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Abstract

Scoring systems are linear classification models that let users make quick predictions

by adding, subtracting, and multiplying a few small numbers. These models are

widely used in applications where humans have traditionally made decisions because

they are easy to understand and validate. In spite of extensive deployment, many

scoring systems are still built using ad hoc approaches that combine statistical tech-

niques, heuristics, and expert judgement. Such approaches impose steep trade-offs

with performance, making it difficult for practitioners to build scoring systems that

will be used and accepted.

In this dissertation, we present two new machine learning methods to learn scoring

systems from data: Supersparse Linear Integer Models (SLIM) for decision-making

applications; and Risk-calibrated Supersparse Linear Integer Models (RiskSLIM) for

risk assessment applications. Both SLIM and RiskSLIM solve discrete optimization

problems to learn scoring systems that are fully optimized for feature selection, small

integer coefficients, and operational constraints. We formulate these problems as in-

teger programming problems and develop specialized algorithms to recover certifiably

optimal solutions with an integer programming solver.

We illustrate the benefits of this approach by building scoring systems for real-

world problems such as recidivism prediction, sleep apnea screening, ICU seizure

prediction, and adult ADHD diagnosis. Our results show that a discrete optimization

approach can learn simple models that perform well in comparison to the state-of-

the-art, but that are far easier to customize, understand, and validate.

Thesis Supervisor: Cynthia Rudin

Title: Associate Professor of Computer Science

Duke University
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Chapter 1

Introduction

Scoring systems are sparse linear classification models with small integer coefficients.
Starting with the work of Burgess (1928), these models have been extensively used
for decision-making and risk assessment in domains where humans have traditionally
made decisions. They are currently deployed for a large number of applications in
medicine (e.g. to predict mortality in the ICU, or diagnose PTSD), criminal justice

(e.g. to assess recidivism risk), and finance (e.g. to assess creditworthiness).

The widespread deployment of scoring systems is inherently related to the fact
that they are easy to use, understand, and validate. On one hand, sparse linear
models with small integer coefficients let users make quick predictions through simple
arithmetic, without a computer or a calculator. In medicine, for instance, sparsity
and small integer coefficients produce models that physicians can memorize using a
mnemonic (see e.g. the HEART score of Six et al., 2008, in Figure 1.3). On the other
hand, these qualities also address key limitations in human cognition, such as limits
in our ability to handle over four items in working memory (Cowan, 2010), and to
track associations between three or more entities (Jennings et al., 1982). In light of
these limitations, scoring systems help users understand how multiple input variables
are used in the prediction. This allows users to easily validate the model without
additional analysis, and provides them with the option to overrule the model in an
informed manner when needed.

In spite of extensive deployment over the past century, there has been no stan-
dardized approach to build scoring systems. This is partially due to the fact that
models have to satisfy operational constraints in order to be used and accepted in
such domains (see e.g. the requirements for the EDACS score in Figure 1.6). Oper-
ational constraints are difficult to address in a systematic manner because they are
related to ill-defined model qualities (e.g. usability, understandability, and alignment
with domain expertise) that can change significantly across applications. As a result,
the majority of scoring systems are still developed ad hoc. In some cases, models are
built by combining traditional statistical methods with heuristics and expert judge-
ment (e.g. preliminary feature selection by experts, logistic regression, scaling, and
rounding). In others, models are hand-crafted by a panel of experts and data is used
for validation purposes only (e.g. for the CHADS 2 score for stroke prediction of Gage
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et al. 2001, and the National Early Warning Score to assess acute illness in the ICU
of McGinley and Pearse 2012).

The lack of a standardized approach to create scoring systems has important con-
sequences given their pervasive use in high-stakes applications. Models that are used
for applications such as sentencing and credit scoring may not perform as well as
they could. Moreover, model development may involve significant time and resources
as practitioners have to design entirely new approaches to address operational con-
straints. A unified approach can improve decisions in these domains by making it
easier for practitioners to build models that perform well and that address the con-
straints needed for deployment.

In this dissertation, we introduce a modern machine learning approach to learn
scoring systems from data:

- Supersparse Linear Integer Models (SLIM) to create data-driven scoring systems
for decision-making;

* Risk-calibrated Supersparse Linear Integer Models (RisKSLIM) to create data-
driven scoring systems for risk assessment.

In contrast to traditional approaches, both SLIM and RISKSLIM are designed to
learn scoring systems that are fully optimized for feature selection, small integer co-
efficients, and operational constraints. To this end, they solve discrete problems that
optimize and constrain exact quantities related to model performance and model
form. We formulate these problems as integer programs (IP) or mixed-integer pro-
grams (MIP) and aim to recover certifiably optimal solutions using a MIP solver.
This approach requires the solution to computationally difficult optimization prob-
lems. However, it has several major benefits in this setting:

1. It does not need to sacrifice accuracy to satisfy constraints on model form as
discrete optimization can directly optimize, penalize and constrain discrete model
qualities such as the number of mistakes (via the 0-1 loss) or the number of features
(via the fo penalty).

