
Decentralized Infrastructure for File Storage

by

Nicola Greco

BSc. University College London (2014)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2017

@ Massachusetts Institute of Technology 2017.

Author

All rights reserved.

Signature redacted
ite in--ment of Electrical Engineering and Computer Science

August 31, 2017

Signature redacted
Certified by....................

Professor Tim Berners-Lee
Thesis Supervisor

Accepted by

MASSACHUS NSTITUTE
OF TECNOLOGY

OCT 2 6 2017

LIBRARIES

ARCHIVES

Signature redacted
ProfssordAlle A. Kolodziejski

Chair, Department Committee on Graduate Students

Decentralized Infrastructure for File Storage

by

Nicola Greco

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

How might we incentivize a peer-to-peer network to store users' files? The purpose of this
research is to combine ideas from existing peer-to-peer file sharing systems, blockchain tech-
nology and Proofs-of-Storage to create an incentivized decentralized storage network, where
every participant can earn a reward for storing and serving files or pay the network to store
or retrieve their own. More broadly, in this thesis we present the elementary components for
building decentralized infrastructure, culminating in a protocol for incentivizing file storage.

Thesis Supervisor: Tim Berners-Lee
Title: Professor

3

4

Acknowledgments

A mia nonna Santa Paccone

This research was performed under the supervision of Prof. Tim Berners-Lee, in collaboration

with Juan Benet and the team at Protocol Labs and based off the Filecoin Whitepaper [12].

The beautiful drawings are by Virginia Alonso and Figure 7-1 and 6-1 by Dr. Evan Miyazono.

I would like to thank Tim for being an incredible inspiration. In particular, for motivating

an fantastic community to work on democratizing technology and decentralizing the web.

Working with Tim has been a dream of mine for many years, I am tremendously grateful to

have him as my advisor and I look forward to continue learning from him.

I am deeply grateful to have met Juan in my first year. I consider him my second advisor.

He introduced me to a lot of great problems and the history of Bell Labs. I am honored to

have collaborated with him on the new Filecoin and other projects.

My special thanks go to: David Weinberger, for our insightful and inspiring recurring

meetings on decentralizing the web and its importance (when I was 16, I decided to learn

English to learn from him one day!); and Srini Devadas, who provided timely and insightful

feedback on this thesis and to other ideas throughout my second year.

I am proud to be part of three incredible groups at MIT: Decentralized Information

Group (DIG), Internet Policy Research Initiative (IPRI) and the Digital Currency Initiative

(DCI). Thank you to Gerry Sussman, Lalana Kagal, Ilaria Liccardi and Amy van der Hiel

for being an incredible (and often life-saving!) resource to graduate students. Thank you to

Neha Narula, Mark Weber, Christian Catalini and Madars Virza for insightful conversations

on cryptocurrencies and to Chelsea and Sunoo for giving me a FAIL in all the Cryptography

classes I took. Thank you the real spirit of the IPRI group: Andrei Sambra, Dan Friedman,

Mike Specter, Jonathan Frankle, Leilani Gilpin, Ben Yuan, Marc Aidinoff, Cecilia Pacheco!

I am proud to have been a fellow at the Berkman-Klein Center at Harvard during my

graduate studies. During my time there, I participated to the Blockchain Working Group

with Samer Hassan, Primavera De Filippi, Patrick Murck. I am so grateful to have learned

and brainstormed with this marvelous group.

5

I would never be at MIT without the life-long support of my family in my education:

Vittoria, Enrico, Lucia. A super special mention goes to my girlfriend Virginia which has

been a constant source of inspiration with her art, gave me strength in difficult moments

and finally annotated in red every page of this thesis.

Last but not least, my experience would not be the same without my friends and flat-

mates Niccolo Pignatelli and Matthieu de Vergnes - which unfortunately hardly believed that

cryptocurrencies would ever be a thing and won't get rich this round. I thank Adam Yala

for being my point of reference and real friend in the peaks and lows of my time at MIT.

The list of friends would be infinite, but I will save this very last line for Dhivya Ravikumar;

and this one for Carmelo Presicce - that printed the final final final version of this thesis.

6

Contents

1 Introduction 11

1.1 Decentralized Infrastructures . 14

1.2 Contributions . 15

1.3 Thesis Organization . 16

2 Related Work 17

2.1 Fair-exchange . 19

2.2 Proof-of-Storage . 20

2.3 Decentralized Storage . 21

3 Review of Protocol Tokens 25

3.1 Background on Tokens . 27

3.2 Properties of Tokens . 28

3.3 Different Types of Tokens . 29

3.4 Infrastructure for Tokens . 30

4 Verifiable Markets 33

4.1 Problem Definition . 35

4.2 Provable Services . 36

4.3 Verifiable Exchange of Services . 37

4.4 Verifiable Markets in a Centralized Settings 38

4.5 Markets on the Blockchain . 40

7

5 Decentralized Storage Network 43

5.1 DSN Definition . 45

5.2 Modeling Faults . 46

5.3 P roperties . 47

6 Novel Proofs of Storage 49

6.1 M otivation . 51

6.2 Proof-of-Replication . 52

6.3 Proof-of-Spacetime . 53

6.4 Practical PoRep and PoSt . 54

6.5 Usage in Filecoin . 58

7 Incentivizing File Storage 61

7.1 Blockchain-based DSN . 63

7.2 Participants . 64

7.3 M arkets . 65

7.4 Protocol Overview . 67

8 Filecoin Protocol 73

8.1 Data Structures . 75

8.2 DSN Protocol Specifications . 79

8.3 Storage Market Protocol . 83

8.4 Retrieval Market Protocol . 85

8.5 Guarantees . 87

9 Future Work 89

9.1 Consensus Based on Useful Proof-of-Work 91

9.2 File Contracts and Bridges . 95

9.3 Improvements and New Directions . 96

10 Conclusion 97

8

List of Figures

4-1 Abstract Verifiable Market protocol executed by a trusted Mediator 39

6-1 Illustration of the underlying mechanism of PoSt.Prove 58

6-2 Proof-of-Replication and Proof-of-Spacetime protocol sketches 59

7-1 Illustration of the Filecoin Protocol . 68

8-1 Diagram of the Filecoin Protocol. 76

8-2 Data structures in the Filecoin DSN . 78

8-3 Description of the Put and Get Protocols in the Filecoin DSN 81

8-4 Description of the Manage Protocol in the Filecoin DSN 82

8-5 Detailed Storage Market protocol . 84

8-6 Detailed Retrieval Market protocol . 86

9

10

11

Chapter 1

Introduction

12

i \ I "

One Policy, One System, Universal Service.

- Theodore Vail, Bell Systems, 1907

Critical infrastructures such as postal services, financial services and telecommunication

services have long been provided in a centralized fashion: governments or a small number of

companies build the infrastructure and operate the service. The World Wide Web [16], for

instance, originally intended to be a way for everyone to host, share and link web pages from

their own computers, has gradually turned into a few critical online services, such as search,

email, cloud computing, e-commerce, being offered by a few technology giants. Beyond the

ethical or political concerns that emerged [2, 31], the centralization of the Web also created

technical issues: users are now locked in silo-ed platforms - the so-called 'walled gardens',

and the Web relies on few points of control and single points of failure. In light of these

issues, a question emerges: Can we design critical infrastructures in a decentralized fashion,

where anyone can become a provider, anyone can access? Despite the myriad of possible new

decentralized infrastructure, this thesis studies the case of online cloud storage: How can

we incentivize a peer-to-peer network of computers to coordinate and provide cloud storage

services, in an accountable and interoperable manner?

More specifically, in this thesis we explore the potential of using blockchain technologies

and recent advances in the Proof-of-Storage to build a decentralized infrastructure for cloud

storage. This consists in creating a distributed protocol that coordinates a network of inde-

pendent storage providers to offer cloud storage services in exchange of payments, without

relying on a single point of control or trusted party. In practice, the purpose of this thesis is

to create a decentralized market for storage services, any node in the network can rent their

disk space as long as they can prove that they are storing or serving data.

Novel breakthroughs in distributed ledgers made it possible to create decentralized pay-

ments systems [50]. Ever since, distributed ledgers have been explored as replacement for

the "trusted third party": instead of trusting an intermediary, one can trust a network of

users mantaining the ledger. In this thesis, we use a blockchain-based ledger to validate that

storage providers have correctly stored files and to perform payments between clients and

providers.

In summary, this thesis presents elementary building blocks for creating decentralized

13

infrastructures, in particular a decentralized file storage. The thesis culminates in describing

Filecoin, a decentralized storage network. Filecoin has been designed by Juan Benet and I

published as a whitepaper in July 2017 [12]. The protocol is planned to be implemented and

deployed at the end of 2018.

1.1 Decentralized Infrastructures

The quote at the beginning of the thesis "One Policy, One System, Universal Service"

from Theodore Vail is the historical slogan of AT&T (then Bell Systems) at the time of

the Kingsbury Commitment when the company became a U.S. regulated monopoly, one

policy; with the mission to make available the telephone infrastructure, one system; in a

way that every telephone could interconnect with the others in the United States, to finally

offer a universal service. The telephone industry is the perfect example of a centralized

infrastructure, built, provided and maintained by one or a few companies. Can we provide

universal services in a decentralized fashion, where anyone can be part of a distributed

infrastructure and be rewarded for doing so?

Bitcoin [50] is the first electronic cash system that's fully peer-to-peer, with no trusted

third party. After being presented in a cypherpunk mailing list, users started contributing

to the Bitcoin network by providing their spare computational power. In the past ten years,

the reward for participating in the network has led thousands of people in participating

and investing in new and better hardware, recreating the most computationally powerful

computer (however, most of the computational power converged in a few organizations).

The more computational power dedicated to Bitcoin, the safer the underlining payment

system. In the same spirit of Bitcoin, can we build other decentralized infrastructure beyond

payment systems?

In this thesis, we put forward the notion of Decentralized Infrastructures: a network of

independent providers can coordinate to offer a service, in a way such that anyone can be part

of the infrastructure and anyone can access it. The aim of these systems is to minimize trust

in the individual service providers, remove single points of control and enable competition.

14

1.2 Contributions

In contrast with past work published on the topic, this thesis introduces novel work on the

fair-exchange problem, proofs-of-storage and usage of blockchain-based protocols. Additional

topics that are explored in this thesis are presented below:

1. Decentralized Storage Network (DSN): We provide an abstraction for a network

of independent storage providers to offer storage and retrieval services (in Section 5).

2. Verifiable Markets: We present a specific class of market protocols and a novel take

on the fair-exchange problem, where an exchange between two parties is guaranteed to

happen if a seller can generate convincing cryptographic evidence of having provided

the requested service. We use Verifiable Markets to create a Storage Market and a

Retrieval Market where storage providers and clients can respectively submit storage

and retrieval orders.

3. Filecoin Protocol: We combine our study of Verifiable Markets and novel Proofs-of-

Storage (in Section 6) to create an incentivized DSN. Consequently, we show how to

operate the DSN on a blockchain-based ledger. The two novel Proofs-of-Storage that we

present are proof-of-Replication and Proof-of-Spacetime. Firstly, Proof-of-Replication

allows storage providers to prove that data has been replicated to its own uniquely

dedicated physical storage. Enforcing unique physical copies enables a verifier to check

that a prover is not deduplicating multiple copies of the data into the same storage

space. Secondly, Proof-of-Spacetime allows storage providers to prove they have stored

any given data during a specified amount of time.

4. Intuitions for Useful Proof-of- Work: We show how to construct a useful Proof-

of- Work based on Proof-of-Spa cetime, which can be used in consensus protocols. In

this scenario, miners do not need to spend wasteful computation to mine blocks, but

instead must store data in the network.

15

1.3 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we conduct a literature

review of decentralized systems and related work to incentivized file storage. In Chapter 3,

we review the state of the art of the token economy. Chapter 4 introduces the definition

of Verifiable Markets, introducing a novel variant to the fair-exchange problem and a basic

protocol on how to construct decentralized markets on a blockchain-based ledger. Chapter 5

presents our definition of and requirements for a theoretical Decentralized Storage Network

(DSN) scheme. In Chapter 6, we introduce Proof-of-Replication and Proof-of-Spacetime

protocols, used within Filecoin to cryptographically verify that data is continuously stored.

In Chapter 7, we present the setting for an incentivized DSN and we give an overview of the

Filecoin protocol. Consequently, in Chapter 8 we describes the specific design of the Filecoin

DSN, where we define and detail data structures, protocols, and the interactions between

participants. Lastly, Chapter 9 presents future work, in particular the intuition for a Useful

Proof-of- Work based on file storage and Proof-of-Spacetime, as well as ways to integrate a

smart contracts within Filecoin. Finally, we present conclusions on the study conducted in

Chapter 10.

16

17

Chapter 2

Related Work

18

In this work, we follow the definition of decentralized systems presented in [64]. Dis-

tributed systems are system with multiple components that co-ordinate by exchanging mes-

sages via a network and are managed by a single party. Decentralized systems are a subset of

distributed systems, where, unlike the former, multiple authorities control different compo-

nents and no authority is fully trusted, implying that any component could be an adversary.

In this chapter, we give a background and review related work in cryptocurrencies, fair-

exchange, proofs of storage and peer-to-peer file sharing.

2.1 Fair-exchange

2.1.1 The Fair-Exchange Problem

The problem of fair-exchange studies how two mutually distrusting parties want to swap

digital goods such that neither can cheat the other has been studied extensively in the

cryptographic literature [5, 37, 52]. We know, due to a classic result [24, 51], that in the

presence of malicious parties a fair-exchange is impossible: one party will always have an

advantage over the other. The traditional way to perform a fair-exchange is by relying on

a Mediator, a trusted third party, which is assumed to be honest and will help the involved

parties to perform the exchange fairly. The study of fair-exchange leads to the desire of

optimistic fair-exchange protocols, where the Mediator only gets involved when there is a

dispute: one of the two parties does not behave honestly. If the majority of the transactions

are not disputed, optimistic protocols are far easier to use at scale [6, 30, 41, 46].

2.1.2 Use of Blockchain in Fair-Exchange

The rise of decentralized ledgers have demonstrated that fair-exchange can be achieved in a

completely trustless manner. The third-party is still necessary, but the decentralized nature

of blockchains can fill the role of the trusted party and essentially eliminate trust. Most of the

blockchain ledgers have extended their transaction verification to also support a restricted set

of functionalities [50] or arbitrary computation [19], which are referred to as smart contracts.

Fair-exchange on the blockchain has led to a new line of research. By simply using smart

19

contracts, one can create an escrow mechanism for the exchange of digital assets. A line of

work has monetary penalties, where parties are incentivized to complete a protocol fairly,

if one party receives its input but aborts before the other party does, the cheating party is

automatically subject to pay a penalty [4, 15, 40]. Other research has shown how to build

fair decentralized prediction markets [21] and fair-exchange of physical goods [33].

