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Abstract

Health care quality and patient safety has gained an increasing amount of attention
for the past two decades. The quality of care nowadays does not only refer to suc-
cessful cure of diseases for patients, but a much broader concept involving health
care community, inter-relationships among care providers, patients and family, effi-
ciency, humanity and satisfaction. The intensive care units (ICU) typically admit and
care for the most clinically complex patients. While much effort has been put into
patient safety improvement, the critical care system still continuous to see many hu-
man errors occur each day, despite the fact that people who work in such environment
have received exceptional training. Traditional interventions to mitigate patient harm
events in ICU generally focus on individual patient harms, and highly underestimate
the overall risk patient face during their stay. This thesis aims to establish a new
framework that more accurately account for patient risk and is capable of providing
recommendations for operational decision making in launching intervention strategies
that improve care quality and patient safety.

Our approach is based on theories regarding the underlying causes of human
errors and a system engineering as well as analytics perspectives. We use various
statistical methodologies to output rigorous but clinically intuitive insights. The core
concept is to study and utilize how system-level conditions, including both human
and environmental factors, can affect the likelihood of harm events in ICU. These can
hopefully be used to reduce patient harms and promote patient safety by eliminating
unfavorable conditions that are in higher correlation with these events, or promoting
safe conditions.

We first create a quantitative metric to assess the total burden of harm that
patients face, including both high frequency harms, which are typically measured in
ICUs today, as well as harms that can bring highly negative outcomes to the patient
but ignored due to low frequency. It is an aggregated measure that aims to reflect
the true risk level in the ICUs. Then, unlike the traditional approach that motivates

3



intervention strategy to specific harms, we depend on the concept of risk drivers,
which describe relevant ICU system conditions, and investigate what drivers affect
the probability for harm events in the ICU. These conditions are defined as Risky
States, and suggested by the model for elimination to avoid a variety of consequent
risk and improve patient safety. The underlying assumption is that the same risk
drivers (risky state) may affect many harms. Finally, we propose a new ensemble
statistical learning algorithm based on regression trees that is not only powerful in
examine the relationship between drivers and outcomes, but also being descriptive
defining the risky states.

The framework was applied to the retrospective data of 2012 and 2013 from 9
ICUs at the Beth Israel Deaconess Medical Center (BIDMC), with both clinical and
administrative records of more than ten thousand patients. Based on our analysis, we
see a strong evidence that system conditions are associated with harm events, which
include, for example, ICU patient flow (e.g., how many patients are admitted to and
discharged from unit), patient acuity level, nurse workload, and unit service type, etc.
The model is capable of providing insights such as "when a medical unit has more
than 3 newly admitted patients during a day shift, its risk level is approximately 35%
higher than the average day shift risk levels in medical units", which can motivate
decisions such as assigning a new patient to some other medical unit when the current
one has already admitted 3 patients during the shift, in order to avoid the above risky
state from occurring.

The model output is further presented to BIDMC experts for validation through a
clinical perspective. It is also being implemented and integrated to BIDMC ICU tablet
application to provide guidance to ICU staff as an alerting system. The Risky State
framework is unique in its innovative approach to assess patient risk and capability
to offer leverage for overall patient safety improvement, and at same time designed
to be compatible and spreadable with different hospital settings.

Thesis Supervisor: Retsef Levi
Title: J. Spencer Standish Professor of Operations Management
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Chapter 1

Introduction

1.1 Beth Israel Deaconess Medical Center

On February 5, 1896, New England Deaconess Hospital was opened in Boston, MA

by religious women dedicating themselves to the care of the sick and the poor from

an outgrowth of the Methodist Deaconess movement. In 1916, Beth Israel Hospital

opened its facility in Roxbury, MA, with an initial targeted population of growing

suburban Jewish due to language barriers and lacking in kosher food in other hospitals.

Advancing in patient care, medical education and research in both organizations and

with a success relationship formed with Harvard Medical School, two neighboring

hospitals merged in 1996 to maintain their leading position in today's rapidly changing

health care environment. As one of the top four recipients of biomedical research

funding from the National Institutes of Health, BIDMC's research funding totals

nearly $200 million annually with more than 850 active sponsored projects and 200

clinical trials.

BIDMC has earned numerous awards for its excellence in patient care quality

improvement including:

Truven Healthcare "Top 100 Hospitals": recognition as one of 15 top aca-

demic medical centers nationally,

"A" in Leapfrog's First-ever Hospital Safety Grades: one of the top 65 hos-
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pitals nationally,

Society of Critical Care Medicine's 2010 Family-Centered Care Award:

award for innovation to improve care quality for critically ill patients and their

families (one winner per year),

American Hospital Association - McKesson "Quest for Quality" Award:

award for national best hospital demonstrating progress among all six dimensions

of quality as defined by the Institute of Medicine.

In 2011, BIDMC launched the Center for Health Care Delivery Science (HDS)

with its mission to "lead the medical center's efforts in applying rigorous, high-quality

science to the evaluation of real-world innovations aimed at improving the quality,

safety and value of health care". HDS collaborates with various BIDMC investigators

who possess research interests in scientific evaluation of operational innovations to

conduct projects that aim to improve the value of health care.

1.2 BIDMC ICUs

An Intensive Care Unit (ICU), is a special department of a hospital or healthcare facil-

ity that takes care for patients with severe and life-threatening illnesses and injuries,

who require constant, and close monitoring, and support from specialized equipment

and medications in order to ensure normal bodily functioning. ICU patients are cared

by a team of extensively trained doctors and nurses specializing in critical care. The

clinical condition of the patients requires a much higher staff-to-patient ratio. ICU

has exclusive access to advanced medical resources and equipment and usually treat

conditions, such as trauma, multiple organ failure and sepsis [34].

BIDMC has 9 adult intensive care units, specializing in 7 different areas, with a

total of 77 ICU beds, as summarized in Table 1.1 below.

Units with the same prefix intuitively offer the same service type and are similar

in nature. For instance, SICU-A and SICU-B (CVICU-A and CVICU-B) are on the

same floor, taking mostly surgical patients and share the same care team. However,

it is possible for the suffix to make a difference, as of MICU-6 and MICU-7, which are
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Symbol Unit Name Services Offered to Capacity

FICU Finard ICU Medical and general critical care patients 12
TSICU Trauma Surgical ICU Trauma and surgical patients 10
SICU-A Surgical ICU A Surgical patients 8
SICU-B Surgical ICU B Surgical patients 7
MICU-6 Medical ICU 6 Medical patients 8
MICU-7 Medical ICU 7 Medical patients 8
CVICU-A Cardiovascular ICU A Cardiovascular patients 8
CVICU-B Cardiovascular ICU B Cardiovascular patients 8
CCU Coronary Care Unit Heart patients 8

Table 1.1: BIDMC ICU Service Coverage and Capacity

on different floors, have two separate care teams during each shift and take care of

patients under different medical condition categories. Therefore, SICU-A and SICU-

B, CVICU-A and CVICU-B will be modeled as one big unit, while MICU-6 and

MICU-7 will be modeled separately in this project.

Patients could be admitted to ICU from post-anesthesia care units (PACU), emer-

gency department, regular floor wards, or directly from outside the hospital. There-

fore, it is very possible that patients get to assign to a unit that does not regularly

offer the relevant service type due to capacity limits. These patients are defined as

boarders and will be further discussed in Chapter 3.

1.3 Gordon and Betty Moore Foundation

Gordon and Betty Moore Foundation is a grant-making foundation established in

2000 by Gordon and Betty Moore to generally promote environmental conservation,

scientific research, higher education, and patient care, in order to make significant

impact and create positive outcomes for our world and future generations. For the

last 15 years, the Moore Foundation has awarded more than 2,000 grants, totaling

more than $3 billion dollars.

In September 2013, BIDMC's proposal in "Optimizing ICU Safety through Patient

Engagement, System Science and Information Technology" received a grant award of

$5.3 million dollars through the Gordon and Betty Moore Foundation. The project

contains three different work streams including:
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MyICU: create a bi-directional interface that pushes relevant information be-

tween clinicians and family in patient portal,

Risky States: identify correlation between environmental condition and patient

harm with goal of better understanding risk and improve patient safety,

Context Sensitive Checklist: establish a checklist system that is automatically

adjusted based on unit conditions.

The work summarized under this thesis is part of the second work stream, which

aims at supporting the hospital management team with decision making related to

improving care quality and patient safety through a recommendation system that is

built upon an innovative and quantitative risk assessment methodology.

In order to adopt new innovations and create a reliable system of care that is

broadly scalable and spreadable to various medical settings, BIDMC is working closely

with the Libretto Consortium to conquer barriers from different perspectives. The

Libretto ICU Consortium, a group of four member hospitals including Beth Israel

Deaconess Medical Center, Brigham and Women's Hospital, Johns Hopkins University

Hospital and University of San Francisco Medical Center, oversees several grants

awarded by the Moore Foundation as part of its initiative to create new architectures

for the healthcare systems that offer better care quality, reduce patient harms and

related costs. Since these grants share similar goals while taking different approaches,

the Consortium have decided to establish some standard definitions to systematically

evaluating the work of different centers and allowing horizontal comparisons. Table

1.2, for example, is a list of harms that are conventionally measured in ICUs, whose

formal definitions are re-investigated and set by the representatives from each other

hospitals.

1VAC: ventilator associated condition; IVAC: infection-related ventilator associated complication;
VAP: ventilator associated pneumonia; PVAP: possible VAP; ProbVAP: probable VAP
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Harm

i. Central Line Associated Bloodstream Infections (CLABSI)
ii. Ventilator Associated Events (VAE), incl. VAC, IVAC, PVAP and ProbVAP 1

iii. Deep Venous Thrombosis (DVT) and Pulmonary Embolism (PE)
iv. ICU-acquired delirium and weakness
v. High tidal volume and Acute Respiratory Distress Syndrome (ARDS)
vi. Loss or diminution of respect and dignity afforded to patients and families
vii. Inappropriate care and excessive intensity of care

Table 1.2: Consortium Standardized Harm List

1.4 ICU Harm Events

The assumption in this thesis is that harm events is a broad concept that includes

any undesired circumstances occurring to patients, regardless whether a real harmful

consequence occurs or not. As the conventionally measured ICU harm events are

known to only capture a small fraction of the total harm event that patients face

everyday, BIDMC is motivated to expand this list and develop a broad concept of

harm event in ICU, called the Total Burden of Harm. In particular, the goal is to

capture other harms that may be relatively infrequent but can add up for a large

number.

According to To err is human: building a safer health system[111, the famous

report published by the Institute of Medicine in 1999, up to 98,000 patients die

because of human errors in U.S hospitals each year. ICU patients experience many

of these events, partially due to "the complexity of their conditions, need for urgent

interventions, and considerable workload fluctuation"181 and it is estimated that each

patient experience 1.7 medical errors per day in ICUs [4]. In a study carried out

at three ICUs in a large, urban teaching hospital affiliated to a university medical

school by Lori Andrews et al., 45.8% percent of ICU admissions were associated with

a patient harm event 11] and nearly all suffer a potentially life-threatening error at

some point during their stay [261. The past decade has seen many publications that

increase the awareness and concern of unsatisfactory health care quality and patient

safety across the country. However, despite the impact of these errors on patients,

care quality, and cost, there is a limited number of researches that have identified the
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human factors or system conditions that contribute to errors in the ICU.

The Risky States project aims to introduce a quantitative approach to assess the

overall patient risks in ICUs and model the relationship between the likelihood of

harm events and the states of ICUs - including its environment, the systems in the

ICU and people in the ICU. The term "risky states" refers to conditions associated

with a given ICU at a given shift that are likely to increase the likelihood of harm

events and therefore increase the overall risk level. This model aims to bring several

benefits to BIDMC with:

" Leverages for harm event prevention by avoiding, mitigating and eliminating

risky states through decision making, or alternatively identify safe states

" An alerting scheme for awareness of increased likelihood of harm events

* System level mitigation strategies to the ICU risk management that can be easily

adopted by other institutes.

1.5 Summary of Approaches and Insights

In this thesis, we first define a concrete way of measuring the Total Burden of Harms

for patient in ICUs. It is an aggregated notion of all harm events occurred in the

critical care unit environment. More precisely, we expand the definition of harm events

by aggregating over all types of harm events rather than adopt a measure of harm

based on some specific care plan. This does not only leads to a better understanding

of where patient risk exists, but also increases the statistical power when use data to

identify risk sources.

In addition, the Risky States approach models the relationship between ICU harm

events - defined by the Total Burden of Harms above - and the states of system,

the environment of the system, and the people in the system. While this certainly

allows us to identify risky states, which are system conditions that will increase the

likelihood of patient harms and potentially the magnitude of their outcomes, more

importantly, these conditions are common to many different harm events. Therefore,

by eliminating the occurrences of these risky states, we are hopefully able to reduce
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the probability of a variety of harms simultaneously.

In order to identify risky states derived from statistical models, we need to build

one that is more than just a predictive black-box. We choose to use regression tree

because of its high interpretability by dividing shifts into clusters and characterizing

them by descriptions in all ancestor nodes. However, regression trees are known to

be very sensitive to the training data and thus causing overfitting. Therefore, we

use random forests - an ensemble learning method that combines many regression

trees - to decrease the variance of the prediction. Since random forest is not an in-

terpretable approach, we developed an algorithm that can provide a relatively stable

regression tree using data simulated from the original dataset and corresponding re-

sponse variable calculated using random forest. This algorithm does not only have

low variance when making predictions but is also capable of providing valid inter-

pretations and descriptions of risky or safe states. Finally, we test the stability and

significance of potential risky/safe states using the k-nearest neighbor algorithm and

Mann-Whitney-Wilcoxn test.

