinguisher for the EMD metric.

Otherwise, if ‖𝑥 − 𝑦‖EMD > 𝐷, either the 𝑏-values coincide for some 𝑞𝑥, 𝑞𝑦 and

then the above argument applies again, or with sufficiently large constant probability

the hashes will not agree and the distinguisher outputs (correctly) “far”.

There is a small loss in success probability due to use of the hash function, but

that can be amplified back by independent repetitions.

Notice that the above lemma assumes a sketching algorithm for the EMD metric

between any non-negative measures of the same total measure, and not only in the case

where the total measure is 1. The proof can be easily modified so that any non-negative

measure being used always has a fixed total measure (say 1, by simply scaling the

inputs), which translates to scaling the threshold 𝑟 of the DTEP problem. This is

acceptable because, under standard definitions, a metric space is called sketchable if

it admits a sketching scheme for every threshold 𝑟 > 0.
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Chapter 6

Hardness results for the ANN

problem

6.1 Introduction

Lower bounds for NNS and ANN have received considerable attention. Such lower

bounds are ideally obtained in the cell-probe model [127, 126], where one measures the

number of memory cells the query algorithm accesses. Despite a number of success

stories, high cell-probe lower bounds are notoriously hard to prove. In fact, there are

few techniques for proving high cell-probe lower bounds, for any (static) data structure

problem. For ANN in particular, we have no viable techniques to prove 𝜔(log 𝑛) query

time lower bounds. Due to this state of affairs, one may rely on restricted models of

computation, which nevertheless capture existing algorithmic approaches.

Early lower bounds for NNS were obtained for data structures in exact or deter-

ministic settings [44, 52, 35, 115, 88, 53, 150, 180]. [53, 116] obtained an almost tight

cell-probe lower bound for the randomized Approximate Nearest Neighbor Search

under the ℓ1 distance. In that problem, there is no distance threshold 𝑟, and instead

the goal is to find a data point that is not much further than the closest data point.

This twist is the main source of hardness, so the result is not applicable to the ANN

problem as introduced above.

There are few results that show lower bounds for randomized data structures for
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ANN. The first such result [19] shows that any data structure that solves (1+𝜀, 𝑟)-ANN

for ℓ1 or ℓ2 using 𝑡 cell probes requires space 𝑛Ω(1/𝑡𝜀2).1 This result shows that the

algorithms of [85, 108] are tight up to constants in the exponent for 𝑡 = 𝑂(1).

In [146] (following up on [145]), the authors introduce a general framework for

proving lower bounds for ANN under any metric. They show that lower bounds for

ANN are implied by the robust expansion of the underlying metric space. Using this

framework, [146] show that (𝑐, 𝑟)-ANN using 𝑡 cell probes requires space 𝑛1+Ω(1/𝑡𝑐) for

the Manhattan distance and 𝑛1+Ω(1/𝑡𝑐2) for the Euclidean distance (for every 𝑐 > 1).

Lower bounds have also been obtained for other metrics. For the ℓ∞ distance, [11]

show a lower bound for deterministic ANN data structures. This lower bound was

later generalized to randomized data structures [146, 98]. A recent result [2] adapts

the framework of [146] to Bregman divergences.

To prove higher lower bounds, researchers resorted to lower bounds for restricted

models. These examples include: decision trees [11] (the corresponding upper bound

from [81] is in the same model), LSH [129, 140, 17] and data-dependent LSH [27].

6.1.1 Our results

We show new cell-probe and restricted lower bounds for (𝑐, 𝑟)-ANN matching the

upper bounds from Chapter 2. All our lower bounds rely on a certain canonical hard

distribution for the Hamming space (defined later in Section 6.2.1). Via a standard

reduction [114], we obtain similar hardness results for ℓ𝑝 with 1 < 𝑝 ≤ 2 (with 𝑐 being

replaced by 𝑐𝑝).

One cell probe

First, we show a tight lower bound on the space needed to solve ANN for a random

instance, for query algorithms that use a single cell probe. More formally, we prove

the following theorem:

Theorem 6.1.1 (see Section 6.3.2). Any data structure that:
1The correct dependence on 1/𝜀 requires the stronger Lopsided Set Disjointness lower bound from

[147].
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∙ solves (𝑐, 𝑟)-ANN for the random instance defined in Section 6.2.1 with probability

at least 2/3,

∙ operates on memory cells of size 𝑛𝑜(1),

∙ for each query, looks up a single cell,

must use at least 𝑛(
𝑐

𝑐−1)
2
−𝑜(1) words of memory.

The space lower bound matches:

∙ The upper bound from Chapter 2 for random instances that can be made

single-probe;

∙ The same upper bound for worst-case instances with query time 𝑛𝑜(1).

The previous best lower bound from [146] for a single probe are weaker by a polynomial

factor.

We prove Theorem 6.1.1 by computing tight bounds on the robust expansion of a

hypercube {−1, 1}𝑑 as defined in [146]. Then, we invoke a result from [146], which

yields the desired cell probe lower bound. We obtain estimates on the robust expansion

via a combination of the hypercontractivity inequality and Hölder’s inequality [139].

Equivalently, one could obtain the same bounds by an application of the Generalized

Small-Set Expansion Theorem for {−1, 1}𝑑 from [139].

Two cell probes

To state our results for two cell probes, we first define the decision version of ANN

(first introduced in [146]). Suppose that with every data point 𝑝 ∈ 𝑃 we associate a

bit 𝑥𝑝 ∈ {0, 1}. A new goal is: given a query 𝑞 ∈ {−1, 1}𝑑 which is within distance 𝑟

from a data point 𝑝 ∈ 𝑃 , if 𝑃 ∖ {𝑝} is at distance at least 𝑐𝑟 from 𝑞, return 𝑥𝑝 with

probability at least 2/3. It is easy to see that any algorithm for (𝑐, 𝑟)-ANN would

solve this decision version.

We prove the following lower bound for data structures making only two cell probes

per query.
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Theorem 6.1.2 (see Section 6.5). Any data structure that:

∙ solves the decision ANN for the random instance (Section 6.2.1) with probability

2/3,

∙ operates on memory cells of size 𝑜(log 𝑛),

∙ accesses at most two cells for each query,

must use at least 𝑛(
𝑐

𝑐−1)
2
−𝑜(1) words of memory.

Informally speaking, Theorem 6.1.2 shows that the second cell probe cannot

improve the space bound by more than a subpolynomial factor. To the best of our

knowledge, this is the first lower bound on the space of any static data structure

problem without a polynomial gap between 𝑡 = 1 and 𝑡 ≥ 2 cell-probes. Previously,

the highest ANN lower bound for two queries was weaker by a polynomial factor [146].

This remains the case even if we plug the tight bound on the robust expansion of a

hypercube into the framework of [146]. Thus, in order to obtain a higher lower bound

for 𝑡 = 2, we must depart from the framework of [146].

Our proof establishes a connection between two-query data structures (for the

decision version of ANN), and two-query locally-decodable codes (LDC) [179]. A

possibility of such a connection was suggested in [145]. In particular, we show that any

data structure violating the lower bound from Theorem 6.1.2 implies a too-good-to-

be-true two-query LDC, which contradicts known LDC lower bounds from [101, 39].

The first lower bound for unrestricted two-query LDCs was proved in [101] via a

quantum argument. Later, the argument was simplified and made classical in [39].

It turns out that, for our lower bound, we need to resort to the original quantum

argument of [101] since it has a better dependence on the noise rate a code is able to

tolerate. During the course of our proof, we do not obtain a full-fledged LDC, but

rather an object which can be called an LDC on average. For this reason, we are

unable to use [101] as a black box but rather adjust their proof to the average case.

Finally, we point out an important difference with Theorem 6.1.1: in Theorem 6.1.2

we allow words to be merely of size 𝑜(log 𝑛) (as opposed to 𝑛𝑜(1)). Nevertheless, for
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the decision version of ANN for random instances our upper bounds hold even for

such “tiny” words. In fact, our techniques do not allow us to handle words of size

Ω(log 𝑛) due to the weakness of known lower bounds for two-query LDC for large

alphabets. In particular, our argument can not be pushed beyond word size 2
̃︀Θ(

√
log𝑛)

in principle, since this would contradict known constructions of two-query LDCs over

large alphabets [71]!

The general time–space trade-off

Finally, we prove conditional lower bound on the entire time–space trade-off from

Chapter 2 matching our upper bounds that up to 𝑛𝑜(1) factors. Note that—since we

show polynomial query time lower bounds—proving similar lower bounds uncondi-

tionally is far beyond the current reach of techniques. Any such statement would

constitute a major breakthrough in cell probe lower bounds.

Our lower bounds are proved in the following model, which can be loosely thought

of comprising all hashing-based frameworks we are aware of:

Definition 6.1.3. A list-of-points data structure for the ANN problem is defined as

follows:

∙ We fix (possibly random) sets 𝐴𝑖 ⊆ {−1, 1}𝑑, for 1 ≤ 𝑖 ≤ 𝑚; also, with

each possible query point 𝑞 ∈ {−1, 1}𝑑, we associate a (random) set of indices

𝐼(𝑞) ⊆ [𝑚];

∙ For a given dataset 𝑃 , we maintain 𝑚 lists of points 𝐿1, 𝐿2, . . . , 𝐿𝑚, where

𝐿𝑖 = 𝑃 ∩ 𝐴𝑖;

∙ On query 𝑞, we scan through each list 𝐿𝑖 for 𝑖 ∈ 𝐼(𝑞) and check whether there

exists some 𝑝 ∈ 𝐿𝑖 with ‖𝑝− 𝑞‖1 ≤ 𝑐𝑟. If it exists, return 𝑝.

The total space is defined as 𝑠 = 𝑚 +
∑︀𝑚

𝑖=1 |𝐿𝑖| and the query time is 𝑡 = |𝐼(𝑞)| +∑︀
𝑖∈𝐼(𝑞) |𝐿𝑖|.

For this model, we prove the following theorem.
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Theorem 6.1.4 (see Section 6.4). Consider any list-of-points data structure for the

(𝑐, 𝑟)-ANN problem for random instances of 𝑛 points in the 𝑑-dimensional Hamming

space with 𝑑 = 𝜔(log 𝑛), which achieves a total space of 𝑛1+𝜌𝑢, and has query time

𝑛𝜌𝑞−𝑜(1), for 2/3 success probability. Then it must hold that:

𝑐
√
𝜌𝑞 + (𝑐− 1)

√
𝜌𝑢 ≥

√
2𝑐− 1. (6.1)

6.2 Preliminaries

We introduce a few techniques and concepts to be used primarily for our lower bounds.

We start by defining the approximate nearest neighbor search problem.

Definition 6.2.1. The goal of the (𝑐, 𝑟)-approximate nearest neighbor problem with

failure probability 𝛿 is to construct a data structure over a set of points 𝑃 ⊂ {−1, 1}𝑑

supporting the following query: given any point 𝑞 such that there exists some 𝑝 ∈ 𝑃
with ‖𝑞 − 𝑝‖1 ≤ 𝑟, report some 𝑝′ ∈ 𝑃 where ‖𝑞 − 𝑝′‖1 ≤ 𝑐𝑟 with probability at least

1− 𝛿.

6.2.1 Random Hamming instances

Here we define a random instance that will be the hard distribution for all the further

lower bounds. It corresponds to the (𝑐, 𝑟)-ANN problem over the Hamming space

{0, 1}𝑑 and is similar to Euclidean random instances from Section 2.6 that were crucial

for the algorithms from Chapter 2.

∙ A dataset 𝑃 ⊂ {0, 1}𝑑 is given by 𝑛 points, where each vector is drawn indepen-

dently and uniformly at random from {0, 1}𝑑. We assume that 𝑑 = 𝜔(log 𝑛).