2.1.3 Zero-Knowledge Contingent Payments

Zero Knowledge Continegent Payments (ZKCP) is an elegant exchange protocol where two

parties atomically exchange the solution of an NP problem in for a payment. In the ZKCP

protocol, the seller knows a solution to an NP problem that a buyer is interested in buying.

The problem was originally introduced in 2011 [44] and later revisited [20].

Informally, the seller sends to the buyer (i) the encrypted solution, (ii) the hash of the

encryption key, and (iii) a zero-knowledge proof of having done so correctly. The buyer

receives it and verifies the proof. Then, it deposits to the blockchain some funds that can

only be claimed if the pre-image of the hash, the key of the encrypted solution, appears on

the blockchain.

2.2 Proof-of-Storage

Proofs-of-Storage schemes are interactive protocols where a prover must convince a verifier

of using some space, or storing some data.

2.2.1 Proof-of-Space

Proof-of-Space (PoSpace) schemes [28] allow a service requester (the prover P) to convince

the service provider (the verifier V) that she/he dedicated some non-trivial amount of disk

space to every request. PoSpace schemes are similar to Proof-of-Work (PoW) schemes, whose

applications include prevention of spam, protection against denial of service attacks. Gener-

ally, in a PoSpace protocol users must prove that they are using some disk space, instead of

storing some specific data. A comprehensive literature review is presented in [56]. Spacemint

20

[53] proposes the use of PoSpace to replace expensive Proof-of-Work for achieving consensus

in permissionless blockchains.

2.2.2 Provable Data Possession

Provable Data Possession (PDP) schemes [7] allow a user (a verifier V) who outsources data

D to a server (a prover P) to repeatedly check if the server is still storing D. The user

can verify the integrity of its data outsourced to a server in a very efficient way (i.e. more

efficiently than downloading the data). The server generates probabilistic proofs of possession

by sampling a random set of blocks, and transmits a small constant amount of data in a

challenge/response protocol with the user. The original scheme [7] has been improved in [81
to achieve more scalability: the idea is to come up with all the future challenges during the

setup and store pre-computed answers as meta-data. This protocol has been later improved

to support dynamic updates of data [29].

2.2.3 Proof-of-Retrievability

Proof-of-Retrievability (PoR) schemes [38, 61] are similar to PDPs, but offer an extra prop-

erty: the client can actually "recover" the data outsourced. In PDPs, the server may store

the data D and provide valid PDP proofs, yet hold the data hostage and never release it.

PoRs solves this problem by making the proofs leak pieces of data. Users can reconstruct D

by collecting proofs from multiple challenge/response interactions. The first scheme [38] has

been followed by many variants, with improved efficiency [18, 61], public verifiability [61]

and the ability to support file systems [621.

2.3 Decentralized Storage

In early 2000s, there emerged an unprecedented surge of public interest in peer-to-peer

systems for persistent storage of data. The first mainstream P2P system was Napster, which

attracted millions of users. Following Napster, more distributed solutions appeared, such

as Bittorent [25], Freenet [23], Kazaa [42] and Gnutella [57], based on gossip protocols and

21

distributed hash tables [45, 59].

Initially, these services relied upon altruistic behavior by their users. The assumption

was that users in the network were willing to provide storage and bandwith to the network.

However, this resulted in selfish individuals opting out of voluntary contribution.

Most incentive schemes are based on reciprocation to prevent the free-riding problem

- users have no incentive to store someone else's files - and thereby adding value to the

network. A study in 2001[34] constructed a game theoretical model to analyze the incentives

in these systems.

2.3.1 Peer-to-Peer File Sharing

Peer-to-Peer (P2P) file-sharing systems allow users to download files directly from one an-

other. We refer the reader to [3] for a comprehensive survey on P2P systems for content

distribution.

P2P systems have been successfully used to distribute popular files: the more popular

the file, the more users are storing it and willing to serve it to the rest of the network.

For example, Bittorrent [25] is a peer-to-peer file sharing platform, where peers find each

other via online trackers or a DHT. Users that contribute with upstream bandwidth are

rewarded with bandwidth from other users, and consequently can download files faster.

When a file is popular, many users announce it to the trackers and users can download it

faster by requesting it to multiple sources. A study in 2013 [681 shows that systems like

Bittorrent can support over 20 millions of users daily. In contrast, IPFS [11] is a distributed

file system with a self-certifying name space: differently from the previous protocol, it does

not rely on a specific content routing mechanism. Another example is Freenet [231, an early

decentralized content-distribution system, where a peer-to-peer network self-organizes to

create a collaborative virtual file system, which focuses on security, publisher anonymity and

deniability.

Other systems tried to tackle storage of less popular files (such as personal backups), by

allowing users to share part of their disks in exchange of some else's storage [26].

22

2.3.2 Blockchain-based File Storage

After Bitcoin [50] presented a decentralized solution for digital payments, industry and

academia started exploring incentive schemes for creating file storage networks. Instead

of using reputation systems or tit-for-tat incentives, storage providers are directly paid via

a cryptocurrency for the storage they are providing.

An early application of blockchain technology for file storage is Permacoin [48]. Permacoin

is a blockchain with a novel Proof-of-Work consensus protocol based on storing useful data.

The network requires every miner to store the same files in order to mine new blocks. The

authors estimate that their scheme could recycle enough resources to store at least a "Library

of Congress" worth of data (i.e., two hundred terabytes). While Permacoin is optimal for a

persistent archival service, its capacity is too small for a global decentralized storage network

that could replace the current cloud infrastructure.

Blockstack's Atlas [1] decouples hosting data from blockchain operations. Blockstack uses

the Bitcoin blockchain as a log for claiming domain names. Blockstack users can declare on-

chain how a domain name system should resolve, reusing existing protocols such as HTTP,

IPFS, Bittorrent, or systems such as StorJ, Sia (described below) and Filecoin. Sia [67]

and StorJ [69] are the closest work to one presented in this thesis. Both systems re-use

blockchain networks to verify Proofs-of-Storage and perform payments only if the providers

have correctly provided their storage. Sia [67] is a Proof-of-Work based blockchain, similar

to Bitcoin, however, it contains an extra smart contract functionality for verifying Proofs-of-

Storage. It uses SiaCoin to reward miners for providing bandwith and storage and to charge

their clients. Users only pay for the resource they use. Clients pick a storage provider which

will commit to store and serve their files. Similarly, StorJ implements proof verification as

a smart contract on the Ethereum platform. Differently from Sia and Filecoin, StorJ relies

on a main bridge server that handles contracts between clients and storage providers. While

there are some large performance and maintainance advantages in having a central point,

this makes StorJ being a distributed cloud provider, rather than a decentralized protocol

for file storage. Differently from the two systems, Filecoin re-creates a decentralized market

with no single point of control, where users can participate in storing and serving data.

23

Clients make storage deals with a set of miners of their choice and anyone in the network

can participate in serving the data, regardless of whether they have been assigned to store a

file or not.

24

25

Chapter 3

Review of Protocol Tokens

VKIf ICAIor
79 AVE

I--,

(
ACC~ff

(o

(

26

In this chapter, we provide some background to protocol tokens and present a review of

the different type of tokens, their properties and their infrastructure.

3.1 Background on Tokens

3.1.1 Cryptoeconomics

Cryptoeconomics is a new field, originated from the new wave of cryptocurrencies, that com-

bines ideas from cryptography, computer networks and game theory to design distributed

protocols with intrinsic economic incentives. Cryptoeconomic protocols create financial in-

centives to drive a network of rational economic agents to coordinate their behaviour towards

desired objectives. Originally, economic incentives have been used to create decentralized

currencies [19, 50], where "miners" coordinate to maintain a payment system and obtaining

coin rewards for doing so. In the past few years, the attention from designing new currencies

moved into designing new decentralized services that can be accessed by spending the token

of the protocol.

3.1.2 Protocol Tokens

Protocol Tokens are the native currencies of cryptoeconomic protocols. In this new paradigm,

protocol designers can incentivize nodes in a network to coordinate to provide a service by

rewarding them in tokens; in return users spend tokens to access the service. Following the

principles of decentralization, anyone can participate in the protocol to earn the tokens and

anyone can use the service by spending tokens. Correct delivery of a service and exchange of

tokens must be designed to be publicly verifiable (see Section 4). The Token Model can be

considered as a novel business model. Companies are creating new decentralized protocols

with native tokens and allocating to themselves a percentage of the tokens - often selling

part of it (for other tokens or fiat currency) as a way to crowdfund the work required to

create the protocol. Depending from the economics of the protocol, the higher the usage of

the tokens, the higher their value will be in the market. A simple way to see tokens is as

unique API tokens that can be spent with the network to accessing a service; however, these

27

tokens can be traded and anyone can become a reseller of API tokens and anyone can earn

by serving API requests.

What are applications of tokens? At the time of this writing there are over 900 cryp-

tocurrencies and tokens' (launched since Bitcoin [50]). There are services powered by tokens,

where spending of tokens allows to delegate some computation, to make bets in prediction

markets, to send messages, to issue stocks, to vote, to acquire decentralized domain names

and to delegate storage (see Section 8).

3.2 Properties of Tokens

Protocol Tokens generally share the following three properties:

9 Access: Tokens give access to a special service (and reward).

User can spend tokens to get access to a specific service the network provides. Augur

Tokens allow to participate in a prediction market [54], Truebit Tokens allow to delegate

computation [63], Ethereum Tokens can be spent to do function call in the Ethereum

Virtual Machine [19]; finally in our case, tokens can be spent rent storage.

Users can participate in providing the infrastructure for the service and are (generally)

rewarded for doing so. For example, in our case, storage providers are rewarded in

currency for offering storage.

e Verification: Transactions and execution of services are public and verifiable

Given the nature of decentralized services, participants in the protocol are independent

parties that do not trust each other. Transactions must be logged on a distributed

ledger. In order to appear on the ledger, transactions must be validated via a network

of verifiers. In addition, the system must provide security/rational guarantees that if

a token is spent to access a service, the service must be correctly provided.

e Trade: Tokens can be exchanged amongst users.

'Source: CoinMarketCap on 08/06/17 at https: //coinmarketcap. com/

28

Users have wallets, generally in the form of a cryptographic public/private key pair,

which they can use to send and receive tokens to other users. These transactions are

secured by an underlining blockchain protocol.

3.3 Different Types of Tokens

There are different categorizations of tokens. Tokens can serve multiple purposes and these

categories are not mutually exclusive.

" Equity Tokens: These tokens resemble the concept of shares in company. Protocols

(or companies) issue a tokenized equity, ownership of these token gives access to pay-

ments of dividends or other revenue streams of the protocol (or the company). For

example, every time a service is used, the owner of these tokens receive a proportion

based on the amount they own.

" Voting Tokens: Users can vote to influence the behaviour of a protocol. In systems

with decentralized governance, users can vote on improvements on the protocol pro-

portionally to their currency. For example, in Aragon [27], token holders can use them

to vote new services to be implemented and to vote on how to resolve conflicts. In

Proof-of-Stake blockchain protocols systems, tokens can be used by users to vote on

the execution of the protocol. For example, in Tezos [35], users vote on the next block,

proportionally to the tokens they hold.

" Staking Tokens: Users can put some token "at stake" as a collateral to access a

service and guarantee good behaviour. In the messaging platform Status, public chats

can prevent spam by requiring users to put some money at stake when entering the chat

(and will lose the collateral if violating the terms) [36]. In the delegated computation

platform Truebit [63], users can put a collateral to guarantee that their computation

was correct; if found to be incorrect by other users, this collateral is lost.

* Market Tokens: Users use these tokens to participate in a specific marketplace where

there is supply and demand for a specific service/ product. Buyers and sellers post

29

their requests/offerings and perform the exchange with the market's token. Depending

on the system, the underlining protocol facilitates the exchange (by verifying proofs,

providing a market mechanism). There exists already different marketplaces (and a

protocol for creating new marketplaces [431): a market for buying and selling decentral-

ized domain names, and a market for talent, among others. In this work, we present

a generalization for Verifiable Markets (see Section 4), where the exchange of a ser-

vice must be proven in order for the exchange to happen. Consequently, we present a

decentralized market for storage (see Section 8).

" Service Tokens: Some of the above can also be considered services. However, for

the purpose of this classification, service token allow to get a service from the entire

network and not from very specific users, as is in the case of market tokens.

" Stable Tokens: All of the above can also be stable tokens. A stable token is a token

whose value is pegged to another currency. Some protocols prefer stable tokens as it

can avoid price volatility.

3.4 Infrastructure for Tokens

3.4.1 How do we power tokens?

Tokens can be powered by their dedicated ledger or reusing existing infrastructure. In this

work, we will only consider tokens that are based on blockchain ledgers.

o Reusing infrastructure: Often tokens are implemented on top of existing blockchains.

A strategy is to use an existing blockchain as an append-only log and an off-chain client

verification validates the correctness of the transactions and keeps a state, as in Col-

ored Coins [58] and the Blockstack token [491. Another strategy is to use existing

blockchains' smart contract systems to implement the token protocol as a smart con-

tract. Some blockchains support an expressive smart contract systems that allow to

write stateful programs whose execution is verified by the blockchain network. The

30

Ethereum community has proposed a standard interface for tokens [66] and several

open source implementations are available [65].

* New blockchains: Tokens can be powered by their own dedicated blockchain. Often

the decision is based to technical reasons: the token could require a special consensus

protocol that other blockchains do not support or require for transactions to be verified

in a special way that the smart contract language of other blockchains do not support,

or that would be too expensive to run. Often the decision is based on incentives:

conflict of interests between the blockchain mining and the token-based service or

different monetary policies needed to be implemented.

3.4.2 Do we always need new tokens?

Not every (incentivized) decentralized service requires its own specific token. Some of the

systems mentioned above can be implemented as a smart contract with the native blockchain

token, as long as the smart contract language of the hosting blockchain is expressive enough.

For example, the Ethereum Name System (ENS) protocol, the domain name system allows

to register, transfer and renew Ethereum domain names by using the Ethereum currency

only.

However, there are situations in which the service requires separation from the hosting

blockchain currency. The specific service could require a different consensus mechanism, a

special smart contract operation or special monetary policies. In fact, protocol designers

can define the allocation of token at the beginning of the protocol, the strategy to mint new

tokens and more importantly, the ability to sell a portion of the token can be used as a way

to fundraise or incentivize the early users in participating in the network.

3.4.3 How do users buy tokens?

Depending on the service, users can earn tokens by providing their service to the network.

