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Abstract

Fluid flow and particle transport through porous media are determined by the geometry of
the host medium itself. Despite the fundamental importance of the velocity distribution in
controlling early-time and late-time transport properties (e.g., early breakthrough and
superdiffusive spreading), direct relations linking velocity distribution with the statistics of pore
structure in 3D porous media have not been established yet. High velocities are controlled by the
formation of channels, while low velocities are dominated by stagnation zones. Recent studies
have proposed phenomenological models for the distribution of high velocities including stretched
exponential and power-exponential distributions but without an underlying mechanistic or
statistical physics theory.

Here, we investigate the relationship between the structure of the host medium and the
resulting fluid flow in random dense spherical packs. We simulate flow at low Reynolds numbers
by solving the Stokes equations with the finite volume method and imposing a no-slip boundary
condition at the boundary of each sphere. High fidelity numerical simulations of Stokes flow are
facilitated with the assist of open source Computational Fluid Dynamics (CFD) tools such as
OpenFOAM. We show that the distribution of low velocities in 3D porous media is described by
a Gamma distribution, which is robust to variations in the geometry of the porous media. We
develop a simple model that predicts the parameters of the gamma distribution in terms of the
porosity of the host medium. Despite its simplicity, the analytical predictions from the model agree
well with high-resolution simulations in terms of velocity distribution.

Thesis Supervisor: Ruben Juanes
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Motivation and Overview

A porous medium is a material that consists of a solid portion with void spaces or holes within it.

The solid matrix (mineral grains in soils and rocks) can either be rigid, which is the usual situation,

or can undergo small deformations. The void spaces or pores in the porous medium allow the flow

of fluids through them. The macroscopic behavior of flow systems is ultimately determined by

flow and transport at the pore scale within the void space left by the solid fraction. The pores are

assumed to be interconnected, meaning that there exist many continuous paths from one side of

the medium to the other [2]. In a typical porous medium, the pores are relatively narrow and their

distribution with respect to size and shape is irregular; hence, flow quantities, such as velocities

and pressures at the pore-scale (the microscopic scale) are not easily predicted from the statistics

of the pore structures directly. Such irregularities within complex pore networks that have many

cavities rule out conventional approaches to quantify velocities of fluids in a porous medium.

Measurements of global quantities (e.g., porosity, permeability, conductivity) along with

computational tools are useful in describing fluid velocities in a more simplistic manner, thus

working around limitations. Connecting such quantities with fluid velocities, which are obtained

from simulation results are not fully developed in single phase flow, where the pores are filled

with a single fluid. In multiphase flow, the pores are shared by liquids and/or gases and the

difficulty of predicting flow quantities from the statistics of pore structures escalates drastically.
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Detailed knowledge of flow in complex porous systems is important, as it is relevant in several

natural and industrial engineered processes. Examples include containing and/or remediating soil

and groundwater contamination [1,2], fluid infiltration in porous systems [6], geologic carbon

sequestration [4], enhanced hydrocarbon recovery [5], water filtration in heterogeneous soil [3]

and fuel cells [7]. Semi-empirical relations between permeability and porosity have been

developed and validated for certain media [8-1 1]. However, many open theoretical challenges exist

to determine the fluid velocity distributions from statistical descriptions of pore-scale geometry.

The quantification of the velocity field in heterogeneous porous media is a challenging problem

and has many applications, since it affects particle distribution [12-18] and controls mixing of

fluids [19-22], which can further promote both chemical reactions [23-27] and biological activity

[28, 29]. Numerical modelling at the pore scale has shown the appearance of highly heterogeneous

velocity distributions, even in simple homogeneous porous media [17, 31, 32, 39-41]. These

velocity distributions have also been observed in laboratory and field experiments such as on bead

packs [30-35], sand columns [36] and real rock samples [37, 38].

