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Abstract

This thesis studies the effects of heterogeneous information on traffic equilibria and
the resulting travel costs (both individual and social) when commuters make de-
parture time choices to cross an unreliable bottleneck link. Increasing adoption and
improved predictive abilities of Traveler Information Systems (TIS) enable commuters
to plan their trips; however, there are inherent heterogeneities in information access
and TIS accuracies, which can significantly affect commuters' choices and the equi-
librium level of congestion. Our work addresses the open problem raised in Arnott
et al. (1991) about the need to consider asymmetrically informed commuters in the
bottleneck model of traffic congestion. We consider a Bayesian game with two hetero-
geneous commuter populations: one population is privately informed of the realized
network state while the other only knows the public information about the distribu-
tion of states. We characterize the equilibrium of the game, in which each population
chooses a departure rate function over time to minimize its expected cost based on its
private belief about the state and the behavior of the other population. We provide
a full equilibrium characterization for the complete range of values of link reliability,
incident probability, and information penetration. This uncovers a rich structure of
population strategies, which can broadly be categorized into two distinct regimes.
Specifically, when information penetration is above a certain threshold, the popu-
lations' equilibrium strategies are non-unique, and the relative value of information
(Vol) is 0, i.e. the two populations face the same cost. However, the aggregate
departure rate function is unique and remains unchanged as more commuters gain
access to information. On the other hand, when information penetration is below the
threshold, equilibrium is unique, and Vol is positive and decreasing in information
penetration. Importantly, we find that the lowest social cost is always achieved when
a certain fraction of commuters are uninformed. The more unreliable the link, the

higher the optimal information penetration that achieves this minimum. We define
the Value of Heterogeneity (VoH) as the difference between the optimal social cost
and the cost under complete information penetration, and find that it is significant
(upto 20%) under practically relevant conditions.
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Chapter 1

Introduction

Over the last decade, there have been significant advancements in the technology

and reach of Traveler Information Systems (TIS). In particular, smartphone naviga-

tion apps based on GPS and crowd-sourcing have gained widespread adoption among

commuters. These services provide commuters with information about network con-

ditions, including uncertain network state and likely congestion. Commuters may use

different TISs due to marketing, costs, availability, etc., such as Google Maps/Waze

Apple Maps, etc. The information provided by different TISs is generally not identi-

cal due to technological differences in traffic data collection and prediction between

various providers. Furthermore, traditional means of traffic information such as traf-

fic radio also continue to be used by some commuters. On the other hand, some

commuters may not have access to any means of gaining information about traf-

fic conditions, or may choose not to use such means. All these factors contribute

to an inherently heterogeneous information structure among the population of com-

muters, with some having more accurate information about traffic conditions than

others. Thus commuters maintain private beliefs about traffic conditions such as net-

work state, demand, etc. Furthermore, commuters may include predictions of other

commuters' decisions, and in particular other commuters' information, in their own

decision making. From a practical viewpoint, if a commuter is aware that a signifi-

cant number of other commuters have access to information about network state, she

would be likely to consider how they will react based on their information, and make
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her decisions accordingly. Thus, to study the effect of heterogeneity of information, it

is important to model commuters' beliefs about other commuters in addition to their

own beliefs about traffic conditions.

The information structure (penetration, accuracy, timing of provision, etc.) has

a significant effect on commuters' decisions and therefore their costs of commuting.

Results obtained under symmetric information settings are not directly applicable to

practical scenarios, since there is significant information heterogeneity between com-

muters in practice. Despite this, heterogeneous information structures have received

little attention in the literature on traffic congestion. In this thesis, we address this

gap in the literature and explore the effects of heterogeneous information. We aim to

answer the following questions:

1. How does increasing penetration of accurate bottleneck state information affect

commuters' time-of-travel decisions and costs?

2. In particular, what level of information penetration is socially optimal in mini-

mizing total travel costs?

1.1 Our Contribution

To address the questions mentioned above, we consider a Bayesian game model which

incorporates heterogeneous beliefs about both link state as well as other commuters'

beliefs. The game is played on a single incident-prone bottleneck link which connects

an origin node to a destination node. The state of the link determines its capacity.

The link faces a fixed demand comprised of non-atomic commuters with identical

preferences. Commuters have a single preferred arrival time at the destination, and

incur a cost for arriving early or late, as well as a cost for time spent queuing at

the bottleneck. Commuters choose their departure times to minimize the total travel

costs they face. Each commuter is subscribed to one of two TISs; each TIS sends a

noisy signal of the state to its subscribers. In the case of a single bottleneck which we

consider, all commuters subscribed to a TIS receive an identical signal; thus, they can
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naturally be modeled as one population. This game is a contribution from a modeling

perspective as the first attempt to incorporate an asymmetric information structure

with Vickrey (1969)'s seminal bottleneck model of traffic congestion.

In equilibrium, each population chooses its departure rate function such that all

its members face the minimum expected cost based on their beliefs. We characterize

the equilibrium strategies (i.e. departure rate functions) under certain assumptions

on the information structure. Firstly, we assume that, for a given state, the signals

reported by the two TISs are independent. This is likely to be the case if the TISs

make their predictions independently without sharing data or predictive techniques.

Secondly, we assume that the accuracies of each TIS are common knowledge. Under

this assumption, the populations' beliefs are derived from a common prior, which is

the joint distribution of the state and signals received by the populations. Specifically,

given its received signal, each population uses the common prior to update its belief

about the state and the signals received by other populations via Bayes' rule. Finally,

we assume that a one population is perfectly informed about the state while the other

is not informed. This assumption may seem restrictive, but, as mentioned before,

some commuters may not use TISs at all, making them in effect an "uninformed

population". Similarly, those commuters who do use a TIS may have access to near-

perfect information due to the exceedingly high accuracies of modern TISs. We

make these assumptions because the equilibrium structure is already rich even under

this specific case, and our analysis provides insights on the effect the asymmetric

information structure has on equilibrium strategies and costs relative to symmetric

information cases.

We now mention our main results on equilibrium characterization. We charac-

terize the equilibrium strategies for the complete range of values of link reliability,

incident probability, and information penetration. Link reliability refers to the extent

of capacity loss in case of an incident, while information penetration refers to the frac-

tion of commuters with access to information about the state. We first provide the

equilibrium strategies for the boundary cases of the game in which one or more of the

parameters takes an extreme value, reducing it to a symmetric information setting.
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Two of our boundary cases recover Vickrey's original deterministic bottleneck model,

while the third, where all commuters are uninformed, recovers an example consid-

ered but not exhaustively analyzed in Arnott et a]. (1988). These boundary cases

provide useful insights for solving the equilibrium for the general case of asymmetric

information.

For the general case, we first show that all equilibria must satisfy certain neces-

sary conditions , which help narrow the search for equilibrium strategies. We show

that equilibrium strategies can be broadly divided into two qualitatively different

regimes depending on whether the information penetration is above or below a cer-

tain threshold. When information penetration is above the threshold, the populations'

equilibrium strategies are non-unique, but the aggregate equilibrium departure rate

function is unique and remains unchanged as more commuters gain access to infor-

mation. We call this regime RO. On the other hand, when information penetration

is below the threshold, we show that the populations' strategies are unique and sen-

sitive to changes in the informed fraction. We call this regime RO'. Both RO and RO'

can be refined further in terms of the specific qualitative features of the equilibrium

strategies. In particular, deriving the equilibrium strategies in RO' is rather involved,

and requires us to exploit several additional necessary conditions that equilibria in

RO' must satisfy. After listing these conditions, we then identify each of the four qual-

itative aspects in which equilibria in RO' can be distinguished. These include, among

others, the number of intervals of queuing in the non-incident state and whether or

not some informed players depart late on in the incident state. We then use these re-

sults to find the equilibrium departure rate functions for each population, and finally

complete the derivation of the equilibrium strategies by setting up a system of linear

equations which gives a unique solution.

The equilibrium characterization allows us to analyze the travel costs faced by the

commuters in equilibrium. We specifically consider the effect of increasing informa-

tion penetration on both the individual costs faced by commuters in each population

as well as the social cost. To study the individual costs, we define the value of infor-

mation (Vol) as the difference between the equilibrium costs of the two populations.

16
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We mention the three main properties of Vol below. Firstly, in our model, Vol is

non-negative, i.e. informed commuters never face higher costs than uninformed com-

muters. This indicates that gaining perfectly accurate information about the realized

state is never detrimental. Secondly, Vol is largest when few other commuters are

informed, and decreases with increasing information penetration. This is because of

two opposite effects: 1) as more commuters gain information and make better timing

decisions, they face an increasing congestion externality that increases their individ-

ual cost, and 2) information has a positive externality on uninformed commuters for

a broad range of parameter values (but not all); they benefit from the better deci-

sion making of the growing fraction of informed commuters even though they do not

have access to information themselves. Thirdly, Vol is 0 beyond the aforementioned

threshold of information penetration (i.e. in RO). This reflects information satura-

tion: information penetration has reached such an extent that its complete effect is

seen by all commuters, even those who are uninformed.

In addition to the individual value of information described above, we also exam-

ine the social value. In particular, we analyze how the average (social) cost faced by

all commuters is affected by changes in information penetration. As some commuters

gain information, the social cost decreases reflecting the benefits of their better deci-

sion making. However, after a certain fraction of commuters are informed, informing

further commuters can lead to an increase in the average cost, i.e. the lowest average

cost is achieved when the fraction of informed commuters is less than 1. This is a

counterintuitive and crucial result. It indicates that even when the information pro-

vided is perfectly accurate, providing it to a certain fraction of commuters is socially

preferable to providing it to all commuters. In fact, we find that the average cost can

be significantly lower (by upto 20% under practically relevant conditions) when the

optimal fraction of commuters are informed as opposed to when all commuters are

informed. We call this the Value of Heterogeneity (VoH). Finally, we study how the

optimal information penetration varies with the link reliability. We find that the more

reliable the link is, the lower the optimal fraction of informed commuters becomes.

Our results on welfare are distinct from the analysis of the bottleneck model under
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symmetric information, and involve careful analysis of how private beliefs influence

the equilibrium strategies of the population.

1.2 Related Work

We now present an overview of the literature related to our work. Our contribution is

situated at the intersection of two streams of literature on traffic congestion: the first

is the bottleneck model of congestion whereas the second is the effect of heterogeneous

information on commuters' equilibrium behavior and costs.

The classical bottleneck model of traffic congestion, proposed by Vickrey (1969),

considers a fixed number of identical commuters who must cross a bottleneck link of

fixed capacity. Commuters wish to arrive at the destination at the same time, and

face a trade-off between departing and thus arriving inconveniently early (or late) or

traveling at the peak time and facing a long queue. In addition to solving for the user

equilibrium, Vickrey also solved for the socially optimal strategy and determined

the time-varying toll which achieves it. The model has been extended in various

directions, including elastic demand, stochastic capacity and multiple routes, among

others. Small (2015) provides a recent review of the many extensions. The authors

R. Arnott, A. de Palma and R. Lindsey have written several papers on extensions of

the bottleneck model. Arnott et al. (1990) examines the equilibrium under a coarse

(step-wise) toll and solves for optimal capacity under various tolling schemes. Arnott

(_t al. (1993) consider elastic demand and solves for optimal capacity. Arnott et al.

(1994) consider commuters who differ in their valuation of early (late) arrival cost

and queuing cost. Arnott et al. (1988, 1991, 1999) introduce stochastic capacity

to the bottleneck model. They derive the equilibrium strategy when both demand

and capacity can vary, and commuters have (identical) noisy information about the

capacity. The former two papers consider a network of two routes in parallel, while the

latter considers a single route under more general assumptions on the cost functions.

They find that improving the accuracy of information provided to commuters can

exacerbate congestion and drive up costs unless the provided information is perfectly
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accurate. Our results are analogous to these observations in that increasing the

fraction of informed commuters can exacerbate congestion. However, in our model,

gaining access to perfect information never increases the cost for those who gain it.

Finally, Zhang et al. (2010) extend the of idea stochastic capacity further by allowing

for the capacity to change over time within a single instance of the commute.

One common assumption in the above-mentioned literature on the bottleneck

model is that all commuters have access to identical information about the state of

the link(s)1 . This is partially because heterogeneous information is difficult to model;

it creates a rich information structure which makes the derivation of the equilibrium

strategies greatly involved. However, as described earlier, modeling heterogeneous in-

formation is important since commuters clearly have varying information in practice.

Indeed, in their concluding remarks, authors have cited the homogeneity of infor-

mation available to commuters as an assumption that should be relaxed in future

work on the bottleneck model (Arnott et al. (1991)). Our work provides this relax-

ation by assuming that a fraction of commuters have access to information about the

bottleneck state while the remaining commuters do not.

The other area of research this thesis contributes to is studying the effect of asym-

metric information structures on traffic congestion. Mahnassa ni and Jaya krishnan

(1991) use a dynamic simulation to identify several effects of information on traffic

congestion. From their results, we would like to emphasize three particular effects:

(i) there exists an optimal fraction (less than 1) of commuters with information that

results in the minimum social cost, (ii) the cost for informed commuters increases as

the information penetration increases, and (iii) even uninformed commuters enjoy a

reduction in cost when others have access to information. Our equilibrium results are

similar to these: we find that the first two effects exist universally while the third also

exists for a broad range of parameter values. However, we find that under certain

conditions, uninformed commuters may be worse of due to others having access to a

TIS, an effect that is also reported by Levinson (2003) in his simulations. Similarly

1Arnott et al. (1991) do consider a single commuter with access to private information, but under
the assumption of non-atomic commuters, this does not change the information structure.

19



to us, some recent papers use modeling rather than simulation to study the effects of

heterogeneous information. Acemogi 11 et al. (2016) consider different commuters hav-

ing knowledge about the existence of different routes in a network congestion game.

The authors show that an "Informational Braess' Paradox" can occur, characterized

by commuters having knowledge about additional routes being worse off than those

who do not. Our model instead adopts a Bayesian framework to study the effects

of asymmetric information. A similar information structure to ours is considered in

tu ( al. (2017), who formulate a Bayesian congestion game where route costs are

affected by a random network state. The authors characterize the equilibria of their

game under both objective beliefs, which admit a common prior, and subjective be-

liefs, which do not. In comparison, our model assumes an objective belief structure.

Their results are similar to ours in that they find that information heterogeneity is

always socially beneficial. However, under their model, unlike ours, commuters with

access to more accurate information may be worse off than others.

The above mentioned equilibrium analyses which incorporate heterogeneous in-

formation do not include departure time as a choice variable. This is a limitation as

it ignores the temporal dynamics of congestion, reducing the model to a static one.

To the best of our knowledge, our work is the first analytical study to incorporate

both heterogeneous information and departure time choice into the same model of

traffic congestion. Since our focus is not on route choice, we consider a single pair of

origin and destination nodes connected by a single link. We hope that this serves as

the basis for a more complete study of joint departure time and route choices under

an asymmetric information structure.

Our work also draws from, and be considered part of, the wider literature on the

effects of TISs (not specifically asymmetric information) on traffic congestion. Beln-

Akiva et al. (1996) consider the merits of predictive vs instantaneous information.

They find that using predictive information, as is the case in our model, rather than

instantaneous information, reduces travel time only slightly. Ben-Akiva et al. (1991)

propose a dynamic model to study the value of TISs, and note the importance of

the fraction of informed commuters as a policy variable. Khattak et al. (1996) use a
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survey to explore how commuters react to information provided by TISs.

Finally, the value of information in a broader context (not applying specifically to

traffic congestion) has also been studied extensively in the game theoretic literature.

Several papers find that improving the quality of the information provided to one

player can decrease the welfare of either individual players or society, or both, in

equilibrium (see Hirshleifer (1971) and lHaenfler (2002)). However, other studies find

that under certain constraints on information structures, information is always welfare

improving (see Nevman (1991) and Gossner and Mertens (2001)). Our results are

along the lines of the latter group of studies. However, in contrast to the majority of

the literature, which considers the value of information to be the benefit gained by

unilaterally improving the accuracy of the information available to one population,

we define the value of information Vol as the relative difference in the costs of the

informed and uninformed commuters.