∙ A query 𝑞 ∈ {0, 1}𝑑 is drawn by first choosing a dataset point 𝑝 ∈ 𝑃 uniformly

at random, and then choosing 𝑞 by flipping each bit of 𝑝 independently with

probability 1
2𝑐

.

∙ The goal of the data structure is to preprocess 𝑃 in order to recover the data

point 𝑝 from the query point 𝑞 quickly.
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Any
(︀
𝑐− 𝑜(1), (1 + 𝑜(1)) · 𝑑

2𝑐

)︀
-ANN data structure for the unit sphere must be able

to find 𝑝 given 𝑞 with high probability. Indeed, the distance between 𝑝 and 𝑞 is at

most (1 + 𝑜(1)) · 𝑑
2𝑐

with high probability, while all the distances from 𝑞 to other data

points are at least (1− 𝑜(1)) · 𝑑
2

with high probability, where in both cases we use that

𝑑 = 𝜔(log 𝑛).

6.2.2 Graphical neighbor search and robust expansion

We introduce a few definitions from [146] to setup the lower bounds for the ANN.

Definition 6.2.2 ([146]). In the Graphical Neighbor Search problem (GNS), we are

given a bipartite graph 𝐺 = (𝑈, 𝑉,𝐸) where the dataset comes from 𝑈 and the queries

come from 𝑉 . The dataset consists of pairs 𝑃 = {(𝑝𝑖, 𝑥𝑖) | 𝑝𝑖 ∈ 𝑈, 𝑥𝑖 ∈ {0, 1}, 𝑖 ∈ [𝑛]}.
On query 𝑞 ∈ 𝑉 , if there exists a unique 𝑝𝑖 with (𝑝𝑖, 𝑞) ∈ 𝐸, then we want to return

𝑥𝑖.

We will sometimes use the GNS problem to prove lower bounds on (𝑐, 𝑟)-ANN as

follows: we build a GNS graph 𝐺 by taking 𝑈 = 𝑉 = {−1, 1}𝑑, and connecting two

points 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 iff their Hamming distance most 𝑟 (see details in [146]). We will

also ensure 𝑞 is not closer than 𝑐𝑟 to other points apart from the near neighbor.

[146] showed lower bounds for ANN are intimately tied to the following quantity

of a metric space.

Definition 6.2.3 (Robust Expansion [146]). Consider a GNS graph 𝐺 = (𝑈, 𝑉,𝐸),

and fix a distribution 𝑒 on 𝐸 ⊂ 𝑈 × 𝑉 , where 𝜇 is the marginal distribution on 𝑈 and

𝜂 is the marginal distribution on 𝑉 . For 𝛿, 𝛾 ∈ (0, 1], the robust expansion Φ𝑟(𝛿, 𝛾) is:

Φ𝑟(𝛿, 𝛾) = min
𝐴⊂𝑉 :𝜂(𝐴)≤𝛿

min
𝐵⊂𝑈 :

𝑒(𝐴×𝐵)
𝑒(𝐴×𝑉 )

≥𝛾

𝜇(𝐵)

𝜂(𝐴)
.

6.2.3 Locally-decodable codes (LDC)

Our 2-probe lower bounds uses results on Locally-Decodable Codes (LDCs). We

present the standard definitions and results on LDCs below, although in Section 6.5,

we will use a weaker definition of LDCs for our 2-query lower bound.
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Definition 6.2.4. A (𝑡, 𝛿, 𝜀) locally-decodable code (LDC) encodes 𝑛-bit strings

𝑥 ∈ {0, 1}𝑛 into 𝑚-bit codewords 𝐶(𝑥) ∈ {0, 1}𝑚 such that, for each 𝑖 ∈ [𝑛], the bit 𝑥𝑖

can be recovered with probability 1
2
+ 𝜀 while making only 𝑡 queries into 𝐶(𝑥), even if

the codeword is arbitrarily modified (corrupted) in 𝛿𝑚 bits.

We will use the following lower bound on the size of the LDCs.

Theorem 6.2.5 (Theorem 4 from [101]). If 𝐶 : {0, 1}𝑛 → {0, 1}𝑚 is a (2, 𝛿, 𝜀)-LDC,

then

𝑚 ≥ 2Ω(𝛿𝜀2𝑛).

6.3 One-probe data structures

6.3.1 Robust expansion of the Hamming space

The goal of this section is to compute tight bounds for the robust expansion Φ𝑟(𝛿, 𝛾)

in the Hamming space of dimension 𝑑, as defined in the preliminaries. We use these

bounds for all of our lower bounds in the subsequent sections.

We use the following model for generating dataset points and queries corresponding

to the random instance of Section 6.2.1.

Definition 6.3.1. For any 𝑥 ∈ {−1, 1}𝑛, 𝑁𝜎(𝑥) is a probability distribution over

{−1, 1}𝑛 representing the neighborhood of 𝑥. We sample 𝑦 ∼ 𝑁𝜎(𝑥) by choosing

𝑦𝑖 ∈ {−1, 1} for each coordinate 𝑖 ∈ [𝑑] independently; with probability 𝜎, we set

𝑦𝑖 = 𝑥𝑖, and with probability 1− 𝜎, 𝑦𝑖 is set uniformly at random.

Given any Boolean function 𝑓 : {−1, 1}𝑛 → R, the function 𝑇𝜎𝑓 : {−1, 1}𝑛 → R is

𝑇𝜎𝑓(𝑥) = E
𝑦∼𝑁𝜎(𝑥)

[𝑓(𝑦)] (6.2)

In the remainder of this section, will work solely on the Hamming space 𝑉 =

{−1, 1}𝑑. We let

𝜎 = 1− 1

𝑐
𝑑 = 𝜔(log 𝑛)
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and 𝜇 will refer to the uniform distribution over 𝑉 .

A query is generated as follows: we sample a dataset point 𝑥 uniformly at random

and then generate the query 𝑦 by sampling 𝑦 ∼ 𝑁𝜎(𝑥). From the choice of 𝜎 and

𝑑, 𝑑(𝑥, 𝑦) ≤ 𝑑
2𝑐
(1 + 𝑜(1)) with high probability. In addition, for every other point in

the dataset 𝑥′ ̸= 𝑥, the pair (𝑥′, 𝑦) is distributed as two uniformly random points

(even though 𝑦 ∼ 𝑁𝜎(𝑥), because 𝑥 is randomly distributed). Therefore, by taking

a union-bound over all dataset points, we can conclude that with high probability,

𝑑(𝑥′, 𝑦) ≥ 𝑑
2
(1− 𝑜(1)) for each 𝑥′ ̸= 𝑥.

Given a query 𝑦 generated as described above, we know there exists a dataset

point 𝑥 whose distance to the query is 𝑑(𝑥, 𝑦) ≤ 𝑑
2𝑐
(1 + 𝑜(1)). Every other dataset

point lies at a distance 𝑑(𝑥′, 𝑦) ≥ 𝑑
2
(1− 𝑜(1)). Therefore, the two distances are a factor

of 𝑐− 𝑜(1) away.

The following lemma is the main result of this section, and we will reference this

lemma in subsequent sections.

Lemma 6.3.2 (Robust expansion). Consider the Hamming space equipped with the

Hamming norm. For any 𝑝, 𝑞 ∈ [1,∞) where (𝑞 − 1)(𝑝− 1) = 𝜎2, any 𝛾 ∈ [0, 1], and

𝑚 ≥ 1,

Φ𝑟

(︂
1

𝑚
, 𝛾

)︂
≥ 𝛾𝑞𝑚1+ 𝑞

𝑝
−𝑞.

The robust expansion comes from a straight forward application from small-set

expansion. In fact, one can easily prove tight bounds on robust expansion via the

following lemma:

Theorem 6.3.3 (Generalized Small-Set Expansion Theorem, [139]). Let 0 ≤ 𝜎 ≤ 1.

Let 𝐴,𝐵 ⊂ {−1, 1}𝑛 have volumes exp(−𝑎2

2
) and exp(− 𝑏2

2
) and assume 0 ≤ 𝜎𝑎 ≤ 𝑏 ≤

𝑎. Then

Pr
(𝑥,𝑦)

𝜎−correlated

[𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵] ≤ exp

(︂
−1

2

𝑎2 − 2𝜎𝑎𝑏+ 𝑏2

1− 𝜎2

)︂
.

We compute the robust expansion via an application of the Bonami-Beckner

Inequality and Hölder’s inequality. This computation gives us more flexibility with
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respect to parameters which will become useful in subsequent sections. We now recall

the necessary tools.

Theorem 6.3.4 (Bonami-Beckner Inequality [139]). Fix 1 ≤ 𝑝 ≤ 𝑞 and 0 ≤ 𝜎 ≤√︀
(𝑝− 1)/(𝑞 − 1). Any Boolean function 𝑓 : {−1, 1}𝑛 → R satisfies

‖𝑇𝜎𝑓‖𝑞 ≤ ‖𝑓‖𝑝.

Theorem 6.3.5 (Hölder’s Inequality). Let 𝑓 : {−1, 1}𝑛 → R and 𝑔 : {−1, 1}𝑛 → R

be arbitrary Boolean functions. Fix 𝑠, 𝑡 ∈ [1,∞) where 1
𝑠
+ 1

𝑡
= 1. Then

⟨𝑓, 𝑔⟩ ≤ ‖𝑓‖𝑠‖𝑔‖𝑡.

We will let 𝑓 and 𝑔 be indicator functions for two sets 𝐴 and 𝐵, and use a

combination of the Bonami-Beckner Inequality and Hölder’s Inequality to lower bound

the robust expansion. The operator 𝑇𝜎 applied to 𝑓 will measure the neighborhood of

set 𝐴. We compute an upper bound on the correlation of the neighborhood of 𝐴 and

𝐵 (referred to as 𝛾) with respect to the volumes of 𝐴 and 𝐵, and the expression will

give a lower bound on robust expansion.

We also need the following lemma.

Lemma 6.3.6. Let 𝑝, 𝑞 ∈ [1,∞), where (𝑝− 1)(𝑞 − 1) = 𝜎2 and 𝑓, 𝑔 : {−1, 1}𝑑 → R

be two Boolean functions. Then

⟨𝑇𝜎𝑓, 𝑔⟩ ≤ ‖𝑓‖𝑝‖𝑔‖𝑞.

Proof. We first apply Hölder’s Inequality to split the inner-product into two parts,

apply the Bonami-Beckner Inequality to each part.

⟨𝑇𝜎𝑓, 𝑓⟩ = ⟨𝑇√𝜎𝑓, 𝑇√𝜎𝑔⟩ ≤ ‖𝑇√𝜎𝑓‖𝑠‖𝑇√𝜎𝑔‖𝑡.

We pick the parameters 𝑠 =
𝑝− 1

𝜎
+ 1 and 𝑡 =

𝑠

𝑠− 1
, so 1

𝑠
+ 1

𝑡
= 1. Note that 𝑝 ≤ 𝑠
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because 𝜎 < 1 and 𝑝 ≥ 1 because (𝑝− 1)(𝑞 − 1) = 𝜎2 ≤ 𝜎. We have

𝑞 ≤ 𝜎

𝑝− 1
+ 1 = 𝑡.

In addition,

√︂
𝑝− 1

𝑠− 1
=
√
𝜎

√︂
𝑞 − 1

𝑡− 1
=
√︀

(𝑞 − 1)(𝑠− 1) =

√︂
(𝑞 − 1)(𝑝− 1)

𝜎
=
√
𝜎.

We finally apply the Bonami-Beckner Inequality to both norms to obtain

‖𝑇√𝜎𝑓‖𝑠‖𝑇√𝜎𝑔‖𝑡 ≤ ‖𝑓‖𝑝‖𝑔‖𝑞.

We are now ready to prove Lemma 6.3.2.