The analysis identifies several combinations of environmental conditions of ICUs,

called states, that are correlated with high rate of harm events. For instance, in

surgical ICUs if during a day shift, patients are quite sick and there are more than 2

newly admitted patients, then there is a higher likelihood that patients in this unit

and shift will experience a harm event. In general, it shows that:

" Surgical and medical units are generally different because they treat very differ-

ent types of patients

" CVICU usually carries a high risk for harm events than other units due to the

type of patients they admit

" Day shifts in general have high harm rate than night shifts

" Patient acuity is not always correlated with higher likelihood of harm events

" Higher nurse utilization often seems correlated with high rate of harm events
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1.6 Outline

Chapter 2 provides a review of prior work on patient safety and risk management

practices through interventions for individual harm event. It discusses the differences

between those conventional approaches and the new Risky States approach that uti-

lizes the concept of event drivers as well as aggregated metrics for describing ICU

harms and system conditions.

Chapter 3 provides a precise definition of Total Burden of Harms in our project,

including how to derive harms from the BIDMC information system and how to

aggregate them into unit and shift level. It also explains in detail why aggregation of

harms is the key concept in the Risky States approach.

Chapter 4 describes the proposed risk drivers in various aspects and how to quan-

tify them. Drivers are also aggregated from patient level to unit and shift level, so

they match accordingly with harms defined in Chapter 3, and together they form

input pairs into our statistical model developed in succeeding chapters.

Chapter 5 describes the statistical model we developed to identify risky states.

The process starts with feature selection, and moves on to a single regression tree

and finally random forests. It then illustrates how to integrate and interpret the

model outputs using human-understandable risky/safe states. Finally, it introduces

the k-nearest neighbor algorithm and the Mann-Whitney-Wilcoxn test as two checks

for model output stability and significance.

Chapter 6 explains how the algorithm in Chapter 5 is applied to the retrospective

data from BIDMC in the calendar years of 2012 and 2013. It summaries our findings

using the Risky States approach, followed by a detailed list of risky states and safe

states.

Chapter 7 concludes wit a summary of our project and suggestions for future

research.
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Chapter 2

Background and New Approach

In this chapter, we will first go over the existing practices to measure harm and

manage risk. We will then discuss some of its underlying problems and how our new

approach is motivated by them, followed by the key concepts in our approach and

their advantages.

2.1 History of Health Care Quality and Patient Safety

Starting in the 19th century, a variety of events helped shaping up the foundation of

quality of care metrics and concepts that we see today. This includes, for instance, the

study of mortality rates during the Crimean war in the 1850s, outcome measurements

for surgical interventions established in 1912, medical auditing through patient chart

review advanced by the Joint Commission on Accreditation of Hospitals (JCAH)

around the 1950s, just to name a few of them [8]. Healthcare quality and patient

safety started to draw the public's attention in the early 2000's when a series of widely

publicized reports, such as Crossing the Quality Chasm: A New Health System for

the 21st Century [23] and To Err is Human: Building a Safer Health System [11]

got published. Over the last decade, government and medical societies has worked

mostly through new regulations to establish more elaborated and transparent systems

to monitor and report on patient harms, as well as safety and quality issues. This

has been a trend in many countries. Australia and the United States lead the trend

21



in 2000 [31, 24], followed by the United Kingdom in 2003 [18] and France in 2006

[8]. In 2002, JCAH started to require accredited hospitals to report standardized

quality measures for conditions, such as heart failure, acute myocardial infarction,

pneumonia and pregnancy. They also developed six national measures of quality for

ICUs, which correspond to a proposal earlier from Palmer and Adams calling for

"various dimensions of measure of care quality" [25].

Health care quality metrics nowadays have expanded over the years to include

factors such as satisfaction of patients and their families, efficiency, humanity in care

and quality of care team work. Patient safety, as one important factor that defines

health care quality, is typically considered as the avoidence from accidental injuries to

patients as a result of failure to complete a plan as intended or a misuse of an improper

plan for goal achievement, referring to errors of commission and errors of omission,

respectively [11]. Even though much effort has been put into the standardization

of practices related to care quality and patient safety, this has not yet led to great

improvements. HealthGrades reported that more than 0.2 million deaths were due

to avoidable errors between 2004 and 2006 [13], and approximately 150 thousand

life-threatening errors occur in US teaching hospital ICUs annually [30].

In the year of 2012 and 2013, BIDMC recorded more than two thousand patient

harm events associated with their ICU patients, including harms from the conven-

tionally measured harm list and various events voluntarily reported by staff through

the BIDMC Incident Reporting System. However, researches have shown that the

reported number of patient harms is in general tremendously underrepresented com-

paring to the overall harm that patients face [35]. Attempting to address this issue, we

seek to develop a far more comprehensive notion of patient harm to more accurately

capture the extent of which harms occur in the ICU environment.
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2.2 Traditional Approaches for Quality Assurance

and Risk Management in Healthcare

There are two basic approaches, conceptually, adopted in ICUs for the purpose of care

quality and safety measurement. The first one is called the room-for-improvement

model. In this model, when a new problem occurs, plans are created to address the

problem and then executed; after observing and assessing the effectiveness of the

plans, new action plan might be put into effect based on what is learned. This ap-

proach is known as the Plan-Do-Act Cycle (PDAC) of the Institute for Healthcare

Improvement (IHI) [14]. The second way is to evaluate quality indicators by con-

sistently monitoring key factors, as fluctuations in glucose levels, and the number

of unplanned extubations [40]. These two approaches are often used in parallel and

the latter serves as a source for identifying rooms for improvement, which will then

initiate a PDAC.

The traditional patient safety and risk management practices are harm-driven

as they were developed aiming to reduce the frequency of occurrence of common

pre-defined harmul events, such as Central Line Associated Bloodstream Infections

(CLABSI), Ventilator Associated Events (VAE), Deep Venous Thrombosis (DVT)

and Pulmonary Embolism (PE), ICU-acquired delirium and weakness, and High tidal

volume and Acute Respiratory Distress Syndrome (ARDS), as mentioned in Table 1.2

in Chapter 1. These harms are consistently monitored because they either cause severe

consequences and have direct impact on patients, or they happen very frequently

in ICUs. In addition, harms are always measured at patient level in current risk

models. Rareness of specific harms for specific patients makes it hard to obtain

robust statistical relations between the related causes and consequences.

Numerous efforts have been invested to design and implement specific mitigation

plan or intervention strategies for specific patient harms, in order to decrease the

probability of occurrence or alleviate the corresponding negative outcomes. National

government as well as local hospitals often launch surveillance systems to monitor

quality metrics, and it creates a self-assessment scheme for quantifying what they are
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doing. We will discuss some of the common practices for monitoring quality metrics

and mitigation measures adopted after identification of problems, with the shortcom-

ings that come along.

1. The medical chart review.

Patient chart is a comprehensive summary of patient's information during his/her

hospitalization, which records both the evolution of the patient's medical conditions

and a complete description of the sequence of care interventions he/she received. Re-

views of patient charts, such as administrative information, morbidity condition or

discharge summary, can often reveal at least some of the quality factors of interest.

Chart review can be done manually or electronically. However, manually reviewing

the massive amount of data for an entire large patient population to obtain key in-

formation extraction is generally unrealistic. In particular, electronic review of chart

data requires a mature information system architecture that at the moment is not

available in most hospitals. Another limitation is biased data recording and interpre-

tation due to variability in medical terminologies used by different physicians, spelling

errors, non-standardization in how medical charts are filled, etc.

2. Voluntary reporting system.

A voluntary reporting system is widely adopted in hospitals in the United States.

It provides regular feedbacks from the team of care providers who actually work in

the unit and possess the most accurate information for the scene. While it is a direct

and comprehensive source for error learning, it inevitably suffers from underreporting

due to time constraints, complexity in filing, fear of liability for one's own mistake,

varied harm event judgment and lack of changes after reporting.

3. Bedside observation.

Harm events can also be detected through direct observation at the bedside by

expert personnel, and is used periodically for detecting errors by omission [12, 31.

For example, medication error collected by a pharmacist at the bedside can increase
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to 560/1,000 patient-days with daily routine observation of prescriptions, comparing

to 7.45/1,000 patient-days from voluntary reporting 138, 291. However, this practice

cannot be followed routinely but only for short because of the enourmous amount of

workforce required.

4. Root cause analysis.

A root cause analysis (RCA) is usually performed after an occurrence of a severe

harm event that brings negative consequences to patients. It is followed by a "de-

tailed mitigation plan developed to eliminate or reliably reduce the risk of another

patient experiencing the same specific harm", which is designed under general quality

control concepts for single process improvement [19]. This approach is expected to

be effective for the same type of harm, but is limited only to that type. In addition,

this approach will not usually be triggered for harms that do not cause serious health

consequences to patients even the harm occurs in moderate frequency.

5. Checklist.

A checklist is a type of informational job aid used to reduce failure caused by limits

of human memory and attention. It helps to ensure consistency and completeness in

carrying out a task. Checklists are first used in airline industries, but have been

widely adopted in the healthcare system. They are algorithmic lists made specifically

for various clinical circumstances to ensure standard process steps are completed by

clinical staff. One of the best known intensive care checklist protocols was created

by Dr. Peter Pronovost, which is considered having "saved more lives than that of

any laboratory scientist in the past decade" according to Atul Gawande in The New

Yorker and also awarded a MacArthur Fellowship [91.

While researches show that checklist, with a theoretical basis in principles of

human factors engineering, has achieved substantial successes for patient safety im-

provement [26, 33], it provides hardly any help for newly emerging or unpredictable

patient risks because it is too specific. It is a common dilemma whether ICU should

enforce more checklists, which can potentially impose a higher risk due to the in-
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creased complexity and a greater workload or burden to staff, or whether ICU should

limit the number of checklists to achieve simpler workflow but suffer from a higher

risk level resulted from non-standard practices carried out by clinicians.

A combination of these methods is a great start to monitor and mitigate harm

events for assessing care delivery quality and optimizing risk management in the ICU.

However, there are still many problems yet need to be resolved. First of all, it targets

only at a subset of patient harms, mainly the ones with severe outcome and frequent

occurrence. Therefore, a lot of potential harms are ignored, including harms that

have low occurrences yet high impact to the patients or harms that we are not aware

of, which we call "the unknown unknowns". This could cause a misleading picture of

what the overall patient risk level is. Secondly, by creating specific interventions with

respect to certain harm, we are making the system more and more complex as the

number of harms we consider gradually increases. Finally, the corrective actions are

mostly reactive and post-problem mechanisms which bring little prediction power.

As it is critical to be able to launch early interventions to minimize the number of

harm events and their consequences, lacking in means of understanding the current

environment in a timely manner makes it difficult to design efficient preventive actions.

In order to address these problems, which cannot be quantified and reduced by

the existing tools described above, we propose the Risky States approach.

2.3 The Risky States Approach

In the Risky States approach, there are three core concepts. First, harm events

will be considered in an aggregated notion, called the Total Burden of Harm. The

definition of harms is expanded to include all types of harm events rather than adopt

a measure of harm based on some specific care plan. This does not only leads to

a better understanding of where patient risk exists, but also increases the statistical

power when use data to identify risk sources. Detailed discussion on how we construct

the Total Burden of Harm is in Chapter 3.
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Second, we propose the idea of risk drivers. Harm events involve uncertainty in

two ways, namely uncertainty regarding occurrence, and uncertainty of the resulting

outcomes if they indeed did occur. They correspond to event drivers and outcome

drivers, respectively:

Event Drivers: conditions of the environment, the system and the people in the

system, that affect the likelihood of the harm event to occur

Outcome Drivers: conditions of the environment, the system and the people in

the system, that affect the magnitude of the outcome of the risk event if it indeed

occurred

To illustrate the ideas of both drivers, consider the case of a car accident. In

general, a specific accident could be due to a variety of direct reasons such as loss of

control of vehicle, failure to stop or the existence of foreign object on the road. Event

drivers in this case could be road conditions, badly maintained car or tired driver.

These are examples of event drivers related to the condition of the environment, the

system, and the people in the system, respectively, which increase the likelihood of

a car accident to occur. On the other hand, lack of safety features in the car could

affect the magnitude of the injury from the crash, and is considered as an outcome

driver.

In our setting, risky states are defined using these risk drivers, as a combination of

system conditions that when they are present, there is an increase in the likelihood of

patient harms and potentially in the magnitude of their outcomes. This is a powerful

approach as such risky states are common to many harms. And by eliminating the

occurrences of these risky states, we are able to reduce the likelihood of a variety of

harms simultaneously. For example, high workload of nurses could lead to not paying

enough attention to individual patients, and resulting various harms, such as patient

falling out of bed, giving the wrong medication, etc.

To utilize this framework, we need to take two key steps. First is to identify the

possible drivers that are correlated with the total burden of harm. Second is to test

and validate the relationship, if any, between the drivers and the harms. Detailed
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derivation and definition of drivers are discussed in chapter 4.

Last but not least, both harm events and drivers are not measured at patient

level, but at unit and shift level, which also adds statistical robustness to our model

since the impact from some rare and special patient becomes smaller. Aggregation,

in terms of harm events and in terms of measurement level, is the key idea in our

Risky States approach.