For example, in the case of delegated file storage, users can earn tokens by renting out

their storage. Users can buy tokens during a possible fund-raising stage before the token is

31

launched in the network or directly form other users, alternatively. Popular tokens are often

sold both via centralized and decentralized exchanges.

32

33

Chapter 4

Verifiable Markets

K~I
K52

K

ii

/

7

c~At~

34

In this chapter, we present Verifiable Markets, a class of market protocols where an

exchange is guaranteed to happen if a seller can generate a convincing proof that their

good/service has been successfully provided to their buyer. These proofs must be verifiable

by a trusted market operator.

To our knowledge, we are the first to introduce the problem of Verifiable Markets and

formally study fair-exchange for provable services. In order to achieve this, we introduce the

notion of Provable Services, a generalization for services whose execution can be proven, and

Verifiable Exchange of Services, a novel variant of the fair-exchange problem. Finally, we

show how Verifiable Markets can be operated in a decentralized setting, where the market

operator is replaced by a blockchain network, where no single entity controls exchanges,

transactions are transparent, and anybody can participate pseudonymously. Similarly, the

consistency of the Order Books, orders settlements and correct execution of services are in-

dependently verified via the network.

Note on concurrent work: The ZKCSP protocol presented in [20] is concurrent work to

Verifiable Exchanges of Services presented in this thesis. The authors use the idea behind

ZKCP to sell services instead of goods. In contrast, in this work we present an abstraction

for verifiable exchange of services that does not necessarily require use of SNARK (Succinct

Non-Interactive ARguments of Knowledge) [10].

4.1 Problem Definition

Markets are protocols that facilitate the exchange of a specific good or service between buyers

and sellers. In a decentralized setting, where any node in a network can be a buyer or a

seller, how can we guarantee that exchanges are happening correctly and fairly?

The difference between an electronic exchange of services and conventional commerce

and barter essentially lies in (i) enforceable laws, (ii) service providers being chosen based on

their reputation, and (iii) industries guaranteeing external certified quality control. Below,

we present the two problems we are trying to tackle:

* Problem one (fairness): A buyer wants to pay to obtain a service that a seller claims

35

to provide. If the buyer pays immediately, they risk not receiving the service; it the

buyer pays after receiving the service, the seller runs the risk of being defrauded and

never being paid. When should the buyer pay the seller?

* Problem two (correctness): The buyer wants to make sure that the seller is correctly

providing the service without performing the service herself, since a dishonest seller

could perform partial or no work. How can the buyer make sure she is getting the

service she requested?

In light of this, Verifiable Markets aim at providing a way for demand and supply of a

specific service to meet and to provide fair exchange of services, whose execution must be

correct.

4.2 Provable Services

Services provided in a Verifiable Market must be provable. A Provable Service is an operation

performed by a service provider which can also be proven via an interactive proof between

a service provider and a client. The service provider must be able to generate a proof that

can convince a client of the correct execution of the requested service, without requiring

the client to perform the service themselves. The formal requirements of completeness and

soundness of a valid proof are described in the Verifiable Exchange of Services definition

in the following section. In a decentralized setting, we require Provable Services to also be

publicly verifiable, so that any node in a network can be a verifier that can both challenge

the prover (in interactive protocols) and validate their proofs.

4.2.1 Provable Service for File Storage

This thesis focuses on designing a decentralized system that can provide file storage services.

In order to make a file storage provable, we must find a valid proof scheme that would give a

guarantee to the user that the seller is storing the file for the amount of time required. Proof-

of-Retrievability is an interactive proof scheme which, on a client's challenge, the prover can

generate a proof showing that they are storing the outsourced files. A simple approach

36

(detailed in Section 7) is to require the seller to submit a Proof-of-Retrievability to the

Mediator every ten minutes. This would guarantee that a file has been stored throughout

time.

4.2.2 Other Provable Services

If a service can be phrased as a statement that can be verified efficiently (e.g. in probabilistic

polynomial time or constant time), then we could create Verifiable Markets for these services.

Other provable services could be the delegation of computation, where nodes in the network

must prove to have correctly executed some computation. If one could delivery energy from

one node to another and generate a proof that some energy has been correctly delivered (for

example, via trusted hardware), then we could create a decentralized verifiable market for

energy.

4.3 Verifiable Exchange of Services

In contrast to the problems of fair-exchange of goods and secrets previously presented in

Section 2.1.1, in our setting we are interested in defining a fair-exchange of provable services.

In the literature, there is no consensus on what fair-exchange protocols (or its variants)

have to provide. Nevertheless, most authors seem to include formulations of fairness and

timeliness similar to the ones proposed by [5]. We extend these definitions to provide our

own formulation.

Definition 4.3.1. An exchange between two parties, a buyer and a seller, is a Verifiable

Exchange of Services if it can guarantee the following four properties:

" Completeness: If both parties are honest, at the end of the execution the seller always

generates a valid proof of their service and receives a payment from the buyer and the

buyer receives the outcome of the service.

" Soundness: The probability that a malicious seller generates a valid proof and receives

the payment, without having correctly provided the service, is negligible.

37

* Fairness: There are only two valid outcomes for the protocol:

1. Seller gets a payment from the buyer and the buyer gets a service/product from

seller (when both parties want so)

2. Seller gets nothing, buyer gets nothing (if at least one party wants so)

e Timeliness: If both participants are honest, the exchange can terminate without any

help from the other. None of the participants can arbitrarily force the other to wait

for the termination of the exchange.

4.4 Verifiable Markets in a Centralized Settings

In this section, we use the intuition of Provable Services and Verifiable Exchange of Services

to design a simple protocol for Verifiable Markets that relies on a trusted third party acting

as a mediator. We present the different participants, define Verifiable Markets, and provide

a basic protocol and its variations.

4.4.1 Participants

" Seller: A seller is interested in providing a specific service. Sellers are paid only if

they correctly perform their service and generate a valid proof of having done so.

* Buyer: A buyer is interested in receiving a specific service. Buyers pay only if their

requested service has been correctly offered.

" Mediator: The Mediator is a third party trusted by buyers and sellers. It operates

the different components of the market:

- Escrow: The escrow collects the payment from the buyer (a seller can deposit

an optional collateral as a way to commit to the delivery of the service)

- Auditor: The Auditor is a probabilistic polynomial time (PPT) algorithm which

validates if the seller's proof is correct. Note: the Auditor algorithm is public and

any PPT verifier can spot misbehaving Mediators.

'We unify the different roles under the Mediator, but they could be performed by different trusted parties

38

Verifiable Market Protocol Sketch

Order matching

1. Orders Submission: Participants submit their buy orders and sell orders to the order
book. Buyers deposit their payment (and sellers deposit their collateral in case they
don't fulfill their order in some cases, so the seller can commit their service) with the
Mediator.

2. Deal: As new orders come, when two orders matches, the Mediator requires both par-
ties to jointly create a deal, or automatically generates deal (depending the service).
A deal commits the two parties to the exchange.

Settlement

3. Service Execution: The seller performs the service and generates a proof that the
service was provided correctly and sends it to the buyer and the Mediator. Generation
of the proof might require interaction between the Mediator and the seller.

4. Exchange: The Mediator validates the proof. On success, it processes the payment
and clears the order from the order book.

Figure 4-1: Abstract Verifiable Market protocol executed by a trusted Mediator

- Order Book: The Order Book is collection of buy and sell orders. Anyone

can add/remove orders, until two orders are matched (according to an arbitrary

matching algorithm). Orders are removed when settled.

4.4.2 Definition

A Verifiable Market is a protocol between sellers and buyers and it is operated via a Mediator.

The service offered in the market must be a provable service and individual exchanges must

be verifiable exchanges of service (see Definition 4.3.1).

The protocol is divided in two phases: Order Matching and Settlement. During the

Order Matching phases, buyers and sellers orders are submitted. When orders match, a deal

is created. During Settlement, the seller must generate a proof of the service requested in

their deal and the Mediator performs the exchange.

A basic protocol is described in Figure 4-1.

39

4.4.3 Note on optimistic exchange

The presented protocol requires the Mediator to witness every proof. However, one could

make adjustments to the protocol to only have Mediator interaction in case of conflict.

Informally, the buyer could put a deposit with the Mediator, request the service to the seller

directly and, upon receiving a proof, can directly send a payment to the seller. In case a

malicious buyer doesn't pay the seller, the seller can present a proof to the Mediator, who

would perform the exchange.

4.5 Markets on the Blockchain

A Decentralized Market should not be operated by a single party, but by a network of users.

In order to remove the single trusted third party, we replace the Mediator with a blockchain

network. The intuition is to introduce the following two changes to a standard blockchain

ledger:

e Special transactions: Two special transactions must be introduced: one for sellers

to submit their proofs and one for buyers to deposit their funds. Funds are released if

a valid proof is presented.

e Proof verification: The Auditor algorithm must be added in the transaction verifi-

cation, such that when a seller submits a transaction with the proof, they trigger the

verification. In this way, every node in the network can verify the proofs

Verifiable Markets can be implemented on new blockchains by adding these changes at

the consensus/transaction verification level, or on existing blockchains in the form of smart

contracts. For example, in a platform such as Ethereum, one could create a smart contract

that with a deposit method, and a verification method, as long as the verification can be done

with the current cryptographic primitives implemented in the Ethereum Virtual Machine.

For simplicity, we refer to the Verifiable Market as a special contract on a blockchain.

In the next two sections, we present how to run the Order Book both in chain and off

chain. The two strategies resembles two different type of markets: an exchange market and

40

an over-the-counter market. In Section 7 and 8, we show how to create an exchange market

for storing data and an OTC market for data retrieval.

4.5.1 In-chain: Exchange

In an Exchange market, the Order Book is centrally run by the trading venue. A matching

engine determines which orders match or should be fulfilled.

A basic exchange protocol on the blockchain requires buyers and sellers to submit their

orders to the market's smart contract. This validates the submitted orders and performs the

matching. There are two limitations to this approach: (1) speed: adding and removing orders

from the blockchain happens at the speed of the creation of new blocks, (2) front-running:

miners can give priority to their orders when creating new blocks.

4.5.2 Off-chain: Over-the-Counter

In an Over-the-Counter market, there is no one central venue and participants, but several

dealer networks. Similarly to a gossip protocol, buyers and sellers announce their prices and

perform the exchange when their interest match.

A basic OTC protocol on the blockchain consists of a network of sellers and buyers

gossiping their prices. While in OTC, there is no single shared Order Book, we could

consider each participant's Order Book as a partial view of all the orders. Buyers and sellers

are responsible for finding matching orders and then agree on a deal. To achieve a faster

exchange, buyers and sellers must exchange payments via payment channels and only interact

with the blockchain in case of disputes. For example, a seller sends directly proofs of their

service to a client. If the client stops paying, the seller can claim the payment by posting

their proof to the blockchain, where some collateral was initially deposited. Similarly, if a

provider stops providing valid proofs, the client can request the seller to publicly submit

their proofs, if the provider is not able to show a proof, then payments are not performed

(or the provider is penalized by loosing some collateral initially deposited).

41

42

43

Chapter 5

Decentralized Storage Network

CCr'J L I I (D(LOUDV

44

v

A Decentralized Storage Network (DSN) is a network of independent storage providers

that self-coordinates to provide storage and data retrieval as one service to their users. There

is no central point of coordination and no trusted party: a decentralized protocol helps the

participant to coordinate and verify each other's operations. Coordination can be achieved

in different ways, according to the requirement of the system (e.g. Byzantine Agreement).

Later, in Chapter 8, we provide a construction for the Filecoin DSN.

5.1 DSN Definition

We model a Decentralized Storage Network as a single storage system that aggregates storage

from multiple providers and offers Get and Put requests to its users. The network of users

and storage providers execute the Manage protocol to coordinate requests and audit the

service. Our definition captures systems described in our related work (see Section 2), both

altruistic and incentivized: Bittorrent, IPFS, Freenet, StorJ, Sia and Filecoin.

Definition 5.1.1. A DSN scheme Il is a tuple of protocols run by storage providers and

clients:

(Put, Get, Manage)

" Put(data) -+ key: Clients execute the Put protocol to store data under a unique iden-

tifier key.

" Get(key) -+ data: Clients execute the Get protocol to retrieve data that is currently

stored using key.

" Manage(: The network of participants coordinates via the Manage protocol to: control

the available storage, audit the service offered by providers and repair possible faults.

The Manage protocol is run by storage providers often in conjunction with clients or a

network of auditors'.

1In the case where the Manage protocol relies on a blockchain, we consider the miners as auditors, since
they verify and coordinate storage providers

45

A DSN scheme H must guarantee data integrity and retrievability as well as tolerate man-

agement and storage faults as defined in the following sections.

5.2 Modeling Faults

5.2.1 Management faults

Faults during coordination in the Manage protocol are defined as management faults. Man-

agement fault can compromise the liveness and safety of Get and Put requests, but they do

not model storage losses.

Example: Consider a DSN protocol that relies on Byzantine Agreement (BA) to coordi-

nate and audit storage providers. Proofs-of-Storage are submitted to storage providers to

the network and the network runs BA to agree on the validity of these proofs. If the BA

tolerates up to f faults out of n total nodes, then if more than f faulty nodes are present,

the outcome of audits can be compromised.

5.2.2 Storage faults

Faults that result in preventing retrieval of data are defined as storage faults. A node is

considered faulty if it has lost data or if it stops serving data. The tolerance of a protocol

to storage faults is defined as follows:

Definition 5.2.1. Given n independent storage providers, a DSN scheme HI is (f, m)-tolerant

to storage faults if: (1) a Put execution results in m independent storage providers storing

the input data (until expiration) even in presence of up to f faulty providers, (2) a Get

execution succeeds even in presence of up to f faulty providers.

Example: Consider a simple scheme, where a successful Put execution results in every

participant in the network to store the input data. In this scheme, m = n and f = m - 1. Is

it always f = m - 1? No, some schemes can be designed using erasure coding, where each

storage provider stores a special portion of the data, such that x out of m storage providers

are required to retrieve the data. In this, case f = m - x.

46

t ,

5.3 Properties

Decentralized Storage Networks must provide data integrity and retrievability. We describe

these two properties and we present additional properties required by our incentivized DSN,

presented in Section 7.

5.3.1 Data Integrity

Data Integrity guarantees that given a key, clients are guaranteed to retrieve the data origi-

nally stored under that key. There is no adversary that can convince clients to accept altered

or falsified data at the end of a Get execution.

Definition 5.3.1. A DSN scheme H provides data integrity if: for any successful Put exe-

cution for some data d under key k, there is no probabilistic polynomial time adversary A

that can convince a client to accept d', for d' # d at the end of a Get execution for identifier

k.

5.3.2 Retrievability

Retrievability guarantees that data that has been successfully stored can be eventually re-

trieved (if the protocol fault-tolerance assumption are not violated).