Proof of Lemma 6.3.2. We use Lemma 6.3.6 and the definition of robust expansion.

For any two sets 𝐴,𝐵 ⊂ 𝑉 , let 𝑎 = 1
2𝑑
|𝐴| and 𝑏 = 1

2𝑑
|𝐵| be the measure of set 𝐴 and

𝐵 with respect to the uniform distribution. We refer to 𝜒𝐴 : {−1, 1}𝑑 → {0, 1} and

𝜒𝐵 : {−1, 1}𝑑 → {0, 1} as the indicator functions for 𝐴 and 𝐵. Then,

𝛾 = Pr
𝑥∼𝜇,𝑦∼𝑁𝜎(𝑥)

[𝑥 ∈ 𝐵 | 𝑦 ∈ 𝐴] = 1

𝑎
⟨𝑇𝜎𝜒𝐴, 𝜒𝐵⟩ ≤ 𝑎

1
𝑝
−1𝑏

1
𝑞 . (6.3)

Therefore, 𝛾𝑞𝑎𝑞−
𝑞
𝑝 ≤ 𝑏. Let 𝐴 and 𝐵 be the minimizers of 𝑏

𝑎
satisfying (6.3) and

𝑎 ≤ 1
𝑚

.

Φ𝑟

(︂
1

𝑚
, 𝛾

)︂
=
𝑏

𝑎
≥ 𝛾𝑞𝑎𝑞−

𝑞
𝑝
−1 ≥ 𝛾𝑞𝑚1+ 𝑞

𝑝
−𝑞.

6.3.2 One-probe data structures

In this section, we prove Theorem 6.1.1. Our proof relies on the main result of [146]

for the GNS problem:
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Theorem 6.3.7 (Theorem 1.5 [146]). There exists an absolute constant 𝛾 such that

the following holds. Any randomized cell-probe data structure making 𝑡 probes and

using 𝑚 cells of 𝑤 bits for a weakly independent instance of GNS which is correct with

probability greater than 1
2

must satisfy

𝑚𝑡𝑤

𝑛
≥ Φ𝑟

(︂
1

𝑚𝑡
,
𝛾

𝑡

)︂
.

Proof of Theorem 6.1.1. The lower bound follows from applying Lemma 6.3.2 directly

to Theorem 6.3.7. Setting 𝑡 = 1 in Theorem 6.3.7, we obtain

𝑚𝑤 ≥ 𝑛 · Φ𝑟

(︂
1

𝑚
, 𝛾

)︂
≥ 𝑛𝛾𝑞𝑚1+ 𝑞

𝑝
−𝑞

for some 𝑝, 𝑞 ∈ [1,∞) and (𝑝− 1)(𝑞 − 1) = 𝜎2. Rearranging the inequality and letting

𝑝 = 1 + log log𝑛
log𝑛

, and 𝑞 = 1 + 𝜎2 log𝑛
log log𝑛

, we obtain

𝑚 ≥ 𝛾
𝑝

𝑝−1𝑛
𝑝

𝑝𝑞−𝑞

𝑤
𝑝

𝑝𝑞−𝑞

≥ 𝑛
1
𝜎2−𝑜(1).

Since 𝜎 = 1− 1
𝑐

and 𝑤 = 𝑛𝑜(1), we obtain the desired result.

Corollary 6.3.8. Any 1 cell probe data structure with cell size 𝑛𝑜(1) for 𝑐-approximate

nearest neighbors on the sphere in ℓ2 needs 𝑛1+ 2𝑐2−1

(𝑐2−1)2
−𝑜(1) many cells.

Proof. Each point in the Hamming space {−1, 1}𝑑 (after scaling by 1√
𝑑
) can be thought

of as lying on the unit sphere. If two points are a distance 𝑟 apart in the Hamming

space, then they are 2
√
𝑟 apart on the sphere with ℓ2 norm. Therefore a data structure

for a 𝑐2-approximation on the sphere gives a data structure for a 𝑐-approximation in

the Hamming space.

6.4 List-of-points data structures

In this section, we prove Theorem 6.1.4, i.e., a tight lower bound against data structure

that fall inside the “list-of-points” model, as defined in Def. 6.1.3.
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Theorem 6.4.1 (Restatement of Theorem 6.1.4). Let 𝐷 be a list-of-points data

structure which solves (𝑐, 𝑟)-ANN for 𝑛 points in the 𝑑-dimensional Hamming space

with 𝑑 = 𝜔(log 𝑛). Suppose 𝐷 is specified by a sequence of 𝑚 sets {𝐴𝑖}𝑚𝑖=1 and a

procedure for outputting a subset 𝐼(𝑞) ⊂ [𝑚] using expected space 𝑠 = 𝑛1+𝜌𝑢, and

expected query time 𝑛𝜌𝑞−𝑜(1) with success probability 2
3
. Then

𝑐
√
𝜌𝑞 + (𝑐− 1)

√
𝜌𝑢 ≥

√
2𝑐− 1.

We will prove the lower bound by giving a lower bound on list-of-points data

structures which solve the random instance for the Hamming space defined in Sec-

tion 6.2.1. The dataset consists of 𝑛 points {𝑢𝑖}𝑛𝑖=1 where each 𝑢𝑖 ∼ 𝑉 drawn uniformly

at random, and a query 𝑣 is drawn from the neighborhood of a random dataset point.

Thus, we may assume 𝐷 is a deterministic data structure.

Fix a data structure 𝐷, where 𝐴𝑖 ⊂ 𝑉 specifies which dataset points are placed in

𝐿𝑖. Additionally, we may define 𝐵𝑖 ⊂ 𝑉 which specifies which query points scan 𝐿𝑖,

i.e., 𝐵𝑖 = {𝑣 ∈ 𝑉 | 𝑖 ∈ 𝐼(𝑣)}. Suppose we sample a random dataset point 𝑢 ∼ 𝑉 and

then a random query point 𝑣 from the neighborhood of 𝑢. Let

𝛾𝑖 = Pr[𝑣 ∈ 𝐵𝑖 | 𝑢 ∈ 𝐴𝑖]

represent the probability that query 𝑣 scans the list 𝐿𝑖, conditioned on 𝑢 being in 𝐿𝑖.

Additionally, we write 𝑠𝑖 = 𝜇(𝐴𝑖) as the normalized size of 𝐴. The query time for 𝐷

is given by the following expression:

𝑇 =
𝑚∑︁
𝑖=1

𝜒𝐵𝑖
(𝑣)

(︃
1 +

𝑛∑︁
𝑗=1

𝜒𝐴𝑖
(𝑢𝑗)

)︃

E[𝑇 ] =
𝑚∑︁
𝑖=1

𝜇(𝐵𝑖) +
𝑚∑︁
𝑖=1

𝛾𝑖𝜇(𝐴𝑖) + (𝑛− 1)
𝑚∑︁
𝑖=1

𝜇(𝐵𝑖)𝜇(𝐴𝑖)

≥
𝑚∑︁
𝑖=1

Φ𝑟(𝑠𝑖, 𝛾𝑖)𝑠𝑖 +
𝑚∑︁
𝑖=1

𝑠𝑖𝛾𝑖 + (𝑛− 1)
𝑚∑︁
𝑖=1

Φ𝑟(𝑠𝑖, 𝛾𝑖)𝑠
2
𝑖 . (6.4)
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Since the data structure succeeds with probability 𝛾,

𝑚∑︁
𝑖=1

𝑠𝑖𝛾𝑖 ≥ 𝛾 = Pr
𝑗∼[𝑛],𝑣∼𝑁(𝑢𝑗)

[∃𝑖 ∈ [𝑚] : 𝑣 ∈ 𝐵𝑖, 𝑢𝑗 ∈ 𝐴𝑖]. (6.5)

Additionally, since 𝐷 uses at most 𝑠 space,

𝑛

𝑚∑︁
𝑖=1

𝑠𝑖 ≤ 𝑂(𝑠). (6.6)

Using the two constraints in (6.5) and (6.6), we will use the estimates of robust

expansion in order to find a lower bound for (6.4). From Lemma 6.3.2, for any

𝑝, 𝑞 ∈ [1,∞) where (𝑝− 1)(𝑞 − 1) = 𝜎2 where 𝜎 = 1− 1
𝑐
,

E[𝑇 ] ≥
𝑚∑︁
𝑖=1

𝑠
𝑞− 𝑞

𝑝

𝑖 𝛾𝑞𝑖 + (𝑛− 1)
𝑚∑︁
𝑖=1

𝑠
𝑞− 𝑞

𝑝
+1

𝑖 𝛾𝑞𝑖 + 𝛾

𝛾 ≤
𝑚∑︁
𝑖=1

𝑠𝑖𝛾𝑖

𝑂
(︁ 𝑠
𝑛

)︁
≥

𝑚∑︁
𝑖=1

𝑠𝑖.

We set 𝑆 = {𝑖 ∈ [𝑚] : 𝑠𝑖 ̸= 0} and for 𝑖 ∈ 𝑆, we write 𝑣𝑖 = 𝑠𝑖𝛾𝑖. Then

E[𝑇 ] ≥
∑︁
𝑖∈𝑆

𝑣𝑞𝑖

(︁
𝑠
− 𝑞

𝑝

𝑖 + (𝑛− 1)𝑠
− 𝑞

𝑝
+1

𝑖

)︁
≥
∑︁
𝑖∈𝑆

(︂
𝛾

|𝑆|

)︂𝑞 (︁
𝑠
− 𝑞

𝑝

𝑖 + (𝑛− 1)𝑠
− 𝑞

𝑝
+1

𝑖

)︁
(6.7)

where we used the fact 𝑞 ≥ 1. Consider

𝐹 =
∑︁
𝑖∈𝑆

(︁
𝑠
− 𝑞

𝑝

𝑖 + (𝑛− 1)𝑠
− 𝑞

𝑝
+1

𝑖

)︁
. (6.8)

We analyze three cases separately:

∙ 0 < 𝜌𝑢 ≤ 1
2𝑐−1

∙ 1
2𝑐−1

< 𝜌𝑢 ≤
2𝑐− 1

(𝑐− 1)2

∙ 𝜌𝑢 = 0.
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For the first two cases, we let

𝑞 = 1− 𝜎2 + 𝜎𝛽 𝑝 =
𝛽

𝛽 − 𝜎 𝛽 =

√︃
1− 𝜎2

𝜌𝑢
(6.9)

Since 0 < 𝜌𝑢 ≤
2𝑐− 1

(𝑐− 1)2
, one can verify 𝛽 > 𝜎 and both 𝑝 and 𝑞 are at least 1.

Lemma 6.4.2. When 𝜌𝑢 ≤ 1
2𝑐−1

, and 𝑠 = 𝑛1+𝜌𝑢,

E[𝑇 ] ≥ Ω(𝑛𝜌𝑞)

where 𝜌𝑞 and 𝜌𝑢 satisfy Equation 6.1.

Proof. In this setting, 𝑝 and 𝑞 are constants, and 𝑞 ≥ 𝑝. Therefore, 𝑞
𝑝
≥ 1. 𝐹 can be

viewed as consisting of the contributions of each 𝑠𝑖’s in Equation 6.8, constrained by

(6.6). One can easily verify that 𝐹 minimized when 𝑠𝑖 = 𝑂( 𝑠
𝑛|𝑆|), so substituting in

(6.7),

E[𝑇 ] ≥ Ω

(︂
𝛾𝑞𝑠−𝑞/𝑝+1𝑛𝑞/𝑝

|𝑆|𝑞−𝑞/𝑝

)︂
≥ Ω(𝛾𝑞𝑠1−𝑞𝑛𝑞/𝑝)

since 𝑞 − 𝑞/𝑝 > 0 and |𝑆| ≤ 𝑠. In addition, 𝑝, 𝑞 and 𝛾 are constants, and note

the fact 𝑠 = 𝑛1+𝜌𝑢 , and (6.9), we let 𝑛𝜌𝑞 be the best query time we can achieve.