It is well known that particle-transport through porous media is often anomalous, meaning that it

is dominated by highly heterogeneous velocity distributions and is characterized by heavy-tailed

solute breakthrough curves, and nonlinear temporal evolution of particle mean square

displacement (MSD). These behaviors can be captured via high resolution pore-scale simulations

or direct experimental observations. Distinct behaviors for different velocity scales have been

identified via computational modelling [17, 39, 40, 42, 43] and experimental tests [34, 35, 38].

These studies have shown that low velocities are dominated by stagnation zones, while high

velocities are controlled by the formation of channels in the medium. Several studies have shown
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that high velocities are explained by exponential [44] and power-exponential [43] distributions,

but without a clear physical justification. Asymptotic transport properties [12, 42] are known to be

influenced by the distribution of low velocities. The ability to quantify flow heterogeneity, with

an emphasis on low velocities, from the statistics of the porous medium alone would be an

important element towards better predictions of flow and transport processes in subsurface

environments.

1.2 Thesis Outline

In this thesis, Chapter 2 describes the software architecture for performing high-resolution

simulations of Stokes equations; from generating 3D porous media that are composed of random

dense sphere packs all the way to the process of how to handle geometry data and put in a suitable

format that is compatible with OpenFOAM, which is an open source Computational Fluid

Dynamics tool that is capable of solving for velocity fields and pressure everywhere in the porous

media's void spaces. The chapter also gives a brief overview of the meshing process of the spaces

and how the flow quantities that are produced by OpenFOAM are post-processed for analysis.

Chapter 3 presents the results obtained by following the procedures in the preceding chapter.

Visualization of both the velocity fields and the pressure everywhere in the generated porous media

will be included along with the probability density function (PDF) of the rescaled velocity

magnitudes everywhere in the host media. We show that this PDF is described by a Gamma

distribution, which is robust to variations in the geometry of the porous media. In the same chapter,

we develop a simple model that predicts the parameters of the gamma distribution in terms of the

porosity of the host medium and show that the analytical predictions from the model agree well

with high-resolution simulations in terms of the velocity distribution. The same chapter provides

17



a discussion as well as a theoretical justification of some of the obtained results. A summary of

this thesis and a conclusion of its findings are presented in Chapter 4.
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Chapter 2

Methodology: Software Architecture of 3D High-
Fidelity Simulations of Stokes Equations

2.1 Stokes Flow

In a 3D porous medium, assume that the flow is incompressible and steady within the pore

geometry. The flow is assumed to be horizontal; therefore, the gravitational term is neglected.

When the flow is simulated at low Reynolds numbers (ratio of inertial to viscous forces) Re << 1,

the flow is Stokesian and is described by the following equations

V -u= 0 (2.1)

p2U= Vp (2.2)

Here, p is the fluid pressure, u is the fluid velocity and p is the dynamic viscosity of the fluid. Eq.

(2.1) is the incompressibility condition of the fluid, which states that the velocity field is

divergence-free while Eq. (2.2) is the conservation of momentum equation for fluids simplified by

the assumptions mentioned earlier. Assume that the 3D porous medium of interest is bounded by

a cubic container and assume that the flow is driven by a single pressure gradient from one side of

the bounding box (dfniet) to the opposite side ( 0 2outiet). No-slip boundary conditions are

imposed at the remaining four surfaces of the bounding box ( 0 frest) as well as at the surface of

the porous medium's solid matrix, which will be assumed to be spherical in shape (anspheres).

These boundary conditions translate into the following relations.

19



p = 1, u t = 0 in aniniet (2.3)

p = 0, u t = 0 in ifoutiet (2.4)

Vp -n = 0, U = 0 in Oflrest U 0 f1spheres (2.5)

Here, n and t are unit vectors normal and tangent to the surface of interest respectively. Due to the

linearity of Stokes equations, the choices for the fixed pressures in Eq. (2.3) and Eq. (2.4) can be

arbitrary. In both equation, the tangential velocities at the inlet and outlet are set to be zero as the

flow is horizontal on both surfaces. Eq. (2.5) is the no-slip boundary condition described

mathematically.