2. It avoids the ad-hoc training process required by current methods. Specifically,
practitioners can directly encode a wide range of operational constraints into the IP
formulation, and fit scoring systems without post-processing or parameter tuning.
Further, they can solve this formulation using a commercial solver, without the
need to implement a new algorithm.

3. It can pair models with a certificate of optimality, which be used to make informed
choices between models in the presence of real-world constraints.

In light of these benefits, a major goal of this dissertation is to recover certifi-
ably optimal solutions to these problems for the largest possible datasets. Over the
past 30 years, developments in computer hardware and integer programming have
allowed modern MIP solvers to handle combinatorial optimization problems for a
wide range of real-world applications. In our setting, commercial solvers can recover
good feasible solutions for small to mid-sized instances when used off-the-shelf. On
larger instances, however, an off-the-shelf approach is unable to find good feasible
solutions or pair models with a certificate of optimality. To address this, we develop
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RISK FACTORS FORANY OFFENSE
Possible Offenders

Points PoWnATetal
Numberof prior OTNs(a fterjudicial review)

0 0
1 1

ED 2-3 2 2
4-5 3

Greater than 5 4
Priorpublic admin. sl o

No 0
Yes 1 1

Prior danger 11 person/sexua gffme
NI No 0 0

Yes 1
Cwrrent offense type

Personal/Sex 0
swrlary I All Other 1 1
Gender

Female 0
Male Male 1 1
Age

Greater than 49 0
40-49 1
30-39 2
26-29 3

25 21-25 4 4
Less than 21 5

Mijiple currant convicons In JP
No 0

FV. Yes 1 1
PriorJuvenile adudication

No 0
Yes I I

TOTAL RISK SCORE 11

RECRIMM RATE (NY OFFEMSE)WH A MN SCOOM OF 11 73%

The graph below depicts the likelihood of offenders at OGS 6 being arrested for
ANY OFFENSE within three years of release from incarceration or imposition of
probation/cotwly 1P based on their risk score.
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Percentage of Offenders Arrested for ANY OFFENSE
within 3 Years by Risk Scmre

22 27 0

0-1 2 3 4 5 6 7 a 1 10 12 12 1 24-
is

Risk Score

The box represents where the majority of offerders lie [one standard deviation
above and one standard deviation below the average risk score of 7.91.

The striped bar represents the recidivism rate for ANY OFFENSE for offenders
with a risk score of 11.

WO EC an .r~i- saasmu d~ss hfMa ~ s

Figure 1.1: Risk score developed by the Pennsylvania Commission on Sentencing (Penn-
sylvania Bulletin, 2017). The creation and validation of this model took over 7 years: model
development started in 2010 (Pennsylvania Code, 2010) and a final model was approved for
use in 2017 (Pennsylvania Bulletin, 2017).
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The Alcohol Use Disorders IdentifIcation Test: Interview Version
Fkad quetions as written. Flecord answers carefully Eegin the AUDrr by saying "Now lam going to ask
you sme questions about your use of alcoholic beverages during this past year." Bplain what is meant
by "alcoholic beverager by using local examples of beer, wine, vodka, etc. Code answers In terms of
"standard drinks. Race the correct answer number In the box at the right.

1. How often do you have a drink containing alco- 6. How often during the last year have you needed
hol? a first drink in the morning to get yourself going
(0) Ner [Slp to Os 9-10] after a heavy drinking session?
(1) Monthly or less (0) Newr
(2) 2 to 4 times a month (1) Lee than monthly
(3) 2 to 3 times a week (2) Monthly
(4) 4 or more times a week (3) Weekly

(4) Daily or almos daily e

2. How many drinks containing alcohol do you have 7. How often during the last year haew you had a
on a typical day when you are drinking? feeling of guilt or remoree after drinking?
(0) 1 or 2 (0) Never
(1) 3 or 4 (1) Lessthan monthly
(2) 5 or 6 (2) Monthly
(3) 7, 8, or 9 (3) Weekly
(4) 10 or more (4) Daily or alnot daily

3. How often do you have six or more drinks on one 8. How often during the last year have you been
occasion? unable to remember what happened the night
(0) Never before because you had been drinking?
(1) Lees than monthly (0) Newr
(2) Monthly (1) Lesthan monthly
(3) Weekly (2) Monthly
(4) Daily or almoat daily (3) Weekly
Sdp to Qiestions9 and 10 if Totaf S!re (4) Daily or almoat daily
for Qtestions 2 and 3 = 0

4. How often during the last year have you found 9. Hlve you or someone else been Injured as a
that you were not able to stop drinking once you result of your drinking?
had started? (0) No
(0) Newr (2) Yes, but not in the last year
(1) Less than monthly (4) Yes, during the las year
(2) Monthly
(3) Weekly
(4) Daily or almost daily

5. How often during the las year have you failed to 10. Hasarelative or friend or a doctor or another
do what war normally expected from you health worker been concerned about your drink-
because of drinking? ing or suggested you cut down?
(0) Newr (0) No
(1) Lessthan monthly (2) Y's, but not in the last year
(2) Monthly (4) Yes, during the last year
(3) Weekly
(4) Daily or almost daily

Fecord total of specific items here
if total is greater than reoimmended cut-off, cunait Lher's Manual.