Definition 5.3.2. A DSN scheme H provides retrievability if: for any successful Put exe-

cution for data under key, there exists a successful Get execution for key for which a client

retrieves data. 2 .

5.3.3 Other Properties

We define three properties required in Filecoin: public verifiability, auditability, and incentive-

compatibility.

Definition 5.3.3. A DSN scheme 1I is publicly verifiable if: for each successful Put, the

network of storage providers can generate a proof that the data is currently being stored.
2 This definition does not guarantee every Get to succeed: if every Get eventually returns data, then the

scheme is fair.

47

The Proof-of-Storage must convince any efficient verifier, who only knows key and does not

have access to data.

Definition 5.3.4. A DSN scheme H1 is auditable, if it generates a verifiable trace of operations

that can be checked in the future to confirm that storage was indeed stored for the right

duration of time.

Definition 5.3.5. A DSN scheme IH is incentive-compatible, if storage providers are rewarded

for successfully offering storage and retrieval service, or penalized for misbehaving, such that

the storage providers' dominant strategy is to store data.

48

...............

49

Chapter 6

Novel Proofs of Storage

(4

50

In a incentivized DSN protocol, storage providers must convince their clients that they

stored the data they were paid to store. We require storage providers to generate Proofs-of-

Storage (PoS) that the nodes in the blockchain network (or the clients themselves) can then

verify. The author originally presented this work in [14]. In this chapter we present and

outline implementations for the Proof-of-Replication (PoRep) and Proof-of-Spacetime (PoSt)

schemes.

6.1 Motivation

PDP and PoR schemes, previously reviewed in Section 2, only guarantee that a prover had

possession of some data at the time of the challenge/response interaction. In our incentivized

DSN, we require stronger guarantees to prevent three types of attacks that malicious storage

providers could exploit to get rewarded for storage they do not have: Sybil attack, outsourcing

attacks, generation attacks.

" Sybil Attacks: Malicious storage providers could pretend to store (and get paid for)

more copies than the ones physically stored by creating multiple Sybil identities, but

storing the data only once.

" Outsourcing Attacks: Malicious storage providers could commit to store more data

than the amount they can physically store, relying on quickly fetching data from other

storage providers.

" Generation Attacks: Malicious storage providers could claim to be storing a large

amount of data which they are instead efficiently generating on-demand using a small

program. If the program is smaller than the purportedly stored data, this inflates the

malicious storage provider's likelihood of winning a block reward in Filecoin, which is

proportional to the storage provider's storage currently in use.

51

6.2 Proof-of-Replication

Proof-of-Replication (PoRep) is a novel Proof-of-Storage which allows a server (i.e. the prover

P) to convince a user (i.e. the verifier V) that some data D has been replicated to its own

uniquely dedicated physical storage. Our scheme is an interactive protocol, where the prover

P: (a) commits to store n distinct replicas (physically independent copies) of some data

D, and then (b) convinces the verifier V, that P is indeed storing each of the replicas via

a challenge/response protocol. To the best of our knowledge, PoRep improves on PoR and

PDP schemes, preventing Sybil Attacks, Outsourcing Attacks, and Generation Attacks.

Note. For a formal definition, a description of its properties, and an in-depth study of

Proof-of-Replication, we refer the reader to [14].

Definition 6.2.1. (Proof-of-Replication) A PoRep scheme enables an efficient prover P to

convince a verifier V that P is storing a replica 7?, a physical independent copy of some data

D, unique to P. A PoRep protocol is characterized by a tuple of polynomial-time algorithms:

(Setup, Prove, Verify)

* PoRep.Setup(1A, D) -+ 7?, Sp, Sv, where Sp and Sv are scheme-specific setup variables

for P and V, A is a security parameter. PoRep.Setup is used to generate a replica

7?, and give P and V the necessary information to run PoRep.Prove and PoRep.Verify.

Some schemes may require the prover or interaction with a third party to compute

PoRep.Setup.

" PoRep.Prove(Sp, 7Z, c) -+ 7rc, where c is a random challenge issued by a verifier V, and

7c is a proof that a prover has access to 1Z a specific replica of D. PoRep.Prove is run

by P to produce a 7r for V.

" PoRep.Verify(Sv, c, 7c) -+ {O, 1}, which checks whether a proof is correct. PoRep.Verify

is run by V and convinces V whether P has been storing 7?.

Completeness. For every security parameter A and any data D, an honest prover can

convince the verifier with probability 1 - negl(A), in the following experiment: R, Sp, Sv <-

52

MR i

PoRep.Setup(1A, D); WrC +- PoRep.Prove(Sp, 7Z, c), then 1 +- PoRep.Verify(Sv, c, 7).

Soundness The scheme is sound if no probabilistic polynomial time adversary A can pass

the RepGame with more than negl(A) probability.

Definition 6.2.2. (RepGame) Let A be an adversary with fixed amount of storage 1 and

access to a party P with infinite space which can store and retrieve data for A with latency

A. A wins the RepGame if for any data D, A can convince a verifier V that A is storing n

replicas, such that nIDI > 1. A runs PoS.Setup for each different replica i c {0.. .n}. A wins

the game if she can produce proofs 7ri that for all i, V outputs 1 = PoS.Verify(Sv, ci, 7rci).

6.3 Proof-of-Spacetime

Proof-of-Storage schemes allow a user to check if a storage provider is storing the outsourced

data at the time of the challenge. How can we use PoS schemes to prove that some data was

being stored throughout a period of time? A natural answer to this question is to require the

user to repeatedly (e.g. every minute) send challenges to the storage provider. However, the

communication complexity required in each interaction can be the bottleneck in systems such

as Filecoin, where storage providers are required to submit their proofs to the blockchain

network.

To address this question, we introduce a new proof, Proof-of-Spacetime, where a verifier

can check if a prover is storing her/his outsourced data for a range of time. The intuition

is to require the. prover to (1) generate sequential Proofs-of-Storage (in our case Proof-of-

Replication), as a way to determine time (2) recursively compose the executions to generate

a short proof.

Definition 6.3.1. (Proof-of-Spacetime) A PoSt scheme enables an efficient prover P to

convince a verifier V that P is storing some data D for some time t. A PoSt is characterized

by a tuple of polynomial-time algorithms:

(Setup, Prove, Verify)

53

" PoSt.Setup(1A, D) -+ Sp, Sv, where Sp and Sv are scheme-specific setup variables for

P and V, A is a security parameter. PoSt.Setup is used to give P and V the necessary

information to run PoSt.Prove and PoSt.Verify. Some schemes may require the prover

or interaction with a third party to compute PoSt.Setup.

" PoSt.Prove(Sp, D, c, t) -+ 7r', where c is a random challenge issued by a verifier V, and

7c is a proof that a prover has access to D for some time t. PoSt.Prove is run by P to

produce a 7rC for V.

" PoSt.Verify(Sv, c, t, ,rc) -+ {0, 1}, which checks whether a proof is correct. PoSt.Verify

is run by V and convinces V whether P has been storing D for some time t.

6.4 Practical PoRep and PoSt

In this thesis, we are interested in practical PoRep and PoSt constructions that can be

deployed in existing systems and do not rely on trusted parties or hardware. We give a

construction for PoRep (see Seal-based Proof-of-Replication in [14]) that requires a very slow

sequential computation Seal to be performed during Setup to generate a replica. The protocol

sketches for PoRep and PoSt are presented in Figure 6-2 and the underlying mechanism of

the proving step in PoSt is illustrated in Figure 6-1, presented in the following pages.

6.4.1 Cryptographic building blocks

Collision-resistant hashing. We use a collision resistant hash function CRH : {0, 1}* -

{0, 1}0("). We also use a collision resistant hash function MerkleCRH, which divides a string

in multiple parts, construct a binary tree and recursively apply CRH and outputs the root.

zk-SNARKs. Our practical implementations of PoRep and PoSt rely on zero-knowledge

Succinct Non-interactive ARguments of Knowledge (zk-SNARKs) [10, 17, 32]. Because zk-

SNARKs are succinct, proofs are very short and easy to verify. More formally, let L be an NP

language and C be a decision circuit for L. A trusted party conducts a one-time setup phase

that results in two public keys: a proving key pk and a verification key vk. The proving key

54

pk enables any (untrusted) prover to generate a proof 7r attesting that x E L for an instance

x of her choice. The non-interactive proof 7r is both zero-knowledge and proof-of-knowledge.

Anyone can use the verification key vk to verify the proof 7r; in particular zk-SNARK proofs

are publicly verifiable: anyone can verify 7r, without interacting with the prover that gener-

ated 7r. The proof 7r has constant size and can be verified in time that is linear in jxj.

A zk-SNARK for circuit satisfiability is a triple of polynomial-time algorithms

(KeyGen, Prove, Verify)

" KeyGen(1A, C) -+ (pk, vk). On input security parameter A and a circuit C, KeyGen

probabilistically samples pk and vk. Both keys are published as public parameters and

can be used to prove/verify membership in Lc.

" Prove(pk, x, w) - 7r. On input pk and input x and witness for the N P-statement w,

the prover Prove outputs a non-interactive proof -r for the statement x E Lc.

" Verify(vk, x, 7) -+ {0, 1}. On input vk, an input x, and a proof wF, the verifier Verify

outputs 1 if x E Lc.

We refer the interested reader to [10, 17, 32] for formal presentation and implementation of

zk-SNARK systems. Generally these systems require the KeyGen operation to be run by a

trusted party; novel work on Scalable Computational Integrity and Privacy (SCIP) systems

[91 shows a promising direction to avoid this initial step, hence the above trust assumption.

6.4.2 Seal operation

The generation of a replica guarantees that the prover is dedicating some space to store a

unique encoding of the original data. During the Setup, the prover runs a Seal operation. The

role of the Seal operation is to (1) prevent sybil attacks by forcing replicas to be physically

independent copies by requiring provers to store a pseudo-random permutation of D unique to

their public key and (2) prevent outsourcing and generation attacks by forcing the generation

55

of the replica during PoRep.Setup to take substantially longer than the time expected for

responding to a challenge.

For a more formal definition of the Seal operation see [14].

Intuition for preventing the Sybil Attack. We define a replica of D to be an encoding

using a per-replica encoding key ek: IZ' +- Sealek(D). Replicas are different from each other

and indistinguishable from randomness. Provers must be storing the replica of the data in

order to generate valid proofs of storage. A malicious attacker cannot pretend to store more

data than what their capacity allows, mitigating in this way Sybil attacks.

Intuition for preventing the Outsourcing and Generation Attacks. We ensure that

provers cannot get the replica just-in-time by retrieving data from outsourced storage. To

achieve this, we force malicious provers to be distinguishably slower than honest provers

when responding to a challenge. Computing Sealek(D) must take a distinguishable amount

of time, such that a verifier, V, can distinguish between:

(a) Time(PoRep.Prove(Sp, Z', c))

(b) Time(PoRep.Prove(Sp, Sealek(D), c))

We require that the wall clock running time of P computing Sealek(D) must be noticeable.

Statistical estimation of the roundtrip time between P and V, and PoRep.Prove to deter-

mine the acceptable variance gives a lower bound on the amount of time required. As long

as verifiers can clearly distinguish between (a) and (b) we overcome both the Outsourcing

and Generation Attacks.

Candidates for Seal. A candidate for Seal is a block cypher in CBC mode that sequentially

encrypts the data for T iterations, by taking the output of the last iteration as the input of

the next. This chaining preserves the sequential property of the CBC mode: the last cipher

block of iteration r - 1 is chained with the first block of iteration -r. This sequentiality

ensures the encryption cannot be parallelized. The running time of encryption is still nT,

while decryption is still parallelizable.

56

The above operation can be realized with SeaIAES- 256 , and T such that SealAES- 256 takes

10-100x longer than the honest challenge-prove-verify sequence. Note that it is important

to choose r such that running SealIc is distinguishably more expensive than running Prove

with random access to R.

6.4.3 Practical PoRep construction

This section describes the construction of the PoRep protocol and includes a simplified pro-

tocol sketch in Figure 6-2; implementation and optimization details are omitted.

1. Creating a Replica: The Setup algorithm generates a replica via the Seal operation

and a proof that it was correctly generated. The prover generates the replica and sends

the outputs (excluding R) to the verifier.

2. Proving Storage: The Prove algorithm generates a proof of storage for the replica.

The prover receives a random challenge, c, from the verifier, which determines a specific

leaf R7 in the Merkle tree of R with root rt; the prover generates a proof of knowledge

about R7 and its Merkle path leading up to rt.

3. Verifying the Proofs: The Verify algorithm checks the validity of the proofs of

storage given the Merkle root of the replica and the hash of the original data. Proofs

are publicly verifiable: nodes in the distributed system maintaining the ledger and

clients interested in particular data can verify these proofs.

6.4.4 Practical PoSt construction

This section describes the construction of the PoSt protocol and includes a simplified protocol

sketch in Figure 6-2; implementation and optimization details are omitted. The Setup and

Verify algorithm are equivalent to the PoRep construction, hence we describe here only Prove.

Proving space and time. The Prove algorithm generates a Proof-of-Spacetime for the

replica. The prover receives a random challenge from the verifier and generate Proofs-of-

57

Replication in sequence, using the output of a proof as an input of the other for a specified

amount of iterations t (see Figure 6-1).

Parameter

(Loop counter=i)t Function

Merkle -- Data flow
Tree + Hash

Gen-Ferate
Iproof

0 n

Challenge newati - Output 'rPOST

.Repeat t times

Figure 6-1: Illustration of the underlying mechanism of PoSt.Prove showing the iterative
proof to demonstrate storage over time.

6.5 Usage in Filecoin

Filecoin is a protocol for incentivizing file storage. Storage providers must able to prove they

are storing their clients' data in order to receive a payment. The Filecoin protocol employs

Proof-of-Spacetime to audit the storage offered by storage providers, in order to overcome

the previous attacks. To use PoSt in Filecoin, we modify our scheme to be non-interactive

since there is no designated verifier, and we want any member of the network to be able to

verify. Since our verifier runs in the public-coin model, we can extract randomness from the

blockchain to issue challenges.

