
Automatically Learning Optimal Formula Simplifiers and
Database Entity Matching Rules

by

Rohit Singh

Bachelor of Technology (Honors), Computer Science and Engineering, Indian
Institute of Technology Bombay (2011)

Master of Science, Electrical Engineering and Computer Science, Massachusetts
Institute of Technology (2013)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctorate of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 31, 2017

Certified by. .
Armando Solar-Lezama

Associate Professor
Department of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students
Department of Electrical Engineering and Computer Science

2

Automatically Learning Optimal Formula Simplifiers and Database

Entity Matching Rules

by

Rohit Singh

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2017, in partial fulfillment of the

requirements for the degree of
Doctorate of Philosophy

Abstract

Traditionally, machine learning (ML) is used to find a function from data to optimize a
numerical score. On the other hand, synthesis is traditionally used to find a function (or
a program) that can be derived from a grammar and satisfies a logical specification. The
boundary between ML and synthesis has been blurred by some recent work [56,90]. However,
this interaction between ML and synthesis has not been fully explored. In this thesis, we
focus on the problem of finding a function given large amounts of data such that the function
satisfies a logical specification and also optimizes a numerical score over the input data. We
present a framework to solve this problem in two impactful application domains: formula
simplification in constraint solvers and database entity matching (EM).

First, we present a system called Swapper based on our framework that can auto-
matically generate code for efficient formula simplifiers specialized to a class of problems.
Formula simplification is an important part of modern constraint solvers, and writing ef-
ficient simplifiers has largely been an arduous manual task. Evaluation of Swapper on
multiple applications of the Sketch constraint solver showed 15-60% improvement over the
existing hand-crafted simplifier in Sketch.

Second, we present a system called EM-Synth based on our framework that generates
as effective and more interpretable EM rules than the state-of-the-art techniques. Database
entity matching is a critical part of data integration and cleaning, and it usually involves
learning rules or classifiers from labeled examples. Evaluation of EM-Synth on multiple
real-world datasets against other interpretable (shallow decision trees, SIFI [116]) and non-
interpretable (SVM, deep decision trees) methods showed that EM-Synth generates more
concise and interpretable rules without sacrificing too much accuracy.

Thesis Supervisor: Armando Solar-Lezama
Title: Associate Professor
Department of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would first like to thank my adviser Armando Solar-Lezama. Armando has always given

me quality advice and motivation for every research project we have worked on together.

Without his guidance and mentorship, I wouldn’t have been able to grow as a researcher, a

presenter and work on such impactful projects. I would like to thank my collaborator and

PhD committee member Samuel (Sam) Madden. I really value all the insights and feedback

I received from Sam while working on the entity-matching project and while writing this

thesis. I would like to thank my RQE and PhD committee member Adam Chlipala. I

appreciate all of Adam’s feedback that has helped me ask and answer important questions

about my research projects and their presentation in this thesis.

I would also like to thank my undergraduate adviser Supratik Chakraborty, my in-

ternship advisers Thomas Henzinger, Krishnendu Chatterjee and Barbara Jobstmann, who

introduced me to the world of formal verification and synthesis. The research projects that I

worked on as an undergraduate with these researchers got me excited about the possibilities

of using formal methods for automation and motivated me to pursue a PhD in program

synthesis.

Research collaborators: I am thankful to Nan Tang, Vamsi Meduri, Ahmed Elmagarmid,

Paolo Papotti and Jorge-Arnulfo Quiane-Ruiz for their guidance and constant effort to make

the entity matching project successful. I would also like to thank Jeevana Inala, Jack Feser,

Zhilei Xu and Shachar Itzhaky for their hard work and persistence while working on our

respective collaborative projects.

CAP, MIT-PL and CSAIL: I am grateful for being a part of the CAP research group

and the larger MIT-PL/CSAIL community. There was always someone whom I could talk

to about anything related to PL or computer science research, or anything interesting in

general. I really value the research discussions I’ve have and the time spent with all the

CAP members. Thank you Evan, Ivan, Jack, Jean, Jeevana, Jimmy, Kevin, Kuat, Nadia,

Rishabh, Shachar, Xiaokang, Zenna, Zhilei. I’ve learned a lot from everyone in the this

community and I’m looking forward to building upon that knowledge in the future.

Family: Finally, I would like to thank the most important part of my life – my family.

I wouldn’t have been here without the support of my siblings and my parents. First and

foremost, I want to thank my mother for her dedication and sacrifice. She raised me and my

5

siblings alone after my father fell victim to an untimely disease. There is no amount of words

that can express my gratitude towards her. I want to thank my dad for everything he did for

me and the family. I hope to continue contributing to his legacy. My brother Rishabh, who

was also a PhD student in the CAP group, has always been a role model and a father figure

for me. I am grateful for having him by my side in every big decision of my life including

the research projects that have shaped this thesis. My sister Richa, has always been the

most mature and caring of us all siblings. Thank you Richa di for helping me become a

responsible and caring person, and emulate those characteristics in my research style. I also

want to thank my sister-in-law Deeti di and brother-in-law Rajul for their constant support

and encouragement.

I dedicate this thesis to my mother, who has selflessly done everything she can to help

her kids succeed in life without asking for anything in return. It is only because of her I am

here writing this thesis.

6

Contents

1 Introduction 15

1.1 Formula simplification with Swapper . 21

1.2 Database entity matching with EM-Synth . 24

1.3 Key Contributions . 28

1.3.1 Automatic generation of formula simplifiers 29

1.3.2 Synthesis of concise EM rules . 29

1.4 Thesis Overview . 31

2 Synthesis of components in application domains 33

2.1 Syntax-guided synthesis (SyGuS) framework 34

2.2 Synthesis of conditional rewrite rules in Swapper 35

2.2.1 Formula simplification in Sketch . 36

2.2.2 Core rule-synthesis problem . 37

2.2.3 Space of expressions and predicates . 40

2.2.4 Hybrid enumerative/symbolic synthesis in Swapper 42

2.3 Synthesis of EM rules in EM-Synth . 44

2.3.1 Notation and EM-GBF rule-synthesis problem 44

2.3.2 Core SyGus Formulation . 47

2.3.3 Numerical search for EM thresholds in Sketch 49

3 Specialization information extraction 53

3.1 Specialization information in Swapper . 53

3.2 Representative sampling of patterns in Swapper 55

3.3 Specialization information in EM-Synth . 61

3.4 Choosing sets of examples in EM-Synth . 62

7

3.4.1 Synthesis from a few EM examples (CEGIS) 63

3.4.2 Synthesis with inconsistent examples (RANSAC) 65

4 Assembly of components 67

4.1 Assembly in Swapper . 68

4.1.1 Soundness of assembly . 69

4.1.2 Generalization of rewrite rules . 71

4.1.3 LALR-style pattern matching in Swapper 76

4.2 Assembly in EM-Synth . 77

4.2.1 Boolean combinations of EM rules . 77

4.2.2 Consensus of EM rules . 79

5 Best assembly tuning 81

5.1 Combinatorial auto-tuning in Swapper . 81

5.2 Tuning in EM-Synth . 83

5.2.1 EM-GBF optimization problem . 83

5.2.2 Tuning algorithms in EM-Synth . 84

6 Shared framework infrastructure 89

7 Swapper system evaluation 93

7.1 System Design & Implementation . 93

7.2 Experiments . 97

7.2.1 Domains and Benchmarks . 97

7.2.2 Synthesis Time and Costs are Realistic 98

7.2.3 Swapper Performance . 99

7.2.4 SAT Encodings Domain . 102

7.2.5 Analysis of Generated Rules and their Impact 102

8 EM-Synth system evaluation 105

8.1 Algorithms and optimizations in EM-Synth 105

8.1.1 Incremental grammar bounds in RS-CEGIS 105

8.1.2 Sampling: bias in picking examples in RS-CEGIS 106

8.1.3 Algorithms for entity matching using EM-Synth 106

8

8.1.4 Bucketing-based optimized EM-rule testing 107

8.2 System design and implementation . 108

8.2.1 Feature processing . 109

8.2.2 EM algorithms . 111

8.2.3 Experiment infrastructure . 112

8.3 Experimental setup . 113

8.3.1 Datasets . 113

8.3.2 Performance and interpretability metrics used 115

8.3.3 Similarity functions used . 115

8.3.4 Input features for ML techniques . 115

8.3.5 Comparisons with state-of-the-Art ML approaches 115

8.3.6 Comparisons with rule-based learning approaches 116

8.3.7 Techniques and parameters . 117

8.3.8 Performance evaluation . 118

8.4 Experimental results . 118

8.4.1 Exp-1: Interpretability . 119

8.4.2 Exp-2: Effectiveness vs. interpretable decision trees 124

8.4.3 Exp-3: Effectiveness vs. expert-provided rules 125

8.4.4 Exp-4: Effectiveness vs. non-interpretable methods 126

8.4.5 Exp-5: Variable training data . 126

8.4.6 Exp-6: Efficiency of training . 129

8.4.7 Exp-7: Efficiency of Testing . 130

8.4.8 Exp-8: Impact of the custom synthesizer in Sketch 133

9 Related Work 135

9.1 Overall framework . 135

9.1.1 Combining program synthesis and machine learning 135

9.1.2 Program synthesis with quantitative objectives 136

9.1.3 Synthesis of components . 137

9.2 Swapper system . 137

9.2.1 Formula rewriting in constrain solvers 138

9.2.2 Pattern finding . 138

9

9.2.3 Comparison with superoptimization 138

9.2.4 Code generation . 139

9.3 EM-Synth system . 139

9.3.1 Machine Learning-Based Entity Matching 139

9.3.2 Rule-based entity matching . 139

9.3.3 Active learning and crowdsourcing . 140

9.3.4 Program synthesis for databases . 140

9.3.5 Special-purpose constraint solvers . 141

10 Conclusion 143

A Synthesis with Sketch: implementation notes 145

A.1 Sketch synthesis system . 145

A.2 Swapper Sketch formulation . 147

A.3 Sketch formulation for EM-GBF rule synthesis 150

10

List of Figures

1-1 Overall synthesis/learning framework . 21

1-2 Overall phases for the Swapper system . 23

1-3 Instantiation of the overall framework (Fig. 1-1) as Swapper 24

1-4 Sample tables for persons . 26

1-5 High-level description for EM-Synth framework 27

1-6 Instantiation of the overall framework (Fig. 1-1) for EM-Synth 28

2-1 An example grammar of a simple Boolean expression 34

2-2 Relationship between inputs p𝑥1, 𝑥2, . . . , 𝑥𝑛q of a pattern 𝑄 and the corre-

sponding sub-terms p𝑎1, 𝑎2, . . . , 𝑎𝑛q of the formula 𝑃 37

2-3 The language of formula expressions in Sketch. 40

3-1 Pattern from a rooted sub-graph . 56

3-2 Example tree construction . 57

4-1 An example truth table for 𝒞𝜙 = t𝜙1, 𝜙2, 𝜙3u 78

7-1 Swapper implementation and experiments overview 94

7-2 Change in sizes with different simplifiers . 100

7-3 Median running-time percentiles with quartile confidence intervals 101

7-4 Domain specificity of the Auto-generated simplifiers: Time distribution 101

7-5 SAT-Encodings domain case study . 102

7-6 An example rule generated for AutoGrader benchmarks 103

8-1 Some examples of similarity functions with their corresponding hashing-

function families . 108

8-2 EM-Synth implementation and experiments overview 109

11

8-3 Dataset statistics . 114

8-4 Input-similarity functions (ℱ) . 116

8-5 Interpretability results for 5-folds experiment (80% training and 20% testing

data) . 120

8-6 User interpretability preference: Cora, Amazon-GoogleProducts (AGP),

Locu-FourSquare (LFS), DBLP-Scholar (DBLP) 123

8-7 Effectiveness results for 5-folds experiment (80% training and 20% testing data)124

8-8 Interpretability user study form for the participants 125

8-9 Effectiveness results for 5-folds experiment: RS-Consensus vs. non-

interpretable methods . 126

8-10 Locu-Foursquare (100 runs with 99% CIs on the means in the shaded regions) 127

8-11 Cora (100 runs with 99% CIs on the means in the shaded regions) 127

8-12 Amazon-GoogleProducts (100 runs with 99% CIs on the means in the shaded

regions) . 128

8-13 DBLP-Scholar (100 runs with 99% CIs on the means in the shaded regions) . . 128

8-14 Efficiency of training (average time for training per fold) for 5-folds experi-

ment (80% training { 20% testing) . 129

8-15 Efficiency of testing a classifier: SVM vs. RuleSynth-generated rule on all

pairs and bucketed pairs . 130

8-16 Efficiency of testing a classifier: RuleSynth-generated rule on all pairs vs.

bucketed pairs . 131

8-17 Efficiency of testing . 131

8-18 Time taken by traditional Sketch, Z3 [41] solver and Sketch with custom

synthesizer (Sketch Optimized). 132

12

List of Algorithms

1 Hybrid enumerative/symbolic Sketch based approach 43

2 Custom synthesizer for EM-Synth inside Sketch 50

3 Uniform sampling for TCs . 58

4 Probabilistic Sampling for Pattern Finding . 60

5 CEGIS-based specialization-information extraction (RS-CEGIS) 64

6 RS-RANSAC algorithm for specialization information extraction in EM-Synth 66

- Procedure Incremental grammar bounds . 106

13

14

Chapter 1

Introduction

Traditionally, a machine learning (ML) problem consists of finding a function 𝑓 given some

data 𝐷 as input, such that a numerical score 𝑆𝑐𝑜𝑟𝑒p𝑓,𝐷q is optimized. The data may be

provided in a supervised (input and output examples) or unsupervised (only inputs) fashion.

A synthesis problem, on the other hand, traditionally consists of finding a function 𝑓 that

satisfies a logical specification on all inputs to 𝑓 . This requires logical reasoning about

𝑓 and the specification in a formal theory (e.g., theory of linear integer arithmetic) and

constraining the function 𝑓 to have a logical structure as well (e.g., 𝑓 can be constrained

to be a program in a restricted programming language). The boundary between ML and

synthesis has been blurred by some recent work. For example, programming by example

(PBE) [56] applies techniques from the synthesis community to synthesize programs from

small amounts of data. Unlike ML problems, the data is treated as a logical specification,

but there is also a numerical score that quantifies how well the program will generalize

to other data. Another recent work [90] presents a framework for supervised learning of

programs from large amounts of input-output examples with some noise. However, there is

an entire space of ways in which ML and synthesis can interact which has not been fully

explored.

In this thesis, we focus on the problem of finding a function 𝑓 given large amounts of

data 𝐷 such that it satisfies a logical specification and also optimizes a numerical score over

the same data. In other words, we would like to get the best of both worlds (traditional

ML and synthesis). Unlike PBE and the work from [90], we target a general problem that

takes large amounts of data as input, provided in a supervised or unsupervised fashion.

15

However, we do assume that the synthesis problem has some inherent logical structure such

that the function 𝑓 can be generated from a set of components. Unlike traditional synthesis

of functions from components [91], we need to synthesize each component from the data.

Many practical applications adhere to these assumptions e.g., formula simplification [106]

and SAT encoding [62] in constraint solvers, data wrangling with programming by example

(PBE) tools [56,95,99] and machine learning (ML) problems that also require finding a pro-

gram as the model [90,104]. In this thesis, we will discuss two of these applications, namely:

(1) formula simplification in constraint solvers and (2) database entity matching from ex-

amples. We start by presenting our framework in Fig. 1-1 and discussing the formalism

below.

Formal discussion

A traditional machine learning problem consists of finding a function 𝑓* : 𝐴 Ñ 𝐵 given

some data 𝐷 and a numerical score function 𝑆𝑐𝑜𝑟𝑒p𝑓,𝐷q such that:

𝑓* = argmax
𝑓 :𝐴Ñ𝐵

𝑆𝑐𝑜𝑟𝑒 p𝑓,𝐷q

where 𝐷 Ď 𝐴 (unsupervised) or 𝐷 Ď 𝐴ˆ𝐵 (supervised).

A traditional synthesis problem consists of finding a function (or program) 𝑓* : 𝐴 Ñ
𝐵 with some logical structure usually described by a grammar 𝐺 with symbols over the

vocabulary of a formal theory 𝒯 such that a logical specification in the same theory 𝒯 is

satisfied i.e.,

𝑓* P 𝐺^ `@𝑖𝑛P𝐴 𝑆𝑝𝑒𝑐 p𝑓*, 𝑖𝑛q ˘

Programming by example (PBE) [56] is a sub-field of synthesis where the logical specification

comes from small amounts of data 𝑑 = tp𝑖𝑛, 𝑜𝑢𝑡q : 𝑖𝑛 P 𝐴, 𝑜𝑢𝑡 P 𝐵u provided as a set of

input-output examples and 𝑓* is ranked based on a pre-computed function 𝑟𝑎𝑛𝑘:

𝑓* = argmax
𝑓 :𝐴Ñ𝐵

Ź
Φp𝑓q

𝑟𝑎𝑛𝑘 p𝑓q

where Φ p𝑓q ”
´
𝑓 P 𝐺^ @p𝑖𝑛,𝑜𝑢𝑡qP𝑑

`
𝑓p𝑖𝑛q = 𝑜𝑢𝑡

˘¯

16

Problem 1 We focus on the problem of finding a function 𝑓* : 𝐴 Ñ 𝐵 given data 𝐷

(in supervised or unsupervised fashion), a grammar 𝐺, a logical specification 𝑆𝑝𝑒𝑐 and a

numerical score 𝑆𝑐𝑜𝑟𝑒 such that:

𝑓* = argmax
𝑓 :𝐴Ñ𝐵

Ź
Φp𝑓q

𝑆𝑐𝑜𝑟𝑒 p𝑓,𝐷q

where Φ p𝑓q ”
´
𝑓 P 𝐺^ @𝑖𝑛P𝐴 𝑆𝑝𝑒𝑐 p𝑓, 𝑖𝑛q

¯

i.e., we have a logical specification over the function 𝑓 while optimizing a numerical score

computed over 𝑓 and 𝐷.

In general, this problem is computationally very hard because reasoning about both the

numerical score and the logical specification together can lead to complicated search spaces,

especially when the numerical score is itself complicated and not amenable to symbolic rea-

soning. So, in this thesis, we focus on a special case of this problem. Instead of synthesizing

the complicated function 𝑓 directly, we synthesize simpler components of 𝑓 and assume

that there is a way to assemble the components together to build a correct 𝑓 . Note that

unlike traditional synthesis from components from a predefined library [91], we need to first

synthesize our components before assembling them. More formally, we assume that:

1. The function 𝑓 can be constructed from some components 𝐶1, 𝐶2, . . . , 𝐶𝑛 (for some

𝑛 ě 1) with each 𝐶𝑖 : 𝐴1 Ñ 𝐵1 (for 1 ď 𝑖 ď 𝑛) being from a grammar 𝐺𝐶 : i.e., there

is a procedure 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒 that can generate 𝑓 from its components:

𝑓 = 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒p𝜋, 𝒞q, where 𝒞 = t𝐶1, 𝐶2, . . . , 𝐶𝑛u

and 𝜋 P Π is a parameter such that each value of 𝜋 corresponds to a different way

of combining the components in 𝒞. Note that the number (𝑛) of components that

𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒 takes as input does not have to be fixed.

2. There are logical specifications 𝑆𝑝𝑒𝑐𝐶𝑖 (1 ď 𝑖 ď 𝑛) for the components 𝐶𝑖 such

that satisfaction of these specifications for each component implies that 𝑓 satisfies its

17

specification 𝑆𝑝𝑒𝑐 as well i.e.,

@𝜋PΠ

˜´
𝑓 = 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒p𝜋, 𝒞q^

𝑛ľ

𝑖=1

`
𝐶𝑖 P 𝐺𝐶 ^ 𝑆𝑝𝑒𝑐𝐶𝑖 p𝐶𝑖q

˘¯

ùñ 𝑓 P 𝐺^
´
@𝑖𝑛P𝐴 𝑆𝑝𝑒𝑐 p𝑓, 𝑖𝑛q

¯¸
, where 𝒞 = t𝐶1, 𝐶2, . . . , 𝐶𝑛u

As mentioned before, the motivation behind tackling this special case is rooted in efficiency.

In this special case, we can focus on smaller synthesis problems of synthesizing the compo-

nents and solve them efficiently. Moreover, we do not have to verify correctness of 𝑓 (which

may be expensive) because of the property (2.).

Note that property (2.) is valid for all values of 𝜋 P Π. This enables us to explore

the space Π of the parameter 𝜋 to optimize the numerical 𝑆𝑐𝑜𝑟𝑒. In other words, different

choices of 𝜋 may lead to different numerical scores, but they will all ensure that the logical

specification 𝑆𝑝𝑒𝑐 is satisfied by 𝑓 . And, we can search in this space to find an optimal

value of 𝜋 that optimizes the numerical 𝑆𝑐𝑜𝑟𝑒.

Additionally, the 𝑆𝑝𝑒𝑐𝐶𝑖 specification for a component 𝐶𝑖 : 𝐴1 Ñ 𝐵1 can encode more

constraints than just the correctness of the component on all inputs to it. The motivation

behind adding these extra constraints is to synthesize components that are not only correct

but also likely to lead to a high value of the numerical 𝑆𝑐𝑜𝑟𝑒. Formally, we can rewrite the

𝑆𝑝𝑒𝑐𝐶𝑖 specification as:

𝑆𝑝𝑒𝑐𝐶𝑖p𝐶𝑖q ”
ˆ´
@𝑖𝑛1P𝐴1 𝑆𝑝𝑒𝑐𝑐𝑜𝑟𝑟𝑒𝑐𝑡

`
𝐶𝑖, 𝑖𝑛

1
˘ ¯^ 𝑆𝑝𝑒𝑐𝑠𝑐𝑜𝑟𝑒p𝐶𝑖q

˙
(1.1)

It is important to mention here that we do not guarantee the global optimality of the score

(similar to how traditional ML algorithms do not guarantee global optimality), but we will

produce a local optimum instead in the space of functions given by the restricted choices of

the components and the space of parameters in the assembly of these components. Problem 2

summarizes the special case of Problem 1 that we address in this thesis.

Problem 2 In this thesis, we focus on a special case of Problem 1 i.e., finding a function

𝑓* : 𝐴 Ñ 𝐵 given data 𝐷 (in supervised or unsupervised fashion), a grammar 𝐺, a logical

specification 𝑆𝑝𝑒𝑐 and a numerical score 𝑆𝑐𝑜𝑟𝑒 such that

𝑓* = argmax
𝑓 :𝐴Ñ𝐵

Ź
Φ1p𝑓q

𝑆𝑐𝑜𝑟𝑒 p𝑓,𝐷q

18

where Φ1p𝑓q specifies the following:

1. There is a grammar 𝐺𝐶 and components 𝐶1, 𝐶2, . . . , 𝐶𝑛 (𝑛 ě 1) with each 𝐶𝑖 : 𝐴1 Ñ
𝐵1 (for 1 ď 𝑖 ď 𝑛) being from the grammar 𝐺𝐶 and there is a procedure 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒

parametrized by 𝜋 P Π to generate 𝑓 from these components:

𝑓 =𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒p𝜋, 𝒞q
where 𝒞 =t𝐶1, 𝐶2, . . . , 𝐶𝑛u, 𝜋 P Π

2. There are logical specifications 𝑆𝑝𝑒𝑐𝑖 (1 ď 𝑖 ď 𝑛) for the components 𝐶𝑖, respectively,

such that logical satisfaction of 𝑆𝑝𝑒𝑐𝑖 for each component 𝐶𝑖 implies that 𝑓 satisfies

its specification 𝑆𝑝𝑒𝑐 i.e.,

@𝜋PΠ

˜´
𝑓 = 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒p𝜋, 𝒞q ^

𝑛ľ

𝑖=1

`
𝐶𝑖 P 𝐺𝐶 ^ 𝑆𝑝𝑒𝑐𝐶𝑖 p𝐶𝑖q

˘¯

ùñ 𝑓 P 𝐺^
´
@𝑖𝑛P𝐴 𝑆𝑝𝑒𝑐 p𝑓, 𝑖𝑛q

¯¸
, where 𝒞 = t𝐶1, 𝐶2, . . . , 𝐶𝑛u

Now we present a framework to solve Problem 2.

Framework details

Our framework follows the strategy of synthesizing multiple components 𝒞 =

t𝐶1, 𝐶2, . . . , 𝐶𝑛u and then finding the optimal parameter 𝜋 for the assembly of these compo-

nents. To synthesize a component 𝐶𝑖, we construct 𝑆𝑝𝑒𝑐𝑠𝑐𝑜𝑟𝑒 introduced in Equation (1.1)

by extracting specialization information from the data and then generating the synthesis

specification from it.

We present the framework to solve Problem 2 in Fig. 1-1. The framework consists of

four steps:

1. Specialization information extraction: in this step, specialization information 𝛼𝑖

is extracted from the data 𝐷. From this 𝛼𝑖 we generate the specification 𝑆𝑝𝑒𝑐𝐶𝑖 i.e.,

𝑆𝑝𝑒𝑐𝐶𝑖p𝐶𝑖q ”
ˆ´
@𝑖𝑛1P𝐴1 𝑆𝑝𝑒𝑐𝑐𝑜𝑟𝑟𝑒𝑐𝑡

`
𝐶𝑖, 𝑖𝑛

1
˘ ¯^ 𝑆𝑝𝑒𝑐𝑠𝑐𝑜𝑟𝑒p𝛼𝑖, 𝐶𝑖q

˙

19

2. Synthesis of components: in this step, a component 𝐶𝑖 is synthesized from the

specification 𝑆𝑝𝑒𝑐𝐶𝑖 . The synthesis problem corresponds to solving:

D𝐶𝑖

´
𝐶𝑖 P 𝐺𝐶 ^ 𝑆𝑝𝑒𝑐𝐶𝑖 p𝐶𝑖q

¯

This step may send some feedback (for example, the generated component 𝐶𝑖 itself)

to the first step. This feedback or some other heuristic may be used to decide the

next specialization information 𝛼𝑖 to be selected by the first step. This iterative

process will have a domain-specific end condition as to when this loop should stop.

At the end of this iterative process, there is a collection of synthesized components

𝒞 = t𝐶1, 𝐶2, . . . , 𝐶𝑛u as the output of this step.

3. Assembling components: this step uses the 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒 procedure to build a candi-

date function 𝑓 . To begin with, it may choose arbitrary values for the parameters in

𝜋, but afterwards the choice of these parameters is guided by the next step.

4. Best assembly tuning: this step uses the candidate function 𝑓 and data 𝐷 to

evaluate its score 𝑆𝑐𝑜𝑟𝑒p𝑓,𝐷q and provides feedback to the previous step for selecting

the next set of parameters 𝜋. The assembling components step generates the next

candidate function 𝑓 and sends it back to this step in an iterative manner. This

iterative process will end based on a domain-specific end condition and output an

optimal 𝑓 that corresponds to the best score seen so far.

Framework application domains

This framework has been applied to three different application domains: (1) formula simpli-

fication in constraint solvers [106], (2) database entity matching [104], and (3) CNF encoding

in SMT solvers [62]. We consider the first two domains in this thesis. In general, this frame-

work can also be applied to other synthesis problems that require optimizing a complicated

numerical score (e.g., programming by example [56], synthesis of bitstream programs [90]).

Depending on the application domain, each step has a specialized interpretation and

processes that are responsible for performing the action of the corresponding step in that

domain. We present the two application domains considered in this thesis and discuss the

corresponding instantiations of this overall framework in Sec. 1.1 (formula simplification)

20

(1) Specialization in-
formation extraction

(2) Synthesis
of components
D𝐶𝑖

`
𝐶𝑖 P 𝐺𝐶

^𝑆𝑝𝑒𝑐𝐶𝑖 p𝐶𝑖q
˘

(3) Assembling
components

𝑓 = 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒p𝜋, 𝒞q
(4) Best as-

sembly tuning

Data 𝐷, 𝑆𝑐𝑜𝑟𝑒

Start

best tuned 𝑓

synthesis feedback (e.g., 𝐶𝑖)

specialization information 𝛼𝑖

components
𝒞 = t𝐶1, . . . , 𝐶𝑛u

candidate 𝑓

tuning feedback (e.g., 𝜋)

Figure 1-1: Overall synthesis/learning framework

and Sec. 1.2 (database entity matching).

1.1 Formula simplification with Swapper

Our first application domain for the overall framework is formula simplification, which plays

a key role in SMT solvers and solver-based tools. SMT solvers, for example, often use local

rewrite rules to reduce the size and complexity of a problem before it is solved through

some combination of abstraction refinement and theory reasoning [27, 41]. Moreover, many

applications that rely on solvers often implement their own formula simplification layer to

rewrite formulas before passing them to the solver [28,31,36].

One important motivation for tools to implement their own simplification layer is that

formulas generated by a particular tool often exhibit patterns that can be exploited by a

custom formula simplifier but which would not be worthwhile to exploit in a general solver.

Unfortunately, writing a simplifier by hand is challenging, not only because it is difficult to

come up with the simplifications and their efficient implementation, but also because some

simplifications can actually make a problem harder to solve by the underlying solver. This

means that producing a simplifier that actually improves solver performance often requires

significant empirical analysis.

21

In this domain, we address the problem of automatically learning a formula simplifier

from unsupervised data (a corpus of benchmark problems or formulas) such that the perfor-

mance of the solver improves by using this simplifier. We instantiate the overall framework

from Fig. 1-1 as Swapper, a system for automatically generating a formula simplifier from

a corpus of benchmark problems. The input to Swapper is a corpus of formulas from prob-

lems in a particular domain. Given this corpus, Swapper generates a formula simplifier

tailored to the common recurring patterns in this corpus and empirically tuned to ensure

that it actually improves solver performance.

The simplifiers produced by Swapper are term rewriters that work by making local

substitutions when a known pattern is encountered in a context satisfying certain con-

straints. For example, the rewrite rule below indicates that when the guard predicate (pred)

𝑏 < 𝑑 is satisfied, one can locally substitute the pattern on the left hand side (𝐿𝐻𝑆):

𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑙𝑡p𝑎, 𝑑qq with the smaller pattern on the right hand side (𝑅𝐻𝑆).

𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑙𝑡p𝑎, 𝑑qq 𝑏<𝑑ÝÝÝÝÝÝÑ 𝑙𝑡p𝑎, 𝑑q

Swapper’s approach is to automatically generate large collections of such rules and

then compile them to an efficient rewriter for the entire formula. Making this approach

work requires addressing four key challenges: (1) choosing promising 𝐿𝐻𝑆 patterns, (2)

finding the best rewrite rule for a given 𝐿𝐻𝑆, (3) generating an efficient implementation

that applies these rules, and (4) making sure that the rules actually improve the performance

of the solver.

To tackle these challenges, Swapper operates in four phases (Fig. 1-2). In the first phase

(1), the system identifies the specialization information by using representative sampling.

The specialization information, in this case, is a common repeating sub-term along with

information about the context in which it occurs in the different formulas in the corpus. In

the second phase (2), these repeating sub-terms are passed to the rule synthesizer, which

generates conditional simplifications that can be applied to these sub-terms when certain

local conditions are satisfied. These conditional simplifications are the simplification rules

(or components) which in the third phase (3) must be compiled (or assembled) to actual

C++ code that will implement these simplifications. In the fourth phase (4), Swapper

uses auto-tuning to evaluate combinations of rules based on their empirical performance

22

(1) Pattern finding
(representative

sampling)

(2) Rule synthesis
(custom algorithm

employing Sketch)

(3) Code generation
(compilation)

(4) Auto-tuning
(machine learning)

Corpus of formulas {𝑃}

best tuned simplifier

patterns

rewrite rules

simplifier

subset of rewrite rules

Figure 1-2: Overall phases for the Swapper system

on a subset of the corpus (Training set) in an effort to identify the best combination (or

assembly) of the rules that maximizes solver performance. The details of the instantiation

of the overall framework from Fig. 1-1 as Swapper are presented in Fig. 1-3.

One area where such formula simplification is particularly important is constraint-based

synthesis. In particular, in this thesis, we focus Swapper on formulas generated by the

Sketch synthesis solver [111]. We choose the Sketch solver because it is already very effi-

cient, and it has been shown to be faster than the most popular SMT solvers on the formulas

that arise from encoding synthesis problems [61]. A major part of this performance comes

from carefully tuned formula rewriting, so improving the performance of this solver is an

ambitious target. The Sketch synthesizer has been applied to a number of distinct domains

which include storyboard programming [102], query extraction [37], automated grading (Au-

tograder) [100], sketching Java programs [63], SyGuS competition benchmarks [10], synthe-

sizing optimal CNF encodings [62] and programming of line-rate switches [108]. Crucially

for our purposes, we have available to us large numbers of benchmark problems that are

clearly identified as coming from some of these different domains. For example, Sketch has

over a thousand benchmarks for Autograder problems obtained from student submissions to

introductory programming assignments on the edX platform. For this thesis, we will focus

on two important domains: Autograder and SyGuS competition benchmarks. In addition,

we will also present a small case study with the CNF (SAT) encodings benchmarks.

23

data 𝐷: an unsupervised corpus of benchmark problems or formulas

function 𝑓 : a formula simplifier that simplifies a formula to another formula

𝑆𝑝𝑒𝑐p𝑓,𝐷q: the function 𝑓 should maintain logical equivalence of the formula that is
being transformed by 𝑓 for all input formulas (not necessarily only the ones in 𝐷)

grammars 𝐺,𝐺𝐶 : the grammar 𝐺 corresponds to the grammar of C++ programs
and 𝐺𝐶 corresponds to the grammar of conditional rewrite rules

specialization information 𝛼𝑖: a pattern along with some static analysis informa-
tion (Subsec. 2.2.1) about the context in which this pattern occurs in 𝐷

synthesis feedback: none. Pattern finding orders the patterns 𝛼𝑖 based on their
frequency of occurrence in the corpus without any synthesis feedback

component 𝐶𝑖: a rewrite rule 𝐿𝐻𝑆p𝑥q predp𝑥qÝÝÝÝÝÝÝÝÑ 𝑅𝐻𝑆p𝑥q
𝑆𝑝𝑒𝑐𝐶𝑖p𝐶𝑖q: (i) correctness of the rewrite rule 𝐶𝑖 i.e., the evaluation of 𝐿𝐻𝑆p𝑥q should
be the same as the evaluation of 𝑅𝐻𝑆p𝑥q whenever predp𝑥q is true (ii) 𝐿𝐻𝑆p𝑥q should
be the same as the pattern from 𝛼𝑖 (iii) predp𝑥q should be true in the context from 𝛼𝑖

around 𝐿𝐻𝑆p𝑥q
assembling components: code generation for a simplifier that applies the synthe-
sized rewrite rules one at a time (Chapter 4)

assembly parameters 𝜋 / tuning feedback: which subset of the synthesized rules
to use and in what order to apply these rules

𝑆𝑐𝑜𝑟𝑒p𝑓,𝐷q: the performance of a solver using the simplifier 𝑓 on problems from the
corpus of benchmarks 𝐷

Figure 1-3: Instantiation of the overall framework (Fig. 1-1) as Swapper

1.2 Database entity matching with EM-Synth

Our second application domain for the overall framework is entity matching (EM), where

a system or user finds records that refer to the same real-world object, is a fundamental

problem of data integration and data cleaning.

There is a key tension in EM algorithms: on one hand, algorithms that properly match

records are clearly preferred. On the other hand, interpretable EM rules – that a human

can understand because they consist of a logical structure (as opposed to statistical models

that are composed of weights and functional parameters) – are desirable for two reasons.

First, there are a number of critical applications, such as healthcare [29] and other do-

24

mains [70, 71], where users need to understand why two entities are considered a match.

Second, interpretable EM rules can be optimized at execution time by using blocking-based

techniques [45], while such techniques are harder to apply to uninterpretable models.

Systems that use probabilistic models – such as machine learning methods based on

SVMs [21], or fuzzy matching [47] – are harder to interpret than rules, and hence are often

not preferred. In contrast, rule-based systems [45] offer better interpretability, particularly

when the rules can be constrained to be simple with relatively few clauses. A key question

is whether rules can match the effectiveness of probabilistic approaches while preserving

interpretability. Intuitively, hand-writing interpretable EM rules may be practical in some

limited domains. Doing so, however, is extremely time-consuming and error-prone. Hence, a

promising direction is to automatically generate EM rules, by learning from positive (match-

ing) and negative (non-matching) examples.