2.2 Software Architecture

In this section, the methodology of performing high-fidelity simulations of Stokes equations is

described. The procedure can be summarized into five steps and the software tools used at each

step along with the associated functions are included as follows.

* Particle Flow Code or PFC: The software generates random dense sphere packs. The

coordinates of each sphere along with the corresponding radius are outputted from PFC.

* Gmsh: This mesh generator takes the output of PFC, triangulates the spherical surfaces of

the dense sphere pack and outputs it in a Stereolithography (STL) format.

* BlockMesh and SnappyHexMesh: The STL file of the triangulated surface geometries

from Gmsh is used to create high-quality meshes of the void spaces in the porous medium.

* OpenFOAM: From the 3D mesh created by snappyHexMesh, the software solves Stokes

equations (2.1) and (2.2) with the specified boundary conditions (2.3), (2.4) and (2.5).

* ParaView: It is a visualization tool that displays the pressure and velocity fields outputted

from OpenFOAM everywhere at the pores of the 3D host medium.
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Figure 2-1: An example of a 3D porous medium composed of random sphere packs that is
generated by PFC inside a cubic container of volume 125mm 3.

2.2.1 Generation of the Sphere Packs

The first step in simulating Stokes equations is generating an appropriate 3D porous medium.

Several porous media have been generated in this study via the numerical "Particle Flow Code" or

PFC [45]. PFC is a software that models the movement and interaction of spherical particles using

the discrete element method. Via highly efficient algorithms incorporated in the software, the tool

has been used to generate random sphere packs inside a cubic box of volume 125mm3 . Several

algorithms [46-48] exist that generate spherical particles and pack them in a container; however,

PFC generates the spherical packs via the algorithm [49] which generates small balls that are

enlarged until they fully fill the domain. The balls are then subjected to the action of gravity, where

they can fall and roll until reaching a stable state. The spheres are also generated so that the

appearance of obtuse angles in the Delaunay triangulation of the spheres' centers is minimized.

21



Figure 2-2: An example of a dense sphere pack bounded by a cubic box of volume 125mm 3 with
its surface being meshed and triangulated by the software Gmsh.

2.2.2 Meshing the Surfaces of the Sphere Packs

After generating the sphere pack from PFC, it is necessary to triangulate the surfaces of those

spheres and put them in a STereoLithography (STL) format as OpenFOAM, the software used to

simulate Stokes equations accepts such structure. In the STL format, the normal unit vector plus

the coordinates of the three vertices of each triangle that result from surface meshing the spheres

in the porous medium are saved. Gmsh, which is a 3D finite element mesh generator with a built-

in CAD engine [50] is a suitable tool which accomplishes the task. An example of surface meshing

to a sphere pack is shown in Fig. 2-2. Gmsh is also capable of meshing the void spaces within the

porous medium, however, the spheres in the medium are almost touching each other. In between

such spheres, the volume needs a much finer mesh, otherwise issues in accuracy and convergence

occur. The snappyHexMesh software, which is another mesh generator handles such issues better

than Gmsh.
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2.2.3 Meshing the Void-Space Within the Sphere Packs

Identifying the bounding container of the medium of interest is a necessary step in order to carry

out pore-scale meshing. All the sphere packs that have been generated in this study fit a cubic box

of volume 125mm3 . The box, without the spheres in it, is meshed uniformly with 140 points in

each of the x,y and z directions resulting in around 2.75 million hexahedral cells. This step is done

via blockMesh, which is supplied with OpenFOAM [51]. BlockMesh is a basic meshing tool that

is good for Cartesian grid generation. After that, snappyHexMesh, which is another meshing utility

in OpenFOAM, takes the mesh generated from blockMesh, carves it and adjust it until it fits the

geometry given in the STL file. This process reduces the total number of cells from 2.75 million

to around 1 million. The meshes obtained from snappyHexMesh can be viewed in Fig. 2-3 and

