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Abstract

This article investigates the swept rule of space-time domain decomposition,
an idea to break the latency barrier via communicating less often when ex-
plicitly solving time-dependent PDEs. The swept rule decomposes space and
time among computing nodes in ways that exploit the domains of influence and
the domain of dependency, making it possible to communicate once per many
timesteps without redundant computation. The article presents simple theoret-
ical analysis to the performance of the swept rule which then was shown to be
accurate by conducting numerical experiments.
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1. Introduction

Today, extreme-scale computer clusters can solve PDEs using over 1,000,000
cores[I]. Exa-scale computing promises to enable 1,000,000,000-core simulations|2]
3]. From an application perspective and compared to desktop-based tools, us-
ing such computing power resembles upgrading from a slide rule to a desktop

computer[d, Chapter 6].

There is strong demand to use the increasingly parallel computing power to
accelerate solutions of unsteady PDEs. In designing rocket launch vehicles|[5],
for example, unsteady flow equations are solved to reduce unsteady aerody-
namic loads on the vehicle structure. In designing jet engine combustors[d],
unsteady reacting flow equations are solved to help reduce emission and miti-
gate dangerous vibrations. In designing gas turbine blades|[7, [§], unsteady aero
and thermodynamic equations are solved to design cooling mechanisms for in-
creased component life and overall engine efficiency. In all these applications,
the unsteady equations need to be solved long enough to reproduce the chaotic,
multiscale fluid dynamics. That requires at least hundreds of thousands, often
millions of time steps. Advancing this many time steps with today’s technology
takes days, weeks, sometime months, running on as many parallel processors as
these simulations can effectively use. The time-to-solution of these simulations
often becomes the bottleneck of new product development and technological in-

novation. Engineers desire to further scale these simulations, to run them faster.

What is preventing these simulations from scaling? If the total amount of
computation required to solve a PDE is fixed, and we divide the computation
among twice as many computing nodes, shouldn’t each node work half as much,
and the PDE solved in half the time? This would be true if each node does its
own work without communicating with others. In solving PDEs, however, nodes
communicate to each other frequently. Each communication takes at least a few

microseconds, and on a common network, tens of microseconds. This minimum



communication time, regardless of how much information is communicated, is
called the network latency. If network latency exceeds the computing time be-
tween consecutive communications, reducing the computation of each node does
not accelerate the simulation. This barrier to scaling, called the latency barrier,

is necessarily encountered as a PDE-based simulation is deployed to more nodes.

This latency barrier impacts simulations with many time steps, such as high
fidelity, unsteady computational fluid dynamics simulations. Among applica-
tions, the latency barrier particularly hurts those in which fast turn around
time is critical, such as design optimization. Network latency improves slowly
over time compared to the Moore’s law. On average, network bandwidth dou-
bles every two years; but over the same amount of time, latency improves on
average by no more than 20 to 40 percent[d]. Cloud computing has the potential
to enable extreme scale computing without dedicated supercomputers[I0]. The
latency in cloud computing, however, is typically worse than dedicated clusters,

making it more important to break the latency barrier[IT].

This article investigates the swept rule, an idea to break the latency bar-
rier via communicating less often. The swept rule decomposes space and time
among computing nodes in ways that exploit the domains of influence and the
domain of dependency, making it possible to communicate once per many time
steps. The resulting algorithm enables simulations to be solved significantly
faster than what is possible with spatial domain decomposition schemes typi-

cally found in today’s PDE solvers.

The same goal is shared by parallel-in-time methods[12], 13}, 14} [15] 16 [17].
These methods first estimate the solution using cheap but inaccurate time in-
tegrators, then iteratively correct the solution with an expensive and accurate
time integrator. Parareal is one of the most studied parallel in time algorithms
and was proposed by by Lions, Maday, Turinici in 2001[12]. One advantage of

the Parareal method is that it allows the use of existing classical time-stepping



routines and yet gain parallelism. It is also important to mention that, due
to Parareals popularity, a Parareal-like algorithm has been extended to chaotic
dynamical systems[I8]. Another famous parallel in time algorithm is the Multi-
grid Reduction in Time (MGRIT). One major difference between the MGRIT
and Parareal is the use of multilevel time integrators[13]. The third famous
parallel in time method is the Parallel Full Approximation Scheme in Space and
Time (PFASST). In away, PFASST is similar to Parareal except that it uses
advance iterative time stepping and full approximation schemes that allow for
making the cheap inaccurate time integrators as cheap as possible[I4]. These

three parallel in time methods share being iterative and involving a coarse solve.