We present the EM-Synth system that learns EM rules (1) matching the performance of

probabilistic methods and (2) producing concise rules. Our approach is to use the overall

framework (Fig. 1-1) and instantiate it as the EM-Synth system (Fig. 1-6).

Example 1: Consider two tables of famous people that are shown in Figure 1-4. Dataset

𝐷1 is an instance of schema 𝑅 pname, address, email, nation, genderq and 𝐷2 is of schema

𝑆 pname, apt, email, country, sexq. The EM problem is to find tuples in 𝐷1 and 𝐷2 that

refer to the same person. Off-the-shelf schema matching tools [44, 94] may decide that

name, address, email, nation, gender in table 𝑅 map to name, apt, email, country, sex in table

𝑆, respectively. Given a tuple 𝑟 P 𝐷1 and a tuple 𝑠 P 𝐷2, a straightforward EM rule is that

the value pairs from all aligned attributes should match such as:

𝜙1: 𝑟rnames «1 𝑠rnames Ź
𝑟raddresss «2 𝑠rapts

Ź
𝑟remails = 𝑠remails Ź 𝑟rnations = 𝑠rcountrys

Ź
𝑟rgenders = 𝑠rsexs

Here, «1 and «2 are different domain-specific similarity functions. Rule 𝜙1 says that a

tuple 𝑟 P 𝐷1 and a tuple 𝑠 P 𝐷2 refer to the same person (i.e., a match), if they have similar

or equivalent values on all aligned attributes. l

However, in practice, the rule 𝜙1 above may not be able to match many similar

pairs of records, since real-world data may contain multiple issues such as misspellings

(e.g., 𝑠3rnames), different formats (e.g., 𝑟2rnames and 𝑠1rnames), and Null or missing values

(e.g., 𝑟3remails and 𝑟4remails). Naturally, a robust solution is to have a set of rules that

25

name address email nation gender

𝑟1
Catherine
Zeta-Jones

9601 Wilshire Blvd.,
Beverly Hills, CA

90210-5213
c.jones@gmail.com Wales F

𝑟2 C. Zeta-Jones 3rd Floor, Beverly
Hills, CA 90210 c.jones@gmail.com US F

𝑟3 Michael Jordan
676 North Michigan
Avenue, Suite 293,

Chicago
US M

𝑟4 Bob Dylan 1230 Avenue of the
Americas, NY 10020 US M

(a) 𝐷1: an instance of schema 𝑅)
name apt email country sex

𝑠1
Catherine
Zeta-Jones

9601 Wilshire, 3rd
Floor, Beverly Hills,

CA 90210
c.jones@gmail.com Wales F

𝑠2 B. Dylan 1230 Avenue of the
Americas, NY 10020 bob.dylan@gmail.com US M

𝑠3 Micheal Jordan
427 Evans Hall

#3860, Berkeley,
CA 94720

jordan@cs.berkeley.edu US M

(b) 𝐷2: An instance of the schema 𝑆)

Figure 1-4: Sample tables for persons

collectively cover different cases.

Example 2: For example, we may have two rules as below.

𝜙2: 𝑟rnames «1 𝑠rnames Ź
𝑟raddresss «2 𝑠rapts

Ź
𝑟rnations = 𝑠rcountrysŹ 𝑟rgenders = 𝑠rsexs;

𝜙3: 𝑟rnames «3 𝑠rnames Ź
𝑟remails = 𝑠remails

Typically, these kinds of rules are specified as disjunctions, e.g., 𝜙2
Ž

𝜙3, which indicates

that a tuple 𝑟 P 𝐷1 and a tuple 𝑠 P 𝐷2 match, if either 𝜙2 or 𝜙3 holds. However, a

more natural way, from a user perspective, is to specify the rule in a logical flow. For

instance, when handling Null or missing values (e.g., 𝑟3remails and 𝑟4remails), the following

representation may be more user-friendly:

𝜙4: if (𝑟remails ‰ Null
Ź

𝑠remails ‰ Null)

26

then 𝑟rnames «1 𝑠rnames Ź 𝑟remails = 𝑠remails
else 𝑟rnames «3 𝑠rnames Ź 𝑟raddresss «2 𝑠rapts Ź

𝑟rnations = 𝑠rcountrys Ź 𝑟rgenders = 𝑠rsexs

These if-then-else rules provide a more flexible way to model matching rules and have

more expressive power than simple disjunctions. l

(1) Example
subset selection

(2) EM rule synthesis

(3) Rule composition(4) Best rule
composition selection

Data 𝐷

best com-
posed EM rule

synthesized EM rule (if any)

set of examples

EM rules

candidate EM rule

composition of EM rules

Figure 1-5: High-level description for EM-Synth framework

A high-level description of the EM-Synth system is presented in Fig. 1-5. EM-Synth

synthesizes interpretable EM rules from a small set of examples and selects the next set

of examples in a smart manner based on the synthesized EM rule (or the lack of one) in

the first two steps (1) and (2). After generating a sizable number of EM rules, EM-Synth

composes some of these rules to form a larger EM rule (step (3)). The choices of which rules

to compose and how to compose them are made in step (4) in an iterative manner. The

details of the instantiation of the overall framework (Fig. 1-1) as EM-Synth are presented

in Fig. 1-6.

27

data 𝐷: a (supervised) set of positive and negative examples

function 𝑓 : an EM rule that classifies an example as being positive or negative

grammars 𝐺,𝐺𝐶 : both of these grammars correspond to the Boolean structure
of EM rules around application of similarity functions and their comparison with
thresholds.

𝑆𝑝𝑒𝑐p𝑓,𝐷q: true. The only logical specification for the EM rules is for them to be
from the grammar 𝐺

specialization information 𝛼𝑖: a set of examples

synthesis feedback: the synthesized EM rule for the provided set of examples

component 𝐶𝑖: an EM rule

𝑆𝑝𝑒𝑐𝑖: (i) correctness of the evaluation of the EM rule 𝐶𝑖 on the provided set of
examples, and (ii) the EM rule should be as small as possible with a bound on its size

assembling components: combining small EM rules to form a larger EM rule using
Boolean operators from the grammar 𝐺

assembly parameters 𝜋 / tuning feedback: which subset of the synthesized rules
to use and how to combine them using operators of the grammar 𝐺

𝑆𝑐𝑜𝑟𝑒p𝑓,𝐷q: a numerical metric like accuracy or F-measure

Figure 1-6: Instantiation of the overall framework (Fig. 1-1) for EM-Synth

1.3 Key Contributions

In this thesis, we introduce a framework for synthesizing a function from a grammar optimiz-

ing a numerical score from large amounts of data. We summarize the high-level contributions

with respect to this framework:

1. We identify a set of conditions that allow us to synthesize a complex function by

solving only small local synthesis problems.

2. This framework allows optimization of a complicated numerical score over provided

input data while ensuring that the logical specification of the synthesized function still

holds.

3. We provide strategies and scalable infrastructure for using a general-purpose synthe-

sizer efficiently for domain-specific problems by incorporating domain-specific knowl-

28

edge as a custom synthesis procedure that interacts with the general-purpose synthe-

sizer.

This framework has been employed in three impactful application domains: (1) formula

simplification in constraint solvers [106], (2) database entity matching [104], and (3) CNF

encoding in SMT solvers [62]. In this thesis, we focus on the first two application domains

and instantiate this framework as two systems. We summarize the key contributions for

both the application domains below.

1.3.1 Automatic generation of formula simplifiers

Our major contribution for this domain is Swapper: a system that automatically generates

efficient formula simplifiers from a corpus of benchmark problems. Swapper incorporates

techniques from machine learning (ML), compilers and constraint-based synthesis to auto-

mate the tedious process of writing a domain-specific formula simplifier. We summarize our

contributions below:

1. We automate the process of generating conditional rewrite rules specific to the com-

mon recurring patterns in formulas from a given domain by (i) using a novel algorithm

for representative sampling from labeled directed acyclic graphs (DAGs) and (ii) for-

mulating the rule generation problem as a Syntax-Guided Synthesis (SyGuS) problem.

2. We demonstrate the use of machine learning (ML) based auto-tuning to select an

optimal subset and ordering of rules, and generate an efficient simplifier.

3. We extensively evaluate our approach on multiple domains from the Sketch synthe-

sizer and show that (i) the generated simplifiers reduce the synthesis times of Sketch

by 15%-60% relative to the existing Sketch solver with its hand-crafted simplifier

and (ii) the generated simplifiers are very domain-specific i.e., they work very well on

their respective domains but perform poorly on other domains.

1.3.2 Synthesis of concise EM rules

Our major contribution in this domain is a new EM rule synthesis system called EM-Synth.

We first discuss the key challenges in automatically discovering good EM rules from examples

and then present our contributions targeting those challenges.

29

Challenges

There are two key challenges in automatically discovering good EM rules from examples.

(1) Interpretability vs. effectiveness. While interpretability is crucial in many domains,

it also might sacrifice the effectiveness of the system. In real-world applications, it is often

not easy, if not impossible, to find matching tuples by considering only few attribute com-

binations. A solution to the EM rule mining problem should keep rules simple and concise

but still match the effectiveness of probabilistic approaches.

(2) Large search space. Consider two relations with 𝑛 aligned attributes. There are 𝑚 =

2𝑛 possible combinations of attributes. If we constrain ourselves to EM rules that consist of

arbitrary selections of these attribute combinations represented in DNF (disjunctive normal

form), this results in a search space of Σ𝑚
𝑖=1

`
𝑚
𝑖

˘
= 2𝑚−1 = 22

𝑛 −1. For instance, the search

space is 22
5 − 1 (4 billion combinations) for Example 2, which contains only 5 attributes!

Adding to the above complexity is that for each attribute, there is a large set of possible

similarity functions, e.g., Levenshtein distance or Jaccard similarity, that could be used to

determine if the attributes match. On top of that, each function also needs a similarity

threshold to be compared against.

Additionally, our solution must be designed to handle the practical cases when the train-

ing data is often small or limited, and the data itself may have missing values.

EM-Synth contributions

EM-Synth generates rules that are both concise and effective. These concise rules are easy for

the end user to interpret, and at the same time, they perform as well as more complicated

probabilistic rules or rules written purely as DNFs (Challenge 1). This is because they

are expressed in a rich grammar that includes negations and if-then-else clauses. Note

that, similar to other database applications that rely on synthesis [97], our system uses a

predefined grammar fixed across all the datasets – users do not need to know or specify the

grammar.

Our approach is to instantiate the overall framework (Fig. 1-1) presented in this thesis as

the EM-Synth system. EM-Synth uses a predefined grammar and a set of examples (special-

ization information) to synthesize EM rules (components) iteratively. EM-Synth adopts the

idea of Counter-Example Guided Inductive Synthesis (CEGIS) [112] to perform synthesis

30

from small sets of examples, and is inspired by Random Sample Consensus (RANSAC) [49]

to avoid examples that may make the algorithm under-perform. Each synthesis problem

is efficiently solved with Sketch by incorporating a special-purpose solver inside Sketch

in a novel way (Challenge 2). Moreover, EM-Synth uses some smart assembly strategies

to combine the EM rules together to improve their effectiveness while maintaining their

interpretability. We summarize our contributions as follows:

1. We define the problem of synthesizing EM rules from positive-negative examples. In

particular, we use General Boolean Formulas (GBF) to represent EM rules. We show

how to formulate this synthesis problem using the SyGuS framework [10] and use the

Sketch solver to solve these problems. Moreover, we show how to use a special-

purpose solver inside Sketch to solve these synthesis problems efficiently.

2. We describe novel additions to EM-Synth to avoid over-fitting, to eliminate biased

samples, and we show how to compute the composition or assembly of multiple rules

using two different techniques to improve their effectiveness.

3. We experimentally verify that our system significantly outperforms other interpretable

models (i.e., decision trees with low depth, SIFI [117]) in terms of matching accuracy,

even when our rules have substantially fewer clauses. It is also comparable with other

uninterpretable models, e.g., decision trees with large depth, random forests, gradient

tree boosting and SVM, on accuracy. We show that our approach produces very

concise EM rules and uncover their superior interpretability with a user study. We

show the effectiveness of our system against other interpretable models with varying

amounts of (possibly small) training data. We show the large benefit in efficiency of

testing some EM-Synth generated rules in practice as compared to SVM. The results

also show the efficiency of training our system in producing interpretable rules.

1.4 Thesis Overview

In Chapter 2, we discuss the synthesis problems for the two application domains considered

in this thesis and describe how we solve them. In Chapters 3, 4 and 5, we present the corre-

sponding specialization information extraction, assembly of components and best assembly

tuning methods used in these two application domains, respectively. In Chapter 6, we discuss

31

the shared infrastructure that powers efficient execution of Swapper and EM-Synth. In

Chapters 7 and 8, we discuss the implementations of the Swapper and EM-Synth systems,

respectively, along with their evaluations with exhaustive experiments. Chapter 9 presents

relevant related work and establishes uniqueness of our systems, and Chapter 10 concludes

this thesis.

32

Chapter 2

Synthesis of components in

application domains

One of the crucial steps of the overall framework (Fig. 1-1) is the synthesis of components.

The sub-problem of synthesizing components having a syntactic structure provided by a

grammar and satisfying a logical specification is at the core of this step. In a lot of recent

related work, researchers have used domain-specific synthesizers to efficiently solve such

synthesis problems [42,52,57,88,114,119], but they have had to build synthesis infrastructure

from scratch for each application. In this thesis, we perform synthesis with a general-purpose

synthesizer (Sketch [111]) and incorporate domain-specific insights from our application

domains to make the synthesis procedure more efficient. This customization with a general-

purpose solver (Sketch) enables us to reuse a lot of infrastructure already built in Sketch.

In both instantiations of the overall framework (Swapper and EM-Synth), the synthesis-

of-components step corresponds to synthesizing a rule (a conditional rewrite rule in Swap-

per and an EM rule in EM-Synth) having a logical structure provided by a grammar and

constraints that arise from the application domain and the input data. In this chapter,

we discuss the synthesis problems at the core of these systems (Swapper in Sec. 2.2 and

EM-Synth in Sec. 2.3) and describe how to formulate these in the well-studied syntax-guided

synthesis (SyGuS) framework [10] (Sec. 2.1). In Appendix A, we also show how to solve

these SyGuS problems using Sketch, an open source SyGuS solver.

33

2.1 Syntax-guided synthesis (SyGuS) framework

The SyGuS framework is employed to specify certain program-synthesis problems with syn-

tactic constraints in a standardized format [10]. Such a synthesis problem consists of finding

a program 𝑝 such that a constraint 𝐶 capturing the correctness of 𝑝 is satisfied. This syn-

thesis problem is further constrained in three ways: (1) the universe of possible programs 𝑝

is restricted to syntactic expressions described by a grammar 𝐺, (2) the logical symbols and

their interpretation are restricted to a background theory 𝒯 for which well-understood deci-

sion procedures are available for determining satisfaction modulo 𝒯 , and (3) the constraint

𝐶 is limited to a quantifier-free first-order formula in the background theory 𝒯 .

SyGuS problems can be represented abstractly as a grammar 𝐺 representing a set of

expressions or programs, together with a constraint 𝐶 on the behavior of the desired expres-

sion. A grammar 𝐺 is a set of recursive rewriting rules (or productions) used to generate

expressions over a set of terminal symbols and non-terminal (recursive) symbols. The pro-

ductions provide a way to derive expressions from a designated initial symbol by applying

the productions one after another. An example SyGuS problem with a grammar and an

associated constraint is given below:

grammar 𝑒𝑥𝑝𝑟 Ñ 𝑒𝑥𝑝𝑟 _ 𝑒𝑥𝑝𝑟 pbound : 𝐵q
𝑒𝑥𝑝𝑟 Ñ 𝑥 | 𝑦 | 𝑥 | 𝑦

constraint
`
𝑥 ùñ p 𝑦 = 𝑒𝑥𝑝𝑟q˘^ `

𝑦 ùñ p 𝑥 = 𝑒𝑥𝑝𝑟q˘

Figure 2-1: An example grammar of a simple Boolean expression

The above grammar has a non-terminal symbol (also the initial symbol) 𝑒𝑥𝑝𝑟 that repre-

sents a disjunction of variables 𝑥, 𝑦 or their negations. The underlying theory corresponds to

the theory of a Boolean algebra with two atomic variables 𝑥 and 𝑦 i.e., 𝑥 and 𝑦 are Boolean

variables that can take the constant values 1 (𝑡𝑟𝑢𝑒) and 0 (𝑓𝑎𝑙𝑠𝑒). The above representation

of the constraint assumes that all terminal symbols and variables are universally quantified

i.e., the constraint should be satisfied for all values taken by the terminal symbols/variables

(𝑥 and 𝑦 in this example). The space of expressions is bounded because of a parameter 𝐵

that bounds the number of times a production can be used.

A SyGuS solver would take the above grammar and constraint as an input and output

a candidate expression 𝑒𝑥𝑝𝑟 from the grammar that satisfies the constraint (if there exists

one) e.g., if the bound 𝐵 = 1 then the solver may output the expression 𝑥_ 𝑦.

34

Note that in the example SyGuS problem above, the constraints allow us to easily eval-

uate the required output function on all possible values of 𝑥 and 𝑦. The purpose of solving

such a SyGuS problem would be to find a concise representations of this function from a

restricted grammar. In general, the constraints and the grammar can be more complicated

and hard to reason about manually. Moreover, the problem may also be underspecified i.e.,

there may be multiple possible functions in the provided grammar that satisfy the given

constraints. An example underspecified SyGuS problem is given below:

grammar 𝑒𝑥𝑝𝑟 Ñ if 𝑏𝑜𝑜𝑙𝐸𝑥𝑝𝑟 then 𝑒𝑥𝑝𝑟 else 𝑒𝑥𝑝𝑟 pbound : 𝐵1q
𝑒𝑥𝑝𝑟 Ñ 𝑒𝑥𝑝𝑟 + 𝑒𝑥𝑝𝑟 | 𝑒𝑥𝑝𝑟 ˆ 𝑒𝑥𝑝𝑟 pbound : 𝐵2q
𝑒𝑥𝑝𝑟 Ñ 𝑎 | 𝑏
𝑏𝑜𝑜𝑙𝐸𝑥𝑝𝑟 Ñ 𝑒𝑥𝑝𝑟 𝑐𝑜𝑚𝑝𝑂𝑝 𝑒𝑥𝑝𝑟

𝑐𝑜𝑚𝑝𝑂𝑝Ñ ą | ě | = | ‰
constraint p𝑒𝑥𝑝𝑟 ě 𝑎q ^ p𝑒𝑥𝑝𝑟 ě 𝑏q

A solution of this SyGuS problem is a function from the provided grammar that can be

used as an upper bound on two integer inputs 𝑎 and 𝑏. Some possible solutions are the

expressions: 𝑎 + 𝑏, 𝑎ˆ 𝑎 + 𝑏ˆ 𝑏, and if p𝑎 ą 𝑏q then 𝑎 else 𝑏. For this problem, a SyGuS

solver will output one of these solutions given appropriate bounds 𝐵1 and 𝐵2.

2.2 Synthesis of conditional rewrite rules in Swapper

Following the overall framework, in Swapper (Fig. 1-2), the problem of automatically gen-

erating the formula simplifier is broken down into multiple synthesis problems. Each of these

problems correspond to synthesis of conditional rewrite rules. A conditional rewrite rule has

the form:

𝐿𝐻𝑆p𝑥q 𝑝𝑟𝑒𝑑p𝑥qÝÝÝÝÝÝÝÝÑ 𝑅𝐻𝑆p𝑥q,

where 𝑥 is a vector of variables, 𝐿𝐻𝑆 and 𝑅𝐻𝑆 are expressions that include variables

in 𝑥 as free variables and pred is a guard predicate defined over the same free variables

and drawn from a restricted grammar. The triple must satisfy the following constraint:

@𝑥 `
predp𝑥q ùñ p𝐿𝐻𝑆p𝑥q = 𝑅𝐻𝑆p𝑥qq ˘.

For example, the rewrite rule below indicates that when the guard predicate (pred)

𝑏 < 𝑑 is satisfied, one can locally substitute the pattern on the left hand side (𝐿𝐻𝑆) i.e.,

35

the pattern 𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑙𝑡p𝑎, 𝑑qq with the smaller pattern on the right hand side (𝑅𝐻𝑆).

𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑙𝑡p𝑎, 𝑑qq 𝑏<𝑑ÝÝÝÝÝÝÑ 𝑙𝑡p𝑎, 𝑑q

Multiple conditional rewrite rules can be used to simplify large logical formulas by rewrit-

ing various parts of the formula locally as described in Subsec. 2.2.1. We describe the core

rule-synthesis problem in Subsec. 2.2.2. Since we focus on the Sketch solver as the target

of formula simplification in this thesis, we constrain the structure of 𝐿𝐻𝑆, 𝑅𝐻𝑆 and pred

based on the internals of Sketch (Subsec. 2.2.3).

2.2.1 Formula simplification in Sketch

We assume that the rewriter (while applying rewrite rules) has access to a function 𝑠𝑡𝑎𝑡𝑖𝑐p𝑎q
that for any sub-term 𝑎 of a larger formula 𝑃 can determine an over-approximation of the

range of values that 𝑎 can take when the free variables in 𝑃 are assigned values from their

respective ranges. In the rewriter that is currently part of the Sketch solver, for example,

this function is implemented by performing abstract interpretation over the formula.

Swapper identifies promising 𝐿𝐻𝑆 patterns for rules in the pattern-finding phase (more

details in Sec. 3.2), together with properties of their free variables that can be assumed to

hold in the contexts where these 𝐿𝐻𝑆 patterns appear. For example, Swapper may discover

that the pattern 𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑙𝑡p𝑎, 𝑑qq is very common, so finding a rewrite rule for this pattern

would be advantageous. Pattern finding may also discover that this pattern often occurs

in a context where a rewriter can prove that 𝑏 ď 0 and 𝑑 ą 0. The next challenge is to

synthesize the rewrite rules for this pattern that will be applicable in such contexts.

The goal of rule synthesis is therefore twofold: (1) to synthesize predicates 𝑝𝑟𝑒𝑑p𝑥q that

can be expected to hold on at least one context identified by pattern finding for the 𝐿𝐻𝑆

pattern, and (2) to synthesize for each of these candidate predicates an optimal 𝑅𝐻𝑆 for

which the constraint above holds. At this stage, optimality is defined simply in terms of the

size of the 𝑅𝐻𝑆, since it is difficult to predict the effect that a transformation will have on

solution time. As we will see later, optimality in terms of size does not guarantee optimality

in terms of solution time, but at this stage in the process our goal is simply to identify

potentially good rewrite rules. We formulate this as a SyGuS problem [10] (Subsec. 2.2.2)

and solve it using the Sketch synthesis tool [111] (Appendix A).

36

2.2.2 Core rule-synthesis problem

As mentioned above, Swapper finds rules from patterns and the context information col-

lected during the pattern-finding phase (we will explain more details of the pattern-finding

phase in Sec. 3.2). The motivation behind using the context information is (1) to ensure that

all generated rules are applicable in the corpus and (2) to constrain the synthesis problem

to reduce the size of the search space and efficiently solve the synthesis problem.

Now, we describe how this context information is used for rule synthesis. Swapper finds

corresponding rewrite rules for the set of patterns t𝑄u obtained from the pattern-finding

phase. Each of these patterns 𝑄 is a sub-term of some formula 𝑃 from the corpus of formulas

t𝑃 u provided as an input to Swapper i.e., the pattern 𝑄 occurs as a rooted subgraph in the

formula 𝑃 (represented as a directed acyclic graph or DAG). The inputs or free variables

𝑥 = p𝑥1, 𝑥2, . . . , 𝑥𝑛q of 𝑄 correspond to sub-terms p𝑎1, 𝑎2, . . . , 𝑎𝑛q of 𝑃 such that the sub-

term 𝑎𝑖 is rooted at the input 𝑥𝑖 of 𝑄 in 𝑃 . Fig. 2-2 shows an example DAG 𝑃 with a

pattern 𝑄 (marked by the dotted ellipse), inputs p𝑥1, 𝑥2, . . . , 𝑥6q (arrows marked in blue) of

𝑄 and the corresponding sub-terms p𝑎1, 𝑎2, . . . , 𝑎𝑛q (marked in orange).

+

−

𝑥6

𝑥5

+

𝑥4𝑥3

𝑥1

𝑥2

pattern 𝑄

sub-term 𝑎1
𝑎2 𝑎3 𝑎4

𝑎5

𝑎6

Figure 2-2: Relationship between inputs p𝑥1, 𝑥2, . . . , 𝑥𝑛q of a pattern 𝑄 and the correspond-
ing sub-terms p𝑎1, 𝑎2, . . . , 𝑎𝑛q of the formula 𝑃

Using the 𝑠𝑡𝑎𝑡𝑖𝑐 function discussed in Subsec. 2.2.1, for each pattern 𝑄p𝑥q, the pattern-

finding phase also collects a list of 𝑠𝑡𝑎𝑡𝑖𝑐 range values of the sub-terms p𝑎1, 𝑎2, . . . , 𝑎𝑛q

37

discussed above. These values are collected for each context in which the pattern 𝑄 occurs

in the corpus. More formally, the pattern-finding phase will collect a pattern 𝑄p𝑥q with

inputs 𝑥 = p𝑥1, 𝑥2, . . . , 𝑥𝑛q along with the lists

´
𝑠𝑡𝑎𝑡𝑖𝑐p𝑎𝑗1q, 𝑠𝑡𝑎𝑡𝑖𝑐p𝑎𝑗2q, . . . , 𝑠𝑡𝑎𝑡𝑖𝑐p𝑎𝑗𝑛q

¯
@ 1 ď 𝑗 ď 𝑚

where 𝑚 is the number of occurrences of 𝑄 in the corpus and
´
𝑎𝑗1, 𝑎

𝑗
2, . . . , 𝑎

𝑗
𝑛

¯
are the sub-

terms corresponding to the inputs 𝑥 of 𝑄p𝑥q for its 𝑗𝑡ℎ occurrence in the corpus. In the

rule-synthesis phase, we construct the predicates 𝑎𝑠𝑠𝑢𝑚𝑒𝑗p𝑥q over the free variables 𝑥 that

evaluate to true when each free variable 𝑥𝑖 is in the range of values given by 𝑠𝑡𝑎𝑡𝑖𝑐p𝑎𝑗𝑖 q i.e.,

𝑎𝑠𝑠𝑢𝑚𝑒𝑗p𝑥q =
𝑛ľ

𝑖=1

´
𝑥𝑖 P 𝑠𝑡𝑎𝑡𝑖𝑐p𝑎𝑗𝑖 q

¯

We use the notation 𝑎𝑠𝑠𝑢𝑚𝑒p𝑥q to denote the collection of all 𝑎𝑠𝑠𝑢𝑚𝑒𝑗p𝑥q’s i.e.,

𝑎𝑠𝑠𝑢𝑚𝑒p𝑥q =
´
𝑎𝑠𝑠𝑢𝑚𝑒1p𝑥q, 𝑎𝑠𝑠𝑢𝑚𝑒2p𝑥q, . . . , 𝑎𝑠𝑠𝑢𝑚𝑒𝑚p𝑥q

¯

𝑎𝑠𝑠𝑢𝑚𝑒p𝑥q is used to constrain the predicate predp𝑥q for the conditional rewrite rule to

be synthesized. Intuitively, if the predicate predp𝑥q satisfies the property that for some 𝑗,

@𝑥 `
𝑎𝑠𝑠𝑢𝑚𝑒𝑗p𝑥q ùñ predp𝑥q˘ then this guarantees that the rewrite rule

𝑄p𝑥q predp𝑥qÝÝÝÝÝÝÝÝÑ 𝑅𝐻𝑆p𝑥q

will be applicable at least at the 𝑗𝑡ℎ occurrence of the pattern 𝑄. This way we can avoid

rules with predicates that will never hold in practice and focus on the rules with predicates

that are implied by some assumptions 𝑎𝑠𝑠𝑢𝑚𝑒𝑗p𝑥q obtained from the pattern-finding phase.

Apart from finding applicable predicates, Swapper also needs to find correct and effec-

tive rewrite rules for a given 𝐿𝐻𝑆 pattern. We incorporate these requirements as constraints

and present the formal description of the core rule-synthesis problem for Swapper in Prob-

lem 3.

Problem 3 Given a pattern 𝐿𝐻𝑆p𝑥q, collection of predicates 𝑎𝑠𝑠𝑢𝑚𝑒p𝑥q discovered by

Swapper for a given occurrence of the 𝐿𝐻𝑆 pattern, and grammars for predp𝑥q and

𝑅𝐻𝑆p𝑥q, find suitable candidates for predp𝑥q and 𝑅𝐻𝑆p𝑥q which satisfy the following con-

38

straints:

1.
Ž𝑚

𝑗=1

´
@𝑥 : 𝑎𝑠𝑠𝑢𝑚𝑒𝑗p𝑥q ùñ predp𝑥q

¯

2. @𝑥 : predp𝑥q ùñ p𝐿𝐻𝑆p𝑥q = 𝑅𝐻𝑆p𝑥qq

3. sizep𝑅𝐻𝑆q < size(𝐿𝐻𝑆), where size(𝑄) is the number of nodes in the pattern 𝑄

4. predp𝑥q is the weakest predicate (most permissive) in the predicate grammar that sat-

isfies the previous constraints

5. for a predp𝑥q and 𝑅𝐻𝑆p𝑥q that satisfy the above constraints, 𝑠𝑖𝑧𝑒p𝑅𝐻𝑆q should be as

small as possible.

Note that there can be multiple instances of predp𝑥q that are the weakest possible (item 4.

from Problem 3) in terms of the permissiveness. For example, the following two rules below

(Rules 1 and 2) have the weakest predicates when the predicate space is given by the following

grammar:

grammar 𝑝𝑟𝑒𝑑Ñ 𝑣𝑎𝑟 < 𝑣𝑎𝑟

𝑝𝑟𝑒𝑑Ñ 𝑡𝑟𝑢𝑒

𝑣𝑎𝑟 Ñ 𝑎 | 𝑏 | 𝑑

Rule 1:

𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑙𝑡p𝑎, 𝑑qq 𝑏<𝑑ÝÝÝÝÝÝÑ 𝑙𝑡p𝑎, 𝑑q

Rule 2:

𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑙𝑡p𝑎, 𝑑qq 𝑎<𝑏ÝÝÝÝÝÝÑ 𝑡𝑟𝑢𝑒

i.e., there is no other predicate predp𝑎, 𝑏, 𝑑q in the above predicate grammar for which we can

find a rewrite rule satisfying the constraints 1 − 3, 5 from Problem 3 along with constraint

4 that translates to:

@𝑎, 𝑏, 𝑑 pp𝑏 < 𝑑 ùñ 𝑝𝑟𝑒𝑑p𝑎, 𝑏, 𝑑qq ^ p𝑎 < 𝑏 ùñ 𝑝𝑟𝑒𝑑p𝑎, 𝑏, 𝑑qqq

Note that the predicate 𝑡𝑟𝑢𝑒 is implied by both of the predicates 𝑏 < 𝑑 and 𝑎 < 𝑏 but,

as we will see below in Subsec. 2.2.3, there is no 𝑅𝐻𝑆p𝑎, 𝑏, 𝑑q in the 𝑅𝐻𝑆 grammar with a

39

size smaller than 𝑠𝑖𝑧𝑒p𝐿𝐻𝑆q that will make the following rewrite rule valid:

𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑙𝑡p𝑎, 𝑑qq 𝑡𝑟𝑢𝑒ÝÝÝÝÝÝÑ 𝑅𝐻𝑆p𝑎, 𝑏, 𝑑q

2.2.3 Space of expressions and predicates

Sketch, like most solvers, represents constraints as directed acyclic graphs (DAGs) in order

to exploit sharing of sub-terms within a formula. The formulas in Sketch consist of Boolean

combinations of formulas involving the theory of arrays and non-linear integer arithmetic.

Because Sketch has to solve an exists-forall (D@) problem, the formulas distinguish between

universally and existentially quantified variables: inputs and controls respectively. The

formula-simplification pass that is the subject of this work is applied to this predicate 𝑃 p𝑥, 𝑐q
as it is constructed and before the predicate is solved in an abstraction-refinement loop based

on counterexample guided inductive synthesis (CEGIS) [111]. The complete list of terms

supported by Swapper is shown in Fig. 2-3.

𝑒 = 𝑏𝑜𝑜𝑙𝑜𝑝p𝑒1, 𝑒2q apply a Boolean binary operator on 𝑒1, 𝑒2
𝑒.𝑔., 𝑎𝑛𝑑, 𝑜𝑟, 𝑥𝑜𝑟

𝑛𝑒𝑔p𝑒1q Boolean unary negation operator representing 𝑒1
𝑎𝑟𝑖𝑡ℎ𝑜𝑝p𝑒1, 𝑒2q apply an arithmetic operator on 𝑒1, 𝑒2

𝑒.𝑔., 𝑝𝑙𝑢𝑠, 𝑡𝑖𝑚𝑒𝑠,𝑚𝑜𝑑, 𝑙𝑡, 𝑔𝑡
𝑚𝑖𝑛𝑢𝑠p𝑒1q arithmetic unary minus operator representing − 𝑒1
𝑖𝑛𝑝p𝑖𝑑q universally quantified variable (input)
𝑐𝑡𝑟𝑙p𝑖𝑑q existentially quantified variable (control)
𝑎𝑟𝑟𝑟p𝑒𝑖, 𝑒𝑎q read at index 𝑒𝑖 in array 𝑒𝑎
𝑎𝑟𝑟𝑤p𝑒𝑖, 𝑒𝑎, 𝑒𝑣q write at index 𝑒𝑖 value 𝑒𝑣 in array 𝑒𝑎
𝑎𝑟𝑟𝑐𝑟𝑒𝑎𝑡𝑒p𝑐q new array with a default value 𝑐: t_ ÞÑ 𝑐u

𝑛p𝑐q integer/Boolean constant with value 𝑐
𝑚𝑢𝑥p𝑒𝑐, 𝑒0, . . . 𝑒𝑖q multiplexer chooses based on value 𝑒𝑐
𝑎𝑠𝑠𝑒𝑟𝑡p𝑒q assertion of a Boolean expression 𝑒

Figure 2-3: The language of formula expressions in Sketch.

The space for 𝑅𝐻𝑆 is specified by a template that simulates the computation of a

function using temporary variables. This computation can be naturally interpreted as a

40

pattern. The essential template for the generator for 𝑅𝐻𝑆 is shown here:

𝑅𝐻𝑆p𝑥q ” 𝑙𝑒𝑡 𝑡1 = simpleOpp𝑥q;
𝑡2 = simpleOpp𝑥, 𝑡1q;
. . .

𝑡𝑘 = simpleOpp𝑥, 𝑡1, ..., 𝑡𝑘−1q;
𝑖𝑛 𝑡𝑘

where simpleOp represents a single operation node (e.g. 𝑎𝑛𝑑, 𝑝𝑙𝑢𝑠 etc. from Fig. 2-3)

with its operands being selected from the arguments. For example, the expression p𝑎+𝑏qˆ𝑐

can be represented as:

let 𝑡1 = 𝑝𝑙𝑢𝑠p𝑎, 𝑏q;
𝑡2 = 𝑡𝑖𝑚𝑒𝑠p𝑡1, 𝑐q;

in 𝑡2

We put a strict upper bound on 𝑘 as one less than the number of nodes in the fixed 𝐿𝐻𝑆.

For pred, we employ a simple Boolean expression grammar that considers conjunctions

of equalities and inequalities among variables:

grammar 𝑝𝑟𝑒𝑑p𝑥q Ñ 𝑏𝑜𝑜𝑙𝐸𝑥𝑝𝑟p𝑥q
𝑝𝑟𝑒𝑑p𝑥q Ñ 𝑏𝑜𝑜𝑙𝐸𝑥𝑝𝑟p𝑥q ^ 𝑏𝑜𝑜𝑙𝐸𝑥𝑝𝑟p𝑥q
𝑏𝑜𝑜𝑙𝐸𝑥𝑝𝑟p𝑥q Ñ 𝑥𝑖 binop 𝑥𝑗

𝑏𝑜𝑜𝑙𝐸𝑥𝑝𝑟p𝑥q Ñ 𝑥𝑖 | 𝑥𝑖
𝑤ℎ𝑒𝑟𝑒 binop P t<,ą,=,‰,ď,ěu
𝑥 = p𝑥1, 𝑥2, . . . , 𝑥𝑛q, 1 ď 𝑖 ď 𝑛, 1 ď 𝑗 ď 𝑛

These predicates are inspired by existing predicates present in the rules in Sketch’s hand-

crafted formula simplifier.