58

Filecoin PoRep protocol

Setup
0 INPUTS:

- prover key pair (pkp, sk-p)
- prover SEAL key pkSEAL
- data D

* OUTPUTS: replica R, Merkle root rt of R
7SEAL

1) Compute hD := CRH(D)
2) Compute R := Seal' (, skp)

3) Compute rt := MerkleCRH(R)

4) Set := (pkp, hD, rt)

5) Set i := (skp,D)

3) Compute WSEAL := SCIP.Prove(pkSEAL, ZI)V
7) Output R, rt, 7SEAL

, proof

Prove
0 INPUTS:

- prover Proof-of-Storage key pkpos
- replica R
- random challenge c

OUTPUTS: a proof 7rpos
Compute rt := MerkleCRH(R)

Compute path := Merkle path from rt to leaf R,
Set Y := (rt, c)

Set i := (path, R)
Compute 7rpos := SCIP.Prove(pkpos,iY, ig)

Output 7rPos

Verify
* INPUTS:

- prover public key, pkp
- verifier SEAL and POS keys vkSEAL, vkpos
- hash of data D, h-D
- Merkle root of replica R, rt
- random challenge, c
- tuple of proofs, (IrSEAL, 7rPOS)

* OUTPUTS: bit b, equals 1 if proofs are valid
1) Set xi := (pkp, hD, rt)

2) Compute bi := SCIP.Verify(vkSEAL, 1 ,7SEAL)

3) Set Y2 := (rt, c)

4) Compute b2 := SCIP.Verify(vkpos, x2 , rpos)

5) Output bi A b 2

Filecoin PoSt protocol

Setup
* INPUTS:

- prover key pair (pkp, skp)
- prover POST key pair pkPOST
- some data D

* OUTPUTS: replica R, Merkle root rt of R, proof

7SEAL
1) Compute R, rt, 7rSEAL := PoRep.Setup(pkp,

skp, pkSEAL,)
2) Output R, rt, 7SEAL

Prove
* INPUTS:

- prover PoSt key pkPosT
- replica R
- random challenge c
- time parameter t

1)
2)

3)

OUTPUTS: a proof 7POST

Set lrPOST := I

Compute rt := MerkleCRH(I?)

For i = 0 ... t:

a) Set c' := CRH(7rPosTI|c||i)
b) Compute 7rpos := PoRep.Prove(pkpos, R, c')
c) Set 9 := (rt, c, i)
d) Set i := (7rPos,lrPOST)
e) Compute 7POST := SCIP.Prove(pkPOST,i, IV)

4) Output WPOST

Verify
S INPUTS:

2)

3)

4)

5)

- prover public key pkp
- verifier SEAL and POST keys vkSEAL, vkPOST
- hash of some data hD
- Merkle root of some replica rt
- random challenge c
- time parameter t
- tuple of proofs (7rSEAL, 7rPOST)

OUTPUTS: bit b, equals 1 if proofs are valid
Set 1j := (pkp, hD, rt)

Compute b1 := SCIP.Verify(vksEAL, Zi ,7SEAL)

Set x2 := (rt, c, t)

Compute b 2 := SCIP.Verify(vkPosT, x2 , 7rPOST)

Output b1 A b 2

Figure 6-2: Proof-of-Replication and Proof-of-Spacetime protocol sketches. Here CRH de-
notes a collision-resistant hash, x is the NP-statement to be proven, and z is the witness.

59

1)
2)

3)

4)

5)
6)

60

61

Chapter 7

Incentivizing File Storage

62

24-Q~

f o P L E MY THE NETWOKK

CD

In this chapter, we give an overview of Filecoin. The following work has been presented

in the Filecoin whitepaper [12] by Juan Benet and I in July 2017. Filecoin is a decentralized

storage network that is auditable, publicly verifiable and designed on incentives. Clients pay

a network of storage providers for data storage and retrieval and storage providers offer disk

space and bandwidth in exchange of payments. Storage providers receive their payments

only if the network can audit that their service was correctly provided. Filecoin does not

require a new blockchain and can be implemented as a smart contract on top of existing

blockchains. However, in Section 9.1, we show how we can create a useful Proof-of- Work

based on storage, which will require a new blockchain layer.

e The Filecoin protocol is a Decentralized Storage Network designed on a blockchain and

with a native protocol token (also called Filecoin). Clients spend tokens for storing

and retrieving data and storage providers earn tokens by storing and serving data.

e The Filecoin DSN handle storage and retrieval requests respectively via two verifiable

markets: the Storage Market and the Retrieval Market. The token is a market token

and can be used by clients and storage providers to participate to the markets. Clients

and storage providers set the prices for the services requested and offered and submit

their orders to the markets.

* The markets are operated by the Filecoin network which employs Proof-of-Spacetime

and Proof-of-Replication to guarantee that storage providers have correctly stored the

data they committed to store.

7.1 Blockchain-based DSN

We personify all the users that run the Filecoin software as one single abstract entity: The

Network. The Network acts as an intermediary that runs the Manage protocol; informally, at

every new block in the Filecoin blockchain, full nodes manage the available storage, validate

pledges, audit the storage proofs, and repair possible faults.

63

Ledger, L. Our protocol is applied on top of a ledger-based currency; for generality we refer

to this as the Ledger, L. At any given time t (referred to as epoch), all users have access to Lt,

the ledger at epoch t, which is a sequence of transactions. The ledger is append-only'. The

Filecoin DSN protocol can be implemented on any ledger that allows for the verification of

Filecoin's proofs; we show how we can construct a ledger based on useful work in Section 9.1.

7.2 Participants

Any user can participate as a Client, a Storage Miner, and/or a Retrieval Miner.

* Clients pay to store data and to retrieve data in the DSN, via Put and Get requests.

" Storage Miners provide data storage to the network. Storage Miners participate in

Filecoin by offering their disk space and serving Put requests. To become Storage

Miners, users must pledge their storage by depositing collateral proportional to it.

Storage Miners respond to Put requests by committing to store the client's data for

a specified time. Storage Miners generate Proofs-of-Spacetime and submit them to

the blockchain to prove to the Network that they are storing the data through time.

In case of invalid or missing proofs, Storage Miners are penalized and loose part of

their collateral. Storage Miners are also eligible to mine new blocks, and in doing so

they hence receive the mining reward for creating a block and transaction fees for the

transactions included in the block.

" Retrieval Miners provide data retrieval to the Network. Retrieval Miners participate

in Filecoin by serving data that users request via Get. Unlike Storage Miners, they

are not required to pledge, commit to store data, or provide proofs of storage. It is

natural for Storage Miners to also participate as Retrieval Miners. Retrieval Miners

can obtain pieces directly from clients, or from the Retrieval Market.

64

't < t' implies that Lt is a prefix of Lt

7.3 Markets

Demand and supply of storage meet at the two Filecoin Markets: Storage Market and

Retrieval Market. In brief, clients and miners set the prices for the services they request

or provide by submitting orders to the respective markets. The exchanges provide a way

for clients and miners to see matching offers and initiate deals. By running the Manage

protocol, the network guarantees that miners are rewarded and clients are charged if the

service requested has been successfully provided. The detailed Storage Market's protocol is

presented in Section 8.3 and the Retrieval Market's protocol in Section 8.4.

7.3.1 The Storage Market

The Storage Market is a verifiable market which allows clients (i.e. buyers) to request storage

for their data and Storage Miners (i.e. sellers) to offer their storage.

We design the Storage Market protocol accordingly to the following requirements:

* In-chain orderbook: It is important that: (1) Storage Miners orders are public, so

that the lowest price is always known to the network and clients can make informed

decision on their orders, (2) client orders must be always submitted to the orderbook,

even when they accept the lowest price, in this way the market can react to the new

offer. Hence, we require orders to be added in clear to the Filecoin blockchain in order

to be added to the orderbook.

e Participants committing their resources: We require both parties to commit to

their resources as a way to avoid disservice: to avoid Storage Miners not providing

the service and to avoid clients not having available funds. In order to participate to

the Storage Market, Storage Miners must pledge, depositing a collateral proportional

to their amount of storage in DSN (see Section 7.4.3 for more details). In this way,

the Network can penalize Storage Miners that do not provide proofs of storage for

the pieces they committed to store. Similarly, clients must deposit the funds specified

in the order, guaranteeing in this way commitment and availability of funds during

settlement.

65

* Self-organization to handle faults: Orders are only settled if Storage Miners have

repeatedly proved that they have stored the pieces for the duration of the agreed-upon

time period. The Network must be able to verify the existence and the correctness of

these proofs and act according to the rules outlined in the Repair portion of Subsection

7.4.4.

7.3.2 The Retrieval Market

The Retrieval Market allows clients to request retrieval of a specific piece and Retrieval

Miners to serve it. Unlike Storage Miners, Retrieval Miners are not required to store pieces

through time or generate proofs of storage. Any user in the network can become a Retrieval

Miner by serving pieces in exchange for Filecoin tokens. Retrieval Miners can obtain pieces

by receiving them directly from clients, by acquiring them from the Retrieval Market, or by

storing them from being a Storage Miner.

We design the Retrieval Market protocol accordingly to the following requirements:

" Off-chain orderbook: Clients must be able to find Retrieval Miners that are serving

the required pieces and directly exchange the pieces, after settling on the pricing. This

means that the orderbook cannot be run via the blockchain - since this would be the

bottleneck for fast retrieval requests - instead participant will have only partial view

of the OrderBook. Hence, we require both parties to gossip their orders.

" Retrieval without trusted parties: The impossibility results on fair exchange [51]

remind us that it is impossible for two parties to perform an exchange without trusted

parties. In the Storage Market, the blockchain network acts as a (decentralized) trusted

party that verifies the storage provided by the Storage Miners. In the Retrieval Mar-

ket, Retrieval Miners and clients exchange data without the network witnessing the

exchange of file. We go around this result by requiring the Retrieval Miner to split

their data in multiple parts and for each part sent to the client, they receive a payment.

In this way, if the client stops paying, or the miner stops sending data, either party

can halt the exchange. Note that for this to work, we must assume that there is always

66

one honest Retrieval Miner. The idea behind such gradual release protocols is that a

party will only have a minimal advantage if she decides to cheat.

o Payments channels: Clients are interested in retrieving the pieces as soon as they

submit their payments, Retrieval Miners are interested in only serving the pieces if

they are sure of receiving a payment. Validating payments via a public ledger can be

the bottleneck of a retrieval request, hence we must rely on efficient off-chain payments.

The Filecoin blockchain must support payment channels which enable rapid, optimistic

transactions and use the blockchain only in case of disputes. In this way, Retrieval

Miners and Clients can quickly send the small payments required by our protocol.

Future work includes the creation of a network of payment channels as previously seen

in [47, 55].

7.4 Protocol Overview

In this section, we give an overview of the Filecoin DSN by describing the operations per-

formed by the clients, the miners and the other nodes in the network. A detailed presentation

of the protocol is found in Section 8. A sketch of the Filecoin protocol, using nomenclature

defined later within this thesis, is shown in Figure 8-1 accompanied with an illustration in

Figure 7-1.

7.4.1 Client Cycle

Below, we give a brief overview of the client cycle. An in-depth explanation of the following

protocols is given in Section 8.3 and 8.4.

1. Put: Client stores data in Filecoin.

Clients can store their data by paying Storage Miners in Filecoin tokens. The Put

protocol is described in detail in Section 8.2.

A client initiates the Put protocol by submitting a bid order to the Storage Market

orderbook (by submitting their order to the blockchain). When a matching ask order

67

Order Matching

Storage

Market
(On Chain)

Filecoin
Blockchain

JY bid

r

j
1(odeal)M

F9deal challenge

Odeal)M, C response

(o de I M A pE
r

Orderbook 7111
Transactions Z Z

Allocation
Table

Retrieval
Market

(Off Chain)

I~I

Incremental
inucropayments

C
0bid (Odeal)MC

(Odeal)M

Orders gossiped
off-chain

Data sent Claim
in parts micropayments

Lock storage (...)M Signed by M

Transfer filecoin -0- Send

Miner Client p Piece of data Query

(9 Order

Figure 7-1: Illustration of the Filecoin Protocol, showing an overview of the Client-Miner
interactions. The Storage and Retrieval Markets shown above and below the blockchain, re-
spectively, with time advancing from the Order Matching phase on the left to the Settlement
phase on the right. Note that before micropayments can be made for retrieval, the client
must lock the funds for the microtransaction. Diagram by Dr. Evan Miyazono from [12].

68

yment

V

Settlement

ask

from miners is found, the client sends the piece to the miner. Both parties sign a deal

order and submit it to the Storage Market orderbook.

Clients should be able to decide the amount of physical replicas of their pieces either

by submitting multiple orders (or specifying a replication factor in the order). Higher

redundancy results in a higher tolerance of storage faults.

2. Get: Client retrieves data from Filecoin.

Clients can retrieve any data stored in the DSN by paying Retrieval Miners in Filecoin

tokens. The Get protocol is described in detail in Section 7.3.2.

A client initiates the Get protocol by submitting a bid order to the Retrieval Market

orderbook (by gossiping their order to the network). When a matching ask order from

miners is found, the client receives the piece from the miner. When received, both

parties sign a deal order and submit it to the blockchain to confirm that the exchange

succeeded.

7.4.2 Mining Cycle (for Storage Miners)

Below, we give an informal overview of the mining cycle.

1. Pledge: Storage Miners pledge to provide storage to the Network.

Storage Miners pledge their storage to the network by depositing collateral via a pledge

transaction in the blockchain, via Manage.PledgeSector. The collateral is deposited for

the time intended to provide the service, and it is returned if the miner generates

proofs of storage for the data they commit to store. If some proofs of storage fail, a

proportional amount of collateral is lost.

Once the pledge transaction appears in the blockchain, miners can offer their storage

in the Storage Market: they set their price and add an ask order to the market's

orderbook.

2. Receive Orders: Storage Miners get storage requests from the Storage Market.

69

Once the pledge transaction appears in the blockchain (hence in the AllocTable), miners

can offer their storage in the Storage Market: they set their price and add an ask order

to the market's orderbook via Put.AddOrders.

Check if their orders are matched with a corresponding bid order from a client, via

Put.MatchOrders.

Once orders are matched, clients send their data to the Storage Miners. When receiving

the piece, miners run Put.ReceivePiece. When the data is received, both the miner and

the client sign a deal order and submit it to the blockchain.

3. Seal: Storage Miners prepare the pieces for future proofs.

Storage Miners' storage is divided in sectors, each sector contains pieces assigned to the

miner. The Network keeps track of each Storage Miners' sector via the allocation table.

When a Storage Miner sector is filled, the sector is sealed. Sealing is a slow, sequential

operation that transforms the data in a sector into a replica, a unique physical copy

of the data that is associated to the public key of the Storage Miner. Sealing is a

necessary operation during the Proof-of-Replication as described in Section 6.4.

4. Prove: Storage Miners prove they are storing the committed pieces.

When Storage Miners are assigned data, they must repeatedly generate proofs of repli-

cation to guarantee they are storing the data (for more details, see Section 6). Proofs

are posted on the blockchain and the Network verifies them.

7.4.3 Mining Cycle (for Retrieval Miners)

Below, we give an informal overview of the mining cycle for Retrieval Miners.

1. Receive Orders: Retrieval Miners get data requests from the Retrieval Market

Retrieval Miners announce their pieces by gossiping their ask orders to the network:

they set their price and add an ask order to the market's orderbook.