With such implementation of drivers and harm events, what we get for each shift

at each ICU, is a set of aggregated drivers, consisting of both patients and staffing

conditions as well as environment related factors, and a set of aggregated harms,

that carries clinical meanings. The objective is to then develop a descriptive model

through data analysis and statistical modeling that can provide us with an extensive

understanding between system factors and overall patient risks. The results will call

for interventions that reduce the likelihood of harm events through eliminating risky

states, thus improving patient safety. For instance, if many harms occur when the

unit receives more than three admissions during a shift, we should not assign the

fourth patient to that ICU but seek for other possible arrangement. This mechanism

will work as a recommendation system that promotes wise operational decisions.

The idea of aggregation increases the robustness of the model in that

" It resolves the issue with rare harms or even unknown harms because it explains

harm as a phenomenon, not harms of specific types;

" It passes the barriers to use many powerful statistical methods that are not

applicable for rare events;

" It improves the statistical power because we now work with a sample that have

more observations labeled with harm (i.e. the extreme unbalance in data is

relieved);

" It is less impacted by some particular patients;

" It enhances statistical reliability from a much smaller predictor space with re-

spect to number of observations, comparing to modeling using patient level pre-

dictors;

" It makes possible to predict the future.
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In summary, the Risky States approach aims at creating a more systematic and

holistic patient safety and risk management mechanism that is:

" Comprehensive and consistent, meaning it can capture many different aspects

of the system and it can be adapted to different settings

" Able to incorporate rare or not pre-defined harm events

" Reflective to the risk changes in the ICU environment in a timely manner

" Capable of capturing the interdependencies among different harm events

" Communicating various stakeholders of the system

* Adapted to various care quality and risk metrics quickly
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Chapter 3

The Total Burden of Harm

As discussed in Chapter 1, one of the underlying assumptions of the approach de-

veloped in this thesis is that different harm events occur in the context of common

underlying environmental, system-level drivers, called risk states. Based on this as-

sumption and to enable statistical predictive analysis, we desire to develop a frame-

work to quantify the Total Burden of Harm in a given ICU unit on a given shift.

The BIDMC Information System is an electronic database that stores various

kinds of patient information. With different focuses and functionality, these databases

were able to provide us with both clinical data on patients as well as environmental

information through administrative records. A complete list of the databases that

were utilized in the project can be found in Appendix A.1. These were used to

retrospectively collect data from calendar years 2012 and 2013, which enables us to

calculate each harm event frequency, occurring time and associated locations.

In Chapter 3.1, we first describe the principles guiding us in defining specific

harm events, followed by a detailed list of harm events that we consider in this thesis.

Chapter 3.2 will discuss harm characteristics, and show how they help transform

individual harms into the notion of the Total Burden of Harms in unit and shift

levels. Chapter 3.3 illustrates the idea of aggregating harm events into bigger groups

and how it can help adding statistical power to the risky states analysis. It also

includes a brief comparison between the Total Burden of Harm and the traditionally

measured harm events in ICUs.
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3.1 Harm Events

As discussed in Chapter 1.4, harm events is a broad concept that includes any un-

desired circumstances occurring to patients, regardless whether a real harmful con-

sequence occurs or not. The Joint Commission on Accreditation of Hospitals divide

harm events in terms of patient outcomes [24]:

Near miss: occurrence of an error without causing adverse consequence;

Actual harm: occurrence of an error that resulted in real patient harm.

In the Risky States approach, we include both of these scenarios because the

underlying risk drivers are in fact common to scenarios with or without measurable

patient harm. In addition, the definition that is used does not distinguish necessarily

between preventable and non-preventable harms. In other words, if there is a doubt

regarding the preventability, we include the harm event in our measure. This is

because from the patients' perspective, both will result adversarial outcomes, as well

as it is likely to expose systematic problems. In particular, lowering the measurement

threshold for what is considered as a harm event is likely to ultimately lead to safer

environment.

In general, the Total Burden of Harm is the aggregation of unexpected or un-

planned outcome, regardless of the severity, consequence and preventability.

Based on these principles, the Total Burden of Harms that we define consists of

37 different harm events (see Table 3.1). There are four different sources of data used

to define and identify these harm events (with the numbers in the box indicating how

many types come from the source):

" The Libretto Consortium ]

" A modified variant of The Institute for Healthcare Improvement (IHI) Global

Trigger Tool [22] 15

" BIDMC Incident Reporting System 16

" Recommendation by BIDMC clinicians W
Among the standard seven "Consortium harms" defined by members of the Li-

bretto Consortium (see Chapter 1.2 and Table 1.2), five of them are included in our
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definition of Total Burden of Harm.1 These harm events have relatively frequent oc-

currences and severe adversarial patient outcomes. Moreover, high level of attention

has been given to develop mitigation plans in ICUs to reduce their frequencies. In-

deed, in the past couple of years, CLABSI and VAE occurrences has been dramatically

reduced at BIDMC and other ICUs across the country.

Traditional efforts to detect harm events have focused on voluntary reporting

and tracking of errors. The BIDMC Incident Reporting System is a voluntary tool

designed for staff members to report any harm events, plus any type of concerns they

have related to care providing, including the environment, the system, other staff,

patients, and family. It has some well-defined harm event types, such as a fall or

a skin pressure ulcer. It contains some general categories which allow for various

concerns or very rare or specific events to be recorded. Hence, it is an important

source of data related to potential patient harm events.

In need of a more comprehensive way to identify harm events beyond the seven

that are traditional measured, a group of Institute for Healthcare Improvement (IHI)

staff member consisting of clinical experts and other professionals developed the first

IHI Trigger Tool in 2000 [22]. The conditions introduced in this Global Trigger Tool do

not only include harm events that are associated with visible adverse consequences to

patients, such as cardiac or respiratory arrest, but puts more emphasis on capturing

symptoms of possibly subtle harm events. Such conditions include "near misses"

or ''process complications" can be highly undesirable and potentially dangerous for

patients. For instance, unplanned extubation does not necessarily make a patient

measurably sicker, but it could. In addition, it might result in a reintubation, which

is an elevated complication to the patient and should be avoided. The IHI Trigger

Tool utilizes many of patients' standard electronic records, such as their vital signs

and lab results. The IHI trigger tool is traditionally applied as a manual process of

chart review done by nurses on a very small sample of patients selected at random

1Note that "weakness" in (to be measured by Function Mobility Scale) item iv. [ICU-acquired
delirium and weakness], as well as item vi. [Loss or diminution of respect and dignity afforded to
patients and families] and vii. [Inappropriate care and excessive intensity of care] are not currently
measured by BIDMC, thus excluded in the analysis.
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around 20. As part of this work, we have automated this process by calculating these

harm events using the extracted data from the hospital IT system. Thus, the process

can easily be scaled up to include all patients. Indeed, we were able to apply a version

of the trigger tool to over ten thousand patients over two year period.

The definition and identification of the 37 harm events was also discussed in detail

by a large group of physicians and nurses at BIDMC. The team developed appropriate

metrics to define from data when a harm event occurred. In addition, there was a

discussion under what situations harm events should be associated with the ICU.

For example, there could be scenarios in which an harm event is presented when the

patient is in the ICU but because of activities occurred prior to the arrival of the

patient to the ICU. In such case, this harm will not be considered as an ICU harm

event.

BIDMC clinicians also recommended including harm events that are not yet cap-

tured by these three sources. These four sources complement each other well to

provide a relatively good measure for the Total Burden of Harm in ICU. Table 3.1

lists all the 37 harm events we consider within the scope of this thesis. The first

column gives the harm name, the second source, and the third a short description.

Table 3.1: Harm Descriptions

Source

Consortium

Consortium

Consortium

Consortium

Consortium

BIDMC

IHI Trigger

Description

Central line associated blood stream

infection

Ventilator associated events

Venous thromboembolism

High tidal volume exceeding patient's

ideal range

ICU acquired delirium

Catheter associated urinary tract

infection

Cardiac/ respiratory arrest

Continued on next page
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Harm

CLABSI

VAE

DVT-PE

ARDS

Delirium

CAUTI

Code Blue



Table 3.1: Harm Descriptions

Harm

Positive blood culture

Positive C. difficile

Oversedation

Abrupt drop in

Hemoglobin

Bleeding

Bleeding

Hypoglycemia

Administer Vitamin K

Administer Naloxone

Chest tube insertion at

bedside

Doubled creatinine

Readmission

Reintubation

Unplanned extubation

Fall

Medication error

Skin tissue, infection

Handoff, communication,

service coordination

Lab specimen

Source

IHI Trigger

IHI Trigger

IHI Trigger

IHI Trigger

IHI Trigger

IHI Trigger

IHI Trigger

IHI

IHI

IHI

Trigger

Trigger

Trigger

IHI Trigger

IHI Trigger

IHI Trigger

IHI Trigger

IRS

IRS

IRS

IRS

IRS

35

Description

Possible infection

Possible infection

Overdose of sedative drips

Possible internal bleeding

Bleeding caused by overdose of

Warfarin, measured by INR

Bleeding caused by overdose of

Heparin, measured by PTT

Low blood glucose caused by overdose

of Insulin drip

Reversal for overdose of Warfarin

Reversal for overdose Narcotics

Possible Iatrogenic Pneumothorax

Kidney failure

Possible uninformed decision at

discharge, unnecessary complexity

Possible uninformed decision at

extubation, unnecessary complexity

Extubation issued by patients

Patients fall out of bed

Any type of medication error

ICU acquired pressure ulcer

Breakage of important information

that results undesired outcomes

Mislabeling or other reasons caused

invalidation of drawn sample

Continued on next page



Table 3.1: Harm Descriptions

3.2 Harm Characteristics

In this section, we discuss some characteristics of harm events that are later used in

the analysis for the following purpose:

1. Convert the absolute number harm event to a harm event rate with appropriate

normalization

2. Focus the predictive analysis on a more homogeneous set of harm events that are

more likely to have common underlying risk drivers
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Harm

Code Purple

Line, tube, vascular

access, drain

Diagnosis, treatment,

testing

Airway manage

Safety

Nutrition

Identification

Blood, blood product

Environment

Consent

Restraints

Source

IRS

IRS

IRS

IRS

IRS

IRS

IRS

IRS

IRS

IRS

IRS

Description

Coded safety issue

Issues related to these types of device

Issues related to plan of care

Issues with respiratory aiding device

Conditions that call for security

Diet related issues

Misidentification

Possible sign for overdose of

anticoagulants

Issues observed by staff about

environment concern, equipment

failure and supply shortage

Issues related to plan of intervention

or surgery and consents with patients

and family

Patients escape from restraints needed

for their intubation



These characteristics include:

Relevance Patient Cohort: Certain harm events could only affect a subset (co-

hort) of the patients in the ICU (e.g., only ventilated patients will have the risk of

encountering VAE harms). This is important to obtain appropriate normalization

and convert the measurement of harm into a rate. For example, 2 VAE harm events

in a unit with 4 ventilated patients is worse situation then 3 VAE harm events with

8 ventilated patients. Indeed, we say a rate of j VAE per qualified patient in the2

former unit is considered as riskier than VAE per qualified patient in the latter.

Type: This indicates whether a harm event is caused by environmental conditions

occurred in the same shift. Instantaneous harm events have precise timestamps and

usually occurs due to some ongoing conditions in the neighboring time window (e.g.,

medication error is due to an error of a nurse at the very moment and is unlikely

related to the shift before). In contrast, long-term or evolving harms take time

to develop and it is usually impossible for us to say when exactly the harm event

occurred, or what conditions at what time caused it to occur (e.g., an infection can

gradually evolve for several days, and it is hard to say exactly the infection happens).

Based on these characteristics, we are able to calculate the average harm event

rate per patient in a given unit u during a given shift j:

r?~ = - _ (*)
n RP

where n is the total number of harm event types taken into consideration, Nu is the

number of occurrences of harm event of type i in the unit u during the shift j, and

RPY, is the number of patients relevant to harm event i presented in unit u during

shift j.
NU

The ratio - calculates the harm event rate per patient for a specific type of harm

event i in shift j at unit u. We sum up over all i and divide the result by the total

number of types n to obtain the average harm event rate per patient.

Note that the difference in nature for harms with different Type makes counting

the actual number of occurrences of an harm event (NA7) different. Whereas it is easy
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to associate instantaneous harm to the shift when it occurs (e.g., if 2 of instantaneous

harm event of type i occur during shift j at unit u, then Nu = 2), an additional step is

needed to associate evolving harms to appropriate shifts. Since no definite conclusion

can be made regarding when an evolving harm actually happens, it is suggested by

BIDMC experts to evenly attribute an evolving harm to all the shifts that bare a

positive probability that the harm may happen, starting from the "first eligible shift",

referring to either the shift when the patients start to carry the risk for a harm event

or the admission shift, which ever is later. For example, a central line infection can

happen during any shift between the insertion of the central line in the ICU and the

identification of an infection by Infection Control at BIDMC. If there are 5 shifts in

between, then the number of central line infection harm is 0.2 for each of the 5 shifts.

Therefore, we alter equation (*) slightly to obtain our final way of calculating average

harm event rate per patient:

n N13

ri - (**)n RP. # Attributed shiftski=1 i3 k=1

If all harms are instantaneous harms, we have 1 # Attribted shifts - N?, which

is the same as (*). If some harms are evolving, only a fraction of those harms will be

added to the total burden of harm for the given shift.