Combining these facts, along with the lower bound for 𝜌𝑞 in (6.4), we obtain the

following relationship between 𝜌𝑞 and 𝜌𝑢:

𝜌𝑞 = (1 + 𝜌𝑢)(1− 𝑞) +
𝑞

𝑝

= (1 + 𝜌𝑢)(𝜎
2 − 𝜎𝛽) + (1− 𝜎2 + 𝜎𝛽)(𝛽 − 𝜎)

𝛽

=
(︁√

1− 𝜎2 −√𝜌𝑢𝜎
)︁2

=

(︂√
2𝑐− 1

𝑐
−√𝜌𝑢 ·

(𝑐− 1)

𝑐

)︂2

.
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Lemma 6.4.3. When 𝜌𝑢 >
1

2𝑐−1
,

E[𝑇 ] ≥ Ω(𝑛𝜌𝑞)

where 𝜌𝑞 and 𝜌𝑢 satisfy Equation 6.1.

Proof. We follow a similar pattern to Lemma 6.4.2.

𝜕𝐹

𝜕𝑠𝑖
=

(︂
−𝑞
𝑝

)︂
𝑠
− 𝑞

𝑝
−1

𝑖 +

(︂
−𝑞
𝑝
+ 1

)︂
(𝑛− 1)𝑠

− 𝑞
𝑝

𝑖 .

Consider the case when each 𝜕𝐹
𝜕𝑠𝑖

(𝑠𝑖) = 0, by setting 𝑠𝑖 =
𝑞

(𝑝− 𝑞)(𝑛− 1)
. Since 𝑞 < 𝑝,

this value is positive and
∑︀

𝑖∈𝑆 𝑠𝑖 ≤ 𝑂
(︀
𝑚
𝑛

)︀
for large enough 𝑛. Thus, 𝐹 is minimized

at this point, and E[𝑇 ] ≥
(︁

𝛾
|𝑆|

)︁𝑞
|𝑆|
(︁

𝑞
(𝑝−𝑞)(𝑛−1)

)︁− 𝑞
𝑝 . Since 𝑞 ≥ 1 and |𝑆| ≤ 𝑠,

E[𝑇 ] ≥
(︁𝛾
𝑠

)︁𝑞
𝑠

(︂
𝑞

(𝑝− 𝑞)(𝑛− 1)

)︂− 𝑞
𝑝

.

Since 𝑝, 𝑞 and 𝛾 are constants, E[𝑇 ] ≥ Ω(𝑛𝜌𝑞),

𝜌𝑞 = (1 + 𝜌𝑢)(1− 𝑞) +
𝑞

𝑝

which is the same expression for 𝜌𝑞 as in Lemma 6.4.2.

Lemma 6.4.4. When 𝜌𝑢 = 0 (so 𝑠 = 𝑂(𝑛)),

E[𝑇 ] ≥ 𝑛𝜌𝑞−𝑜(1)

where 𝜌𝑞 =
2𝑐− 1

𝑐2
= 1− 𝜎2.

Proof. In this case, we let

𝑞 = 1 + 𝜎2 · log 𝑛

log log 𝑛
𝑝 = 1 +

log log 𝑛

log 𝑛
.

Since 𝑞 > 𝑝, we have

E[𝑇 ] = Ω(𝛾𝑞𝑠1−𝑞𝑛
𝑞
𝑝 ) = 𝑛1−𝜎2−𝑜(1),
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which is the desired expression.

6.5 Two-probe data structures

In this section, we prove the cell probe lower bound for 𝑡 = 2 cell probes stated in

Theorem 6.1.2.

We follow the framework in [146] and prove lower bounds for GNS when 𝑈 = 𝑉

with measure 𝜇 (see Def. 6.2.2). We assume there is an underlying graph 𝐺 with

vertex set 𝑉 . For any point 𝑝 ∈ 𝑉 , we write 𝑝’s neighborhood, 𝑁(𝑝), as the set of

points with an edge incident on 𝑝 in 𝐺.

In the 2-probe GNS problem, we are given a dataset 𝑃 = {𝑝𝑖}𝑛𝑖=1 ⊂ 𝑉 of 𝑛 points

as well as a bit-string 𝑥 ∈ {0, 1}𝑛. The goal is to build a data structure supporting

the following types of queries: given a point 𝑞 ∈ 𝑉 , if there exists a unique neighbor

𝑝𝑖 ∈ 𝑁(𝑞) ∩ 𝑃 , return 𝑥𝑖 with probability at least 2
3

after making two cell-probes.

We let 𝐷 denote a data structure with 𝑚 cells of 𝑤 bits each. 𝐷 will depend on

the dataset 𝑃 as well as the bit-string 𝑥. We will prove the following theorem.

Theorem 6.5.1. There exists a constant 𝛾 > 0 such that any non-adaptive GNS data

structure holding a dataset of 𝑛 ≥ 1 points which succeeds with probability 2
3

using two

cell probes and 𝑚 cells of 𝑤 bits satisfies

𝑚 log𝑚 · 2𝑂(𝑤)

𝑛
≥ Ω

(︂
Φ𝑟

(︂
1

𝑚
, 𝛾

)︂)︂
.

Theorem 6.1.2 will follow from Theorem 6.5.1 together with the robust expansion

bound from Lemma 6.3.2 for the special case of non-adaptive probes. We will later

show how to reduce adaptive algorithms losing a sub-polynomial factor in the space

for 𝑤 = 𝑜(log 𝑛) in Section 6.5.6. We now proceed to proving Theorem 6.5.1.

At a high-level, we show that a “too-good-to-be-true”, 2-probe data structure

implies a weaker notion of 2-query locally-decodable code (LDC) with small noise

rate using the same amount of space2. Even though our notion of LDC is weaker

2A 2-query LDC corresponds to LDCs which make two probes to their memory contents. Even
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than Def. 6.2.4, we adapt the tools for showing 2-query LDC lower bounds from [101].

These arguments, using quantum information theory, are very robust and work well

with the weaker 2-query LDC we construct.

We note that [145] was the first to suggest the connection between ANN and LDCs.

This work represents the first concrete connection which gives rise to better lower

bounds.

Proof structure. The proof of Theorem 6.5.1 proceeds in six steps.

1. First we use Yao’s principle to focus on deterministic non-adaptive data structures

for GNS with two cell-probes. We provide distributions over 𝑛-point datasets 𝑃 ,

as well as bit-strings 𝑥 and a query 𝑞, and assume the existence of a deterministic

data structure succeeding with probability at least 2
3
.

2. We simplify the deterministic data structure in order to get “low-contention”

data structures. These are data structures which do not rely on any single cell

too much (similar to Def. 6.1 in [146]).

3. We use ideas from [146] to understand how queries neighboring particular dataset

points probe various cells of the data structure. We fix an 𝑛-point dataset 𝑃

with a constant fraction of the points satisfying the following condition: many

possible queries in the neighborhood of these points probe disjoint pairs of cells.

4. For the fixed dataset 𝑃 , we show that we can recover a constant fraction of bits

of 𝑥 with significant probability even if we corrupt the contents of some cells.

5. We reduce to data structures with 1-bit words in order to apply the LDC

arguments from [101].

6. Finally, we design an LDC with weaker guarantees and use the arguments in

[101] to prove lower bounds on the space of the weak LDC.

though there is a slight ambiguity with the data structure notion of query, we say “2-query LDCs” in
order to be consistent with the LDC literature.
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6.5.1 Deterministic data structures

Definition 6.5.2. A non-adaptive randomized algorithm 𝑅 for the GNS problem

making two cell-probes is an algorithm specified by the following two components:

1. A procedure which preprocess a dataset 𝑃 = {𝑝𝑖}𝑛𝑖=1 of 𝑛 points, as well as a

bit-string 𝑥 ∈ {0, 1}𝑛 in order to output a data structure 𝐷 ∈ ({0, 1}𝑤)𝑚.

2. An algorithm 𝑅 that given a query 𝑞, chooses two indices (𝑖, 𝑗) ∈ [𝑚]2 and

specifies a function 𝑓𝑞 : {0, 1}𝑤 × {0, 1}𝑤 → {0, 1}.

We require the data structure 𝐷 and the algorithm 𝑅 satisfy

Pr
𝑅,𝐷

[𝑓𝑞(𝐷𝑗, 𝐷𝑘) = 𝑥𝑖] ≥
2

3

whenever 𝑞 ∈ 𝑁(𝑝𝑖) and 𝑝𝑖 is the unique such neighbor.

Note that the procedure which outputs the data structure does not depend on the

query 𝑞, and that the algorithm 𝑅 does not depend on the dataset 𝑃 or bit-string 𝑥.

Definition 6.5.3. We define the following distributions:

∙ Let 𝒫 be the uniform distribution supported on 𝑛-point datasets from 𝑉 .

∙ Let 𝒳 be the uniform distribution over {0, 1}𝑛.

∙ Let 𝒬(𝑃 ) be the distribution over queries given by first drawing a dataset point

𝑝 ∈ 𝑃 uniformly at random and then drawing 𝑞 ∈ 𝑁(𝑝) uniformly at random.

Lemma 6.5.4. Assume 𝑅 is a non-adaptive randomized algorithm for GNS using

two cell-probes. Then, there exists a non-adaptive deterministic algorithm 𝐴 for GNS

using two cell-probes succeeding with probability at least 2
3

when the dataset 𝑃 ∼ 𝒫,

the bit-string 𝑥 ∼ 𝒳 , and 𝑞 ∼ 𝒬(𝑃 ).

Proof. We apply Yao’s principle to the success probability of the algorithm. By

assumption, there exists a distribution over algorithms which can achieve probability

of success at least 2
3

for any single query. Therefore, for the fixed distributions 𝒫 ,𝒳 ,
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and 𝒬, there exists a deterministic algorithm achieving at least the same success

probability.

In order to simplify notation, we let 𝐴𝐷(𝑞) denote output of the algorithm 𝐴. We

assume that 𝐴(𝑞) outputs a pair of indices (𝑗, 𝑘) as well as the function 𝑓𝑞 : {0, 1}𝑤 ×
{0, 1}𝑤 → {0, 1}, and thus, we use 𝐴𝐷(𝑞) as the output of 𝑓𝑞(𝐷𝑗, 𝐷𝑘). For any fixed

dataset 𝑃 = {𝑝𝑖}𝑛𝑖=1 and bit-string 𝑥 ∈ {0, 1}𝑛,

Pr
𝑞∼𝑁(𝑝𝑖)

[𝐴𝐷(𝑞) = 𝑥𝑖] = Pr
𝑞∼𝑁(𝑝𝑖)

[𝑓𝑞(𝐷𝑗, 𝐷𝑘) = 𝑥𝑖].

This notation allows us to succinctly state the probability of correctness when the

query is a neighbor of 𝑝𝑖.

For the remainder of the section, we let 𝐴 denote a non-adaptive deterministic

algorithm succeeding with probability at least 2
3

using 𝑚 cells of width 𝑤. The

success probability is taken over the random choice of the dataset 𝑃 ∼ 𝒫 , 𝑥 ∼ 𝒳 and

𝑞 ∼ 𝒬(𝑃 ).

6.5.2 Making low-contention data structures

For any 𝑡 ∈ {1, 2} and 𝑗 ∈ [𝑚], let 𝐴𝑡,𝑗 be the set of queries which probe cell 𝑗 at

the 𝑡-th probe of algorithm 𝐴. Since 𝐴 is deterministic, the indices (𝑖, 𝑗) ∈ [𝑚]2

which 𝐴 outputs are completely determined by two collections 𝒜1 = {𝐴1,𝑗}𝑗∈[𝑚] and

𝒜2 = {𝐴2,𝑗}𝑗∈[𝑚] which independently partition the query space 𝑉 . On query 𝑞, if

𝑞 ∈ 𝐴1,𝑖 and 𝑞 ∈ 𝐴2,𝑗, algorithm 𝐴 outputs the indices (𝑖, 𝑗).