Now, we are ready to discuss the details of a new hybrid approach to synthesis of rewrite

rules in Swapper.

41

2.2.4 Hybrid enumerative/symbolic synthesis in Swapper

To solve Problem 3, Swapper can use Sketch to find rewrite rules that satisfy constraints

1 − 3, 5 (discussed in detail later in appendix A.2) for a given 𝐿𝐻𝑆p𝑥q. In practical terms,

with many assumptions 𝑎𝑠𝑠𝑢𝑚𝑒p𝑥q on a given 𝐿𝐻𝑆p𝑥q, pushing these constraints to Sketch

makes it inefficient to run Sketch instances with large 𝑎𝑠𝑠𝑢𝑚𝑒p𝑥q constraints. We describe

below a way to separately satisfy the constraints 1, 4 (from Problem 3) and use the Sketch

solver to satisfy only constraints 2, 3, 5 (from Problem 3). Swapper breaks the full synthesis

problem (all constraints from Problem 3) into two parts:

(1) Constraints and optimizations on predicates

Swapper uses the enumerative approach. It generates all possible candidate predicates

from the specification grammar and checks for their validity based on collected assumptions

𝑎𝑠𝑠𝑢𝑚𝑒p𝑥q. It also prunes the space of predicates by handling symmetries and avoiding

extra work based on the result of the underlying synthesis problem (explained below). For

example, if 𝑥 = p𝑎, 𝑏q, 𝑎𝑠𝑠𝑢𝑚𝑒p𝑥q = p1 < 𝑎 < 10q^p𝑏 = 0q then some of the valid predicates

will be t𝑎 ą 𝑏, 𝑏, 𝑎 ě 𝑏, 𝑎 ‰ 𝑏u.
Swapper enumerates all predicates that satisfy the collected assumptions 𝑎𝑠𝑠𝑢𝑚𝑒p𝑥q

from the provided grammar as a list (allPreds in Algorithm 1) and creates a directed graph

𝐺ñ (ImplicationGraph in Algorithm 1) such that: (1) each predicate is a node of the graph

(2) for two predicates 𝑝1p𝑥q, 𝑝2p𝑥q there is a directed edge from the node corresponding to

𝑝1p𝑥q to the node corresponding to 𝑝2p𝑥q iff @𝑥, 𝑝1p𝑥q ùñ 𝑝2p𝑥q. Swapper computes this

relationship between predicates based on whether one predicate implies the other or not for

all values of the free variables e.g. p𝑎 < 𝑏q implies 𝑎 ‰ 𝑏 but doesn’t imply 𝑎 ą 𝑏.

The full enumerative algorithm is shown in Algorithm 1. Swapper evaluates three

functions on this graph 𝐺ñ:

1. isEmptyp𝐺ñq: this function returns 𝑡𝑟𝑢𝑒 if there is at least one node (predicate) left

in the graph 𝐺ñ.

2. sampleLeafp𝐺ñq: each leaf in the graph (a node with no incoming edges) corresponds

to one of the least applicable predicates. This function randomly chooses a leaf node

and returns it.

42

Algorithm 1: Hybrid enumerative/symbolic Sketch based approach
input : LHS(x), allPreds
output: valid rewrite rules of the form p𝐿𝐻𝑆, pred𝑖, 𝑅𝐻𝑆𝑖q

1 𝐺ñ Ð ImplicationGraph(allPreds)
2 while isEmpty p𝐺ñq do
3 predÐ sampleLeaf p𝐺ñq
4 𝑅𝐻𝑆 Ð Sketch p𝐿𝐻𝑆, predq
5 if 𝑅𝐻𝑆 = NULL then
6 foreach pred1 P 𝐺ñ ^ predñ pred1 do
7 removePred

`
pred1, 𝐺ñ

˘

8 else
9 removePredppred, 𝐺ñq

10 Output rule p𝐿𝐻𝑆, pred, 𝑅𝐻𝑆q

3. removePredppred, 𝐺ñq: this function removes the node corresponding to a predicate

pred in the graph 𝐺ñ including all edges leading to it or originating from it.

Swapper iteratively finds 𝑅𝐻𝑆 (using Sketch as discussed below) for the least appli-

cable predicates at any given stage. When there is no possible rewrite rule for one of the

least applicable predicates pred then Swapper prunes out all predicates pred1 implied by

pred because there cannot exist a rule with a more applicable predicate pred1 when there is

no rule with predicate pred. This helps Swapper reduce overall time for the rule-synthesis

step by selectively running a few Sketch problem instances.

(2) Synthesis of 𝑅𝐻𝑆 given 𝐿𝐻𝑆 and pred

Swapper hard-codes the predicate pred and realizes the 𝑅𝐻𝑆 synthesis problem in Sketch

using the generator and minimize features [105, 110] of the Sketch language (also de-

scribed later in appendix A.2). The result of solving this Sketch instance provides the

smallest 𝑅𝐻𝑆 such that the rule p𝐿𝐻𝑆, pred, 𝑅𝐻𝑆q is valid for a fixed 𝐿𝐻𝑆 and pred as

required by Algorithm 1.

This concludes our discussion of synthesis of conditional rewrite rules in Swapper. Now,

we discuss the synthesis of Entity Matching (EM) rules that corresponds to the synthesis of

components in the EM-Synth system (Fig. 1-5).

43

2.3 Synthesis of EM rules in EM-Synth

Entity Matching (EM) rules, similar to conditional rewrite rules, have a syntactic structure

given by a grammar. And, similar to Swapper, we use Sketch to synthesize EM rules in

EM-Synth.

As shown in Examples 1 and 2 (Sec. 1.2), entity matching rules considered in this thesis

have a Boolean structure around some atomic predicates. Each atomic predicate is evaluated

based on similarity of values from two schema-matched columns (or attributes). We formal-

ize the notations required to describe the structure of these EM rules (Subsec. 2.3.1), discuss

the core syntax-guided synthesis problem (Subsec. 2.3.2) at the heart of EM-Synth system

in this section and how to solve it using a custom synthesizer inside Sketch (Subsec. 2.3.3).

2.3.1 Notation and EM-GBF rule-synthesis problem

Let 𝑅rA1,A2, . . . ,Ans and 𝑆rA1
1,A

1
2, . . . ,A

1
ns be two relations with corresponding sets of 𝑛

aligned attributes Ai and A1
i (𝑖 P r1, 𝑛s). We assume that the attributes between two rela-

tions have been aligned and provided as an input; this can be either manually specified or

done automatically using off-the-shelf schema matching tools [18]. Note that our approach

naturally applies to the deduplication scenario with only one relation, i.e., 𝑅 = 𝑆 where

no schema alignment is needed (Ai = A1
i,@𝑖 P r1, 𝑛s). In the following, we will discuss the

notation with two relations. We use datasets both with two relations and a single relation

for experiments.

Let 𝑟, 𝑠 be records in 𝑅,𝑆 and 𝑟rAis, 𝑠rA1
is be the values of the attribute Ai,A

1
i in records

𝑟, 𝑠, respectively.

Similarity functions

A similarity function 𝑓p𝑟rAis, 𝑠rA1
isq computes a similarity score in the real interval r0, 1s.

A bigger score means that 𝑟rAis and 𝑠rA1
is have a higher similarity. Examples of similarity

functions are cosine similarity, edit distance, and Jaccard similarity. A library of similarity

functions ℱ is a set of such general-purpose similarity functions, for example the Simmetrics

(https://github.com/Simmetrics/simmetrics) Java package.

Now we define rules for matching records 𝑟 P 𝑅 and 𝑠 P 𝑆.

44

https://github.com/Simmetrics/simmetrics

Attribute-matching rules

An attribute-matching rule is a triple «p𝑖, 𝑓, 𝜃q representing a Boolean function with value

𝑓p𝑟rAis, 𝑠rA1
isq ě 𝜃, where 𝑖 P r1, 𝑛s is an index, 𝑓 is a similarity function and 𝜃 P r0, 1s is

a threshold value. Attribute-matching rule «p𝑖, 𝑓, 𝜃q evaluating to true means that 𝑟rAis
matches 𝑠rA1

is relative to the specific similarity function 𝑓 and threshold 𝜃.

We use the notation 𝑟rAis«p𝑓,𝜃q𝑠rA1
is to denote an attribute-matching rule for some un-

derlying similarity function 𝑓 and threshold 𝜃. We will simply write 𝑟rAis«𝑠rA1
is when it is

clear from the context.

Record-matching rules

A record-matching rule is a conjunction of a set of attribute-matching rules on different

attributes. Intuitively, two records 𝑟 and 𝑠 match iff all attribute-matching rules in the set

evaluate to true.

Disjunctive matching rule

A disjunctive matching rule is a disjunction of a set of record-matching rules. Records 𝑟 and

𝑠 are matched by this rule iff they are matched by at least one of this rule’s record-matching

rules.

Indeed, a disjunctive matching rule can be seen as a formula in Disjunctive Normal Form

(DNF) over attribute-matching rules as:

𝑃ł

𝑝=1

˜
𝑄𝑝ľ

𝑞=1

«p𝑖p𝑝,𝑞q, 𝑓p𝑝,𝑞q, 𝜃p𝑝,𝑞qq
¸

where 𝑃 is the number of record-matching rules and p𝑄1, . . . , 𝑄𝑃 q are the number of

attribute-matching rules in each of the 𝑃 record-matching rules, respectively.

There are two main shortcomings of using DNF rules:

(1) [Not Concise.] A DNF p𝑢1Ź 𝑣1q Žp𝑢1Ź 𝑣2q Ž p𝑢2 Ź
𝑣1q Žp𝑢2Ź 𝑣2q is equivalent to

a much more concise formula p𝑢1Ž𝑢2qŹp𝑣1Ž 𝑣2q.

(2) [Expressive Power.] A DNF rule without negations cannot express the logic “if p𝑢q then

p𝑣q else p𝑤q”, which can be modeled using a formula such as p𝑢Ź 𝑣qŽp 𝑢Ź𝑤q. Tradition-

ally, negations are not used in tools that generate EM rules with a Boolean structure.

45

Hence, a more natural way than DNF to define ER rules is to use general Boolean

formulas, as defined below.

Boolean formula matching rule

A Boolean formula matching rule is an arbitrary Boolean formula over attribute-matching

rules as its variables and conjunction (
Ź

), disjunction (
Ž

) and negation () as allowed

operations.

We formulate a Boolean formula matching rule as a general Boolean formula (GBF).

Example 3: Consider Example 2. Let the similarity function for matching attributes name

in 𝑅 and name in 𝑆 (resp. address in 𝑅 and apt in 𝑆) be Levenshtein (resp. Jaccard), with

threshold 0.8 (resp. 0.7).

[Attribute-matching rule.] 𝑟rnames « 𝑠rnames can be formally represented as

«p1, Levenshtein, 0.8q, where the number 1 is the positional index for the 1𝑠𝑡 pair of aligned

attributes, i.e., attributes (name, name) for relations (𝑅, 𝑆).

[Record-matching rule.] 𝜙2 can be formalized as:

𝜙2 : «p1, Levenshtein, 0.8q Ź«p2, Jaccard, 0.7q
Ź

=p4, Equal, 1.0q Ź
=p5, Equal, 1.0q

Similarly, 𝜙3 can be formalized as:

𝜙3 : «p1, Levenshtein, 0.8q Ź=p3, Equal, 1.0q

[Disjunctive matching rule.] A disjunctive matching rule for 𝜙2 and 𝜙3 is the disjunction of

the above two record-matching rules, 𝜙2
Ž

𝜙3.

[Boolean formula matching rule.] Consider a custom similarity function noNulls that re-

turns 1.0 when the values of the corresponding attributes are both not null and 0.0 otherwise.

Using this function, we can formalize 𝜙4 as:

𝜙4: if («p1, noNulls, 1.0q) then 𝜙2 else 𝜙3

l

There are two reasons why we propose to synthesize GBF rules instead of DNF rules.

1. GBF can concisely represent a DNF and increase its expressibility thereby enhancing

the readability.

2. Traditionally used EM rules in the DNF [117] form require each attribute to show

46

up with the same similarity function and threshold everywhere in the DNF, with the

main purpose of reducing the search space of their solution.

In our GBF rules, we allow one attribute to have different similarity functions in the

Boolean formula, since values in the same column are not always homogeneous, and we need

different similarity functions to capture different matching cases. Consider for instance the

attribute name. In rule 𝜙2, the similarity function used is Levenshtein with threshold 0.8.

A variant 𝜙1
3 of 𝜙3 could use Jaccard similarity with threshold 0.6 for name.

Now, we are ready to discuss the rule-synthesis problem in EM-Synth.

EM-GBF rule-synthesis problem

In the EM-Synth system (Fig. 1-5), the synthesis-of-components step corresponds to syn-

thesizing EM rules from a grammar using a set of examples (the specialization informa-

tion extracted from the data) i.e., this synthesis step constrains the grammar to pro-

duce rules that are satisfied on all examples in the set. This set of examples, denoted

by ESYN = MSYN YDSYN, consists of potentially some positive examples MSYN (match-

ing), i.e., pairs of records that represent the same entity, and some negative examples DSYN

(different), i.e., pairs of records that represent different entities.

Problem 4 Given the sets MSYN and DSYN of positive and negative examples and a gram-

mar 𝐺GBF, the EM-GBF rule-synthesis problem is to discover a GBF 𝜙 that satisfies all

examples in ESYN = MSYN YDSYN.

In the rest of this section, we will discuss how to solve Problem 4. We start with a

description of the SyGuS formulation for this problem below.

2.3.2 Core SyGus Formulation

In this subsection, we describe how to formulate the EM-GBF rule-synthesis problem as

a SyGuS problem [10] with a grammar and corresponding constraints (Sec. 2.1). In the

context of EM, the grammar represents the space of GBFs, and the constraints correspond

to satisfaction of the set of user-supplied examples provided as an input. We provide the

precise grammar and constraints to formulate the EM-GBF rule-synthesis problem below.

47

Grammar for EM-GBF rule-synthesis problem

In order to formulate the EM-GBF rule-synthesis problem in the SyGuS framework, we

use a generic Boolean formula grammar (𝐺GBF) defined below:

grammar 𝐺attribute Ñ 𝑟rAis«p𝑓,𝜃q𝑠rA1
is

𝑖 P r1, 𝑛s; 𝑓 P ℱ ; 𝜃 P r0, 1s
grammar 𝐺GBF Ñ 𝐺attribute pbound : 𝑁𝑎q

𝐺GBF Ñ 𝐺GBF

𝐺GBF Ñ 𝐺GBF ^𝐺GBF

𝐺GBF Ñ 𝐺GBF _𝐺GBF

,
///.
///-
pdepth : 𝑁𝑑q

The grammars 𝐺attribute and 𝐺GBF represent an attribute-matching rule and a Boolean

formula matching rule (GBF), respectively. Note that the search space represented by

the above grammars is infinite because there are infinitely many real values for 𝜃 P r0, 1s.
We tackle this by using a special-purpose synthesizer inside Sketch (described later in

Subsec. 2.3.3). The bounds 𝑁𝑎 and 𝑁𝑑 make the search space for the Boolean formula finite

by bounding the number of attribute-matching rules (𝐺𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) in 𝐺GBF and the depth of

the expansion of the grammar, respectively.

Handling Null values in 𝐺GBF: Null (missing) values are problematic because we cannot

know whether two records match on some attribute 𝐴 if one record has a Null value for 𝐴.

Rather than assuming that such records do not match (as was done in previous work [116]),

we learn different rules for the Null and noNull case. We specify a new grammar production

in 𝐺GBF for deriving GBFs that capture this intuition:

grammar 𝐺GBF Ñ if p«p𝑖, noNulls, 1.0qq
then p𝐺GBFq else p𝐺GBFq
𝑖 P r1, 𝑛s

It says that if there are no nulls in the matching attributes in a pair of records, then we

should use one GBF; otherwise we should use a different GBF. This makes it possible for

the synthesizer to quickly find rules similar to example 𝜙4 (Sec. 1.2). Note that this addition

does not affect the expressibility of the grammar and is purely for making the grammar 𝐺GBF

and the synthesis process more targeted towards databases with large numbers of nulls.

48

Constraints for EM-GBF rule-synthesis problem

A candidate 𝜙 selected from the grammar 𝐺GBF can be interpreted as a Boolean formula.

Given both positive (MSYN) and negative (DSYN) examples, the SyGuS constraints are

specified as the evaluation of this GBF on the provided examples being consistent:

constraint 𝜙p𝑟𝑚, 𝑠𝑚q = true, @ p𝑟𝑚, 𝑠𝑚q PMSYN

constraint 𝜙p𝑟𝑑, 𝑠𝑑q = false, @ p𝑟𝑑, 𝑠𝑑q P DSYN

Next, we present the details of the special-purpose synthesizer built to interact with

Sketch to efficiently synthesize EM rules.

2.3.3 Numerical search for EM thresholds in Sketch

We focus on the EM-GBF rule-synthesis problem of searching for a candidate GBF from

the bounded grammar 𝐺GBFp𝑁𝑎, 𝑁𝑑q that satisfies all the constraints arising from examples

in ESYN. The Sketch solver is not suitable to solve these problems directly. In general,

Sketch works by analyzing every part of the grammar and constraints symbolically, reduc-

ing the search problem to a Boolean satisfiability (SAT) problem. Using Sketch directly

for this problem is impractical because it involves reasoning about complicated numerical

functions. For solving this problem with Sketch, we use a new technique that allows

Sketch to collaborate with a custom solver that handles analysis of similarity functions

and synthesizes thresholds while Sketch makes discrete decisions for the GBF. Specif-

ically, Sketch makes the decisions for (1) expanding the 𝐺GBF grammar with multiple

atoms or attribute-matching rules, (2) choosing examples in ESYN to be positive (E+) or

negative (E−) for each atom of the expanded GBF, (3) choosing the attributes 𝑖 P r1, 𝑛s and

similarity functions 𝑓 P ℱ to be used in these atoms. The custom solver finds a numerical

threshold that separates the positive (E+) and negative examples (E−) chosen by Sketch

for an atom, if one exists. Otherwise, it will ask the Sketch solver to backtrack and make

alternative discrete decisions. This solver will be called multiple times inside Sketch. Its

pseudocode is given in Algorithm 2.

As an optimization, to avoid recomputing numerical functions in the special-purpose

solver, we enumerate and memoize the function evaluations on all possible values that can

be obtained from aligned attributes in the examples. For example, if we have just one

49

example 𝑒1 = p𝑟, 𝑠q with

𝑟 ” tname = ‘C. Zeta-Jones’, gender = ‘F’u
𝑠 ” tname = ‘Catherine Zeta-Jones’, sex = ‘F’u

then we evaluate the Jaccard similarity function on aligned attributes and provide the

following table evalSimFn to the custom solver (Algorithm 2):

example id matched attribute function evaluation

𝑒1 name|name Jaccard 0.5

𝑒1 gender|sex Jaccard 1.0

Algorithm 2: Custom synthesizer for EM-Synth inside Sketch
input : 𝑓 : chosen similarity function

𝑎 : matched attribute Id
E+ : examples chosen to be positive
E− : examples chosen to be negative
evalSimFn : similarity function evaluation table

output: 𝑒𝑥𝑖𝑠𝑡𝑠 : does a valid threshold exist
𝜃 : a valid threshold separating E+ & E−

1 𝜃𝑎𝑡𝑚𝑜𝑠𝑡 Ð 1.0
2 for 𝑒 P E+ do
3 𝜃𝑎𝑡𝑚𝑜𝑠𝑡 = min p𝜃𝑎𝑡𝑚𝑜𝑠𝑡, evalSimFnp𝑒, 𝑎, 𝑓qq
4 𝜃𝑎𝑡𝑙𝑒𝑎𝑠𝑡 Ð 0.0
5 for 𝑒 P E− do
6 𝜃𝑎𝑡𝑙𝑒𝑎𝑠𝑡 = max p𝜃𝑎𝑡𝑙𝑒𝑎𝑠𝑡, evalSimFnp𝑒, 𝑎, 𝑓qq
7 if 𝜃𝑎𝑡𝑙𝑒𝑎𝑠𝑡 < 𝜃𝑎𝑡𝑚𝑜𝑠𝑡 then
8 𝑒𝑥𝑖𝑠𝑡𝑠Ð true

9 𝜃 Ð 𝜃𝑎𝑡𝑙𝑒𝑎𝑠𝑡+𝜃𝑎𝑡𝑚𝑜𝑠𝑡

2

10 else
11 𝑒𝑥𝑖𝑠𝑡𝑠Ð false

We will present the Sketch formulation of the EM-GBF problem later in the appendix

as implementation notes (appendix A.3). We wrap up this discussion with an end-to-end

example below.

50

An end-to-end EM-GBF example

Here, we put together a sample grammar and constraints to show how to obtain a GBF

using Sketch.

Example 4: Consider the example in Figure 1-4. A specific grammar 𝐺4
GBF for representing

a Boolean formula matching rule (GBF) in this scenario is obtained by using the following

in the above definition of the grammar 𝐺GBF:

– let 𝑛 = 5 (number of aligned attributes),

– let ℱ = tEqual, Levenshtein, Jaccardu,

– let examples be: matching M = tp𝑟1, 𝑠1q, p𝑟2, 𝑠1qu and non-matching D = tp𝑟1, 𝑠2qu
Our system gives the synthesizer a table representing the evaluations of each similarity

function 𝑓 P ℱ on each attribute 𝑖 P r1, 𝑛s of every provided example p𝑟, 𝑠q P E (the function

evalSimFn in the custom synthesizer) e.g.,

Θp1, Equalq
= tEqualp‘Catherine Zeta-Jones’, ‘Catherine Zeta-Jones’q,

Equalp‘C. Zeta-Jones’, ‘Catherine Zeta-Jones’qu
= t1.0, 0u

The GBF 𝜙2 _ 𝜙3 from Example 2 can now be obtained as candidate GBF from this

grammar 𝐺4
GBF. l

51

52

Chapter 3

Specialization information extraction

Specialization information extraction, as the name suggests, is the identification of spe-

cialization information 𝛼𝑖 that is used in the synthesis-of-components step (Chapter 2) to

synthesize components in the overall framework (Fig. 1-1). The specialization information

is used to constrain the synthesis of the components to those that are more likely to improve

the numerical score. Moreover, this may lead to more efficient synthesis of components.

In this chapter we elaborate on the kinds of specialization information used in Swap-

per (Sec. 3.1) and EM-Synth (Sec. 3.3). We also describe the techniques used in Swapper

and EM-Synth to find their corresponding specialization information in Sections 3.2 and 3.4,

respectively. We start with discussing the specialization information in Swapper below.

3.1 Specialization information in Swapper

To describe the specialization information used in Swapper, we first discuss the components

of the simplifier i.e., the conditional rewrite rules (Sec. 2.2). A conditional rewrite rule has

the form:

𝐿𝐻𝑆p𝑥q 𝑝𝑟𝑒𝑑p𝑥qÝÝÝÝÝÝÝÝÑ 𝑅𝐻𝑆p𝑥q,

where 𝑥 is a vector of variables, 𝐿𝐻𝑆 and 𝑅𝐻𝑆 are expressions that include variables in 𝑥

as free variables and pred is a guard predicate defined over the same free variables and drawn

from a restricted grammar. We use the notation 𝐶𝑅𝑅p𝑥q ” p𝐿𝐻𝑆p𝑥q, predp𝑥q, 𝑅𝐻𝑆p𝑥qq to

represent a conditional rewrite rule.

53

The specification for correctness of a conditional rewrite rule 𝐶𝑅𝑅p𝑥q is given by:

𝑆𝑝𝑒𝑐𝑐𝑜𝑟𝑟𝑒𝑐𝑡 p𝐶𝑅𝑅 p𝑥qq ”
´
@𝑥 pred p𝑥q ùñ p𝐿𝐻𝑆 p𝑥q = 𝑅𝐻𝑆 p𝑥qq

¯

The overall specification used for synthesis 𝑆𝑝𝑒𝑐𝐶𝑖p𝐶𝑅𝑅p𝑥qq contains more constraints

than just the correctness of the conditional rewrite rule 𝐶𝑅𝑅p𝑥q. The motivation behind

adding these extra constraints is to synthesize rewrite rules that are not only correct but also

applicable at least once in the input corpus of formulas. Formally, the overall specification

𝑆𝑝𝑒𝑐𝐶𝑖p𝐶𝑅𝑅p𝑥qq can be written as:

𝑆𝑝𝑒𝑐𝐶𝑖p𝐶𝑅𝑅p𝑥qq ” 𝑆𝑝𝑒𝑐𝑐𝑜𝑟𝑟𝑒𝑐𝑡 p𝐶𝑅𝑅 p𝑥qq ^ 𝑆𝑝𝑒𝑐𝑆𝑐𝑜𝑟𝑒 p𝛼𝑖, 𝐶𝑅𝑅 p𝑥qq

These extra constraints represented by 𝑆𝑝𝑒𝑐𝑆𝑐𝑜𝑟𝑒 p𝛼𝑖, 𝐶𝑅𝑅 p𝑥qq are derived from the

specialization information 𝛼𝑖. The specialization information 𝛼𝑖 in Swapper has two parts:

1. A concrete pattern 𝑄p𝑥q. This part of the specialization information is used to

constrain the rules to have a fixed 𝐿𝐻𝑆 pattern and is extracted from the input

corpus of formulas.

2. Contextual assumptions 𝑎𝑠𝑠𝑢𝑚𝑒p𝑥q = t𝑎𝑠𝑠𝑢𝑚𝑒𝑗p𝑥q|1 ď 𝑗 ď 𝑚u. As described

in Subsec. 2.2.1 and Subsec. 2.2.2, Swapper collects contextual assumptions for all

occurrences of the pattern 𝑄p𝑥q in the input corpus of formulas. In other words, for

every occurrence of the pattern 𝑄p𝑥q in the corpus of formulas: (1) Swapper identifies

the ranges of values for sub-terms corresponding to each of the input variables in

𝑥 = p𝑥1, 𝑥2, ..., 𝑥𝑛q. These ranges of values can be inferred by the simplifier when

applying rewrite rules. (2) Swapper builds the predicate 𝑎𝑠𝑠𝑢𝑚𝑒𝑗p𝑥q for the 𝑗𝑡ℎ

occurrence of the pattern 𝑄p𝑥q that evaluates to true iff the values for the inputs in 𝑥

lie in their corresponding ranges of values for this occurrence.

Formally, the specialization information 𝛼𝑖 is a tuple
`
𝑄p𝑥q, 𝑎𝑠𝑠𝑢𝑚𝑒p𝑥q˘, and the overall

specification 𝑆𝑝𝑒𝑐𝐶𝑖p𝐶𝑅𝑅p𝑥qq for 𝐶𝑅𝑅p𝑥q = p𝐿𝐻𝑆p𝑥q, predp𝑥q, 𝑅𝐻𝑆p𝑥qq can be written

as:

𝑆𝑝𝑒𝑐𝐶𝑖

` p𝐿𝐻𝑆p𝑥q, predp𝑥q, 𝑅𝐻𝑆p𝑥qq ˘

”
´
@𝑥 predp𝑥q ùñ `

𝐿𝐻𝑆p𝑥q = 𝑅𝐻𝑆p𝑥q˘
¯
^
´
@𝑥 𝐿𝐻𝑆p𝑥q = 𝑄p𝑥q

¯

54

^
˜

𝑚ł

𝑗=1

`@𝑥 𝑎𝑠𝑠𝑢𝑚𝑒𝑗p𝑥q ùñ predp𝑥q˘
¸

To efficiently synthesize a rewrite rule 𝐶𝑅𝑅p𝑥q = p𝐿𝐻𝑆p𝑥q, predp𝑥q, 𝑅𝐻𝑆p𝑥qq we simplify

the problem to that of finding a pair
`
predp𝑥q, 𝑅𝐻𝑆p𝑥q˘ satisfying the following specification:

𝑆𝑝𝑒𝑐𝐶𝑖

` p𝑄p𝑥q, predp𝑥q, 𝑅𝐻𝑆p𝑥qq ˘

”
´
@𝑥 predp𝑥q ùñ `

𝑄p𝑥q = 𝑅𝐻𝑆p𝑥q˘
¯
^
˜

𝑚ł

𝑗=1

`@𝑥 𝑎𝑠𝑠𝑢𝑚𝑒𝑗p𝑥q ùñ predp𝑥q˘
¸

A solution
`
predp𝑥q, 𝑅𝐻𝑆p𝑥q˘ satisfying the above specification can be combined with 𝑄p𝑥q

to find the required rewrite rule p𝑄p𝑥q, predp𝑥q, 𝑅𝐻𝑆p𝑥qq.
As described above, the contextual assumptions 𝑎𝑠𝑠𝑢𝑚𝑒p𝑥q are extracted from every

occurrence of a pattern. But, not all patterns are equally important. Among all the patterns

available in the corpus of formulas, the ones that occur more often are more promising for

simplification. In the following section 3.2, we describe a representative sampling technique

that identifies promising 𝐿𝐻𝑆 patterns 𝑄p𝑥q for synthesizing conditional rewrite rules.

3.2 Representative sampling of patterns in Swapper

We focus on the problem of identifying promising 𝐿𝐻𝑆 patterns for synthesizing conditional

rewrite rules. The pattern-finding phase in Swapper (Fig. 1-2) takes as input a corpus of

formulas t𝑃 u and uses a representative sampling scheme (explained below) to find frequently

recurring patterns in the formulas from the corpus. The idea is that rewrite rules that target

patterns that occur frequently in the corpus are more likely to have a high impact in the

complexity of the overall formula.

Note that this problem of finding repeating sub-terms is similar in essence to the motif

discovery problem [92], famous for its application in DNA fingerprinting [65]. However,

existing techniques used for solving the motif discovery problem are not directly usable in

Swapper because they lead to loss of the contextual assumptions required for rule synthesis

in Swapper (see Subsec. 9.2.2 for more details).

55

Probabilistic pattern sampling

A pattern in the context of Swapper is an expression tree that has free variables as leaves.

Our goal for the pattern-finding phase is to generate a representative sample of patterns 𝑆

from a corpus of DAGs t𝑃 u representing input formulas. In order to formalize the notion of

a representative sample of patterns, we first need to define a few terms.

Consider a formula 𝑃 represented as a DAG. We can define a rooted sub-graph of 𝑃

as a sub-graph of 𝑃 such that all its nodes can be reached from a selected root node in

the sub-graph. A rooted sub-graph can be mapped to a pattern, where the edges at the

boundary of the sub-graph correspond to the free variables in the pattern. This relationship

is illustrated in Fig. 3-1, where we see a graph for a problem 𝑃 where a rooted sub-graph

has been selected, and we see the pattern that corresponds to that sub-graph. Note that a

single formula 𝑃 may have many sub-graphs that all correspond to the same pattern. Given

a constant 𝐾, let the set 𝑆𝑢𝑏𝐾p𝑃 q be the set of all rooted sub-graphs of size 𝐾 of 𝑃 . Given

these definitions, we are now ready to state the problem of representative sampling patterns

from a corpus.

Figure 3-1: Pattern from a rooted sub-graph

Definition 1 (Representative pattern sampling) Given a corpus of problems t𝑃𝑖u and

a size 𝐾, a pattern-sampling approach is said to be representative if it is equivalent to

56

Figure 3-2: Example tree construction

sampling uniformly from the set
Ť

𝑖 𝑆𝑢𝑏𝐾p𝑃𝑖q, and then mapping each of the resulting sub-

graphs to its corresponding pattern.

The key problem is then how to uniformly sample the space of rooted sub-graphs in

a collection of formulas. In order to describe the algorithm for this, we first build the

notion of a Tree Construction. The formal definition is given below, but intuitively, a Tree

Construction (TC) is a recipe for generating a tree.

Definition 2 A TC for a tree of size 𝐾 ě 2 and arity 𝛿 ě 1 is a list of 𝐾 − 1 pairs

rp𝑠𝑖, 𝑡𝑖qs𝑖=𝐾−2
𝑖=0 , where each pair represents an edge that is being added to the tree. Each edge

is identified by its source node 𝑠𝑖 (which should already be in the tree) and by the index 𝑡𝑖 < 𝛿

of the edge that is added to that source node. A TC cannot have repeated edges, so each edge

adds a new node to the tree. Therefore, if 𝑛0 is the original root node in the tree, and 𝑛𝑖 is

the node added by the 𝑖𝑡ℎ edge, then 𝑠𝑖 P t𝑛0, 𝑛1, . . . , 𝑛𝑖u for all 𝑖 ď 𝐾 − 2. We use Tree p𝜏q
to represent the tree constructed from a TC 𝜏 in this manner.

For example, if we assume binary trees (𝛿 = 2), the following would be a valid tree

construction of size 4: 𝜏 = rp𝑛0, 0q, p𝑛0, 1q, p𝑛2, 0qs, and would construct the tree Tree p𝜏q as

shown in Fig. 3-2.

Assuming trees of degree 𝛿, it is relatively easy to uniformly sample the space of Tree

Constructions for trees of size 𝐾. The idea is to keep track of the boundary of the tree (all

57

the possible edges that have not been expanded) and to grow the tree by sampling uniformly

at random from this boundary. The exact algorithm is shown below.
Algorithm 3: Uniform sampling for TCs

input : 𝐾 ě 2 : Size of the TC to be found

𝛿 ě 1 : Bound on number of parents of any node

t𝑛0, 𝑛1, ..., 𝑛𝐾−1u : Set of 𝐾 node symbols

output: 𝜏 : A Tree Construction of size 𝐾

1 𝜏 Ð 𝐿𝑖𝑠𝑡pq
2 Λ Ð 𝐿𝑖𝑠𝑡pq Ź maintains adjacent/boundary edges

3 foreach 𝑖 P r0, 1, . . . ,𝐾 − 2s do

4 foreach 𝑗 P r0, 1, . . . , 𝛿 − 1s do

5 Λ.append
` p𝑛𝑖, 𝑗q

˘ Ź adds 𝛿 edges to boundary

6 p𝑠, 𝑡q Ð sample pΛq Ź boundary |Λ| =
`p𝑖 + 1q𝛿˘− 𝑖

7 𝜏.append
` p𝑠, 𝑡q ˘

8 Λ.remove
` p𝑠, 𝑡q ˘ Ź removes an edge from boundary

It is easy to see that any TC of size 𝐾 will be sampled by Algorithm 3 with a probability

of Π0ď𝑖<𝐾−1
1

pp𝑖+1q𝛿q−𝑖 because |Λ| =
`p𝑖 + 1q𝛿˘− 𝑖 at the 𝑖th step and we sample uniformly

from Λ for each 0 ď 𝑖 < 𝐾 − 1. This probability is independent of the TC being considered

and hence, every TC is equally likely to be sampled by Algorithm 3.

Now, we are going to define an algorithm for representative pattern sampling that uses

our ability to uniformly sample from the space of TCs (denoted by TC). The strategy will

be as follows, given a corpus of formulas t𝑃𝑖u, we are going to define a subset of the product

space
Ť

𝑖 nodes
`
𝑃𝑖

˘ ˆ TC, which we will call Canonical, we then define a mapping 𝜇 from

Canonical to
Ť

𝑖 𝑆𝑢𝑏𝐾p𝑃𝑖q, and we are going to show that mapping is one-to-one and onto.

Finally, we will use rejection sampling [72] to sample from Canonical uniformly and then

apply 𝜇 to in turn, sample uniformly from
Ť

𝑖 𝑆𝑢𝑏𝐾p𝑃𝑖q. In the rest of the section, we define

the Canonical set, the function 𝜇, show that it is bijective and discuss the structure of the

final algorithm for representative sampling.

Definition 3 Canonical set: Given a corpus of formulas t𝑃𝑖u, we define Canonical Ă
Ť

𝑖 nodes
`
𝑃𝑖

˘ ˆ TC as the set of tuple-pairs
`
𝜂, 𝜏

˘
with 𝜂 P nodes p𝑃𝑖q for some 𝑖 such

that:

58

1. It is possible to follow the TC 𝜏 at node 𝜂 and construct a rooted sub-graph 𝑄 of 𝑃𝑖

rooted at 𝜂 i.e. there is a graph homomorphism ℎ : Tree p𝜏q ÞÑ 𝑃𝑖 such that ℎp𝑛0q = 𝜂

and 𝑄 is the rooted sub-graph of 𝑃𝑖 formed by the nodes corresponding to the image of

ℎ in 𝑃𝑖.

2. The ordering of nodes in TC 𝜏 is the same as the (unique) Breadth First Search (BFS)

ordering of nodes in 𝑄.