Table B.1 in Appendix B offers a detailed list of harm characteristics for each

harm, including the two discussed in this section, as well as their definitions, metrics,

and shift attribution.

3.3 Harm Aggregation

In this section, we propose several ways to partition the harm events into aggregated

groups that are more likely to have common underlying risk drivers. The goal is to

increase the statistical power of predictive risk models.

The three different ways of aggregation we propose include 1) by Type, 2) by Rele-

vance Patient Cohort, and 3) by Process Relevancy, as illustrated in Figure 3-1. Type
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divides the Total Burden of Harm exhaustively into two groups with one containing

all the instantaneous harms and the other long-term/evolving harms (Figure 3-1a).

This is particularly crucial in the succeeding modeling steps because instantaneous

harms, associated with one single shift, are likely caused by the factors of the same

shift, so we can model this using a direct match between drivers and harm events

for that shift and assume no correlation with the others. Evolving harms are usually

attributed across multiple consecutive shifts, so we need to take a different approach

to incorporate this into a model by considering the states of the units over multiple

shifts.

(aTHryGopsbeTp

(b)sHarm aGrous bydPatient Cohor al

Type ] AUnp ,lade tron

Long-term Infection (CLABSI, CAUTI,
etc.), Pressure ulcer,

(a) Harm Groups by Type

All patients ardiac Arrest,

dp 
e 

Readmission 

to ICU, 
...

Patient patients Reintubation,...

Cohort Patients with CLABS1, latrogenic
central lines I L Pheumothorax

(b) Harm Groups by Patient Cohort

Medica:1 ion Administer Naxalone,
Related Errori PTT>100, ,,.

Communication - -- Hand-off, Code Purple, ...

ProcessH

Relevancy Equip ent -- -Lines/Tube/Drains, Safety,..

Procdrs ARDS, latrogenic
ProceuresPheumothorax, ...

(c) Harm Groups by Process Relevancy

Figure 3-1: Harm Groups

The second way of aggregation depending on Relevance Patient Cohort puts clin-
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ically similar patients into the same group (Figure 3-1b), which could catch possible

dependencies of harm events on type of patients that might not be captured using

Type. Figure 3-1c provides harm group rules based on process relevancy, specifically

the similarities and differences in terms of actions taken or equipment used. For

example, medication errors are probably affected by similar drivers (e.g., high work-

load caused distraction), while communication related harm events might be caused

Count of Adverse Event (2012 - 2013)

20000-
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Type
instantaneous
Longaerm
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BIMC ConsoMum Consorbum IH Trgger IHI Tigger IRS Overall Burden
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Deirnum, Oversedation
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(a) Harm Volume: Total Burden of Harm v.s. Conventional

Count of Adverse Event (2012 - 2013) Subset
No Delirium or Oversedation
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(b) Harm

Figure 3-2:

BIDMC Consortium IHI Tngger IRS
(Excluding (Excluding
Delirium) Oversedation)

Source

Volume: Total Burden of Harm

Harm Volume: Total Burden

Type
Instantaneous
Long-term

Overall Burden
(Excluding

Delirium and
Oversedation)

v.s. Conventional (Subset)

of Harm v.s. Conventional
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by another set of conditions (e.g., unfamiliar with standard handoff protocol). The

latter two proposals are not necessarily exhaustive as some harm events may possess

very special characteristics that would not put it into any group.

However, there are many more ways of aggregating harm events as long as the

groups bear clinical meaningfulness or possess operational similarities. In this thesis,

we will model the Total Burden of Harm by adding up all instantaneous harms with

respect to unit and shift level.

Figure 3-2 shows that the number of harm events from January, 1st, 2012 to

December 31st, 2013 at BIDMC is four times larger than what we would obtain using

a conventional approach, which only includes the Libretto Consortium harms. Each

bar except the last one represents the total number of occurrences of harm events

collected from the corresponding source indicated on the x-axis, while the last bar

is the sum of all the others. Figure 3-2b plots a subset of harm events, excluding

delirium and oversedation, comparing to Figure 3-2a. While these two harm events

are well defined through standard metrics, it is perceived by BIDMC clinicians that

the numbers we obtained do not agree with their understanding of the system and need

Adverse Event Rate (2012 - 2013)
No Delirium or Oversedation

0.6-

0.4-

Type
z Instantaneous

Long-term
0 2-

0.0-
BIDMC Consortium IHI Trigger IRS Overall Burden

(Excluding (Excluding (Excluding
Delirium) Oversedation) Delirium and

Oversedation)
Source

Figure 3-3: Shift Harm Rate: Total Burden of Harm v.s. Conventional
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further investigation. Therefore, they will be excluded in the analysis presented in

the subsequent chapters. Nevertheless, both present a roughly four-time relationship

between the traditional approach and the Total Burden of Harm. This suggests that

current harm measurement approaches are very limited and do not provide a reliable

picture of the overall harm in the ICU environment.

Figure 3-3 shows how many shifts in the 2-year range observed at least one harm

event, from different sources. We can also see an elevated figure in the Total Burden

of Harm approach, which will help alleviate the unbalancedness of our data as inputs

to the model and grant for a higher statistical power.
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Chapter 4

Risk Drivers

In this chapter, we will describe the set of risk drivers that will be input to our models.

The development of the set of hypothesized drivers was done in collaboration with

a multidisciplinary team from MIT and BIDMC. Study of human errors and case

review of the thirty past adverse events enabled us to hypothesize a set of possible

factors that could impact the likelihood of harm events in ICUs based on instinctive,

experiences and perspectives. These factors are called risk drivers, describing the

states of system, the environment of the system and the people in the system, which

will affect the likelihood of harm events and/or the potential likely magnitude of their

outcomes.

Prior to discussing the specific risk drivers hypothesized with respect to the ICUs

at BIDMC, we provide relevant backgrounds.

4.1 Backgrounds

The motivation of proposing risk drivers starts from understanding human errors

in general. Human errors usually refers to actions "not intended by the actor; not

desired by a set of rules or an external observer; or that led the task of system outside

its acceptable limits", which deviates from intention, expectation and desirability

132]. Integrated framework for understanding why human errors occur first occurred

when Reason established a theoretical cognitive operating mode classification in his
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book Human Errors in 1990 [28]. Reason proposed two structural features of human

cognition as the workspace and the knowledge bases. The workspace is identified with

the schematic control mode, which is responsible for the majority of human daily

activities. These activities are controlled unconsciously and automatically by the

brain without involving intensive thinking, due to their preconceived templates, so

the level of activation required is relatively modest and parallelism is often possible.

The knowledge base, on the other hand, is identified with the attentional control mode,

which is mainly used when conducting activities such as setting goals, selecting the

means to achieve them, monitoring progress, detecting and recovering from error, as

well as overseeing the schematic control mode. Such activities require a rather great

amount of mental attention and hardly operates in parallel.

Reason then connected the operating modes with three types of errors that are

closely related to the three cognitive modes proposed by Rasmussen and Jensen [27]

including skill-based, rules-based and knowledge-based level.

Skill-based operation is a phase when activities are controlled by the schematic

control mode. Errors at the skill-based level, called slip, mostly occur due to small fail-

ure from the operator, such as distraction, over-attention or under-attention. Rules-

based operation involves both schematic control and attention control. When faced

with new problems, a problem solver first seeks a solution from known rules and then

goes back to skill-based thinking once he/she gets familiar with the routine and can

perform the task effortlessly. Rule-based falls, called lapse, can occur in two aspects,

namely misapplication of good rules, and application of bad rules. Knowledge-based

operation usually occurs when heavy reliance on the attention control mode is required

Operating Modes
Error Type

Schematic Attention
control mode control mode

Skill-based / Slips
Cognitive Rules-based / / Lapse
Modes

Knowledge-based _/ Mistake

Table 4.1: Relationship between Operation Modes, Cognitive Modes, and Error Types
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to seek new solutions in unfamiliar environments, for a complicated process that de-

pends on various schemata and rules applications. Therefore, mistakes can occur

at multiple stages in multiple forms regarding the knowledge-base level, like "biased

memory (psychological biases that enhance or impair information recall), availabil-

ity heuristic (over-reliance on immediate examples), confirmation bias (searching to

confirm one's beliefs) and overconfidence (over-reliance on personal judgment)" [15].

We summarize the relationship between operation modes, cognitive modes, and

error types discussed above in Table 4.1 and formal errors defined by Reason, cate-

gorized as active failures, in Table 4.2.

Error Definition

.i A failure to execute an action due to a routine
Slip behavior being misdirected

A failure to execute an action due to lapse in
memory and a routine behavior being omitted

Mistake A knowledge-based error due to an incorrect
thought process or analysis

Table 4.2: Human Error Types

Healthcare delivery system and ICUs in particular experience human errors on a

daily basis despite the fact that people who work in these environments have received

exceptional training and are highly qualified and motivated. There are also different

ways to classify human errors in ICUs for different modeling aspects, for example, as

stated in To Err is Human [111:

Error of omission: Failure to perform an appropriate action (e.g., not to wash

hands)

Error of commission: Performing an inappropriate action (e.g., administering

wrong dose of medication)

As one of the most complex system in hospitals, ICU utilizes a numerous member

of care teams with different functionality to provide totally specific services, and is

a place where all kinds of errors can occur. By understanding the theoretical base

of errors that cause harms in critical care, we are motivated to propose the concrete
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related factors, and attribute them to different error categories, which we will discuss

in the next section.

4.2 Risk Drivers

A preliminary review of 15 serious adverse events in the ICU at BIDMC revealed

several core event risk drivers, such as:

1. Fundamental conditions of care providers when facing special patients that chal-

lenge their expertise outside their routine practice (e.g., when a neurological ICU

patient is placed into a unit that typically does not deal with that type of patient,

or when an interventional procedure is done in an ICU that typically does not host

such procedure)

2. Irregular operations and communication barriers between stakeholders that partic-

ipate in care delivery (e.g., the allergy information of patient, known to the surgeon

team, did not get transferred to the ICU care team due to incapability of com-

munication between existing IT systems, which eventually resulted in a harmful

medication dispensing)

3. Heavy workload (e.g., interruptions and distractions in workflow that creates time

windows when nurses are called to perform other tasks and not able to pay atten-

tion to their patients' conditions).

The identification and measurement of risk drivers largely depends on the work

Traina has done [37] in 2014 and 2015, including a modernized and customized ver-

sion of nursing workload scoring system as a joint work with Ma [17]. Like harms,

all drivers are aggregated to unit and shift levels to reflect the operational features

BIDMC has and obtain generalization. Patient level data are pulled from BIDMC

Information System Electronic Database (Table A.1) for calculation of patient level

metrics, which are then aggregated under certain rules to give the unit and shift

level measurement. While the set of drivers generally stay unchanged, the proper

definitions and calculation details underwent some major modifications, and we will

present the fully updated collection of drivers in this section.
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Drivers are categorized into four groups: Acuity, Unfamiliarity, Utilization, and

Other.

" Acuity is a measure that describes the illness or clinical severity of patients,

which include a pre-defined scoring system to assess patient's organ failure,

proportion of patients within their 24-hour of care after admission to an ICU

and overall length of stay in the intensive care environment.

" Unfamiliarity covers a set of drivers that are recognized from BIDMC clinical

team, based on their experience or observations of practices that fall out of the

comfort zone of the care provider. For example, this includes nurses working in

the environment they are not used to or performing rare procedures to patients.

" Utilization is a metric we intend to use to capture the business of nurses in the

ICUs, as high workloads, if beyond clinician's manageable capacity, is expected

to increase the probability for an error which may result in adverse events.

Drivers under this category includes nursing workload, a scoring system based

on BIDMC-customized TISS-28 [21, 20] and patient movement across ICU such

as admissions and discharges.

" Other includes a number of drivers that are inspired from case reviews such as

time impact or patients with unknown medical history.

The idea of these three categories is motivated from the concept of three types of

human errors in the previous section, namely skill-based, rule-based and knowledge-

based. High acuity of patients generally requires an extensive and complicated care

plan for the patient, where knowledge-based errors are likely to occur. Unfamiliarity

challenges the nurse in performing standard practices, which may result in rule-based

errors. Utilization is closely related to skill-based errors from nurses not paying

enough attention to patients when being overloaded with other works.

Table 4.3 summarizes such relationships between types of human errors and cat-

egories of risk drivers, as well as the specific risk drivers falling under each category,

which will be discussed in detail in the next section.

47



Table 4.3: Types of Human Errors and Risk Drivers

Error Type Category Driver

SOFA

Knowledge-based Acuity First 24 hour

Length of stay in ICU

Float nurse

Rule-based Unfamiliarity New nurse

Boarding patient

Nursing workload

Nurse to patient ratio

Rule-based Utilization Admissions

Discharges

Close-in-time movement indicator

EU Critical

Other Night & Day

Weekend

Unit

To simplify the representation of driver definitions in our model, we first introduce

the following notations:

ATO: admission time for patient k into an ICU from a non-ICU location

DTk: discharge time for patient k from ICU

SS: start time of shift, 7 am or 7 pm

ES: end time of shift, 7 am or 7 pm

Ta: total number of admissions during a shift

Td: total number of discharges during a shift

T: total number of movements during a shift (i.e., Ta + Td = T)

ti: time stamp when the i-th movement (i.e. admission and discharge) of patients

happens during a shift, i = 1, 2,..., T, to = SS
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Nj: number of patients in the unit during a shift at tj before the movement, i.e.,

excluding the one to be admitted and including the one to be discharged

Pk'(.): patient level measure/indicator for some drivers during a shift at tj

S: total number of nurses during a shift

The reason we record time stamps for each patient movement is that when a

patient is admitted to or discharged from ICU, it might change the risk driver states

in the ICU during a shift. For example, we want to calculate the faction of first

24-hour patients in the unit. It is 2 out of 8 (i.e., 0.25) at the beginning of the shift.