We now define the notion of low-contention data structures, which requires the

data structure to not rely on any one particular cell too much by ensuring no 𝐴𝑡,𝑗 is

too large.

Definition 6.5.5. A deterministic non-adaptive algorithm 𝐴 using 𝑚 cells has low

contention if every set 𝜇(𝐴𝑡,𝑗) ≤ 1
𝑚

for 𝑡 ∈ {1, 2} and 𝑗 ∈ [𝑚].

We now use the following lemma to argue that up to a small increase in space, a

data structure can be made low-contention.

222



Lemma 6.5.6. Let 𝐴 be a deterministic non-adaptive algorithm for GNS making two

cell-probes using 𝑚 cells. There exists a deterministic non-adaptive algorithm 𝐴′ for

GNS making two cell-probes using 3𝑚 cells which has low contention and succeeds with

the same probability.

Proof. Suppose 𝜇(𝐴𝑡,𝑗) ≥ 1
𝑚

for some 𝑗 ∈ [𝑚]. We partition 𝐴𝑡,𝑗 into enough sets

{𝐴(𝑗)
𝑡,𝑘}𝑘 of measure 1

𝑚
and at most one set with measure between 0 and 1

𝑚
. For each

of set 𝐴(𝑗)
𝑡,𝑘 , we make a new cell 𝑗𝑘 with the same contents as cell 𝑗. When a query lies

inside 𝐴(𝑗)
𝑡,𝑘 the 𝑡-th probe is made to the new cell 𝑗𝑘 instead of cell 𝑗.

We apply the above transformation on all sets with 𝜇(𝐴𝑡,𝑗) ≥ 1
𝑚

. In the resulting

data structure, in each partition 𝒜1 and 𝒜2, there can be at most 𝑚 cells of measure
1
𝑚

and at most 𝑚 sets with measure less than 1
𝑚

. Therefore, the transformed data

structure has at most 3𝑚 cells. Since the contents remain the same, the data structure

succeeds with the same probability.

Given Lemma 6.5.6, we assume that 𝐴 is a deterministic non-adaptive algorithm

for GNS with two cell-probes using 𝑚 cells which has low contention. The extra factor

of 3 in the number of cells is absorbed in the asymptotic notation.

6.5.3 Datasets which shatter

We fix some 𝛾 > 0 to be a sufficiently small constant.

Definition 6.5.7 (Weak-shattering [146]). We say a partition 𝐴1, . . . , 𝐴𝑚 of 𝑉 (𝐾, 𝛾)-

weakly shatters a point 𝑝 if

∑︁
𝑖∈[𝑚]

(︂
𝜇(𝐴𝑖 ∩𝑁(𝑝))− 1

𝐾

)︂+

≤ 𝛾,

where the operator (·)+ : R→ R+ is the identity on positive real numbers and zero

otherwise.

Lemma 6.5.8 (Shattering [146]). Let 𝐴1, . . . , 𝐴𝑘 be a collection of disjoint subsets of
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measure at most 1
𝑚

. Then

Pr
𝑝∼𝜇

[𝑝 is (𝐾, 𝛾)-weakly shattered] ≥ 1− 𝛾

for 𝐾 = Φ𝑟

(︁
1
𝑚
, 𝛾

2

4

)︁
· 𝛾3

16
.

For the remainder of the section, we let

𝐾 = Φ𝑟

(︂
1

𝑚
,
𝛾2

4

)︂
· 𝛾

3

16
.

We are interested in dataset points which are shattered with respect to the

collections 𝒜1 and 𝒜2. Intuitively, queries which are near-neighbors of these dataset

points probe various disjoint cells in the data structure, so their corresponding bit is

stored in many cells.

Definition 6.5.9. Let 𝑝 ∈ 𝑉 be a dataset point which is (𝐾, 𝛾)-weakly shattered by

𝒜1 and 𝒜2. Let 𝛽1, 𝛽2 ⊂ 𝑁(𝑝) be arbitrary subsets where each 𝑗 ∈ [𝑚] satisfies

𝜇(𝐴1,𝑗 ∩𝑁(𝑝) ∖ 𝛽1) ≤
1

𝐾

and

𝜇(𝐴2,𝑗 ∩𝑁(𝑝) ∖ 𝛽2) ≤
1

𝐾

Since 𝑝 is (𝐾, 𝛾)-weakly shattered, we can pick 𝛽1 and 𝛽2 with measure at most 𝛾

each. We will refer to 𝛽(𝑝) = 𝛽1 ∪ 𝛽2.

For a fixed dataset point 𝑝 ∈ 𝑃 , we refer to 𝛽(𝑝) as the set holding the slack in

the shattering of measure at most 2𝛾. For a given collection 𝒜, let 𝑆(𝒜, 𝑝) be the

event that the collection 𝒜 (𝐾, 𝛾)-weakly shatters 𝑝. Note that Lemma 6.5.8 implies

that Pr𝑝∼𝜇[𝑆(𝒜, 𝑝)] ≥ 1− 𝛾.

Lemma 6.5.10. With high probability over the choice of 𝑛-point dataset, at most 4𝛾𝑛

points do not satisfy 𝑆(𝒜1, 𝑝) and 𝑆(𝒜2, 𝑝).
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Proof. The expected number of points 𝑝 which do not satisfy 𝑆(𝒜1, 𝑝) and 𝑆(𝒜2, 𝑝)

is at most 2𝛾𝑛. Therefore via a Chernoff bound, the probability that more than 4𝛾𝑛

points do not satisfy 𝑆(𝒜1, 𝑝) and 𝑆(𝒜2, 𝑝) is at most exp
(︀
−2𝛾𝑛

3

)︀
.

We call a dataset good if there are at most 4𝛾𝑛 dataset points which are not

(𝐾, 𝛾)-weakly shattered by 𝒜1 and 𝒜2.

Lemma 6.5.11. There exists a good dataset 𝑃 = {𝑝𝑖}𝑛𝑖=1 where

Pr
𝑥∼𝒳 ,𝑞∼𝒬(𝑃 )

[𝐴𝐷(𝑞) = 𝑥𝑖] ≥
2

3
− 𝑜(1)

Proof. For any fixed dataset 𝑃 = {𝑝𝑖}𝑛𝑖=1, let

P = Pr
𝑥∼𝒳 ,𝑞∼𝑄(𝑝)

[𝐴𝐷(𝑞) = 𝑥𝑖].

Then,

2

3
≤ E

𝑃∼𝒫
[P]

= (1− 𝑜(1)) · E
𝑃∼𝒫

[P | 𝑃 is good] + 𝑜(1) · E
𝑃∼𝒫

[P | 𝑃 is not good]

2

3
− 𝑜(1) ≤ (1− 𝑜(1)) · E

𝑃∼𝒫
[P | 𝑃 is good].

Therefore, there exists a dataset which is not shattered by at most 4𝛾𝑛 and

Pr
𝑥∼𝒳 ,𝑞∼𝒬(𝑃 )

[𝐴𝐷(𝑦) = 𝑥𝑖] ≥
2

3
− 𝑜(1).
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6.5.4 Corrupting some cell contents of shattered points

In the rest of the proof, we fix the dataset 𝑃 = {𝑝𝑖}𝑛𝑖=1 satisfying the conditions of

Lemma 6.5.11, i.e., 𝑃 satisfies

Pr
𝑥∼𝒳 ,𝑞∼𝒬(𝑃 )

[𝐴𝐷(𝑞) = 𝑥𝑖] ≥
2

3
− 𝑜(1). (6.10)

We now introduce the notion of corruption of the data structure cells 𝐷, which

parallels the notion of noise in locally-decodable codes. Remember that, after fixing

some bit-string 𝑥, the algorithm 𝐴 produces some data structure 𝐷 ∈ ({0, 1}𝑤)𝑚.

Definition 6.5.12. We call 𝐷′ ∈ ({0, 1}𝑤)𝑚 a corrupted version of 𝐷 at 𝑘 cells if 𝐷

and 𝐷′ differ on at most 𝑘 cells, i.e., if |{𝑖 ∈ [𝑚] : 𝐷𝑖 ̸= 𝐷′
𝑖}| ≤ 𝑘.

Definition 6.5.13. For a fixed 𝑥 ∈ {0, 1}𝑛, let

𝑐𝑥(𝑖) = Pr
𝑞∼𝑁(𝑝𝑖)

[𝐴𝐷(𝑞) = 𝑥𝑖] (6.11)

denote the recovery probability of bit 𝑖. Note that from the definitions of 𝒬(𝑃 ),
E[𝑐𝑥(𝑖)] ≥ 2

3
− 𝑜(1), where the expectation is taken over 𝑥 ∼ 𝒳 and 𝑖 ∈ [𝑛].

In this section, we show there exist a subset 𝑆 ⊂ [𝑛] of size Ω(𝑛) where each 𝑖 ∈ 𝑆
has constant recovery probability averaged over 𝑥 ∼ 𝒳 , even if the algorithm probes a

corrupted version of data structure. We let 𝜀 > 0 be a sufficiently small constant.

Lemma 6.5.14. Fix a vector 𝑥 ∈ {0, 1}𝑛, and let 𝐷 ∈ ({0, 1}𝑤)𝑚 be the data structure

that algorithm 𝐴 produces on dataset 𝑃 and bit-string 𝑥. Let 𝐷′ be a corruption of 𝐷

at 𝜀𝐾 cells. For every 𝑖 ∈ [𝑛] where events 𝑆(𝒜1, 𝑝𝑖) and 𝑆(𝒜2, 𝑝𝑖) occur,

Pr
𝑞∼𝑁(𝑝𝑖)

[𝐴𝐷′
(𝑞) = 𝑥𝑖] ≥ 𝑐𝑥(𝑖)− 2𝛾 − 2𝜀.

Proof. Note that 𝑐𝑥(𝑖) represents the probability that algorithm 𝐴 run on a uniformly

chosen query from the neighborhood of 𝑝𝑖 returns the correct answer, i.e. 𝑥𝑖. We

denote the subset 𝐶1 ⊂ 𝑁(𝑝) of queries that when run on 𝐴 return 𝑥𝑖; so, 𝜇(𝐶1) = 𝑐𝑥(𝑖)

by definition.
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By assumption, 𝑝𝑖 is (𝐾, 𝛾)-weakly shattered by 𝒜1 and 𝒜2, so by Def. 6.5.9, we

specify some 𝛽(𝑝) ⊂ 𝑁(𝑝) where 𝜇(𝐶1 ∩ 𝛽(𝑝)) ≤ 𝜇(𝛽(𝑝)) ≤ 2𝛾. Let 𝐶2 = 𝐶1 ∖ 𝛽(𝑝),
where 𝜇(𝐶2) ≥ 𝑐𝑖(𝑥)− 2𝛾. Again, by assumption that 𝑝𝑖 is (𝐾, 𝛾)-weakly shattered,

each 𝑗 ∈ [𝑚] and 𝑡 ∈ {1, 2} satisfy 𝜇(𝐶2 ∩ 𝐴𝑡,𝑗) ≤ 1
𝐾

. Let Δ ⊂ [𝑚] be the set of 𝜀𝐾

cells where 𝐷 and 𝐷′ differ, and let 𝐶3 ⊂ 𝐶2 be given by

𝐶3 = 𝐶2 ∖
(︃⋃︁

𝑗∈Δ

(𝐴1,𝑗 ∪ 𝐴2,𝑗)

)︃
.