For example, in Fig. 3-1, for p𝜂, 𝜏q = p𝑊, rp𝑛0, 1q, p𝑛1, 0qsq by following TC 𝜏 we obtain

the homomorphism ℎ that maps ℎp𝑛0q = 𝑊,ℎp𝑛1q = 𝑌, ℎp𝑛2q = 𝑍, and the rooted sub-

graph 𝑄 corresponds to the enclosed region with nodes 𝑊,𝑌,𝑍. Also, the ordering of nodes

given by 𝜏 matches the BFS ordering of nodes induced by ℎ in 𝑄, hence, p𝜂, 𝜏q P Canonical.

Note that p𝑊, rp𝑛0, 1q, p𝑛0, 0qsq R Canonical because it induces the ordering 𝑊,𝑌,𝑍 which is

not in the BFS order 𝑊,𝑋, 𝑌 .

Given the way we defined Canonical, constructing the mapping 𝜇 : Canonical ÞÑ
Ť

𝑖 𝑆𝑢𝑏𝐾p𝑃𝑖q is straightforward: 𝜇
` p𝜂, 𝜏q ˘ = 𝑄 where 𝑄 is the rooted subgraph obtained

by following TC 𝜏 starting at node 𝜂 (Def. 3). To show that 𝜇 is onto, we consider a rooted

subgraph 𝑆 of 𝑃𝑖 for some 𝑖. Since any node of a rooted subgraph can be reached from the

root 𝜂𝑆 , we can construct the BFS tree BFSp𝑆q of 𝑆 and the corresponding TC 𝜏𝑆 that is

the recipe for constructing BFSp𝑆q so that 𝜇 pp𝜂𝑆 , 𝜏𝑆qq = 𝑆. To show that 𝜇 is one-to-one,

we observe that for two p𝜂1, 𝜏1q, p𝜂2, 𝜏2q to map to the same rooted subgraph 𝑆, the corre-

sponding trees should be the same (the BFS tree of 𝑆) and the ordering of nodes in 𝜏1, 𝜏2

should be the same as well (corresponding to BFS order of 𝑆), which would mean 𝜏1 = 𝜏2

and 𝜂1 = 𝜂2.

Putting the pieces together

We describe an efficient composite algorithm of rejection sampling, checking BFS order and

application of the function 𝜇 as described above.

The details of subroutines in Algorithm 4 are as follows:

∙ extendBoundary pΛ,Ψ, 𝜂.parentsq: This subroutine extends the boundary list Λ and

adds all unseen nodes (that aren’t already in the Ψ set) from 𝜂.parents. It also adds

these unseen nodes to Ψ marking them as seen (BFS).

59

Algorithm 4: Probabilistic Sampling for Pattern Finding
input : ℬ: Set of benchmark formulas as DAGs

𝑁 ě 2 : Size of the pattern to be found
output: A sampled pattern of size 𝑁

1 𝛿 Ð maximum number of parents of any node in ℬ
2 while True do
3 𝜂 Ð sample

`
nodespℬq˘

4 𝑃 Ð 𝐿𝑖𝑠𝑡 p𝜂q Ź maintains selected pattern nodes
5 Λ Ð 𝐿𝑖𝑠𝑡 pq Ź adjacent/boundary nodes in BFS order
6 Ψ Ð 𝑆𝑒𝑡p𝜂q Ź set of already-seen nodes for BFS
7 while |𝑃 | < 𝑁 do
8 extendBoundary

`
Λ,Ψ, 𝜂.parents

˘

9 𝜂 Ð sampleWithNulls
`
Λ, |𝑃 |ˆ p𝛿 − 1q+ 1

˘

10 if 𝜂 = NULL then
11 break Ź restart sampling a new pattern

12 else
13 pruneBoundary

`
Λ, 𝜂

˘

14 if |𝑃 | = 𝑁 then
15 return Graphp𝑃 q

∙ sampleWithNulls pΛ,𝑀q: This subroutine samples from a list of 𝑀 nodes obtained

by extending Λ by appending NULL nodes to it. Note that since at every iteration,

the algorithm moves a node form Λ to 𝑃 and adds at most 𝛿 nodes back to Λ, |Λ| can

increase at most by p𝛿 − 1q and hence will never exceed |𝑃 |ˆ p𝛿 − 1q+ 1.

∙ pruneBoundary pΛ, 𝜂q: This subroutine removes 𝜂 and all nodes that occur before

the node 𝜂 from Λ. Note that nodes are added to Λ in the BFS order and hence, this

ensures that the nodes are sampled in the increasing BFS order as well.

Clustering patterns

While grouping patterns together into clusters, Swapper considers the following:

1. Pattern Expression: Swapper builds a string of the expression represented by the

pattern. The free variables in this pattern are numbered in the BFS order, and the

operands for commutative operations are ordered lexicographically to group together

patterns when they are equivalent because of commutativity.

2. Contextual assumptions from the benchmark formulas: The range of values

60

inferred by the solver (Subsec. 2.2.1 and Sec. 3.1) for each free variable in the pattern

are collected and represented as a mapping of names of the free variables to their

ranges. Note that since the same pattern can occur with different ranges of values,

these ranges are appended to one Pattern Expression.

Stopping criterion

Swapper samples until the total number of patterns with probability of occurrence greater

than a threshold 𝜖 converges i.e. the next 𝑀 samples do not change the number of such

patterns. Both 𝜖 and 𝑀 are inputs to Swapper. In our experiments, we started with

𝑀 = 10, 000 and 𝜖 = 0.05 and then increased 𝑀 and decreased 𝜖 gradually in steps of 10, 000

and 0.01 respectively, and, sampled again until we didn’t find any new patterns (e.g., it may

stop at 𝑀 = 50, 000 and 𝜖 = 0.02). Swapper samples patterns of sizes 2, 3, 4, ... and stops

after sampling patterns of size 7.

With this pattern-finding technique, Swapper is able to find promising 𝐿𝐻𝑆 patterns

and their contextual assumptions that are used in the rule-synthesis step (Sec. 2.2). This

wraps up the discussion of specialization-information extraction in Swapper. Now, we move

to discussing how we find the specialization information in the EM-Synth system that can be

used in the EM rule-synthesis step (Sec. 2.3). We describe the specialization information in

the context of EM-Synth in Sec. 3.3 and discuss the techniques to iteratively choose different

specialization information for the EM rule-synthesis step in Sec. 3.4.

3.3 Specialization information in EM-Synth

To discuss the specialization information in EM-Synth, we first recall that the components

in EM-Synth are entity matching (EM) rules that have a Boolean structure around some

atomic predicates (Sec. 2.3). We also recall that the user provides a set of examples, denoted

by E = MYD, where M are positive examples, i.e., pairs of records that represent the same

entity, and D are negative examples, i.e., pairs of records that represent different entities

(Sec. 1.2). Each EM rule 𝜙 is also required to be from a bounded grammar 𝐺GBFp𝑁𝑎, 𝑁𝑑q
(Subsec. 2.3.2).

The synthesis specification 𝑆𝑝𝑒𝑐𝐶𝑖p𝜙q further constrains the synthesis of the component

61

𝜙, where

𝑆𝑝𝑒𝑐𝐶𝑖p𝜙q ” 𝑆𝑝𝑒𝑐𝑐𝑜𝑟𝑟𝑒𝑐𝑡p𝜙q ^ 𝑆𝑝𝑒𝑐𝑆𝑐𝑜𝑟𝑒p𝛼𝑖, 𝜙q

with 𝛼𝑖 being the specialization information. In EM-Synth, there are no logical correctness

constraints on an EM rule 𝜙 i.e., 𝑆𝑝𝑒𝑐𝑐𝑜𝑟𝑟𝑒𝑐𝑡p𝜙q ” true. So, in principle we can synthesize all

EM rules in 𝐺GBFp𝑁𝑎, 𝑁𝑑q without any other constraints, but it would not be efficient to do

so, especially, for larger values of the bounds 𝑁𝑎 and 𝑁𝑑. So, the specialization information

𝛼𝑖 and the corresponding specification 𝑆𝑝𝑒𝑐𝑆𝑐𝑜𝑟𝑒p𝛼𝑖, 𝜙q are very important for constraining

the synthesis further. The specialization information in EM-Synth is a subset of the user-

provided examples. Intuitively, we want to ensure that the synthesized rules correctly match

as many of the user-provided examples as possible. We specialize the overall synthesis

specification 𝑆𝑝𝑒𝑐𝐶𝑖p𝜙q by constraining 𝜙 to match some of the user-provided examples

correctly i.e.,

𝑆𝑝𝑒𝑐𝐶𝑖p𝜙q ” 𝑆𝑝𝑒𝑐𝑆𝑐𝑜𝑟𝑒p𝛼𝑖, 𝜙q ”
ľ

p𝑟,𝑠qPMSYN

𝜙p𝑟, 𝑠q ^
ľ

p𝑟,𝑠qPDSYN

 𝜙p𝑟, 𝑠q

where MSYN ĎM and DSYN Ď D. This specification is used to synthesize the EM rules from

a small set of examples (as described in Sec. 2.3). The specialization information 𝛼𝑖, which is

used to build the specification 𝑆𝑝𝑒𝑐𝑆𝑐𝑜𝑟𝑒p𝛼𝑖, 𝜙q, is a subset of examples 𝛼𝑖 = MSYNYDSYN

chosen from the input set of examples MSYN ĎM and DSYN Ď D.

In the next section (Sec. 3.4), we discuss the ideas and techniques used to iteratively find

the specialization information i.e., the subsets of examples to use for EM rule synthesis.

3.4 Choosing sets of examples in EM-Synth

Specialization-information extraction in EM-Synth corresponds to identifying subsets of ex-

amples that are used to synthesize corresponding EM rules or GBFs (Sec. 2.3) in an iterative

loop (Fig. 1-5). When choosing the examples for synthesizing a GBF, we want the GBFs

to match as many examples as possible correctly. But, there are some inconsistent exam-

ples that we want to avoid as well. These inconsistent examples (1) can be incorrect labels

on the examples provided by the user or (2) may require some external information for

matching them correctly that is not captured by the similarity functions used in EM-Synth

e.g., matching the names “Robert Baratheon” and “Bob B.” might not be possible without

62

incorporating the knowledge that “Bob” is a nickname for “Robert” and last names can be

represented as initials. Moreover, for some of these inconsistent examples it might be pos-

sible to match them in EM-Synth, but that may lead to a GBF that does not match many

other examples.

Based on the discussion above, we summarize the two goals of specialization-information

extraction in EM-Synth:

1. We must choose subsets of E (user-provided examples) in a way that allows us to syn-

thesize a GBF with good coverage of the examples i.e., we would want the synthesized

GBF to be likely to correctly match many different kinds of examples.

2. We have to avoid inconsistent examples that either lead to no GBF or a GBF that

does not match many other examples.

Keeping these goals in mind, we introduce our approach to specialization-information

extraction in EM-Synth, designed to satisfy the above goals.

For Goal 1., we use ideas from Counter-Example Guided Inductive Synthesis (CEGIS) [112]

to perform synthesis from a few examples – described in detail below in Subsec. 3.4.1.

For Goal 2., we are inspired by Random Sample Consensus (RANSAC) [49] to avoid incon-

sistent examples – described in Subsec. 3.4.2.

3.4.1 Synthesis from a few EM examples (CEGIS)

We use ideas from the Counter-Example Guided Inductive Synthesis (CEGIS) [112] approach

to build an iterative algorithm referred to as RS-CEGIS (Algorithm 5) that has two phases:

Synth (line 6) and Verify (line 9). The Synth phase corresponds to the rule-synthesis step

(Sec. 2.3) in EM-Synth. The idea is to iteratively synthesize a GBF that works for a

small set of examples and expand this set in a smart manner by adding an example that is

currently not being handled correctly by the synthesized GBF.

The full version of the RS-CEGIS algorithm is presented in Algorithm 5. It has a CEGIS

loop (lines 5-16) that picks a random sample of one example ESYN = 𝐿𝑖𝑠𝑡p𝑒0q to bootstrap

the synthesis algorithm. In each iteration, given a sample ESYN, it starts with the Synth

routine (line 6) to synthesize a GBF 𝜙𝑖 where 𝑖 is the CEGIS iteration counter. If it cannot

find a satisfiable GBF, it will break out of the loop (lines 7-8); otherwise, it will append the

63

GBF 𝜙𝑖 to the output list ℒ𝜙 and then Verify to find counter-examples (line 10). Either

there is no counter-example so the process will terminate by returning only the GBF that

matches every example correctly (lines 11-12), or a randomly selected counter-example will

be added to be considered in the next CEGIS iteration (lines 13-15). Finally, the algorithm

will return the list of all GBFs (line 17) synthesized across all iterations.

Algorithm 5: CEGIS-based specialization-information extraction (RS-CEGIS)
input : E = MYD : Set of examples

𝐺GBFp𝑁𝑎, 𝑁𝑑q : Bounded GBF grammar
ℱ : Library of Similarity Functions
𝐾CEGIS : Bound on CEGIS iterations

output: ℒ𝜙 : A list of GBFs from 𝐺GBFp𝑁𝑎, 𝑁𝑑q
1 ℒ𝜙 Ð 𝐿𝑖𝑠𝑡pq
2 𝑖Ð 0
3 𝑒0 Ð sample pEq
4 ESYN Ð 𝐿𝑖𝑠𝑡p𝑒0q
5 while 𝑖 < 𝐾CEGIS do // CEGIS loop
6 𝜙𝑖 Ð Synth p𝐺GBFp𝑁𝑎, 𝑁𝑑q,ESYN,ℱq
7 if 𝜙𝑖 = null then // Unsatisfiable Synth
8 break // restart CEGIS

9 ℒ𝜙 Ð ℒ𝜙.appendp𝜙𝑖q
10 E𝜙𝑖 Ð Verify p𝜙𝑖,Eq // Counter-examples
11 if E𝜙𝑖 = H then
12 return 𝐿𝑖𝑠𝑡p𝜙𝑖q // 𝜙𝑖 Works on all examples!

13 else
14 𝑒𝑖+1 Ð sample

`
E𝜙𝑖

˘

15 ESYN Ð ESYN.appendp𝑒𝑖+1q
16 𝑖Ð 𝑖 + 1

17 return ℒ𝜙

Note that, at iteration 𝑖, Synth uses the currently available examples ESYN =

t𝑒0, 𝑒1, . . . , 𝑒𝑖u and solves the exact EM-GBF rule-synthesis problem with Sketch to find

a GBF 𝜙𝑖 from the bounded grammar 𝐺GBFp𝑁𝑎, 𝑁𝑑q that correctly handles all the exam-

ples in ESYN (as described in Sec. 2.3). Verify, on the other hand, considers the full set

of examples E = M Y D and finds the counter-example subset E𝜙𝑖 Ă E, which contains

examples 𝑒 P E such that 𝜙𝑖p𝑒q = false if 𝑒 PM and 𝜙𝑖p𝑒q = true if 𝑒 P D. In other words,

it identifies examples that are incorrectly handled by 𝜙𝑖. A counter-example 𝑒𝑖+1 chosen

randomly from E𝜙𝑖 is added to the set ESYN to be considered in the next Synth phase.

The process continues until either Synth is unable to find a GBF for the current set of

64

examples or until it has performed 𝐾CEGIS (CEGIS cutoff) iterations. If Verify cannot find

any counter-example (i.e., E𝜙𝑖 = H), the algorithm terminates and outputs 𝐿𝑖𝑠𝑡p𝜙𝑖q as the

optimal list of one GBF since it correctly handles all examples in E.

For example, consider Figure 1-4 (from Sec. 1.2) with matching examples M =

tp𝑟1, 𝑠1q, p𝑟4, 𝑠2q, p𝑟2, 𝑠1qu and non-matching examples D = tp𝑟1, 𝑠2q, p𝑟4, 𝑠1qu. Suppose

the algorithm picks p𝑟1, 𝑠1q as the first example and Synth returns the function 𝜙0 =

Equalrnames ě 1.0. Verify tries this function on all examples in M Y D and randomly

picks p𝑟4, 𝑠1q as the counter-example, i.e., an example which is not correctly matched by

the function 𝜙0 since the names are not equal for p𝑟4, 𝑠1q. It would then add this counter-

example to the set ESYN and start the next CEGIS iteration. In this iteration Synth may

now return the function 𝜙1 = Jaccardrnames ě 0.4, which matches all examples correctly.

In summary, the RS-CEGIS algorithm uses the Sketch solver multiple times on smartly

chosen sets of examples to find EM rules that cover many examples. Now, we address the

second goal from above and describe how we use RANSAC to avoid inconsistent examples.

3.4.2 Synthesis with inconsistent examples (RANSAC)

We use ideas from the Random Sample Consensus (RANSAC) [49] approach and build a loop

(described in Algorithm 6) on top of the RS-CEGIS algorithm to restart it multiple times

with different initial random examples (𝑒0). The idea is that if the provided example set

contains a small number of inconsistent examples, then multiple runs are more likely to avoid

them. Note that some examples individually may not be inconsistent, i.e., the algorithm

may still find a good GBF after choosing them in the CEGIS loop. Instead, certain larger

subsets of examples may correspond to conflicting constraints on the GBF grammar and

constitute inconsistency only when all examples in that subset are chosen together. Both

the randomness in the sample routine (Algorithm 5) and the RANSAC restarts help avoid

choosing all such examples together. Before restarting RS-CEGIS, if the number of restarts

reaches 𝐾RANSAC (the RANSAC cutoff) then the algorithm terminates and outputs the list

of all GBFs ℒ𝜙 seen across all CEGIS and RANSAC iterations.

The RS-RANSAC algorithm, combining ideas from both CEGIS and RANSAC, is pre-

sented in Algorithm 6.The RS-RANSAC algorithm has an outer (RANSAC) loop (lines 3-6)

that picks random samples to bootstrap the synthesis algorithm.In each iteration, it invokes

the inner RS-CEGIS algorithm at line 4 which corresponds to the RS-CEGIS algorithm

65

Algorithm 6: RS-RANSAC algorithm for specialization information extraction in
EM-Synth

input : E = MYD : Set of examples
𝐺GBFp𝑁𝑎, 𝑁𝑑q : Bounded GBF grammar
ℱ : Library of Similarity Functions
𝐾RANSAC : Bound on RANSAC restarts
𝐾CEGIS : Bound on CEGIS iterations

output: ℒ𝜙 : A list of GBFs from 𝐺GBFp𝑁𝑎, 𝑁𝑑q
1 𝑟 Ð 0
2 ℒ𝜙 Ð 𝐿𝑖𝑠𝑡pq
3 while 𝑟 < 𝐾RANSAC do // RANSAC loop
4 ℒ1

𝜙 Ð RS-CEGIS pE, 𝐺GBF p𝑁𝑎, 𝑁𝑑q ,ℱ ,𝐾CEGISq // from Algorithm 5
5 ℒ𝜙 Ð ℒ𝜙.extendpℒ1

𝜙q
6 𝑟 Ð 𝑟 + 1

7 return ℒ𝜙

(Algorithm 5).The RS-CEGIS algorithm is explained in Subsec. 3.4.1. It then adds the

synthesized GBFs to the list of GBFs ℒ𝜙 (line 5) and eventually outputs the list after at

most 𝐾RANSAC iterations.

66

Chapter 4

Assembly of components

Once we have the synthesized components or rules, we have to combine them to the re-

quired output function in a way that will guarantee the correctness of the function. More

formally, given a set of synthesized components 𝒞 = t𝐶1, 𝐶2, . . . , 𝐶𝑛u, we need a procedure

𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒p𝜋, 𝒞q such that the following property holds:

@𝜋PΠ

˜´
𝑓 = 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒p𝜋, 𝒞q^

𝑛ľ

𝑖=1

`
𝐶𝑖 P 𝐺𝐶 ^ 𝑆𝑝𝑒𝑐𝐶𝑖 p𝐶𝑖q

˘¯

ùñ
´
𝑓 P 𝐺^@𝑖𝑛P𝐴 𝑆𝑝𝑒𝑐 p𝑓, 𝑖𝑛q

¯¸

where 𝐶𝑖 P 𝐺𝐶 ^ 𝑆𝑝𝑒𝑐𝐶𝑖 p𝐶𝑖q is the synthesis specification for the component 𝐶𝑖 and

𝑆𝑝𝑒𝑐 p𝑓, 𝑖𝑛q is the correctness specification for the output function 𝑓 . Assuming that the

components satisfy their synthesis specifications (since they were synthesized from these

specifications, they must satisfy them), we can rewrite the required property as:

@𝜋PΠ

´
𝑓 = 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒p𝜋, 𝒞q ùñ `

𝑓 P 𝐺^ @𝑖𝑛P𝐴 𝑆𝑝𝑒𝑐 p𝑓, 𝑖𝑛q ˘
¯

In this chapter, we describe the assembly procedure 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒 and the parameter space

Π used in each of the Swapper and EM-Synth systems. We also argue that the above

property (referred to as the soundness of assembly) holds in both of these systems. We

start with a discussion of the assembly procedure, its parameter space and soundness in

Swapper (Sec. 4.1). We also discuss the techniques enabling the assembly in Swapper

i.e., rule generalization (Subsec. 4.1.2) and pattern matching (Subsec. 4.1.3). In Sec. 4.2,

67

we discuss the two studied assembly procedures, their parameter spaces and their soundness

in EM-Synth. We further discuss the details of the two studied assembly procedures i.e.,

Boolean combination (in Subsec. 4.2.1) and consensus building (in Subsec. 4.2.2).

4.1 Assembly in Swapper

The assembly procedure in Swapper generates a simplifier 𝑓 from a set of rewrite rules

(components) 𝒞 = t𝐶1, 𝐶2, . . . , 𝐶𝑛u. The assembled simplifier takes as input a formula 𝑃

and returns a simplified formula 𝑃 1 and has a lot of flexibility in terms of:

∙ How to maintain and modify the formula while rewriting?

∙ How to apply the rewrite rules?

∙ Which rules to apply?

∙ What order to apply them in?

In Swapper, the assembled simplifier uses the existing Sketch solver infrastructure to

perform simplification and fixes some of the flexible choices mentioned above. In particular,

the simplifier works as follows:

1. Formulas are represented and maintained as topologically sorted DAGs.

2. Simplification is done in one forward pass of the topologically sorted DAG. All rules

are pattern matched and applied (if possible) at each node.

3. When applying a particular rewrite rule 𝐿𝐻𝑆p𝑥q predp𝑥qÝÝÝÝÝÝÝÑ 𝑅𝐻𝑆p𝑥q, no nodes are

immediately removed. Instead, a copy of all nodes of 𝑅𝐻𝑆p𝑥q as a topologically sorted

DAG is added to the existing formula DAG. The input and output connections of the

𝐿𝐻𝑆p𝑥q pattern are accordingly moved to the 𝑅𝐻𝑆p𝑥q DAG. Each new node in the

copy of 𝑅𝐻𝑆p𝑥q is simplified using the same steps (items 2., and 3., of this list) before

being added to the formula DAG.

4. At the end, the unreachable patterns are removed from the DAG i.e., any node whose

output is not being used by another node is removed from the DAG, and this process

is continued recursively until no such nodes can be removed.

68

There are still some choices (parameters 𝜋) that the assembly procedure needs to make

in the above description. The parameters of this assembly procedure in Swapper are the

following:

∙ Subset of rewrite rules 𝒞𝑓 Ď 𝒞 to use in the simplifier.

∙ An ordering of the rewrite rules in 𝒞𝑓 to use while checking for application of the rules

at a node.

More formally, the parameter space Π of the assembly procedure in Swapper is given

by:

Π =
!
p𝒞𝑓 , 𝜎𝑓 q | 𝒞𝑓 Ď 𝒞 ^ `

𝜎𝑓 is a permutation of the set 𝒞𝑓
˘)

For 𝑛 components the size of the parameter space can be estimated as follows:

|Π| =
𝑛ÿ

𝑘=0

ˆ
𝑛

𝑘

˙
ˆ 𝑘! =

𝑛ÿ

𝑘=0

𝑛!

p𝑛− 𝑘q! = 𝑛!
𝑛ÿ

𝑘=0

1

𝑘!
« 𝑒 𝑛!

where 𝑒 « 2.71828 is Euler’s number. One can see that the number of possible parameters in

Swapper grows as quickly as the factorial function with the value of 𝑛, and it becomes really

hard to enumerate all the parameters efficiently e.g., the number of possible parameters

for 𝑛 = 200 (number of rules generated for a domain considered in our experiments) is

approximately 10375.

Now, we briefly discuss the soundness of assembly in Swapper.

4.1.1 Soundness of assembly

For a simplifier 𝑓 , the correctness of 𝑓 corresponds to 𝑓 maintaining the semantics of the

formula being simplified. For an input formula 𝑃 , the simplifier 𝑓 will make changes to

𝑃 only when applying a conditional rewrite rule locally. A typical transformation when

applying a rewrite rule 𝐿𝐻𝑆p𝑥q predp𝑥qÝÝÝÝÝÝÝÑ 𝑅𝐻𝑆p𝑥q in a formula 𝑃 p𝑦q (with inputs 𝑦) can

be represented as:

𝑃1

´
𝑏1p𝑦q, . . . , 𝐿𝐻𝑆

`
𝑎p𝑦q˘, . . . , 𝑏𝑚p𝑦q

¯
predp𝑎p𝑦qqÝÝÝÝÝÝÝÑ 𝑃1

´
𝑏1p𝑦q, . . . , 𝑅𝐻𝑆

`
𝑎p𝑦q˘, . . . , 𝑏𝑚p𝑦q

¯

where the formula 𝑃 p𝑦q is written as another formula 𝑃1 with 𝑚 inputs derived from its

original input 𝑦, and one of those 𝑚 inputs corresponds to an occurrence of the 𝐿𝐻𝑆p𝑥q

69

pattern. The inputs 𝑥 to the 𝐿𝐻𝑆 match with the outputs of another function 𝑎p𝑦q. This

transformation of the formula 𝑃 p𝑦q can only be done when the simplifier can prove that

predp𝑎p𝑦qq is true for any value taken by 𝑦. Assuming correctness of the rewrite rule, we

have

@𝑥
ˆ

predp𝑥q ùñ `
𝐿𝐻𝑆p𝑥q = 𝑅𝐻𝑆p𝑥q˘

˙

The above constraint must hold for 𝑥 = 𝑎p𝑦q for any 𝑦 and since predp𝑎p𝑦qq = true, we have

@𝑦 𝐿𝐻𝑆p𝑎p𝑦qq = 𝑅𝐻𝑆p𝑎p𝑦qq

Hence, we conclude that

@𝑦 𝑃1

´
𝑏1p𝑦q, . . . , 𝐿𝐻𝑆

`
𝑎p𝑦q˘, . . . , 𝑏𝑚p𝑦q

¯
= 𝑃1

´
𝑏1p𝑦q, . . . , 𝑅𝐻𝑆

`
𝑎p𝑦q˘, . . . , 𝑏𝑚p𝑦q

¯

This argument shows that a simplifier of formulas based on local rewriting will be correct

(i.e., semantics preserving) if the local rewrite rules used in the simplifier are correct them-

selves. Note that all we are showing here is that if the simplifier performs a series of rewrites

then the rewritten formula has the same semantics as the input formula. It may be possible

that this simplifier never terminates. The soundness property of assembly is still valid in

that case.

Also, note that this argument works irrespective of the choices of the parameters (which

rules to apply and in what order). This argument can be applied to the DAG-based rewriting

in Sketch as well, where DAGs enable sharing between different parts of the formula 𝑃 ,

thereby, allowing rewrites using one rule at multiple places (in the abstract representation

of the formula) where the 𝐿𝐻𝑆 pattern occurs in the formula (as presented above) at the

same time.

Termination of simplifiers assembled in Swapper

As discussed above, general simplifiers based on rewrite rules may never terminate [15, 55]

e.g., a rewrite rule may replace a term 𝐴p𝑥q with 𝐵p𝑥q and then another rewrite rule may

replace 𝐵p𝑥q with 𝐴p𝑥q. Even in the context of Swapper, the generated simplifiers may

not always terminate. For example, consider the simplifier that applies the following two

70

rules:

p1q 𝑎𝑛𝑑p𝑛𝑒𝑔p𝑥q, 𝑛𝑒𝑔p𝑦qq trueÝÝÝÝÝÝÑ 𝑛𝑒𝑔p𝑜𝑟p𝑥, 𝑦qq

p2q 𝑚𝑢𝑥p𝑧, 𝑛𝑒𝑔p𝑥q,𝑛𝑒𝑔p𝑦q, 𝑛𝑒𝑔p𝑜𝑟p𝑥, 𝑦qqq
trueÝÝÝÝÝÝÑ 𝑚𝑢𝑥p𝑧, 𝑛𝑒𝑔p𝑥q, 𝑛𝑒𝑔p𝑦q, 𝑎𝑛𝑑p𝑛𝑒𝑔p𝑥q, 𝑛𝑒𝑔p𝑦qqq

Note that in the rules above: 𝑥, 𝑦 are Boolean input variables and 𝑧 is an integer variable.

Also, even though the 𝑅𝐻𝑆 of rule (2) looks larger than the 𝐿𝐻𝑆, due to sharing of nodes

in its DAG representation, the DAG size of the 𝑅𝐻𝑆 is only 4 whereas the DAG size of

𝐿𝐻𝑆 is 5. On an input DAG 𝑚𝑢𝑥p𝑧, 𝑛𝑒𝑔p𝑥q, 𝑛𝑒𝑔p𝑦q, 𝑛𝑒𝑔p𝑜𝑟p𝑥, 𝑦qqq to the simplifier, it will

result into a non-terminating cycle of rewrites:

𝑚𝑢𝑥p𝑧, 𝑛𝑒𝑔p𝑥q,𝑛𝑒𝑔p𝑦q, 𝑛𝑒𝑔p𝑜𝑟p𝑥, 𝑦qqq
rule (2)ÝÝÝÝÝÝÝÝÑ 𝑚𝑢𝑥p𝑧, 𝑛𝑒𝑔p𝑥q, 𝑛𝑒𝑔p𝑦q, andpnegpx q,negpyqqq
rule (1)ÝÝÝÝÝÝÝÝÑ 𝑚𝑢𝑥p𝑧, 𝑛𝑒𝑔p𝑥q, 𝑛𝑒𝑔p𝑦q, 𝑛𝑒𝑔p𝑜𝑟p𝑥, 𝑦qqq
rule (2)ÝÝÝÝÝÝÝÝÑ . . .

Swapper can eliminate non-terminating simplifiers by discarding simplifiers that take

more time than a particular timeout during the auto-tuning step (Sec. 5.1). This timeout is

set based on the existing simplifier in Sketch. In our experiments, all simplifiers assembled

by Swapper were terminating on all input DAGs provided to them.

Now, we are ready to discuss techniques that are used to assemble an efficient and

effective simplifier in Swapper. We discuss rule generalization in Subsec. 4.1.2 and pattern

matching in Subsec. 4.1.3.

4.1.2 Generalization of rewrite rules

One important optimization while assembling a simplifier in Swapper is rule generalization.

The goal of rule generalization is to make the rule more applicable by eliminating redundant

nodes from the 𝐿𝐻𝑆 and 𝑅𝐻𝑆 patterns. For example, pattern finding may have discovered

that the pattern 𝑜𝑟p𝑙𝑡p𝑝𝑙𝑢𝑠p𝑥, 𝑦q, 𝑏q, 𝑙𝑡p𝑎, 𝑑qq was frequent, and the rule-synthesis phase may

71

have discovered the rewrite rule:

𝑜𝑟p𝑙𝑡p𝑝𝑙𝑢𝑠p𝑥, 𝑦q, 𝑏q, 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑥, 𝑦q, 𝑑qq 𝑏<𝑑ÝÝÝÝÝÝÑ 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑥, 𝑦q, 𝑑q

Rule generalization would identify that 𝑝𝑙𝑢𝑠p𝑥, 𝑦q is unchanged by the rewrite rule, so the

rule could be made more general by replacing 𝑝𝑙𝑢𝑠p𝑥, 𝑦q in both patterns with a free variable

to arrive at the rule shown below:

𝑜𝑟p𝑙𝑡p𝑧, 𝑏q, 𝑙𝑡p𝑧, 𝑑qq 𝑏<𝑑ÝÝÝÝÝÝÑ 𝑙𝑡p𝑧, 𝑑q

Swapper needs to verify that the generalization preserves the correctness of the rule in order

to avoid generating incorrect transformations. It is important to note that rule generalization

doesn’t affect predicates because those have already been minimized during the rule-synthesis

step.

Given a conditional rewrite rule 𝐿𝐻𝑆p𝑥q predp𝑥qÝÝÝÝÝÝÝÑ 𝑅𝐻𝑆p𝑥q, we present the list of

rule-generalization strategies employed in Swapper in the following subsections. Before

delving into the details, we clarify the notation used below and the context in which these

generalization strategies are applied:

1. We use ” to denote symbolic equivalence of two expressions or patterns in the internal

language of Sketch constraints described in Fig. 2-3

2. Swapper stores the patterns 𝐿𝐻𝑆p𝑥q and 𝑅𝐻𝑆p𝑥q as directed acyclic graphs (DAGs)

for sharing sub-patterns and efficient implementation of these strategies

3. A node in the DAG representing a pattern in this language is represented as

𝑜𝑝 p𝑒0, 𝑒1, . . . , 𝑒𝑗q where 𝑜𝑝 is an operation (as described in Fig. 2-3) and 𝑒0, 𝑒1, . . . , 𝑒𝑗

are also patterns in the same language.

4. The strategies described below are recursively applied in Swapper until no more

generalizations can be done

Now we are ready to discuss the aforementioned strategies used for rule generalization

in Swapper.

72

Common sub-pattern removal from top

Swapper finds a node (or sub-pattern) 𝑛𝑙 ” 𝑜𝑝𝑙p𝑒0, 𝑒1, ..., 𝑒𝑗q (corresponding to an operation

𝑜𝑝𝑙 like 𝑝𝑙𝑢𝑠 from Fig. 2-3) in 𝐿𝐻𝑆p𝑥q and a node 𝑛𝑟 ” 𝑜𝑝𝑟p𝑓0, 𝑓1, ..., 𝑓𝑘q in 𝑅𝐻𝑆p𝑥q such

that 𝑜𝑝𝑙 ” 𝑜𝑝𝑟, 𝑗 = 𝑘 (they both correspond to the same operation with the same number

of arguments) and @ 𝑖 P r0, 𝑗s : 𝑒𝑖 ” 𝑓𝑖 ^ 𝑒𝑖 P setp𝑥q i.e., the arguments of both operations

are the same input variables from the input vector 𝑥 = p𝑥1, 𝑥2, ..., 𝑥𝑛q. For such a pair of

nodes p𝑛𝑙, 𝑛𝑟q: Swapper replaces the nodes with a new input variable 𝑥𝑛+1 in 𝐿𝐻𝑆p𝑥q and

𝑅𝐻𝑆p𝑥q patterns and constructs a new rewrite rule:

𝐿𝐻𝑆p𝑥1qr𝑛𝑙 Ñ 𝑥𝑛+1s predp𝑥1qÝÝÝÝÝÝÝÑ 𝑅𝐻𝑆p𝑥1qr𝑛𝑟 Ñ 𝑥𝑛+1s

where 𝑥1 = p𝑥1, 𝑥2, ..., 𝑥𝑛, 𝑥𝑛+1q, predp𝑥1q ” predp𝑥q. Clearly, this new rule is more applicable

than the original rule, but it may not be a correct rule. For example, if we consider the

following rule:

𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑙𝑡p𝑎, 𝑑qq 𝑏<𝑑ÝÝÝÝÝÝÑ 𝑙𝑡p𝑎, 𝑑q

the sub-pattern 𝑙𝑡p𝑎, 𝑑q cannot be replaced with a new input variable 𝑒 because the new

rule:

𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑒q 𝑏<𝑑ÝÝÝÝÝÝÑ 𝑒

would be incorrect. One may be tempted to assume that it is okay to do such transformations

when the inputs involved in the sub-pattern are not used in the predicate predp𝑥q, but that

is still not sufficient to guarantee correctness of the new rule, as shown by the rule below:

𝑚𝑜𝑑p𝑚𝑜𝑑p𝑎, 𝑏q, 𝑏q 𝑡𝑟𝑢𝑒ÝÝÝÝÝÝÑ 𝑚𝑜𝑑p𝑎, 𝑏q

the sub-pattern 𝑚𝑜𝑑p𝑎, 𝑏q cannot be replaced with a new variable 𝑐 because the rule

𝑚𝑜𝑑p𝑐, 𝑏q 𝑡𝑟𝑢𝑒ÝÝÝÝÝÝÑ 𝑐

is incorrect.