The method presented in this paper, technically differ from most parallel-
in-time methods, in that it is not iterative, and does not involve a coarse solver.
Parallel-in-time algorithms iterate over the time domain. These methods work
best with PDE systems that do not have extreme non-linearity in their dy-
namics. For example, parallel-in-time algorithms are less efficient when solving
chaotic systems. The Swept Rule method advances in time and does not iter-
ate over time. Therefore, it works equally well to different dynamical systems
and different schemes. It perhaps has more commonality with Communication
Avoiding (CA) algorithms[I9] [20]. When it comes to solving a PDEs, CA al-
gorithms are found to contribute and focus more on communication avoidance
for the basic operations of linear algebra. Those algorithms include but are not
limited to LU, QR, Matrix-Matrix multiplication and Matrix-Vector multiplica-
tion. CA algorithms cover a wide spectrum of techniques to achieve their goal
in communicating less frequently starting from the different levels of memory
hierarchy, to CPU-GPU communication and up to node to node communica-
tions. Cache oblivious programming and computation domain overlapping are
just two examples of the techniques that CA algorithms use to minimize or avoid

communication latency while performing a specific linear algebra task[19] 20].

When it comes to our objective, that is breaking the latency barrier when



explicitly solving PDEs, we see that swept decomposition is different from CA
algorithms in that it does not involve any overhead of overlapping parts of the
computation domain among processors, which is the case in some CA algo-
rithms. In fact, the way swept is designed and implemented makes the effort
of developing an explicit numerical PDE solver based on the swept decomposi-
tion similar to that effort involved in developing a classic-straight decomposition

based solver.
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Figure 1: Illustration of Input, Output forward and variable calculations

2. Space-time decomposition of a PDE solver

We restrict our attention to the following case. A PDE is discretized with
a finite difference, finite volume, or finite element scheme. These discretiza-
tion schemes generate a graph in the spatial domain. Each point in this graph
represent a grid point in finite difference, a control volume in finite volume, or
an element in finite element. An edge between two points exists if they are
neighboring grids, control volumes or elements, as defined by the spatial dis-

cretization.

To analyze and break the latency barrier, we attempt to decompose the
solution procedure into elementary steps that require communication between
computing nodes. We call such an elementary step a sub-timestep. Each sub-
timestep has a set of input variables and a set of output variables at each
spatial point. From the input variables at each point and its neighbor points,
the sub-timestep computes its output variables at that point and forwards any
variables from the previous sub-timestep to the next sub-timestep if needed.
Such variable forward thereby allows decomposition of a complex timestep into
sub-timesteps, eliminating the need for neighbors of neighbors within a single
sub-timestep. Figure 1 clarifies the above explanation. In the figure, the point

“P” forwards the input of the sub-timestep below it to the sub-timestep above



it as the first input. “P” also calculates the gradient using its left and right

neighbors and sends that to the sub-timestep above it as the second input.

For example, finite difference gradient computation on a compact stencil
is such a “substep”. The inputs are the value of field variables; the outputs
are the gradient of these variables. The following code exemplifies such a sub-
timestep on a one-dimensional uniform grid. Here “p” denotes a spatial point;
“p.Linputs” and “p.Rinputs” denote its left and right neighbors; “p.inputs[i]”
and “p.outputs[i]” denote the “i” th input and output variable at the spatial

”

point “p”. Moreover, “p.Linputs[i]” and “p.Rinputs[i]” denote the “i” th inputs

of the left and right neighbors respectively.

p.output [0] = p.inputs [0];
p.output[1] = (p.Rinputs[0] — p.Linputs[0]) / 2 x dx;

This sub-timestep has one input and two output variables. The first output
variable is a carbon copy of the input; the second output variable is the finite

difference derivative of the input.