Thus,

𝜇(𝐶3) ≥ 𝜇(𝐶2)−
∑︁
𝑗∈Δ

(𝜇(𝐶2 ∩ 𝐴1,𝑗) + 𝜇(𝐶2 ∩ 𝐴2,𝑗)) ≥ 𝑐𝑖(𝑥)− 2𝛾 − 2𝜀.

If 𝑞 ∈ 𝐶3, then on query 𝑞, algorithm 𝐴 probes cells outside of Δ, so 𝐴𝐷′
(𝑞) = 𝐴𝐷(𝑞) =

𝑥𝑖.

Lemma 6.5.15. There exists a set 𝑆 ⊂ [𝑛] of size Ω(𝑛) with the following property.

If 𝑖 ∈ 𝑆, then events 𝑆(𝒜1, 𝑝𝑖) and 𝑆(𝒜2, 𝑝𝑖) occur, and

E
𝑥∼𝒳

[𝑐𝑥(𝑖)] ≥
1

2
+ 𝜈,

where 𝜈 is a constant. 3

Proof. For 𝑖 ∈ [𝑛], let 𝐸𝑖 be the event that 𝑆(𝒜1, 𝑝𝑖) and 𝑆(𝒜2, 𝑝𝑖) occur and

E𝑥∼𝒳 [𝑐𝑥(𝑖)] ≥ 1
2
+ 𝜈. Additionally, let

P = Pr
𝑖∈[𝑛]

[𝐸𝑖] .

3One can think of 𝜈 as around 1
10 .
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We set 𝑆 = {𝑖 ∈ [𝑛] | 𝐸𝑖}, so it remains to show that P = Ω(1). To this end,

2

3
− 𝑜(1) ≤ E

𝑥∼𝒳 ,𝑖∈[𝑛]
[𝑐𝑥(𝑖)] (by Equations 6.10 and 6.11)

≤ 4𝛾 + P +

(︂
1

2
+ 𝜈

)︂
· (1−P) (since 𝑃 is good)

1

6
− 𝑜(1)− 4𝛾 − 𝜈 ≤ P ·

(︂
1

2
− 𝜈
)︂
.

Fix the set 𝑆 ⊂ [𝑛] satisfying the conditions of Lemma 6.5.15. We combine

Lemma 6.5.14 and Lemma 6.5.15 to obtain the following condition on the dataset.

Lemma 6.5.16. Whenever 𝑖 ∈ 𝑆,

E
𝑥∼𝒳

[︂
Pr

𝑞∼𝑁(𝑝𝑖)
[𝐴𝐷′

(𝑞) = 𝑥𝑖]

]︂
≥ 1

2
+ 𝜂

where 𝜂 = 𝜈 − 2𝛾 − 2𝜀 and 𝐷′ differs from 𝐷 in 𝜀𝐾 cells.

Proof. Whenever 𝑖 ∈ 𝑆, 𝑝𝑖 is (𝐾, 𝛾)-weakly shattered. By Lemma 6.5.15, 𝐴 outputs

𝑥𝑖 with probability 1
2
+ 𝜈 on average when probing the data structure 𝐷 on input

𝑞 ∼ 𝑁(𝑝𝑖), i.e

E
𝑥∼𝒳

[︂
Pr

𝑞∼𝑁(𝑝𝑖)
[𝐴𝐷(𝑞) = 𝑥𝑖]

]︂
≥ 1

2
+ 𝜈.

Therefore, from Lemma 6.5.14, if 𝐴 probes 𝐷′ which is a corruption of 𝐷 in any 𝜀𝐾

cells, 𝐴 will recover 𝑥𝑖 with probability at least 1
2
+ 𝜈 − 2𝛾 − 2𝜀 averaged over all

𝑥 ∼ 𝒳 where 𝑞 ∼ 𝑁(𝑝𝑖). In other words,

E
𝑥∼𝒳

[︂
Pr

𝑞∼𝑁(𝑝𝑖)
[𝐴𝐷′

(𝑞) = 𝑥𝑖]

]︂
≥ 1

2
+ 𝜈 − 2𝛾 − 2𝜀.

Summarizing the results of the section, we conclude with the following theorem.

Theorem 6.5.17. There exists a two-probe algorithm and a subset 𝑆 ⊆ [𝑛] of size

Ω(𝑛), satisfying the following property. When 𝑖 ∈ 𝑆, we can recover 𝑥𝑖 with probability
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at least 1
2
+ 𝜂 over a random choice of 𝑥 ∼ 𝒳 , even if we probe a corrupted version of

the data structure at 𝜀𝐾 cells.

Proof. We describe how one can recover bit 𝑥𝑖 from a data structure generated by

algorithm 𝐴. In order to recover 𝑥𝑖, we generate a random query 𝑞 ∼ 𝑁(𝑝𝑖) and probe

the data structure at the cells specified by 𝐴. From Lemma 6.5.16, there exists a set

𝑆 ⊂ [𝑛] of size Ω(𝑛) for which the described algorithm recovers 𝑥𝑖 with probability at

least 1
2
+ 𝜂, where the probability is taken on average over all possible 𝑥 ∈ {0, 1}𝑛.

Since we fixed the dataset 𝑃 = {𝑝𝑖}𝑛𝑖=1 satisfying the conditions of Lemma 6.5.11,

we will abuse a bit of notation, and refer to algorithm 𝐴 as the algorithm which

recovers bits of 𝑥 described in Theorem 6.5.17. We say that 𝑥 ∈ {0, 1}𝑛 is an input to

algorithm 𝐴 in order to initialize the data structure with dataset 𝑃 = {𝑝𝑖}𝑛𝑖=1 and 𝑥𝑖

is the bit associated with 𝑝𝑖.

6.5.5 Decreasing the word size

In order to apply the lower bounds of 2-query locally-decodable codes, we reduce to

the case when the word size 𝑤 is one bit.

Lemma 6.5.18. There exists a deterministic non-adaptive algorithm 𝐴′ which on

input 𝑥 ∈ {0, 1}𝑛 builds a data structure 𝐷′ using 𝑚 · 2𝑤 cells of 1 bit. For any 𝑖 ∈ 𝑆
as well as any corruption 𝐶 which differs from 𝐷′ in at most 𝜀𝐾 cells satisfies

E
𝑥∈{0,1}𝑛

[︂
Pr

𝑞∼𝑁(𝑝𝑖)
[𝐴′𝐶(𝑞) = 𝑥𝑖]

]︂
≥ 1

2
+

𝜂

22𝑤
.

Proof. Given algorithm 𝐴 which constructs the data structure 𝐷 ∈ ({0, 1}𝑤)𝑚 on

input 𝑥 ∈ {0, 1}𝑛, construct the following data structure 𝐷′ ∈ ({0, 1})𝑚·2𝑤 . For each

cell 𝐷𝑗 ∈ {0, 1}𝑤, make 2𝑤 cells containing all parities of the 𝑤 bits in 𝐷𝑗. This

procedure increases the size of the data structure by a factor of 2𝑤.

Fix 𝑖 ∈ 𝑆 and 𝑞 ∈ 𝑁(𝑝𝑖) be a query. If the algorithm 𝐴 produces a function

𝑓𝑞 : {0, 1}𝑤 × {0, 1}𝑤 → {0, 1} which succeeds with probability at least 1
2
+ 𝜁 over

𝑥 ∈ {0, 1}𝑛, then there exists a signed parity on some input bits which equals 𝑓𝑞 in at
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least 1
2
+ 𝜁

22𝑤
inputs 𝑥 ∈ {0, 1}𝑛. Let 𝑆𝑗 be the parity of the bits of cell 𝑗 and 𝑆𝑘 be the

parity of the bits of cell 𝑘. Let 𝑓 ′
𝑞 : {0, 1} × {0, 1} → {0, 1} denote the parity or the

negation of the parity which equals 𝑓𝑞 on 1
2
+ 𝜁

22𝑤
possible input strings 𝑥 ∈ {0, 1}𝑛.

Algorithm 𝐴′ will evaluate 𝑓 ′
𝑞 at the cell containing the parity of the 𝑆𝑗 bits in cell

𝑗 and the parity of 𝑆𝑘 bits in cell 𝑘. Let 𝐼𝑆𝑗
, 𝐼𝑆𝑘

∈ [𝑚 · 2𝑤] be the indices of these cells.

If 𝐶 ′ is a sequence of 𝑚 · 2𝑤 cells which differ in 𝜀𝐾 many cells from 𝐷′, then

E
𝑥∈{0,1}𝑛

[︂
Pr

𝑞∼𝑁(𝑝𝑖)
[𝑓 ′

𝑞(𝐶𝐼𝑆𝑗
, 𝐶𝐼𝑆𝑘

) = 𝑥𝑖]

]︂
≥ 1

2
+

𝜂

22𝑤

whenever 𝑖 ∈ 𝑆.

For the remainder of the section, we will prove a version of Theorem 6.5.1 for

algorithms with 1-bit words. Given Lemma 6.5.18, we will modify the space to 𝑚 · 2𝑤

and the probability to 1
2
+ 𝜂

22𝑤
to obtain the answer. So for the remainder of the

section, assume algorithm 𝐴 has 1 bit words.

6.5.6 Connection to locally-decodable codes

To complete the proof of Theorem 6.5.1, it remains to prove the following lemma.

Lemma 6.5.19. Let 𝐴 be a non-adaptive deterministic algorithm which makes 2 cell

probes to a data structure 𝐷 of 𝑚 cells of 1 bit and recover 𝑥𝑖 with probability 1
2
+ 𝜂

on random input 𝑥 ∈ {0, 1}𝑛 even after 𝜀𝐾 cells are corrupted whenever 𝑖 ∈ 𝑆 for

some fixed 𝑆 of size Ω(𝑛). Then the following must hold:

𝑚 log𝑚

𝑛
≥ Ω

(︀
𝜀𝐾𝜂2

)︀
.

The proof of the lemma uses [101] and relies heavily on notions from quantum

computing. In particular, quantum information theory applied to LDC lower bounds.

Crash course in quantum computing

We introduce a few concepts from quantum computing that are necessary in our

subsequent arguments. The quantum state of a qubit is described by a unit-length
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vector in C2. We write the quantum state as a linear combination of the basis states

(10) = |0⟩ and (01) = |1⟩. The quantum state 𝛼 = (𝛼1
𝛼2
) can be written

|𝛼⟩ = 𝛼1 |0⟩+ 𝛼2 |1⟩

where we refer to 𝛼1 and 𝛼2 as amplitudes and |𝛼1|2 + |𝛼2|2 = 1. The quantum state

of an 𝑚-qubit system is a unit vector in the tensor product C2⊗ · · · ⊗C2 of dimension

2𝑚. The basis states correspond to all 2𝑚 bit-strings of length 𝑚. For 𝑗 ∈ [2𝑚], we

write |𝑗⟩ as the basis state |𝑗1⟩ ⊗ |𝑗2⟩ ⊗ · · · ⊗ |𝑗𝑚⟩ where 𝑗 = 𝑗1𝑗2 . . . 𝑗𝑚 is the binary

representation of 𝑗. We will write the 𝑚-qubit quantum state |𝜑⟩ as unit-vector given

by linear combination over all 2𝑚 basis states. So |𝜑⟩ =∑︀𝑗∈[2𝑚] 𝜑𝑗 |𝑗⟩. As a shorthand,

⟨𝜑| corresponds to the conjugate transpose of a quantum state.

A mixed state {𝑝𝑖, |𝜑𝑖⟩} is a probability distribution over quantum states. In this

case, we the quantum system is in state |𝜑𝑖⟩ with probability 𝑝𝑖. We represent mixed

states by a density matrix
∑︀
𝑝𝑖 |𝜑𝑖⟩ ⟨𝜑𝑖|.