Fig. 2-4. It can be seen from both figures that there are holes connecting spheres that are adjacent

to each other as if they are connected. It is very difficult to simulate flow quantities between two

bodies that are very close to each as a much finer much is needed in the volumes close to the point

of contact between such bodies. To overcome this, snappyHexMesh merges problematic regions,

thus removing the difficulty. This scenario, where adjacent spheres are merged near the points of

contact is realistic as grains' surfaces are degraded due to friction when they are in contact with

each other. Most of the spheres that have been generated by PFC are close to their neighbors and

a slight overlap at the contacts have been created by snappyHexMesh; thus the assumption that the

porous media is composed of perfectly shaped spheres can be relaxed. In addition, the bounding

box of the host medium has been tightened to cross a portion of the boundary spheres as this

eliminates the creation of a void space outside the porous medium which favors flow through some

channels over others. In the meshing process, blockMesh takes a few seconds to run while

snappyHexMesh takes around 20 minutes to complete the chiseling process.
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a

b

Figure 2-3: (a) View of the mesh generated by snappyHexMesh at the bounding box of a 3D porous
medium, (b) View of the internal portion of the same medium with the outline at their surfaces
being are faces of volume elements that belong to the volumetric mesh of the pore-space.
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a

b

Figure 2-4: (a) View of the mesh generated by snappyHexMesh at the bounding box of a 3D porous
medium with an outline of the grey part that has been discarded in (b), (b) View of the mesh inside
of the same 3D porous medium with a portion of it being clipped.
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2.2.4 Solving Stokes Equations at the Void-Space within the Spherical Packs

OpenFOAM, which is an open-source Computational Fluid Dynamic (CFD) software [51] is used

in this work to solve Stokes equations at the void-space left by the sphere packs. OpenFOAM

solves Stokes problem via the SIMPLE algorithm, which has been developed by Spalding and

Patanker [52,53]. This algorithm is executed in OpenFOAM via the command simpleFoam. An

alternative approach to solve Stokes equations is using the solver icoFoam that solves the

incompressible laminar Navier-Stokes equations using the PISO algorithm that has been developed

by Ferziger and Peric [54]. We modify the solver internally by removing the non-linear advection

term from Navier-Stokes equations and solving Eq.(2. 1) along with the following transient version

of Stokes equations until steady state is reached where the derivative of velocity with respect to

time vanishes.

-+ pV 2u = Vp (2.6)
at

Since Eq. (2.6) is transient, zero velocity and pressure are set as initial conditions at the void-space

in the sphere pack. In the simulations, the time increment At is set to be 10-8 seconds, which was

found to be a stable with our set-up that composes of 1 million computational grids occupied in a

125mm3 container and a dynamic viscosity yi which has been set up to 10-3N s/rn 2 . This choice

of At yields to a Courant Number, C0 « 1 at each time step, which is defined as

C' = At sup !Au 1 + +uz" (2.7)
j~n AxiAyi z
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Here, f2 is the computational domain, which is the void-space in the porous medium, i is the grid

number, ui = (uXi, uYJ, uzJ) is the velocity vector at cell i and Ai = (Axi, Ayi, Azi) is average

element size vector in the same cell. The significance of C, is that it tells us how fluid particles

move from one cell to another in the computational domain. For instance, C, 5 1 means that in a

single time step, a fluid parcel, at most, moves from one cell to a single adjacent cell. On the other

hand, C0 > 1 implies that a single fluid particle moves through two or more cells in a single time

step. For problems which involve flow in porous media where it takes time for a fluid particle to

flow from one point to another, Courant number C, is expected to be much smaller than 1 at every

time step in order for simulations to run accurately without convergence issues.