In summary, our work extends the literature on the bottleneck model of traf-

fic congestion to include heterogeneously informed commuters. We provide a game

theoretical model that can capture many of the experimental effects observed in Mall-

mnassani and Jayakrishnan (1991). By considering travel time as the decision variable,

our model complements recent work by Aceroglu et al. (2016) and Wu et al. (2017)

who consider the effects of heterogeneous information in congestion games with route

choice decisions.

This thesis is structured as follows. In Chapter 2, we introduce our Bayesian

game model and define its' equilibrium concept. In Chapter 3, we characterize the

equilibrium structure for certain boundary cases. These provide background for un-

derstanding the equilibrium structure of the general case, which we characterize in

Chapter 4. In Chapter 5, we analyze the equilibrium costs and value of information.

We conclude with a discussion of implications and future work in Chapter 6.
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Chapter 2

Model

Our model comprises of a bottleneck link which can either be in a nominal or incident

state. There are two Traffic Information Services (TISs) which predict the state of

the link with different levels of accuracy. This induces information heterogeneity in a

fixed population of commuters. In Section 2.1, we describe the basic model followed

by the information structure in Section 2.2. Next, we introduce our Bayesian game

in Section 2.3 before finally defining the equilibrium concept in Section 2.4.

2.1 Bottleneck Model

We adopt the basic bottleneck model under unreliable capacity from Arnot-t et al,

(1991). The model consists of an origin-destination pair connected by a single in-

cident prone link. This link faces a fixed demand D comprised of risk-neutral non-

atomic commuters. All commuters would prefer to reach the destination at a fixed

time t*. The demand is sufficiently large so that the commuters can not all cross

simultaneously, making the link a bottleneck and causing a queue to form. Since the

demand is fixed, each commuter's only decision is her departure time t E R, which is

the time at which she departs from the origin (i.e., reaches the bottleneck link and

join the queue, if any). Correspondingly the time at which a commuter crosses the

bottleneck and arrives at the destination is referred to as her arrival time. The time

interval of interest in our analysis is the interval in which all commuters cross the
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bottleneck, i.e. the interval between the earliest departure time and the latest arrival

time. We refer to this interval as the rush hour.

The state of the link, denoted s, is is random and drawn from the set S = {n, a},

where n and a represent the nominal and abnormal (incident) states, respectively. 1

The state s is chosen from S by a fictitious player Nature according to an exogenous

and fixed prior distribution 6. The prior distribution over S is given by 6(a) = p,

6(n) = 1 - p, where p denotes the probability of an incident. Once realized, the state

is thereafter fixed throughout the game.

We define the capacity of the link as the maximum number of commuters that

can traverse it per unit time. The capacity in a given state s is denoted c,. We

make two standard assumptions on the state-dependent capacities. First, we assume

that c, ;> Ca, representing the fact that the incident may reduce the capacity, but

does not improve it. Second, we assume that Ca > 0, since assuming otherwise would

imply that the commuters would not be able to traverse the bottleneck at all in the
A~ Ca

incident state. We define the ratio of the two capacities as p _ - c (0, 1]. Thus p
Cn

is a measure of the reliability of the link; the higher the value of p, the smaller the

capacity reduction due to an incident, and hence the more reliable the link is.

Each commuter's total individual travel cost is the sum of the disutility of time

spent queuing (referred to as the queuing cost) and the disutility of arriving earlier or

later than the preferred arrival time t* (referred to as the scheduling cost). The cost

of queuing is a per unit time, and the cost of arriving early (resp. late) is 3 (resp. -y)

per unit time. These cost parameters are homogeneous across all commuters because

of our assumption of identical preferences. We follow the standard assumptions that

a > 0 and -y > 3 (see Small (2015)). Also, without loss of generality, we set the the

free-flow travel time on the bottleneck link to 0.

'This model can be extended to a setting where the set of states is of higher cardinality; however,
we limit our attention to the case of a binary-valued state for the sake of simplicity.
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2.2 Information Structure

We now introduce our information structure as determined by a set of two TISs that

predict the link state with different accuracies. In many practical situations, TISs

can be considered as independent sources of information about the underlying state,

i.e., their technological processes (e.g., data collection and aggregation techniques)

for predicting the state are distinct. This leads to differences in their accuracies. We

assume that each commuter is subscribed exclusively to one TIS i E I A {H, L}. We

use H and L to denote High accuracy and Low accuracy TIS respectively, and refer to

the respective commuter populations as population H and population L. The fraction

of commuters in population H and L are respectively denoted as AH and AL, where

AH = A and AL = 1 - A. These TISs introduce information heterogeneity between

the two populations due to the difference in their accuracies.

In our model, each TIS i sends a signal r', which is its prediction of the state s,

to its subscribed population. This signal is drawn from the set -t r {in, ia}, where

in (resp. ia) represents the TIS i predicting that the state is n (resp. a). Thus Hn

represents a signal sent by TIS H to its subscribed population H that it predicts

the state is n, and similarly for Ha, Ln and La. We represent the accuracy of TIS

i by a parameter qr E [0.5, 1], which is the probability that it predicts the state

correctly. For simplicity, we assume that the accuracy of a TIS's prediction does not

change with the state, i.e., prediction accuracy of each TIS is identical across states.

Since we consider that TIS H is more accurate than TIS L, the accuracy parameters

satisfy q7H > 71L For each TIS, the conditional probability of sending its subscribed

population signal ri given that the state s can be written as:

Pr(-r = isjs) = r4, Pr(T = is'Is) = 1 - 7i, Vs E S, Vi E I, (2.1)

where s' denotes the complement of state s.

Our first assumption about the information structure is that the signals reported

by the two TISs are independent of each other conditional on the state, i.e.:
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Assumption 1. Pr(r HL IH)= LPr(7rH S)Pr(rL1S), H HVTL c TLVSES.

That is, given the state, a population's knowledge of its own signal does not give

it further information about the other population's signal. As mentioned earlier, this

assumption is reasonable in situations where the TISs are independent entities who

do not share data or predictive techniques.

Under Assumption 1, the joint distribution of the state s and the TIS signals

r)L denoted 7r(s, H, L), can be written as:
T LT denotedT1S) canE= CVr C_

7r(s,THL H pr(TLIs) VH E t ,T E Tz Vs E S. (2.2)

We emphasize that information of each commuter population is incomplete, i.e.

the populations do not know the realization of the state s, and the signal ri received

by each population from its TIS is its private information about the state. After

receiving its signal, in our model, the populations do not receive any further update

on the state throughout the game.

Our second assumption is that the accuracies of the two TISs are common knowl-

edge:

Assumption 2. qH and 7 L are common knowledge. 2

Readers who wish to familiarize themselves with the notions of common knowledge

and private information as they apply to games of incomplete information can refer

to Fudenberg and Tirole (1991) or Osborne an(d Rubinstein (1994).

In addition to the TIS accuracies nH and 77L, we follow the standard assumptions

that the demand D, the set of states S, the prior distribution 6, the preferred arrival

time t*, the cost parameters a, 3 and -y, the capacities c, and ca (and hence their

ratio p) and the information penetration fraction A are all also common knowledge.

Even under these assumptions, we are extending the previous settings of incomplete

information in Arnott et ad. (1991) (where they consider symmetric and imperfect

information) to the case of asymmetric information.

2To say that x is common knowledge means that all parties know x, they all know that they
know x, they all know that they all know that they know x, and so on ad infinitum.
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2.3 Bayesian Game

In Bayesian games, the notion of type captures all the private information available to

each population. Recall that, in our model, the private information of each population

is the signal T it receives from its TIS. Therefore we can view the type of population

i as ri and the type space as -i. Thus the type sets for each population are -H

{ Hn, Ha} and rL = {Ln, La} respectively. We define a generic type profile as T =

(T TL), and denote the set of type profiles as t At x L.

Based on its type ri, each population generates an interim belief about the state

and the other population's type, denoted 1 i(s, T-jri) E A(S x T V). This belief is

interim because the commuters will eventually learn the realized state once they tra-

verse the bottleneck. Using this belief, each population then chooses a departure rate

function rTi : R -+ R, which is a mapping from continuous time to an instantaneous

rate of departure at that time.3 For a given time instant t E R, the departure rate

r' (t) denotes the number of commuters of population i departing per unit time from

the origin (when the signal they received is -i). Note that this departure rate is an

aggregate quantity, i.e., it is a result of individual choices made by population i's

(non-atomic) commuters. We denote the space of all such departure rate functions

as 7. A strategy of population i, denoted oi, is a map from its type space Ti to F.

Thus oi(Ti) = rTi means that, at any time tinr, population i's strategy is to depart

from the origin according to the departure rate function r"'(t). Following standard

notation, we denote the support of a function r : R - R, i.e., the subset of the

domain where r is non-zero as follows:

supp(r) = {t E Rjr(t) Of}. (2.3)

We define a strategy profile as a tuple a A (0H aL) and say that a strategy profile

3 The frame of reference (i.e. "zero" time) is irrelevant. Recall that we have set t* = 0 without
loss of generality.
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is feasible if and only if it satisfies the following conditions:

I r (t) dt =A D, VT' C 'T, Vi CI, (2.4)

r7'(t) ;> 0 Vt E R,VT E rVi E 1. (2.5)

The first condition ensures that the demand of each population is satisfied, while the

second ensures that departure rate is always nonnegative. Let Z' denote the set of

all feasible strategies for population i. The set of feasible strategy profiles is denoted

E EH XZL

We now introduce the following quantities for a given strategy profile o- = (o-, L) E

- The total departure rate induced by both populations as a function of time can

be written as:

ra()(t) A rH(t) + (t) Vt E R,VT E t, (2.6)

where r'" and r L are the departure rates of population H and L respectively.

- The queuing time faced by a commuter who departs at time t in state s is given

by:

qg(T)(t) = J (Z) _ CS dz, Vs E S,Vt E R, (2.7)

where T,(t) is the most recent time before t when there was no queue in state s.

Note that the evolutions of T,(t) and q.'(7)(t) with respect to time are related

and can be understood by considering the boundary conditions q'(-r)(to) = 0,

Ts(to,s) = to,,, where to,, is the departure time of the first commuter in state s.

- The total travel cost faced by a commuter who departs at time t in state s,

denoted the state-dependent cost, is given by:

C(') (t) = aq,(t) + /3max (t* - t - q,(t), 0) (2.8)

+ -/max (t + qs(t) - t*, 0), Vt Ez R, Vs E S.
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This cost is a sum of the queuing cost faced by the commuter (if any) and her

scheduling cost, which is the cost of arriving before or after the preferred time

t*.

Henceforth, we suppress the dependence of these quantities on - for ease of presen-

tation.

We are now ready to define our game:

Definition 1.

IF = (I, S, Pr, E, C, A),

where:

I = {H, L} is the set of commuter populations

S = {n, a} is the set of nature states

P= (z)IEI is the set of type profiles

= (E)iE is the set of feasible strategy profiles

C = {CS}SES is the set of state-dependent cost functions as defined in (2.8)

= (),I is the set of beliefs of each population about the state of nature and

the other population's type, conditioned on its own type.

The setting of the game F is summarized in Fig. 2-1.

2.4 Equilibrium Concept

In our model, the joint distribution ir(s, rH, rL) defined in (2.2) is the common prior

of the game, since under Assumption 2 it can be computed by both populations. The

players derive their interim beliefs I? from the common prior, and use these beliefs to

calculate their expected costs of playing a strategy. This in turn leads to the selection

of a strategy profile.

Specifically, the interim beliefs are derived from the common prior as follows:

7r (s, -r H 7TL)
P (sT r- IT) = ' ,, Vs E S,VT E T, Vi E i, (2.9)

Pr(r2)
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Signal TH E{Hn,Ha}

Pop. H rTH(t)I XD r (t)

Pop. L
(1-A)D r(t) a (queuing

TIS L

Signal TL E {Ln,La}

H> nL Costs: a, y > P

Figure 2-1: Bottleneck model with two asymmetrically informed commuter popula-
tions.

where the marginal distribution Pr(Tr) is given by:

Pr(Tt ) = ZG(s)Pr(rI s),
s6S

VTr E T, Vi E I.

Substituting (2.2) and (2.10) into (2.9), the interim belief of each type -r can be

written as:

s _ (s)Pr(r Is)Pr(r- Is)
ZEs 9(s)Pr(rijs)

Vs E S, Vri E T, Vi E I,

where Pr(r'Is) and Pr(r-'Is) are the TIS accuracies defined in (2.1).

(2.11)

Under the

information structure of our game, the players of type Ln believe that the probability
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ex ante interim ex post

Nature draws s Players form beliefs p'(s, -r-|Ti) Players realize costs
TIS i reports -r & play strategies o-

Figure 2-2: Timing of the game

of the state being n and the type of population H being Ha is:

A L(n, HaILri) (n)Pr(Lnjn)Pr(Hajn)

ZsES 0(s)Pr(LnIs)

(1 -p),L+ p(1 -qL)~

The beliefs of types La, Hn and Ha can be computed similarly.

Also note that population i's posterior belief about the state s conditional on its

type Ti can be derived from the belief p as follows:

PrsI~ = i(8 T_ iI I)
Pr(srI) (2.12)

Given a type Tr's interim beliefs pz(s, T- ITz), the expected (ex ante) cost of playing

strategy -i can be defined as a function of time as follows:

E[CT1 (t)] Cs(t)p'(s,-rI), Vt E R,VT- E 'r ,Vi E I, (2.13)
sES i-1 Er1

where C. is the state-dependent cost function from (2.8).

The game is played as shown in Fig. 2-2. In the ex ante stage, Nature draws

a realization of the state s E S according to the prior distribution 0. Each TIS i

sends a signal r' to its subscribed population according to the conditional probability

distribution given in (2.1). The received signal determines the population i's type T-.

In the interim stage, each population forms an interim belief p,(s, T-'IrT), and both

populations simultaneously choose a strategy o-' based on the expected cost function

E[C'i] of playing that strategy.4 The populations play their respective strategies in

the interim stage and realize their costs in the ex post stage.

4Alternatively, the interim stage an be viewed as a game in which the players are indexed by
population types, i.e., the types becomes the players.
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We now define an equilibrium of the game F:

Definition 2. A feasible strategy profile -* = (a.H* .L*) E Z, where a'*(ri) = r ,

is an equilibrium of the game F if VTr E 'T, Vi E I:

E[C t (t)] <; E[C'(t')], Vt E supp(r" ),Vt' E R. (2.14)

That is, in equilibrium, each population i chooses a strategy a'*, which entails

choosing a departure rate function rT for each realized type -r. Then, for each type

72, given the other populations' strategies, type ri's expected cost E[CT'] is equal

over the support of r'i*, and no greater than the expected cost at any point outside

the support. In other words, in any equilibrium, all players of a given type face equal

expected travel costs, and would not be able to decrease their costs if they unilaterally

changed their departure rate at any time. Thus, no population has an incentive to

deviate from or* when the other populations choose their equilibrium departure rates.

For simplicity, we restrict our subsequent analysis to the case where TIS H predicts

the state perfectly while TIS L has no predictive ability. Thus, our third assumption

on the information structure of the game is the following:

Assumption 3. q7H = 1 and iL = 0.5.

With 71H = 1, population H always knows the true state. This implies that when

the state is s, the only accessible type for population H is Hs. Under Assumptions 2

and 3, population H has complete information about all aspects of the game.

When qL = 0.5, population L has no additional information about the state

beyond the common knowledge. The beliefs of both types Ln and La are equivalent

to the common prior. Thus they have identical strategies. Furthermore, population

H has identical beliefs about both types, making them identical for the purpose of

equilibrium characterization. Therefore, under Assumption 3, we combine Ln and La

into a single equivalent type L that represents both subtypes.

Admittedly, Assumption 3 imposes further restrictions on the information struc-

ture of the game. However, it plays an important role in our analysis and enables us
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to completely characterize the equilibrium structure of the game. We believe that the

general case of 0.5 < r7L <ilH < 1 is significantly more complicated due to the man-

ner in which each population type chooses an equilibrium strategy. We argue that

Assumption 3 is of practical relevance in situations where a subset of commuters do

not employ or trust TISs and so they can be viewed as an "uninformed population",

i.e., having an information accuracy of 0.5. Similarly, since modern TISs use real-time

traffic data to predict traffic conditions, their information accuracy can be viewed as

almost perfect. Thus, assuming that the "informed population" has an information

accuracy of 1 is also not unreasonable.