A measurement is given by a family of Hermitian positive semi-definite operators

which sum to the identity operator. Given a quantum state |𝜑⟩ and a measurement

corresponding to the family of operators {𝑀*
𝑖 𝑀𝑖}𝑖, the measurement yields outcome 𝑖

with probability ‖𝑀𝑖 |𝜑⟩ ‖2 and results in state 𝑀𝑖|𝜑⟩
‖𝑀𝑖|𝜑⟩‖ , where the norm ‖ · ‖ is the ℓ2

norm. We say the measurement makes the observation 𝑀𝑖.

Finally, a quantum algorithm makes a query to some bit-string 𝑦 ∈ {0, 1}𝑚 by

starting with the state |𝑐⟩ |𝑗⟩ and returning (−1)𝑐·𝑦𝑗 |𝑐⟩ |𝑗⟩. One can think of 𝑐 as

the control qubit taking values 0 or 1; if 𝑐 = 0, the state remains unchanged by

the query, and if 𝑐 = 1 the state receives a (−1)𝑦𝑗 in its amplitude. The queries

may be made in superposition to a state, so the state
∑︀

𝑐∈{0,1},𝑗∈[𝑚] 𝛼𝑐𝑗 |𝑐⟩ |𝑗⟩ becomes∑︀
𝑐∈{0,1},𝑗∈[𝑚](−1)𝑐·𝑦𝑗𝛼𝑐𝑗 |𝑐⟩ |𝑗⟩.

Weak quantum random access codes from GNS algorithms

Definition 6.5.20. 𝐶 : {0, 1}𝑛 → {0, 1}𝑚 is a (2, 𝛿, 𝜂)-LDC if there exists a random-

ized decoding algorithm making at most 2 queries to an 𝑚-bit string 𝑦 non-adaptively,
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and for all 𝑥 ∈ {0, 1}𝑛, 𝑖 ∈ [𝑛], and 𝑦 ∈ {0, 1}𝑚 where 𝑑(𝑦, 𝐶(𝑥)) ≤ 𝛿𝑚, the algorithm

can recover 𝑥𝑖 from the two queries to 𝑦 with probability at least 1
2
+ 𝜂.

In their paper, [101] prove the following result about 2-query LDCs.

Theorem 6.5.21 (Theorem 4 in [101]). If 𝐶 : {0, 1}𝑛 → {0, 1}𝑚 is a (2, 𝛿, 𝜂)-LDC,

then 𝑚 ≥ 2Ω(𝛿𝜂2𝑛).

The proof of Theorem 6.5.21 proceeds as follows. They show how to construct a

1-query quantum-LDC from a classical 2-query LDC. From a 1-query quantum-LDC,

[101] constructs a quantum random access code which encodes 𝑛-bit strings in 𝑂(log𝑚)

qubits. Then they apply a quantum information theory lower bound due to Nayak

[135]:

Theorem 6.5.22 (Theorem 2 stated in [101] from Nayak [135]). For any encoding

𝑥 ↦→ 𝜌𝑥

of 𝑛-bit strings into 𝑚-qubit states, such that a quantum algorithm, given query access

to 𝜌𝑥, can decode any fixed 𝑥𝑖 with probability at least 1/2 + 𝜂, it must hold that

𝑚 ≥ (1−𝐻(1/2 + 𝜂))𝑛.

Our proof will follow a pattern similar to the proof of Theorem 6.5.21. We assume

the existence of a GNS algorithm 𝐴 which builds a data structure 𝐷 ∈ {0, 1}𝑚.

Our algorithm 𝐴 from Theorem 6.5.17 does not satisfy the strong properties of an

LDC, preventing us from applying 6.5.21 directly. However, it does have some LDC-ish

guarantees. In particular, we can recover bits in the presence of 𝜀𝐾 corruptions to

𝐷. In the LDC language, this means that we can tolerate a noise rate of 𝛿 = 𝜀𝐾
𝑚

.

Additionally, we cannot necessarily recover every coordinate 𝑥𝑖, but we can recover 𝑥𝑖

for 𝑖 ∈ 𝑆, where |𝑆| = Ω(𝑛). Also, our success probability is 1
2
+ 𝜂 over the random

choice of 𝑖 ∈ 𝑆 and the random choice of the bit-string 𝑥 ∈ {0, 1}𝑛. Our proof follows

by adapting the arguments of [101] to this weaker setting.

232



Lemma 6.5.23. Let 𝑟 = 2
𝛿𝑎2

where 𝛿 =
𝜀𝐾

𝑚
and 𝑎 ≤ 1 is a constant. Let 𝐷 be the

data structure from above (i.e., satisfying the hypothesis of Lemma 6.5.19). Then

there exists a quantum algorithm that, starting from the 𝑟(log𝑚+ 1)-qubit state with

𝑟 copies of |𝑈(𝑥)⟩, where

|𝑈(𝑥)⟩ = 1√
2𝑚

∑︁
𝑐∈{0,1},𝑗∈[𝑚]

(−1)𝑐·𝐷𝑗 |𝑐⟩ |𝑗⟩

can recover 𝑥𝑖 for any 𝑖 ∈ 𝑆 with probability 1
2
+ Ω(𝜂) (over a random choice of 𝑥).

Assuming Lemma 6.5.23, we can complete the proof of Lemma 6.5.19.

Proof of Lemma 6.5.19. The proof is similar to the proof of Theorem 2 of [101]. Let

𝜌𝑥 represent the 𝑠-qubit system consisting of the 𝑟 copies of the state |𝑈(𝑥)⟩, where

𝑠 = 𝑟(log𝑚+1); 𝜌𝑥 is an encoding of 𝑥. Using Lemma 6.5.23, we can assume we have

a quantum algorithm that, given 𝜌𝑥, can recover 𝑥𝑖 for any 𝑖 ∈ 𝑆 with probability

𝛼 = 1
2
+ Ω(𝜂) over the random choice of 𝑥 ∈ {0, 1}𝑛.

We will let𝐻(𝐴) be the Von Neumann entropy of 𝐴, and𝐻(𝐴|𝐵) be the conditional

entropy and 𝐻(𝐴 : 𝐵) the mutual information.

Let 𝑋𝑀 be the (𝑛+ 𝑠)-qubit system

1

2𝑛

∑︁
𝑥∈{0,1}𝑛

|𝑥⟩ ⟨𝑥| ⊗ 𝜌𝑥.

The system corresponds to the uniform superposition of all 2𝑛 strings concatenated

with their encoding 𝜌𝑥. Let 𝑋 be the first subsystem corresponding to the first 𝑛

qubits and 𝑀 be the second subsystem corresponding to the 𝑠 qubits. We have

𝐻(𝑋𝑀) = 𝑛+
1

2𝑛

∑︁
𝑥∈{0,1}𝑛

𝐻(𝜌𝑥) ≥ 𝑛 = 𝐻(𝑋)

𝐻(𝑀) ≤ 𝑠,

since 𝑀 has 𝑠 qubits. Therefore, the mutual information 𝐻(𝑋 : 𝑀) = 𝐻(𝑋) +

𝐻(𝑀)−𝐻(𝑋𝑀) ≤ 𝑠. Note that 𝐻(𝑋|𝑀) ≤∑︀𝑛
𝑖=1𝐻(𝑋𝑖|𝑀). By Fano’s inequality,
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if 𝑖 ∈ 𝑆,

𝐻(𝑋𝑖|𝑀) ≤ 𝐻(𝛼)

where we are using the fact that Fano’s inequality works even if we can recover 𝑥𝑖 with

probability 𝛼 averaged over all 𝑥’s. Additionally, if 𝑖 /∈ 𝑆, 𝐻(𝑋𝑖|𝑀) ≤ 1. Therefore,

𝑠 ≥ 𝐻(𝑋 :𝑀) = 𝐻(𝑋)−𝐻(𝑋|𝑀)

≥ 𝐻(𝑋)−
𝑛∑︁

𝑖=1

𝐻(𝑋𝑖|𝑀)

≥ 𝑛− |𝑆|𝐻(𝛼)− (𝑛− |𝑆|)

= |𝑆|(1−𝐻(𝛼)).

Furthermore, 1−𝐻(𝛼) ≥ Ω(𝜂2) since, and |𝑆| = Ω(𝑛), we have

2𝑚

𝑎2𝜀𝐾
(log𝑚+ 1) ≥ Ω

(︀
𝑛𝜂2
)︀

𝑚 log𝑚

𝑛
≥ Ω

(︀
𝜀𝐾𝜂2

)︀
.

It remains to prove Lemma 6.5.23, which we proceed to do in the rest of the section.

We first show that we can simulate our GNS algorithm with a 1-query quantum

algorithm.

Lemma 6.5.24. Fix an 𝑥 ∈ {0, 1}𝑛 and 𝑖 ∈ [𝑛]. Let 𝐷 ∈ {0, 1}𝑚 be the data structure

produced by algorithm 𝐴 on input 𝑥. Suppose Pr𝑞∼𝑁(𝑝𝑖)[𝐴
𝐷(𝑞) = 𝑥𝑖] =

1
2
+ 𝑏 for 𝑏 > 0.

Then there exists a quantum algorithm which makes one quantum query (to 𝐷) and

succeeds with probability 1
2
+ 4𝑏

7
to output 𝑥𝑖.

Proof. We use the procedure in Lemma 1 of [101] to determine the output algorithm 𝐴

on input 𝑥 at index 𝑖. The procedure simulates two classical queries with one quantum

query.

Without loss of generality, all quantum algorithms which make 1-query to 𝐷 can
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be specified in the following manner: there is a quantum state |𝑄𝑖⟩, where

|𝑄𝑖⟩ =
∑︁

𝑐∈{0,1},𝑗∈[𝑚]

𝛼𝑐𝑗 |𝑐⟩ |𝑗⟩

which queries 𝐷. After querying 𝐷, the resulting quantum state is |𝑄𝑖(𝑥)⟩, where

|𝑄𝑖(𝑥)⟩ =
∑︁

𝑐∈{0,1},𝑗∈[𝑚]

(−1)𝑐·𝐷𝑗𝛼𝑐𝑗 |𝑐⟩ |𝑗⟩ .

There is also a quantum measurement {𝑅, 𝐼 − 𝑅} such that, after the algorithm

obtains the state |𝑄𝑖(𝑥)⟩, it performs the measurement {𝑅, 𝐼 −𝑅}. If the algorithm

observes 𝑅, it outputs 1 and if the algorithm observes 𝐼 −𝑅, it outputs 0.

From Lemma 6.5.24, we know there exist a state |𝑄𝑖⟩ and a measurement {𝑅, 𝐼−𝑅}
where if algorithm 𝐴 succeeds with probability 1

2
+ 𝜂 on random 𝑥 ∼ {0, 1}𝑛, then the

quantum algorithm succeeds with probability 1
2
+ 4𝜂

7
on random 𝑥 ∼ {0, 1}𝑛.

In order to simplify notation, we write 𝑝(𝜑) as the probability of making observation

𝑅 from state |𝜑⟩. Since 𝑅 is a positive semi-definite matrix, 𝑅 = 𝑀*𝑀 and so

𝑝(𝜑) = ‖𝑀 |𝜑⟩ ‖2.

In exactly the same way as [101], we can remove parts of the quantum state |𝑄𝑖(𝑥)⟩
where 𝛼𝑐𝑗 >

1√
𝛿𝑚

= 1√
𝜀𝐾

. If we let 𝐿 = {(𝑐, 𝑗) | 𝛼𝑐𝑗 ≤ 1√
𝜀𝐾
}, after keeping only the

amplitudes in 𝐿, we obtain the quantum state 1
𝑎
|𝐴𝑖(𝑥)⟩, where

|𝐴𝑖(𝑥)⟩ =
∑︁

(𝑐,𝑗)∈𝐿

(−1)𝑐·𝐷𝑗𝛼𝑐𝑗 |𝑐⟩ |𝑗⟩ , 𝑎 =

√︃ ∑︁
(𝑐,𝑗)∈𝐿

𝛼2
𝑐𝑗.