After 4 hours, one new patient is admitted, and the fraction becomes 3 out of 9 (i.e.,

0.333) and stays the same until the end of the shift (for another 8 hours). Instead

of using one of these two numbers, we choose to calculate a time-weighted average

of the two for a more reasonable measure, namely 0.25*4/12 + 0.333*8/12 = 0.306,

since each shift is 12-hour long.

Such time weighted average is one solution to incorporate all values of a driver

and weigh them based on how long each scenario lasts within a shift, and gives a

robust way to capture the dynamic changes that have occurred throughout the shift.

4.2.1 Acuity

1. Sequential Organ Failure Assessment (SOFA) Score

The SOFA score is a scoring system to determine the extent of a person's organ

function or rate of failure. It is developed by a group working on sepsis-related prob-

lems in 1996 [39], and is currently widely used in assessing ICU patients. The score is

based on patients' organ performance in six different areas including the respiratory,

cardiovascular, hepatic, coagulation, renal, and neurological systems. With the score

range between 0 to 24, a value only as high as 11 can give predictive mortality close

to or above 95% while a score below 9 can decrease the rate to 33% [39].

Patient Level:

To calculate the SOFA score for one patient during a particular shift, we take the
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following 4 steps:

1) Extract necessary data from relevant datasets for the patient with time stamps

between the start of the previous shift and the end of the current shift of interest

(i.e., need to span the 24-hour window)

" If no records exist for the time window, choose the one from before the starting

point cutoff that is the closes to the current shift

" If no records exist at all for the patient for all time, assume the patient's record

for that field is within the normal range

2) Calculate the metric for each component with data obtained from previous step

3) Compare the calculated metric with the values/conditions in Table C.2 and assign

the corresponding points to that component for the patient

* If multiple point values are obtained during this step, choose the worst one

4) Add up points for all six components to obtain the SOFA score for the patient

Note that PaO 2 and FiO 2, required to calculate the respiratory component, are

usually not documented for all patients, so an alternative implementation based on

a slightly different scheme called Modified SOFA is used in our project 110]. The

calculation details are listed in Appendix C.2.1.

Unit Level:

To aggregate the drivers into unit level, we first divide a shift (12 hours in length)

into segments according to movements of patients. As previously explained, this is

because whenever a patient is admitted into or discharged from the unit, it changes

the unit level condition. We then average over all time segments and over all patients

for the patient level measure to obtain the unit level measure. There are several ways

to include the aggregated measure of patient level SOFA to unit level:

Avrge (OF) 1T 1Ni~

Average: p(SOFA) = (ti - ti_ 1) [A L Pk(SOFA)
Se=1_k=1_.

Standard Deviation: 6(SOFA) = (ti - ti-1 E Pki(SOFA) - p-(SOFA)-T-1
\2 i=1 'k=1 T-I
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Highest: H(SOFA) = max{P.(SOFA)}
k
iT

Quantile: Q(SOFA) Z(ti - ti_)1{Pi(SOFA) > 9}

i=1

The "Average" of SOFA score first calculates the average SOFA score of all current

patients (Ni of them) during each time segment, i.e., between tj and ti_1 for i =

1, 2,. . .. It then averages over all time segments with the length of the segment as its

weight.

The other three measures follow a similar pattern, but measuring the acuity level

using SOFA from a different perspective. While "Standard Deviation" and "Highest"

is self-explanatory, "Quantile" is essentially trying to capture, on average, how many

patients are really sick (SOFA>9), which is an alternative to standard deviation to

model the dispersion of SOFA score in the unit.

2. First 24 Hour: weighted average of fractions of patients who are within the first

24 hour from admission to ICU during a shift.

Patient Level:

P (F24H) = 1{tj - ATk < 24}

Unit Level:

T ~NZ

F24H (ti - ti-1) E Pk(F24H)
1i=1 .N k=1

3. Length of Stay in ICU: weighted average duration of time the patients who

have been in the ward since they were admitted to an ICU.
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Patient Level:

P (LS) = tj - ATk

Unit Level:

T ' Ni ~

LS = E(ti - ti_ 1 ) E Pk(LS)
12i=1 .i k=1 .

4.2.2 Unfamiliarity

Some of these drivers have consistent values because they are related to conditions of

nurses, which does not change throughout the shift.

1. Float Nurse: fraction of nurses in the unit who are considered as float.1 This is

flagged in the staffing data.

S
FN = E {Nurse j is "Floating"}

j=1

2. New Nurse: fraction of nurses in the room who are considered as unexperienced

because they have been hired to work in the ICU for less than one year. This infor-

mation is calculated by the difference between the nurse's hire date and the date of

the shift, available in the staffing data.

iS
NN = 1

{Nurse j is "New"}

j=1

3. Boarding Patient: average fraction of boarding patients who are assigned to

ICU that does not usually provide the type of service patients are associated with.

'Float nurses are nurses who work in ICU wards other than the one they usually work in, for
instance, a medical ICU nurse working in a surgical unit. These nurses are less familiar with the
new unit, and are likely to make errors, which is why we consider it as a risk driver. BIDMC also
has "float nurse pool", of which the nurses are trained to work in various ICU environment. This
type of float nurses are not included in our definition of float nurse.
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Boarding into an ICU requires the satisfaction of two conditions, namely it is possi-

ble, in real practice, to assign the patient with some service to certain unit AND the

assigned unit is not a home unit for the service.

Patient Level:

A patient is a boarding patient if his/her service type and assigned unit combina-

tion gets value 1 in Table C.1 and not if 0.

Unit Level:

T ti N

Boarder= (ti- I P (Boarder)
i=1 .. k=1

4.2.3 Utilization

Utilization related drivers generally measures nurses' workload, i.e., the utilization of

nursing hours.

1. Nursing Workload (TISS point) :average nursing workload based on the du-

ties they need to perform in terms of required patient activities, measuring by the

Therapeutic Intervention Scoring System (TISS). It gives different number of points

to different activities based on its intensiveness. For example, a lab draw is 1 point

for the nurse, while ventilating a patient is 5 points. A nurse can do up to 46 TISS

points per 8-hour shift, or 69 in terms of BIDMC 12-hour shift. In real practice, a

shift with score of 0-18 means it has light workload, 18-24 moderate, and 24+ being

high. Details are discussed in Traina's thesis [37].

Patient Level:

To obtain patient level workload, first use relevant data and Table C.4 to acquire

all the activity based points one should receive during a shift, them sum them up.

Unit Level:

Sum all patients workload and normalize by the total number of patients.
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2. Nurse to Patient Ratio: ratio between nurse working hours and patient hours,

a measure for average utilization of nurses' time during a shift. This is a unit level

driver.

Unit Level:

Each nurse has 12 hours available and for each patient, its patient hours for the

shift is determined by the corresponding admission and discharge time stamps.

PHk = min {DTk, ES} - max {ATk, SS}

Then sum up both to calculate the ratio:

NPR - Z= PHk
12-S

where N is the total number of patients who have been physically in the unit at

least once, no matter for how much time, during the shift and S is the total number

of nurses. This number is theoretically supposed to be between 0.5 and 1, with 0.5

meaning all nurses are taking care of two patient throughout the shift, and 1 meaning

all 1 to 1 assignment throughout the shift. However, with resource nurses and training

nurses, this number can go above 1.

3. Admission: number of admissions to the unit, modified to be normalized by nurse

to patient ratio in order to capture the distraction for the nurse from their current

work to care for patients to accept the new admission. For each admission i, we have:

1 S
AD. = - --

wi t ni

where S is the number of nurses working in the unit for the shift.
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Unit Level:

Ta

AD = AD2

i=1

4. Discharge: number of discharges to the unit, modified to be normalized by nurse

to patient ratio in order to capture the distraction for the nurse from their current

work to care for patients to handoff the patient and clean the bed. For each discharge

i, we have

1 S
DS N,-1 Ni - 1S

where S is the number of nurses working in the unit for the shift.

Unit Level:

Td

DS = DS
i=1

5. Close-in-time Movement Indicator: unit level binary or continuous indicator.

Binary: 1 if there are multiple (> 2) admissions or discharges happening within

2-hour window, 0 otherwise

Vi = 1,2,..., T

Continuous: count the number of cases where multiple ( 2) admissions or dis-

charges happen within a 2-hour window, 0 if none

i z, 2, ... ,T
T

{ -ti_1 < 2}
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4.2.4 Others

1. EU Critical: average fraction of patients who are flagged as "EU Critical". These

patients get admitted to BIDMC either with an unknown identity of no records of

medical history.

Patient Level:

Patient is counted toward EU Critical if they identifier is listed in the EU Critical

database and is within the first 48 hours of admission to hospital. Status changes

back to non-EU Critical automatically after 48 hours of any kind of hospitalization.

Unit Level:

T Ni~

EUC = ( - t 1 ) P (EUC)
1i=1 Nik=1.

2. Night and Day: shift level binary indicator. 1 for night shifts (7pm to 7am) and

0 for day shifts (7am to 7pm).

3. Weekend: shift level binary indicator. 1 for weekend shifts occurring between

7pm Friday and 7am on Monday and 0 for the rest.

4. Unit: categorical variable that identifies the unit information for other drivers. 7

possible values for this driver include FICU, SICU, TSICU, MICU6, MICU7, CVICU,

and CCU.

Driver processing yields, for each shift, a set of values describing the conditions

from the above four aspects of an ICU for that shift.
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Chapter 5

Statistical Methodology

By preprocessing the harms and drivers, we obtained, for each shift and in each unit,

a set of 15 drivers that describe the unit conditions and the corresponding average

harm rate per patient (for all instantaneous harms) in that shift (12 hour in length)

and unit. Table 5.1 shows the sample data structure after the preprocessing, with

each row representing a shift, and each column representing a variable (last column is

the response variable and the rest are independent variables). For example, the first

row is one observation of a shift in MICU6, it has a SOFA score of 8, fraction of float

nurses at 25% and a TISS score of 18, etc.

SOFA Float Nurse TISS Unit ... Harm Rate

8 0.25 18 MICU6 ... 0.036
6 0 15 SICU

Table 5.1: Sample Data Snapshot

0.008

Its associated average harm rate is 0.036 harms per patient in MICU6 of that

shift. This is calculated using equation (*) in Chapter 3.2. Specifically, we first obtain

the harm rate per patient for each harm event by calculating the ratio between the

absolute occurrence of each harm and the number of relevant patients in the unit

during the shift for that harm. We then sum up all these ratios and divided by 25

since there are 25 different types of instantaneous harms.
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In total, we have around 10,000 such observations (around 1,400 shifts for each

unit). With the existence of response variable, we use supervised learning algorithms

to model the relationship between drivers (independent variables/features) and harm

rate (response), and identify how one or more drivers impact the harm rate in BIDMC

ICUs. The output of the algorithms describes a set of risky (safe) states, which are

represented by a cluster of shifts that share similar feature value ranges (states) and

have a higher (lower) rate of harm compared to the overall harm rate across all shifts

and units. The hope is that understanding what kind of feature values are correlated

with high rate of harms, we can 1) make intervention plans to prevent such states from

happening, or 2) alert on them to call for extra attention in the clinical operation,

thus reducing likelihood of harm events and providing a safer care environment to

patients. However, we face several challenges in such model construction:

" The model output must be descriptive.

There are many statistical models that can capture the relationship between a

set of independent variables and the response, simple ones like linear regression

or sophisticated ones like neural networks. These methods are built with the

purpose of predicting new outcomes given new data, and are not necessarily able

to provide descriptive explanation of how feature range values are correlated

with the response variable, which is the key information we are seeking in order

to launch mitigation plans. Therefore, we need develop an algorithm more than

just a simple application of some black-box type of statistical model.

" The results need to be statistically robust.

With the idea of aggregation embedded, it is hard to find already validated

clinical evidence to support the innovative Risky States approach other than

clinical intuitions from experts at BIDMC. Therefore, we need to be very careful

about the credibility of the statistical tools we use and looking for consistencies

across statistical methodologies.

* We work with an unbalanced dataset.

Since specific ICU harms are typically very rare events, the data we obtained

for modeling statistical relationship between harm events and drivers would
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be unbalanced with many shifts seeing no harm events (i.e., the response is

0). We alleviate this problem by first aggregating over different types of harm

events, but we still need to take this into consideration as unbalanced dataset

will cause problems in various statistical models.