Henceforth, we will refer to populations H and L as informed and uninformed

respectively. Furthermore, we can view A to be the degree of information penetration

amongst the commuters. This is important since one of our goals is to analyze the

effects of changing the information penetration on the welfare of commuters.

For the remainder of the thesis, while referring to strategies, departure rate func-

tions and costs in equilibrium we drop the * superscript unless stated otherwise. We

now define the different costs which will be used in the equilibrium characterization

(chapters 3 and 4) and welfare analysis (chapter 5). Again, these costs are all defined

in equilibrium.

We define c as the average of the costs faced by all type 'i commuters in state

s, written as:

CsD Cs(t)r(t) dt, Vs E S, VT E T, Vi E I, (2.15)

where the state-dependent cost function Cs is defined in (2.8).

Next, we define the individual cost of type ri commuters, which is the expectation

of C over the set of states. It is given by:

E[OCr] A 0 Pr(sT2), VT2 E t2,Vi E I, (2.16)
sES

where Pr(sT2 ) is the posterior belief over states from (2.12). Under Assumption 3,
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Pr(sIHs) = 1, and therefore E[CHS] = C,H, Vs E S. Henceforth, we use the simpler

notation OHs to denote E[CHs] and C's.

For the same reason, E[CH], the ex ante cost function of type Hs players from

(2.13) is equal to the realized cost function of departing in state s i.e., E[CHs(t)]

Cs(t), Vt E R, Vs E S. Therefore we simply use Cs(t) to denote E[CHs(t).

Also note that E[CT] can alternatively be derived from E[CT1 ] as follows:

jIE[Cr(t1rT?(t) dt, Vri E '-rVi E I, (2.17)
R Ai D

where E[CT'] is defined in (2.13). Note that eq. (2.16) and eq. (2.17) are equivalent

since they are effectively an interchange of the order of expectation, which is permis-

sible due to the non-negativity of all the quantities involved. Specifically, in the first

derivation given in (2.16), Cs,, is first averaged over time, and then over states, while

in the derivation given in (2.17), the order is reversed.

Next, we define the individual cost of each population i, which is the average of

the individual costs faced by each of its types. It is given by:

E[Ci] A E[CT]Pr(Ti), Vi E I, (2.18)
1.1E't

t

where Pr(T') is the marginal probability of population i having type TF from (2.10).

This summation is degenerate for population L since it has only one type; therefore

the individual cost of population L is simply given by (2.16).

Finally, we define the social cost E[C], which is the average cost faced by any

commuter in any state at any time. It can be calculated as an average of the individual

costs of the populations:

E[O] E E[C']A'. (2.19)
iEI

In the next two sections, we will characterize the equilibrium strategy profiles for

the game IF over the parameter space p x p x A G (0, 1] x [0, 1] x [0, 1], while holding

the other parameters of the game constant.
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Chapter 3

Boundary Cases

In this chapter, we discuss the equilibrium characterization for the boundary cases

of the model described in Chapter 2 in which one or more of the parameters (p, p, A)

takes a limiting value. In these boundary cases, the game does not have asymmetric

information. These cases are listed in Table 3.1, along with the parameter values that

give rise to them. Section 3.1 describes the case where the capacity is deterministic

and known, whereas Section 3.2 describes the case where the capacity is stochastic

but its realization is known. Finally, Section 3.3 describes the case where the capacity

is stochastic and unknown.' These boundary cases, which are all under symmetric

information, are instructive for solving the general case which has asymmetric infor-

mation structure (Chapter 4). For the fixed parameters, we use the values shown in

Table 3.2 for all our figures and numerical analysis.

Boundary Case Features Parameter Values

Deterministic Case Capacity non-stochastic, p or p E f i}

(classical Bottleneck model) known

Full Information Capacity stochastic, p 1,p 5 {0, 1}, A = 1
realization known

Capacity stochastic,
Zero Information realization unknown P 1 / { 1}, A = 0

Table 3.1: List of Boundary Cases

'This is a special case of the incomplete (and symmetric) information game solved by Arnott
et ai. (1988).
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Description Symbol [Value [Units

Unit Cost of Travel Time a 6.40 $/hr

Unit Cost of Early Arrival #3 3.90 $/hr

Unit Cost of Late Arrival _ _ 15.21 $/hr

Demand (Number of Commuters) D 8000 veh.

Capacity in Staten Cn 4000 veh./hr

Table 3.2: Parameter values, taken from Table 1 of Arnott et al. (1991)

3.1 Deterministic Case

When p = 1, p = 0, or p = 1, the capacity becomes deterministic. When p = 1,

the capacity is always ca, whereas p = 0, or p = 1, it is Cn. We generically refer

to the deterministic capacity as c. Since the prior distribution of the capacity is

common knowledge, and is now degenerate, all commuters know the capacity c. The

populations and types are all identical for the purposes of equilibrium analysis, and

can be combined into one (homogeneous) population. Thus, we recover Vickrey's

original Bottleneck Model in this case. A detailed analysis of this model can be found

in Arnott et al. (1990). We only recap the result here, since it is instructive for our

subsequent analysis.

The equilibrium strategy for this case is a piecewise constant departure rate func-

tion r whose support supp(r) is a contiguous interval around t*. To describe this

equilibrium strategy, we define the following time instants (in no particular order),

which we call epochs:

- to: departure time of first commuter

- tj: departure time of last commuter

- tf: arrival time of last commuter

- t: departure time such that arrival is at t*, referred to as pivot time

- t: time of dissipation of queue

From Definition 2, we know that in equilibrium, the cost of departing at any time

within supp(r) is equal. Taking the piecewise derivative of the cost function (2.8)
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within each interval in which it is continuous, and setting it to 0, we see that the

equilibrium departure rate function r is given by:

c ~
t E [to, ],

a - 3

r(t) = e < c t E (i, ti 1, (3.1)

0 otherwise.

We refer to the expression a C (resp. ) as re (resp. rj), with the subscript
a -# a +

representing early (resp. late) arrival. An intuitive explanation of this departure rate

function is as follows: the queuing cost must build up until i since it is offset by the

decreasing scheduling cost; thus re > c. At i, the scheduling cost is 0 and the queue

is at its largest. After i, the increasing scheduling cost is offset by a decreasing queue,

thus r, < c.

The queue begins to build up at to and dissipates at t1 , so everyone except the

first and last commuters faces a queue; thus t = tj. Furthermore, since the free flow

travel time is assumed to be 0, tf = tj as well. Recall from Chapter 2 that the rush

hour is the interval from the earliest departure to the latest arrival, which is [to, tjJ

in our notation. Therefore the rush hour is precisely supp(r) in this case.

We now show how the above-mentioned expressions for the epoch times are cal-

culated. Since the bottleneck operates at full capacity throughout the rush hour, we

can write:

tD -to = - (3.2)
C

Furthermore, in equilibrium, all players face the same total cost, so equating the

costs faced by the first and last players to depart gives:

(t* - to) = 'Y(ti - t*). (3.3)
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Solving equations (3.2) and (3.3) gives:

7yDto = t - D
(3.4)

#3D
ti = t* + .

c( + -),

Next, by equating the cost of the commuter who departs at the pivot time i (and

thus arrives at the preferred time t*) with the first commuter departing at to, we get

the equation:

0(t* - to) = c(t* - i) (3.5)

which gives the following expression for the pivot time:

t =* - ./D (3.6)
ca(,3 + 7

Finally, the cost faced by any commuters in equilibrium, which we call the deter-

ministic cost C, is given by:

C = (t* - to) = 37 (3.7)

3.2 Full Information

Vickrey's model is also recovered in the second boundary case in Table 3.1: when

p = 1, p $ {0, 1}, and A = 1, the state is stochastic, but all commuters are perfectly

informed of its realization. Thus, since all commuters are informed about the realized

state, this case becomes an instance of the deterministic Bottleneck Model described

in Section 3.1, with the realized capacity c,. The epochs and departure rates are

state-dependent and indexed by subscript s. The departure rate functions for this

case (one for each state) are denoted r,, where the 1 indicates the value of A in this

case. The definition of the rush hour is also revised to reflect that either state can
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be realized: it now refers to the interval from the earliest departure in either state to

the latest arrival in either state. Under the condition p < 1, we can conclude from

(3.4) that to,a < to,, and tl,, < tl,a; i.e. the departures occur in a narrower interval

in state n than in state a. Therefore, since tl,a = tf,a, the rush hour in this case is

[tO,a, tl,al.

This boundary case essentially amounts to averaging the deterministic cost faced

in each state. Thus, the expected cost faced by any commuter in this case can be

called the full information cost. This cost, denoted E[C], is given by:

#37D __D__ (pc +_(1_-_pc_)_E[C] =p + (1 -p) (PCn+(1P)Ca).3-yD (3.8)
Ca(P + Y) c(3 + y) Cn Ca ( + -)

It is worth noting here that when the deterministic capacity in Section 3.1 is cn,

then E[Cl] > C. Thus the possibility of an incident increases the equilibrium cost

relative to the case when there is no incident.

3.3 Zero Information

The third boundary case from Table 3.1 is in contrast to the two cases mentioned

above; when p 7 1, p $ {0, 1}, and A = 0, the classical Bottleneck Model is not

recovered. Instead, this case is a population game with a symmetric information

structure where all commuters are uninformed, i.e. there is only one population (L).

The equilibrium for this case can be obtained from Arnotrt et al. (1988) who deal with

a general zero information game with an arbitrary joint prior distribution of capacity

and demand. The authors consider this (boundary) case as a specific example to

highlight certain properties of equilibrium costs; thus, their analysis of this case is

not exhaustive in that they do not elaborate on all the qualitative features of the

equilibrium strategy. It turns out that for our model these features provide useful

insights that can be directly utilized in characterizing the equilibrium strategies for

the game with heterogeneous information structure (Chapter 4). We now provide

a complete characterization of equilibrium for the full range of parameters p X p E
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(0, 1] x [0, 1] when all commuters are uninformed.2 The equilibrium behavior is rich

even though this is a boundary case; however we only mention the main results here

for the sake of brevity. The reader is referred to Appendix A for complete details

(including the proof of Theorem 1 mentioned below).

Since all commuters are type L (and this is common knowledge), their beliefs are

equivalent to the common prior, which is the joint distribution 7r over the states.

Furthermore, the set of types T is degenerate, so ir is reduced to the prior distribution

0. All commuters know the prior distribution 0, but not the realized state s. Therefore

the resulting equilibrium departure rate function r is identical in both states, i.e. to

and t, are not state-dependent. However, the queuing time faced by commuters is

state-dependent. Therefore the pivot time t, the last arrival time t1 and the queue

dissipation time i are also state-dependent; we index these quantities by subscript s.

Additionally, in this case, the last commuter to depart may face a queue, so the last

departure time ti, the queue dissipation time is, and the last arrival time t1 ,, are not

equal in general (in contrast to the first two boundary cases).

Similar to the Bottleneck Model, the departure rate function r is piecewise con-

stant and its support is a contiguous interval around t*. Depending on the parame-

ters, r takes one of several qualitatively different forms, which we call regimes. These

regimes can be distinguished in two aspects:

1. the existence and duration of the queue in state n, and

2. the queue faced by the last commuter in state a.

We discuss each of these distinctions below.

Firstly, whenever a queue forms in a state, it starts at to. In state a, a queue

always forms and lasts beyond t* in all regimes. In state n however, a queue may or

may not form. This is the first distinction between regimes. 3 There are 3 possibilities

in this regard:
2This model reduces to the deterministic case described in Section 3.1 for the extreme values

p = 1 or p E {0, 1}.
3While this distinction is not explicitly mentioned in Arniott et aL. (1 in can be inferred from

one of the figures in the paper.
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- R1: There is no queue (4, = to).

- R2: A queue forms but dissipates before t* (to < 4, < t*).

- R3: A queue forms and and does not dissipate by t* (4,, > t*).

Since the last departure occurs at the same time in both states and the queue in state

n (if it exists) dissipates before the queue dissipates in state a, the last arrival in state

n is no later than the last arrival in state a, i.e. tf,n <; t, . 4 Therefore, the rush hour

in this case is [to, tf,a].

Secondly, regimes can be distinguished with regards to the queue faced in state

a by the last commuter to depart. In fact, this can equivalently be viewed as the

relative ordering between the last departure time t1 and the queue dissipation time

ta. There are two possibilities in this regard:

- RA: The last commuter does not face a queue (t, = 4a = tfa).

- RB: The last commuter faces a non-zero queue (t, < ta = tj,a).

Another equivalent interpretation of this distinction is whether or not there is a

non-degenerate interval ((ti, 4,]) at the end of the rush hour in which there are no

departures. This distinction is mentioned in Arniott et al (1988).

We now mention our naming convention of regimes resulting from the two distinc-

tions. The regime which is of type R1 with respect to the first distinction and type

RA with respect to the second is referred to as R1A, and similarly for other regimes.

Thus R1 refers to the set {R1A, R1B} and RA refers to the set {R1A, R2A, R3A}.

The following theorem states the existence and uniqueness of an equilibrium de-

parture rate function for the full range of parameter values.

Theorem 1. Given a (p, p) E (0,1)2, there exists a unique equilibrium departure

rate function r over the domain [tO, tf,a]. Fig. 3-1 shows the partition of the p - p

parameter space into the above mentioned regimes.

The boundaries between the regimes in terms of p are as follows:

4in < ta is shown in Proposition 1 in Appendix A.
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Distinction 1

R1A R2A R3A
0.8-

0.6- RIB R2B R3B

0L

0.4-

-'012

0.2 -23

0AB
0-

0 0.2 0.4 0.6 0.8 1

P
Figure 3-1: Equilibrium characterization under Zero Information

- The threshold separating R1 and R2 is:

k12(P) = ( (3.9)

- The threshold separating R2 and R3 is:

023(P) = - (3.10)

- The threshold separating RA and RB is:

OA = I. (3.11)
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Here we remark that 02s and #AB are mentioned in Arinott et a. (1988) while 112

is not.

An intuitive explanation of Fig. 3-1 is below. On one hand, as p increases with

p fixed, the equilibrium shifts from R1 to R2 to R3. R1 exists for low values of p,

where ca is small relative to ca, for example in the case of a severe incident, multiple

lane closures, extreme weather, etc. The departures, which are based on minimizing

expected individual travel cost, are spread out to avoid large queuing delays in state

a. Thus, when the realized state is n, the departure profile is too conservative and the

available capacity is underutilized, resulting in no queues. For intermediate values of

p, such as in the case of moderate incidents, the departure rate function is moderately

spread out such that a queue builds up in state n as well, but is short lived and

dissipates before t*. Finally, when p is close enough to 1, for example in the case

of mildly inconvenient weather conditions etc., the departures are more concentrated

around t*. Here, the difference between the queue dissipation times t, and ta is small,

and the queue lasts beyond t* even in state n. Note that the actual values of c, and

ca are not needed for the characterization of the regimes; the value of their ratio p is

sufficient. The numerical value of c,, simply scales the length of the rush hour.

On the other hand, we can analyze the effect of increasing p while keeping p fixed,

i.e. increasing the chance of an incident. As p becomes larger, the probability of

long queuing delays for those commuters departing in the middle of the rush hour

increases. Thus departing late in the rush hour to avoid long queues becomes more

desirable. Departure times progressively shift later as p increases until t1 becomes

equal to ta at p = 5AB, and remains equal thereafter, meaning that departures occur

throughout the rush hour (i.e. RA). For p < qAB, there exists a non-zero interval in

the last part of the rush hour in which no departures take place, and so tj < ta (i.e.

RB).