Another example of a “substep” is flux computation and accumulation in
finite volume. The inputs are the conservative variables and their derivatives;
the outputs are the divergence of fluxes, or time derivatives of the conservative
variables. The following code illustrates a substep that applies Godunov’s finite

volume scheme to a scalar conservation law, and uses forward Euler for time

integration.
fluxL = riemannSolver(p.Linputs[0] , p.inputs[0]);
fluxR = riemannSolver(p.inputs[0] , p.Rinputs[0]);

p.outputs [0] = p.inputs[0] + dt * (fluxR — fluxL) / dx;

The input of this sub-timestep is the conservative variable at the ith time

step, and the output is the conservative variable at the ¢ + 1st time step.

If the forward Euler time integration is replaced by a multi-stage Runge-




Kutta scheme, then each timestep require multiple sub-timesteps. In a two-
stage Runge Kutta scheme, also known as the midpoint method, the first sub-

timesteps can be

fluxL = riemannSolver(p.Linputs[0] , p.inputs[0]);

fluxR = riemannSolver(p.inputs[0] , p.Rinputs[0]);
p.outputs(0) = p.inputs (0);

p.outputs(l) = p.inputs(0) + 0.5 % dt * (fluxR — fluxL) / dx;

It has a single input and two outputs, the first being a carbon copy of the
input, and the second being the solution at the midpoint. These outputs become
the inputs of the the second sub-timestep, whose single output is the solution

at the next timestep:

fluxL = riemannSolver(p.Linputs[1l] , p.inputs[1]);
fluxR = riemannSolver(p.inputs[1] , p.Rinputs[1]);
outputs [0] = p.inputs[0] + dt * (fluxR — fluxL) / dx;

Every sub-timestep must use the same inputs as the outputs of the previ-
ous one. This means some sub-timesteps must “forward” some variables not
involved in computation, by setting some of its outputs to the values of their

corresponding inputs.

If we replace Godonov’s scheme with a second order finite volume scheme,
and use the forward Euler time discretization, then two sub-timesteps is re-
quired. The first sub-timestep can be similar to the finite difference derivative
computation shown above, whose two outputs are the conservative variable it-
self and its derivative. The second sub-timestep, whose inputs are the outputs

of the previous sub-timestep, can be encoded as following,

uL_minus = reconstructWithLimitor (p.Linputs[0],

p.inputs [0] ,p.Linputs[1], dx);

uL_plus = reconstructWithLimitor(p.inputs[0],
p.Linputs[0], —p.inputs[1], dx);
fluxL = riemannSolver (uL_minus, uL_plus);

uR_minus = reconstructWithLimitor(p.inputs[0],




p.Rinputs 0], p.inputs[1], dx);
uR_plus = reconstructWithLimitor (p.Rinputs[0],
p.inputs [0], —p.Rinputs[1], dx);

fluxR = riemannSolver (uR_minus, uR_plus);

p.outputs (0) = p.inputs[0] + dt * (fluxR — fluxL) / dx;

Combining the second order finite volume scheme with a two-stage Runge-
Kutta would result in two sub-timesteps per Runge-Kutta stage, thus four sub-
timesteps per timestep. Solving a system of conservation laws, e.g., Euler equa-
tion, would require more inputs and outputs for each sub-timestep. But the
total number of sub-timesteps would be no different from a scalar conservation

law discretized with a similar scheme.

When such decomposition is possible, each sub-timestep can be viewed as an
elementary operation in solving a PDE. The number of sub-timesteps involved in
a calculation determines its domain of dependence and the domain of influence.
Consider the outputs of the mth sub-timestep on the ith spatial point (grid
point, cell or element). Its domain of dependence covers only its immediate
neighbor points over one sub-timestep, i.e., among the inputs of the mth sub-
timestep (or equivalently, the outputs of the m — 1st sub-timestep). Over two
sub-timesteps, the domain of dependence expands to the neighbors of neighbors.
Over n sub-timesteps, it grows to all spatial points that connect to point %
through n or fewer edges.