The new approach designed in the thesis attempts to address these challenges by

employing a combination of regression trees, random forest and k-neareast neighbor

(KNN). Next we provide a brief outline of our approach:

1. Run multiple regression trees to reduce dimensionality of the driver space

- Eliminate drivers that are not chosen often by the trees

2. Train a random forest model using the remaining drivers

- Each regression tree built on a 75% randomly chosen sample of the data

3. Create samples that are uniformly drawn from the driver space

- Predict the harm rate for each sample using random forest model

4. Build a regression tree on the combination of real data and simulated data

5. Identify risky/safe states

6. Verify the stability of risky/safe states using KNN

7. Test the significance of the risky/safe states using Mann-Whitney-Wilcoxon

hypothesis test

5.1 Regression Tree and Random Forest

The idea of linear regression is to find a linear relationship between a real-valued

dependent variable Y using a set of independent variable X. A regression tree is

to utilize this simple and straightforward idea of linear regression, and at the same

time achieve manageable interaction among drivers for non-linearity through recur-

sive partition and offer descriptive statement about independent variables [16]. The

algorithm works in the following way:

1. For each independent variable, find all possible values as the split points for all

independent variables

59



2. Choose one independent variable and one split point, fit two simple linear re-

gressions to the split data, respectively

3. Repeat for all independent variables at all split points

4. Choose what independent variable to split at what value:

(a) Calculate the the sum of squared errors (SSE) between the predicted value

and the actual values, for each variable and each split

(b) Compare the error across all the independent variables and all the splits

(c) Choose the one yielding the lowest SSE and split the data into two parti-

tions using the corresponding variable and split point

5. Repeat step 1 to 4 until stop criterion

Ultimately, the predictor space is partitioned to multiple subspaces, and each space

is associated with a leaf node in the tree representation, with a fitted value of the

response variable for all the observations inside the node determined by tree partition

rules. These rules are essentially what we will use to describe the states. Regres-

sion tree has many advantages including, for example, fast computation with large

dataset, insensitive to scaling, indirect interaction discovery, resistance to irrelevant

variables, capable of taking categorical variables, handling missing values and tuning

for parameter. Most importantly, it offers us interpretable model representations.

In our case, a regression tree will partition the driver space recursively into smaller

subspaces, and for each partition, it will give a fitted patient harm rate value, obtained

from the average of all observations falling in that partition. Figure 5-1 gives a simple

example using two drivers SOFA and Admission.

In this naive example, the tree is basically telling us that if the unit average SOFA

score is below 5, the fitted rate of harm is 0.5 per patient, which is relatively safe

(lower than average). On contrary, high SOFA and high admission together yields

a much high rate at 2 harms per patient, making the unit and patients in relative

danger.

In general, we use regression trees for two purposes. First is feature selection.

To do this, we build 10,000 regression trees on different sets randomly drawn, with
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Figure 5-1: How a Regression Tree Works

replacement, from the dataset as shown in Table 5.1, with each set 75% of the total
number of observations (around 7,500 data points), and check how many drivers are
consistently chosen by the trees to split on. The trees are pruned so that each node
has at least 150 observations (shifts) to avoid over-fitting within the tree. Since the
tree will ignore irrelevant variables, we decide to only include the ones chosen by
at least 50% of the time by the trees, namely, SOFA, Admission, Discharge, TISS,
Night, NP Ratio, and unit', as shown in Figure 5-2.

20

10

Drivers

Figure 5-2: Feature Frequency

'Note that unit is a categorical variable, and we created dummy variables for easy visualization.
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The second purpose of constructing regression trees is to learn how ICU states

affect patient harm rate by understanding the partition rules, which describe the way

to split a set of drivers at particular thresholds. Then multiple subspaces are formed

in terms of the selected dimensions (i.e. drivers) and their respective ranges of values,

what we call "states".
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Figure 5-3: Sample Regression Tree

Let us look at an example in Figure 5-3. The nodes at the bottom refer to

leaf nodes, each containing many observations that obey the same partition rules.

This means we can describe them as a cluster of shifts using the same drivers and

corresponding ranges. For instance, node 15 on the lower right corner consists of 150

shifts, whose states are 1) days shift, 2) more than 29% of the patients in the unit are

new admits (much higher than mean and median) and 3) the average SOFA score of

the unit is higher than 6.7 (higher than mean and median), as illustrated in Figure

5-4. Since it is associated with a harm rate of 2.89 while the population average is

0.78, this is defined as a risky state.
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Other risky states and safe states are also identified by the tree, with some pre-

sented in Figure 5-5. In general, we see less workload (in terms of number of admis-

sions and discharge) and less acuity (in terms of SOFA) is associated with less harm,

which is clinically valid.

Node ID: 15 N: 150 Rate: 2.893

NIGHT

ADMISSION

SOFA

Lie 02s a. 0.5 l.e

am8 025 alU 0.78 lio

am 3.25 &A .78 13m00

Population Range Node RangefMan* Medan

Figure 5-4: Node 15 Description
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Node ID: 27 N: 279 Rate: 1.538

NIGHT
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SOFA
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ADMISSION
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Figure 5-5: Safe States and Risky States

As we can see, regression trees are easy to understand and provide us with clear

descriptions of states associated with different level of response values. However, it

also comes with drawbacks. Regression tress are known to be very sensitive to data

they are trained on. This means a slight change in some variable could yield totally
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differently shaped trees. Therefore, a regression tree trained on one random split of

the data is likely to be overfitting and will not give very reliable descriptions of risky

states. To solve for this problem, many ensemble algorithms are used such as tree

bagging and random forest.

Tree bagging is a combination of regression trees. More specifically:

for b = 1, ... , B:

1. Sample, with replacement, B examples from X, Y, call each of these Xb, Y

2. Train a regression tree fb on Xb, Y

3. After training, predict the response for unseen samples x by averaging the predic-

tions from all individual regression trees on x:

B

f(x) = BEfb(x)
b=1

This bootstrapping procedure leads to better model performance because it de-

creases the variance of the model, without increasing the bias [36].

Random forest is one step further from tree bagging - the splitting variable at

each step is not selected from all features, but a random subset of them, to further

reduce the possibility trees being correlated [2]. Therefore, random forest resolves

the problem of overfitting. However, since each tree in random forest splits using

different features at different threshold, it then becomes unclear what we should use

to describe risky/safe state. Therefore, we propose the following approach to fix this

problem, described in Section 5.2 below.

5.2 Data Simulation

We start with simulating data samples according to the current distribution of drivers

in the feature space. More specifically, for each driver that is continuous, we do the

following step:

1. Generate the histogram based on the historical data

- Set the number of bins to 25
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2. Calculate the empirical distribution for the mid-point mi of each bin
P(mi) = height of bar _ i = 1 2 ... 50

total number of observations

3. Sample a point from the empirical distribution from step 2

4. Add some randomness to the sample point

- Calculate the driver range: range = max - min

- Sample a number uniformly from [-2% x range, 2% x range)

- Add the random number to the midpoint sample drawn at step 3

For drivers that are discrete, we directly sample from the empirical distribution

based on the historical data. For instance, the empirical distribution for the driver

Night is P(day shift) = P(night shift) = 0.5.

To generate a complete observation, we repeat the above steps for all drivers and

calculate the corresponding response using the random forest model trained based on

all real data from last section.

At this point, we obtained a new set of data points, with driver values and harm

rate in the same format as the real dataset. We denote the original real data (XR, yR),

the simulated data (Xs, yS) and the combination of the two (XA, yA).

Figure 5-6 gives a comparison of distribution of shifts in a 3-dimensional driver

subspace (Admission, SOFA, and TISS) between the real data XR (Figure 5-6a) and

the combination of both real and simulated XA (Figure 5-6b). Color of different points

bear the following meaning: blue - < 30% less than population average harm rate;

4.4

an - .

(a) Real Data (XR)

Figure 5-6: Scatter Plot of Shifts in a

3S N

(b) Real data + Simulated Data (XA)

3-dimentional Driver Subspace
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red: > 30% more than population average harm rate; yellow - within 30% interval of

population average harm rate.

Figure 5-6b is able to depict a more obvious edge between lower-rate-of-harm shifts

and higher-rate-of-harm shift immediately. In addition, by adding more data points

in the feature space, we lower the risk of sensitivity in regression tree construction

caused by different sampling of the data. This is because, with data points being very

dense in feature space, even multiple times of random sampling will result in very

similar data point distributions in different samples, which in turn should give very

similar regression trees. We use the following three metrics to measure the consistency

of regression trees trained using different samples drawn from the same dataset:

" Average coefficient of variance of predicted values across different regression trees

for all original data observations (YR).

" Standard deviation of the number of times each driver is selected by the regres-

sion tree across all trees.

" Distribution of split thresholds for each driver across all regression trees.

We will show an increase in consistency in the regression trees after data simulation

with these three metrics, using the following steps.

1. Train 500 regression trees using a random sample (75%) drawn from a set of

shift observations:

(a) The initial set of shift observations only consists of real data (a total

of n = 10200 observations and 6 independent variables: Admission,

Discharge, NPRtio, SOFA, TISS, Night). In this case, XA = XR.

(b) Gradually add the number of simulated points (XS). XA x .
X S

(c) Denote each sample XA, i = 1, 2, ... , 500.

2. Calculate the predicted harm rate i, i = 1, 2,..., 500, j= 1, 2,..., n.
23

3. For each shift j, calculate the coefficient of variance of the predicted harm rate

across all regression trees: cv, = i', where pj is the mean predicted harm rate

for j and o- is the standard deviation of predicted harm rate for j.
4. Calculate the average coefficient of variance: cv = - _ E cvj.
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The number of simulated points ranges from 102 to 106. Figure 5-7 shows how

the average coefficient of variance decreases as the number of simulated data points

increases.

Average Coefficient of Variance

For Predicted Harm Rate of Original Data iV'
0.14

0.12

0.10

0

0.06

0
M0.04

0.02

0.00-

0.00e+00 2.00e+05 4.00e+05 6.00e+05 8.00e+05 1.00e+06
Number of Simulated Data Points

Figure 5-7: Average Coefficient of Variance

When the number of simulated data points is approximately 2 x 105, the average

coefficient of variance converges to a small stable value. The following comparison of

the other two consistency metrics will be conducted using n = 2 x 105.

Figure 5-8 compared the mean and the standard deviation of the number of times

each driver is selected by the regression tree, between the original data set XR and

the combined dataset XA. The black line in the middle of each bar represents one

standard deviation away from the mean. We can see from the plot that the number

of times selected by different trees for each driver (except Night) varies a lot when we

only used the original dataset to train the random forest. In contrast, there is almost

no variation when we used the combined dataset with both original and simulated

data (the standard deviation is 0 so there is no visible black line for corresponding

bars). More specifically, each tree from the latter case split once for driver Admission,
SOFA, and Night, twice for driver Discharge.

Finally, we take a look at where each driver is being split. Since regression trees
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trained using XA do not split with respect to drivers NPRatio and TISS, we present

here the four other drivers. From Figure 5-9, we can see that, except for Night, the
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splitting thresholds for the other three drivers concentrate at a very small and stable

range for XA comparing to XR.

All three metrics we investigated above have shown that training regression trees

using random samples drawn from the combined dataset yields a much higher con-

sistency. Therefore, after we generated the simulated data, we can obtain relatively

reliable clusters even by fitting one regression tree using the simulated data. Each

cluster represented by a leaf node in the tree with an average harm rate higher (lower)

than the population average describes a risky (safe) state through its defining drivers

and corresponding thresholds.

To further check the stability and credibility of risky states and safe states obtained

from the regression tree in this way, we will do two more checks using the k-nearest

neighbors algorithm and the Mann-Whitney-Wilcoxn test, discussed in Chapter 5.3

and 5.4, respectively.

5.3 K-Nearest Neighbors

The k-nearest neighbors algorithm (KNN) is a non-parametric method used for clas-

sification and regression. In this thesis, we use it for regression, namely the property

value of a data point is the average of that of its k nearest neighbor points. For

example, let's assume k = 3. In Figure 5-10, the predicted value for point x is the

'-----m A3

Figure 5-10: K-Nearest Neighbor for Regression
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average of the value of the three points in the red dashed square ((1 + 2 + 3)/3 = 2),

while that for point y is the average of the three points in the purple dashed square

((1 + 2 + 2)/3 = 1.67).

In our setting, the value of interest is the harm rate per patient in the shift, so

each shift's rate is calculated by averaging its nearest k shift observations.

The distance metric used in KNN is the euclidean norm for relevant independent

variables, the ones discussed in the previous section. Generally, a small k number

will make the model very sensitive to small changes and the edges of separation very

rough. On the other hand, a large k can decrease the sensitivity, but has less power

of distinguish different data points. In our analysis, we use k = 30, which is generally

believed to provide a good balance between the two.

After we obtain clusters of shifts from the regression tree trained in the last step

of Chapter 5.1, we apply KNN to the shifts within each cluster. This gives an average

harm rate for all shifts in the cluster through the KNN approach, which we denote as

It for a cluster s. This is independent from the average harm rate obtained from the

tree algorithm for the same cluster, which we denote as p'. To check whether a cluster

of shifts is stable in the sense that the KNN algorithm agrees with the regression tree

when the cluster yields higher/lower than population average harm rate, we define

K if sgn(t K [1) = sgn(P4 - P)

0 otherwise

where p is the population average harm rate. When h is 1, KNN agrees with the tree,

so we conclude that the corresponding cluster is a stable cluster, and the combination

of feature value ranges defined by the tree are valid descriptions of risky/safe states.

Otherwise, the cluster is not stable and to be discarded.

5.4 Mann-Whitney-Wilcoxn Test

Finally, we will test the statistical significance of clusters obtained from the regression

tree. Recall that risky (safe) states are represented by clusters of shifts whose average

70



harm rate within cluster is higher (lower) than the population average. However,

without a rigurous test, it is hard to conclude whether the difference between the two

average is statistically significant. If indeed the distribution of harm rate in cluster

and that of the general population are not different and the average differs slightly

only due to sampling, then the risky/safe states provided by such clusters are not

reliable and should not be taken into consideration.