The expected cost faced by commuters in this case is called the zero information

cost E[Co]. Since it is equal for all commuters in equilibrium, we can use the first

commuter to depart as an example to calculate it. The first commuter departs at to

and does not face a queue in either state, thus E[Co] is given by:
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E[Co] = (t* - to),

where the method for determining to is given in Appendix A. As shown in Arrnott

at al. (1988), E[0o] is always greater than E[C], indicating that full information is

welfare improving over zero information.
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Chapter 4

Equilibrium Characterization

In Chapter 3, we described the equilibrium strategies for the boundary cases of the

Bayesian game I, in which one or more of the parameters (p, p, A) took an extreme

value. In this chapter, we provide complete equilibrium characterization for the game

for any p x p x A E (0, 1] x [0, 1] x [0, 1]. This is the asymmetric information game

from Definition 1. In Section 4.1, we describe the necessary conditions for equilibrium

strategies. In Section 4.2 and Section 4.3, we distinguish between the two main

equilibrium regimes that govern our results on welfare analysis in Chapter 5. We

also describe the refinement of each of these regimes into various subregimes based

on certain qualitative distinctions within each regime. Finally, in Section 4.4 we

describe how the parameter space is partitioned into the various subregimes. Before

proceeding further, we recall the definitions of key quantities from Chapter 3 and

extend them where necessary for the general case.

The definitions of the epochs to,,, t1 ,,, tf,8 , t8 and i, are carried forward from

Chapter 3. Furthermore, we define t" (resp. tj) as the earliest (resp. latest)

departure time of type T' commuters. Therefore, under Assumption 3, to,, (resp.

ti,,) can be expressed as follows:

to,, = min{tH, t}, ti, = maX t }H

Analogously, to (resp. tj) is the earliest (resp. latest) departure time of any

45



commuter in any state, that is:

to = min{to,,, to,a} = min{ti; r E t , i (E 1}

tj = max{tl,,, tl,a} = max{tf; rT E Tt, i E I}

Table 4.1 summarizes the aforementioned epochs. The rush hour can now be defined

as [tO, max{tf,n, tf,a}l, the interval from the earliest departure of any commuter in any

state to the latest arrival of any commuter in any state.

Epoch Definition

0ti earliest departure time of Ti commuters

to, earliest departure time of any commuter in state s

to earliest departure time in any state

1tf latest departure time of Ti commuters

t1 ,' latest departure time of any commuter in state s

tj latest departure time in any state

tf, latest arrival time in state s

is pivot time in state s

t8  queue dissipation time in state s

T,(t) last time before t when q,(t) = 0

Table 4.1: Definitions of epochs.

4.1 Necessary Conditions

The departure rates and costs of the each type must satisfy certain conditions in

equilibrium. These conditions can be derived from Definition 2. As in the case of zero
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information (Section 3.3), the equilibrium strategy takes qualitatively different forms,

called regimes, depending on the parameter values (p, p, A). However all regimes that

are admissible in equilibrium exhibit the common features described in Conditions 1

to 4. The first three conditions are to do with population H commuters, while the

last is to do with state a.

Condition 1. The realized (ex post) costs of all type Hs commuters are equal:

Cs(t) = 0Hs, Vt G supp(rH), Vs S.

To arrive at this condition, first note from Definition 2 that the expected cost for all

commuters of a given type must be equal, so E[CHs(t)] = const. for all t E supp(rHs).

Secondly, recall that under Assumption 3, because population H is fully informed, the

expected cost function of type Hs commuters E[CH] is simply the state-dependent

cost function C, defined in (2.8), i.e. E[CHs(t)l = Cs(t) for all t E R. Therefore

C8(t) = const. for all t E supp(rHs). Furthermore, by definition (see (2.17)), 0i Hs

a weighted average of Cs(t) over supp(rH'). Since Cs(t) is constant over supp(rHs),

OHs must equal that constant value i.e. Cs(t) = Hs Vt E supp(rHs).

In other words, the ex post costs incurred by type Hs commuters are-exactly their

ex ante costs, which must be equal for all type Hs commuters in equilibrium. Note

that this condition does not hold for type L commuters: they face equal expected (ex

ante) costs due to Definition 2, but the realized costs of type L commuters departing

at different times need not be identical.

Condition 2. OHs is the lowest cost achievable at any time in state s:

Hs = inf{C(t)}, Vs E S.
tER

Again, this condition follows from the fact that type Hs commuters are completely

informed about the state (from Assumption 3). Therefore, if achieving a lower ex post

cost were possible, they would adjust their departure rate to achieve it, contradicting

the equilibrium condition. Note that this condition implies that no type L commuter
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has a lower ex post cost in any state s than type Hs commuters.

Condition 3. All type Hs commuters (except possibly the first and the last) face a

queue:

qs(t) > 0, Vt E {supp(rHs)\tn, t'}}, Vs E S.

This condition follows from Condition 1, i.e. that type Hs commuters face equal

ex post costs. For this to happen, the change in the scheduling cost over time must be

offset by an equal and opposite change in the queuing cost.1 Thus, for all departure

times such that arrival is early, i.e. the set {t : {t < is8} [ supp(rHs)}, the queue

must continuously grow (possibly from 0 at tHs). Conversely, for all departure times

such that arrival is late, i.e. the set {t : {t > is} f supp(rHs)}, the queue must

continuously decrease (possibly to 0 at tHs). This ensures that there is a non-zero

queue throughout the interior of supp(rHs). Note that this condition does not assume

(or require) that supp(rHs) is a single contiguous interval.

Condition 4. All commuters in state a (except possibly the first and the last) face

a queue:

Ta(t) = toaVt C [tO,a, tf,a), ta = tf,a

This condition must be proved separately for the two regimes described in Sec-

tion 4.2 and Section 4.3. It is therefore proved in Appendix B. Note that this condition

does not necessarily hold true for state n.

In summary, Definition 2 imposes certain conditions on the costs and queues faced

by commuters in equilibrium. This in turn imposes conditions on their admissible

equilibrium strategies (departure rate functions). If a strategy fails to satisfy any of

these conditions, it is not admissible in equilibrium. Thus the necessary conditions

serve to reduce the search for equilibrium strategy profiles from the feasible set Z to

a smaller admissible set. This set admits two main qualitatively distinct equilibrium

regimes, RO and RO', which we describe in Section 4.2 and Section 4.3 respectively.

'The reader may wish to review the definitions of queuing cost and scheduling cost from Sec-
tion 2.1.
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4.2 Equilibrium In Regime RO

In this section, we describe the equilibrium when a sufficiently large fraction of com-

muters is informed. This regime, denoted RO, is closely related to the equilibrium

under full information described in Section 3.2. Specifically, for any given (p, p), when

the fraction of informed commuters (i.e. population H) is above a certain threshold,

the aggregate equilibrium departure rate r, in each state is identical to the correspond-

ing equilibrium departure rate r,,, (see Section 3.2) in the case when all commuters

are informed (i.e. under full information where A = 1). Thus the individual costs

E[Ci] faced by both populations, and hence the social cost E[C], are equal to the cost

E[C] under full information. These properties of RO are formalized in the theorem

below:

Theorem 2. [Regime RO] Consider the threshold information penetration:

C(O - P) + -Y0<P<

A' = (4.1)

a(' - p)(#(a - M) + -Y(a + -Y)) 3<< p <1.
(a - 0)(a + y)( + y) a

For any p E (0,1], p E [0,1], A E [A', 1], the following properties hold:

r., = r,,, Vs E S (4.2a)

E[Ci] = E[C], Vi C I (4.2b)

E[C] = E[Cj] (4.2c)

Proof. This proof is structured as follows. We first show that when the fraction of

type L commuters is sufficiently small (i.e. A is greater than the threshold A'), then

the departures of type L commuters can fit within r,, in both states. In other words,

there exists a feasible rL such that rL(t) < r,1 (t), Vt E R, Vs E S. We use this to

derive the expression for A'. We then show that this implies the properties given in

(4.2).
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First, recall that under Assumption 3, the departure rate of type L commuters is

identical in both states. Next, note from Section 3.2 that departures are more spread

out in state a than in state n, i.e. (tl,, - to,n) < (ti,a - tO,a). Furthermore, when the

departure rate in state n is non-zero, it is greater than the full information departure

rate in state a, i.e. ra,i(t) < rji(t), Vt E supp(rn,1 ). Therefore, the maximum

number of type L commuters that can fit in r,,1 in both states is given by:

(1 - A')D = ra,i (t) dt (4.3)
to'n

To solve this equation, we need to consider two cases separately:

- Case 1: ta ; to,0

In this case, ra,1 (t) = ra,l for all t E supp(rn,1 ). Therefore (4.3) becomes:

(1 - A')D =ral(tl,n - tOn).

Substituting (3.1) and (3.2), this becomes:

(1 - A')D= " a D
a +7 Cn

giving:

A/ Z(1 - P) + 7

Substituting the expressions for ia and tO,, given by (3.6) and (3.4) respectively,

we can write:

tO, n < ia

, yD < _ 7D
Cn(P + -Y) ~ Caa( + )

SP < - . (4.4)

- Case 2: ta > to,n

50



In this case, we can write:

t E [tO,n, ia),

t E [ta, tl,n],

otherwise.

Therefore in this case (4.3) becomes:

(1 - A')D = ra,i(ti,n - a) + ra,e(ia - tO,n).

Substituting (3.1), (3.4), and (3.6), this becomes:

f3D t*- /-D
Cn ( + -) Cea(fP+ -)

5-yD - t - -,D

Caa(#3+'}) Cn(W+ '

giving:

_/ a( - p)( (a - 3 ) + y(a +))

Combining these two cases results in the expression for A' given in (4.1).

For A > A', the strategy rHs(t) r, 1 (t) - rL(t) for all t E supp(r,,i) is valid

in equilibrium for population H. This results in aggregate departure functions r,

which are identical to r,, (showing (4.2a)). Thus, type L commuters face the same

cost as type Hs commuters in each state, and therefore E[CH] and E[CL] are also

identical. Furthermore, E[CH] and E[COL, and hence the social cost E[C], are equal

to E[C1 ] since the aggregate departures and arrivals are identical (showing (4.2b) and

(4.2c)). E

This regime is called RO since the relative value of information is 0. We will

return to this observation in Section 5.1 while discussing the value of information.
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In RO, any set of feasible functions (rHn) rHa, rL) which ensures that the aggregate

departure rate functions r, are identical to r,,, constitutes an equilibrium strategy

profile. There are an infinite number of such strategy profiles, so the equilibrium is

non-unique. Consequently, the type-dependent epochs ti and t' cannot be uniquely

determined. However the aggregate departure rate functions r, and thus the state-

dependent epochs to,,, t and tl,, are unique; thus we can say that the equilibrium

in RO is essentially unique. Fig. 4-1 (resp. Fig. 4-2) show one possible equilibrium

strategy profile for the parameter values p = 0.5, p = 0.5, A = 0.9 (resp. p = 0.7,

p = 0.5, A = 0.7).2

We refer to the two cases in the proof of Theorem 2 as subregimes of RO. For

reasons we will see in Section 4.3.2, we call these subregimes R0(1,3) and R0(3,3)

respectively.

2In Figs. 4-1, 4-2, 4-5 and 4-6, the height of the blue plot is the cumulative departure rate r,.
rHs is the difference in height between the blue and red plots.
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Figure 4-1: Population departure rates in RO(1,3) with p = 0.5, p = 0.5, A = 0.9.
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Figure 4-2: Population departure rates in RO(3,3) with p = 0.7, p = 0.5, A = 0.7.
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4.3 Equilibrium In Regime RO'

Recall from Theorem 2 that RO describes the equilibrium for A' < A < 1. For the

remainder of the parameter space, where 0 < A < A', the equilibrium is described by

a regime which we call RO'. This choice of notation reflects that the relative value of

information in RO' is not 0, as discussed further in Chapter 5. Unlike in RO, where the

equilibrium strategy profiles are non-unique for any given (p, p, A), the equilibrium in

RO' is unique:

Theorem 3. For any p E (0, 1], p E [0, 1], A E [0, A') there exists a unique equilibrium

strategy profile (r Hn, r Ha, L).

The equilibrium strategy profiles in RO' are more complicated than in RO, and

their derivation is more involved. The remainder of this section is dedicated to char-

acterizing these equilibrium strategy profiles, which will ultimately prove Theorem 3.

First, we provide some intuition for the equilibrium strategies below.

Since queuing times are short in state n, type Hn commuters travel in the middle

of the rush hour, close to t*, giving them a low scheduling cost as well as a low

queuing cost. In state a, queues are longer in the middle of the rush hour, so type

Ha commuters travel early to avoid long delays. For the same reason, they may

also travel later on, when the queue has significantly subsided; they accept moderate

scheduling costs in order to avoid larger queuing costs. Type L commuters must

choose their departure rates taking both states into account, so they opt for a more

conservative strategy, choosing a wider range of departure times centered around

t*. The bottom panel of Fig. 4-3 shows the departure intervals of each commuter

type while the top panel shows the state-dependent cost functions C, as well as the

E[Cri], the average costs faced by each commuter type. While this figure portrays

an generic situation that is not the result of any exact equilibrium strategy, it offers

some important insights. Several of the observations from Fig. 4-3 are formalized as

necessary conditions in equilibrium in Section 4.3.1 below.

This section is structured as follows. First, in Section 4.3.1, we describe additional

conditions apart from Conditions 1 to 4 that equilibria in RO' must satisfy. Next, in
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Figure 4-3: Equilibrium costs and departure times for generic equilibrium in RO'. The

dotted lines represent intervals that may or may not have departures in equilibrium.

The last two labels are missing for the same reason; the epochs they represent depend

on the distinctions in Section 4.3.2.

Section 4.3.2, we describe the refinement of RO' into subregimes, and the distinctions

between them. Then, in Section 4.3.3, we calculate the departure rates for these

subregimes. Finally, in Section 4.3.4, we show how the epoch values are calculated,

and complete the proof of Theorem 3.

4.3.1 Additional Necessary Conditions in RO'

In addition to Conditions 1 to 4, the equilibria in RO' satisfy a further set of conditions.

These conditions impose a restrictive structure to the equilibrium strategies and play

a significant role in the proof of Theorem 3.

Condition 5. Type Hn commuters depart in a contiguous interval around t*:

supp(rHn) = [t', t1 n], where tH H < t* < jHn

Since queuing times are short in state n, the minimum cost is achieved by departing

around t* (as in the full information case). By Condition 2, type Hn commuters must

achieve this cost. To satisfy Condition 1, their departures must be in a contiguous
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interval with the changing scheduling cost being offset by an equal change in queuing

cost.

Condition 6. Type L commuters depart in a contiguous interval around t* which

contains the interval supp(rHn). Furthermore, type L commuters begin departing

before type Hn commuters in state n:

supp(T )=[Lt] L <tn t> tn

Under Assumption 3, Type L commuters have no information about the state,

so they have the same departure rate in both states. When A < A', not all type L

commuters can depart concurrently in the interval [ty", t1 "]. Since this interval has

a low cost in state n, some type L commuters do depart in it. The remainder depart

before to" or after t 1 ". With the relative values of 3 and -y we consider, the cost of

departing after t" can be either higher than or equal to the cost of departing before

t0 "), but not lower. Thus type Ha commuters must begin to depart before t/".

Condition 7. Type Ha commuters do not depart concurrently with type L com-

muters:

supp(r,) nsupp(rL) 0.

Due to Condition 1, all type Ha commuters must face equal cost, which is the

lowest cost possible in state a. Any type L commuters departing concurrently with

them must also face the same cost. In order to maintain the same expected cost as

other type L commuters, these commuters would have to face equal cost in state n,

which would be the highest cost faced in that state. However, type L commuters in

state n either face the lowest cost in state n (in supp(rHn), or face time-varying cost

(outside supp(rHn). Thus they cannot depart concurrently with type Ha commuters.

Condition 8. Type Ha commuters start departing before type L commuters, and
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depart continuously until type L commuters begin departing:

tHa <t, [tgatj) E supp(rHa
0o 0'1[o t0)ESP~ )

From a combination of Condition 6 and Condition 7 , type Ha commuters can

only depart before tL or after tf. From Condition 2, they must face the minimum

cost achievable in state a. With the relative values of # and -y we consider, the cost of

departing at the late end of the rush hour (after tL) can be either higher than or equal

to the cost at the beginning (before t), but not lower. Thus type Ha commuters

must begin to depart before t0. To satisfy Condition 1, this must be a contiguous

interval with the changing scheduling cost being offset by an equal change in queuing

cost. To satisfy Condition 2, this interval must be immediately preceding tL, i.e.

[tIa tj).

Note that when it is possible to achieve the same cost later in the rush hour, some

type Ha commuters depart in the late end of the rush hour as well. These different

cases as described in Distinction 2.