For this reason, Swapper fully verifies the new rule using an off-the-shelf SMT solver

named Z3 [41], and if the rule is correct it keeps the new generalized rule and removes the

older rule. Otherwise, it discards the generalized rule. Note that the requirement for each

73

argument of an operation matching precisely (in the order these arguments are specified)

can be loosened for commutative operations like 𝑝𝑙𝑢𝑠, 𝑡𝑖𝑚𝑒𝑠, etc, so that, even if Swapper

finds 𝑝𝑙𝑢𝑠p𝑥1, 𝑥2q in 𝐿𝐻𝑆p𝑥q and 𝑝𝑙𝑢𝑠p𝑥2, 𝑥1q in 𝑅𝐻𝑆p𝑥q, it will still try to perform this

generalization.

An example application of this generalization strategy is given below.

Initial Rule:

𝑜𝑟p𝑙𝑡p𝑝𝑙𝑢𝑠p𝑥, 𝑦q, 𝑏q, 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑥, 𝑦q, 𝑑qq 𝑏<𝑑ÝÝÝÝÝÝÑ 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑥, 𝑦q, 𝑑q

Generalized Rule:

𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑙𝑡p𝑎, 𝑑qq 𝑏<𝑑ÝÝÝÝÝÝÑ 𝑙𝑡p𝑎, 𝑑q

Common sub-pattern removal from bottom

Assume that the patterns 𝐿𝐻𝑆p𝑥q and 𝑅𝐻𝑆p𝑥q have 𝑜𝑝𝑙 and 𝑜𝑝𝑟 as their root (or base)

operations i.e., 𝐿𝐻𝑆p𝑥q ” 𝑜𝑝𝑙p𝑒0, 𝑒1, ..., 𝑒𝑗q and 𝑅𝐻𝑆p𝑥q ” 𝑜𝑝𝑟p𝑓0, 𝑓1, ..., 𝑓𝑘q. If 𝑜𝑝𝑙 ”
𝑜𝑝𝑟, 𝑗 = 𝑘 and D𝑖* P r0, 𝑗s such that @ 𝑖 P r0, 𝑖*q Y p𝑖*, 𝑗s : 𝑒𝑖 ” 𝑓𝑖 i.e., all except one of the

parents of the base operation match syntactically. In this case, Swapper constructs the

rule

𝑒𝑖*p𝑥q predp𝑥qÝÝÝÝÝÝÝÝÑ 𝑓𝑖*p𝑥q

and verifies the new rule using z3 [41]. If the rule is correct it keeps the new generalized

rule and removes the older rule. Otherwise, it discards the generalized rule. Similar to the

previous generalization, the requirement for each argument of the operation 𝑜𝑝𝑙 matching

precisely (in order) can be loosened when it is a commutative operation like 𝑝𝑙𝑢𝑠, 𝑡𝑖𝑚𝑒𝑠,

etc.

An example application of this generalization strategy is given below.

Initial Rule:

𝑎𝑛𝑑p𝑙𝑡p𝑐, 𝑎q, 𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑙𝑡p𝑎, 𝑑qqq 𝑏<𝑑ÝÝÝÝÝÝÑ 𝑎𝑛𝑑p𝑙𝑡p𝑐, 𝑎q, 𝑙𝑡p𝑎, 𝑑qq

Generalized Rule:

𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑙𝑡p𝑎, 𝑑qq 𝑏<𝑑ÝÝÝÝÝÝÑ 𝑙𝑡p𝑎, 𝑑q

74

Replacing nodes with new inputs recursively from top in the 𝐿𝐻𝑆

For every node 𝑛𝑙 ” 𝑜𝑝𝑙p𝑒0, 𝑒1, ..., 𝑒𝑗q in 𝐿𝐻𝑆p𝑥q such that each of its parents is an input

variable from 𝑥 = p𝑥1, 𝑥2, ..., 𝑥𝑛q i.e., @ 𝑖 P r0, 𝑗s : 𝑒𝑖 P setp𝑥q, Swapper replaces the node

𝑛𝑙 with a new input variable 𝑥𝑛+1 in 𝐿𝐻𝑆p𝑥q to generate a new rule:

𝐿𝐻𝑆p𝑥1qr𝑛𝑙 Ñ 𝑥𝑛+1s predp𝑥1qÝÝÝÝÝÝÝÑ 𝑅𝐻𝑆p𝑥1q

where 𝑥1 = p𝑥1, 𝑥2, ..., 𝑥𝑛, 𝑥𝑛+1q, predp𝑥1q ” 𝑝𝑟𝑒𝑑p𝑥q and 𝑅𝐻𝑆p𝑥1q ” 𝑅𝐻𝑆p𝑥q. Swapper

then fully verifies the new rule using z3 [41]. If the rule is correct it keeps the new generalized

rule and removes the older rule. Otherwise, it discards the generalized rule.

An example application of this generalization strategy is given below.

Initial Rule:

𝑡𝑖𝑚𝑒𝑠p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑥q 𝑥==0ÝÝÝÝÝÝÝÑ 𝑛p0q

where 𝑛p𝑐q denotes a constant integer value, 𝑐 = 0 in this case.

Generalized Rule:

𝑡𝑖𝑚𝑒𝑠p𝑦, 𝑥q 𝑥==0ÝÝÝÝÝÝÝÑ 𝑛p0q

Generating all equivalent rules modulo commutativity

During this phase in Swapper, all rules with commutative operations in 𝐿𝐻𝑆p𝑥q are du-

plicated with semantically equivalent but syntactically different 𝐿𝐻𝑆 patterns generated

by choosing different ordering of arguments for each commutative operation in 𝐿𝐻𝑆. For

example, the following rule will result into multiple rules as listed below:

Initial rule:

𝑎𝑛𝑑p𝑙𝑡p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑐q, 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑏, 𝑑q, 𝑐qq 𝑑<𝑎ÝÝÝÝÝÝÑ 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑐q

Generalized rules (8 rules including the original one because of 3 commutative operations:

2 𝑝𝑙𝑢𝑠’s and 1 𝑎𝑛𝑑):

Changing ordering of arguments for the two 𝑝𝑙𝑢𝑠’s

𝑎𝑛𝑑p𝑙𝑡p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑐q, 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑏, 𝑑q, 𝑐qq 𝑑<𝑎ÝÝÝÝÝÝÑ 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑐q

75

𝑎𝑛𝑑p𝑙𝑡p𝑝𝑙𝑢𝑠p𝑏, 𝑎q, 𝑐q, 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑏, 𝑑q, 𝑐qq 𝑑<𝑎ÝÝÝÝÝÝÑ 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑐q

𝑎𝑛𝑑p𝑙𝑡p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑐q, 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑑, 𝑏q, 𝑐qq 𝑑<𝑎ÝÝÝÝÝÝÑ 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑐q

𝑎𝑛𝑑p𝑙𝑡p𝑝𝑙𝑢𝑠p𝑏, 𝑎q, 𝑐q, 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑑, 𝑏q, 𝑐qq 𝑑<𝑎ÝÝÝÝÝÝÑ 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑐q

Changing ordering of the arguments of 𝑎𝑛𝑑 and then again, changing ordering of argu-

ments for the two 𝑝𝑙𝑢𝑠’s

𝑎𝑛𝑑p𝑙𝑡p𝑝𝑙𝑢𝑠p𝑏, 𝑑q, 𝑐q, 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑐qq 𝑑<𝑎ÝÝÝÝÝÝÑ 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑐q

𝑎𝑛𝑑p𝑙𝑡p𝑝𝑙𝑢𝑠p𝑏, 𝑑q, 𝑐q, 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑏, 𝑎q, 𝑐qq 𝑑<𝑎ÝÝÝÝÝÝÑ 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑐q

𝑎𝑛𝑑p𝑙𝑡p𝑝𝑙𝑢𝑠p𝑑, 𝑏q, 𝑐q, 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑐qq 𝑑<𝑎ÝÝÝÝÝÝÑ 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑐q

𝑎𝑛𝑑p𝑙𝑡p𝑝𝑙𝑢𝑠p𝑑, 𝑏q, 𝑐q, 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑏, 𝑎q, 𝑐qq 𝑑<𝑎ÝÝÝÝÝÝÑ 𝑙𝑡p𝑝𝑙𝑢𝑠p𝑎, 𝑏q, 𝑐q

In this subsection, we described the strategies used to generalize the rules synthesized

in Swapper. These strategies enabled Swapper to (1) discard rules that are same as

or weaker than a more applicable generalized rule and (2) reduce the size of the search

space for auto-tuning the set and ordering of rules (to be discussed in Sec. 5.1). In the

next subsection, we briefly discuss how we generate efficient code for pattern matching and

applying the synthesized rewrite rules.

4.1.3 LALR-style pattern matching in Swapper

Swapper reduces the cost of pattern matching by identifying common substructures in

different patterns and avoiding redundant checks for those patterns, similar to how a compiler

for a functional language would optimize pattern matching [86]. Swapper outputs efficient

C++ code that (1) performs LALR-style pattern matching on the provided 𝐿𝐻𝑆s and (2)

does local formula rewriting based on the given rules (in a particular order of application).

The details of the pattern-matching algorithm and choices of the data structures made are

explained in Chapter 6 of my master’s thesis [103]. Note that Swapper is able to do such

optimizations automatically because the code of the simplifier doesn’t have to be readable

or maintainable. Instead of adding code for a new rule, a developer may add the abstract

rule to the list of rules generated by Swapper and press a button to compile all the rules

76

together into efficient C++ code.

This section concludes our discussion of assembly in Swapper. Now, focus on the as-

sembly procedure in EM-Synth and discuss how it may combine multiple EM rules together.

4.2 Assembly in EM-Synth

The assembly of multiple EM rules or GBFs is an integral part of the overall synthesis

process in EM-Synth (Fig. 1-5). The assembly procedure in EM-Synth generates a composite

EM rule 𝑓 from a set of EM rules (components) 𝒞 = t𝐶1, 𝐶2, . . . , 𝐶𝑛u where each component

𝐶𝑖 P 𝐺GBF. Since there are no correctness constraints on 𝑓 i.e., 𝑆𝑝𝑒𝑐p𝑓, 𝑖𝑛q ” true, the

soundness of assembly an be simplified to:

@𝜋PΠ

ˆ
𝑓 = 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒p𝜋, 𝒞q ùñ 𝑓 P 𝐺GBF

˙

In the following two subsections, we discuss two assembly procedures and their corre-

sponding parameter spaces: (1) Boolean combinations (Subsec. 4.2.1) and (2) consensus

building (Subsec. 4.2.2).

4.2.1 Boolean combinations of EM rules

This assembly procedure produces larger GBFs (or EM rules) from smaller GBFs. The

larger GBFs are a Boolean combination of the existing GBFs. More formally, a Boolean

combination of GBFs from a set 𝒞𝜙 = t𝜙1, 𝜙2, . . . , 𝜙𝑛u corresponds to a candidate derived

from the following grammar 𝐺COMB:

grammar 𝐺atom Ñ 𝜙 p𝜙 P 𝒞𝜙q
grammar 𝐺COMB Ñ 𝐺atom pbound : 𝑁𝑎q

𝐺COMB Ñ 𝐺COMB

𝐺COMB Ñ 𝐺COMB ^𝐺COMB

𝐺COMB Ñ 𝐺COMB _𝐺COMB

,
///.
///-
pdepth : 𝑁𝑑q

Note that any candidate from the grammar 𝐺COMB is also a GBF because the pro-

duction rules of 𝐺COMB are the same as that of 𝐺GBF except the terminal variables which

are themselves GBFs. This establishes the soundness of this assembly procedure i.e., irre-

spective of the sequence of production rules applied from 𝐺COMB, the EM rules in 𝒞𝜙 are

77

combined to generate an EM rule 𝑓 which is also a GBF.

There are many different ways of combining the smaller GBFs in 𝒞𝜙 together using the

grammar 𝐺COMB. In fact, many of the Boolean combinations derived from 𝐺COMB are

equivalent e.g., for 𝒞𝜙 = t𝜙1, 𝜙2, 𝜙3u, both the formulas p𝜙1 _ 𝜙2q ^ 𝜙3 and p𝜙1 ^ 𝜙3q _
p𝜙2 ^ 𝜙3q are logically equivalent but correspond to different derivations from 𝐺COMB. To

avoid deriving logically equivalent formulas, we use a canonical representation of a Boolean

formula, i.e. a truth table, and define the parameters in terms of the outputs in the truth

table.

Consider the truth table shown in Fig. 4-1. The table represents multiple Boolean

combinations of GBFs in 𝒞𝜙 = t𝜙1, 𝜙2, 𝜙3u that are logically equivalent to p𝜙1 _ 𝜙2q ^ 𝜙3.

A different truth table will have different values in the output column. In general, a truth

table 𝜏 : 2𝒞𝜙 Ñ ttrue, falseu maps every subset of the EM rules in 𝒞𝜙 to true or false. If

there are 𝑛 rules in 𝒞𝜙 then there are 2𝑛 rows in the truth table of a Boolean combination

of GBFs from 𝒞𝜙 and, hence, there are 22
𝑛 possible truth tables. It is easy to transform a

truth table to a GBF. We use the Quine-McCluskey algorithm [79] to transform a truth

table 𝜏 to a Boolean formula with GBFs from 𝒞𝜙 as its atoms.

𝜙1 𝜙2 𝜙3 𝑜𝑢𝑡𝑝𝑢𝑡

true true true true

true true false false

true false true true

true false false false

false true true true

false true false false

false false true false

false false false false

Figure 4-1: An example truth table for 𝒞𝜙 = t𝜙1, 𝜙2, 𝜙3u

Note that it will not be efficient to build truth tables for a large value of 𝑛 = |𝒞𝜙|. So,

instead we first identify a small number (𝐾) of rules from 𝒞𝜙 and then build truth tables

for 𝐵 out of those 𝐾 rules at a time. Hence, for given hyper-parameters 𝒞𝐾 Ď 𝒞𝜙, 𝐵 where

|𝒞𝐾 | = 𝐾 and 1 ď 𝐵 ď 𝐾, the parameter space Πp𝒞𝐾 , 𝐵q for this assembly procedure is

given by:

Πp𝒞𝐾 , 𝐵q =
!
𝜏 | 𝜏 : 2𝒞

1 Ñ ttrue, falseu where 𝒞1 Ď 𝒞𝐾 and |𝒞1| = 𝐵
)

78

The size of this parameter space is |Πp𝒞𝐾 , 𝐵q| =
`
𝐾
𝐵

˘ ˆ 22
𝐵 . This space can be very large

to explore for large values of 𝐵. In the next subsection (Subsec. 4.2.2), we discuss another

assembly procedure (consensus building) used in EM-Synth that has a smaller parameter

space but does not consider all Boolean combinations, as done in this assembly procedure.

4.2.2 Consensus of EM rules

This assembly procedure also builds a combination of synthesized EM rules or GBFs in

𝒞𝜙 = t𝜙1, 𝜙2, . . . , 𝜙𝑛u. But, unlike Boolean combinations, consensus building focuses on

combinations of rules in a specific form i.e., it builds larger rules of the form:

count_true
`
𝜙1
1, 𝜙

1
2, . . . , 𝜙

1
𝐵

˘ ě 𝐶

where (1) 𝜙1
1, 𝜙

1
2, . . . , 𝜙

1
𝐵 are 𝐵 EM rules or GBFs from 𝒞𝜙, (2) count_true represents the

function that counts how many of these rules output true when evaluated on an example

and (3) 𝐶 is an integer between 1 and 𝐵 , inclusive. Intuitively, this assembly procedure

generates a rule that builds a consensus of at least 𝐶 out of 𝐵 rules when classifying an

example. Note that count_true can be expressed as a Boolean formula in terms of the EM

rules 𝜙1
1, 𝜙

1
2, . . . , 𝜙

1
𝐵 as shown below:

count_true
`
𝜙1
1, 𝜙

1
2, . . . , 𝜙

1
𝐵

˘ ě 𝐶

”
ł

t𝑖1,𝑖2,...,𝑖𝐶uĎt1,2,...,𝐵u

´
𝜙1
𝑖1 ^ 𝜙1

𝑖2 ^ . . .^ 𝜙1
𝑖𝐶

¯

Hence, the assembled function count_true p𝜙1
1, 𝜙

1
2, . . . , 𝜙

1
𝐵q ě 𝐶 is a GBF since each of the

𝜙1
1, 𝜙

1
2, . . . , 𝜙

1
𝐵 are also GBFs. This confirms that this assembly procedure is sound.

In practice, there may be many rules in 𝒞𝜙 i.e., 𝑛 may be large. In that case, instead

of looking at all possible subsets of rules in 𝒞𝜙 of size 𝐵, we assume that the assembly

procedure is provided with a subset 𝒞𝐾 Ď 𝒞𝜙 of 𝐾 rules. Given these hyper-parameters

𝒞𝐾 , 𝐵, the parameter space Πp𝒞𝐾 , 𝐵q for this assembly procedure is given by:

Πp𝒞𝐾 , 𝐵q =
!
p𝒞1, 𝐶q | 𝒞1 Ď 𝒞𝐾 , |𝒞1| = 𝐵 and 1 ď 𝐶 ď 𝐵

)

Note that the size of the parameter space |Πp𝒞𝐾 , 𝐵q| =
`
𝐾
𝐵

˘ˆ𝐵 . This size is considerably

79

smaller than the corresponding size of the parameter space for the Boolean-combinations-

based assembly procedure (Subsec. 4.2.1) because this assembly procedure considers only

a fraction of Boolean combinations considered by the previous assembly procedure. But,

consensus building can be run in practice with larger hyper-parameter bounds 𝐾,𝐵, thereby

giving it more opportunity to explore.

80

Chapter 5

Best assembly tuning

In this chapter, we discuss the techniques used in Swapper and EM-Synth to explore the

parameter space Π for the parameter 𝜋 passed to the 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 procedure (discussed in

Chapter 4). We start with a discussion of combinatorial auto-tuning (Sec. 5.1) of the subset

selection and ordering of synthesized rules in Swapper using a black-box optimization

tool called OpenTuner [12]. We also discuss the RS-SynthComp and RS-Consensus

algorithms (Sec. 5.2) used in EM-Synth to find optimal assembly of the synthesized EM

rules.

5.1 Combinatorial auto-tuning in Swapper

In this section, we discuss the auto-tuning step of the Swapper system (Fig. 1-2). This

step identifies the best parameter 𝜋 for the assembly procedure (Chapter 4) to generate

an optimal simplifier 𝑓 i.e., it generates a simplifier 𝑓 that minimizes an empirical perfor-

mance metric based on the running time of solving simplified versions of the input problems

(corpus of formulas) with the Sketch solver. Given a set of synthesized rewrite rules

𝒞 = t𝐶1, 𝐶2, . . . , 𝐶𝑛u, the parameter space Π to be explored is given by (Sec. 4.1):

Π =
!
p𝒞𝑓 , 𝜎𝑓 q | 𝒞𝑓 Ď 𝒞 ^ `

𝜎𝑓 is a permutation of the set 𝒞𝑓
˘)

and for 𝑛 components, the size of the parameter space can be estimated to be approximately

𝑒ˆ𝑛! where 𝑒 « 2.71828 is Euler’s number. The size of the parameter space grows as quickly

as the factorial function with the value of 𝑛, and it becomes really hard to enumerate all the

81

parameters efficiently. So, instead of using enumeration we use an off-the-shelf black-box

optimization tool called OpenTuner [12] to smartly explore this space of parameters. Note

that we do not guarantee global optimality of the simplifier, but instead we will generate a

locally optimal simplifier that performs the best among all parameter values that we search

through.

In the rest of this section, we discuss the motivation and OpenTuner configuration for

auto-tuning the synthesized rules in Swapper.

Motivation for auto-tuning in Swapper

There are two motivations for auto-tuning the set of synthesized rewrite rules in Swapper

instead of using all of them in an arbitrary order: (1) there is a trade-off between the

strength of the predicate and the reduction that can be achieved by a rule: rules with

weak predicates are easier to match than rules with strong predicates, but rules with strong

predicates can offer more aggressive simplification, and (2) the rules that give the most

aggressive size reduction are not necessarily the best ones; for example, a rule may replace a

very large 𝐿𝐻𝑆 pattern with a small 𝑅𝐻𝑆 but in doing so it may prevent other rules from

being applied, resulting in a formula that is larger than the formula obtained without the

rewriting.

For these reasons, writing optimal simplifiers based on rewrite rules is a challenging task

even for human experts, which motivates our approach of using synthesis and empirical auto-

tuning methods to automatically discover optimal sets and ordering of conditional rewrite

rules.

Using OpenTuner for auto-tuning in Swapper

Swapper uses OpenTuner [12], a machine-learning-based off-the-shelf auto-tuner to tune

the parameters of the assembly of synthesized rewrite rules in Swapper. As an input to

OpenTuner, Swapper provides an optimization function fopt(f). The optimization function

takes a simplifier 𝑓 as input and emits the actual performance of the solver on formulas (from

the corpus) simplified by 𝑓 . This phase is comparable to algorithm configuration [13, 59],

which has been used for tuning parameters for SAT solvers [60]. But, unlike algorithm

configuration, the optimization function in Swapper is based on choices of subsets and

permutations of rewrite rules and is provided to OpenTuner [12] as a black box.

82

Swapper uses OpenTuner [12] to auto-tune the set of rules according to this performance

metric (based on time). OpenTuner uses an ensemble of disparate search techniques and

quickly builds a model for the behavior of the optimization function treating it as a black

box.

OpenTuner configuration

Swapper specifies the set of all rules to the tuner and creates the following two configuration

parameters: (1) a permutation parameter: for deciding the order in which the rules will be

checked. (2) total number of rules to be used.

The optimization function (fopt) takes as input a set of rules and returns a floating-

point number. This number corresponds to performance improvement of Sketch on the

benchmarks after rewriting them using the generated simplifier (Subsec. 4.1.3). The auto-

tuner tries to maximize this reward by trying out various subsets and orderings of rules

provided to it as input while learning a model of dependence of fopt on the rules.

5.2 Tuning in EM-Synth

In this section, we discuss the tuning of parameters of the assembly procedure in EM-Synth.

Before delving into the details, we first discuss the optimization problem that this tuning

step (of the EM-Synth system shown in Fig. 1-5) solves.

5.2.1 EM-GBF optimization problem

In the EM-GBF rule-synthesis problem discussed in Subsec. 2.3.1, we require that the

synthesized EM rule or GBF satisfies constraints from all provided positive and negative

examples. In this section, we describe the EM-GBF optimization problem that corresponds

to finding an EM rule to maximize an input metric 𝜇 that measures the quality of an EM

rule. In the EM-Synth system, we want to generate a high-quality EM rule as a general

Boolean formula (GBF). To evaluate the quality of a GBF, we assume that the user

provides a set of examples, denoted by E = M YD, where M are positive examples, i.e.,

pairs of records that represent the same entity, and D are negative examples, i.e., pairs of

records that represent different entities. We also assume that the user provides a metric 𝜇

as defined below.

83

Optimality metric 𝜇

Consider a GBF 𝜙 and positive and negative examples M and D. We define a metric

𝜇p𝜙,M,Dq returning a real number in r0, 1s that quantifies the goodness of 𝜙. The larger

the value of 𝜇, the better is 𝜙.

Let M𝜙 Ă E be the set of all examples p𝑟1, 𝑠1q such that 𝑟1 and 𝑠1 are matched by 𝜙.

Some candidates for optimality metric 𝜇 are:

𝜇precision =
|M𝜙 XM|

|M𝜙 XM|+ |M𝜙 XD|
𝜇recall =

|M𝜙 XM|
|M|

𝜇F-measure =
2 ¨ 𝜇precision ¨ 𝜇recall

𝜇precision + 𝜇recall

Now, we are ready to define the EM-GBF optimization problem.

Problem 5 Given two relations 𝑅 and 𝑆, the aligned attributes between 𝑅 and 𝑆, sets

M and D of positive and negative examples, a library of similarity functions ℱ , and an

optimality metric 𝜇, the EM-GBF optimization problem is to discover a GBF 𝜙 that

maximizes 𝜇p𝜙,M,Dq.

5.2.2 Tuning algorithms in EM-Synth

The EM rules synthesized by the rule-synthesis step (Sec. 2.3) in EM-Synth may not perform

very well with respect to the metric 𝜇 by themselves. So, we assemble (Sec. 4.2) some of these

rules together to get a composite GBF that has a better 𝜇 value than any rule generated by

the rule-synthesis step. For example, if we found 3 GBF rules 𝜙1, 𝜙2, 𝜙3 with their metric

𝜇 being 0.82, 0.77, 0.64, respectively, then the tuning step in EM-Synth may come up with

p𝜙1 ^ 𝜙3q _ 𝜙2 as the assembly of these rules as a new rule with metric 𝜇 = 0.87 that is

better than each of the three GBFs individually. We will enumerate all possible candidate

combinations in the parameter space and try to find the best combination with respect to

the metric 𝜇.

We recall the two assembly procedures described in Sec. 4.2: (1) Boolean combination,

(2) consensus building. The high-level strategy for tuning in EM-Synth is to:

1. First evaluate the metric 𝜇 on all synthesized EM rules 𝒞 = t𝜙1, 𝜙2, . . . , 𝜙𝑛u.

84

2. Then reduce the number of EM rules to be considered for assembly to a smaller number

𝐾 < 𝑛 for better efficiency of tuning by taking the top 𝐾 EM rules based on the metric

𝜇 i.e., it will only consider the set

𝒞𝐾 = argmaxpKq
1ď𝑖ď𝑛

𝜇p𝜙𝑖,M,Dq

for assembly where argmaxpKq returns a set of 𝐾 arguments that lead to the top 𝐾

metric values.

3. Then choose 𝐵 (1 ď 𝐵 ď 𝐾) out of those 𝐾 rules and exhaustively enumerate all

Boolean combinations (Subsec. 4.2.1) or consensus formulas (Subsec. 4.2.2) over the

chosen 𝐵 rules to find the best assembled EM rule.

The parameter spaces and their sizes for the assembly procedures based on Boolean

combination (ΠCOMB) and consensus building (ΠCONSENSUS) are given by:

ΠCOMBp𝒞𝐾 , 𝐵q =
!
𝜏 | 𝜏 : 2𝒞

1 Ñ ttrue, falseu where 𝒞1 Ď 𝒞𝐾 and |𝒞1| = 𝐵
)

|ΠCOMB| =

ˆ
𝐾

𝐵

˙
ˆ 22

𝐵

ΠCONSENSUSp𝒞𝐾 , 𝐵q =
!
p𝒞1, 𝐶q | 𝒞1 Ď 𝒞𝐾 , |𝒞1| = 𝐵 and 1 ď 𝐶 ď 𝐵

)

|ΠCONSENSUS| =

ˆ
𝐾

𝐵

˙
ˆ𝐵

For the same amount of exploration time, the tuning can process larger values of 𝐵 and 𝐾

for consensus building than Boolean combination. In our experiments, we use the values

𝐾 = 10, 𝐵 = 3 for Boolean combination and 𝐾 = 15, 𝐵 = 5 for consensus building.

The tuning algorithms for finding the best Boolean combination and the best consensus of

EM rules in EM-Synth are called RS-SynthComp and RS-Consensus respectively. Both

RS-SynthComp and RS-Consensus take as input a set of 𝐾 GBFs (𝒞𝐾) chosen from the

set of all synthesized GBFs 𝒞 = t𝜙1, 𝜙2, . . . , 𝜙𝑛u. They both enumerate all parameters in

their respective parameter spaces (ΠCOMB and ΠCONSENSUS) and for each parameter instance

(1) construct a GBF 𝜙1 using the corresponding assembly procedure (Sec. 4.2), (2) evaluate

the metric 𝜇p𝜙1,M,Dq, and (3) maintain the best GBF with maximum value of the metric

𝜇.

85

Implementation notes

Our implementation of RS-SynthComp and RS-Consensus uses bit-vectors to represent

evaluations of EM rules, the SymPy library [8] for formula manipulations and the Quine-

McCluskey algorithm [79] to transform a truth table 𝜏 to a Boolean formula. There is one

key optimization in RS-SynthComp and one key optimization in RS-Consensus that

make the computation of the metric 𝜇 efficient.

RS-SynthComp enumerates all possible 𝐵 combinations of EM rules from 𝒞𝐾 . For

a fixed set of 𝐵 rules, RS-SynthComp classifies every example into 2𝐵 buckets where

each bucket corresponds to a unique set of evaluations of the 𝐵 rules e.g., if 𝐵 = 3, 𝒞𝐾 =

t𝜙1
1, 𝜙

1
2, 𝜙

1
3u there will be 8 buckets (shown as rows below in the table) such that each example

will be assigned to a unique bucket (row in the table below) based on the evaluations of the

𝐵 = 3 functions on that example.

𝜙1
1 𝜙1

2 𝜙1
3 M D

true true true 100 10

true true false 50 20

true false true 40 20

true false false 20 200

false true true 60 10

false true false 15 100

false false true 20 150

false false false 5 500

Now, RS-SynthComp can use these buckets and the relevant counts of positive and negative

examples in each bucket to evaluate the metric 𝜇 for any of the 22
𝐵 possible truth tables

that will assign a value to each row in the table above. This will avoid re-computation of the

number of positive/negative examples that a truth table will match correctly from scratch

for each of the 22
𝐵 possible truth tables. Note that this optimization only works in cases

when metric 𝜇 is computed using the number of positive/negative examples that a truth

table will match correctly or incorrectly. All metrics introduced in this thesis for EM-Synth

have this property e.g., precision, recall and F-measure. These metrics are also widely used

in industry for entity matching.

86

Similarly, RS-Consensus enumerates all possible 𝐵 combinations of EM rules from

𝒞𝐾 . For a fixed set of 𝐵 rules, RS-Consensus computes a map that maps a number

𝐶 (1 ď 𝐶 ď 𝐵) to the number of positive and negative examples that have exactly 𝐶

of the 𝐵 rules evaluate to true on those examples. Using this map, RS-Consensus can

compute the metric 𝜇 efficiently for increasing values of 𝐶 from 1 to 𝐵. Again, note that

this optimization only works in cases when metric 𝜇 is computed using the number of

positive/negative examples matched correctly or incorrectly.

87

88

Chapter 6

Shared framework infrastructure

In the overall framework (Fig. 1-1), each of the four steps is a domain-specific procedure.

There are two parts of the infrastructure that are shared among different instantiations of

this framework: (1) iteratively running a general-purpose solver like Sketch with domain-

specific strategies either outside the solver as a refinement loop or inside the solver as a cus-

tom synthesizer, and (2) running different parts of each procedure (and whole experiments)

in parallel while satisfying the required dependencies. Having these pieces of infrastructure

enables us to quickly instantiate this framework for a new application domain.

It is important to note here that for both of these parts of the infrastructure there are

existing tools that use similar ideas e.g., the Python API and DPLL(T) solvers in Z3 [41]

allows a general-purpose SMT solver to be used iteratively through a Python API and

specialized for a particular theory, and the Apache Spark [120] cluster computing software

that can efficiently run multiple tasks in parallel on a cluster. Our implementation of these

two parts uses similar ideas, but they have been specialized for our framework:

1. We built a Sketch Python library that can express the provided SyGuS grammars,

constraints and bounds in Sketch, run Sketch instances in parallel and parse the

Sketch output as Python data-structures to let the user (or the software using this

library) decide which SyGuS problem (if any) to solve next. We also use a new

DPLL(T) style feature of Sketch and allow the user to provide a custom synthesizer

(as C++ code that goes inside Sketch) to speed up each domain-specific synthesis

instance.

2. We built a custom database-backed scheduler of tasks on a computing cluster that

89

can be used at multiple places in the instantiations of this framework while ensuring

the dependencies between tasks due to the framework are satisfied. We also provide

framework-specific tools for monitoring, debugging and analyzing different tasks being

scheduled and run.

We use the Sketch Python library in the synthesis-of-components step, where multiple

Sketch problems are being solved iteratively. Both Swapper and EM-Synth use this

library to interface with Sketch from Python – providing their grammars and constraints

to this library and analyzing the output produced by this library (a synthesized rewrite rule

in Swapper and a synthesized EM rule in EM-Synth). In EM-Synth, we also use a custom

synthesizer inside Sketch that helps speed up the synthesis process from hours to seconds.

In the overall framework (Fig. 1-1), there are many places where parallel task scheduling

on a cluster can speed up the instantiated system significantly. More specifically, some

candidates for parallelization are:

1. Data processing: In both Swapper and EM-Synth, the input data consists of multi-

ple fragments (Sketch problems in Swapper and individual examples in EM-Synth),

and the input data needs to be processed to build secondary representations (DAG

formulas with contextual information in Swapper and similarity function evaluations

in EM-Synth). These data processing operations tend to be embarrassingly paralleliz-

able i.e., all of them can be run in parallel across threads, processes or machines on a

cluster.

2. Specialization information extraction: In Swapper, sampling of patterns can

be done in parallel e.g., by sampling from each problem DAG separately and then

combining the results, or multiple instances of sampling can be run on the same set

of problem DAGs on different machines and the results can be aggregated afterwards.

Similarly, in EM-Synth, every RANSAC iteration can be independently run and the

results can be aggregated when all of them finish running.

3. Synthesis of components: In Swapper, synthesis of rewrite rules for a pattern is in-

dependent from the synthesis of rules for another pattern. These synthesis procedures

can be run in parallel across multiple processes and machines.

4. Tuning evaluation: when evaluating an assembled function 𝑓 and computing the

90

numerical score of the input data, the computation can be parallelized across the

fragments of the data (different input problems in Swapper and different examples

in EM-Synth).

5. Assembly parameter search while tuning: when using OpenTuner or a simple

enumeration, computation of the function 𝑓 with different parameters can be done in

parallel along with its evaluation. This is valid in both Swapper and EM-Synth.

6. Running different instances of the overall framework: To use the framework

on different input data sets, we can run the full systems in parallel across different

machines. This is particularly important when doing cross-validation (done in both

the Swapper and EM-Synth systems).

91

92

Chapter 7

Swapper system evaluation

In this chapter, we present the high-level overview of the implementation (Sec. 7.1) of

the Swapper system and present the aims and the results of the experiments (Sec. 7.2).

7.1 System Design & Implementation

Our implementation of Swapper consists of four parts corresponding to the four phases in

the framework (Fig. 1-2) and three libraries that are used in different phases. We describe

implementation details of the system for experiments conducted in the thesis and describe

briefly how various software components may be used for other applications.

A full overview of our implementation of Swapper is provided in Fig. 7-1. Each software

component of the system is presented in a red box (e.g., “Final evaluation”). The inputs

to the system are presented in the green boxes (e.g., “Performance function”). Blue boxes

represent intermediate outputs of a component of the system (e.g., “Rewrite rules”). These

outputs may be fed to another component as an input. Orange boxes represent libraries

(e.g., “Parallel jobs library”) that are employed inside multiple software components and can

be used for other standalone applications as well. We describe each component in detail

below.

93

Benchmark
DAGs + Static
assumptions

LHS DAGs +
Frequencies +

Static assumptions

Sketch
specification

Sketch
output

C++
simplifier
code for
Sketch

Benchmark
Sketch problems

(Search set)

Sketch tool
(Java & C++)

Sampler
(Python)

Rule synthesis
controller (Python)

DAG
grammar

Rewrite rules

Autotuner
(Opentuner/Python)

Subset of
rewrite rulesCode generator

(Python & C++)

Benchmark
Sketch problems

(Training set)

Benchmark
Sketch problems

(Testing set)

Sketch evaluator
(GCC & Python)

Performance
metric

DAG manipulation
library

Parallel jobs
library

Performance
function

Optimal Sketch
tool

Final
evaluation

Sketch tool
(Java & C++)

Figure 7-1: Swapper implementation and experiments overview

Benchmark Sketch problems

As described further in Subsec. 7.2.1, we use Sketch problems from two domains as bench-

marks. In the experiments infrastructure, these problems are divided into three sets: Search

set, Training set, and Testing set. These sets feed into: (1) generation of the benchmark

formulas represented as directed acyclic graphs (DAGs) inside Sketch with static assump-

tions (Sec. 2.2) (2) auto-tuning the subset and ordering of rules to be chosen for the final

94

simplifier (3) evaluating the final simplifier, respectively.