2.2.5 Visualizing and Post Processing of Results

After reaching steady state and obtaining flow quantities (velocity field u and pressure p) that

solve Stokes equations at the spaces between the rigid spheres, ParaView [55] is used to visualize

these quantities everywhere in the 3D porous medium. ParaView is an open-source application

that is capable of performing data analysis and scientific visualization. It is also capable of cutting

surfaces of arbitrary shape, extracting and visualizing data at those surfaces. Examples of what the

software is capable of doing are shown in Fig. 2-6 and Fig. 2-7, which show the three components

of the velocity field, along with the velocity magnitude at a 2D slice parallel to both the inlet and

outlet. ParaView, which uses a Python interface to run batches, is compatible with OpenFOAM

and can be executed simply via the command paraFoam. However, OpenFOAM results should be

first converted into Visualization Toolkit (VTK) format before using ParaView. To do this, the

command foamToVTK is executed in the OpenFOAM directory where the desired results (u and

p) exist before executing the command paraFoam.
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Figure 2-5: (a) View of the velocity magnitude at a 2D slice parallel to the inlet and outlet that is
obtained from solving Stokes equations with p = 10-3N s/M2 , (b) The same figure as (a) but
shows the magnitude of the x-component of the velocity only.
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Figure 2-6: (a) View of the y-component of the velocity at a 2D slice parallel to the inlet and outlet
that is obtained from solving Stokes equations with y = 10-3N s/m2 , (b) The same figure as (a)
but shows the magnitude of the z-component of the velocity only.
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Chapter 3

Results and Discussion: Analysis of the Velocity
Distribution from Solving Stokes Equations

3.1 Simulation Results of Stokes Equations

3.1.1 Computational Domain

In a 3D porous medium composed of a dense sphere pack and contained in a cubic box of volume

125mm3 , the void space has been discretized with approximately 1 million hexahedral cells.

Simulations of the transient version of Stokes equations have been set to end at time 4x 10 4

seconds where steady-state is reached to Eq. 2.6 within an accuracy of 6 digits. The time increment

At is fixed to 10-8 seconds. In a workstation with an Intel Core i7 2.6GHz CPU, and 16GB

memory, a total time of 3 days is needed to complete the 40,000 time-steps in order for steady flow

to occur. The dynamic viscosity y has been chosen to be 10 3 N s/m2 ; however, this quantity can

be set arbitrarily as it vanishes after u is rescaled to its mean value. Twelve sphere packs have

been generated, where the distribution of the squared radius of the spheres in rn2 for the first five

packages range from 1.4x 10- 7 to 3.2x10-7 , for the next three packs the range is a bit wider, to

become 1x10~ 7 to 3.2x10- 7, while for the last four packs the lower bound increases and the

range becomes 2x10- 7 to 3.2 x10-7. The upper bound for the squared radius of the spheres has

been fixed for all the twelve sphere packs while the lower bound has been varied. The porous

media have been generated so that they are contained in a cubic box to reduce the effect of edges

on flow patterns.
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Figure 3-1: Visualization of the pressure that resulted from solving Stokes equations at the outer
box of a 3D porous medium composed of random and dense sphere pack.

3.1.2 Pressure Field

After solving Stokes equations with the boundary conditions in Eq. 2.3-2.5, where the pressure is

set to be 1 at the inlet (the back side of the box) and 0 at the outlet (the front side of the box), the

pressure at the bounding box is visualized in Fig. 3-1. Regards to the pressure in the void-spaces

between the spheres, for a typical 2D slice parallel to both the inlet and outlet, the pressure does

not vary significantly between points on the slice compared to other points far away from the slice.

This is evident from Fig. 3-1 where the pressure scale (color) at the top and front sides of the box

can be seen as connected strips parallel to both the inlet and outlet's top and side boundaries. Also,

for a typical 2D slice perpendicular to both the inlet and the outlet, the pressure decreases

somewhat linearly from the inlet to the outlet, except in the regions close to the spheres, where the

pressure does not vary significantly there. Therefore, pressure variation in 3D porous media driven

by a single pressure gradient is predictable and will not be a focus of this thesis.
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Figure 3-2: Visualization of the velocity magnitude that resulted from solving Stokes equations at
the outer box of a 3D porous medium composed of random and dense sphere pack.