Condition 9. The cost faced by all commuters departing in state a during supp(rHn)

is equal, and is the highest cost faced by any commuters in state a:

Ca(t) = K Vt E [t", tHn], K = sup{Ca(t)}.
tER

First note that, under Condition 6, type L commuters depart throughout this

interval. Furthermore, under Condition 7, they are the only commuters departing

in this interval in state a. Since C(t) is equal Vt E [tg", tfn), therefore, to achieve

an equal expected (ex ante) cost, Ca(t) must also be equal in the same interval.

Furthermore, this cost is the maximum incurred at any time in state a. This is because

Cn(t) is at its minimum in [tg", t?"). Therefore, Ca(t) must be at its maximum in

[t/", tHn] to ensure that, when averaged over states, the expected cost of departing

in this interval can equal the expected cost faced by other type L commuters who

depart outside the interval.
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4.3.2 Refinement of RO' Into Subregimes

While all equilibrium strategies in RO' must satisfy Conditions 1 to 9, they can

be distinguished further based on certain aspects which depend on the parameters

(p, p, A) E (0, 1] x [0, 1] x [0, A'). These distinctions refine RO' into several subregimes.

Understanding these distinctions is necessary in order to determine the departure rate

functions in Section 4.3.3 and Section 4.3.4.

In general, the subregimes of RO' are distinguishable in four aspects:

1. Existence and duration of the queue in state n during the interval [t0, t0"],

2. Contiguity of the departure interval(s) of type Ha players, i.e. supp(Ha),

3. Orderings of the pivot times in and ta relative to the other epochs, and

4. the ordering of t " and tL, which are the last departure times of commuter

types Hn and L respectively.

Before proceeding, we describe the naming convention that we use to denote the

various subregimes. A single subregime is denoted Rx[y](z), with x, y and z each

representing a distinction, and (-) being a tuple (Za, zn). The fourth distinction is

nominally suppressed in our notation due to its lesser importance. As before, R1 refers

to the set of all subregimes which are of type 1 with regards to the first distinction,

and similarly for others. Furthermore, R.[11(.) refers to the set of all subregimes

which are of type 1 with regards to the second distinction, and similarly for other

subregimes and other distinctions.

Distinction 1. Rx: Existence of Queue. The first distinction between subregimes

is with regards to the existence and duration of a queue in state n during the interval

[ti, t TH"].

We find that there may be one or two disjoint intervals in state n in which a queue

exists; see Fig. 4-4. In the former case, the queue dissipation time is in (by definition).

In the latter case, we use in to refer to the dissipation time of the second queue and

the additional notation in, to refer to the dissipation time of the first queue.
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Recall from Condition 3 that there is necessarily a queue in state n during supp(r Hn)

i.e. during the interval [t', t'"]. However, there may or may not be a queue in the

interval [ti, ty'], which immediately precedes [tg, tf"). Recall from Condition 6 that

tL < , so this interval is non-degenerate (i.e. non-zero length), and from Condi-

tion 7 that only type L players depart in it. There are 3 possibilities with regards to

the queue in this interval in state n:

R1: There is no queue during [ti, tg"].

In this case (Fig. 4-4a), [t '", fn] is the only interval of queuing in state n.

R2: A queue begins to build at to and dissipates before t"

In this case (Fig. 4-4b), there are two intervals of queuing; the first is [tL, n,

where tn, < tg", whereas the second is [to", t7"].

R3: A queue begins to build at tL and does not dissipate by t H.

In this case, (Fig. 4-4c), there is once again only one interval of queuing, which

is [t j, tn].

This distinction can also be seen in Figs. 4-5 and 4-6. In Fig. 4-5a, the departure

rate is less than cn throughout the interval [ti, t" ], so no queue forms (Ri), whereas

in Fig. 4-6a, it is initially greater than cn, giving rise to a queue (which does not

dissipate by to", i.e. R3).

This distinction is analogous to the first distinction in the zero information case

(see Section 3.3), and there is a correspondence between these subregimes and the

regimes R1-R3 of that case.

Distinction 2. R-[y] (.): Contiguity of supp(Ha). The second distinction between

subregimes is with regards to the departure intervals of type Ha commuters, i.e.

supp(Ha). As noted in Condition 8, supp(rHa) always includes an interval [tIa ,tL

at the beginning of the rush hour. When all type Ha commuters depart within this

interval, the subregime is called R.[11(.). On the other hand, when some commuters

depart in an additional interval at the end of the rush hour, the subregime is called

60



K idepartures
- arrivals

ttjHntHa tHa

(a) R1121(1,3) with p = 0.2, p = 0.5, A = 0.9

K -departures
- arrivals

0n tnf" 4n
Time

t*tIn

(b) R2[1](2,3) with p = 0.5, p = 0.25, A = 0.5

61

D

OZ

E

I
I

I
I
I

I
I

I I

tHa ta TeHn

Time

D

0

E
0

t~Ia tf,a

___j

Mr
tL0 ta



D

06

E

ta 0 n

Time
(c) R312](2,3) with p = 0.8, p = 0.8, A = 0.3

- departures
- arrivals

.. ..... ....

ta to,n t* tln tl,atn

Time
(d) RO(1,3) with p = 0.5, p = 0.5, A = 0.9

Figure 4-4: Cumulative departures and arrivals in state n. RO shown for comparison.

62

- departures
- arrivals

tHa tLv

06

0
40

E
0

to,a

t* tn a



R.[2](.), reflecting the two intervals. We denote the first interval by [t/a, 11a], and the

second (if it exists) by [ti/, tn/]. Thus we can write t0/ = t01 for both subregimes,

and t1 = tfa (resp. tHa = tjHT) for R-[11(-) (resp. R-[2](-)).

Fig. 4-51) and Fig. 4-6b show an example of each of these subregime types. Note

that with the parameters # < -y, it is not possible in equilibrium for departures to

occur only in the latter interval, since Ca(t) is at least as low in the earlier interval.

Also note that this distinction does not apply to RO because for any given set of

parameter values in RO, there are infinitely many possibilities for supp(rHa), and it

can be composed of any number of distinct intervals.

Distinction 3. R.[.](z): Ordering of i, and ta. The third distinction is with

regards to the order of the pivot times 4, and !a with respect to the other epochs.3 This

distinction is theoretic and holds little practical intuition or value, but is important

in solving for the equilibrium strategies.

We know from a combination of Conditions 5, 6 and 8 that tia < tL < tHn < tHn

Thus, there are 3 intervals in which ta can be located:

1. [ty", tL)

2. [tL, ty")

3. [tff", t?)

On the other hand, in can only be in the latter two intervals. This is because tL

is the earliest departure time of any commuter in state n, and some arrivals must

necessarily be early, so tL < i. Further, we note that !a < in. Let (z)=(za, zn) refer

to the intervals in which 4, and 4, are respectively located, as enumerated above.

Then, there are 5 possible values for (z), which are listed below:

- (Za, z)=(1,2)

- (Za, zn)=(1,3)

3 Recall that "pivot time" refers to the time of departure such that the arrival time is exactly at
t*.
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- (za, zn)=(1,3)

- (a, zn)=(2,3)

Fig. 4-4 shows examples of R-[-](1,3) (Fig. 4-4a) and R[-](2,3) (Figs. 4-4b and 4-4c).

These two subregimes account for the majority of the parameter space covered by

RO', with the other three existing only for small ranges of parameter values. Where

needed, we will use the notation R-[.](.,3), for example, to refer to subregimes with

in E [t"n, tf") without any restriction on ta, and similarly for others.

We note here the reason for choosing to refer to the subregimes of RO as RO(1,3)

and RO(3,3). Although the type-dependent epochs t'i and tf' are non-unique in RO,

there is an analogous interpretation with respect to the state-dependent epochs t'i.

We refer to the subregime in which ia E [tO,a, ton) as RO(1,3) and the subregime in

which ta E [tO,n, tl,n) as RO(3,3). An example of the former is shown in Fig. 4-4d.

Distinction 4. Ordering of t1 " and tL. The final distinction between subregimes

is with regards to the ordering of t1 " and tL. This distinction is analogous to the

RA-RB distinction under zero information, so we use these labels to refer to it where

needed. It is suppressed in the notation since it is of less importance than the other

distinctions, both in solving for the equilibrium strategies and in welfare analysis.

This distinction inherits the "whether or not there is a non-degenerate interval

without departures in the rush hour" interpretation of the RA-RB distinction under

zero information, but not the "whether or not the last commuter in state a faces a

queue" interpretation. This is because this distinction is concerned with the interval

immediately after t1 " in state a, which may not be the last interval in the rush

hour (in R.[2](.), [tofl, tnf] is the last interval in state a). Specifically, the interval of

interest is (t?", tf,a] in R-11](.) and (t", toH'l) in R.[2](-).

Recall from Condition 6 that t1 > t1". When p < <bAB, then t1 = t1" (RB),

since the departure rate rL(t) = ra(t) in the interval of interest is 0. Thus there is a

non-degenerate interval in state a in which there are no departures, but arrivals are
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still occurring. On the other hand, when p > qAB, then tL > tf" (RA) since the rL(t)

is positive in the interval of interest. In this case, there are departures throughout

the rush hour in state a.

An example of this distinction can be seen in Figs. 4-5 and 4-6: the subregime in

Fig. 4-5 is RB, since no departures occur in the interval immediately after ti". On

the other hand, the subregime in Figs. 4-6 and 4-6 is RA, since it does have departures

in that interval.

Note that in RO, the type-dependent epochs t'i are non-unique, so this distinction

does not apply.

4.3.3 Equilibrium Departure Rates in RO'

In this section, we derive the departure rate functions r'i. For each commuter type

Ti, the equilibrium departure rate r'i (t) depends on the experience of the commuter

departing at time t under the equilibrium strategy profile. For each state s, a com-

muter departing at a given time will either arrive early (t < i) or late (t > is),

and either face a queue or not. Thus for a given state, a commuter faces one of the

following experiences:

- eq: early arrival (e) and facing queue (q)

- ez: early arrival (e) and no queue (z)

- lq: late arrival (1) and facing queue (q)

- lz: late arrival (1) and no queue (z)

Over the two-state set S, a commuter's experience can be represented as tuples of

the above mentioned types, representing the conditions he would face if he departed

at the same time t in both states. For example, (ez,lq) represents experiencing early

arrival and no queue in state n and late arrival and a queue in state a. Thus there are

4 x 4 = 16 types of experiences, not all of which can exist in equilibrium. Furthermore,

we use (-,lq), for example, to refer to experiencing late arrival and a queue in state a

without any restriction on the experience in state n.
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Theorem 4 lists the values of the departure rate functions ri

Theorem 4. The departure rate functions r Hn, r ad rL are given in Table 4.2,

Table 4.3 and Table 4.4 respectively.

Interval Experience rHn(t)

Hn ~ a(Cn -Ca)[to , ta] (eq,eq) a )

[ta, in] (eq,lq) -Cn QCa

a(C - C )
[in, t']Hnl) n. Ca)

Table 4.2: rHn

Interval Experience rHa t

[toff , m inj ty ,fa }] ( eq) a Ca

a -0#
[la, ], [tHa ,tHa] a Ca

Table 4.3: rHa

Theorem 4 is proved in Appendix C, giving us complete expressions for rHn, rHa

and rL. Using these, we can determine the values of the epochs using a system of

linear equations, as shown next.

4.3.4 Equilibrium Departure Times in RO'

In this section, we show how the departure rates calculated in Section 4.3.3 can be

used to determine the values of the epochs using a system of linear equations. We then

argue that this system of linear equations always has a unique solution, proving the

uniqueness of equilibrium claimed in Theorem 3. The equations linking the epochs

are described below:
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Interval Experience rL(t)

~ttja] Ca(Pa + (1 - P)3)
0 (ez,eg)p(a - 0)

L - t^ HCa (pa + (1 - A)M
[max{t, ta, n}, to'] (ez,lq) C a + -)p(a + 7y)

[t~n, Ca (Pa - (1 - P) -)
[tM, min{ta, t} (lz,lq) max{ a - P 0}

p(a + 7y)

[tb, min{fa, ty"}] (eq,eq) a
(O - 0) + (a -

[max{ta, a},
min{ n, in, t'}] ( + -P- + (O-

[in, t"j] (lq,lq) a

tHn ~ (eq,eq), Caa
[ ,aI t Esupp(r Hn) a-,3

IMaXft}Hn, ~ H (eq,lq) & (lq,lq), Ca a
__tali____ n]_ t E supp(r Hn) a + Y

Table 4.4: rL (t supp(rHn) unless stated otherwise)

- Feasibility Conditions (3 eqs.): These are "conservation of commuters" type

equations for each of the three commuter types. They follow directly from the

first feasibility condition (2.4) for strategy profiles, and ensure that the integral

of ri (t) over time equals the number of commuters of type Ti:

Jt
Jri0

r (t) dt = AD, VT E T, i EI (4.5)

These 3 equations would appear to have 6 unknowns, but there is a further

restriction: combining Conditions 7 and 8, we note that tHa = t For R-1I(-),

Ha thsHae5oafedm o r
ti = t"l, so these equations have 5 degrees of freedom. For R.[2](-), there are

two additional unknowns: t//,1 and tfHa. These are discussed below under "Equal

Cost In Both Intervals of supp(rHa)". Additionally, tL is also always equal to

one of the other epochs, but for different subregimes the epoch it is equal to is

different. These different cases are enumerated later, towards the end of this
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section.

- Pivot Time Definitions (2 eqs.): These equations ensure that the definition

of the pivot time t. is satisfied for each state, i.e. that a commuter departing

at t, in state s arrives at t*. This requires the queuing time at t, in state s to

be t* - is:

Sr,(t) -c.
q8(is) = JT ( CS d=t* - 4, Vs E S (4.6)

These 2 equations appear to add 4 degrees of freedom to the system. However,

both T,(i) and Ta(!,) happen to be equal to one of the other epochs, so these

equations add two degrees of freedom. For Ta (i), it follows from Condition 4

that it is equal to the first departure time in state a, which, from Condition 8, is

t//. The argument for T,,(4) is more involved. First, recall from Distinction 1

that i, < tf". Then note that, as proved in Section 4.4, 4, > t/H" in RI and R2.

Combining these arguments with Condition 3, we conclude that Tn(in) = ty"

in both RI and R2. In R3, the queue lasts from to to tj", and 4n > to as shown

in Distinction 1. Thus we conclude that Tn(in) = tL in R3.

- Queue Dissipation Time Definitions (2 eqs.): Similar to the previous

equations, these equations ensure that the definition of the queue dissipation

time t, is satisfied for each state:

q5(d) = r dt = 0, Vs E S (4.7)
JTt(41) CS

These equations add only degree of freedom to the system since they introduce

three additional correlations between the epochs:

1. First, recall from Distinction 1 that there is only one interval of queuing

in R1 and R3 in state n. Therefore Tn(in) is equal to the time the queue

begins, which is to'" in R1 and tL in R3. In R2, recall that in refers to the

dissipation time of the second queue, which starts at t/j" (the dissipation
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time of the first queue, in/, requires an additional equation, described below

under "Additional Queue Dissipation Time"). Therefore, in R2, Tn(in) =

t". Note that in all cases (R1-R3), Tn(in) = Tn(in).

2. Next, the argument for Ta(ia) is identical to that for Ta(ta) above, giving

Ta(ta) = tja

3. Next, recall from Distinction 1 that in = .

These 7 equations thus form a linear system with exactly 7 unknowns, once the

equality of ti to one of the other epochs is considered. When the subregime is not

R2 or R.[2](-) (or both), there are no further epochs, and the system yields a unique

solution. In R2 and R-[21(-), there are additional epochs, described below:

- R2 - Additional Queue Dissipation Time: Recall from Distinction 1 that

there are two intervals of queuing in state n in R2. In this case, t" refers to

the dissipation time of the second queue, and has been considered previously

in (4.7). The dissipation time of the first queue, int, requires another equation

analogous to (4.7):

J r (t)- C" dt = 0 (4.8)

Recall from Distinction 1 that the first queue in R2 begins at to, so that T(in,) =

tL. Thus this equation adds one additional degree of freedom to the system,

which ensures that the solution is still unique.