Sketch tool (Java & C++)

We used the existing version of the Sketch tool without using the default simplifier to

generate the benchmark DAGs. Once we generate a simplifier, we augment the same tool

to obtain a potentially optimal Sketch tool. The existing version of Sketch is also used

to solve the synthesis problems (converted to Sketch specifications) arising from the Rule-

synthesis controller.

DAG manipulation library

This library (written in Python) has data structures for efficient maintenance and manip-

ulation of DAGs and conditional rewrite rules. This library enables the sampler and the

rule-synthesis controllers to maintain the DAGs in a flexible data-structure and canonicalize

them with hashing [80] to minimize memory usage. This library is also used in the Code

generator to perform rule generalizations (Subsec. 4.1.2).

Sampler for pattern matching

Pattern matching in Swapper is done using the novel representative-sampling algorithm

described in this thesis (Sec. 3.2). We implemented this algorithm as a generic Python tool

that can be used for sampling from DAGs with any labels. This tool takes in the DAG

grammar with potentially some extra labels for the nodes and maintains those labels while

sampling. It outputs a ranked list of patterns based on their frequencies of occurrence in the

samples along with the extra labels preserved across samples. In our case the extra labels

correspond to the static assumptions obtained from the Sketch tool.

Rule-synthesis controller

Rule synthesis in Swapper is done with a hybrid approach as described in Subsec. 2.2.4.

We implemented this controller in Python and interfaced this with Sketch using a custom

generator (written in Python) of Sketch specification files and a parser (again written in

Python) of the Sketch output.

95

Parallel jobs library

This library implemented in Python provides two interfaces for running multiple jobs in

parallel on a cluster as explained in Chapter 6. This library is used in (1) generation of mul-

tiple benchmark DAGs from Sketch problems in parallel (2) running synthesis algorithms

for different patterns in parallel (3) running Sketch instances in parallel for evaluating a

simplifier in the autotuner or during the final evaluation.

Autotuner

The autotuner is a standalone Python script that uses OpenTuner [12] in the context of

finding an optimal subset and permutation of the synthesized rules. OpenTuner takes as

input a black-box performance function and the space of parameters to be optimized. In

our formulation, the black-box function corresponds to the average running time of all

benchmarks in the Training set, and the optimization parameters correspond to choice of a

subset and ordering of the synthesized rewrite rules.

Code generator

The code generator is a Python script that takes multiple rewrite rules as input and outputs

C++ code for the simplifier that can be compiled with the Sketch tool to produce a

potentially optimal version of the Sketch tool. The output simplifier is constructed to

apply the provided rules in the specified order. Moreover, the code generator performs the

optimizations for rule generalization and pattern matching as described in Subsections 4.1.2

and 4.1.3.

Sketch evaluation library

This library implemented in Python is used to compile a provided simplifier to get a modified

version of the Sketch tool and then profile this Sketch tool on a given set of benchmarks.

It stores all metrics and outputs in a shared database and a shared file system respectively.

The performance function is computed in the autotuner and during the final evaluation by

interfacing with this library.

96

7.2 Experiments

In order to test the effectiveness of Swapper, we focus on three questions:

1. Can Swapper generate good simplifiers in reasonable amounts of time and with low

cost of computational power?

2. How do the simplifiers generated by Swapper affect SMT-solving performance of

Sketch relative to the hand-written simplifier in Sketch?

3. How domain-specific are the simplifiers generated by Swapper?

For evaluation of Swapper on Sketch domains, we compared the following three sim-

plifiers:

1. Hand-crafted: this is the default simplifier in Sketch that has been built over a

span of eight years. It consists of simplifications based on (a) rewrite rules that can

be expressed in our framework (Sec. 2.2), (b) constant propagation, (c) structure

hashing [80], and (d) a few other complex simplifications that cannot be expressed in

our framework.

2. Baseline: this disables the rewrite rules that can be expressed in our framework from

the Hand-crafted simplifier but applies the rest of the simplifications (b)-(d).

3. Auto-generated: this incorporates Swapper’s auto-generated rewrite rules on top of

the Baseline simplifier.

Now, we elaborate on the details of the experiments.

7.2.1 Domains and Benchmarks

Domain Benchmark DAGs Used Avg. Number of Terms

AutoGrader 45 23289

Sygus 22 68366

SAT encodings 70 6504

97

We investigated benchmarks from two domains of Sketch applications. Sygus corresponds

to the SyGuS competition benchmarks translated from SyGuS format to Sketch specifica-

tions [10], and AutoGrader ones are obtained from students’ assignment submissions in the

Introduction to Programming online edX course [100]. For each of these domains we picked

suitable candidates for Swapper’s application by (1) eliminating those benchmarks which

did not have more than 5000 terms in the formula represented by their DAGs and those

which took less than 5 seconds to solve – so that there are enough patterns and opportunity

for improvement (2) removing those which took more than 5 minutes to solve – this was

done to keep Swapper’s running time reasonable because we need to run each benchmark

multiple times during the auto-tuning phase. Using these cutoffs, the total number of usable

benchmarks for AutoGrader domain was reduced from 2404 to 45 and for Sygus from 309

to 22. We also performed a case study on SAT-encodings benchmarks [62] translated from

synthesis specifications for SMT to SAT encoding rules.

7.2.2 Synthesis Time and Costs are Realistic

To generate a simplifier, Swapper employed a private cluster running OpenStack as the in-

frastructure for parallelized computations with parallelisms of 20-40 on two virtual machines

emulating 24 cores, 32GB RAM each. A worst-case estimate of the cost of computation done

by Swapper based on our experiments using the Amazon Web Services [1] estimator is pre-

sented below. Swapper can be used to automatically synthesize a simplifier for a very

reasonable cost (less than $50).

Domain
Pattern

Finding

Rule

Synthesis

Auto-

Tuning

Total

Time

(hours)

Cost

AutoGrader 3 hours 1 hour ˆ 5 0.08ˆ 150 20 $23

Sygus 2 hours 1 hour ˆ 5 0.1ˆ 150 22 $26

In essence, Swapper can be used to automatically synthesize a simplifier for a very

reasonable cost (less than $50) spent on computation (around what one would pay a good

developer for an hour’s worth of work). Note that these wait times (around 20-22 hours

or a day to get a simplifier) can be improved significantly by: (a) parallelization of the

98

pattern-finding phase (b) setting a timeout for evaluation runs that are guaranteed to be

worse than existing good runs and (c) increasing the parallelism available to Swapper.

7.2.3 Swapper Performance

To test the performance of Swapper on Sketch benchmarks from a particular domain, we

divided the corpus into three disjoint sets randomly pSearch,Train,Testq. The Search

set was used to find patterns in the domain and Train set was used in the auto-tuning phase

for evaluation. And finally, the Test set was used to empirically confirm that the generated

simplifier is indeed optimal for the domain. Moreover, we used 2-fold cross validation to

ensure that there was no over-fitting on the Train set. We achieved this by exchanging

the Train and Test sets and auto-tuning with the Test set instead of the Train set. We

obtained similar-performing simplifiers as a result and verified that there was no over-fitting.

We implemented the evaluation of benchmarks in Swapper as a Python script that

takes a set of DAGs as input, runs Sketch on each of them multiple times (set to 5 in

our experiments) and obtains the quartile values (3 points that cut data into 4 equal parts

including the median) for time taken. In the graphs presenting Sketch solving times, we

show the upper and lower quartiles around the median with dotted or shaded lines of the

same color as the thick line depicting the median time. Also, note that we will not consider

simplification time in these experiments because of it being a one-time negligible (a fraction

of a second) time step as compared to further Sketch solving. We obtained 301 rules for

the AutoGrader domain and 105 rules for the Sygus domain. The optimal simplifier for

AutoGrader used 135 of the rules and the one for Sygus used 65 rules.

Benefits over the existing simplifier in Sketch

The Auto-generated simplifier reduced the size of the problem DAGs by 13.8% (AutoGrader)

and 1.1% (Sygus) on average as compared to the size of DAGs obtained after running

the Hand-crafted simplifier (Figure 7-2). On DAGs obtained after using the Auto-generated

simplifier, on average, the Sketch solver performed better than on those obtained by using

the Hand-crafted simplifier (Figure 7-3): (1) the Auto-generated simplifier made Sketch

run faster on 80% of the AutoGrader benchmarks and 90% of the Sygus benchmarks (2) The

average times taken by Sketch to solve a benchmark simplified using the Auto-generated

simplifier were 13s (AutoGrader) and 8s (Sygus) as compared to 20s and 21s respectively

99

for the Hand-crafted simplifier. Figures 7-2 and 7-3 show distribution of sizes and times

for Sketch solving after applying all three simplifiers, with percentiles on the x-axis. It

clearly shows the consistent improvement in performance by applying the Auto-generated

simplifier. Note that Sygus benchmarks are written at a level of abstraction that is very

close to the DAGs in Sketch and hence there aren’t many opportunities for size reduction

for these problems.

We found that there are two reasons why the auto-generated rules improved upon the

hand-crafted rules: (1) The synthesizer discovered rules with large LHS patterns that were

not present in the hand-crafted optimizer. (2) The autotuner was able to discover that some

rules caused a performance degradation even when they reduced the formula size.

Benefits over the unoptimized version of Sketch

Figure 7-2: Change in sizes with different simplifiers

Auto-generated simplifier reduced the size of the problem DAGs by 38.6% (AutoGrader)

and 1.6% (Sygus) on average (Figure 7-2). Application of Auto-generated simplifier results

in huge improvements in running times for the Sketch solver on both AutoGrader and

Sygus benchmarks as compared to application of Baseline. The average time of solving a

benchmark was reduced from 27.5s (AutoGrader) and 22s (Sygus) to 13s and 8s respectively

(Figure 7-3).

100

Figure 7-3: Median running-time percentiles with quartile confidence intervals

Figure 7-4: Domain specificity of the Auto-generated simplifiers: Time distribution

Domain specificity

We took the Auto-generated simplifier obtained from one domain and used it to simplify

benchmarks from the other domain and then ran Sketch on the simplified benchmarks.

Application of the Auto-generated simplifier obtained from Sygus increased the Sketch

running times drastically on a few AutoGrader benchmarks when compared to the appli-

cation of the Baseline simplifier (Figure 7-4) and resulted in Sketch running slower than

after application of the Auto-generated simplifier obtained from the AutoGrader domain.

Application of the Auto-generated simplifier generated for AutoGrader domain reduced the

running times of Sketch solver on average as compared to the Baseline on the Sygus bench-

marks, but the times were still far away from the performance gains obtained by application

of the Auto-generated simplifier generated for the Sygus domain (Figure 7-4). This validates

101

our hypothesis of these generated simplifiers being very domain-specific.

7.2.4 SAT Encodings Domain

Figure 7-5: SAT-Encodings domain case study

We performed an additional case study using Swapper on problems generated during

synthesizing optimal CNF (SAT) encodings [62]. We used a subset of 70 benchmarks with

solution times between 30s and 100s and divided it randomly into Search,Train,Test

sets with 21, 22, 27 benchmarks respectively. We compare the Hand-crafted simplifier against

the Auto-generated simplifier for this domain in Fig. 7-5. Swapper generated 117 rules and,

on average, the Sketch solving time reduced from 58.8s to 51.1s, and the DAG sizes were

reduced by 11%.

7.2.5 Analysis of Generated Rules and their Impact

In Fig. 7-2 the average size reduction for Sygus benchmarks is 1.1%, which isn’t clearly

visible in the graphs, but still these rewrites enable the Sketch solver to run faster. Sygus

benchmarks are written at a level of abstraction that is very close to the DAGs in Sketch.

By contrast, the AutoGrader benchmarks come from Python code that is automatically

translated to Sketch code which is then automatically translated to formulas. Each step in

this translation introduces inefficiency, so there is a lot more opportunity for optimization.

We show two example rules generated for the same 𝐿𝐻𝑆 pattern in Fig. 7-6. The rule

has both integers and arrays of integers as inputs. The supplementary C-like code is only

provided for better understanding of the semantics of the pattern – the actual semantics when

102

Figure 7-6: An example rule generated for AutoGrader benchmarks

interpreting the pattern internally in Sketch are different from the C-like interpretation and

follows the interpretation based on the SMT theory of arrays. We can see from the example

that: (1) it is a large 𝐿𝐻𝑆 pattern that is hard for a human to recognize as a potential source

of an optimization, (2) the generated rewrite rules are complicated to reason about, and (3)

there are two rules with different strengths of the predicates – this showcases the trade-off

between applicability (strength of the predicate) and the extent of the simplification (size

reduction from 𝐿𝐻𝑆 to 𝑅𝐻𝑆) because of the rewrite rules.

103

104

Chapter 8

EM-Synth system evaluation

In this chapter, we present some additional details of the RuleSynth algorithm along

with a high-level overview of our implementation of the EM-Synth framework. We also

discuss the implementation of the platform we built in order to conduct experiments and

compare different EM techniques with RuleSynth. We discuss the setup and results of

these experiments as well.

8.1 Algorithms and optimizations in EM-Synth

In this section, we first describe some algorithmic optimizations employed in EM-Synth and

the motivations behind using them. Then, we setup the terminology for the algorithms used

in the experiments presented later in this chapter.

8.1.1 Incremental grammar bounds in RS-CEGIS

To make sure that the generated rules are small and concise, we modify the RS-CEGIS al-

gorithm (Subsec. 3.4.1) to iteratively adjust the grammar bound on the number of attribute-

matching rules (𝑁𝑎) as it runs, starting with rules of size 1 and growing up to 𝑁𝑎, so that it

prefers smaller rules when they can be found. To be more precise, we introduce the following

loop in Algorithm 5 replacing line 6.

RS-CEGIS uses an optimized version of this loop where in CEGIS iteration 𝑖 ě 1, the

initial value of 𝑛𝑎 is set to the value of 𝑛𝑎 used to synthesize 𝜙𝑖−1 in the previous CEGIS

iteration (instead of starting with 𝑛𝑎 = 1). Since the set of examples being considered in

iteration 𝑖 is a superset of examples considered in iteration 𝑖− 1, if for any 𝑛𝑎 Synth could

105

Procedure Incremental grammar bounds
1 𝑛𝑎 Ð 1 // attribute-matching rules bound 𝑛𝑎

2 while 𝑛𝑎 ď 𝑁𝑎 do
3 𝜙𝑖 Ð Synth p𝐺GBFp𝑛𝑎, 𝑁𝑑q,ESYN,ℱq
4 if 𝜙𝑖 = null then // Unsatisfiable Synth
5 𝑛𝑎 Ð 𝑛𝑎 + 1 // try larger 𝑛𝑎

6 else
7 break

not find a GBF in iteration 𝑖 − 1, then for the same 𝑛𝑎 it will not be able to find a GBF

that matches all the examples in iteration 𝑖.

8.1.2 Sampling: bias in picking examples in RS-CEGIS

In CEGIS iteration 𝑖, the RS-CEGIS algorithm (Subsec. 3.4.1) tries to primarily choose

an example that is currently not being matched correctly. This guides the resulting GBF

towards higher accuracy on the example set by making more and more examples match

correctly. For optimality metrics like 𝜇F-measure, 𝜇precision, 𝜇recall it is important to focus on

finding GBFs that maximize the number of positive examples being matched correctly.

Note that if the set of examples is largely only negative examples (which is the case in our

benchmark datasets) then the likelihood of most of the chosen examples being negative is

high. This may result in the algorithm missing certain positive examples for smaller CEGIS

cutoffs (𝐾CEGIS) and thereby finding a solution with possibly lower 𝜇 even when the accuracy

is high. Hence, in RS-CEGIS we eliminate this bias based on the actual distribution of

positive and negative examples and replace it with a 50-50 chance of choosing a positive or

negative example, i.e., the sample routine (lines 3 and 14 in Algorithm 5) is modified as

described above.

8.1.3 Algorithms for entity matching using EM-Synth

In our evaluation of EM-Synth, we compare three different algorithms built using the

EM-Synth system. Two of them, (1) RS-SynthComp and (2) RS-Consensus, use dif-

ferent assembly and tuning methods and have already been discussed in Sec. 5.2. The

third algorithm RuleSynth is a simple extension of the RS-RANSAC algorithm described

in Subsec. 3.4.2 where RuleSynth simply chooses the best performing EM rules synthesized

106

across all CEGIS and RANSAC iterations without combining multiple EM rules together.

Note that RuleSynth can also be seen as an instantiation of our overall framework (Fig. 1-

1) where the assembly of components 𝒞 corresponds to

𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒p𝜋, 𝒞q = argmax
𝜙P𝒞

𝜇p𝜙,M,Dq

and the output of the assembly is independent of the parameter 𝜋, so there is no need for

any tuning of parameters.

In our experiments, we compare RuleSynth, RS-SynthComp and RS-Consensus

with other entity-matching techniques.

8.1.4 Bucketing-based optimized EM-rule testing

The final EM rule 𝜙 obtained from EM-Synth (using one of the RuleSynth, RS-

SynthComp, and RS-Consensus algorithms) will be applied to a pair of records p𝑟, 𝑠q
for 𝑟 P 𝑅, 𝑠 P 𝑆 to figure out whether or not these records match, where 𝑅rA1,A2, . . . ,Ans
and 𝑆rA1

1,A
1
2, . . . ,A

1
ns are two relations with corresponding sets of 𝑛 aligned attributes Ai

and A1
i for 𝑖 P r1, 𝑛s (same notation as in Subsec. 2.3.1).

In practice, the rule may be applied to large tables. Suppose that there are 𝑁𝑅, 𝑁𝑆

records in relations 𝑅 and 𝑆 respectively. To evaluate the EM rule as a query on all pairs

of records, a naïve approach would enumerate all such pairs and individually apply the rule

𝜙 𝑁𝑅 ˆ 𝑁𝑆 times. A faster approach would be to use “bucketing” of records [45] (based

on a locality-sensitive hashing function [118]) from both relations so that 𝜙 will only have

to be evaluated on a record p𝑟, 𝑠q when both 𝑟 and 𝑠 belong to the same bucket. This can

potentially reduce the number of records to compare from 𝑁𝑅 ˆ𝑁𝑆 to 𝑂p𝑚𝑖𝑛p𝑁𝑅, 𝑁𝑆qq.
Note that this approach can only be used when a GBF 𝜙 has a desired structure. To

be more specific, we require:

1. The GBF 𝜙 can be decomposed as:

𝜙 ”
´
𝑟rAis«p𝑓,𝜃q𝑠rA1

is
¯
^ 𝜙1

i.e., we are able to bucket those records together that may satisfy the first part

p𝑟rAis«p𝑓,𝜃q𝑠rA1
isq of the rule. Any records that will be mismatched by the first part

107

will be put in different buckets.

2. The similarity function 𝑓 has to be one of the few functions that have correspond-

ing locality-sensitive-hashing (LSH) function families allowing indexing based on a

threshold and hence, allowing bucketing e.g., Equality, Jaccard and Cosine similarity

functions. Examples of more such similarity functions are presented in [118]. At least

7 out of 30 functions considered in our experiments have such a corresponding LSH

family.

In Fig. 8-1, we present some examples of similarity functions and their corresponding

hashing-function families from the literature.

Similarity function Hashing function family

Equality Identity

Jaccard Similarity
Min-Hash [25,26]

Min-Max Hash [64] & others [118]

Cosine Similarity
Concomitant LSH [46]

Cross-polytope LSH [11]

Figure 8-1: Some examples of similarity functions with their corresponding hashing-function
families

In practice, this approach can reduce the time taken to run the query as shown by

the experiments in this thesis (Exp-7 in Sec. 8.4). It is important to note here that the

hashing-function families discussed here are probabilistic in nature and the bucketing may

result in some positive example pairs being mapped to different buckets (making them false

negatives) – but such an occurrence is very unlikely and can be mitigated by increasing the

amount of randomness used in the computation of these LSH families. In our experiments,

we did not observe such false negatives when bucketing with a hashing-function family.

8.2 System design and implementation

We implemented EM-Synth with both of the optimizations mentioned above and built a

platform around it to compare different EM techniques. The implementation of this overall

platform consists of three parts: feature processing, EM algorithms and experiment infras-

tructure. Fig. 8-2 shows a high-level diagram of the EM-Synth system. The dark red boxes

108

(e.g., “Pruning negative examples”) represent procedures or steps in the EM-Synth system,

the green boxes (e.g., “Metric 𝜇”) represent the inputs to the system, the blue boxes (e.g.,

“Feature vectors”) represent intermediate objects that can be fed as inputs to other proce-

dures, and the orange boxes (e.g., “Training module”) are the generic modules that can be

replaced with or instantiated with different parts based on what EM technique is being used.

We explain these in detail below.

RuleSynth, RS-SynthComp,  
RS-Consensus, SVM etc.

Feature
vectors

e1: (r1,s1) → +ve
e2: (r1,s2) → -ve

…
Labeled examples (M,D)

Pruning negative
examples

Cross-validation
module

Training
module

Metric 𝞵

Sketch tool
(Java & C++)

Positive record
pairs (r∈R,s∈S)

Relations (R,S) with
aligned schemas

Library of
similarity
functions

Testing
module

Training set
(feature vectors)

Testing set
(feature
vectors)

Linear-thresholds-
based custom

synthesizer (C++)

Metric 𝜇(𝜑,M,D),
rule 𝜑

rule 𝜑

Bucketing-based
query optimization

Similarity
function

computation

Sketch
specification

Sketch
output

Technique to train a rule 𝜑

Figure 8-2: EM-Synth implementation and experiments overview

8.2.1 Feature processing

This part of the infrastructure was used to create, maintain and manage feature vectors

shared by all EM techniques. The feature vectors in the context of EM-Synth are a mapping

from examples to a list of evaluations of all similarity functions on all aligned attributes i.e.,

109

given two relations 𝑅r𝐴1, 𝐴2, . . . , 𝐴𝑛s and 𝑆r𝐴1
1, 𝐴

1
2, . . . , 𝐴

1
𝑛s with aligned attributes (𝐴𝑖 is

aligned with 𝐴1
𝑖), a library of similarity functions ℱ and positive (M) and negative (D)

examples E = MYD, the feature-vector mapping for p𝑟, 𝑠q P 𝐸 is given by

𝑓𝑣p𝑟, 𝑠q = r𝑓p𝑟r𝐴𝑖s, 𝑠r𝐴1
𝑖sq for 𝑖 P r1, 𝑛s, 𝑓 P ℱs

Pruning negative examples

For all datasets except the Cora dataset, we had access to only positive examples M and we

had to construct the set of negative examples D from the relations 𝑅,𝑆 and M. To ensure

that negative examples in D are quite different from each other, we took the Cartesian

product of the relations and pruned pairs with high Jaccard tri-gram similarity values [68,69].

This pruning is similar to the method adopted in SIFI [116]. We varied the similarity

threshold across datasets to control the number of negative examples.

Similarity-function computation

We use a set of 29 similarity functions that were also used in the SIFI project [117].

This set includes functions from the Simmetrics library (https://github.com/Simmetrics/

simmetrics) written in Java and functions implemented by authors of SIFI in C++. We

also treat Equal and noNulls as two similarity functions that evaluate to 0 or 1. We imple-

mented a Python wrapper around the Java and C++ code using the Pyjnius [4] and Boost

Python [2] libraries. We use the outputs of these similarity functions rounded to a finite

precision of 3 decimals.

This computation was done in parallel, and the result was stored in a database using

the custom cluster computing software built for our framework (Chapter 6).

Example sampling: for cross-validation and limited-data experiments

We use a random sampler written in Python that maintains the fraction of positive examples

when sampling 𝑋% of the data from training data i.e., the fraction of positive examples in

the sample should roughly be the same as the fraction of positive examples in the full training

data. We also maintain these samples across various techniques so that we can do a fair

comparison across different EM techniques.

110

https://github.com/Simmetrics/simmetrics
https://github.com/Simmetrics/simmetrics

8.2.2 EM algorithms

We built a generic platform that can test various EM algorithms on our datasets. The

interfaces provided by the platform are abstracted as three libraries or modules called the

cross-validation module, the training module and the testing module. These modules imple-

ment a generic cross-validation framework where the cross-validation module either samples

the data or uses the existing samples of the training data to perform 𝑘-fold cross validation.

It provides the training set to the training module, which uses an EM technique (separate

box) to generate a rule or a classifier 𝜙. The testing module then evaluates 𝜙 and records

the metric in the cross-validation module. This process continues 𝑘 times. The statistics

corresponding to various runs e.g., time taken, the metric 𝜇 values, size of the classifier and

other metrics are stored in a database for easy access.

Implementation of EM-Synth based algorithms

The three algorithms (Subsec. 8.1.3) based on EM-Synth are implemented on top of the RS-

RANSAC algorithm (Subsec. 3.4.2) as separate Python scripts. The RS-RANSAC and RS-

CEGIS algorithms are instantiations of the basic training module that uses feature vectors

as a proxy for the examples and selects the appropriate feature vectors as per its choice of

the examples. RS-CEGIS also uses the testing module to find the counter-examples (i.e.,

the feature vectors corresponding to those that mismatch with the previously synthesized

GBF). RS-RANSAC is a simple loop in Python outside RS-CEGIS.

Synth routine: Python to Sketch bridge

RS-CEGIS uses the Sketch solver (implemented in Java and C++) along with the custom

synthesizer implemented inside Sketch in C++ to synthesize the EM rules. EM rules are

implemented as a nested list data-structure in Python. We build a bridge between the

Sketch tool and the Python script interpreting and testing the synthesized EM rules with

the help of a Sketch specification generator class in Python and a Sketch output parser

in Python. These two components enable quickly running the Sketch solver and parsing its

output. The custom synthesizer is also provided a table (as a text file) of similarity-function

evaluations only for the relevant examples used in the Sketch specification.

111

8.2.3 Experiment infrastructure

All experiments were run on multiple machines with Ubuntu 14.04 OS, 32 GB RAM and 16-

core 2.3 GHz CPUs. We discuss the algorithms implemented outside the EM-Synth system

below.

Other algorithms in the platform

We built infrastructure for comparing the EM-Synth algorithms with other techniques that

could be integrated into our platform easily. In particular we implemented the following

techniques:

∙ SVM, Gradient tree boosting: we use the Python scikit-learn library for these [85].

∙ Random forests, Decision trees: we use the Weka library [109] for these techniques.

These implementations were obtained from the authors of [54].

∙ SIFI: we use the C++ implementation obtained from the authors of [117].

We transform the feature vectors to the required formats of the two libraries before

running the experiments with these techniques. We also use a simple grid search [9] to

tune the hyper-parameters of these ML algorithms e.g., we try different kernels and penalty

hyper-parameters for SVM [5] and choose the values that perform the best in terms of the

metric 𝜇.

LSH-based bucketing

We use a MinHash locality-sensitive hashing (LSH) index [3,74] to bucket potentially similar

strings of a given attribute with respect to Jaccard similarity of the sets of their bi-grams and

a given threshold. We use the datasketch Python library for implementing this MinHash

LSH scheme [3] and produce all the possible pairs of examples inside each bucket to be

checked for a match using a rule in the next step.

Deployment of multiple experiments on a cluster

Similar to Swapper, we use the parallel jobs library (Chapter 6) built by us to run various

experiments in parallel. Moreover, for the same dataset, multiple instances of training are

run on the same machine for different folds. The result of each experiment run is stored in

112

a central database, and the full log of the experiment is stored in a shared file system. This

allows EM-Synth to quickly run multiple experiments and different parts of each experiment

in parallel.

8.3 Experimental setup

We discuss the experimental setup before we present the results in the next section. The

key questions we answer with our evaluation are:

1. How do our rules compare in interpretability and accuracy to other interpretable mod-

els? (Exp-1, Exp-2);

2. How do they compare in accuracy to expert-provided rules? (Exp-3);

3. How do they compare in accuracy to non-interpretable models, such as SVMs? (Exp-

4);

4. How do we perform when using limited training data? (Exp-5);

5. Can RuleSynth discover rules in reasonable amounts of time? (Exp-6);

6. How efficient are the RuleSynth rules compared to non-interpretable ML models

when applied to large datasets? (Exp-7); and

7. How important is the new special-purpose synthesizer (Subsec. 2.3.3) inside Sketch

for solving the EM-GBF rule-synthesis problem (Subsec. 2.3.3)? (Exp-8).

We describe the datasets, baseline approaches and the experimental results in the fol-

lowing sub-sections.

8.3.1 Datasets

Fig. 8-3 shows the four real-world datasets used in our evaluation. The Cora dataset has one

relation, while the others have two relations with aligned schemas. Positive examples for

every dataset are also given and we derive the negative examples using a Jaccard similarity

based pruning as explained in Subsec. 8.2.1. Figure Fig. 8-3 also shows the average number

of record pairs with at least one null value. These numbers show the importance of using

the custom noNulls function in a formula because noNulls in the if condition enables the

113

synthesizer to find smaller rules for the noNulls (then) vs nulls (else) cases. Some datasets

have a skewed distribution of nulls across attributes, e.g., for DBLP-Scholar, the attribute

year has around 40𝐾 nulls, whereas title and authors have 0.

#Matching #Record #Attr Avg #nulls
Pairs Pairs per Attr

DC 14, 280 184, 659 9 92, 955p50%q
DAG 1, 300 97, 007 4 22, 583p23%q
DLF 6, 048 341, 244 10 99, 629p29%q
DDS 5, 347 112, 839 4 12, 685p11%q

DC =Cora, DAG =Amazon-GoogleProducts
DDS =DBLP-Scholar, DLF =Locu-FourSquare

Figure 8-3: Dataset statistics

All of these datasets used in this thesis can be downloaded from this Google Drive folder1

and the instructions for understanding the data can be found at this Google document2.

We also briefly describe each dataset and its origin below:

1. Amazon-GoogleProducts: This is an e-commerce dataset that contains attributes

(name, description, manufacturer, price) of certain products as presented on Ama-

zon.com and the product search service of Google accessible through the Google

Base Data API. The entities are matched across data obtained from Amazon.com

and Google Base Data API. This dataset was obtained from the authors of [69].

2. DBLP-Scholar: This is a bibliographic dataset that contains attributes (title, au-

thors, venue, year) about research publications collected from the DBLP server and

the search engine Google Scholar. the entities are matched across data obtained from

DBLP and Google Scholar. This dataset was also obtained from the authors of [69].

3. Cora: This is also a bibliographic dataset that contains attributes (author, title, venue,

address, publisher, editor, date, volume, pages) of citations of research publications

collected from multiple sources as a part of the Cora search engine [78]. The entities

are matched across multiple citations i.e., entity matching in this dataset corresponds

to deduplication of citations. This dataset was curated by and obtained from the

authors of SIFI [116].
1The folder is available at https://goo.gl/rCVZ79
2The instructions document is available at https://goo.gl/cGmkNJ

114

https://goo.gl/rCVZ79
https://goo.gl/cGmkNJ

4. Locu-Foursquare: This is a local-business-discovery dataset that contains at-

tributes (website, name, locality, country, region, longitude, phone, postal_code,

latitude, street_address) of local businesses from two online aggregators (Locu and

FourSquare). We obtained this dataset and the permission to use it from Locu and

curated it ourselves. This dataset was also used in the Advanced Topics in Computer

Systems course at MIT3.

8.3.2 Performance and interpretability metrics used

In our experiments, we use F-measure (Subsec. 5.2.1) as the metric to be optimized. To

compare interpretability of rules produced by different approaches, we count the number of

attribute-matching rules or atoms (Subsec. 2.3.1) in the Boolean formula representing the

rule.

8.3.3 Similarity functions used

We use a set of 29 similarity functions that were also used in the SIFI project. On top of

these, we also use the noNulls function. Note that a difference between our evaluations as

compared to SIFI is in the way we handle null values – our similarity functions return 0 as

long as one of the input values is null in our framework whereas for SIFI, if both values are

null, the similarity functions will return 1. Figure Fig. 8-4 reports a complete list of the

functions used in this evaluation.

8.3.4 Input features for ML techniques

For every example record pair, we evaluate all available similarity functions on strings from

aligned attributes and construct a vector of these numerical values between 0 and 1. These

vectors are used as input feature vectors for all ML techniques. For SVM, we also normalize

the feature vectors to have zero mean and unit variance during training and use the same

scaling while testing [7].

8.3.5 Comparisons with state-of-the-Art ML approaches

We compare the three algorithms from EM-Synth (RuleSynth, RS-SynthComp, and RS-

Consensus) with decision trees, SVM [117], gradient tree boosting [34] and random
3https://github.com/mitdbg/asciiclass/blob/master/labs/lab4/README.md

115

https://github.com/mitdbg/asciiclass/blob/master/labs/lab4/README.md

1. Equal 2. noNulls 3. EditDistance
4. CosineToken 5. DiceToken 6. OverlapToken
7. JaccardToken 8. CosineGram2 9. DiceGram2

10. OverlapGram2 11. JaccardGram2 12. CosineGram3

13. DiceGram3 14. OverlapGram3 15. JaccardGram3

16. BlockDistance 17. ChapmanLengthDeviation
18. ChapmanMatchingSoundex 19. ChapmanMeanLength
20. ChapmanOrderedNameCompoundSimilarity
21. EuclideanDistance 22. Jaro 23. JaroWinkler
24. MatchingCoefficient 25. MongeElkan
26. NeedlemanWunch 27. SmithWaterman
28. SmithWatermanGotoh 29. Soundex
30. SmithWatermanGotohWindowedAffine

Figure 8-4: Input-similarity functions (ℱ)

forests [54]. All ML methods solve entity matching by treating it as a binary-classification

problem.

While the output from SVM lacks logical interpretability, a decision tree can be inter-

preted as a Boolean formula with multiple DNF clauses arising from traversal of paths that

lead to positive classification. However, the outputs of random forests and gradient tree

boosting are tedious to interpret because: (1) the output has tens to hundreds of trees that

are aggregated to make the final decision, (2) each decision tree in random forests can have

a large depth, resulting in thousands of nodes, making them hard to interpret individually,

and (3) there are hundreds of weights associated with trees or leaves of the trees that cannot

be translated to Boolean logic.

8.3.6 Comparisons with rule-based learning approaches

We compared RuleSynth, RS-SynthComp, and RS-Consensus (from Subsec. 8.1.3)

against a heuristic-based approach, SIFI [117], which searches for optimal similarity functions

and thresholds for the attribute comparison given a DNF grammar provided by a human

expert. In contrast, the GBFs are automatically discovered by RuleSynth without any

expert-provided structure of the rules.

116

8.3.7 Techniques and parameters

For all ML techniques, we used a simple grid search [9] of values for different parameters.

We list the parameters being searched for below:

1. For decision trees: depth of the tree, minimum number of examples needed for a split.

2. For SVM: choice of kernel (LinearSVC or RBF) [5], the penalty hyper-parameter 𝐶 in

the loss function and 𝛾 hyper-parameter for RBF kernel.

3. For gradient tree boosting: the learning rate, maximum depth of a tree, maximum

number of trees.

4. For random forests: maximum depth of a tree, number of trees.

For decision trees, we separately present results for depths 3, 4 and 10 (the default

configuration in Weka). For SVM, we separate the results for the two kernels. For gradient

tree boosting and random forests, we present results with small #-atoms, i.e., 2-4 trees of

depth 2-4 (so that #-atoms is bounded by 60), and large #-atoms (searching around the

defaults in the Scikit learn [85] libraries on the grid), i.e., 5-15 depth or unlimited-depth trees

for random forests and 25-100 trees with depth 2-4 for gradient tree boosting. Note that,

even though these two techniques have interpretable trees, each tree or leaf has a numerical

weight assigned to it that makes them hard to interpret. For SVM we use balanced class-

weights as a low-effort configuration for optimizing F-measure [82]. We also ran SIFI with

default configurations and grammars given by human experts as input.

We use the three algorithms from EM-Synth i.e., RuleSynth, RS-SynthComp,

and RS-Consensus (from Subsec. 8.1.3). For these three algorithms, we have the following

parameters with their respective default values:

1. The depth of the grammar 𝑁𝑑 = 4, which is enough to represent formulas with at

most 15 atoms.

2. A high 𝐾CEGIS = 1000 (Subsec. 3.4.1) with a timeout of 15 minutes per CEGIS

iteration so that the CEGIS loop runs until it finds a set of examples for which Sketch

cannot synthesize a valid rule or it times out and collects all the rules obtained till

then.

117

3. The bound 𝐾RANSAC = 5 (Subsec. 3.4.2) to restart CEGIS 5 times and explore differ-

ent underlying sets of examples.