Lemma 6.5.25. Fix 𝑖 ∈ 𝑆. The quantum state |𝐴𝑖(𝑥)⟩ satisfies

E
𝑥∈{0,1}𝑛

[︂
𝑝

(︂
1

𝑎
𝐴𝑖(𝑥)

)︂
| 𝑥𝑖 = 1

]︂
− E

𝑥∈{0,1}𝑛

[︂
𝑝

(︂
1

𝑎
𝐴𝑖(𝑥)

)︂
| 𝑥𝑖 = 0

]︂
≥ 8𝜂

7𝑎2
.

Proof. Note that since |𝑄𝑖(𝑥)⟩ and {𝑅, 𝐼−𝑅} simulate 𝐴 and succeed with probability
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at least 1
2
+ 4𝜂

7
on a random 𝑥 ∈ {0, 1}𝑛, we have that

1

2
E

𝑥∈{0,1}𝑛
[𝑝 (𝑄𝑖(𝑥)) | 𝑥𝑖 = 1] +

1

2
E

𝑥∈{0,1}𝑛
[1− 𝑝 (𝑄𝑖(𝑥)) | 𝑥𝑖 = 0] ≥ 1

2
+

4𝜂

7
,

which we can simplify to say

E
𝑥∈{0,1}𝑛

[𝑝 (𝑄𝑖(𝑥)) | 𝑥𝑖 = 1] + E
𝑥∈{0,1}𝑛

[𝑝 (𝑄𝑖(𝑥)) | 𝑥𝑖 = 0] ≥ 8𝜂

7
.

Since |𝑄𝑖(𝑥)⟩ = |𝐴𝑖(𝑥)⟩ + |𝐵𝑖(𝑥)⟩ and |𝐵𝑖(𝑥)⟩ contains at most 𝜀𝐾 parts, if all

probes to 𝐷 in |𝐵𝑖(𝑥)⟩ had corrupted values, the algorithm should still succeed with

the same probability on random inputs 𝑥. Therefore, the following two inequalities

hold:

E
𝑥∈{0,1}𝑛

[𝑝 (𝐴𝑖(𝑥) +𝐵(𝑥)) | 𝑥𝑖 = 1] + E
𝑥∈{0,1}𝑛

[𝑝 (𝐴𝑖(𝑥) +𝐵(𝑥)) | 𝑥𝑖 = 0] ≥ 8𝜂

7
(6.12)

E
𝑥∈{0,1}𝑛

[𝑝 (𝐴𝑖(𝑥)−𝐵(𝑥)) | 𝑥𝑖 = 1] + E
𝑥∈{0,1}𝑛

[𝑝 (𝐴𝑖(𝑥)−𝐵(𝑥)) | 𝑥𝑖 = 0] ≥ 8𝜂

7
(6.13)

Note that 𝑝(𝜑 ± 𝜓) = 𝑝(𝜑) + 𝑝(𝜓) ± (⟨𝜑|𝑅 |𝜓⟩+ ⟨𝜓|𝐷 |𝜑⟩) and 𝑝(1
𝑐
𝜑) = 𝑝(𝜑)

𝑐2
. One

can verify by averaging the two inequalities (6.12) and (6.13) that we get the desired

expression.

Lemma 6.5.26. Fix 𝑖 ∈ 𝑆. There exists a quantum algorithm that starting from

the quantum state 1
𝑎
|𝐴𝑖(𝑥)⟩, can recover the value of 𝑥𝑖 with probability 1

2
+ 2𝜂

7𝑎2
over

random 𝑥 ∈ {0, 1}𝑛.

Proof. The algorithm and argument are almost identical to Theorem 3 in [101], we

just check that it works under the weaker assumptions. Let

𝑞1 = E
𝑥∈{0,1}𝑛

[︂
𝑝

(︂
1

𝑎
𝐴𝑖(𝑥)

)︂
| 𝑥𝑖 = 1

]︂
𝑞0 = E

𝑥∈{0,1}𝑛

[︂
𝑝

(︂
1

𝑎
𝐴𝑖(𝑥)

)︂
| 𝑥𝑖 = 0

]︂
.

From Lemma 6.5.25, we know 𝑞1 − 𝑞0 ≥ 8𝜂
7𝑎2

. In order to simplify notation, let 𝑏 = 4𝜂
7𝑎2

.

So we want a quantum algorithm which starting from state 1
𝑎
|𝐴𝑖(𝑥)⟩ can recover 𝑥𝑖

with probability 1
2
+ 𝑏

2
on random 𝑥 ∈ {0, 1}𝑛. Assume 𝑞1 ≥ 1

2
+ 𝑏, since otherwise
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𝑞0 ≤ 1
2
− 𝑏 and the same argument will work for 0 and 1 flipped. Also, assume

𝑞1+𝑞0 ≥ 1, since otherwise simply outputting 1 on observation 𝑅 and 0 on observation

𝐼 −𝑅 will work.

The algorithm works in the following way: it outputs 0 with probability 1− 1
𝑞1+𝑞0

and otherwise makes the measurement {𝑅, 𝐼−𝑅} on state 1
𝑎
|𝐴𝑖(𝑥)⟩. If the observation

made is 𝑅, then the algorithm outputs 1, otherwise, it outputs 0. The probability of

success over random input 𝑥 ∈ {0, 1}𝑛 is

E
𝑥∈{0,1}𝑛

[Pr[returns correctly]]

=
1

2
E

𝑥∈{0,1}𝑛
[Pr[returns 1] | 𝑥𝑖 = 1] +

1

2
E

𝑥∈{0,1}𝑛
[Pr[returns 0] | 𝑥𝑖 = 0] . (6.14)

When 𝑥𝑖 = 1, the probability the algorithm returns correctly is (1− 𝑞)𝑝
(︀
1
𝑎
𝐴𝑖(𝑥)

)︀
and

when 𝑥𝑖 = 0, the probability the algorithm returns correctly is 𝑞+(1−𝑞)(1−𝑝( 1
𝑎
𝐴𝑖(𝑥))).

So simplifying (6.14),

E
𝑥∈{0,1}𝑛

[Pr[returns correctly]] =
1

2
(1− 𝑞)𝑞1 +

1

2
(𝑞 + (1− 𝑞)(1− 𝑞0)) ≥

1

2
+
𝑏

2
.

Now we can finally complete the proof of Lemma 6.5.23.

Proof of Lemma 6.5.23. Again, the proof is exactly the same as the finishing argu-

ments of Theorem 3 in [101], and we simply check the weaker conditions give the

desired outcome. On input 𝑖 ∈ [𝑛] and access to 𝑟 copies of the state |𝑈(𝑥)⟩, the

algorithm applies the measurement {𝑀*
𝑖 𝑀𝑖, 𝐼 −𝑀*

𝑖 𝑀𝑖} where

𝑀𝑖 =
√
𝜀𝐾

∑︁
(𝑐,𝑗)∈𝐿

𝛼𝑐𝑗 |𝑐, 𝑗⟩ ⟨𝑐, 𝑗| .

This measurement is designed in order to yield the state 1
𝑎
|𝐴𝑖(𝑥)⟩ on |𝑈(𝑥)⟩ if the

measurement makes the observation 𝑀*
𝑖 𝑀𝑖. The fact that the amplitudes of |𝐴𝑖(𝑥)⟩

are not too large makes {𝑀*
𝑖 𝑀𝑖, 𝐼 −𝑀*

𝑖 𝑀𝑖} a valid measurement.
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The probability of observing 𝑀*
𝑖 𝑀𝑖 is ⟨𝑈(𝑥)|𝑀*

𝑖 𝑀𝑖 |𝑈(𝑥)⟩ = 𝛿𝑎2

2
, where we used

that 𝛿 = 𝜀𝐾
𝑚

. So the algorithm repeatedly applies the measurement until observing

outcome 𝑀*
𝑖 𝑀𝑖. If it never makes the observation, the algorithm outputs 0 or 1

uniformly at random. If the algorithm does observe 𝑀*
𝑖 𝑀𝑖, it runs the output of the

algorithm of Lemma 6.5.26. The following simple calculation (done in [101]) gives the

desired probability of success on random input,

E
𝑥∈{0,1}𝑛

[Pr[returns correctly]]

≥
(︀
1− (1− 𝛿𝑎2/2)𝑟

)︀(︂1

2
+

2𝜂

7𝑎2

)︂
+ (1− 𝛿𝑎2/2)𝑟 · 1

2
≥ 1

2
+

𝜂

7𝑎2
.

On adaptivity

We can extend our lower bounds from the non-adaptive to the adaptive setting.

Lemma 6.5.27. If there exists a deterministic data structure which queries two

memory cells adaptively and succeeds with probability at least 1
2
+ 𝜂, there exists a

deterministic data structure which makes the two queries non-adaptively and succeeds

with probability at least 1
2
+ 𝜂

2𝑤
.

Proof. The algorithm guesses the outcome of the first cell probe and simulates the

adaptive algorithm with the guess. After knowing which two probes to make, we

probe the data structure non-adaptively. If the algorithm guessed the contents of

the first cell-probe correctly, then we output the value of the non-adaptive algorithm.

Otherwise, we output a random value. This algorithm is non-adaptive and succeeds

with probability at least
(︀
1− 1

2𝑤

)︀
· 1
2
+ 1

2𝑤

(︀
1
2
+ 𝜂
)︀
= 1

2
+ 𝜂

2𝑤
.

Applying Lemma 6.5.27, from an adaptive algorithm succeeding with probability
2
3
, we obtain a non-adaptive algorithm succeeding with probability 1

2
+ Ω(2−𝑤). This

value is lower than the intended 2
3
, but we may still reduce to a weak LDC, where we

require 𝛾 = Θ(2−𝑤), 𝜀 = Θ(2−𝑤), and |𝑆| = Ω(2−𝑤𝑛). With these minor changes to
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the parameters in Subsections 6.5.1 through 6.5.6, one can easily verify

𝑚 log𝑚 · 2Θ(𝑤)

𝑛
≥ Ω

(︂
Φ𝑟

(︂
1

𝑚
, 𝛾

)︂)︂
.

This inequality yields tight lower bounds (up to sub-polynomial factors) for the

Hamming space when 𝑤 = 𝑜(log 𝑛).

In the case of the Hamming space, we can compute robust expansion in a similar

fashion to Theorem 6.1.1. In particular, for any 𝑝, 𝑞 ∈ [1,∞) where (𝑝−1)(𝑞−1) = 𝜎2,

we have

𝑚 log𝑚 · 2𝑂(𝑤)

𝑛
≥ Ω(𝛾𝑞𝑚1+𝑞/𝑝−𝑞)

𝑚𝑞−𝑞/𝑝+𝑜(1) ≥ 𝑛1−𝑜(1)𝛾𝑞

𝑚 ≥ 𝑛
1−𝑜(1)

𝑞−𝑞/𝑝+𝑜(1)𝛾
𝑞

𝑞−𝑞/𝑝+𝑜(1) = 𝑛
𝑝

𝑝𝑞−𝑞
−𝑜(1)𝛾

𝑝
𝑝−1

−𝑜(1).

Let 𝑝 = 1 + 𝑤𝑓(𝑛)
log𝑛

and 𝑞 = 1 + 𝜎2 log𝑛
𝑤𝑓(𝑛)

where we require that 𝑤𝑓(𝑛) = 𝑜(log 𝑛) and

𝑓(𝑛)→∞ as 𝑛→∞. Then,

𝑚 ≥ 𝑛
1
𝜎2−𝑜(1)2

log𝑛
𝑤𝑓(𝑛) ≥ 𝑛

1
𝜎2−𝑜(1).
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