- R.21(-) - Equal Cost In Both Intervals Of supp(rHa): Recall that in R.[2](-),

type Ha commuters depart in two separate intervals, adding the epochs tjl

and tH'. This case introduces an additional equation: it follows from Con-

Haa
dition I that Ca(t) must be equal for all t E [tot , tjaj U[tgta, tjH11a. The de-

parture rate rHa given in Table 4.3 ensures that Ca(t) is constant within each

of the two intervals, so it suffices to ensure that Ca(t') = Ca(t") for some

e [toa, tf"], t" E [tyl, tf]. Choosing t' = tot and t" = t7,f for ease, we get

the following equation:
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0(t* - t ") = (t - t*) (4.9)

However, from Condition 4, ia = tfHa in R.[2](-), so that there is only one degree

of freedom added to the system.

Finally, we enumerate the different epochs tL is equal to in different subregimes.

In RB, tL = t, as described in Distinction 4. In RA, either tL = ia (in R-[11(.),

by Condition 4) or 1= tO (in R.[21(.)).

Thus in all cases we get a perfectly determined system of equations, which we solve

computationally to get the (unique) numerical values of the epochs. This completes

the proof of Theorem 3.

It is important to note that it is only in RO that there are analytical thresholds

based on which we can determine which subregime the equilibrium falls in. In RO',

the correct regime for a given set of parameter values (p, p, A) can be determined

computationally by brute force: the linear system is solved for each subregime, and the

one which results in the correctly ordered epochs is the correct equilibrium strategy

profile.

4.4 Equilibrium Characterization

In this section, we tie together the equilibrium characterization in two ways. Firstly,

we enumerate the subregimes that exist in equilibrium. Secondly, we comment on the

intuition behind why the equilibrium strategy changes from one subregime to another

as the parameter values change.

Given the distinctions described in Section 4.3.2, with the A/B distinction ex-

cluded, it would appear there are 3 x 2 x 5 = 30 possible subregimes in RO'. However,

not all combinations of the various distinctions are possible in equilibrium:

- First, we note that subregimes R-[.](.,2) are not possible in R1 and R2. The

queue length in an interval increases when r,(t) > c,. This can only happen
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when arrival is early, i.e. for t ; t,. In R1 and R2, there is no queue at to/n in
state n, so by Condition 3, a queue must start building up at On. Therefore tn
must fall after t//, which means that the subregime is R.[.](.,3).

Thus there are 6 possible subregimes in R1, of which R1[1](3,3) and R1[2](3,3)
do not exist in equilibrium under the values of the fixed parameters we consider.

- In R2, there is a further restriction. In state n, for the queue to build up starting
at tL and then to dissipate at 4a,< On there must be two different values of
rn(t) = rL(t) in the interval [t, n,] the first being greater than c, and the
second being smaller. Since we have already shown above that 4, > tff in
R2, the only remaining possibility is that E, E [t', in,]. This means that only
subregimes R.[.1(2,3) are possible in R2. Thus the only subregimes in R2 are
R2[1](2,3) and R2[2](2,3).

- Finally, in R3, (ij) can take all 5 of its possible values. Therefore there are 10
subregimes possible in R3. Among these subregimes, R3[2](1,2) does not exist
in equilibrium under the values of the fixed parameters we consider.

Including the two subregimes that comprise RO, this gives a total of 17 subregimes
which exist in equilibrium, which are depicted in Fig. 4-7.

The partitioning of the parameter space into the different subregimes, which is
quite complex, is shown in Fig. 4-8. Some of the distinctions between the subregimes
are peculiarities of this particular model and are not expected to be robust in real
scenarios. However, others do have intuition and are discussed below.

Firstly, just like in the zero information case, equilibrium shifts from R1 to R2
to R3 as p increases. This is because departures and arrivals in state n become
more compact and resemble those in state a more and more as p increases, leading
to queuing occurring for longer periods of time. RO can be considered the regime in
which information is distributed widely enough (i.e. A is sufficiently high) that even
uninformed commuters (population L) enjoy the full benefit of it, and face equal costs
as the informed commuters (population H). Thus this regime exists for high values
of A, i.e. above the threshold A*.
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Figure 4-7: Equilibrium categorization into RO (top) and RO' (bottom), and sub-
regimes of each.
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Secondly, R-[1](-) exists for low values of p and A while R-121(-) exists for high

values. As A increases, the congestion caused in the beginning of the rush hour due

to type Ha commuters increases, until a point where departing at the beginning of

the rush hour becomes as costly as departing at the end. At this point, equilibrium

shifts from R-[1](-) to R-[2](-) as some type Ha players depart in an interval at the

end of the rush hour. Similarly, as p increases, the departures of type L commuters

shift earlier in order to avoid high chances of late arrivals, once again making it viable

for some of the type Ha commuters to travel at the end of the rush hour.

This completes the equilibrium characterization for the complete parameter space

p x p x A E (0, 1] x [0, 1] x [0, 1]. We now turn our attention to the analysis of the

equilibrium costs in Chapter 5.
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(a) p = 0.25

(b) p = 0.5

05
OI

-. 3
02-

(c) p = 0.75

Figure 4-8: Partition of parameter space into regimes for various values of p. RO is

shown in dark blue, R1 in light blue, R2 in green, and R3 in yellow. The various

shades of each color represent the subregimes of each; in particular, for RO', darker
shades represent R-[1](-) while lighter shades represent R-[2](-).
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Chapter 5

Welfare Analysis

In this chapter, we analyze how the equilibrium costs vary with the parameters of

the game, in particular with the information penetration A. In Section 5.1, we ex-

amine the populations' individual costs E[CH) and E[L] defined in (2.18), whereas

in Section 5.2, we examine the social cost E[C] defined in (2.19). Our equilibrium

characterization in Chapter 4 enables us to analyze the effects of changing the param-

eters (p, p, A) on the aforementioned costs. This is because our results highlight the

rich set of equilibrium behaviors and how the parameters influence the equilibrium

strategies. In particular, the uniqueness of equilibrium strategies in RO' (Theorem 3)

and the essential uniqueness in RO (Theorem 2) ensure that these costs are unique

for given parameter values. Although our equilibrium characterization allows us to

consider the effects of changing any of the parameters, we mainly consider how the

costs vary with A for a given (p, p), since our main focus is the effect of information.

Before starting our analysis however, we first describe how the the individual and

social costs are calculated based on their definitions in Section 2.4.

Once the epoch values have been found by solving the set of linear equations

described in Section 4.3.4, the state dependent cost functions C, are calculated using

(2.8). The equilibrium condition (2.14) implies that all commuters of a given type

face the same expected cost, i.e. E[C T(t)] is constant over t E supp(r'). This means

that the expected cost faced by any type ri commuter is equal to the individual cost

E[C ri] for that type. Thus the individual cost E[CL] of the uninformed commuters
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is given by

E[CL] pCa(t) (1 - p) Cn(t) (5.1)

by substituting any t E supp(rL), since that gives the expected cost faced by the

the (uninformed) commuter departing at that time. Similarly, we find the individual

costs 0 Hs of type Hs commuters as C,(t) by substituting any t E supp(r's) thanks

to Condition 1. The steps described above provide a shorthand method of calculating

the individual costs of the three player types by considering one commuter of each

type as opposed to averaging over all commuters as in (2.16) or (2.17).

Next, substituting the values for OHs into (2.18) gives us the individual cost

E[CH] of population H. Finally, substituting the individual costs E[H] and E[CL

into (2.19) gives us the social cost E[C].

The benchmark we use to evaluate the effectiveness of information in reducing

travel costs is the corresponding cost when no information is available, i.e. the zero

information cost defined in Section 3.3. Thus all costs mentioned in this section are

after being normalized with respect to the zero information cost E[Co]. Note that,

for a given (p,p), E[Co] is the social cost E[C] with A = 0.

5.1 Individual Cost

In this section we analyze how the individual costs E[Ci] for each population are

affected by changing the parameters (p, p, A), and in particular by increasing the in-

formation penetration A. For given values of (p, p), we examine how E[ CH] and E[CL]

vary with A. Fig. 5-1 shows this for p = 0.5, p = 0.25. This figure is representative of

most values of (p, p), and unless specifically mentioned, all features described below

apply for all values.

The first notable observation is that E[ OH] is monotonically increasing in A below

the threshold A' given in (4.1), and constant thereafter. This means that as the

fraction of informed commuters increases upto A', the expected cost faced by each

informed commuter also increases. As the informed fraction increases beyond A', the

cost faced by the informed commuters does not change any further. Recall from
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-E[C]
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Figure 5-1: Individual and social costs versus A for p = 0.5, p = 0.25.

Theorem 2 that A' is the minimum fraction of informed commuters required for the

equilibrium to lie in RO. The intuition behind E[CH] increasing with A in RO' is that

as more commuters have access to a TIS that informs them about the state, they

adjust their departure times accordingly, traveling in the middle of the rush hour in

state n and at the beginning (and possibly the end) in state a. The increasing number

of commuters choosing to travel at these times causes more congestion in supp(rHs)

and increases the average cost they face. The benefits of information for informed

commuters can thus be viewed as decreasing as a whole due to congestion externalities

while simultaneously being shared among a greater number of (informed) commuters.

It can be seen from Fig. 5-1 that the increase in E[CH] is roughly linear with A until

A'. For other parameter values, it may be piecewise linear with different slopes in

different subregimes (see Fig. 5-2).
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On the other hand, with the exception of certain values of (p, p) discussed be-

low, E[CL] decreases as A increases in RO'. This means that the benefits of some

commuters being informed is seen by the uninformed commuters as well. The in-

formed commuters, by way of their departure time decisions, impose a lesser negative

externality on the uninformed commuters relative to when the informed fraction is

smaller. For the parameter values p = 0.5, p = 0.25 in Fig. 5-1, the decrease in E[CL]

is monotonic, but this is not necessarily the case.

In particular, for low values of p (upto about 0.2) and certain corresponding values

of p, E[CL] increases in A for some range of values of A. In fact, E[CL] may actually

increase to above 1 in these cases. See Fig. 5-2 for an example of this with p = 0.4,

p = 0.1. In other words, under these parameter values, population H's departure

time decisions make population L worse off relative to under zero information for

intermediate values of A. This is because, for these parameter values, the benefits

of better decision making by the population H commuters are outweighed by the

congestion externality they impose on the population L commuters. Interestingly,

E[ 0 L] increases in A only when the equilibrium lies in R2[1] (2,3). The main factor in

this increase is the higher queuing cost faced by uninformed commuters in state a.

Having examined how the individual costs change with A, we now turn our atten-

tion to the benefit of gaining access to information. We consider the Relative Value

of Information, denoted VoI, to be the reduction in the travel costs resulting from its

knowledge. Thus for given parameter values (p, p, A), we define VoI as the difference

between the individual costs faced by the two populations in equilibrium:

VoI = E[CL] - E[CH]. (5.2)

VoI is therefore the travel cost savings that population H commuters enjoy over

population L commuters due to their access to a TIS. We are mainly concerned with

how VoI varies with A for given values of (p, p). When we consider VoI as a function

of A, we use the notation VoI(A) to emphasize this dependence. The main property

of VoI(A) is stated below:
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Figure 5-2: Individual and social costs versus A for p
tional case where E[CL] increases with A.

= 0.4, p = 0.1, showing excep-

For any given (p, p), VoI(A) is positive and decreasing in A in RO' (i.e. for A < A'),

and 0 in RO (i.e. for A > A').

This means that population H never faces a higher individual cost than popula-

tion L. The non-negativity of Vol is intuitive, but not obvious. In particular, as noted

in Arnott et al. (1991) there are situations in models of (symmetric) imperfect infor-

mation (rq < 1) in which commuters are better off when they all have no information

than when they all have imperfect information. However, when the information pro-

vided is perfectly accurate (i.e. the full information case considered in Section 3.2),

then commuters are better off when they have information. In our model, Vol is

defined as the difference between costs faced by uninformed commuters and perfectly

informed commuters in the same trip, and is never negative. We speculate that re-

laxing Assumption 3 and allowing the information provided to be imperfect (7rH < 1)
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would result in a similar situation to Arnott et al. (1991) where Vol would indeed be

negative for large A.

For A < A', VoI(A) decreases due to to the changes in its components: as noted

above, E[CH] is increasing in A while E[CL] is mostly decreasing (except for low val-

ues of p coupled with certain low-moderate values of p). This indicates that gaining

information is most beneficial when few others have it, and its benefit diminishes as

it becomes more common. For A > A', the two populations face the same individual

costs. Recall from Section 4.2 that this is the regime RO, where, as noted in Theo-

rem 2, E[CH] and E[CL] are equal and constant, so that VoI(A) = 0. As discussed in

Section 4.2, this is because in RO, type L commuters are too few to have an impact

on the departure rate, and the state dependent departure rate functions r, are equal

to the state dependent departure rate functions r, under full information (A = 1).

Thus, given a state, all commuters face the same cost.

VoI(A) falling to 0 for A > A' indicates that information penetration reaches such

an extent that its complete benefits are seen by even those who are not informed. In

other words, the impact of information (or size of the informed population who benefit

as a result of being informed relative to the uninformed population) reaches the full

size of the informed population. Thus, its relative value drops to 0; a type L commuter

receives no benefit by gaining access to information because the impact of information

has reached its maximum level and increasing the size of the informed population

further does not maintain positive VoI(A). Thus A' can be seen as the minimum

fraction of commuters who must be informed in order for information saturation

to occur. Alternatively, RO, which corresponds to information saturation, can be

thought of as a socially fair outcome, since it results in equal cost for all commuters.

As seen in Fig. 5-3, A' decreases as p increases, indicating that when the link is more

reliable (i.e. incidents are less severe), information saturation and social fairness can

be achieved with a lower fraction of informed commuters.
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5.2 Social Cost

We now analyze how the social cost E[C] is affected by changes in the parameters

(p, p, A). We focus mainly on how E[C] varies with increasing degrees of information

penetration A for given values of (p,p). Fig. 5-1 shows this for the parameter values

p = 0.5, p = 0.25. There are three key insights about social welfare to be gained from

this figure; they are described below.

First, consider the shape of the E[C] curve. As A increases from 0, E[C] first

decreases, then increases (except for very high values of p), and then remains constant

for A > A'. E[C] may have multiple local minima.

The initial decrease in E[C] is due to the growing fraction of informed commuters

whose cost falls significantly as they gain access to information. E[C] reaches its

minimum value, denoted E[C]*, at a critical fraction A* < A'.' Thus A* is the socially

optimal fraction of informed commuters, which minimizes the social cost. If A* < A',

as in Figs. 5-1 and 5-2, then this means that there is an increase in E[C] as A increases

from A* to A' (this increase may not be monotonic). This is is because the increasing

concentration effects (see Ben-Akiva et al. (1996)) faced by the informed commuters

outweigh the benefits of information seen by the uninformed commuters, so that the

average cost faced by commuters rises. In other words, the weighted increase in E[OCH]

is greater than the weighted decrease in E[CL]. Finally, as observed in Theorem 2, as

A increases beyond A' (i.e. in RO), E[C] remains constant since its components E[CH]

and E[CL] remain constant. Recall that this is precisely the case in which VoI(A) is

0.

Second, we can study how the value of A* changes with the level of reliability

of the bottleneck link, i.e. the value of p. Intuition would suggest that it is always

socially optimal to inform a large fraction of commuters, if not all. However, as shown

in Fig. 5-3, for different values of p, A* decreases (although not monotonically) from

1 to 0 as p increases from 0 to 1.2 This indicates that the more reliable the link is

'When there are multiple values of A that achieve the same minimum cost E[0*, we define A*
to be the smallest of these. It follows that A* < A'.

2The discrete jumps in A* occur when the global minimum E[C]* changes from one local minimum
to another.
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(i.e. the less severe possible incidents are), the lower the socially optimal fraction

of informed commuters is. This is important from the perspective of the design of

an information distribution mechanism: if the bottleneck is unreliable, i.e. it can

suffer significant capacity reductions, then it is socially optimal to inform a large

fraction of commuters about the state, as intuition suggests. However, if it is more

reliable, i.e. only minor capacity reductions are possible, then it is socially preferable

to disseminate information to a smaller fraction of commuters.

I I
0.8

0.6-

0
0 0.2 0.4 0.6 0.8 1

p

Figure 5-3: Thresholds A' and A* versus p for different values of p.