4. The number of attribute-matching rules 𝑁𝑎: for RuleSynth, we set 𝑁𝑎 = 8 so that

it is comparable with the number of atoms in a decision tree of depth 3, and since we

are not composing any of the synthesized rules together, these rules would be large

enough by themselves. For RS-SynthComp we use 𝑁𝑎 = 5 and combine 𝐵 = 3 rules

out of 𝐾 = 10 rules (Subsec. 4.2.1) to generate a composite GBF so that in total

#-atoms is bounded by 15 and is comparable with #-atoms in a decision tree of depth

4. For RS-Consensus, we use 𝑁𝑎 = 8 and combine 𝐵 = 5 rules out of 𝐾 = 15

rules (Subsec. 4.2.2) to have similar #-atoms as the small gradient tree boosting and

random forests (with 2 − 4 trees of depth 2 − 4).

8.3.8 Performance evaluation

We performed 𝐾-fold cross-validation (for 𝐾=5) on each of the datasets used, where we

divided the data into 𝐾 equal fractions (folds) randomly and performed 𝐾 experiments. In

each experiment one of the 𝐾 folds was the test set while the remaining 𝐾 − 1 folds were

training. We report the average F-measure obtained across all folds on the test sets as the

performance metric (Figure 8-7). Note that we use the same folds for each technique we

compare, and for each fold we may find different optimal values for the parameters of the

ML techniques.

For limited-training-data experiments (Exp-5), we randomly sample a fraction 1
𝐾 of ex-

amples (for multiple values of 𝐾 = 100, 40, 20, 10, 7, 5) and use it for training. Each fraction
1
𝐾 corresponds to a different percentage 𝑃% of examples (i.e., 𝑃 = 1, 2.5, 5, 10, 14.3, 20). We

use the rest
`p100 − 𝑃 q%˘

of the examples for testing, and we train and test on 100 such

randomly selected sets for each percentage 𝑃 . We report the average test-set F-measure and

size of matching rules obtained across all 100 runs (with 99% confidence intervals).

8.4 Experimental results

Now that we have discussed the experimental setup, we are ready to present the experimental

results.

118

8.4.1 Exp-1: Interpretability

By interpretability, we mean how readable and understandable the discovered rules are.

We measure it as being inversely proportional to the number of attribute-matching rules (or

atoms) present in the rule. In other words, interpretability is defined as the number of atomic

similarity function comparisons with a threshold «p𝑖, 𝑓, 𝜃q in the formula representing the

rule. For clarity, we represent atoms or attribute-matching rules as
`
𝑓𝑛r𝑎𝑡𝑡𝑟s ě 𝜃

˘
, where

𝑓𝑛 is the name of the applied similarity function, 𝑎𝑡𝑡𝑟 is the name of the matched attribute,

and 𝜃 is the corresponding threshold, e.g., EditDistancertitles ě 0.73 is a valid atom. The

rationale behind this interpretability definition is that fewer atoms make a rule easier to

read. This supports the idea that a complex DNF is less interpretable than a semantically

equivalent but concise GBF. We also conduct an informal user study with 27 participants

to show the correlation between the number of atoms and the user preference for more

interpretable rules. In short, statistical ML methods with weights and function parameters

(e.g., SVM, random forests, gradient tree boosting) and logical structures with hundreds or

thousands of atoms (e.g., decision tree with depth 10) are not human interpretable. Methods

with clear logical structures, such as GBFs, DNFs, and decision trees with depths 3 and

4, are human-interpretable.

Below, we present two GBFs, 𝜙𝑠𝑦𝑛𝑡ℎ and 𝜙𝑡𝑟𝑒𝑒, obtained by using RuleSynth and

decision trees of depth 3, respectively, on record pairs from the Cora dataset. We obtained

both GBFs on the same training set as the best rules. These rules result in average F-

measures of 0.83 (𝜙𝑠𝑦𝑛𝑡ℎ) and 0.77 (𝜙𝑡𝑟𝑒𝑒) on test data. The GBF 𝜙𝑠𝑦𝑛𝑡ℎ demonstrates

the conciseness of formulas generated by RuleSynth as compared to 𝜙𝑡𝑟𝑒𝑒, as 𝜙𝑠𝑦𝑛𝑡ℎ has

only 6 atoms whereas 𝜙𝑡𝑟𝑒𝑒 has 12 atoms. Also note that the RuleSynth rules include

if/then/else clauses that allow them to be more compact that the DNF-based rules the

decision tree produces.

𝜙𝑠𝑦𝑛𝑡ℎ :
`

ChapmanMatchingSoundexrauthors ě 0.937
Ź

if noNullsrdates ě 1

then CosineGram2rdates ě 0.681

else NeedlemanWunchrtitles ě 0.733
˘ Ž

`
EditDistancertitles ě 0.73
Ź

OverlapTokenrvenues ě 0.268
˘

119

Figure 8-5: Interpretability results for 5-folds experiment (80% training and 20% testing
data)

𝜙𝑡𝑟𝑒𝑒 :
`

OverlapGram3rtitles ě 0.484
Ź

MongeElkanrvolumes ě 0.429
Ź

Soundexrtitles ě 0.939
˘ Ž

`
OverlapGram2rpagess ě 0.626
Ź

MongeElkanrvolumes ě 0.429
Ź `

Soundexrtitles ě 0.939
˘˘ Ž

`
ChapmanMeanLengthrtitles ě 0.978
Ź `

OverlapGram3rauthors ě 0.411
˘

Ź `
MongeElkanrvolumes ě 0.429

˘˘ Ž
`

CosineGram2rtitles ě 0.730
Ź

OverlapGram3rauthors ě 0.411

120

Ź `
MongeElkanrvolumes ě 0.429

˘˘

Here, we present one representative GBF detected by RuleSynth (or its variants) for

each of the remaining datasets. 𝜙𝑠𝑦𝑛𝑡ℎ indicates a GBF generated using RuleSynth.

∙ Amazon-GoogleProducts:

𝜙𝑠𝑦𝑛𝑡ℎ : CosineTokenrtitles ě 0.571

∙ Locu-Foursquare:

𝜙𝑠𝑦𝑛𝑡ℎ : if noNullsrregions ě 1

then
``
MongeElkanrstreet_addresss ě 0.861
Ž`

ChapmanMeanLengthrlocalitys ě 0.161
Ź

Jarornames ě 0.753
˘˘˘

else EuclideanDistancernames ě 0.678

∙ DBLP-Scholar:

𝜙𝑠𝑦𝑛𝑡ℎ :
``
SmithWatermanGotohrtitles ě 0.84
Ź

if noNullsryears ě 1

then OverlapGram2ryears ě 0.833

else MongeElkanrauthorss ě 0.9
˘

Ž`
ChapmanMatchingSoundexrtitles ě 0.965
Ž

NeedlemanWunchrtitles ě 0.807
˘

Ź`
ChapmanMeanLengthrauthorss ě 0.536
Ž

SmithWatermanrauthorss ě 0.846
˘˘

As described earlier (Sec. 4.2), RS-SynthComp and RS-Consensus produce larger GBFs

by assembling smaller GBFs. 𝜙𝑆𝑦𝑛𝑡ℎ𝐶𝑜𝑚𝑝 is one such composite GBF generated by RS-

SynthComp, and 𝜙𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 is another such composite GBF produced by RS-Consensus

for the Amazon-GoogleProducts dataset.

121

𝜙𝑆𝑦𝑛𝑡ℎ𝐶𝑜𝑚𝑝 :
``
a0

Ž
a1
˘Ź

a2
˘

a0 : CosineTokenrtitles ě 0.55

a1 : OverlapGram3rtitles ě 0.609

a2 : CosineTokenrtitles ě 0.489

𝜙𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 : count_true
`
a0, a1, a2, a3, a4

˘ ě 3

a0 : EditDistancertitles ě 0.758
Ž

OverlapTokenrtitles ě 0.817

a1 : CosineTokenrtitles ě 0.309
Ź

`
EditDistancermanufacturers ě 0.550

Ž
OverlapGram2rtitles ě 0.861

˘

a2 : CosineTokenrtitles ě 0.601

a3 : if
`
noNullsrmanufacturers ě 1

˘

then SmithWatermanrdescriptions ě 0.178

else OverlapTokenrtitles ě 0.55

a4 : if
`
noNullsrmanufacturers ě 1

˘

then Soundexrtitles ě 0.978

else CosineGram2rtitles ě 0.646

Figure 8-5 shows the interpretability results with respect to the number of atoms for

all datasets. It shows that the RuleSynth and the RS-SynthComp algorithms pro-

duce more interpretable rules, i.e., with fewer atoms, than decision trees with depths 3

and 4 for all datasets. In particular, RuleSynth produces rules that are (i) more in-

terpretable than decision trees with depth 3 for all datasets and (ii) up to eight times

more interpretable than decision trees with depth 4 (see dataset Amazon-GoogleProducts).

The RS-SynthComp algorithm produces rules with more atoms but still has better inter-

pretability than decision trees with depth 4. Moreover, as we will see in Exp-2, the rules

produced by RS-SynthComp are more effective than decision trees with both depth 3

and 4. The RS-Consensus algorithm produces rules with even more atoms, but they still

have fewer atoms than small gradient tree boosting and random forests. Small gradient

tree boosting and random forests are also not easily interpretable due to the presence of

numerical weights along with the small trees.

Figure 8-5 also tells us that the number of atoms increases exponentially with the depth

of the decision trees i.e., the deeper is the tree, the less interpretable the corresponding

rules are. For example, it is nearly impossible to interpret decision trees of depth 10 with

122

thousands of atoms.

Figure 8-6: User interpretability preference: Cora, Amazon-GoogleProducts (AGP), Locu-
FourSquare (LFS), DBLP-Scholar (DBLP)

User study. Figure 8-6 shows the results of our informal user study with 27 CS researchers

from six institutions. We gave each participant 8 multiple-choice questions with 3 options

for the answer. Each question comprised a pair of well-formatted rules generated by two

different techniques from the same training data. The participant was asked to select which

one of the two rules they thought was more interpretable (an example question and rules

are shown in Fig. 8-8). Each participant was given 2 questions for each dataset. One

question compared the rules generated by RuleSynth against decision trees of depth 3,

and the other compared RS-SynthComp against decision trees of depth 4. We observe

from the results that the rules with fewer atoms are preferred by more users. Generally

the rules generated by RuleSynth and its variants are preferred except in one case (i.e.,

RuleSynth on DBLP-Scholar), where the decision trees have a similar number of atoms

as our algorithms, as shown in Figure 8-5. On average, 67.15% of the responses state that

the rules generated by our algorithms are more interpretable, while only 23.13% prefer the

decision trees, and 9.72% state no preference. This supports the validity of #-atoms as our

measure of interpretability.

These results overall showcase the ability of EM-Synth to generate concise GBFs, yield-

ing compact and more interpretable rules than other interpretable methods.

123

Figure 8-7: Effectiveness results for 5-folds experiment (80% training and 20% testing data)

8.4.2 Exp-2: Effectiveness vs. interpretable decision trees

We now evaluate the effectiveness of rules generated by our algorithms against the ones

found by decision trees. As mentioned before, we use the average F-measure across 5 folds

as the effectiveness metric.

Figure 8-7 shows the average F-measures for different interpretable techniques. We

observe that RuleSynth achieves a higher F-measure than decision trees with depth 3 for

all datasets, except for DBLP-Scholar where the F-measures are comparable. Decision trees

achieve higher F-measures when increasing their depth from 3 to 4 for all datasets. However,

RS-SynthComp still results in higher F-measures than decision trees with depth 4 on all

data sets.

Moreover, as we saw in Figure 8-5, each of RuleSynth and RS-SynthComp produces

more interpretable rules than decision trees with depth 4 for all datasets. From Figures 8-5

124

Figure 8-8: Interpretability user study form for the participants

and 8-7, we conclude that decision trees can get better F-measures by increasing their depth,

but this comes at a significant sacrifice to their interpretability. In contrast, EM-Synth

can get better F-measures by using the RS-SynthComp and RS-Consensus algorithms

while not sacrificing interpretability as much. For example, for the Amazon-GoogleProducts

dataset, increasing the depth of decision tree from 3 to 4 increases the F-measure from 0.484

to 0.553 while the average number of atoms increases from 4.6 to 10.2. In contrast, the

RS-SynthComp increases the F-measure from 0.567 to 0.614 while increasing the average

number of atoms from 1.4 to 4.2.

8.4.3 Exp-3: Effectiveness vs. expert-provided rules

To further demonstrate the effectiveness of GBFs produced by our algorithms, we compare

our algorithms with SIFI [117]. SIFI requires experts to provide a DNF template from

experts as an input and completes it to generate a rule. In contrast, algorithms from

EM-Synth discover rules automatically, reducing the effort needed from an expert.

Figure 8-7 shows that algorithms from EM-Synth perform better than SIFI for all

datasets. In contrast with SIFI, which employs a heuristic to search through a smaller

space of rules, RuleSynth searches through a huge space of generic GBFs. This allows

us to discover various corner cases that can be sometimes missed by an expert-provided ex-

125

pression. In addition, as shown in Figure 8-5, RuleSynth generates GBFs that are more

concise (and thus interpretable) than the DNFs produced by SIFI for all datasets.

8.4.4 Exp-4: Effectiveness vs. non-interpretable methods

We now compare the algorithms from EM-Synth with four ML algorithms: (1) Deci-

sion trees with depth 10, (2) SVM, (3) Random forests, and (4) Gradient tree boosting.

Figure 8-7 shows the results for interpretable methods, and Figure 8-9 gives the results

for non-interpretable methods. We observe that all three algorithms RuleSynth, RS-

SynthComp, and RS-Consensus achieve smaller F-measure values than the ML algo-

rithms on an average. Still, RS-Consensus achieves quite comparable F-measures, with

the F-measure difference between the ML best algorithm and RS-Consensus being 0.08,

0.05, 0.02, and 0.04 for each of the four data sets. However, the effectiveness of these ML

algorithms comes at a high price. We see in Figure 8-5 that these four ML algorithms are

not interpretable: (i) SVM does not produce rules, (ii) decision trees with depth 10 yield

rules with around 1𝐾 atoms for all datasets, (iii) random forests and gradient tree boosting

provide both rules with 1K-13K atoms with hundreds of weights, which are also impossible

to interpret for a human.

Figure 8-9: Effectiveness results for 5-folds experiment: RS-Consensus vs. non-
interpretable methods

8.4.5 Exp-5: Variable training data

In this experiment, we vary the default number of folds (𝐾 = 5) by randomly sampling a

fraction 1
𝐾 of training examples with 𝐾 = 100, 40, 20, 10, 7, 5. Each fraction 1

𝐾 corresponds

126

to a different percentage 𝑃% of examples (i.e., 𝑃 = 1, 2.5, 5, 10, 14.3, 20). We use the rest
`p100 − 𝑃 q%˘

of the examples for testing, and we train and test on 100 such randomly

selected sets for each percentage 𝑃 . We report the average test-set F-measure and size of

matching rules obtained across all 100 runs (with 99% confidence intervals) for each dataset.

We used a cluster with 70 parallelism to run these experiments. For each of the 4

datatsets, 4 techniques and 6 training-data percentages – we run the experiment 100 times

on different random training sets (note that the training sets were kept the same across

each technique). These 4 ˆ 4 ˆ 6 ˆ 100 = 9600 runs with 70 parallelism took 36 hours in

total with various techniques taking different times on average across their 3000 runs each:

(1) RuleSynth: 2436 s, (2) RS-SynthComp: 663 s, (3) Decision trees (depth 3): 79 s,

(4) Decision trees (depth 4): 86 s. Figure 8-10 shows the comparison between interpretable

decision trees and algorithms from EM-Synth on the Locu-Foursquare dataset with different

percentages (1% to 20%) of training data. The figures for the other datasets show similar

trends in Figures 8-11,8-12,8-13.

Figure 8-10: Locu-Foursquare (100 runs with 99% CIs on the means in the shaded regions)

Figure 8-11: Cora (100 runs with 99% CIs on the means in the shaded regions)

127

Figure 8-12: Amazon-GoogleProducts (100 runs with 99% CIs on the means in the shaded
regions)

Figure 8-13: DBLP-Scholar (100 runs with 99% CIs on the means in the shaded regions)

We compare decision trees (depth 3) with RuleSynth since they both produce rules

with smaller sizes, and decision trees (depth 4) with RS-SynthComp since they both

produce interpretable rules with larger sizes. Both RuleSynth and RS-SynthComp out-

perform decision trees of depth 3 and 4, respectively, in effectiveness (higher F-measure) on

all datasets. At the same time, RS-SynthComp generates more interpretable (lower num-

ber of atoms) rules than decision trees (depth 4). RuleSynth and decision trees (depth

3) both generate small and interpretable rules (2-7 atoms on average). RuleSynth gener-

ates smaller rules for 3 out of 5 datasets, has similar interpretability for Locu-Foursquare,

and generates slightly larger rules for DBLP-Scholar. RS-SynthComp is the most effective

method for generating interpretable rules (2-14 atoms on average) with limited training data

on all datasets.

128

8.4.6 Exp-6: Efficiency of training

The algorithms from EM-Synth provide the flexibility for users to control how much the

algorithm should explore in the CEGIS loop (bound 𝐾CEGIS, time limit, grammar bounds)

and how many times it should restart (bound 𝐾RANSAC). Figure 8-14 shows that the

algorithms from EM-Synth take at most an hour to search through the huge space of rules

in order to produce an effective and concise rule as output for all datasets in Fig. 8-3. This

is a reasonable amount of time as compared to what it takes experts to examine the dataset

and write their own rule expressions, especially given the low cost of computation relative

to human time. For example, our experts took around 2 hours on average to write a DNF

expression for SIFI per dataset.

Figure 8-14: Efficiency of training (average time for training per fold) for 5-folds experiment
(80% training { 20% testing)

Figure 8-14 also shows that SIFI searches through a smaller constrained space in at most

40 minutes to produce a rule. Decision trees with depth 3 and 4 produce a rule in less than

a minute, but the produced rules are neither as concise nor as effective as rules produced by

129

RuleSynth and its variants (Exp-2). Both decision trees with depth 10 and SVM take at

most 8 minutes to produce a rule, but they are not designed to expose interpretable results

(Exp-4).

8.4.7 Exp-7: Efficiency of Testing

Figure 8-15: Efficiency of testing a classifier: SVM vs. RuleSynth-generated rule on all
pairs and bucketed pairs

When we have 𝑁 records and we want to apply a rule or a classifier on each pair of

these records to identify duplicates, in general, applying a rule would require enumerating

all 𝑂p𝑁2q pairs and computing the relevant similarity functions. Note that until now, for

training, we pre-computed these similarity functions, but now, for testing the rule in a new

environment, we have to compute the relevant similarity functions again to be able to apply

the rule or the classifier. For a classifier that uses many similarity functions, this process

becomes prohibitively slow since they have to compute all of them; as shown in Fig. 8-17,

SVM is much slower than rules applied on all pairs. Hence, applying smaller rules on all pairs

already has an advantage over large classifiers that utilize many similarity functions with

numerical weights like SVM. Moreover, for smaller GBF rules with a specific structure, one

can use a hashing scheme [118] to bucket similar records as a first pass, which reduces the

pairwise comparisons from 𝑂p𝑁2q to 𝑂p𝑀2q where 𝑀 ! 𝑁 (as explained in Subsec. 8.1.4).

130

Figure 8-16: Efficiency of testing a classifier: RuleSynth-generated rule on all pairs vs.
bucketed pairs

The rule application on buckets takes much less time (1 − 4s) than applying the rule on all

pairs (30− 200s), as shown in Fig. 8-17. The full variation of time taken for testing against

the number of records used for the rules in Fig. 8-17 can be seen in Figures 8-15 and 8-16.

rule # record
pairs

time taken (s)

SVM rule on
all pairs

rule on
buckets

DC

𝜙1

360,000 3,576.18
55.17 2.56

𝜙2 32.05 2.67
𝜙3 87.91 3.63
𝜙1

810,000 N/A
127.29 8.30

𝜙2 61.38 5.54
𝜙3 176.46 8.85

DAG

𝜙1
1

360,000 12,528.3
30.28 0.80

𝜙1
2 34.47 1.02

𝜙1
3 98.94 1.17

𝜙1
1

810,000 N/A
71.80 1.03

𝜙1
2 87.23 1.9

𝜙1
3 216.61 3.65

DC =Cora, DAG =Amazon-GoogleProducts

Figure 8-17: Efficiency of testing

131

We identified 3 RuleSynth-generated rules each for two datasets that are of the form

pfsimrattrs ěq 𝜃 ^ 𝜙1 where 𝜙1 is a general GBF and 𝑓𝑠𝑖𝑚 is a similarity function for which

there is a locality-sensitive-hashing (LSH) family available [118]. Note that in EM-Synth,

we can also force this structure for all rules with our flexible grammar. For this experiment,

we found rules generated by RuleSynth that have the format mentioned above with 𝑓𝑠𝑖𝑚

being the Jaccard function over the set of 𝑛-grams (with 𝑛 = 2) of the input strings. Using

the MinHash LSH scheme described in Subsec. 8.1.4, we built an index on the attribute

attr with Jaccard threshold 𝜃 to identify potentially similar pairs and reduce the number of

record pairs to compare.

Figure 8-18: Time taken by traditional Sketch, Z3 [41] solver and Sketch with custom
synthesizer (Sketch Optimized).

132

8.4.8 Exp-8: Impact of the custom synthesizer in Sketch

In this subsection, we show that using the special-purpose synthesizer (Subsec. 2.3.3) in

Sketch is very important for EM-Synth to scale well. To show this we compare the run-

ning times of the different solvers on the synthesis instances from one CEGIS loop (multiple

iterations with increasing number of examples) for all 4 datasets. The comparison is pre-

sented in Fig. 8-18. Note that the grammar bound 𝑁𝑎 (denoted by “Num Atoms” in the

figure) is incrementally increased from 1 to 7, and there are discontinuous jumps in the

graphs when the value of 𝑁𝑎 changes, because it implies that there was no rule for 𝑁𝑎 = 𝑖

with 𝑛 examples, so the EM-Synth system tries to find a rule with 𝑁𝑎 = 𝑖 + 1 again with

the same 𝑛 examples. As we can see from Fig. 8-18, the running times for many synthesis

instances was decreased from more than 30 minutes (timeout for these runs) to less than a

minute and in most cases less than 20 seconds when using the custom synthesizer. Without

this special-purpose synthesizer, the overall time for even one CEGIS loop will go up to a

day and this may make the rule discovery prohibitively slow for practical purposes.

133

134

Chapter 9

Related Work

In this section we discuss the relevant related work. We start with the related work for

the overall framework (Sec. 9.1) and then discuss the related work for each of the systems

instantiated from this framework i.e., the Swapper system (Sec. 9.2) and the EM-Synth

system (Sec. 9.3).

9.1 Overall framework

9.1.1 Combining program synthesis and machine learning

The area of combining statistical machine learning with program synthesis has seen a re-

newed interest and there has been a lot of recent work that aims to use statistical learning for

program synthesis. Recent tools built using the programming by example [56] framework,

target data wrangling problems such as data transformation, extraction and cleaning. These

tools efficiently synthesize desired programs with a probabilistic or numerical metric being

optimized [95, 99]. The key idea in these tools is to first learn all the programs consistent

with a given set of examples (represented succinctly using version-space algebra), and then

rank them using a ranking function to return the most desirable program amongst them.

The ranking function can either be provided by a domain expert or can be learned using

machine learning from training benchmarks [98].

Another recent work [90] provides a way to use statistical optimization techniques to

synthesize programs from supervised example-based I/O data that can also potentially tol-

erate some noise in the data. The framework presented in [90] can be seen as a special case

135

of our framework for supervised learning problems with no logical correctness constraints on

the function to be synthesized. This approach was used to synthesize bitstream programs

from a dataset of examples with some noise, and programs in a domain-specific language

(DSL) that condition the predictions made by a statistical code completion system.

There has also been a lot of recent interest in using deep learning for program syn-

thesis [101]. The key idea in these approaches is to design neural architectures that can

encode a specification (such as input-output examples or natural language) and generate

the corresponding program as the output. Since the neural architectures are trained on a

large amount of training programs (typically generated synthetically) in a given domain,

the networks are able to synthesize new programs in the same domain from very few input-

output examples. This approach has been used to learn string transformation programs in

the RobustFill system [43]. The RobustFill system uses LSTM networks and encodes input

and output strings as a sequence of characters, whose hidden representations are then fed to

an LSTM sequence decoder to generate tokens in the DSL as an output program. Another

approach uses Reverse-Recursive Recurrent Neural Networks (R3NNs) [84] as decoders in

comparison to sequence decoders that tries to also encode the tree structure of the programs.

A similar approach based on R3NNs has also been applied to learn composition of API func-

tions that denote semantic string transformations [20]. Neural-networks-based methods have

also been used to synthesize grammars from example input files to enable grammar-based

fuzzing [53] and automatically learning error models (a set of rewrite rules) for synthesizing

repairs for student submissions to introductory programming assignments [19,89].

9.1.2 Program synthesis with quantitative objectives

Quantitative program synthesis for reactive systems is another active area of research where

programs (or reactive controllers) are constructed from specifications provided as automata

for correctness of its behavior along with some quantitative objective [23] to be optimized.

This objective is usually computed over many possible program behaviors e.g., worst-case

costs, expected rewards over a probability distribution [32], expected rewards with partial

information [30] etc. These synthesis techniques have been applied to different domains like

robust or self-fixing programs [22], probabilistic systems [32], concurrent data structures [30].

Unlike our framework, these techniques rely on analyzing the behaviors for correctness and

rewards at the same time. Moreover, the numerical objective (or score) is limited to a few

136

options typically studied in the corresponding theory of games or Markov decision processes

that are used to solve the synthesis problems [113].

9.1.3 Synthesis of components

The sub-problem of synthesizing components having logical structure provided by a grammar

is solved by using application-domain-specific knowledge. This is analogous to doing syn-

thesis in domain-specific languages (DSLs). In our framework, the synthesis-of-components

step corresponds to doing synthesis in the DSL of the components being considered.

In recent years, program synthesis has seen a wide variety of applications when targeted

to specific domains e.g., [42, 52, 57, 88, 114, 119]. Domain specificity narrows the search

space for programs and makes it possible to bake domain-specific insights into the synthesis

algorithm to make it efficient. That being said, a lot of these applications have been one

of a kind i.e., for every DSL, researchers develop their own search procedures, custom data-

structures and generally base their algorithms on explicit enumeration with some domain-

specific pruning.

In this thesis, we describe two ways of incorporating domain specific insights while per-

forming synthesis with a general purpose synthesizer called Sketch [111]: (1) an outer re-

finement method to maintain high-level domain-specific constraints while querying Sketch

repeatedly and prune the high-level constraints based on the feedback from Sketch (2)

an inner domain-specific theory solver that can be fitted inside the Sketch synthesizer

to solve problems from these domains efficiently. This customization of a general purpose

solver (Sketch) enables reusing a lot of infrastructure already built in Sketch for our

domain-specific synthesis problems.

9.2 Swapper system

A recent paper introducing Alive [76], a domain specific language for specifying, verifying,

and compiling peephole optimizations in LLVM is the closest to Swapper as a whole.

Their rewrite rules are guarded by a predicate, they use static analyses to find the validity

of those guards, they verify the rules and then compile them to efficient C++ code for

rewriting LLVM code: all similar to our phases. However, their system is targeted towards

the compilers community and relies upon the developers to discover and specify rewrite

137

rules. Our work is targeted towards the solver community and automatically synthesizes

the rewrite rules from benchmark problems of a given domain.

9.2.1 Formula rewriting in constrain solvers

A pre-processing step in constraint solvers and solver-based tools (like Z3, Boolector [27],

Sketch etc) is an essential one and term rewriting has been extensively used as a part this

pre-processing step [28, 31, 36, 73]. These pre-processing steps are very important and can

have a significant impact on performance.

9.2.2 Pattern finding

In the context of Motif discovery problem [92] (finding recurrent sub-graphs), recently we

have seen some attempts to use machine learning [67] and distributed algorithms [75] to

compute the Motifs efficiently. Our DAGs, on the other hand, have labeled nodes and

our motifs have to account for symmetries due to commutative nodes, which makes direct

translation to Motif discovery problem more difficult.

9.2.3 Comparison with superoptimization

In the superoptimization community, researchers have been working on building compilers

that explore all possible equivalent programs and find the most optimal one. One could view

Swapper as a superoptimizer for formula simplifiers. Superoptimizing an individual formula

will be too expensive, but [14] came up with the idea of packaging the superoptimization into

multiple rewrite rules similar to what we are doing here except in the context of programs.

Although it looks similar in spirit to Swapper, there are a few differences. Most importantly,

[14] uses enumeration of potential candidates for optimized instruction sequences and then

checks if it is indeed most optimal. Whereas, we use a hybrid approach that primarily relies

on constraint based synthesis for generating the rules, which offers a possibility of specifying

a structured grammar for the functions. Recently, there has also been some work [87] that

uses synthesis and other stochastic search techniques to help the researchers generate a

superoptimizer efficiently for different instruction set architectures.

138

9.2.4 Code generation

Code generation phase in Swapper that automatically generates simplifier’s code, is similar

to a term or graph rewrite system like Stratego/XT [24] or GrGEN.NET [51]. They offer

declarative languages for graph modeling, pattern matching, and rewriting. Both the tools

generate efficient code for program/graph transformation based on rule control logic provided

by the user. We build upon their ideas and develop our own compiler because we already had

an existing framework for simplification (the Sketch simplifier). Our strategy is comparable

with LALR parser generation [58] where the next look-ahead symbol helps decide which rule

to use.

9.3 EM-Synth system

9.3.1 Machine Learning-Based Entity Matching

Most current EM solutions are variants of the Fellegi-Sunter model [47], where entity match-

ing is treated as a classification problem: given a vector of similarity scores between the

attributes of two entities, the problem is to determine whether two entities are matching

or non-matching. Such approaches include SVM-based methods [21], decision-tree-based

solutions [33,54], clustering-based techniques [39,93], and Markov-logic-based models [107].

Most machine learning models, except shallow decision trees, are hard to interpret.

EM-Synth produces declarative rules that are often preferred by the end users. Another

drawback, as pointed out by [117], is that these methods are rather expensive due to the

quadratic complexity of tuple pair enumeration, even with the help of blocking [16] and

canopy filtering [77].

9.3.2 Rule-based entity matching

Declarative entity matching rules are highly desirable by the end users, since users can un-

derstand how entities are matched in a deterministic way. Such rules are also popular in the

database community since they provide great opportunities for improving the performance

at the execution time, such as those studied in [17,40,66]. However, these approaches typi-

cally assume that the entity matching rules have been defined by domain experts, which in

practice, are hard to come up with.

139

Closer to our work is the SIFI tool [117], that automatically discovers similarity functions

and their associated thresholds by assuming that the rule is given as a DNF. As compared

to SIFI, our approach can automatically discover the optimal and more expressive GBF

based rules with corresponding similarity functions and thresholds without any user input

i.e., we provide an end-to-end solution for generating entity matching rules. Another recent

work [83] proposes an unsupervised learning method for link discovery configuration for the

Web of Data. Their solution is based on three assumptions: (1) no duplicate records exist

within each dataset in terms of URIs; (2) two datasets have a strong degree of overlap; and

(3) a meaningful similarity function returns values close to 1.0 for matching pairs. They

rely on the above three assumptions to compute indicators of “good characteristics”, i.e., to

simulate user examples. Although the solution works well for the Web of Data, the above

three assumptions do not hold for more general entity matching settings, as studied in this

work.

9.3.3 Active learning and crowdsourcing

Since good and sufficient training dataset is always hard to get in practice, a natural line

of study deals with actively involving users in verifying ambiguous tuple pairs, a.k.a. ac-

tive learning in entity matching [54, 81, 93]. Also, due to the popularity of crowdsourc-

ing platforms, there have been efforts to leverage crowd workers for entity matching prob-

lems [48,54,115].

We assume that training data is already given as an input and focus on using EM-Synth

to synthesize EM rules as a solution of the studied problem. Hence, the above works are

essentially orthogonal, but complementary, to the rule-synthesis problem studied in this

work. In other words, if the provided training dataset is not good enough, we can use their

techniques to interact with users or crowd workers for getting more and better training data.

9.3.4 Program synthesis for databases

Recently, program synthesis and programming by example has shown great promise for

database related problems, such as data transformation [96], social recommendations [38],

and translating imperative code into relational queries [35]. Similar to the above mentioned

works, in EM-Synth, we showcase the potential of program synthesis in supporting another

important problem in data integration and data cleaning – generating entity-matching rules.

140

9.3.5 Special-purpose constraint solvers

Using a custom solver inside Sketch is similar to using a special purpose theory solver [50]

inside a different class of solvers, namely, the SMT solvers. In the context of program

synthesis, we are the first to show how a custom solver can be used to solve synthesis

problems efficiently inside a general purpose solver like Sketch.

141

142

Chapter 10

Conclusion

We conclude this thesis by reiterating that this work aims to push the boundaries between

program synthesis and machine learning (ML). We are able to solve certain problems that

couldn’t be solved easily or efficiently using traditional techniques. We presented a gen-

eral framework that has been applied to multiple domains successfully, including the two

that were discussed in depth in this thesis: (1) formula simplification in constraint solvers

(Swapper system) and (2) database entity matching with concise and interpretable rules

(EM-Synth system). This work has also enabled new strategies for adapting a general pur-

pose synthesizer (like Sketch) to domain specific synthesis problems, thereby helping the

developers who can reuse the infrastructure already present in the general purpose solvers.

This work is aimed towards making the developer’s life easy. With the Swapper system we

are automating software engineering for simplifiers, and with EM-Synth we are automati-

cally providing good interpretable EM rules to database experts. This goal is at the heart

of both program synthesis and machine learning, and we believe that we can do more to

satisfy this goal if we push boundaries between the two fields further, as we did in this work.

143

144

Appendix A

Synthesis with Sketch:

implementation notes

In this chapter, we present some implementation notes on how one can use Sketch to solve

the relevant parts of the synthesis-of-components problems discussed in this thesis. We start

by introducing the Sketch system and the required notation to present the implementation

details.

A.1 Sketch synthesis system

Sketch is an open-source system for synthesis from partial programs. A partial program

represents a space of possible programs by giving the synthesizer explicit choices about what

code fragments to use in different places. More precisely, a partial program can be seen as a

C-like program with “holes”, where the potential code to complete the holes is drawn from a

finite set of candidates, often defined as a set of expressions or a grammar. Given a partial

program with a set of assertions or constraints, the Sketch synthesizer finds a completion

for the holes that satisfies the constraints for all inputs from a given input space. Sketch

uses symbolic execution to derive a formula 𝑃 p𝑥, 𝑐q that encodes the requirement that given

a choice 𝑐 for how to complete the program, the program should be correct under all inputs

𝑥 i.e. D𝑐 @𝑥 𝑃 p𝑥, 𝑐q.
Note that this formulation can be used to represent all SyGuS problems as defined

earlier in Sec. 2.1. The example SyGuS problem from Sec. 2.1 can be represented as a

partial program as shown below:

145

void tester(bit 𝑥, bit 𝑦) {
int 𝑏𝑛𝑑 = 0;
bit 𝑡 = boolExp(𝑥, 𝑦, 𝑏𝑛𝑑);
assert 𝑏𝑛𝑑 <= 𝐵;
if (𝑥) assert 𝑡 ==~𝑦;
if (𝑦) assert 𝑡 == ~𝑥;

}

generator bit boolExp(bit 𝑥, bit 𝑦, ref int 𝑏𝑛𝑑){
if (??){

𝑏𝑛𝑑++;
return boolExp(𝑥,𝑦) || boolExp(𝑥,𝑦);

}
else{

return {| 𝑥 | 𝑦 | ~𝑥 | ~𝑦 |};
}

}

The partial program above (also called a sketch) gives the synthesizer a space of possible

code fragments in three ways:

1. A regular expression generator {| regexp |} where the regexp can use the operator |

to describe choices among expressions. Sketch also supports choices among operators

in a similar manner, for example: {| 𝑥 (+ | * | -) 𝑦 |} represents the space of

applying any of those 3 operators between variables 𝑥 and 𝑦.

2. A constant generator or a hole represented by ?? that takes integer values from a

bounded set. In the case when this hole is inside the condition of an if statement, it

will choose a value between 0 (false) or 1 (true).

3. Recursive generator functions that recursively define program spaces (e.g., the function

boolExp in the example above). Any recursive generator function will be inlined with

new holes and regular expression generators inside it for every use of this function.

Moreover, to enforce the bound from the grammar, we use a variable 𝑏𝑛𝑑 that counts how

many times the relevant production rule of the grammar has been applied. This variable

𝑏𝑛𝑑 is passed by reference (denoted by the ref keyword in Sketch) and asserted to be less

than or equal to the bound 𝐵.