Figure 2 shows the domains of dependence in a one-dimensional spatial do-
main, as well as the domain of influence. The swept boundaries of these do-
mains in the space-time diagram motivates the “swept” rule for solving PDEs.
This rule decomposes along such space-time boundaries, and assigns the de-
composed chunks of space-time among processors, thereby avoiding frequent

latency-incurring communications.
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3. The swept rule in 1D

For illustration, we consider a one-dimensional spatial domain with periodic
boundary condition. It is discretized into a series of spatial points, each repre-
senting a grid point in finite difference, a control volume in finite volume, or an
element in finite element. Each point has two immediate neighbors, a left and
a right one. When the PDE is initialized, the spatial points are decomposed
uniformly among computing nodes, each node owning an even number of points.

Each node starts by initializing the PDE on the points it owns.

This initial decomposition is illustrated in Figure 3(a). In these figures, a
circle at horizontal coordinate ¢ and vertical coordinate ¢ represents the input
variables of the tth sub-timestep at the ¢th spatial point, which for ¢ = 0 are set
by the initial condition of the PDE, and for ¢ > 0 are the output variables of the
t — 1st sub-timestep. At t = 0, the input variables of the first sub-timestep is
colored by the computing node storing it. The variables at later sub-timesteps

are greyed, indicating that they are not yet computed.

After setting the inputs of the first sub-timestep, we start the first local com-
putation. During this stage, each parallel computing node computes all it can
compute without communicating with other nodes. It computes all variables
of which, at initialization, it owns the domain of dependence. These variables
are colored accordingly in Figure 3(b). They include the output of the first
sub-timestep on all but the two boundary points, the output of the second sub-
timestep on all but four points, and the output of subsequent sub-timesteps on
a shrinking subset of points. The stage completes when the output variables
of a sub-timestep are computed at only two points, and nothing more can be

computed without communicating with neighboring nodes.

Then, for the first time, the computing nodes communicate. Each node packs

a subset of its computed variables and sends them to its neighboring node on
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the left. The transferred variables include two left-most outputs of every sub-
timestep, forming a swept leading-edge of the space-time domain covered by
the previous computing stage. In addition to sending the left leading-edge, each
node keeps in its memory another swept leading-edge on the right side of the
space-time domain. This right leading edge, represented by solid circles in Fig-
ure 3(c), combines with the left leading edge received from its right neighboring
node, represented by open circles of the same color, to provide the variables

needed for the next local computing stage.

The second local computation, like the first one, proceeds independently on
each computing node. Each node starts with a V-shape in the space-time do-
main, formed by a pair of swept leading-edges, the left inherited from the first
local computation, and the right received during the first communication. As
in every local computing stage, each node computes all it can compute without
communicating with other nodes. It computes all variables, lying in a space-time
diamond illustrated in Figure 3(d), whose domains of dependence is covered by
the pair of swept leading-edges forming the V. As in other local computing stage,
this stage completes when the output variables of a sub-timestep are computed
at only two points, and nothing more can be computed without communicating

again with neighboring nodes.

The second communication is just like the first one, except that the right
swept leading-edge is sent to the right neighboring node, and the left swept
leading edge is kept in its own memory. In subsequent communication steps,
even-numbered stages send the right leading-edge towards the right neighboring
node, and odd-numbered rule stages send the left leading-edge towards the left
neighboring node. This rule ensures each node to alternate between two sets of
spatial points during odd and even numbered computing stages, limiting each
node to two sets of spatial points. The result of the second communication
stage is illustrated by Figure 3(e), in which the solid circles represent variables

each node keeps from the previous computing stage, and the open circles of the
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same color represent variables the same node receives from its neighboring node.