Then, Retrieval Miners check if their orders are matched with a corresponding bid

order from a client.

70

2. Send: Retrieval Miners send pieces to the client.

Once orders are matched, Retrieval Miners send the piece to the client (see Section 7.3.2

for details). When the piece is received, both the miner and the client sign a deal order

and submit it to the blockchain.

7.4.4 Network Cycle

We give an informal overview of the operations run by the network.

1. Assign: The Network assigns clients' pieces to Storage Miners' sectors.

Clients initiate the Put protocol by submitting a bid order in the Storage Market2 .

When ask and bid orders match, the involved parties jointly commit to the exchange

and submit a deal order in the market. At this point, the Network assigns the data to

the miner and makes a note of it in the allocation table.

2. Repair: The Network finds faults and attempt to repair them.

All the storage allocations are public to every participant in the network. At every

block, the Network checks if the required proofs for each assignment are present, checks

that they are valid, and acts accordingly:

" if any proof is missing or invalid, the network penalizes the Storage Miners by

taking part of their collateral,

" if a large amount of proofs are missing or invalid (defined by a system parameter

Afault), the network considers the Storage Miner faulty, settles the order as failed

and reintroduces a new order for the same piece into the the market,

" if every Storage Miner storing this piece is faulty, then the piece is lost and the

client gets refunded.

2 Storage orders are submitted via the blockchain, see Section 8.3.

71

72

73

Chapter 8

Filecoin Protocol

~fr4~

74

/Z

CD

C

In this chapter, the final Filecoin protocol is presented in details, describing the data

structures, the methods of the Get, Put and Manage protocol, and the protocols for the

Storage and Retrieval Markets. The overall Filecoin Protocol is presented in Figure 8-1.

8.1 Data Structures

The Filecoin DSN data structures are described in this section and presented in details in

Figure 8-2.

8.1.1 Pieces

A piece is some part of data that a client is storing in the DSN. For example, data can

be deliberately divided into many pieces and each piece can be stored by a different set of

Storage Miners.

8.1.2 Sectors

A sector is some disk space that a Storage Miner provides to the network. Miners store

pieces from clients in their sectors and earn tokens for their services. In order to store pieces,

Storage Miners must pledge their sectors to the network.

8.1.3 Allocation Table

The AllocTable is a data structure that keeps track of pieces and their assigned sectors. The

AllocTable is updated at every block in the ledger and its Merkle root is stored in the latest

block. Every node in the network will validate the updates to the table when receiving a

new block. In practice, the table is used to keep the state of the DSN, allowing for quick

look-ups during proof verification. For more details, see Figure 8-2.

8.1.4 Pledge

A pledge is a commitment to offer storage (specifically a sector) to the network. Storage

Miners must submit their pledge to the ledger in order to start accepting orders in the Storage

75

Filecoin Protocol

Network

at each epoch t in the ledger L:

1. for each new block:
(a) check if the block is in the valid format
(b) check if all transactions are valid
(c) check if all orders are valid

(d) check if all proofs are valid
(e) check if all pledges are valid
(f) discard block, if any of the above fails

2. for each new order 0 introduced in t
(a) add 0 to the Storage Market's orderbook.
(b) if 0 is a bid: lock 0.funds
(c) if 0 is an ask: lock O.space
(d) if 0 is a deal: run Put.AssignOrders

3. for each 0 in the Storage Market's orderbook:
(a) check if 0 has expired (or canceled):

" remove 0 from the orderbook

" return unspent O.funds
" free O.space from AllocTable

(b) if 0 is a deal, check if the expected proofs exist
by running Manage. RepairOrders:
" if one missing, penalize the M's pledge

collateral

* if proofs are missing for more than Afault
epochs, cancel order and re-introduce it to
the market

" if the piece cannot be retrieved and recon-
structed from the network, cancel order
and re-fund the client

Client

at any time:

1. submit new storage orders via Put.AddOrders
(a) find matching orders via Put.MatchOrders
(b) send file to the matched miner M

2. submit new retrieval orders via Get.AddOrders
(a) find matching orders via Get.MatchOrders
(b) create a payment channel with M

on receiving Odeal from Storage Miners M

1. sign Odeal
2. submit it to the blockchain via Put.AddOrders

on receiving (pi) from Retrieval Miners M:

1. verify that
2. send a micropayment to M

Storage Miner

at any time:

1. renew expired pledges via Manage.PledgeSector
2. pledge new storage via Manage.PledgeSector
3. submit a new ask order via Put.AddOrder

at each epoch t:

1. for each 0 ask in the orderbook:

(a) find matched orders via Put.MatchOrders
(b) start a new deal by contacting the matching

client

2. for each sector pledged:

(a) generate proof of storage via Manage.ProveSector
(b) if time to post the proof (every Aproof epochs),

submit it to the blockchain

on receiving piece p from client C:

1. check if the piece is of the size specified in the order
Obid

2. create Odeal and sign it and send it to C
3. store the piece in a sector
4. if the sector is full, run Manage.SealSector

Retrieval Miner

at any time:

1. gossip ask orders to the network
2. listen to bid orders from the network

on retrieval request from C:

1. start payment channel with C
2. split data in multiple parts
3. only send parts if payments are received

Figure 8-1: Diagram of the Filecoin Protocol.

76

0 pow"991 MIM""WINMIN ling MIMM111101911"'"MMOOF

Market. A pledge consists of the size of the pledged sector and the collateral deposited by

the Storage Miner (see Figure 8-2 for more details).

8.1.5 Orders and Orderbooks

An order is a statement of intent to request or offer a service. Clients submit bid orders

to the markets to request a service (resp. Storage Market for storing data and Retrieval

Market for retrieving data) and Miners submit ask orders to offer a service. The order data

structures are shown in Figure 8-2.

Each market has an Order Book. The Storage Market's Order Book is stored in-chain

and everyone has a shared view on all the orders (see "Exchange" in Section 4.5.1). The

Retrieval Market's Order Book is not stored in-chain. Every node has a partial (and weakly

consistent) view of the orders in the network.

77

Storage Market Orders

bid order
Obid:= (size, funds[, price, time, coil, coding])c,

" size, the size of the piece to be stored

" funds, the total amount that client Ci is depositing

" time, the maximum epoch time for which the file
should be stored"

* price, the spacetime price in Filecoinb

" coil, the collateral specific to this piece that the miner
is required to deposit

* coding, the erasure coding scheme for this piece

ask order
Oask: (space, price)M,

" space, amount of space Storage Miner Mj is providing
in the order

" price, the spacetime price in Filecoin

deal order
Odeal: (ask, bid, ts, hash)CiAA

" ask, a cryptographic reference to Oask from Ci

" order, a cryptographic reference to Obid from Mi

" ts, timestamp epoch in which the order has been
signed by M1

" hash cryptographic hash of the piece that M, will
store

aIf not specified, the piece will be stored until
expiration of funds.

b~f not specified, when a Storage Miner is
faulty, the network can re-introduce the order at
the current best price.

Retrieval Market Orders

bid order
Obid: (piece, price)c-

" piece, the index of the piece requested'

* price, the price at which Ci is paying for one retrieval

ask order
0 ask: (piece, price)M,

" piece, the index of the piece requested
" price, the price at which Mj is serving the piece for

deal order
Odeal: (ask, order)c,,M1

" ask, a cryptographic reference to Oask from Ci

" order, a cryptographic reference to 0 ask from Ci

aOnly pieces stored in Filecoin can be re-
quested

DSN Data Structures

Pledge
pledge := (size, coll)M,

" size, the size of the sector being pledged.

" coil, the collateral specific to this pledge that Mi
deposits.

Orderbook
OrderBook: (01_0")

O zY, currently valid deal, ask, bid orders.

Allocation
allocTable: {MI1 -+ (allocEntry..allocEntry),M 2 -.}

allocEntry: (sid, orders, last, missing)

" sid, sector id

" 0', currently valid deal, ask, bid orders.

" orders, set of orders {
0

deal-odeall

* last, last proof of storage in the ledger L
" missing, counter for missing proofs

Figure 8-2: Data structures in the Filecoin DSN

78

8.2 DSN Protocol Specifications

In this section, we introduce the three protocols (Put, Get and Manage) and their internal

operations. In Figure 8-3 and 8-4, we show a possible implementation in pseudocode.

8.2.1 Put Protocol

The Put protocol consists of four algorithms: AddOrders, MatchOrders, SendPiece, ReceivePiece.

" AddOrders: Both Clients and Storage Miners run this operation to add orders to the

Storage Market. This submits input orders to the ledger via a special transaction and

on success, it adds the order to the Order Book.

" MatchOrders: Both Clients and Storage Miners run this operation to find matching

orders, by querying the Order Book to find a matching order to an input order.

" SendPiece: Clients run this operation to send a piece from a bid order to the Storage

Miner of the matching ask order. This sends the piece and the reference to a specific

bid and ask orders and outputs a signed deal order from the miner.

" ReceivePiece: Storage Miners run this operation when receiving a piece from a Client.

On receiving a piece, a bid and an ask order, this checks the validity of the orders and

of the piece. On success, it signs a deal order which includes a reference to the bid and

ask orders and the hash of the received piece.

8.2.2 Get Protocol

Similarly to the Put protocol, the Get protocol consists of four algorithms: AddOrders,

MatchOrders, SendPiece, ReceivePiece.

* AddOrders: Both Clients and Retrieval Miners run this operation to add orders to the

Retrieval Market. This gossips the input orders to the network.

* MatchOrders: Both Clients and Retrieval Miners run this operation to find matching

orders, by querying the Order Book to find a matching order to an input order.

79

* ReceivePiece: Clients run this operation to request a piece from a Retrieval Miner.

First, it creates a deal order for the retrieval and sets up a micropayment channel.

Then, it sends small micropayments to the miner, receives small parts of the piece,

validates the piece received and continues until the entire piece has been received.

" SendPiece: Retrieval Miners run this operation to send pieces to Clients. On receiving

retrieval requests, this operation sets up a micropayment channel and sends a small

part of the piece for each micropayment it receives, until the interacting Client stops

sending payments.

8.2.3 Manage Protocol

o PledgeSector: Storage Miners run this operation to pledge a sector. This creates a

special transaction announcing the amount of storage the miner is introducing and

deposits a collateral proportional to the offered storage. On success, the new sector is

added to the shared allocTable.

" SealSector: Storage Miners run this operation to seal a sector. This runs the PoSt.Setup

that has a subroutine the slow Seal function. This outputs a special encoding, the

replica, of the sector, the Merkle root hash of the replica and a proof that the encoding

and its hash have been computer correctly.

" ProveSector: Storage Miners run this operation to prove they are storing their assigned

data. This runs a PoSt.Prove on the replica and outputs a proof of storage.

" AssignOrders: The nodes in the network run this operation to register new deal orders

to the allocation table. Given deal orders, this validates them, updates the allocTable

and outputs it.

" RepairOrders: The nodes in the network run this operation to verify that all the proofs

on the blockchain are valid and that no order has been missing proofs. For each entry

in the allocTable, this verifies if proofs exists and if they are valid; if they are not, they

are counted as missing and their assigned Storage Providers are penalized. If more

than Afault faults exist, the order is canceled and re-introduced in the order book.

80

Put Protocol

Market

AddOrders
* INPUTS: list of orders 0 1.. 0 n

" OUTPUTS: bit b, equals 1 if successful
1) Set tXorder := (01, ., 0')
2) Submit tXorder to C
3) Wait for tXorder to be included in L
4) Output 1 on success, 0 otherwise

MatchOrders
* INPUTS:

- the current Storage Market OrderBook
- query order to match Oq

* OUTPUTS: matching orders 0 1..0 n

1) Match each O in OrderBook such that:
a) If CY is an ask order:

i) Check if 0' is bid order
ii) Check Oi.price > 0q.price

iii) Check O.size < 0.space
b) If 0q is a bid order:

i) Check if 0' is ask order
ii) Check 02.price > 0q.price

iii) Check O.space > 0.size
2) Output matched orders 01...

Exchange

SendPiece
* INPUTS:

- an ask order 0 ask

1)
2)

3)
4)
5)

- a bid order Obid
- apiece p

OUTPUTS: a deal order Odeal signed by M2
Get identity of Mi from Oask signature
Send (Oask,Obid,P) to M
Receive Odeal signed by M2
Check if Odeal is valid according to Definition 8.3.1
Output Odeal

ReceivePiece
* INPUTS:

- signing key for Mj.
- current orderbook OrderBook
- ask order 0 ask
- bid order Obid
- piece p

* OUTPUTS: deal order Odeal signed by Ci and Mj
1) Check if Obid is valid:

a) Check if Obid is in OrderBook
b) Check if Obid is not referenced by other active Odeal
c) Check if Obid.size is equal to Ip I
d) Check if 0 is signed by Mi

2) Store p locally
3) Set Odeal:= (Oask, Odeal, W(P))M.
4) Get identity of C, from Obid
5) Send 0

deal to CJ
6) Output Odeal

Get Protocol

Market

AddOrders
* INPUTS: list of orders 01..01
* OUTPUTS: none

1) Gossip 01-0n to the network

MatchOrders
* INPUTS:

- the current Retrieval Market OrderBook
- query order to match 0 q

* OUTPUTS: matching orders O1..0'
1) Match each 0Y in OrderBook such that:

a) Check Oi.piece is equal to 0q.piece
b) If 0 q is an ask order:

i) Check if 0' is bid order
ii) Check 02 .price > 0.price

c) If 0' is a bid order:
i) Check if O is ask order

ii) Check O.price > 0q.price
2) Output matched orders 01...0'

Exchange

SendPiece
* INPUTS:

- an ask order 0 ask
- a bid order Obid
- apiece p

* OUTPUTS: a deal order Odeal signed by Ci
1) Create Odeal:

a) Set Odeal.ask := ,ask

b) Set Odeal.bid := Odeal
2) Get identity of Ci from Obid signature
3) Setup a micropayment channel with Ci
4) For each block of data pj of p:

a) Set 7rj to be a merkle path from 1-(p) to p,
b) Send (OdeaPj, 7rw) to C2
c) Receive (Odeat, j)ci

5) Output Odeal

ReceivePiece
* INPUTS:

- a client's key C,
- an ask order Oask
- a bid order Obid
- merkle tree hash of p in the orders hp

" OUTPUTS: a piece p
1) Create Odeal:

a) Set Odeal.ask := ask
b) Set Odeal.bid := Obid

2) Get identity of M 2 from
0 ,,k signature

3) Set up a micropayment channel with Mj (or re-using
an existing one)

4) When receiving (Odeal, Pj, 7rj) from M 2 :
a) Check if Odeal is valid and matches Oask and Obid
b) Check if 7rj is a valid merkle-path with root hash

hp
c) Send (Odeal, j)ci

5) Output p

Figure 8-3: Description of the Put and Get Protocols in the Filecoin DSN

81

Manage Protocol

Network

AssignOrders
* INPUTS:

- deal orders 0 'a. 0
.deal

- allocation table allocTable
* OUTPUTS: updated allocation table allocTable'

1) Copy allocTable in allocTable'
2) For each order Oieal:

a) Check if 0'eaI is valid according to Definition 8.3.1
b) Get Mj from 0 ',a, signature
c) Add details from Oieal to allocTable'

3) Output allocTable'

RepairOrders
* INPUTS:

- current time t
- current ledger L
- table of storage allocations allocTable

* OUTPUTS: orders to repair 01.. 0 4 , updated alloca-
tion table allocTable

1) For each allocEntry in allocTable:
a) If t < allocEntry.last + Aproof: skip
b) Update aI ocEntry.last= t
c) Check if -r is in tLtprof:t and PoSt.Verify(ir)
d) On success: update allocEntry.missing= 0
e) On failure:

i) update allocEntry.missing++
ii) penalize collateral from Mi's pledge

f) If allocEntry. missing > Afat then set all the orders
from the current sector as failed orders

2) Output failed orders 0' .. 0a and allocTable'.