3.1.3 Velocity Field

Visualization of the velocity magnitude at the bounding box of a 3D porous media is shown in Fig.

3-2. At the inlet and outlet, the tangential component of the velocity has been set to zero while

zero velocity, which is the no-slip boundary condition, has been imposed at the other 4 faces of

the box. In addition, 2D views of the velocity's components plus magnitude at a slice parallel to

both the inlet and outlet are shown in Fig. 2-5-and 2-6. Unlike pressure, the velocity magnitude

varies in the void spaces significantly depending on the geometry of the host medium. Distinct

behaviors for high and low velocities have been established by both computational [19, 41, 42, 44,

45] and experimental [36, 37, 40] studies. It has been concluded that high velocities are controlled

by the formation of channels, while low velocities are dominated by stagnation zones. Predicting

the exact locations of both high and low velocities in a 3D porous medium is a difficult problem

that has not been established yet; however, the focus here is studying the velocity distribution.
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3.2 Velocity Distribution in 3D Porous Media

3.2.1 Probability Distribution Fitting

Let U be the set of all velocity magnitudes in the computational grids at the void-spaces in a 3D

porous medium that has been obtained from solving Stokes equations (Eq. 2.1-2.2) with the

boundary conditions (Eq. 2.3-2.5). We denote (U) to be the average value of the quantities in the

set U and Ur = U/(U) be the set of all velocity magnitudes at the same void spaces rescaled by

their mean value. The volumes of the computational cells in the porous media are assumed to be

approximately the same, which is a reasonable assumption, as a uniform grid has been generated

by blockMesh before snappyHexMesh chisels the mesh to fit the spheres, as discussed in section

2.2. In this study, it has been found that the probability density function (PDF) of U, for all the

twelve sphere packs with different ranges of the squared radius of the spheres, has a Gamma

distribution. With a shape parameter k > 0 and a scale parameter 0 > 0 such that

U ~ Gamma(k, 6), the following relations hold:

1 k-i
fu (U) = [ u(k)Ok-e- u E (0, oo) (3.1)

cU ~ Gamma(k, cO), c > 0 is a scalar (3.2)

(U) = kO (3.3)

From Eq. 3.2-3.3, it can be easily deduced that Ur ~ Gamma(k, 1/k). Plots of the PDF of Ur for

one sphere pack, along with the Gamma distribution that best fit, both without and with a log-log

scale of the axes, are shown in Fig. 3-3. In addition, Table 3-1 gives the values of k in the Gamma

distribution that best fit the PDF of Ur. For all the twelve 3D porous media composed of spheres,

k ~ 1.05 and Gamma(k, 1/k) has a mean value of 1.
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Figure 3-3: (a) Plot of the PDF of the rescaled velocity magnitudes Ur at the void-spaces in a 3D
porous medium that has been obtained from solving Stokes equations. (b) Same plot as (a) but in
log-log scale. The red plot is the Gamma distribution with shape parameter that fit the PDF of Ur.
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Table 3-1: The values of the shape parameter k in the Gamma distribution that best fit the PDF of
the rescaled velocity distribution for each of the twelve sphere packages.

Package number k
1 1.059
2 1.049
3 1.082
4 1.026
5 1.063
6 1.099
7 1.103
8 1.082
9 1.040
10 1.034
11 1.072
12 1.076

3.2.2 The Distribution of Low Velocities

From Fig. 3-3(b), it can be seen that for low velocities that are far away from the mean, a line of

slope almost zero fits the PDF of Ur, when it is displayed in log-log format. This behavior has

been observed in all sphere packs and can be explained by studying the slope of the PDF of log Ur.