The subsequent computing stages and communication stages, illustrated in
Figures 3(f) to 3(h), are similar to the previous ones. Each computing stage
compute all each node can compute without communication; each communica-
tion stage transfers a swept leading-edge over each pair of neighboring nodes,

enabling the next computing stage.
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4. A simplified performance analysis of the swept rule

To qualitatively understand the performance of the swept rule, we perform

a simplified analysis, by making the following two assumptions:

1. Communication between computing nodes takes time 7, regardless of how
much data is communicated.

2. Each sub-timestep on each spatial point takes time s to compute.

Let N be the total number of spatial points, and p be the number of com-
puting nodes. Then the number of spatial points per node is n = N/p. A
cycle of the swept rule, advancing the PDE for n sub-timesteps, consists of two
computing stages and two communication stages. The two computing stages
perform a total of n? calculations per node, each applying a sub-timestep to a
spatial point. The computing stages therefore take n2s time, according to our
simplifying assumption. The two communication stages take 27 time. The en-
tire cycle then takes n?s + 27 time. Divided among the n sub-timesteps during

the cycle, the amount of computing time per sub-timestep is:
T
ns + 2— 1
+27 1)

By increasing or decreasing how many nodes we use, we can easily change n.
The other two variables, 7 and s, are set by the hardware and the discretization
of the PDE; they are harder to change. To understand how fast the swept rule

is, we need to know the typical values of 7 and s.

Table 1 attempts to cover the range of latency 7 one may encounter today.
The latency can change over three orders of magnitude, from the fastest Infini-
band to a cloud computing environment not designed for PDEs.

The range of s is even wider; it can span over eight orders of magnitude. s
depends both on the computing power of each node and on the complexity of
each sub-timestep. If one sub-timestep on one spatial point takes f floating
point operations (FLOP) to process, then processing an array of them with a

node capable of F' floating point operations per second (FLOPS) takes s = f/F
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Interconnect Typical latency (7)

Amazon EC2 cloud 150 us
Typical Gigabit Ethernet 50 ps
Fast 100-Gigabit Ethernet 5 us

Mellanox 56Gb/s FDR InfiniBand | .7 pus

Table 1: The range of latency 7 commonly encountered today.

seconds per step-point. Running a cheap discretization on a powerful computing
node leads to small f and large F', therefore a small s; running an expensive

discretization on a light node leads to large f and small F', therefore a large s.

Table 2 attempts to estimate the range of s by covering the typical f for
solving PDEs in a single spatial dimension, as well as the highest and lowest F'
on a modern computing node. Consider f of the heat equation, discretized with
finite difference. Each sub-timestep takes only 3 FLOPs. A sub-timestep of a
nonlinear system of equations, discretized with high order finite element, may
take thousands of FLOPs. The highest F' is achieved today by GPU nodes. 11.5
TeraFLOPS has been achieved by the AMD Radeon R9 295X2 graphics card, as
well as by combining two AMD Radeon R9 290X graphics cards in a single node.
The Summit supercomputer, expected to be delivered to Oak Ridge Leadership
Computing Facility (OLCF) in 2017, uses a similar architecture to achieve 40
TeraFLOPS per node. Using older CPU architecture is slower. Particularly
slow is equivalence of using a single thread per node, e.g., in flat-MPI-style
parallel programming. On the first generation Intel Core i3/i5/i7 architecture,
codenamed Nehalem, a single thread is capable of about 10 GFLOPS. These
different node architectures, running different PDE discretization schemes, yield
orders of magnitude different values of s.

With these values of 7 and s, the plot in Figure 4 shows, according to

Equation (1), how fast the diamond scheme runs as a function of n, the spatial
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Computing node — FLOPS FLOP per step-point | Computing time
per step-point (s)
Single thread Intel Nehalem
10 GFLOPS 4000 (FE system) 400 ns
Single thread Intel Nehalem
10 GFLOPS 200 (FV system) 20 ns
Single thread Intel Nehalem
10 GFLOPS 3 (FD scalar) 0.3 ns
Oak Ridge 2017 Summit node
40 TFLOPS 4000 (FE system) 100 ps
Oak Ridge 2017 Summit node
40 TFLOPS 200 (FV system) 5 ps
Oak Ridge 2017 Summit node
40 TFLOPS 3 (FD scalar) 75 fs

Table 2: The typical time it takes to compute one sub-timestep on a single

spatial point for solving PDEs in a single spatial dimension
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Figure 4: Analyzing the diamond performance using communication latency

and CPU FLOP /step

points per node. The up-sloping, dashed and dash-dot lines represent the ns
term in Equation (1) for different values of s, and the down-sloping, solid lines
represent the 7/n term for different values of 7. For each combination of s
and 7, the total time per sub-timestep as a function of n, plotted as thin black
curves in Figure 4, can be found by summing the corresponding up-sloping and
down-sloping lines.