Finally, we compare the social value of considering the heterogeneous information

structure described in Chapter 2 (under Assumptions 1 to 3) as opposed to restricting

ourselves only to the homogeneous information structures of full and zero information

described in Section 3.2 and Section 3.3 respectively. Recall that the homogeneous
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information models consider only the extreme values of A: full information refers to

A = 1 while zero information refers to A = 0. It is shown in Arnott et al. (1988) that

E[C] 5 E[Co], i.e. that full information has a non-negative benefit in reducing the

social cost. Here, we want to determine how much of a further benefit can be gained

by considering the heterogeneous information structure considered in Section 2.2, i.e.

by considering the full range of values A E [0, 1]. To do this, we define another

metric called the Value of Heterogeneity (VoH), which is the difference between the

full information cost E[C1 ] and the optimal social cost E[C]*:

VoH = E[C] - E[C]*. (5.3)

Note that VoH is non-negative by definition because E[C]* is the minimum over

a set of costs that includes E[C]. Fig. 5-4 shows how VoH varies with p for different

values of p. In all cases, VoH increases from 0 to its maximum value, which occurs

for intermediate values of p, and then decreases to 0 again. Also notice that VoH

is closely correlated to the difference between A' and A* as seen in Fig. 5-3, i.e. the

wider the interval [A*, A'] in which E[0] rises from E[C]* to E[C], the greater the

difference between E[C]* and E[C1 ].

We discuss the reasons behind the low values of VoH at the two extremes of

p below (see Fig. 5-4). On one hand, for low values of p, representing a highly

unreliable link, there are significant social cost savings by informing commuters of

the state. However, almost all of these savings are achieved by the full information

setting (A* is very close to A'), leaving VoH small or even 0.

On the other hand, for high values of p, representing a reliable link, there is

very little social cost savings from providing information at all. Therefore, VoH is

once again close to 0 (A* is once again close to A', and both are small). This is in

agreement with the results of Ben-Akiva et al. (1996) who find that when day-to-

day variability in traffic conditions is limited, there is little value to be gained from

providing information at all. Although VoH is negligible for low and high values of p,

there is another benefit of considering heterogeneous information. Namely, the social
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cost achieved when all commuters are informed (i.e. under full information) can also

be achieved when fewer commuters are informed. This lower degree of information

penetration might be easier to achieve in practice.

For intermediate values of p, however, VoH is surprisingly high, upto 20% (and

A* is much smaller than A'). In this case, providing all drivers with information does

decrease the social cost somewhat as compared to not informing them, but there

are significant further savings possible by instead disseminating information to only

the optimal fraction A* of commuters. The peak of the VoH plot is highest for low

p. This is significant because it means that the value of considering heterogeneous

information is in fact highest for those scenarios which are most likely to occur in

practice: moderate capacity reductions occurring with low probability. This is the

key insight of our analysis.

0.2
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Figure 5-4: VoH (Value of Heterogeneity) versus p for different values of p.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we study the effects of heterogeneous information on traffic conges-

tion when commuters must choose when to travel across an incident prone bottleneck

link. We consider a Bayesian congestion game in which one population has access to

a Traveler Information System (TIS) that informs them of the state of the link, while

the other does not. This game is an extension of the well known bottleneck model

of traffic congestion proposed by Vickrey (1969). We provide a full characterization

of the equilibrium of the game for the complete range of values of link reliability, in-

cident probability, and information penetration, revealing rich equilibrium behavior.

Equilibrium strategies can be broadly categorized into two distinct regimes, both of

which can be refined further based on certain qualitative features. We show that when

the fraction of informed commuters is higher than a particular threshold, the popu-

lations' equilibrium strategies are non-unique, and members of the two populations

face the same cost. However, the aggregate departure rate function is unique and

remains unchanged as the informed fraction grows further. On the other hand, when

the informed fraction is below the threshold, the populations' strategies are unique,

and informed commuters face lower costs than uninformed commuters. Thus, in both

cases, gaining access to information is never detrimental; we find that the Value of

Information (VoI) is positive and decreasing in the informed fraction upto the afore-
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mentioned threshold, and 0 thereafter. In terms of the effect of the informed fraction

on the average (social) cost faced by commuters, we find that this cost is minimized

when the fraction is below 1. This indicates that heterogeneous information can be

socially preferable to informing all commuters. We quantify this by means of a met-

ric called Value of Heterogeneity (VoH), and find that it is significantly large (upto

20%) when incidents are moderately intense and relatively rare. Finally, we find that

the optimal fraction of informed commuters is lower when the link is more robust to

capacity loss under incidents, and vice versa.

6.2 Future Work

We note that our model is simplistic and its findings cannot be presumed to hold for

real-world scenarios without further verification. There are several directions in which

this model can be extended to gain better insight into the effect of heterogeneous

information on traffic congestion:

- Our model assumes that the interim beliefs are derived from a common prior (see

Assumption 2). That is, each population has knowledge about how the types of

other populations are distributed. It needs to be seen whether the qualitative

features of the equilibrium still hold without the existence of common prior.

This entails considering subjective commuter beliefs, which is important since,

in practice, commuters may not know the accuracy of the TISs used by others.

- Our model places rather stringent assumptions on the accuracies of the two

TISs. In particular, we assume that one TIS is perfectly accurate while the

other is completely uninformative (Assumption 3). We argue that this scenario

is of practical relevance since some commuters may choose not to use TISs, mak-

ing them effectively "uninformed", whereas those who do use TISs have access

to near-perfect information due to the accuracy of modern TISs. Nevertheless,

it would be useful to know whether the results concerning the value of informa-

tion would change if these assumptions were relaxed. In particular, Arnott et al.
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(1991) find that while perfect (homogeneous) information is welfare improving,

imperfect information, even if it is highly accurate, may be detrimental to wel-

fare. Similarly, Wu et al. (201.7) find that a population with access to more

accurate (but imperfect) information may be worse off than others. However,

as noted earlier, we believe that relaxing this assumption to consider the gen-

eral case 0.5 < qL < r/H < 1 makes the equilibrium structure significantly more

complicated, and may not be analytically tractable. We expect that the dis-

tinctions between RO and RO' will continue to exist in equilibrium for this case,

but that there will also be a regime with negative value of information.

- Our model considers the simplified case of a single route. This isolated analysis

may not reflect the effects of information on a traffic network; it would be

necessary to extend the analysis to a network comprising of multiple routes

in order to claim that it is applicable to urban traffic. Such an extension of

the bottleneck model has been studied in Yang and Meng (1998). However,

given that this would most likely make the equilibrium strategies intractable,

the immediate extension would be to consider two routes in parallel.

- Our model assumes that demand is fixed and that capacity can take only two

values. Better insights could be gained by considering an arbitrary joint distri-

bution on demand and capacity, as in Arnott et al. (1991).

- Our model is also "static" in the sense that it assumes that information is avail-

able to commuters before they begin their journeys, and that the state remains

constant during the travel period. Since TISs provide real-time information and

state can change within a travel period (e.g. an accident occurring at the peak

traffic time), it would be desirable to relax these assumptions, such as in Zhaig

et al. (2010).

It is worth noting that several of these extensions have been proposed in earlier

literature on the bottleneck model. Indeed our work is a response to one of the

proposed extensions, that information heterogeneity should be considered. However,
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to gain better insights on traffic congestion in practical scenarios, it is necessary to

incorporate other aspects of real-world traffic along with information heterogeneity.

Despite the considerable advancements in TIS technology, accuracy, and adoption, it

is still very much an open question as to how their use affects commuters' decisions

and thus their travel costs. Along with the development of more sophisticated models,

empirical studies using real-world data are also needed in order to verify the effects

found in the existing literature.
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Notational Glossary

Cost Parameters

D total demand

a unit cost of travel time

/3 unit cost of early arrival

-y unit cost of late arrival

States

s (generic) state of nature

n nominal state

a incident state

S set of states

p probability of state a occurring

O prior distribution of states

Capacities

c deterministic capacity

cS capacity in state s

p ratio of ca to c,

TISs

i (generic) Traveler Information Service (TIS)

I set of TISs

H high accuracy TIS

L low accuracy TIS

n/ accuracy of TIS i

Tri signal given by TIS i

-ri set of possible signals for TIS i
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Populations

i (generic) commuter population

I set of populations

Ai fraction of commuters in population i

rT (generic) type of population i

r type profile of populations

set of possible types of population i

set of possible type profiles

Beliefs

Ai belief of population i about s and T--

A belief profile of populations

7 joint probability distribution of s and r

Strategies

9i strategy of population i

a- strategy profile of populations

zi set of possible strategies of population i

E set of possible strategy profiles

Times

t departure time (variable)

t* ideal arrival time

to first departure time

t, last departure time

to,, S first departure time in state s

t1,S last departure time in state s

0I first departure time of type Ti commuters

tf last departure time of type Ti commuters

to, first departure time of type Ha commuters in their first interval of departure

92



a last departure time of type Ha commuters in their first interval of departure

t afirst departure time of type Ha commuters in their second interval of depar-

ture

0 rlast departure time of type Ha commuters in their second interval of depar-

ture

tf last arrival time

tf,, S last arrival time in state s

t departure time for arrival at t*

is departure time for arrival at t* in state s

queue dissipation time

queue dissipation time in state s

in' dissipation time of first queue in state s when there are two queues

qs(.) queuing time function in state s

T(t) latest time before time t with no queue

Departure Rates

r(.) departure rate

re departure rate before 1 in deterministic case

rl departure rate after i in deterministic case

r,(.) (aggregate) departure rate in state s

rs,e departure rate before i in state s in full information case

rs ,1  departure rate after i in state s in full information case

rT7 (.) departure rate of type T' commuters

r8 ,1 (.) departure rate in state s under full information

r7 (.) departure rate of type T' commuters

r'(T)(.) aggregate departure rate of type profile r

T set of possible type-dependent departure rate functions r0()(.)
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Informed Fractions

A information penetration

A' threshold information penetration between RO' and RO

A* optimal information penetration

Costs

CS(.) cost function in state s

C set of state dependent cost functions

O,'' average cost of type Ti commuters in state s

CS average cost in state s

E[CT' (.)1 expected cost function of type Ti commuters

E[CT] expected average cost of type Tt commuters

E[Ci] expected average (individual) cost of population i

E[C] social cost

E[C]* optimal social cost

C deterministic cost (social cost in deterministic case)

E[Ci] full information cost (social cost in full information case)

E[Co] zero information cost (social cost in zero information case)

Thresholds

# 12  threshold between R1 and R2

02s threshold between R2 and R3

#AB threshold between RA and RB
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Appendix A

Equilibrium Under Zero Information

This appendix derives the equilibrium structure under the zero information setting

described in Section 3.3. We first list some properties of the equilibrium structure. We

then use these properties to prove Theorem 1. Finally, we show how the equilibrium

strategy is derived.

Proposition 1. The following properties hold in equilibrium:

1. q,(t) < qa(t) V t E (to, tj,a)

2. ta < in

4. ta = tf,a

5. to < t * < ia

6. t* < ti < ta

Proof.

1. The departure rate function and thus the inflow into the bottleneck is identical

for both states, and, since cn > Ca, the outflow from the bottleneck is higher in

state n. Thus it follows that the queuing time, will always be shorter in state

n.
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2. This follows directly from the property above. Since the queuing time is always

longer in state a, departure must be earlier in state a than in state n in order

to have an identical arrival time, in this case, t*.

3. Again, it follows directly from the first property that the queue will dissipate

earlier in state n (if it exists in that state at all), giving 4, < ^ . (note that in

R1, tn = to by default)

4. By contradiction:

Suppose ta < tf,a. Then, since there is no queue at tf,a, the commuter arriving

at tf,a would also have departed at tf,a. Thus he would incur a larger total cost

than the commuter who departed and arrived at ta, which is inconsistent with

equilibrium. The other alternate, ta > tf,a, meaning that the queue dissipates

after the last arrival, is clearly nonsensical.

5. By contradiction:

Suppose to > t* or a < t*. Consider a commuter who departs at t*. He faces

no queue and no scheduling cost, thus incurring him a total cost of 0, which is

inconsistent with equilibrium. Thus t* lies in the interior of the rush hour.

6. By contradiction:

Suppose t1 < t*. Consider a commuter who departs at time t = tj + 6 < t*,

where 6 is small. If there is a queue, he faces a smaller queuing cost and identical

arrival time as the commuter who departs at tj. If there is no queue, he faces

no queuing cost and a smaller scheduling cost the commuter who departs at ti,

since he arrives closer to t*. Thus, in both cases, he incurs a smaller total cost,

which is inconsistent with equilibrium. Thus ti > t*.

Conversely, suppose tj > ta. Consider the commuter who departs at t = t1 -

6 > 4a. He incurs the same queuing cost (0) but arrives closer to t* than

the commuter departing at tj. Thus he incurs a smaller total cost, which is

inconsistent with equilibrium. Thus t < ta. Combining these results, we get
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t* < tj K t,, i.e. the last departure occurs between t* and ta. Note that due to

the previous property, at least one of the inequalities is strict.

E

We now prove the claims made in Theorem 1.

Proof. We begin by proving that the regimes described in Theorem 1 are the only ones

that can exist in equilibrium. First, we must define the different types of experiences

commuters can face while traveling. For each state s, a commuter departing at a

given time will either arrive early (t < i) or late (t > i), and either face a queue

(t < 4s) or not (t > 4,). Thus for a given state, a commuter faces one of the following

experiences:

" eq: early arrival and queue

" ez: early arrival and no queue

" 1q: late arrival and queue

" lz: late arrival and no queue

Over the two-state set S, a commuter's experience can be represented as tuples of

the above mentioned types, representing the conditions he would face if he departed

at the same time t in both states. For example, (ez,lq) represents experiencing early

arrival and no queue in state n and late arrival and a queue in state a. Thus there are

4 x 4 = 16 types of experiences, not all of which can exist in equilibrium. Furthermore,

we use (-,lq), for example, to refer to experiencing late arrival and a queue in state a

without any restriction on the experience in state n. Table A. 1 lists whether each of

these experiences can exist in equilibrium.

(eq,eq) / (ez,eq) / (lq,eq) X (lz,eq) X

(eq,ez) X (ez,ez) X (lq,ez) X (lz,ez) X

(eq,lq) / (ez,lq) / (lq,lq) / (lz,lq) /
(eq,lz) X (ez,lz) X (lq,lz) X (lz,lz) X

Table A.1: Existence of all possible experiences in equilibrium
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We now argue why the experiences marked with a cross in Table A. 1 cannot exist

in equilibrium. First, note that under the 4 th property in Proposition 1, the rush

hour is [to, ta1. Since queuing starts at to in state a (to assume otherwise would

clearly contradict the equilibrium condition), there is no time in the rush hour in

which there is no queue in state a. This rules out the experiences in the 2 nd and

4 th rows of Table A.1. Secondly, under the 1 st property in Proposition 1, there is no

possibility of arriving earlier in state a than in state n for any departure time. Thus

the experiences (lq,eq) and (lz,eq) are also impossible in equilibrium.

Next, for the remaining experience, we assert that certain conditions must be

met by the order in which they occur in equilibrium. These conditions are shown

in Table A.2. The table also shows the intervals corresponding to each of these

experiences, the value of r in each of these intervals (proved later in this Appendix),

and the regimes in which they exist in equilibrium. The experience which exists in

equilibrium as the 1st experience in R2, for example, is denoted R2.1, and similarly

for the other regimes.