Miner

PledgeSector
0 INPUTS:

1)
2)
3)
4)
5)
6)

- current allocation table allocTable
- pledge request pledge
OUTPUTS: allocTable'
Copy allocTable to allocTable'
Set txpledge := (pledge)
Submit txpledge to L
Wait for txpledge to be included in C
Add new sector of size pledge.size in allocTable'
Output allocTable'

SealSector
* INPUTS:

- miner public/private key pair M
- sector index j
- allocation table allocTable

* OUTPUTS: a proof WSEAL, a root hash rt

1) Find all the pieces p1..pn in sector S in the pieceTable
2) Set D :== P1P2I..-IP
3) Compute (7Z, rt, 1rSEAL) := PoST.Setup(pp, pkM, skM D)
4) Output 7SEAL, rt

ProveSector
" INPUTS:

- miner public/private key pair M
- sector index j
- challenge c

* OUTPUTS: a proof 7rpos

1) Find R for sector j
2) Compute irpoS := PoST.Prove(pp, R, c)
3) Output 7rPos

Figure 8-4: Description of the Manage Protocol in the Filecoin DSN

82

8.3 Storage Market Protocol

In brief, the Storage Market protocol is divided in two phases: order matching and settlement:

" Order Matching: Clients and Storage Miners submit their orders to the orderbook by

submitting a transaction to the blockchain (step 1). When orders are matched, the

client sends the piece to the Storage Miner and both parties sign a deal order and

submit it to the orderbook (step 2).

" Settlement: Storage Miners seal their sectors (step 3a), generate proofs of storage for

the sector containing the piece and submit them to the blockchain regularly (step 3b);

meanwhile, the rest of the network must verify the proofs generated by the miners and

repair possible faults (step 3c).

The Storage Market protocol is explained in detail in Figure 8-5.

8.3.1 Note on Valid Orders

Definition 8.3.1. Validity of bid, ask, deal orders is defined as follows.

(Valid bid order): A bid order from client Ci, Obid:= (size, funds[, price, time, coil, coding])ci

is valid if:

* C has at least the amount of funds available in their account.

" time is not set in the past

* The order must guarantee at least a minimum amount' of epochs of storage.

(Valid ask order): An ask order from Storage Miner Mj, Oask:= (space, price)M, is valid if:

" M has pledged to be a miner and the pledge will not expire before time epochs.

" space must be less than Mi's available storage: Mi pledged storage minus the

storage committed in the orderbook (in ask and deal orders).

(Valid deal order): A deal order Odeai:= (ask, bid, ts)c2 ,m, is valid if

'This will be a parameter of the system.

83

Storage Market Protocol

Order Matching

1. Storage Miner Mi and Client Ci add orders to the OrderBook:

(a) Ai creates Oask1 , oask2 , .. and C3 creates Obid 1 , Obid 2,

(b) Orders are submitted to the blockchain via Put.addOrders(Ol, 02, **)

(c) On success, the orders are added to the OrderBook, the funds from C, are

deposited and the space from Mi is reserved.

2. When orders match, involved parties jointly create Odeal and add it to the

OrderBook:

(a) Mi and C, independently query the OrderBook via Put.matchOrders(0).

(b) If Mi and C, have matching orders :

* C, sends the piece p to Mi via Put.SendPieces(Obid, Oask, p)

* Mi receives the piece p from C, via Put.ReceivePieces(Obid, 0,ask, P).

* Mi signs Odeal and sends it to C,
(c) C, signs Odeal and adds it to the OrderBook via Put.addOrders(Odeal)

Settlement

3. The Network checks if the Storage Miners are correctly storing the pieces:

(a) When a Storage Miner fills a sector, they seal it (they create a unique replica)

via Manage.SealSector and submit the proof 7rSEAL and rt to the blockchain.

(b) Storage Miners generate new proofs at every epoch and add them to the Filecoin

blockchain every Aproof epochs via Manage.ProveSectors.

(c) The Network runs Manage.RepairOrders at every epoch. If proofs are missing

or invalid, the network tries to repair in the following ways:

" if any proofs are missing or invalid, it penalizes the Storage Miners by
taking part of their collateral,

" if a large amount of proofs are missing or invalid for more than Afault
epochs, it considers the Storage Miner faulty, settles the order as failed

and reintroduces a new order for the same piece into the the market,

" if every Storage Miner storing this piece is faulty, then the piece is lost and
the client gets refunded.

4. When the time of the order is expired or funds run out, if the service was correctly
provided, the Network processes the payments, and removes the orders.

Figure 8-5: Detailed Storage Market protocol

84

" ask references an order 0 ask such that: it is in the Storage Market OrderBook, no

other deal orders in the Storage Market OrderBook mention it, it is signed by Ci.

" bid references an order Obid such that: it is in the Storage Market OrderBook, no

other deal orders in the Storage Market OrderBook mention it, it is signed by .M3 .

* ts is not set in the future or too far in the past.

Remark. If a malicious client receives a signed deal from a Storage Miner, but never adds it

to the orderbook, then the Storage Miner cannot re-use the storage committed in the deal.

The field ts prevents this attack because, after ts, the order becomes invalid and cannot be

submitted in the orderbook.

8.4 Retrieval Market Protocol

In brief, the Retrieval Market protocol is divided in two phases: order matching and settle-

ment:

" Order Matching: Clients and Retrieval Miners submit their orders to the orderbook by

gossiping their orders (step 1). When orders are matched, the client and the Retrieval

Miners establish a micropayment channel (step 2).

" Settlement: Retrieval Miners send a small parts of the piece to the client and for each

piece the client sends to the miner a signed receipt (step 3). The Retrieval Miner

presents the delivery receipts to the blockchain to get their rewards (step 4).

The protocol is explained in details in Figure 8-6.

85

Retrieval Market Protocol

Order Matching:

1. Retrieval Miners and Clients add orders to the Get.OrderBook:

(a) Retrieval Miners Mi creates ask orders (OaskI, Oask2, ..) and Client C creates
bid orders (Obidl, Obid

(b) Both Mi and C3 gossip their orders in the Filecoin network via Get.addOrders

(c) Since there is no commonly shared orderbook, when users receive orders, they

add them to their own orderbook's view. Differently from the Storage Market,
these orders are not binding and no resource is committed (e.g. clients don't

do any deposit).

2. When orders match, involved parties jointly create Odceal and add it to the

Get.OrderBook:

(a) Retrieval Miner Mi and Client C3 independently run Get.matchOrders that

queries their own current Get.OrderBook view.

(b) Both Mi and C3 sign Odeal and add it to their Get.OrderBook via Get.addOrders

(as described before)

(c) Ci and Mj setup a micropayment channel for Odeal

Settlement:

3. Both parties check whether the piece has been delivered:

(a) Mi sends the piece p in parts via Get.SendPieces

(b) C3 receives the p in parts and for each part, C3 acknowledges delivery by sending
a micropayment via Get.ReceivePiece

4. When the p has been received by C,, Mj can present the micropayments to the
network and retrieve the payment, both parties remove their orders from the order-
books.

Figure 8-6: Detailed Retrieval Market protocol

86

8.5 Guarantees

The following is a brief analysis on how the Filecoin DSN achieves integrity, retrievability,

public verifiability and incentive-compatibility.

" Achieving Integrity: Pieces are named after their cryptographic hash. After a Put

request, clients only need to store this hash to retrieve the data via Get and to verify

the integrity of the content received.

" Achieving Retrievability: In a Put request, clients specify the replication factor and the

type of erasure coding desired, specifying in this way the storage to be (f, m)-tolerant.

The assumption is that given m Storage Miners storing the data, a maximum of f
faults are tolerated. By storing data in more than one Storage Miner, a client can

increase the chances of recovery, in case Storage Miners go offline or disappear.

" Achieving Public Verifiability and Auditability: Storage Miners are required to submit

their proofs of storage (7TSEAL, 7rPOST) to the blockchain. Any user in the network can

verify the validity of these proofs, without having access to the outsourced data. Since

the proofs are stored on the blockchain, they are a trace of operation that can be

audited at any time.

" Achieving Incentive Compatibility: Informally, miners are rewarded for the storage

they are providing. When miners commit to store some data, then they are required

to generate proofs. Miners that skip proofs are penalized (by losing part of their

collateral) and not rewarded for their storage. For the purpose of this thesis, we

require a game theoretical analysis to be future work.

" Achieving Confidentiality: Clients that desire for their data to be stored privately,

must encrypt their data before submitting them to the network.

87

88

89

Chapter 9

Future Work

FUTURK

90

The work presented in this thesis is the first milestone in a longer research path. It opens

new directions of research in Fair-Exchange, Proofs-of-Storage and more broadly Decentral-

ized Storage Networks. It is introductory and missing of implementation, security proofs and

game theoretical analysis, all of which remains as future work. Nonetheless, it presents the

elementary components for building an incentivized network for file storage.

In this chapter, we present two intuitions for future work: a useful Proof-of-Work pro-

tocol and the integration of smart contracts in Filecoin. The remaining of this section will

summarize open problems and future directions.

9.1 Consensus Based on Useful Proof-of-Work

We propose a useful work consensus protocol, where the probability that the network elects a

miner to create a new block (we refer to this as the voting power of the miner) is proportional

to their proportion of active storage in relation to the active storage in the rest of the network.

The intuition is that miners offer storage and re-use the computation for proving that data

is being stored to participate in the consensus.

9.1.1 Problems with existing Proof-of-Work

Securing the blockchain is of fundamental importance. However the Proof-of-Work based

consensus protocol that provides these security guarantees is often based on solving hard

puzzles that do not have reusable solutions or require a substantial amount wasteful com-

putation to find. We propose a new direction of work where wasteful and not reusable

Proof-of-Work is repleaced with a useful work consensus based on storing users' data.

Non-reusable Work

Most blockchains require miners to solve a hard computational puzzle, such as inverting a

hash function. Often, the solutions to these puzzles are useless and do not have any inherent

value beyond securing the network. How might we re-purpose this expensive computational

work for something useful?

91

There have been several attempts to re-use mining power for useful computation. Some

efforts require miners to perform a special computation alongside the standard Proof-of-

Work. Other efforts replace Proof-of- Work with useful problems that are still hard to solve.

For example, Primecoin [39] re-uses miners' computational power to find new prime numbers,

Ethereum requires miners to execute small programs alongside with Proof-of- Work, and

Permacoin [48] offers archival services by requiring miners to invert a hash function while

proving that some data is being archived. Although most of these attempts do perform

useful work, the amount of wasteful work is still a prevalent factor in these computations.

Wasteful Work

Solving hard puzzles can be really expensive in terms of cost of machinery and energy con-

sumed, especially if these puzzles solely rely on computational power. When the mining

algorithm is embarrassingly parallel, then the prevalent factor to solve the puzzle is compu-

tational power. Can we reduce the amount of wasteful work?

Ideally, the majority of a network's resources should be spent on useful work. Some

efforts require miners to use more energy-efficient solutions. For example, Spacemint [53]

requires miners to dedicate disk space rather than computation; while more energy efficient,

theses disks are still "wasted", since they are filled with random data. Other efforts replace

hard to solve puzzles with a traditional byzantine agreement based on Proof-of-Stake, where

stakeholders vote on the next block is proportional to their share of currency in the system.

9.1.2 Modeling Mining Power

Power Fault Tolerance. In our technical report [13], we present Power Fault Tolerance,

an abstraction that re-frames byzantine faults in terms of participants' influence over the

outcome of the protocol. Every participant controls some power of which n is the total power

in the network, and f is the fraction of power controlled by faulty or adversarial participants.

Power in Filecoin. In Filecoin, the power p' of miner Mi at time t is the sum of the Mi's

storage assignments. The influence I! of Mi is the fraction of Mi's power over the total

92

power in the network.

In Filecoin, power has the following properties:

" Public: The total amount of storage currently in use in the network is public. By

reading the blockchain, anyone can calculate the storage assignments of each miner -

hence anyone can calculate the power of each miner and the total amount of power at

any point in time.

" Publicly Verifiable: For each storage assignment, miners are required to generate

Proofs-of-Spacetime, proving that the service is being provided. By reading the blockchain,

anyone can verify if the power claimed by a miner is correct.

" Variable: At any point in time, miners can add new storage in the network by pledging

with a new sector and filling the sector. In this way, miners can change their amount

of power they have through time.

9.1.3 Accounting for Power with Proof-of-Spacetime

In order to account for power in Filecoin, we can user our Proofs-of-Spacetime. Every Aproof

blocks1 , miners are required to submit Proofs-of-Spacetime to the network, which are only

successfully added to the blockchain if the majority of power in the network considers them

valid. At every block, every full node updates the AllocTable, adding new storage assign-

ments, removing expiring ones and marking missing proofs.

The power of a miner Mi can be calculated and verified by summing the entries in the

AllocTable, which can be done in two ways:

e Full Node Verification: If a node has the full blockchain log, it runs the NetworkProtocol

from the genesis block to the current block and reads the AllocTable for miner Mi. This

process verifies every Proof-of-Spacetime for the storage currently assigned to Mi.

1 Aproof is a system parameter.

93

* Simple Storage Verification: Assume a light client has access to a trusted source

that broadcasts the latest block. A light client can request from nodes in the network:

(1) the current AllocTable entry for miner Mi, (2) a Merkle path that proves that the

entry was included in the state tree of the last block, (3) the headers from the genesis

block until the current block. In this way, the light client can delegate the verification

of the Proof-of-Spacetime to the network.