The total time per sub-timestep can be minimized by choosing n. This mini-
mizing n can be found, for each 7 and s, at the intersection of the corresponding
upsloping and downsloping lines in Figure 4. It has a mathematical expression
n* = \/ﬁ Is largest for low s and high 7. n* can be as large as tens of
thousands when advancing a simple PDE with a cheap discretization on most

powerful GPU instances in a cloud computing environment. n* is smallest for

18



high s and low 7. It can be as small as 1 or 2 when advancing a complex PDE
with an expensive discretization in a older-CPU-based flat-MPI computing en-
vironment. These optimal values of n represent the limit of scaling. Above this
optimum, decreasing n by scaling to more nodes would decrease the total time
per sub-timestep, accelerating the simulation. But decreasing n beyond the op-
timum by scaling to even more nodes would not accelerate, but slow down the

simulation.

At the optimal n, the minimum total time per sub-timestep also depends on
7 and s. It has a mathematical expression t* = /87s. The fastest integration,
unsurprisingly, is achieved for the lowest s and lowest 7. What is surprising is
how fast it can be. The swept rule is theoretically capable of about 1 nanosecond
per step, or almost a billion steps per second, if it uses the fastest Infiniband
and the most powerful GPU nodes to efficiently advance the simplest PDE.
This is about three orders of magnitude faster than what can be achieved with
a method that requires communication every sub-timestep. To achieve this the-
oretical speed limit, it is necessary to not only minimize the latency 7, but also
minimize s by fully utilizing the computational throughput of the most powerful

computing nodes.

At the optimal n, the swept rule almost always breaks the latency barrier.
A method that requires communication every sub-timestep takes at least 7 per
sub-timestep. This limit is the latency barrier. The swept rule, according to
our simplified model, takes t* = v/87s per sub-timestep. It breaks the latency
barrier whenever 7 > 8s, i.e., when the network latency exceeds the time it take
for a computing node to advance one sub-timestep on 8 spatial points. In that
case, it breaks the latency barrier by a factor of \/% This ratio is largest
for small s and large 7, i.e., when the discretization is cheap, each computing
node is powerful, and the latency between nodes is high. For example, if Ama-
zon EC2 upgrades their GPU instances to the most powerful available, using

them to advance the simplest finite difference equation would break the latency
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barrier by a factor of about 13,000.

The swept rule has the potential to achieve 1 nanosecond per sub-timestep
and breaking the latency barrier by a factor of 13,000. To get a realistic number
for practical applications, we may assume that the discretization requires 100
FLOP per sub-timestep, and with good software engineering, a third of the
computing power in a powerful node can be effectively utilized. Then with the
fastest Infiniband, the swept rule can hope to achieve 10 nanosecond per sub-
timestep, and with a cloud-computing-like latency, break the latency barrier by

a factor of 1,300.
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5. Interface and implementation of the swept scheme

The swept rule may seem challenging to implement, but it does not have to
be. If a PDE solver can be decomposed into sub-timesteps, then the code that
executes a sub-timestep on a spatial point can separate from the code that or-
ders these executions and communicates with other computational nodes. The
former code, which operates locally in space and time, implements the numer-
ical scheme independent of the computer architecture. The later, global code,
which decides when and where the local operations are executed, is optimized
for computer architecture but is blind to what numerical scheme is used or what

different equations is solved. The local and global codes share only an interface.