With V = log Ur where Ur ~ Gamma(k, 6) and 0 = 1/k, the PDF of V is shown below

1
fv(v) = e'fu(ev) = e(k)6k

dfv(v) k-(' ek

dv F(k) '

(3.4)

(3.5)

Assume that v is far away from the mean, that is v « 0. It is easy to see that dfv(v)/dv > 0 for

all v < 0. Imposing v « 0 or equivalently ( -* 0 implies dfv(v)/dv -- 0 as (k - ()e- in the

expression of the derivative is bounded above by k which leaves the term (k that goes to 0.
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3.2.3 Linking Velocity Distribution with the Statistics of Pore-Structures

From the previous two sections, we have seen that Ur - Gamma(k, 1/k) which has a mean value

of 1 and that the PDF of log Ur can be fit by a straight horizontal line for low velocities far away

from the mean. For high velocities, the log-Gamma distribution does not fit the PDF of log Ur well.

Therefore, for low velocities that are much smaller than the mean, which is the focus region, the

behavior of the PDF of log Ur can be predicted with a reasonable approximation to k. Therefore,

to have a good fit for low velocities, it is sufficient to find a parameter, which characterizes the

geometry of the host medium, that correlates well with k. For the twelve sphere packs that have

been generated, the correlation coefficient between k and the mean, standard deviation and the

coefficient of variation of the spheres' radii, surface area and volumes have been computed.

However, the volume fraction of the porous media for the twelve packages has been found to

connect well with the shape parameter k obtained in Table 3-1. Despite the fact that an empirical

relation that links k with the statistics of the pore-structure is not necessarily unique, the volume

fraction 1 - 0, where qb is the porosity of the host medium is chosen to be linked with k. Porosity

is the fraction of the volume of open spaces in a 3D porous medium over the total volume of the

bounding box that contains the spheres. For a cubic packing arrangement of spheres, porosity is

about 0.47 for a typical pack. In our generated packs with an arrangement that is comparable to

cubic, porosity varies from 0.4321 to 0.4576. Such range of porosity, despite being narrow, is

typical for a dense sphere pack contained in a cubic box. With a Pearson-correlation coefficient

between k and 1 - p of 0.7171, which indicates a strong linear relationship between these two

quantities and setting k = 1.98(1 - 0) which is the best linear fit, the predicted value of the PDF

of Ur is given by

1
Upredit - Gamma 1.98(1 - #), 1 (3.6)

1.98(r - q)
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Fig. 3-4 shows a comparison between the shape parameter k in the Gamma distribution that best

fit the PDF of Ur along with a plot of the relation in Eq. 3.6 on top of the PDF of Ur . Similar plots

for all of the twelve sphere packs are shown in the Appendix. Despite a simple predictive relation,

Eq. 3.6 performs well for all packs. To predict the distribution of the magnitude of velocities

without rescaling at the empty spaces in the porous medium U ~ Gamma(k, 0), it is only needed

to predict 0 = (U)/k or equivalently predict the value of the mean velocity (U) accurately. This

can be done via Darcy's law that is shown below

AP K
(U) = -- (3.7)

Here, AP is the pressure drop across the porous medium, L is the length of the bounding cubic box

that bound the spheres, p is the dynamic viscosity of the fluid and K is the permeability of the

porous medium. The permeability in 3D porous media with sphere packing can be calculated using

the approach in [56] where a data-driven framework of the host medium has been used to analyze

fluid flow and calculate permeability, which has been verified to scale well with the average pore-

void ratio and the average pore network closeness centrality. Studying permeability in porous

media is out of the scope of this thesis and is a topic of its own; however, accurate computation of

K implies the ability to predict 0 and U ~ Gamma(k, 0).
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Chapter 4