The security of the power calculation comes from the security of Proof-of-Spacetime. In this

setting, PoSt guarantees that the miner cannot lie about the amount of assigned storage they

have. Indeed, they cannot claim to store more than the data they are storing, since this would

require spending time fetching and running the slow PoSt.Setup, and they cannot generate

proofs faster by parallelizing the computation, since PoSt.Prove is a sequential computation.

9.1.4 Using Power to Achieve Consensus

We foresee multiple strategies for implementing the Filecoin consensus by extending exist-

ing (and future) Proof-of-Stake consensus protocols, where stake is replaced with assigned

storage. Our strategy is to design a protocol such that the influence a user has over a block

is proportional to each miner's assigned storage.

94

9.2 File Contracts and Bridges

Future work includes the support of File Contracts and Bridges. The incentivized DSNs

proposed provides two basic primitives to the end users: Get and Put, respectively for sub-

mitting orders storing and retrieving data. These primitives are the minimum necessary to

build more complex storage services which can be programmed via smart contracts. This

would enable users to write new fine-grained storage/retrieval operations that we classify as

File Contracts. More generically, Smart Contracts would enable users to write stateful pro-

grams that can spend tokens, request storage/retrieval of data in the markets and validate

storage proofs.

9.2.1 File Contracts

Users can program the conditions for which they are offering or providing storage services.

There are several examples worth mentioning: (1) contracting miners: clients can specify

in advance the miners offering the service without participating in the market; (2) payment

strategies: clients can design different reward strategies for the miners, for example a contract

can pay the miner increasignly higher through time, another contract can set the price of

storage informed by a trusted oracle; (3) ticketing services: a contract could allow a miner

to deposit tokens and to pay for storage/retrieval on behalf of their users; (4) more complex

operations, e.g. clients can create contracts that allow for data update.

9.2.2 Bridges

Future work should include a Bridge system to bring access to our system from other

blockchain-based services and viceversa, in order to bring other blockchains' functionality

in our system. Other blockchain systems such as Bitcoin [50], Zcash [60] and in particular

Ethereum [19] and Tezos, allow developers to write smart contracts. However, these plat-

forms provide very little storage capability and at a very high cost. Bridges provide a way to

bring storage and retrieval support to these platforms. Future work could to provide bridges

to connect other blockchain services with our DSN proposal. For example, integration with

Zcash would allow support for sending requests for storing data in privacy.

95

9.3 Improvements and New Directions

Here we present a list of open problems and future work:

* Practical implementation of Filecoin: Implementing Filecoin is a research effort which

includes implementation, testing, optimization and fine tuning of the protocol param-

eters. The most complex challenge that we foresee is the realization of the novel

Proofs-of-Storage in the SNARK setting. This work also includes the specification of

the Filecoin state tree and optimization on the structure of the allocTable.

* Better Proofs of Storage: Our novel proofs have very inefficient Seal and Prove steps.

Are there more efficient, transparent and publicly verifiable Proof-of-Storage?

" Faster retrieval: The current design of the Retrieval Market requires multiple inter-

actions between the client and the Retrieval Miner, creating an inefficient retrieval

mechanism in comparison with cloud services. Are there ways to remove multiple

interactions?

* Avoid front-running: The current design of the Storage Market requires its participants

to submit their orders. The miners of the underlining blockchain could act maliciously

and only include the bid and ask orders that work in their interests. There are several

solutions, in particular [22], that can be taken into consideration to overcome front-

running.

More broadly, decentralized infrastructures will require work that does not just reside in

the field of computer science. For example, work is required to improve the legal framework

for trading utility tokens such as Filecoin, to find ways to fill DMCA for data stored in a

DSN and more broadly, economic incentives for decentralized cloud solutions.

96

Chapter 10

Conclusion

In this thesis, I have covered the necessary background and discussed the building blocks for

designing decentralized infrastructures, in particular for the purpose of File Storage. This

work expanded on the work presented in [12, 13, 141.

In the first part of the thesis, I reviewed current work on protocol tokens; I presented

the notion of Verifiable Markets to model markets where anyone can participate in selling

their services, as long as they are verifiable. Then, I introduced the notion of a Decentral-

ized Storage Network to model a network of independent storage providers offering storage

services. In the second part of the thesis, I have combined our work on Proofs-of-Storage

and Verifiable Markets to construct an incentivized DSN: Filecoin. In this system, providers

must be able to prove they have been storing data by generating Proofs-of-Storage and post

them on the blockchain - the exchange of payment for the storage service is enforced by the

blockchain network. Finally, I have presented directions of future work. Although imple-

mentation is left to future work, in this thesis I have shown, based on my original previous

contribution [12], a practical construction for a decentralized infrastructure for file storage.

97

98

Bibliography

[11 Muneeb Ali, Jude C Nelson, Ryan Shea, and Michael J Freedman. Blockstack: A global
naming and storage system secured by blockchains.

[2] Hunt Allcott and Matthew Gentzkow. Social media and fake news in the 2016 election.
Technical report, National Bureau of Economic Research, 2017.

[31 Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-peer
content distribution technologies. ACM computing surveys (CSUR), 36(4):335-371,
2004.

[41 Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek.
Secure multiparty computations on bitcoin. In Security and Privacy (SP), 2014 IEEE
Symposium on, pages 443-458. IEEE, 2014.

[51 Nadarajah Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for
fair exchange. In Proceedings of the 4th ACM conference on Computer and communi-
cations security, pages 7-17. ACM, 1997.

[61 Nadarajah Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of
digital signatures. IEEE Journal on Selected Areas in communications, 18(4):593-610,
2000.

[7] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary Peterson, and Dawn Song. Provable data possession at untrusted stores. In
Proceedings of the 14th ACM conference on Computer and communications security,
pages 598-609. Acm, 2007.

[81 Giuseppe Ateniese, Roberto Di Pietro, Luigi V Mancini, and Gene Tsudik. Scalable and
efficient provable data possession. In Proceedings of the 4th international conference on
Security and privacy in communication netowrks, page 9. ACM, 2008.

[9] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan
Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, et al.
Computational integrity with a public random string from quasi-linear pcps. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pages 551-579. Springer, 2017.

99

[10] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
Snarks for c: Verifying program executions succinctly and in zero knowledge. In Ad-
vances in Cryptology-CRYPTO 2013, pages 90-108. Springer, 2013.

[11] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System. 2014.

[12] Juan Benet and Nicola Greco. Filecoin: A decentralized storage network. https:
//filecoin.io/filecoin.pdf, 2017.

[13] Juan Benet and Nicola Greco. Power Fault Tolerance (Work in Progress). https:
//filecoin.io/power-fault-tolerance.pdf, 2017.

[14] Juan Benet and Nicola Greco. Proof-of-Replication (Work in Progress). https: //
filecoin.io/proof-of-replication.pdf, 2017.

[151 Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In
International Cryptology Conference, pages 421-439. Springer, 2014.

[16] Timothy J Berners-Lee. Information management: A proposal. Technical report, 1989.

[17] Nir Bitansky, Alessandro Chiesa, and Yuval Ishai. Succinct non-interactive arguments
via linear interactive proofs. Springer, 2013.

[18] Kevin D Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: Theory and
implementation. In Proceedings of the 2009 ACM workshop on Cloud computing security,
pages 43-54. ACM, 2009.

[191 Vitalik Buterin. Ethereum, April 2014.

[20] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-
knowledge contingent payments revisited: Attacks and payments for services. Cryptol-
ogy ePrint Archive, Report 2017/566, 2017. http: //eprint. iacr. org/2017/566.

[21] Jeremy Clark, Joseph Bonneau, Edward W Felten, Joshua A Kroll, and Andrew Miller.
On decentralizing prediction markets and order books. In In WEIS. Citeseer, 2014.

[221 Jeremy Clark, Joseph Bonneau, Edward W. Felten, Joshua A. Kroll, Andrew Miller,
and Arvind Narayanan. On Decentralizing Prediction Markets and Order Books. In
WEIS '14: Proceedings of the 1 0th Workshop on the Economics of Information Security,
June 2014.

[23] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W Hong. Freenet: A dis-
tributed anonymous information storage and retrieval system. In Designing privacy
enhancing technologies, pages 46-66. Springer, 2001.

[24] Richard Cleve. Limits on the security of coin flips when half the processors are faulty.
In Proceedings of the eighteenth annual ACM symposium on Theory of computing, pages
364-369. ACM, 1986.

100

[25] Bram Cohen. Incentives build robustness in bittorrent. In Workshop on Economics of
Peer-to-Peer systems, volume 6, pages 68-72, 2003.

[26] Brian F Cooper and Hector Garcia-Molina. Peer-to-peer data trading to preserve infor-
mation. ACM Transactions on Information Systems (TOIS), 20(2):133-170, 2002.

[27] Luis Cuende and Jorge Izquierdo. Aragon network: A decentralized infrastructure for
value exchange. 2017.

[28] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak.
Proofs of space. In Annual Cryptology Conference, pages 585-605. Springer, 2015.

[29] C Chris Erway, Alptekin Kiipg5, Charalampos Papamanthou, and Roberto Tamassia.
Dynamic provable data possession. ACM Transactions on Information and System
Security (TISSEC), 17(4):15, 2015.

[30] Juan A Garay, Markus Jakobsson, and Philip MacKenzie. Abuse-free optimistic contract
signing. Springer, 1999.

[31] Barton Gellman and Ashkan Soltani. Nsa infiltrates links to yahoo, google data centers
worldwide, snowden documents say. The Washington Post, Oct 2013.

[32] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct nizks without pcps. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 626-645. Springer, 2013.

[33] Steven Goldfeder, Joseph Bonneau, Rosario Gennaro, and Arvind Narayanan. Escrow
protocols for cryptocurrencies: How to buy physical goods using bitcoin. In Interna-
tional Conference on Financial Cryptography and Data Security, 2017.

[34] Philippe Golle, Kevin Leyton-Brown, Ilya Mironov, and Mark Lillibridge. Incentives
for sharing in peer-to-peer networks. In Electronic Commerce, pages 75-87. Springer,
2001.

[35] LM Goodman. Tezos: A self-amending crypto-ledger, 2014.

[36] Jarrad Hope. The status network. 2017.

[37] Markus Jakobsson. Ripping coins for a fair exchange. In Advances in CryptologyaA'EU-
ROCRYPTdAZ95, pages 220-230. Springer, 1995.

[38] Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files. In
Proceedings of the 14th ACM conference on Computer and communications security,
pages 584-597. Acm, 2007.

[39] Sunny King. Primecoin: Cryptocurrency with prime number proof-of-work, April 2014.

[40] Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Improve-
ments to secure computation with penalties. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 406-417. ACM, 2016.

101

[411 Alptekin Kiipgfl and Anna Lysyanskaya. Usable optimistic fair exchange. Topics in
Cryptology-CT-RSA 2010, pages 252-267, 2010.

[42] Nathaniel Leibowitz, Matei Ripeanu, and Adam Wierzbicki. Deconstructing the kazaa
network. In Internet Applications. WIAPP 2003. Proceedings. The Third IEEE Work-
shop on, pages 112-120. IEEE, 2003.

[43] Matus Lestan and Joe Urgo. The districtOx network. 2017.

[44] Gregory Maxwell. Zero knowledge contingent payment. https://en.bitcoin.it/
wiki/ZeroKnowledgeContingent-Payment, 2016.

[45] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric. In International Workshop on Peer-to-Peer Systems, pages
53-65. Springer, 2002.

[461 Silvio Micali. Simple and fast optimistic protocols for fair electronic exchange. In Pro-
ceedings of the twenty-second annual symposium on Principles of distributed computing,
pages 12-19. ACM, 2003.

[47] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. Sprites: Pay-
ment channels that go faster than lightning. arXiv preprint arXiv:1702.05812, 2017.

[48] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz. Permacoin:
Repurposing bitcoin work for data preservation. In Security and Privacy (SP), 2014
IEEE Symposium on, pages 475-490. IEEE, 2014.

[491 Ali Muneeb. New features enabled by a layer 2 token. https: //forum. blockstack.
org/t/new-features-enabled-by-a-layer-2-token/1327, 2017.

[501 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[511 Henning Pagnia and Felix C Gdrtner. On the impossibility of fair exchange without a
trusted third party. Technical report, Technical Report TUD-BS-1999-02, Darmstadt
University of Technology, Department of Computer Science, Darmstadt, Germany, 1999.

[52] Jung Min Park, Edwin KP Chong, and Howard Jay Siegel. Constructing fair-exchange
protocols for e-commerce via distributed computation of rsa signatures. In Proceedings
of the twenty-second annual symposium on Principles of distributed computing, pages
172-181. ACM, 2003.

[53] Sunoo Park, Krzysztof Pietrzak, Jo81 Alwen, Georg Fuchsbauer, and Peter Gazi.
Spacemint: A cryptocurrency based on proofs of space. Technical report, 2015.

[541 Jack Peterson and Joseph Krug. Augur: a decentralized, open-source platform for
prediction markets. arXiv preprint arXiv:1501.01042, 2015.

[55] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain
instant payments. 2015.

102

[56] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In Theory of
Cryptography Conference, pages 262-285. Springer, 2016.

[57] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network. In Peer-to-Peer
Computing, 2001. Proceedings. First International Conference on, pages 99-100. IEEE,
2001.

[58] Meni Rosenfeld. Overview of colored coins. 2012.

[59] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms and Open Distributed Processing, pages 329-350.
Springer, 2001.

[60] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin.
In Security and Privacy (SP), 2014 IEEE Symposium on, pages 459-474. IEEE, 2014.

t61] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 90-107. Springer, 2008.

[62] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practical dynamic proofs
of retrievability. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 325-336. ACM, 2013.

[63] Jason Teutsch and Christian ReitwieEner. A scalable verification solution for
blockchains. 2017.

[64] Carmela Troncoso, George Danezis, Marios Isaakidis, and Harry Halpin. Systematizing
decentralization and privacy: Lessons from 15 years of research and deployments. arXiv
preprint arXiv:1 704.08065, 2017.

[65] Fabian Vogelsteller. Openzeppelin solidity on github. https://github.com/
OpenZeppelin/zeppelin-solidity.

[66] Fabian Vogelsteller. Erc20: Token standards. https://github.com/ethereum/eips/
issues/20, 2016.

[67] David Vorick and Luke Champine. Sia: Simple decentralized storage. 2014.

[68] Liang Wang and Jussi Kangasharju. Measuring large-scale distributed systems: case
of bittorrent mainline dht. In Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth
International Conference on, pages 1-10. IEEE, 2013.

[69] Shawn Wilkinson, Tome Boshevski, Josh Brandoff, and Vitalik Buterin. Storj a peer-
to-peer cloud storage network. 2014.

103