The Mann-Whitney-Wilcoxon (MWW) test is a non-parametric statistical test

determine the significance of the null hypothesis (HO) that two samples come from

the same population versus the alternative hypothesis (Ha) that the two samples

are from different populations. Under the assumption of continuous responses, this

essentially tests the alternative hypothesis whether one distribution is greater than

the other.

Specifically in this thesis, if the harm rate distribution over shifts within a certian

cluster is statistically different from that of the population by conducting the MWW

test and comparing the results with p-value of 0.05, we claim the cluster is a well-

founded cluster whose feature value ranges give a valid risky/safe state. Otherwise,

the cluster cannot be considered as different from the population, thus not able to

identify risky/safe states.
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Chapter 6

Results

6.1 Overview

The results presented in this chapter is from the application of the statistical frame-

work described in Chapter 5 to identify risky states for all instantaneous harms. The

harms included in the analysis are:

Table 6.1: All Instantaneous Harms

Harm Relevance Patient Cohort

Administer Nalaxone Received Narcotics

Administer Vitamin K Received Warfarin within previous 48H

Airway management Being venilated

Bleeding (Abrupt drop in Hemoglobin) All

Bleeding (INR > 6) All

Bleeding (PTT > 100) All

Blood product All

Consent All

Code Blue All

Code Purple All

Diagnosis, treatment, testing All

Continued on next page
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Table 6.1: All Instantaneous Harms

Harm

Environment, equipment, supply

Fall

Glucose

Handoff, communication

High tidal volume (ARDS)

Iatrogenic Pneumothorax

Identification

Lab specimen

Medication error

Readmission

Reintubation

Restraints

Safety

Unplanned Extubation

Relevance Patient Cohort

All

All

On Insulin drip

All

Being ventilated

With qualified central lines

All

All

All

Discharged within previous 48H

Extubated within previous 12H

All

All

Being ventilated

Rate of Harm w.r.t. Shift
0.125-

-.E 0.100-
C/)
'- O075-

*0.050-

0.025-

'0 Qeg-

Harm

Figure 6-1: Percentage of Shifts with Harm in 2012 and 2013
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The single harm rate with respect to shift, i.e., the percentage of shifts encountered

harm in 2012 and 2013, is fairly low, with an average of 2.34%. See individual rates

in Figure 6-1. After harm aggregation, we obtain that 44% of the shifts has a least

one of these harms in the two years range, which helps alleviate the problem of rare

events and unbalancedness in our original dataset. The average harm rate per patient

across all shift is 0.032, with standard deviation of 0.05 and a maximum value of 0.14.

6.2 List of Risky and Safe States

We applied the statistical framework introduced in Chapter 5 to the following 6

subsets of shift observations:

Unit Shift Type # of Shifts # of Patients Mean Harm Rate

Medical units Day 2918 6717 0.031

Medical units Night 2919 6698 0.022

Surgical units Day 1452 3746 0.048

Surgical units Night 1452 3757 0.018

CVICU Day 730 1711 0.093

CVICU Night 729 1695 0.019

Medical units includes Finard 4, MICU 6, MICU 7, and CCU. Surical units in-

cludes TSICU and SICU.

The reason why we did not build one single model using all retrospective data

from year 2012 and 2013 is that we observed the following two phenomena, when

investigating different regression trees trained using random samples drawn from the

dataset:

" The root node is mostly always Night, meaning it always divides the dataset into

two subsets, with one containing only day shifts and the other containing only

night shifts.

" The tree in general will split the data into medical units (Finard 4, MICU 6,

MICU 7, CCU), surgical units (TSICU, SICU) and CVICU at some top level of

the trees.
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These two phenomena show that 1) day shifts and night shifts are different in

nature (e.g., physician team is usually on call at night, almost no patients are admitted

from the operating room at night, etc.), and 2) medical units, surgical units and

CVICU are very different units in terms of the type of patients they admit, type of

care the nurses need to provide, etc. So we divided the dataset into three different

types of units, as well as day/night shifts, and performed analysis separately.

This also makes the comparison of mean harm rate between states and population

more meaningful. For example, if there is some state in the medical units at night

with mean harm rate of 0.03 and if we compare it to the overall harm rate across all

shifts and units (which is 0.032), we would not consider it as a risky state. However,

this rate is approximately 40% higher than the mean harm rate of all night shifts in

medical units (0.022 as shown in the table above), which intuitively is a legitimate

risky state.

Next we present a list of risky and safe states, for the 6 different sets, followed by

their states description via driver value ranges.

6.2.1 Medical Units

* Day shifts, population average harm rate: 0.031

State No. # Shifts p7 T K p-value Type

6 184 0.019 0.020 3.957e-04 Safe

8 171 0.019 0.019 2.393e-05 Safe

15 201 0.025 0.025 1.919e-02 Safe

20 252 0.038 0.038 1.781e-02 Risky

22 163 0.041 0.041 4.597e-04 Risky

24 338 0.042 0.041 1.564e-04 Risky

Stable and Significant Model Outputs
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State No. Driver Lower Threshold Upper Threshold

Admission 0.29

SOFA 6.22
6 Discharge 0.29

NP Ratio 0.80

TISS 14.17

Admission 0.29

8 SOFA 6.22

Discharge 0.29

NP Ratio 0.80

Admission 0.11
15 SOFA 6.22

Discharge 0.10 0.23

Admission 0.11 0.19
20 SOFA 6.22

TISS 20.58

22 Admission 0.19 0.29

NP Ratio 0.72

24 Admission 0.29

Description of States'

We can see that nurse utilization and patient acuity have impact on the likelihood

of harm events in medical units. Both state 6 and 8 are safe states because 1) there are

not many admissions and discharges and 2) average SOFA score is less than average.

State 15, with fewer admissions/discharges but a higher SOFA score, is still a safe

state. This means there is a tradeoff between the two types of drivers: while lowering

nurse utilization may help decrease the overall risk level, having sicker patients in the

unit may do the opposite.

State 20 shows a high nurse utilization, measured by the number of admissions as

'Blank indicates no lower or upper thresholds for the driver, i.e., can be as small as the minimal
or as large as the maximum.
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well as the nurse workload score TISS, together with high patient acuity, increases the

likelihood of harm events. On the other hand, even if patients were not particularly

sick in the units, the unit risk level could still be high when more nurses have to take

care of two patients instead of one (i.e., the NP ratio is closer to 0.5), based on state

22. State 24 shows that when the number of new admissions is extremely high, the

unit is in danger regardless of other conditions, possibly due to additional work for

the nurses or nurses being unfamiliar with new patients, etc.

* Night shifts, population average harm rate: 0.022

State No. # Shifts A T A K p-value Type

10 143 0.015 0.014 1.438e-02 Safe

11 192 0.013 0.012 2.373e-05 Safe

13 429 0.017 0.018 1.940e-02 Safe

17 196 0.026 0.026 3.566e-02 Risky

19 180 0.027 0.026 4.075e-02 Risky

24 289 0.036 0.036 6.187e-13 Risky

Stable and Significant Model Outputs

State No. Driver Lower Threshold Upper Threshold

Discharge 0.11

SOFA 8.72

10 TISS 24.60

Admission 0.15

NP Ratio 0.72

Discharge 0.11

SOFA 8.72

11 TISS 24.60

Admission 0.15 0.28

NP Ratio 0.60

Description of States
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State No. Driver Lower Threshold Upper Threshold

Discharge 0.11 0.21

SOFA 8.72

13 TISS 18.49

Admission 0.28

NP Ratio 0.60

Discharge 0.21

17 SOFA 6.57

TISS 24.60

Discharge 0.21
19

SOFA 8.72

Discharge 0.21
24

Admission 0.22

Description of States

Night shifts in medical units share some similar patterns as day shifts. For exam-

ple, in the safe states 10, 11 and 13, we can see that low nurse utilization (represented

by small number of admissions/discharges, low TISS and closer to one-to-one NP Ra-

tio) as well as low patient acuity (low SOFA score) result in a lower harm rate.

State 17 depicts the scenario where when nurses are extremely busy, the unit risk

level increases regardless of patient acuity, while state 19 shows that even if nurses

are not particularly busy, having more sicker patients will make the unit less safe.

State 24 is similar as above, indicating high level of patient movement will have an

adverse impact to the unit risk level.

6.2.2 Surgical Units

* Day shifts, population average harm rate: 0.048

79



State No. # Shifts tiT AK p-value Type

4 165 0.040 0.040 1.830e-02 Safe

5 168 0.026 0.026 2.998e-05 Safe

11 251 0.064 0.061 2.081e-05 Risky

Stable and Significant Model Outputs

State No. Driver Lower Threshold Upper Threshold

SOFA 5.62

4 NP Ratio 0.69

TISS 18.71

SOFA 5.62

5 NP Ratio 0.69

TISS 18.71

SOFA 5.62

NP Ratio 0.64
11

TISS 21.77

Discharge 0.17

Description of states

Patient acuity has a larger impact on unit risk level in surgical units comparing

to medical units. We can see that regardless of TISS, both state 4 and 5 indicate

that a lower SOFA will result in a safer unit. Even though the NP ratio is closer

to one-to-one for these two states, state 11 shows that a higher average SOFA score

increases the likelihood of harm events under similar NP ratio conditions.

e Night shifts, population average harm rate: 0.018

State No. # Shifts YT /IK p-value Type

3 232 0.009 0.009 3.344e-06 Safe

13 174 0.026 0.026 7.209e-04 Risky

14 149 0.028 0.029 4.301e-05 Risky

Stable and Significant Model Outputs
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State No. Driver Lower Threshold Upper Threshold

3 Discharge 
0.06

SOFA 6.11

13 Discharge 0.06

SOFA 7.02

14 Discharge 0.21

Description of states

Night shifts in surgical units are much safer than day shifts because surgical units

typically admit new patients from operating room during the day, resulting high

patient acuity. In contrast, surgical units rarely admit new sick patients at night

since surgeries are usually not conducted at night, which could be why other drivers

also play important roles at night. As we can see in the table above, in additional to

SOFA score, number of discharges have a relatively big correlation with the likelihood

of harm events in surgical units.

6.2.3 CVICU

* Day shifts, population average harm rate: 0.093

State No. # Shifts PT AK p-value Type

2 131 0.035 0.036 5.231e-16 Safe
3 93 0.062 0.058 1.041e-03 Safe
7 150 0.147 0.147 1.578e-11 Risky

10 132 0.111 0.110 4.158e-03 Risky

Stable and Significant Model Outputs

State No. Driver Lower Threshold Upper Threshold

2 Admission 0.15

SOFA 7.29

Description of states
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State No. Driver Lower Threshold Upper Threshold

Admission 0.15
3

SOFA 7.29

Admission 0.15

7 NP Ratio 0.86

SOFA 6.85

Admission 0.15

10 NP Ratio 0.86

SOFA 7.18

Description of states

CVICU sees a huge harm rate for day shifts, much higher than the overall average

harm rate of all units, because of the special type of patients the unit takes care for.

During the day, number of admissions is the dominant driver affecting the likelihood

of harm events in the unit. Regardless of patient acuity, the unit is safe when there

is a small number of admission, according to state 2 and 3. State 7 and 10, on the

other hand, show that a large number of admission together with high patient acuity

results in a higher unit harm rate.

* Night shifts, population average harm rate: 0.019

State No. # Shifts AT YpK p-value Type

2 181 0.010 0.010 9.623e-05 Safe

7 106 0.026 0.025 2.659e-02 Risky

Stable and Significant Model Outputs

Harm rate is much lower during night shifts in CVICU and is affected by both

nurse utilization and patient acuity. State 2 shows that the unit is safe when both

SOFA and number of admissions are low. High risk level is, on the other hand, asso-

ciated with state 7, when the number of discharges is higher and when patients are

sicker (SOFA scores are higher and more nurses need to take care of one patient).
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State No. Driver Lower Threshold Upper Threshold

2 SOFA 7.46

Admission 0.08

SOFA 7.46

7 Discharge 0.08

NP Ratio 0.78

Description of states

6.3 Summary of Insights

In general, we discover the following insights:

" Surgical and medical units are generally different because they treat very differ-

ent types of patients

* CVICU usually carries a high risk for harm events than other units due to the

type of patients they admit

" Day shifts in general have high harm rate than night shifts

- There are more activities occurring during the day shift comparing to the night

shift, such as surgery operations, drawing lab specimen, moving patients to

other departments for check-ups, etc., which adds complexity to the unit and

thus resulting a higher likelihood of harm events

- The care team is quite different between day shifts and night shifts. For

example, doctors would stay in unit during the day and check on patients

regularly, while at night they are usually on call.

" Patient acuity is not always correlated with higher likelihood of harm events

- SOFA score has less impact in medical units comparing to surgical units and

CVICU

- There are some states in which SOFA has no impact on the unit risk level

" Higher nurse utilization often seems correlated with high rate of harm events.
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Nurse utilization could be measured through the following drivers:

- Higher TISS score

- A lower NP ratio (fewer nurses taking care of more patients)

- Frequent patient flow (large number of admissions and discharges causing

additional work)

The latter point is particularly important because patient flow, unlike patient

acuity, is something that can be modified and optimized. Therefore, the risky (safe)

states that are observed and summarized in this project are essentially valuable to the

hospital since they can make feasible and realistic intervention plans with controllable

items ahead of time to eliminate risky states, create safe states, and improve patient

safety.
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Chapter 7

Conclusion

The Risky States approach is a more comprehensive approach for ICU patient risk

assessment and the Risky States model we designed in this project establishes a more

robust framework that does not only model the relationship between ICU system

conditions and adverse events faced by patients, but is also able to provide what

and how a set of conditions are affecting patient risk level. With such property, the

method provides some major useful information needed to make effective and efficient

intervention and mitigation plans in a timely manner.