Experience Interval r(t) Condition(s) ineies

(eq,eq) [to, aa] must be 1" R2.1, R3.1
(a - ) + (a- )

(ez,eq) [to, a] ca (pa + (1 - P)O) must be 1st R1.1
p(a - #)

(eq,lq) [ia, min{n, l} a must be after R2.2, R3.2
(a + y)Q + (a- 1 )l (eq,eq)

(ez,lq) [max{4 1 , Qa}, n] ca (pa + (1 - ) 3 ) must be after R1.2, R2.3
p(a + y) (ez,eq) or (lq,eq)

(lq,lq) [i., a must be after R3.3
(a + -y)}- + (a + -)I- (lq,eq)

ca(pa - (1 - p)7) must be last, R1.3, R2.4,(lz,lq) [maxj in, 4ai max{ ~ + -y O}1 and after R3.4
p(a + ) (ez,lq) or (lz,lq) R3.4

Table A.2: Conditions on existence of experiences in equilibrium, and regimes in
which they exist

First, note that if a queue builds up in a given state, it starts at to. Thus the first

experience in any regime must be (eq,eq) or (ez,eq). In R2 and R3, where the queue

builds up in both states, the former applies, while in R1, where the queue doesn't
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build up in state n, the latter applies. Note that (ez,eq) cannot follow (eq,eq) for the

following reason: if a queue builds up in state n, it is because r(t) > c, during that

experience.1 Thus for the queue to dissipate, a decrease in r(t) is needed, which can

only occur when the experience changes. The only possible reason for a transition

from (eq,eq) other than dissipation of the queue in state n is the transition of arrival

time in state a from early to late, i.e. a transition to (eq,lq). Thus, (eq,eq) must

necessarily be followed by (eq,lq), as is the case in both R2 and R3. Since (eq,eq)

was the only possible precursor to (ez,eq), it follows that (ez,eq) must be the first

experience whenever it occurs. Now, consider that the only possible reason for a

transition from (ez,eq) is similarly the transition of arrival time in state a from early

to late, i.e. a transition to (ez,lq) as is the case in RI. From (eq,lq) however, one

of two transitions can occur. One possibility is that the queue in state n dissipates

before the arrival time in state n transitions from early to late. This is the case in

R2, and leads to a transition to (ezlq). The alternate is that the arrival time in state

n transitions from early to late first, as in R3, which leads to a transition to (lq,lq).

Next, note that the only possible transition after (ez,lq) is the arrival time in state n

moving from early to late, as is the case in both R1 and R2, resulting in a transition

to (lz,lq). Similarly, the only possible transition from (lq,lq) is the dissipation of the

queue in state n, as is the case in R3, again resulting in a transition to (lz,lq). Finally,

recall from Proposition 1 that t, < t, and t* < ta. These conditions, when combined,

ensure that the experience (lzlq) must exist. Thus (lz,lq) is necessarily the terminal

experience for any regime in equilibrium, since no further transitions are possible.

A close examination of these arguments reveals that there are only 3 distinct

sequences of experiences. Each of these sequences correspond to one of R1, R2 and

R3, as shown in Table A.3, completing the proof that these are the only possible

regimes.

We round off the proof that by describing why each of R1, R2 and R3 has two

further types: A and B. Note that the sequence of experiences is same in the re-

'Note that this reasoning assumes that r is constant for a given experience, which will be proved
later in this Appendix.
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spective regime types A and B of each of R1, R2 and R3, and the only difference is

that there are no departures under the last experience (lz,lq) in each of the B type

regimes. Recall from Proposition 1 that tj > t*, and note that in each regime, the

last experience lies fully after t* whereas at least part of the second last experience

lies before t*. Thus, since r(t) is constant during an experience, it cannot be 0 in

any experience except the last one, as that would contradict the above mentioned

property. On the other hand, r(t) may or may not be 0 in the last experience. These

two possibilities correspond to RB and RA respectively. Note that in the former case,

although there are no new departures in the last experience, the queue still exists in

state a, and so the experience is still part of the rush hour.

Sequence of experiences [ Corresponding Regime

(ez,eq) -+ (ez,lq) -+ (lz,lq) R1
(eq,eq) -4 (eq,lq) - (ez,lq) -+ (lz,lq) R2

(eq,eq) -+ (eq,lq) - (lq,lq) -+ (lz,lq) R3

Table A.3: Sequence of experiences for each regime

Finally, to conclude the proof, we show how 12 is derived. The equilibrium shifts

from R1 to R2 when the rate required to maintain equal cost in the experience (ez,eq)
Ca(PO! + (1 - p)!3 )

becomes larger than c,. Thus, at the threshold, c,, = . Solving this
p(a -#

for p gives the expression for #AB given in Theorem 1.

The departure rate r(t) for each of the experiences mentioned in Table A.2 is de-

rived below. The equilibrium condition (2.14) implies that the expected cost E[C(t)]

faced by commuters is constant over the rush hour:

dlE[C(t)] -0V

d t = 0, Vt E supp(r), (A.1)dt

where, using (2.13), E[C(t)] is given by:

E[C(t)] = (1 -P)Cn(t) +pCa(t). (A.2)
2 Recall from Section 3.3 that 023 and #AB are mentioned in Arriott et al. (1988).
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The expression for C,(t) depends on the experience at time t. For each experience,

substituting (2.7) into C, and C, and setting the derivative of (A.2) to 0 gives the

departure rate r(t). As an example, r(t) is derived below for the experience (ez,lq):

E[C(t)] = p(aqa(t) + -y(qa(t) + t - t*)) + (1 - p)3(t - t*).

Taking the derivative and setting it to 0, we get:

dE[C(t)] dqa(t)
dt dt +p -(1-)#=.

Substituting d =q(t) " r(t) Ca and rearranging, we get:
dt ca

r(t) Ca (pa + (1 - p))
p(a + -Y)

For the experience (lz,lq), (A.2) can give a negative value. In this case it is not

possible to satisfy (A.1), so there cannot be any departures, and r(t) = 0. This is

precisely what leads to the RA-RB distinction. When r(t) = 0 for the experience

(lz,lq), then t1 < La (RB), and there exists a non-degenerate interval (tj, ia] in the

rush hour with no departures. On the other hand, when r(t) > 0 for this experience

(RA), then tj = ta and there are departures throughout the rush hour.

Table A.2 gives the values of r(t) for each experience that commuters face in

equilibrium, whereas Table A.3 gives the order in which these experiences exist in

each regime. To complete the derivation of the equilibrium strategy, it remains to

be shown how the epoch values that delimit the experiences are derived. They are

derived by solving a set of linear equations as explained below.

First, since the bottleneck operates at capacity throughout the rush hour in state

a, we can write, analogously to (3.2):

ta - tO = - (A.3)
Ca
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Next, by definition of the pivot time , in state a:

/ I" r t)-Ca( Jr) = " dt = t* - ta. (A.4)
to Ca

In R3, there is an equivalent equation for the pivot time i7, in state n. In R1 and R2

however, in = t*, so the additional equation is not required.

Finally, by definition of the queue dissipation time ta in state a:

qa(a) = r(t)- Ca dt = 0. (A.5)
to Ca

In R2 and R3, there is an equivalent equation for the pivot time in in state n. In

R1 however, there is no queue, so in is not defined and the additional equation is not

required.

Thus there are 3 equations and 3 unique epochs in R1: to, ta, and ta. In R2, there

is an additional unique epoch (ia) and a corresponding equation. In R3, there is a

further unique epoch (ia) and a further corresponding equation. Therefore in each

regime there is a perfectly defined linear system which can be solved to give the values

of the epochs (including to, which is used to calculate E[Col).
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Appendix B

Proof of Condition 4

Intuitively, it is clear that a commuter who departs before (resp. after) the interval

of queueing in state a unnecessarily incurs a greater scheduling cost than she would

incur by departing at the time the queue starts (resp. dissipates). Furthermore, since

departures are more spread out in state a than in state n, this commuter would also be

facing an unnecessarily high cost in state n, contradicting the equilibrium condition.

Formally, this condition can be shown to hold separately for RO and RO'. In RO,

the aggregate departure rate function in state a is ra,, as shown in Theorem 2. This

function results in a queue throughout the rush hour, as explained in Section 3.1.

For RO', we show that state a can be partitioned into three sets of times, and that

the queue is non-zero in each of them. First, from Condition 3, there is necessarily

a non-zero queue during the interior of supp(rHa). Next, the queue is also non-zero

during the set {t : t E (t', ta)\ supp(rHa)}. This is because if any (necessarily type

L) commuter departing before (resp. after) ta in this set faced zero queuing cost,

her total cost would be lower than the scheduling (and hence total) cost faced by

the (type Ha) commuter departing at toa (resp. tja), contradicting Condition 2. In

R.[2](-), the rush hour is [tHa, tHI], so the two aforementioned sets of times comprise

the entire rush hour, and the condition follows. On the other hand, R.[1](.) only exists

for p :5 qAB, i.e. in RB, so that tL tf". Thus supp(rL) consists of the intervals

[ta, ty"] and [tI", t1 n]. In the latter interval, the cost faced by all commuters is equal

(Condition 9), which requires a continuously changing queuing cost, which is only
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possible if the queue is non-zero. In the former interval, if the queue is non-zero at

any time before t, the commuter departing at that time faces a lower scheduling

and hence total cost than type Ha commuters, contradicting Condition 2. On the

other hand, if the queue is non-zero at any time after ta, it is not possible to have a

continuously decreasing queuing cost in [tf"f, t'"] as would be required by Condition 9.
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Appendix C

Proof of Theorem 4

Proof. We derive the rates in the following order: first we calculate rHa(t), then rL(t)

for t E supp(rHn), then r""(t) and finally TL(t) for t c supp(rL)\ supp(rHn).

1. rHa(t)

First, note that, as seen in section Section 3.1, the aggregate departure rate

required to maintain equal realized cost over time in state s is given by:

a-csc t < t ,
r8 (t) = (C.1)

ac, -
+c t > ts.

Condition 1 implies that (C.) must hold in each state s for t E supp(rHs).

Under Condition 7, type Ha commuters do not depart concurrently with other

commuters, so rHa(t) = ra(t) Vt c supp(rHa). Thus rHa(t) is given by (C.1).

Note that, due to Condition 3, supp(rH) can only include intervals of type

(-,eq) and (-,lq). Furthermore, under Condition 7, rHa(t) is only dependent on

the interval type in state a, not state n. Combining these arguments results in

the values given in Table 4.3.

2. rL(t) for t E supp(r'n)

Next, note that Condition 9 implies that (C.1) must also hold in state a for t E

105



supp(rTH). Under Condition 7 only type L commuters depart in this interval,

so rL(t) = ra(t) Vt E supp(rHn). Thus rL(t) for t E supp(r'f) is given by

(C.1). Once again, due to Condition 3, supp(rHn) can only include intervals of

type (eq,.) and (lq,-). The values of rL(t) for t E supp(r'") are given in the

last two rows of Table 4.4.

3. rHn (t)

Next we use rL(t) determined above to find r Hn(t). Using the fact that rHn(t) _

rn(t) - rL(t) and substituting in the values of r.(t) from (C.1) and rL(t) from

Table 4.4 for each of the possible experiences (eq,eq), (eq,lq), and (lq,lq), we

get the values given in Table 4.2.

4. rL(t) for t E supp(rL)\ supp(rHn)

Finally, we show how rL(t) is derived for t E {supp(rL)\supp(rHn)}. The

equilibrium condition (2.14) implies that:

dIE[CL(t)]-
d t = 0,Vt E supp(rL), (C.2)dt

where, using (2.13), E[CL(t)] is given by:

E[CL(t)] = (1 - p)C (t) +pCa(t). (C.3)

The expression for C,(t) depends on the experience at time t. For each experi-

ence, substituting (2.7) into Cn and Ca, and setting the derivative of (C.3) to

0 gives the departure rate rL(t). As an example, rL(t) is derived below for the

experience (ez,lq):

E[CL(t)l = p(caqg(t) + -y(qa(t) + t - t*)) + (1 - p)#(t - t*).

Taking the derivative and setting it to 0, we get:
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dIE[CL(t)] dq (t)
d t = p(a + ) +p- - (1 -p) = 0.
dt dt

Substituting d =q(t) _ rL(t) Ca and rearranging, we get:
dt Ca

r ~)-Ca(pce + (1-p) 3)
rL(t) = pc+')

p(a + -)

For the experience (lz,lq), (C.3) can give a negative value. In this case it is

not possible to satisfy (C.2), so there cannot be any departures, and rL(t) 0.

This is precisely what leads to Distinction 4. When rL(t) = 0 in the interval

(lz,lq), then tf = t'" (RB), and there exists an interval in the rush hour with

no departures but in which arrivals do occur (in state a). On the other hand,

when rL(t) > 0 in this interval (RA), then tL > tH" and there are departures

throughout the rush hour.

Table 4.4 gives the values of rL(t) for each experience that type L commuters

face in equilibrium. Which of these experiences they face for a particular set

of parameter values depends on which subregime the equilibrium happens to

fall into for those parameter values. For example, by recalling the definitions of

RI and R3, one can see that the experience (ez,eq), the first type mentioned in

Table 4.4, can occur in the former but not in the latter.

107



THIS PAGE INTENTIONALLY LEFT BLANK

108



Bibliography

Daron Acemoglu, Ali Makhdoumi, Azarakhsh Malekian, and Asuman Ozdaglar. In-
formational braess' paradox: The effect of information on traffic congestion. arXiv
preprint arXiv:1601.02039, 2016.

Richard Arnott, Andre de Palma, and Robin Lindsey. Information and Time-of-use
Decisions in Stochastically Congestable Facilities. Center for Mathematical Studies
in Economics and Management Science, Northwestern University, 1988.

Richard Arnott, Andre De Palma, and Robin Lindsey. Economics of a bottleneck.
Journal of urban economics, 27(1):111-130, 1990.

Richard Arnott, Andre De Palma, and Robin Lindsey. Does providing information
to drivers reduce traffic congestion? Transportation Research Part A: General, 25
(5):309-318, 1991.

Richard Arnott, Andre De Palma, and Robin Lindsey. A structural model of peak-
period congestion: A traffic bottleneck with elastic demand. The American Eco-
nomic Review, pages 161-179, 1993.

Richard Arnott, Andr6 De Palma, and Robin Lindsey. The welfare effects of con-
gestion tolls with heterogeneous commuters. Journal of Transport Economics and
Policy, pages 139-161, 1994.

Richard Arnott, Andr6 De Palma, and Robin Lindsey. Information and time-of-usage
decisions in the bottleneck model with stochastic capacity and demand. European
Economic Review, 43(3):525-548, 1999.

Moshe Ben-Akiva, Andre De Palma, and Kaysi Isam. Dynamic network models and
driver information systems. Transportation Research Part A: General, 25(5):251-
266, 1991.

Moshe Ben-Akiva, Andre de Palma, and Isam Kaysi. The impact of predictive in-
formation on guidance efficiency: An analytical approach. In Advanced methods in
transportation analysis, pages 413-432. Springer, 1996.

Drew Fudenberg and Jean Tirole. Game theory, 1991. Cambridge, Massachusetts,
393:12, 1991.

109



Olivier Gossner and Jean-Francois Mertens. The value of information in zero-sum
games. preprint, 2001.

Ross Haenfler. Social value of public information. The American Economic Review,
92(5):1521-1534, 2002.

Jack Hirshleifer. The private and social value of information and the reward to
inventive activity. The American economic review, 61(4):561-574, 1971.

Asad Khattak, Amalia Polydoropoulou, and Moshe Ben-Akiva. Modeling revealed
and stated pretrip travel response to advanced traveler information systems. Trans-
portation Research Record: Journal of the Transportation Research Board, (1537):
46-54, 1996.

David Levinson. The value of advanced traveler information systems for route choice.
Transportation Research Part C: Emerging Technologies, 11(1):75-87, 2003.

Hani S Mahmassani and R Jayakrishnan. System performance and user response
under real-time information in a congested traffic corridor. Transportation Research
Part A: General, 25(5):293-307, 1991.

Abraham Neyman. The positive value of information. Games and Economic Behavior,
3(3):350-355, 1991.

Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press, 1994.

Kenneth A Small. The bottleneck model: An assessment and interpretation. Eco-
nomics of Transportation, 4(1):110-117, 2015.

William S Vickrey. Congestion theory and transport investment. The American
Economic Review, 59(2):251-260, 1969.

Manxi Wu, Jeffrey Liu, and Saurabh Amin. Informational aspects in a class of
bayesian congestion games. In American Control Conference (ACC), 2017, pages
3650-3657. IEEE, 2017.

Hai Yang and Qiang Meng. Departure time, route choice and congestion toll in a
queuing network with elastic demand. Transportation Research Part B: Method-
ological, 32(4):247-260, 1998.

Xiaoning Zhang, H Michael Zhang, and Leyuan Li. Analysis of user equilibrium
traffic patterns on bottlenecks with time-varying capacities and their applications.
International journal of sustainable transportation, 4(1):56-74, 2010.

110