Conclusions and Open Questions

4.1 Conclusions

In this thesis, we have studied flow in random dense spherical packs. We have described the

software architecture used to perform high-resolution simulations of Stokes equations; from the

generation process of the sphere packs to the meshing procedures and massaging data format all

the way to visualization of simulation results. We have simulated flow at low Reynolds numbers

by solving the Stokes equations with the finite volume method and imposing a no-slip boundary

condition at the boundary of each sphere. High fidelity numerical simulations of Stokes flow have

been performed using OpenFOAM. Visualization of both the velocity fields and the pressure in

the generated media have been included in this thesis along with the probability density function

(PDF) of the rescaled velocity magnitudes in the host media. We have shown that the distribution

of low velocities in 3D porous media is described well by a Gamma distribution, which is robust

to variations in the geometry of the porous media. We have developed a simple model that predicts

the parameters of the gamma distribution in terms of the porosity of the host medium. Despite its

simplicity, the predictions from our model agree well with high-resolution simulations in terms of

the velocity distribution. We have shown that for low velocities that are far away from the mean,

a straight line of slope zero fits the PDF of the logarithm of the rescaled velocities Within the

confines of relatively homogeneous spherical bead packs, our results indicate that the full fluid

velocity distribution can be predicted directly from the porosity of the bead pack.
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4.2 Open Questions and Challenges

It is known that the behavior of velocities in porous media is influenced directly by the pore

structure; that is, the open space left by the solid fraction in the host medium. However, it is not

clear why the velocity distribution for single-phase laminar flow in a random dense sphere pack

has a Gamma distribution, which is a well-structured behavior that arises consistently despite

randomness in the generated geometry. A similar distribution has been seen in mixing problems

[57] in which the nature of their tackled problem and setup differ significantly from ours. The

theoretical justification of this observation, despite being challenging to obtain, can give us insight

into how different flow problems can be linked to one another. It will be interesting to investigate

flow through porous media composed of non-spherical packs and see whether similar distributions

carry over to a more complex setup. In this study, the focus was on low velocities and it is worth

studying the distribution of high velocities and figure out what determines their distribution. Are

the channels with minimum resistance control high-velocity distributions in porous media? Is flow

in a complex porous medium equivalent to flow with similar complexity in a simpler medium? It

is worthy increasing the complexity of the system by studying flow in media with fractures as well.

In addition, the work presented in this thesis can be extended to the multiphase case in which the

solution of (multiphase) Stokes flow equations in complex 3D geometries (such as granular packs

or rough fractures), coupled with transport solvers for passive particles or phase fields can be

analyzed. Nevertheless, in multiphase flow, the difficulty of predicting flow quantities from the

statistics of pore structures escalates drastically and vary significantly depending on wetting

properties and varying contact angles.
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Appendix A

A. 1 Velocity Distribution for All Generated Packs

Twelve dense sphere packs were generated via the software PFC, where each pack is contained in

a cubic box of volume 125mm3 . The distribution of the squared radius r2 of the spheres in meter

square for the first five packages range from 1.4x 10-7 to 3.2x 10-7. The range of r' for the next

three packages is a bit wider, to become from 1x10-7 to 3.2x 10 7 , while for the last four packs

the lower bound increases and the range becomes 2x10- 7 to 3.2x 10-7. The upper bound for the

squared radius of the spheres has been fixed for all the twelve sphere packs while the lower bound

has been varied.

The PDF of the rescaled velocity distribution Ur ~ Gamma(k, 1/k) is plotted for all twelve sphere

packs and is compared to the Gamma distribution with a shape parameter k that best fit the rescaled

velocities. Also, another Gamma distribution with a predicted shape parameter k = 1.98(1 - p)

is plotted on top of the PDF of Ur. From the figures (Fig. A-I - A-12) shown in the following

pages, (1) The distribution of low velocities in 3D porous media is described well by a Gamma

distribution, which is robust to variations in the geometry of the porous media. (2) Our predictions

(Eq. 3.6) agree well with high-resolution simulations in terms of the velocity distribution. (3) It is

also clear that for low velocities that are far away from the mean, a straight line of slope zero fits

the PDF of the logarithm of the rescaled velocities.
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