This approach is built upon the theoretical understanding in human error recog-

nition and system engineering, and is capable of providing rigorous yet clinically in-

tuitive insights through the utilization of various statistical methodologies. We hope

that this model does not only provide a robust tool for the hospital to assess patient

risk and improve patient safety in ICUs, but also motivates for better operational

strategic planning and inspires other innovative researches ideas.

We encountered several challenges during the designing process, but we have man-

agement to find solutions to solve these problems. While there is still room to improve

the model, it is now being implemented by Aptima on the BIDMC ICU tablet appli-

cation and will be further validated through human interactions and integrated with

the two other work streams under the Moore grant. We hope that it can help ICU

clinicians and staffing members with a more comprehensive understanding of their

surrounding environment and enables them to bring better care quality to patients.
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7.1 Next Steps

We identify several possible next steps for different stakeholders in this project.

BIDMC Leadership: by understanding how environmental conditions can influ-

ence individual's wellbeing, try to adopt changes to the overall ICU operational

plan, which may benefit the risk management practice.

Bed Assignment Team: create certain type of automated and optimized patient

assignment strategy with guidelines suggested by the model output since patient

flow has a high impact on ICU risk level.

Staffing Assignment Team : establish an effective way to keep track of the care

team members throughout patients' stay, which is considered as an important risk

driver but was not included in current analysis because no historical data can be

obtained.

ICU Staff: 1) utilize the model to understand current unit conditions on a reg-

ular basis; 2) adjust working protocols or priorities according to environmental

changes.

IT System: with a large number of problems encountered during data extracting

and processing, it is advised that a better IT infrastructure be created or upgraded

that enhances the communication across different software or database.

Project researchers: 1) work out a better metric to measure the nurse workload

as the current version of TISS only captures a subset of activities that the nurses

perform each day; 2) it is crucial to validate the model through clinical trials

and gain insights from working clinicians, who can help identify model misses

and drawbacks; 3) more work need to be done in order to improvement model

performance as well as compatibility for more general ICU settings.

7.2 Future Research

In addition to using risky state model as a recommendation system for eliminating

risky states, BIDMC is also interested in other functionalities of the models such as
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real time harm prediction. This requires a prospective approach in that using current

known information to predict future unit risks, which is more than a direct adoption

of our model into the real time database. Based on active discussion with BIDMC

experts, we started to seek possibilities of aggregating harms and drivers into a 4-hour

window instead of to the shift level. This will allow capturing state changes in a more

timely manner, is compatible with many clinical practices and potentially offer the

possibility to model beyond concurrent states and risks.
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Appendix A

BIDMC Information System

Database Name

Admission Table (ADT)

MetaVision

Omnicell

RLSolution

Infection Control

Labs

Online Medical Record (OMR)

Provider Order Entry (POE)

Codes

Staffing

EU Critical

Functionality

Administrative database recording patient service
type, movements (admissions, transfers, discharges),
origins and destinations, with timestamps

Clinical and vital sign monitoring application
database
Automated medication dispensing database

Voluntary incident reporting database

Patient infection history database

Clinical database for lab tests and results

Patient medication history database

Physician-orderer medication history database

Emergency codes alert database

Nurse working history and administrative records
database
Database identifying patients admitted without any
medical history

Table A.1: BIDMC Information System Electronic Database Overview
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Appendix B

Harm Characteristics Table

Table B.1: Overall Burden of Harm Key Characteristics

Harm Metric Carry-over Relavancy Type Shift Attribution

Exemption Patient

Cohort

CLABSI NHSN standard and identified N/A w/ central lines Long-term [First eligible shift,

by Infection Control (IC) [5] Identification by ICI

VAE NHSN standard and identified N/A Intubated Long-term [First eligible shift,

by Infection Control [71 Identification by IC

Continued on next page



Table B.1: Overall Burden of Harm Key Characteristics

Harm Metric Carry-over Relavancy Type Shift Attribution

Exemption Patient

Cohort

DVT-PE Coded upon discharge with Test taken within 24 Any Long-term [ICU Admission, Test]

relevant tests taken in ICU hours of admission

ARDS Tidal volume > personal ideal N/A Intubated Instantaneous Current

tidal volume

Delirium CAM score: Positive Score recorded within Any Instantaneous Current

12 hour of admission

CAUTI NHSN standard and identified N/A w/ Foley Long-term [First eligible shift,

by Infection Control [6] catheter Identification by IC]

Code Blue Report by medical staff N/A Any Instantaneous Current

Positive C. C. difficile lab result: Positive Test taken within 12 Any Long-term [ICU Admission, Test]

difficile hours of admission

Positive Blood culture lab result: Test taken within 12 Any Long-term [ICU Admission, Test]

blood culture Positive hours of admission

Oversedation Goal RASS < Actual RASS First pair of RASS On sedative Instantaneous Current

ignored drips

Continued on next page



Table B.1: Overall Burden of Harm Key Characteristics

Harm Metric Carry-over Relavancy Type Shift Attribution

Exemption Patient

Cohort

Bleeding Abrupt drop in 2 consecutive N/A Any Long-term [Previous test,

Hemoglobin lab values (diff Detecting test]

> 4 within 24 hours)

Bleeding PTT blood test result > 100 Test within 6 hours of Received Instantaneous Shift Heparin given

seconds admission Heparin

Bleeding INR blood test result > 6 Test within 48 hours of Received Instantaneous Shift Warfarin given

admission Warfarin

Hypoglycemia Glucose lab/fingerstick < 50 Test within 2 hours of On Insulin drip Instantaneous Current

mg/dl admission

Administer Vitamin K being administered N/A Received Instantaneous Shift Warfarin given

Vitamin K within 48 hours of Warfarin Warfarin

Administer Nalaxone injection being N/A Received Instantaneous Shift Narcotics given
Naloxone administered Narcotics

Doubled Creatinine blood test result > N/A Any Long-term [Previous test,

Creatinine 2x Creatinine upon admission Detecting test]

and > 2 mg/dL

Continued on next page



Table B.1: Overall Burden of Harm Key Characteristics

Harm Metric Carry-over Relavancy Type Shift Attribution

Exemption Patient

Cohort

Chest tube Chest tube insertion within 24 N/A w/ qualified Instantaneous Shift of central line

insertion at hour of placement of central line central lines placement

bedside________

Readmission Time diff b/w ICU discharge & N/A Any Instantaneous Shift of discharge

readmission < 48 hours

Reintubation Time diff b/w extubation & N/A Intubated Instantaneous Shift of extubation

reintubation < 12 hours

Unplanned Report by medical staff N/A Intubation Instantaneous Current

extubation

Skin tissue, Report by medical staff Coded for pressure Any Long-term [Admission, Detection]

infection ulcer upon admission

Other IRS Report by medical staff N/A Any Instantaneous Current

events I



Appendix C

Driver Calculation References

C.1 Boarding Patients

FICU TSICU SICU-B SICU-A MICU-6 CVICU-A CVICU -B MICU-7 CCU

MED 0 1 1 1 0 1 1 0 0

CSURG 0 0 0 0 1 0 0 1 0
SURG 0 0 0 0 1 0 0 1 1
NSURG 0 0 0 0 1 0 0 1 1
VSURG 0 0 0 0 1 0 0 1 1
NMED 0 0 0 0 0 0 0 0 0

CMED 0 1 1 1 0 0 0 0 0
GU 0 0 0 0 0 0 0 0 0
ORTHO 0 0 0 0 0 0 0 0 0
TRAUM 0 0 0 0 1 0 0 1 1
TSURG 0 0 0 0 1 0 0 1 1

OMED 0 0 0 0 0 0 0 0 0
GYN 0 0 0 0 0 0 0 0 0
OBS 0 0 0 0 0 0 0 0 0
PSURG 0 0 0 0 1 0 0 1 1
ENT 0 0 0 0 1 0 0 1 1

Table C.1: BIDMC ICU Service Matching Overview1

'Note that there are two possibilities when a pair of service and ICU gets a value 0: 1) the
assigned unit is considered as a home unit to the patient with that service; 2) it is never done in
practice to assign patients with the service to that ICU. For example, it is never possible for FICU
to have any boarding patients due to the second reason.
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C.2 Sequential Organ Failure Assessment (SOFA) Score

System Respiratory Neurological Cardiovascular Hepatic Coagulation Renal

Pa02/FiO2 Glasgo Mean arterial pressure Total Platelets Creatinine Points
Measurement (mmHg) Coma or administration of Bilirubin X 103C/Mai (mg/dL) (or

Scale (GCS) vasopressors (mg/dl) urine output)

> 400 15 No hypotension < 1.2 > 150 < 1.2 0

< 400 13- 14 MAP < 70 mm/Hg 1.2- 1.9 < 150 1.2- 1.9 1

dopamine < 5
Conditions < 300 10 - 12 or dobutamine 2.0 - 5.9 < 100 2.0 - 3.4 2

(any dose)

< 200 and dopamine > 5 or 3.5-4.0 (or
mechanically 6 - 9 epinephrine < 0.1 or 6.0 - 11.9 < 50 < 500 ml/d) 3
ventilated norepinephrine < 0.1

< 100 and dopamine > 15 or > 5.0 (or
mechanically < 6 epinephrine > 0.1 or > 12.0 < 20 < 200 ml/d) 4

ventilated norepinephrine > 0.1

Table C.2: Standard SOFA Metric Comparison Table for Points Assignment



C.2.1 Modified SOFA Score

In case when PaO 2 and FiO 2 are not documented for patients not ventilated and/or

no arterial blood gas being drawn, we use SpO2 /FiO 2 ratio, obtained by dividing

SpO 2 by the fraction of inspired oxygen, FiG 2 , as a surrogate for PaO2 /FiO 2, which

has been separately validated [10].

When FiO 2 is not documented, the fraction of inspired oxygen of 0.21 is used as

an estimate of FiO 2 for patients on Room Air. Non-ventilated patients who are re-

ceiving oxygen via nasal cannula or mask will have "02 Flow" or "02 Flow (additional

cannula)" documented, which records the value of oxygen flow in Liter Per Minute.

This number is usually between 1 to 6 LPM, and we multiply it by 0.03 and add the

result to 0.21 of ambient air to obtain an estimate for FiO 2.

Using SP0 2/FiO 2 ratio as an alternative in SOFA calculation also requires taking

into account PEEP, the positive end-expiratory pressure. This is a measure to learn

how sick the lungs are: the more PEEP needed, the sicker the lungs. PEEP is

generally available for all patients and will help determine what is the best comparing

range to use for correctly assessing patients' respiratory condition.

To summarize, follow the next 4 rules to calculate the respiratory component of

MSOFA according to Table C.3:

" For ventilated patients with PaO 2 documented, use PaO 2 /FiO2

" For ventilated patients with no PaG 2 documented, use SP0 2/FiO2 and compare

results based on their PEEP value

" For non-ventilated patients who are on nasal cannula, mask, or other respira-

tory device, use SpO 2 /FiO 2 assuming PEEP < 8, and approximate FiG 2 by

0.21+0.3*02 Flow

* For non-ventilated patient without any respiratory device, use SpO2 /FiO 2 as-

suming PEEP < 8, and set FiG 2 to 0.21
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SpO 2/FiO 2 Ratio
PaO2 /FiO 2  PEEP < 8 PEEP 8 - 12 PEEP > 12 Points

> 400 > 457 > 515 >425 0
< 400 < 457 < 515 < 425 1
< 300 < 370 < 387 < 332 2
< 200 < 240 < 259 < 234 3
< 100 < 115 < 130 < 129 4

Table C.3: Respiratory Metric Comparison Table under MSOFA 2

2Note that according to the study by Dr. Daniel Talmor's group at BIDMC, "the original

SpO2 /FiO 2 ratio as published would require a SaO 2 > 110%", so they again modify the score
in order to accept a SaO 2 of 96% or greater on room air as normal.
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C.3 Therapeutic Intervention Scoring System (TISS)

Basic Activities Points Ventilatory Support Points

Standard Monitoring (All Patients) 5 On a Ventilator 5
Routine Lab Draw (All Patients) 1 02 delivery assistance 1

Routine Medication (All Patients) 2 Has a trache 1
IV insulin/ meds with extensive monitoring 4 Chest CT (All Patients) 1

Routine dressing changes (All Patients) 1

Care of drains (All Patients) 3 Cardiovascular Support
Pressure ulcer 1 Single vasoactive medication 3

Multiple vasoactive medications 4

Renal Support 1.5L IVF/blood products per shift 4

CRRT 8 Arterial catheter (in access line/invasive) 2

Measuring Urine Output 2 PA Catheter, LVAD, Tandem heart 8
Diuresing (Lasix) 3 Impella,PiCO, ECMO, Alsius, Arctic Sun 8

Heart Mate,Blakemore, Massive Transfusion 8
Metabolic support Central venous line 2

Acidosis/Alkalosis 4 Code blue in last 24hrs 3

TPN/OPN 2
Tube Feeds 3 Specific Interventions

Single Procedure done in ICU 3
Neurological Support Multiple procedures done in ICU 5

ICP Drain 4 Travel (OR, Cath lab, ERCP) 5

Table C.4: Scoring System for Nursing Workload
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