As of our current implementation of the swept rule, our interface consists
of two simple functions. The first function will be called once per special point
to set its initial data. The input variables to the initialization function are the
global special point index and a special point structure. The following psedo-

code exemplifies the initialization function interface

Init (pointIndex i, spacialPoint p)

{
p.inputs [0] = variable 0 initial value
p.inputs [1] = variable 1 initial value
p.inputs [n] = variable n initial value
b

The second function in our interface is where the PDE solve actually hap-
pens. The input variables to the timestepping function are the index of which
sub-timestep to be executed and a spacial point structure. The following psedo-

code exemplifies the timestepping function of our interface.

timestep (substepIndex i, spacialPoint p)

{

#Based on the value of i, perform the proper operation in ”p”

s
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It is the responsibility of the swept rule scheme implementation developer to
call the timestepping function with the proper sub-timestep index and spacial
point.

The examples in Section 2 use this interface to implement spatial and tem-
poral discretization schemes. If each time step of a PDE discretization is split
into N sub-timesteps, then an application developer would implement a series of
sub-timestep as functions and calls those properly in our timestepping interface
function.

This interface, defined by the “SpatialPoint” and the “Global Point or Sub-
timestep” indices, separates the concerns of application developers and com-
puter scientists. A numerical analysts can program a solver in functions that
operate on individual “SpatialPoint” structures. His code would be lightweight,
thus easier to verify and to validate. It would also be portable to various current
and future computer architectures. A computer scientist, on the other hand,
can implement the swept rule interface to orchestrate the execution of atomic
operations according to the swept rule. His code does not need to concern what
these atomic operations are, thus is independent of the application. A simple
working implementation can be found at https://github.com/hubailmm/K-S_

1D_Swept.
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6. Swept rule for finite difference — solution of the Kuramot-Sivashinsky

equation

The swept rule is tested on the chaotic one space dimension Kuramoto-
Sivashinsky (K-S) PDE. This equation was one of our choices to test the swept
partitioning scheme as it contains high order derivatives and nonlinear terms.
K-S PDE is knows to be stiff and produce solutions that exhibit spatio-temporal
chaos, as shown in Figure 5. To solve the 1D K-S PDE, the special discretization
was done using the finite difference scheme and the time integration was done

using an explicit second-order Runga-Kutta integration scheme.

The picture in Figure 5 shows the solution obtained to the 1D K-S PDE

using swept partitioning with periodic boundary conditions and an initial con-
o . . . . _ 19
dition that is given by: u(z,0) = 2cos (13%).

Figure 6 shows performance comparison between the classical straight and
the swept decomposition that are applied to the one space dimension K-S PDE
with the same spacial discretization. All the runs were conducted on a small two-
node cluster that was formed on Amazon’s Elastic Computing (EC2) services
using “StarCluster”, an open source cluster-computing toolkit for Amazon’s

EC2|21]. The EC2 instance type was “ml.xlarge” with an Amazon Machine
Image (AMI) of “starcluster-base-ubuntu-13.04-x86_64".

As the main aim behind running this experiment is show how the swept de-
composition breaks the latency barrier, the runs were conducted using a single
MPIT process residing in each compute node. The CPU in each node is “Intel(R)
Xeon(R) CPU E5-2650 @ 2.00GHz” and the MPI latency between the nodes

was measured and averaged to be around 150 us.

Figure 6 shows that the classic domain decomposition Is limited by the la-

tency barrier. When each node has less than 10,000 grid points, it never takes
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Figure 5: A chaotic solution of the Kuramoto-Sivashinsky equation. The X axis

represents the space and the Y axix represents the time
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Figure 6: Performance comparison between the straight and the swept decom-
position when solving the 1D K-S PDE. The black up-sloping, dashed line rep-
resent the ns term in Equation (1) , and the black down-sloping, solid lines
represent the 7/n. The blue and orange lines represent the reported time per

sub-timestep values for the straight and swept decompositions accordingly

less than 150 microseconds to integrate each sub-timestep. The swept decom-
position rule, in contrast, breaks this latency barrier. Whenever each node has
less than 10,000 grid points, it takes less than 150 microseconds to integrate
each sub-timestep. At about 100 grid points per node, it takes minimum time
to integrate each time step. This optimum coincide with the intersection of
the ns and 27/s lines, which is the same optimum predicted by our simplified
analysis in Section 4. At that optimum, it takes less than 10 microseconds to

integrate each time step, breaking the latency barrier by a factor of over 15.