In summary, in the sketch above, the synthesizer can choose whether or not to negate

𝑥 and 𝑦 before or-ing them together in order to satisfy the assertions in the tester. More

146

details on the syntax of the Sketch language and the best practices can be found in the

Sketch manual [6].

A.2 Swapper Sketch formulation

We briefly describe the Sketch formulation of the rule-synthesis problem in Swapper

(Problem 3). In this section, we show how we can formulate constraints 1 − 3, 5 from

Problem 3 in the Sketch solver as a partial program. As discussed earlier in Subsec. 2.2.4,

Sketch will be used to solve the constraints 2, 3, 5 from Problem 3 in Swapper because

of the more efficient hybrid enumerative/Sketch-based approach that incorporates the

constraints 1, 4 as well.

We discuss the problem at hand using an example. Let us assume that (1) the pattern

𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑙𝑡p𝑎, 𝑑qq is very common, so we want to find a rewrite rule for this pattern, and

(2) this pattern often occurs in a context where a rewriter can prove that 𝑏 ď 0 and 𝑑 ą 0.

We encode semantics of the 𝐿𝐻𝑆 in a straightforward manner using the operations used

in the description of the pattern provided as an input:

#define NUM_INPUTS 3 //3 inputs 𝑎,𝑏,𝑑
#define LHS_SIZE 3 //or(lt(𝑎,𝑏),lt(𝑎,𝑑)) has 3 nodes
bit LHS(int 𝑎, int 𝑏, int 𝑑) {

return (𝑎 < 𝑏 || 𝑎 < 𝑑);
}

We will reuse the macros NUM_INPUTS and LHS_SIZE again later to write the 𝑅𝐻𝑆

grammar. We encode the predicate grammar as described earlier in Subsection 2.2.3. Each

predicate is either a Boolean expression boolExpr or a disjunction of two such Boolean

expressions. Each such Boolean expression is either true or based on an operation on two

of the input variables (we omit the unary operator since there are no Boolean inputs).

Note that a “??” inside an if is a hole that will be replaced with true or false, and any “??”

inside a generator function can be replaced differently for each call of that function.

bit pred(int 𝑎, int 𝑏, int 𝑑) {
if(??) boolExpr(𝑎, 𝑏, 𝑑);
else boolExpr(𝑎, 𝑏, 𝑑) && boolExpr(𝑎, 𝑏, 𝑑);

}

generator bit boolExpr(int 𝑎, int 𝑏, int 𝑑) {
if(??) return true;
else{

147

int 𝑥 = {| 𝑎 | 𝑏 | 𝑑 |};
int 𝑦 = {| 𝑎 | 𝑏 | 𝑑 |};
return {| 𝑥 (< | > | == | != | <= | >=) 𝑦 |};

}
}

void valid_under_assumption(int 𝑎, int 𝑏, int 𝑑) {
//b<0 and d>0 assumption should imply that pred is true
if (b<0 && d>0){

assert(pred(𝑎,𝑏,𝑑));
}

}

Moreover, we assert the requirement for the predicate to be valid when the static as-

sumption is true. Note that this requirement can be expanded to multiple static assumptions

by requiring that the predicate pred is true, at least under one of the static assumptions.

In general, this can be done in Sketch by transforming constraint 1 from Problem 3 as

follows. To solve
𝑚ł

𝑗=1

`@𝑥 : 𝑎𝑠𝑠𝑢𝑚𝑒𝑗p𝑥q ùñ predp𝑥q˘

with Sketch, we first convert the formula to its prenex normal form (requiring to move all

quantifiers at the beginning):

@𝑦1@𝑦2 . . .@𝑦𝑚
𝑚ł

𝑗=1

`
𝑎𝑠𝑠𝑢𝑚𝑒𝑗p𝑦𝑗q ùñ predp𝑦𝑗q

˘

and then encode this new formula in Sketch with 𝑚 copies of each free variable in 𝑥. For

example, suppose we have two contexts where the pattern 𝑜𝑟p𝑙𝑡p𝑎, 𝑏q, 𝑙𝑡p𝑎, 𝑑qq occurs: (1)

𝑏 ď 0 and 𝑑 ą 0 and (2) 𝑎 ď 1 and 𝑑 ą 2. The corresponding valid_under_assumption

function in Sketch will change to:

void valid_under_assumption(int 𝑎1, int 𝑏1, int 𝑑1,int 𝑎2, int 𝑏2, int 𝑑2) {
bit 𝑎𝑠𝑠𝑢𝑚𝑒1 = 𝑏1<=0 && 𝑑1>0;
bit 𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛1 = !𝑎𝑠𝑠𝑢𝑚𝑒1 || pred(𝑎1,𝑏1,𝑑1);
bit 𝑎𝑠𝑠𝑢𝑚𝑒2 = 𝑎2<=1 && 𝑑2>2;
bit 𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛2 = !𝑎𝑠𝑠𝑢𝑚𝑒2 || pred(𝑎2,𝑏2,𝑑2);
assert(𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛1 || 𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛2);

}

We encode the 𝑅𝐻𝑆 template from Subsection 2.2.3 as follows: (1) the 𝑅𝐻𝑆 pattern

is formed by building an array (vals) of simple operations (simpleOp) (2) the 𝑖th simple

operation (vals[i]) is constructed by choosing an allowed operation and the operands of

148

that operation from the values vals[0],vals[1],...,vals[i-1].

bit RHS(int 𝑎, int 𝑏, int 𝑑, ref int size) {
int[LHS_SIZE+NUM_INPUTS−1] vals = 0;
vals[0] = 𝑎;
vals[1] = 𝑏;
vals[2] = 𝑑;
for (int 𝑖=NUM_INPUTS; 𝑖<LHS_SIZE+NUM_INPUTS−1; 𝑖++) {

vals[𝑖] = simpleOp(vals,𝑖);
}
size = ??;
return vals[size − NUM_INPUTS];
//picks a value of size=?? such that this is a valid index in vals array

}

int simpleOp(int[LHS_SIZE+NUM_INPUTS] vals, int 𝑖){
//use only the values from 0 to 𝑖− 1 indices as operands
int 𝑐ℎ𝑜𝑖𝑐𝑒_𝑥 = ??;
int 𝑥 = vals[𝑐ℎ𝑜𝑖𝑐𝑒_𝑥];
assert (𝑐ℎ𝑜𝑖𝑐𝑒_𝑥 >= 0 && 𝑐ℎ𝑜𝑖𝑐𝑒_𝑥 < 𝑖);
//to_bit converts an int to a bit
if(??) return to_bit(𝑥);
if(??) return !to_bit(𝑥);
if(??) return −𝑥;

int 𝑐ℎ𝑜𝑖𝑐𝑒_𝑦 = ??;
int 𝑦 = vals[𝑐ℎ𝑜𝑖𝑐𝑒_𝑦];
assert (𝑐ℎ𝑜𝑖𝑐𝑒_𝑦 >= 0 && 𝑐ℎ𝑜𝑖𝑐𝑒_𝑦 < 𝑖);
//second operand for binary operators
if(??) {| 𝑥 (< | > | == | != | <= | >=) 𝑦 |};
if(??) {| to_bit(𝑥) (&& | || | ^) to_bit(𝑦) |};
//... and so on for other operators
assert(false); //must choose one operator

}

Finally, we encode the correctness constraint for the rewrite rule as shown below:

void correctness(int 𝑎, int 𝑏, int 𝑑) {
int rhs_size = 0;
if (pred(𝑎,𝑏,𝑑)) {

assert(LHS(𝑎,𝑏,𝑑) == RHS(𝑎,𝑏,𝑑,rhs_size));
assert(rhs_size < LHS_SIZE);
minimize (rhs_size);

}
}

Along with the correctness constraint, the function above also uses the minimize key-

149

word [105] from Sketch’s language to specify that the size of the 𝑅𝐻𝑆 should be as small

as possible (constraint 5 from Problem 3).

In this subsection, we showed how we can encode constraints 1 − 3, 5 from Problem 3

in the Sketch synthesizer to solve the rule-synthesis problem in Swapper. Now, we are

ready to give the Sketch implementation notes for EM-Synth.

A.3 Sketch formulation for EM-GBF rule synthesis

The EM-GBF rule-synthesis SyGuS problem (Problem 4 and Subsec. 2.3.2) is translated

to a partial program in Sketch and fed to the Sketch solver as an input. We showcase

the partial programs used in Sketch for this problem with an example. Note that we

also use the custom solver inside Sketch as described in Subsec. 2.3.3. This custom solver

is specified in the partial programs using the name customSynth. The similarity function

tables (Subsec. 2.3.3) are passed as a separate input (apart from the partial program) to

Sketch.

Example 5: Consider the two tables discussed in Example 1 (Sec. 1.2). The partial program

that represents a Boolean formula matching rule (GBF) with 𝑁𝑎 = 7 attribute-matching

rules and 𝑁𝑑 = 3 depth of grammar expansion is listed below.

//input bounds for the GBF grammar
#define 𝑁𝑎 7
#define 𝑁𝑑 3

generator bit attributeRule(int e){ // e = Example Id
int 𝑖 = ??; // Attribute Id
assert (1 <= 𝑖 && 𝑖 <= 5);
int 𝑓 = ??; // Similarity function Id
assert (1 <= 𝑓 && 𝑓 <= 29);
//𝜃 = customSynth(𝑖,𝑓);
return (evalSimFn(e,𝑖,𝑓) >= customSynth(𝑖,𝑓));

}

generator bit gbfRule(int e, ref int 𝐴, int 𝐷){
if (??){ 𝐴++; return attributeRule(e); }
else {

assert 𝐷 >= 0;
if (??) return ! (gbfRule(e,𝐴,𝐷 − 1));
else if (??) return gbfRule(e,𝐴,𝐷 − 1) && gbfRule(e,𝐴,𝐷 − 1);
else return gbfRule(e,𝐴,𝐷 − 1) || gbfRule(e,𝐴,𝐷 − 1);

}

150

}

bool matchingRule(int e){
int 𝐴=0;
int 𝐷=𝑁𝑑;
bool b = gbfRule(e,𝐴,𝐷);
assert (𝐴<=𝑁𝑎);
return b;

}

void examples(){
//Example Id 1 is a positive example
assert(matchingRule(1) == true);
//Example Id 2 is a negative example
assert(matchingRule(2) == false);
...

}

In the code above, some functions are annotated with being a generator. As described

earlier, functions annotated with the generator keyword will be inlined with new holes

(??) for every instantiation of this function. For example, attributeRule is a generator

function, and every instantiation of this function will be free to pick different similarity func-

tions. Since there are 5 aligned attributes, we assert that the values taken by 𝑖 lie between

1 and 5. Similarly, the candidate space of 29 similarity functions is asserted accordingly.

The values for threshold 𝜃 are chosen using a custom synthesis procedure. The function

evalSimFn symbolically represents the evaluation of function 𝑓 on attribute 𝑖 of the records

from example 𝑒 (see more details in Subsec. 2.3.3). Also, gbfRule is a generator function

with function attributeRule being inlined at most 𝑁𝑎 times (enforced by a variable 𝐴

passed by reference) and multiple recursive calls to itself to specify the possible expansion

of the grammar. The expansion is bounded by a depth 𝑁𝑑 passed as a parameter 𝐷 to the

generator gbfRule. Note again, in Sketch, each generator function is completely inlined

up to the specified depth as a parameter. This results in the holes (“??”s) occurring multiple

times as well. Each hole inside the if’s represents a possible true or false value.

The examples function enforces the constraints using the assert keyword. The con-

straints assert that the resulting rule should work for the provided positive and negative

examples. The Sketch synthesizer will fill all the holes in the above partial program to

synthesize a complete program, with a function matchingRule that represents a Boolean

formula (GBF) for entity matching. l

151

152

Bibliography

[1] Amazon Web Services. Online. 98

[2] Boostpython library: quickly and easily export c++ to python.
https://wiki.python.org/moin/boost.python. 110

[3] Datasketch: Minhash lsh. https://ekzhu.github.io/datasketch/lsh.html. 112

[4] Pyjnius: Python library for accessing java classes.
http://pyjnius.readthedocs.io/en/latest/. 110

[5] Scikit learn: Support vector machines in practice. http://scikit-
learn.org/stable/modules/svm.html. 112, 117

[6] Sketch: Working Manual. Online. 147

[7] Standardization, or mean removal and variance scaling. http://scikit-
learn.org/stable/modules/preprocessing.html. 115

[8] SymPy: Python library for symbolic mathematics. Online. 86

[9] Tuning the hyper-parameters of an estimator. http://scikit-
learn.org/stable/modules/grid_search.html. 112, 117

[10] Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juni-
wal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund Raghothaman,
Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. Syntax-guided synthesis. In Dependable Software
Systems Engineering, pages 1–25. 2015. 23, 31, 33, 34, 36, 47, 98

[11] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. Practical and optimal lsh for angular distance. In Proceedings of the 28th
International Conference on Neural Information Processing Systems, NIPS’15, pages
1225–1233, Cambridge, MA, USA, 2015. MIT Press. 108

[12] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey
Bosboom, Una-May O’Reilly, and Saman P. Amarasinghe. Opentuner: an extensible
framework for program autotuning. In PACT ’14. 81, 82, 83, 96

[13] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. A gender-based genetic al-
gorithm for the automatic configuration of algorithms. In CP ’09. 82

153

[14] Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers.
In Proceedings of the 12th international conference on Architectural support for pro-
gramming languages and operating systems, ASPLOS XII, pages 394–403. ACM, 2006.
138

[15] H P Barendregt, M C J D Eekelen, J R W Glauert, J R Kennaway, M J Plasmeijer,
and M R Sleep. Term graph rewriting. In Volume II: Parallel Languages on PARLE:
Parallel Architectures and Languages Europe, pages 141–158, London, UK, UK, 1987.
Springer-Verlag. 70

[16] Rohan Baxter, Peter Christen, and Tim Churches. A comparison of fast blocking
methods for record linkage. In SIGKDD Workshop on Data Cleaning, Record Linkage,
and Object Consolidation, pages 25–27, 2003. 139

[17] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su, Steven Euijong
Whang, and Jennifer Widom. Swoosh: a generic approach to entity resolution. VLDB
J., 18(1), 2009. 139

[18] Philip A. Bernstein, Jayant Madhavan, and Erhard Rahm. Generic schema matching,
ten years later. PVLDB, 4(11):695–701, 2011. 44

[19] Sahil Bhatia and Rishabh Singh. Automated correction for syntax errors in program-
ming assignments using recurrent neural networks. CoRR, abs/1603.06129, 2016. 136

[20] Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet Kohli.
Deep API programmer: Learning to program with apis. CoRR, abs/1704.04327, 2017.
136

[21] Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection using learn-
able string similarity measures. In SIGKDD, pages 39–48, 2003. 25, 139

[22] Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A. Henzinger, Georg
Hofferek, Barbara Jobstmann, Bettina Könighofer, and Robert Könighofer. Synthe-
sizing robust systems. Acta Inf., 51(3-4):193–220, 2014. 136

[23] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobst-
mann. Better quality in synthesis through quantitative objectives. In Ahmed Bouajjani
and Oded Maler, editors, Computer Aided Verification, 21st International Conference,
CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, volume 5643 of Lec-
ture Notes in Computer Science, pages 140–156. Springer, 2009. 136

[24] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Strate-
go/XT 0.17. A language and toolset for program transformation. Science of Computer
Programming, 72(1-2):52–70, 2008. 139

[25] Andrei Z. Broder. On the resemblance and containment of documents. In In Compres-
sion and Complexity of Sequences (SEQUENCES 97, pages 21–29. IEEE Computer
Society, 1997. 108

[26] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntac-
tic clustering of the web. Comput. Netw. ISDN Syst., 29(8-13):1157–1166, September
1997. 108

154

[27] Robert Brummayer and Armin Biere. Boolector: An efficient smt solver for bit-vectors
and arrays. TACAS ’09, pages 174–177, 2009. 21, 138

[28] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In USENIX Confer-
ence OSDI ’08. 21, 138

[29] Luiz F. M. Carvalho, Alberto H. F. Laender, and Wagner Meira Jr. Entity matching:
A case study in the medical domain. In Proceedings of the 9th Alberto Mendelzon
International Workshop on Foundations of Data Management, 2015. 24

[30] Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna, and
Rohit Singh. Quantitative synthesis for concurrent programs. In Ganesh Gopalakr-
ishnan and Shaz Qadeer, editors, Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume
6806 of Lecture Notes in Computer Science, pages 243–259. Springer, 2011. 136

[31] Satish Chandra, Stephen J. Fink, and Manu Sridharan. Snugglebug: a powerful ap-
proach to weakest preconditions. In PLDI ’09, pages 363–374, 2009. 21, 138

[32] Krishnendu Chatterjee, Thomas A. Henzinger, Barbara Jobstmann, and Rohit Singh.
Measuring and synthesizing systems in probabilistic environments. J. ACM, 62(1):9:1–
9:34, 2015. 136

[33] Surajit Chaudhuri, Bee-Chung Chen, Venkatesh Ganti, and Raghav Kaushik.
Example-driven design of efficient record matching queries. In VLDB, pages 327–338,
2007. 139

[34] Tianqi Chen. Introduction to boosted trees. University of Washing Computer Science.
University of Washington, 22, 2014. 115

[35] Alvin Cheung, Owen Arden, Samuel Madden, Armando Solar-Lezama, and Andrew C.
Myers. Statusquo: Making familiar abstractions perform using program analysis. In
CIDR, 2013. 140

[36] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Partial replay of long-
running applications. In Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering, ESEC/FSE ’11,
pages 135–145. ACM, 2011. 21, 138

[37] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Inferring sql queries
using program synthesis. CoRR, abs/1208.2013, 2012. 23

[38] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Using program synthesis
for social recommendations. In CIKM, pages 1732–1736, 2012. 140

[39] William W. Cohen and Jacob Richman. Learning to match and cluster large high-
dimensional data sets for data integration. In SIGKDD, pages 475–480, 2002. 139

[40] Nilesh Dalvi, Vibhor Rastogi, Anirban Dasgupta, Anish Das Sarma, and Tamás Sarlós.
Optimal hashing schemes for entity matching. In WWW, pages 295–306, 2013. 139

155

[41] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver.
TACAS’08/ETAPS’08, pages 337–340. Springer-Verlag, 2008. 12, 21, 73, 74, 75, 89,
132

[42] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark
Marron, Sailesh R, and Subhajit Roy. Program synthesis using natural language. May
2016. 33, 137

[43] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel rahman
Mohamed, and Pushmeet Kohli. RobustFill: Neural program learning under noisy
I/O. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 990–998, International Convention Centre, Sydney, Australia, 06–11
Aug 2017. PMLR. 136

[44] Hong Hai Do and Erhard Rahm. COMA - A system for flexible combination of schema
matching approaches. In VLDB, 2002. 25

[45] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate
record detection: A survey. IEEE Trans. Knowl. Data Eng., 19(1):1–16, 2007. 25, 107

[46] Kave Eshghi and Shyamsundar Rajaram. Locality sensitive hash functions based on
concomitant rank order statistics. In Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’08, pages 221–229,
New York, NY, USA, 2008. ACM. 108

[47] Ivan Fellegi and Alan Sunter. A theory for record linkage. Journal of the American
Statistical Association, 64 (328), 1969. 25, 139

[48] Donatella Firmani, Barna Saha, and Divesh Srivastava. Online entity resolution using
an oracle. PVLDB, 9(5):384–395, 2016. 140

[49] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography. Com-
mun. ACM, 24(6):381–395, June 1981. 31, 63, 65

[50] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare
Tinelli. Dpll (t): Fast decision procedures. In CAV, volume 4, pages 175–188. Springer,
2004. 141

[51] Rubino Geiß, Gernot Veit Batz, Daniel Grund, Sebastian Hack, and Adam M. Sza-
lkowski. GrGen: A Fast SPO-Based Graph Rewriting Tool. pages 383 – 397, 2006.
139

[52] Nithin George, HyoukJoong Lee, David Novo, Tiark Rompf, Kevin J. Brown,
Arvind K. Sujeeth, Martin Odersky, Kunle Olukotun, and Paolo Ienne. Hardware
system synthesis from domain-specific languages. In 24th International Conference
on Field Programmable Logic and Applications, FPL 2014, Munich, Germany, 2-4
September, 2014, pages 1–8, 2014. 33, 137

[53] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Machine learning for
input fuzzing. 2017. 136

156

[54] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton, Narasimhan Ram-
palli, Jude Shavlik, and Xiaojin Zhu. Corleone: Hands-off crowdsourcing for entity
matching. In SIGMOD, 2014. 112, 116, 139, 140

[55] Bernhard Gramlich. Termination and confluence properties of structured rewrite sys-
tems. Universität Kaiserslautern. Fachbereich Informatik, 1996. 70

[56] Sumit Gulwani. Programming by examples. Dependable Software Systems Engineer-
ing, 45:137, 2016. 3, 15, 16, 20, 135

[57] Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data manipulation
using examples. volume 55, pages 97–105, January 2012. 33, 137

[58] R. Nigel Horspool. Incremental generation of lr parsers. Computer languages, 15:205–
233, 1989. 139

[59] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. Paramils:
An automatic algorithm configuration framework. J. Artif. Int. Res., 2009. 82

[60] Frank Hutter, Marius Thomas Lindauer, Adrian Balint, Sam Bayless, Holger H. Hoos,
and Kevin Leyton-Brown. The configurable SAT solver challenge (CSSC). CoRR,
abs/1505.01221, 2015. 82

[61] Jeevana Priya Inala, Xiaokang Qiu, Ben Lerner, and Armando Solar-Lezama.
Type assisted synthesis of recursive transformers on algebraic data types. CoRR,
abs/1507.05527, 2015. 23

[62] Jeevana Priya Inala, Rohit Singh, and Armando Solar-Lezama. Synthesis of domain
specific CNF encoders for bit-vector solvers. In SAT 2016, 2016. 16, 20, 23, 29, 98,
102

[63] Jinseong Jeon, Xiaokang Qiu, Jeffrey S. Foster, and Armando Solar-Lezama. Jsketch:
sketching for java. In Elisabetta Di Nitto, Mark Harman, and Patrick Heymans,
editors, Proceedings of the 2015 10th Joint Meeting on Foundations of Software En-
gineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015. ACM,
2015. 23

[64] Jianqiu Ji, Jianmin Li, Shuicheng Yan, Qi Tian, and Bo Zhang. Min-max hash for
jaccard similarity. In Data Mining (ICDM), 2013 IEEE 13th International Conference
on, pages 301–309. IEEE, 2013. 108

[65] Neil C. Jones and Pavel A. Pevzner. An Introduction to Bioinformatics Algorithms
(CMB). MIT Press, August 2004. 55

[66] Lars Kolb, Andreas Thor, and Erhard Rahm. Dedoop: Efficient deduplication with
hadoop. PVLDB, 5(12):1878–1881, 2012. 139

[67] Mark A. Kon, Yue Fan, Dustin Holloway, and Charles DeLisi. Svmotif: A machine
learning motif algorithm. In Proceedings of the Sixth International Conference on
Machine Learning and Applications, ICMLA ’07, pages 573–580. 138

[68] Hanna Köpcke and Erhard Rahm. Training selection for tuning entity matching. In
International Workshop on Quality in Databases and Management of Uncertain Data,
pages 3–12, 2008. 110

157

[69] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution
approaches on real-world match problems. PVLDB, 3(1):484–493, 2010. 110, 114

[70] Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec. Interpretable decision
sets: A joint framework for description and prediction. In KDD, 2016. 25

[71] Tao Lei, Regina Barzilay, and Tommi S. Jaakkola. Rationalizing neural predictions.
In EMNLP, 2016. 25

[72] Alberto Leon-Garcia. Probability, Statistics, and Random Processes for Electrical En-
gineering. Pearson/Prentice Hall, third edition, 2008. 58

[73] Nikolaj Bjørner Leonardo de Moura. Smt: Techniques, hurdles, applications.
SAT/SMT Summer School, MIT, 2011. 138

[74] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive
datasets. Cambridge university press, 2014. 112

[75] Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell. An ultrafast scalable many-
core motif discovery algorithm for multiple gpus. In Proceedings of the 2011 IEEE
International Symposium on Parallel and Distributed Processing Workshops and PhD
Forum, IPDPSW ’11. 138

[76] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. Provably
correct peephole optimizations with alive. SIGPLAN Not., 50(6):22–32, June 2015.
137

[77] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In SIGKDD, pages
169–178, 2000. 139

[78] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Au-
tomating the construction of internet portals with machine learning. Information
Retrieval, 3(2):127–163, 2000. 114

[79] E. J. Mccluskey. Minimization of Boolean functions. The Bell System Technical
Journal, 35(5):1417–1444, November 1956. 78, 86

[80] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Dag-aware aig rewriting
a fresh look at combinational logic synthesis. In Proceedings of the 43rd annual Design
Automation Conference. ACM, 2006. 95, 97

[81] Barzan Mozafari, Purnamrita Sarkar, Michael J. Franklin, Michael I. Jordan, and
Samuel Madden. Scaling up crowd-sourcing to very large datasets: A case for active
learning. PVLDB, 8(2):125–136, 2014. 140

[82] David R. Musicant, Vipin Kumar, and Aysel Ozgur. Optimizing f-measure with sup-
port vector machines. In Proc. of the 16𝑡ℎ International Florida Artificial Intelligence
Research Society Conference, pages 356–360, 2003. 117

[83] Andriy Nikolov, Mathieu d’Aquin, and Enrico Motta. Unsupervised learning of link
discovery configuration. In ESWC, pages 119–133, 2012. 140

158

[84] Emilio Parisotto, Abdelrahman Mohamed, Rishabh Singh, Lihong Li, Denny Zhou,
and Pushmeet Kohli. Neuro-symbolic program synthesis. In ICLR 2017, February
2017. 136

[85] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011. 112, 117

[86] Mikael Pettersson. A term pattern-match compiler inspired by finite automata theory.
In CC’ 92, pages 258–270. Springer-Verlag, 1992. 76

[87] Phitchaya Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati.
Greenthumb: Superoptimizer construction framework. Technical Report UCB/EECS-
2016-8, EECS Department, University of California, Berkeley, Feb 2016. 138

[88] Nadia Polikarpova, Jean Yang, Shachar Itzhaky, and Armando Solar-Lezama. Type-
driven repair for information flow security. CoRR, abs/1607.03445, 2016. 33, 137

[89] Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzilay. sk_p:
a neural program corrector for moocs. CoRR, abs/1607.02902, 2016. 136

[90] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. Learning pro-
grams from noisy data. In POPL, pages 761–774, 2016. 3, 15, 16, 20, 135

[91] Jakob Rehof and Moshe Y. Vardi. Design and Synthesis from Components (Dagstuhl
Seminar 14232). Dagstuhl Reports, 4(6):29–47, 2014. 16, 17

[92] Geir Kjetil K. Sandve and Finn Drabløs. A survey of motif discovery methods in an
integrated framework. Biology direct, April 2006. 55, 138

[93] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using active
learning. In KDD, pages 269–278, 2002. 139, 140

[94] Len Seligman, Peter Mork, Alon Y. Halevy, Kenneth P. Smith, Michael J. Carey,
Kuang Chen, Chris Wolf, Jayant Madhavan, Akshay Kannan, and Doug Burdick.
Openii: an open source information integration toolkit. In SIGMOD, 2010. 25

[95] Rishabh Singh. Blinkfill: Semi-supervised programming by example for syntactic
string transformations. PVLDB, 9(10):816–827, 2016. 16, 135

[96] Rishabh Singh. Blinkfill: Semi-supervised programming by example for syntactic
string transformations. PVLDB, 9(10):816–827, 2016. 140

[97] Rishabh Singh and Sumit Gulwani. Synthesizing number transformations from input-
output examples. In CAV, pages 634–651, 2012. 30

[98] Rishabh Singh and Sumit Gulwani. Predicting a correct program in programming by
example. In Computer-Aided Verification (CAV), pages 398–414, 2015. 135

[99] Rishabh Singh and Sumit Gulwani. Transforming spreadsheet data types using exam-
ples. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the 43rd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

159

POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 343–356. ACM,
2016. 16, 135

[100] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback
generation for introductory programming assignments. SIGPLAN Not., 48(6):15–26,
June 2013. 23, 98

[101] Rishabh Singh and Pushmeet Kohli. AP: artificial programming. In Benjamin S.
Lerner, Rastislav Bodík, and Shriram Krishnamurthi, editors, 2nd Summit on Ad-
vances in Programming Languages, SNAPL 2017, May 7-10, 2017, Asilomar, CA,
USA, volume 71 of LIPIcs, pages 16:1–16:12. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017. 136

[102] Rishabh Singh and Armando Solar-Lezama. Synthesizing data structure manipulations
from storyboards. In SIGSOFT FSE, 2011. 23

[103] Rohit Singh. Synthesizing a synthesis tool. Master’s thesis, Massachusetts Institute
of Technology, Cambridge, MA, USA, 2013. 76

[104] Rohit Singh, Vamsi Meduri, Ahmed K. Elmagarmid, Samuel Madden, Paolo Papotti,
Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and Nan Tang. Generating con-
cise entity matching rules. In Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun
Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19,
2017, pages 1635–1638. ACM, 2017. 16, 20, 29

[105] Rohit Singh, Rishabh Singh, Zhilei Xu, Rebecca Krosnick, and Armando Solar-
Lezama. Modular synthesis of sketches using models. In VMCAI 2014. 43, 150

[106] Rohit Singh and Armando Solar-Lezama. Swapper: A framework for automatic gener-
ation of formula simplifiers based on conditional rewrite rules. In 2016 Formal Methods
in Computer-Aided Design (FMCAD), pages 185–192, Oct 2016. 16, 20, 29

[107] Parag Singla and Pedro Domingos. Entity resolution with markov logic. In ICDM,
pages 572–582, 2006. 139

[108] Anirudh Sivaraman, Mihai Budiu, Alvin Cheung, Changhoon Kim, Steve Licking,
George Varghese, Hari Balakrishnan, Mohammad Alizadeh, and Nick McKeown.
Packet transactions: A programming model for data-plane algorithms at hardware
speed. CoRR, abs/1512.05023, 2015. 23

[109] Tony C. Smith and Eibe Frank. Statistical Genomics: Methods and Protocols, chapter
Introducing Machine Learning Concepts with WEKA, pages 353–378. Springer, New
York, NY, 2016. 112

[110] Armando Solar-Lezama. Program Synthesis by Sketching. PhD thesis, Berkeley, CA,
USA, 2008. AAI3353225. 43

[111] Armando Solar-Lezama. The sketching approach to program synthesis. In APLAS,
pages 4–13, 2009. 23, 33, 36, 40, 137

[112] Armando Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013. 30, 63

160

[113] Mária Svoreňová and Marta Kwiatkowska. Quantitative verification and strategy syn-
thesis for stochastic games. European Journal of Control, 30:15–30, 2016. 137

[114] Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim,
Milo MK Martin, and Rajeev Alur. Transit: specifying protocols with concolic snip-
pets. ACM SIGPLAN Notices, 48(6):287–296, 2013. 33, 137

[115] Jiannan Wang, Tim Kraska, Michael J. Franklin, and Jianhua Feng. Crowder: Crowd-
sourcing entity resolution. PVLDB, 5(11):1483–1494, 2012. 140

[116] Jiannan Wang, Guoliang Li, Jeffrey Xu Yu, and Jianhua Feng. Entity matching: How
similar is similar. PVLDB, 4(10), 2011. 3, 48, 110, 114

[117] Jiannan Wang, Guoliang Li, Jeffrey Xu Yu, and Jianhua Feng. Entity matching: How
similar is similar. PVLDB, 4(10), 2011. 31, 46, 110, 112, 115, 116, 125, 139, 140

[118] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for similarity
search: A survey. CoRR, abs/1408.2927, 2014. 107, 108, 130, 132

[119] Jean Yang. Preventing information leaks with policy-agnostic programming. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2015. 33, 137

[120] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache spark:
A unified engine for big data processing. Commun. ACM, 59(11):56–65, October 2016.
89

161

	1 Introduction
	1.1 Formula simplification with Swapper
	1.2 Database entity matching with EM-Synth
	1.3 Key Contributions
	1.3.1 Automatic generation of formula simplifiers
	1.3.2 Synthesis of concise EM rules

	1.4 Thesis Overview

	2 Synthesis of components in application domains
	2.1 Syntax-guided synthesis (SyGuS) framework
	2.2 Synthesis of conditional rewrite rules in Swapper
	2.2.1 Formula simplification in Sketch
	2.2.2 Core rule-synthesis problem
	2.2.3 Space of expressions and predicates
	2.2.4 Hybrid enumerative/symbolic synthesis in Swapper

	2.3 Synthesis of EM rules in EM-Synth
	2.3.1 Notation and EM-GBF rule-synthesis problem
	2.3.2 Core SyGus Formulation
	2.3.3 Numerical search for EM thresholds in Sketch

	3 Specialization information extraction
	3.1 Specialization information in Swapper
	3.2 Representative sampling of patterns in Swapper
	3.3 Specialization information in EM-Synth
	3.4 Choosing sets of examples in EM-Synth
	3.4.1 Synthesis from a few EM examples (CEGIS)
	3.4.2 Synthesis with inconsistent examples (RANSAC)

	4 Assembly of components
	4.1 Assembly in Swapper
	4.1.1 Soundness of assembly
	4.1.2 Generalization of rewrite rules
	4.1.3 LALR-style pattern matching in Swapper

	4.2 Assembly in EM-Synth
	4.2.1 Boolean combinations of EM rules
	4.2.2 Consensus of EM rules

	5 Best assembly tuning
	5.1 Combinatorial auto-tuning in Swapper
	5.2 Tuning in EM-Synth
	5.2.1 EM-GBF optimization problem
	5.2.2 Tuning algorithms in EM-Synth

	6 Shared framework infrastructure
	7 Swapper system evaluation
	7.1 System Design & Implementation
	7.2 Experiments
	7.2.1 Domains and Benchmarks
	7.2.2 Synthesis Time and Costs are Realistic
	7.2.3 Swapper Performance
	7.2.4 SAT Encodings Domain
	7.2.5 Analysis of Generated Rules and their Impact

	8 EM-Synth system evaluation
	8.1 Algorithms and optimizations in EM-Synth
	8.1.1 Incremental grammar bounds in RS-CEGIS
	8.1.2 Sampling: bias in picking examples in RS-CEGIS
	8.1.3 Algorithms for entity matching using EM-Synth
	8.1.4 Bucketing-based optimized EM-rule testing

	8.2 System design and implementation
	8.2.1 Feature processing
	8.2.2 EM algorithms
	8.2.3 Experiment infrastructure

	8.3 Experimental setup
	8.3.1 Datasets
	8.3.2 Performance and interpretability metrics used
	8.3.3 Similarity functions used
	8.3.4 Input features for ML techniques
	8.3.5 Comparisons with state-of-the-Art ML approaches
	8.3.6 Comparisons with rule-based learning approaches
	8.3.7 Techniques and parameters
	8.3.8 Performance evaluation

	8.4 Experimental results
	8.4.1 Exp-1: Interpretability
	8.4.2 Exp-2: Effectiveness vs. interpretable decision trees
	8.4.3 Exp-3: Effectiveness vs. expert-provided rules
	8.4.4 Exp-4: Effectiveness vs. non-interpretable methods
	8.4.5 Exp-5: Variable training data
	8.4.6 Exp-6: Efficiency of training
	8.4.7 Exp-7: Efficiency of Testing
	8.4.8 Exp-8: Impact of the custom synthesizer in Sketch

	9 Related Work
	9.1 Overall framework
	9.1.1 Combining program synthesis and machine learning
	9.1.2 Program synthesis with quantitative objectives
	9.1.3 Synthesis of components

	9.2 Swapper system
	9.2.1 Formula rewriting in constrain solvers
	9.2.2 Pattern finding
	9.2.3 Comparison with superoptimization
	9.2.4 Code generation

	9.3 EM-Synth system
	9.3.1 Machine Learning-Based Entity Matching
	9.3.2 Rule-based entity matching
	9.3.3 Active learning and crowdsourcing
	9.3.4 Program synthesis for databases
	9.3.5 Special-purpose constraint solvers

	10 Conclusion
	A Synthesis with Sketch: implementation notes
	A.1 Sketch synthesis system
	A.2 Swapper Sketch formulation
	A.3 Sketch formulation for EM-GBF rule synthesis