A running implementation of the swept rule solving the 1D K-S PDE can

found at https://github.com/hubailmm/K-S_1D_Swept
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Figure 7: The solution to Euler’s PDE obtained using the swept rule decompo-

sition. The X axis represents the space and the Y axix represents the time

7. Swept rule for finite volume — solution of the Euler equations of

gas dynamics

The swept rule is tested on the 1D Euler equation for gas dynamics. We
discretized the Euler equation with a second order finite volume scheme. Inter-
face flux is computed with minmod limiter and scalar dissipation proportional
to the spectral radius of the Roe matrix. A second order Runge Kutta scheme,
also known as the midpoint rule, is used for time integration. The same dis-

cretization of the Euler equations is implemented both in classic and swept

decomposition rules; their source code can be found at https://github.com/|

|giqi/Swept1D/blob/master/euler_classic.cpp and https://github.com/|

|giqi/Swept1D/blob/master/euler_swept.cpp|.

The picture in Figure 7 shows our solution to the Euler equation. We use
red, green and blue to visualize densities of mass, momentum and energy, using
PngWriter by Frank Ham[22]. The spatial domain is periodic, and solution is

initialized according to the SOD shock tube test case. The initial condition is
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p=0.125,u = 0,p = 0.1 on the left half of the domain, and p=1,u=0,p=1
on the right half of the domain.

Figure 8 summarizes the performance of the straight and swept decompo-
sition rules, applied to the same discretization of the Euler equation. Both
straight and swept decomposition are implemented with a flat MPI architec-
ture. The performance is measured on 64 MPI processes running on 8 nodes
on the voyager cluster at MIT, each node containing an Intel Xeon Processor

E5-1620 quad core processor with hyperthreading.

Figure 8 shows that the classic domain decomposition Is limited by the la-
tency barrier. When each node has less than 1,000 grid points, it never takes
less than 60 microseconds to integrate each sub-timestep. The swept decompo-
sition rule, in contrast, breaks this latency barrier. Whenever each node has
less than 1000 grid points, it takes less than 60 microseconds to integrate each
sub-timestep. At about 50 grid points per node, it takes minimum time to in-
tegrate each time step. This optimum coincide with the intersection of the ns
and 27 /s lines, which is the same optimum predicted by our simplified analysis
in Section 4. At that optimum, it takes less than 6 microseconds to integrate

each time step, breaking the latency barrier by a factor of about 10.
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Figure 8: The performance of the straight and swept decomposition rules to
Euler’s equation. The black up-sloping, dashed line represent the ns term in
Equation (1) , and the black down-sloping, solid lines represent the 7/n. The
blue and green lines represent the reported time per sub-timestep values for the

straight and swept decompositions accordingly
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8. Conclusion

We introduced the swept rule for decomposing space and time in solving
PDEs. The swept rule breaks the latency barrier, advancing each sub-timestep
in a fraction of the time it takes for a message to travel from one computing
node to another. In our experiment with the Kuramoto-Sivashinsky equation
on Amazon EC2, over 15 sub-timesteps can be integrated during each latency
time. In another experiment with the Euler equation on a Ethernet-based clus-

ter, about 10 sub-timesteps can be integrated during each latency time.

To examine how fast the swept space-time decomposition rule can be, we
conducted a simplified theoretical analysis. The analysis shows that time inte-
gration can be made faster not only by reducing latency, but also by beefing
up each node. 1 nanosecond per time step may be possible with currently com-

missioned hardware, but only if the the power of each node can be fully utilized.

The swept decomposition rule can be implemented through an interface,
which separates numerical schemes from its computational implementation. The
interface allows different numerical schemes to use the same implementation of
the swept decomposition rule. It is also easy to switch between different im-
plementations sharing the same interface. The authors’ implementation of the
swept decomposition scheme, along with testcases and illustrations in this arti-

cle, are open source.
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