Intervention AUDIT score*

Alcohol Education 0-7

Smple Advice 8-15

Smple AdVce plus Brief Counseling
and Continued Monitoring 16-19

Feferral to coedalist for Diagnostic 20-40
B/aluation and Treatment

Figure 1.2: AUDIT scoring system for alcohol use disorders (Babor et al., 2001).
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ilstory Highly suspicious 2
Moderately suspicious I
Slightly suspicious o

ECG Significant ST depression 2
Nonspecific repolarisation disturbance 1
Normal 0

Ae S65 year 2
45455 year 1
<45 year 0

Risk factors -3 risk factors or history of atheroscleratic disease 2
1 or 2 risk factors I
No risk factors known 0

Iroponin >2x normal limit 2
1-2x normal limit 1
5normal limit 0

Total

Figure 1.3: HEART score to screen for adverse cardiac events in the emergency room (Six
et al., 2008). This model is designed to be used as a mnemonic. Six et al. (2008) recommend
discharging patients with a total score < 3, monitoring patients with a total score between
4 to 6, and pursuing aggressive treatment for a total score > 7.

specialized techniques that can be used effectively with modern solvers, such as algo-
rithms to reduce data-related computation, heuristics to produce feasible solutions,
and techniques to close the optimality gap.

Our work provides a principled approach to create these simple predictive models
that have been used for nearly a century. The broader contributions of this disserta-
tion include:

- We show that simple scoring systems can perform just as well as state-of-the-art
machine learning methods.

- We develop new techniques and algorithms to effectively solve an important class
of risk minimization problems.

- We demonstrate the value of discrete optimization in terms of improved perfor-
mance, customization, reduced parameter tuning.

* We present theoretical results on sparse linear models with integer coefficients.
These results provide insights as to why scoring systems perform well, why they
generalize, and why they are easy to understand.

- We illustrate the value of scoring systems through real-world applications in medicine
and criminal justice, where model deployment hinges on the ability to address qual-
itative constraints such as usability and interpretability.
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EMERGENCY DEPARTMENT ASSESSMENT OF CHEST PAIN SCORE (EDACS)
Clinical Characteristics Score
a) Age (Pleawe CirceSINGLE Best Anower)

18-45 +2
+4

51-5 +6
56-60 +8
61-45 +10
6-70 +12

71-75 +14
76-M +16
814 +18
86+ +2)

b) Ma m aex (Please cirde if true) +6
c) Aged 18-I0 years and either
(I) known cunary artery diae or +4
(iI)3 riak factors
d) Symptoem and signs (Cink ach if pt)
Diapluremis +3
Radiaus to arm or shoulder +5
Paint occurred or worsened with inspiration -4
Paint is rqxduced by palpation -6

EDACS Toal (Plase Add all diaded grs and oee to dit)

EDACS-ACCELERATED DIAGNOSTIC PROTOCOL (EDACS-ADP)
Low riuk* () EDACS<16

(ii) No new isehaemia on BOG
(iii) 0 and 2 h troponin boh negative

Rweu nandation Patient safe for diadiarge to early auttataiw
follow-up investigatm (or procssd to earlier

atift -st
Not low risk (i) EDACS 216

(ii) New iviiacia an ECEG
Fither 0 or 2 h* troponin positive (see footnote)

Rs-caa Poceed with uual mewith fWher obrvation
and delayed Wopoin

Figure 1.4: EDACS score to screen for adverse cardiac events in the emergency room
(Than et al., 2014). EDACS appears to be a risk assessment tool, but it does not produce
risk estimates. Here, the model is effectively being used as a decision-making tool: the
corresponding decision rule is to predict that someone is at "high-risk" of an adverse cardiac
event if the total score > 16.
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ZzPEcTANCY RATEs or PAmoiE Viot.ATiow AND Now-VIoLATon

Pmr Porn Nvunm - ExpacW cr RAus Pon uc r on FAmvan
Nwuvax or ot Max Par Cent Violatarm of Parc Per OCet No.-

FAcres 0v Of RAC violatais 0(
rn Avwunia Oaow Minmr M^1W Total Parole

16-21 .6 1.6 .... 1.5 98.5
14-15 140 .7 1.8 2.2 97.8
is 1 5.5 .3 8.5 91.2
12 106 7.0 8.1 15.1 84 9
11 110 13.6 9.1 22.7 77.3
10 $a 19.8 14.8 34.1 65.9

7-9 287 14.0 28.9 43.9 56.1
-s 86 28.4 43.7 07.1 32.9

2-4 26 12.0 64.0 76.0 24.0

SOCIAL Tyrx iN RE.ATION TO PAIROLE VIOLATION

AL *Th VzosaToX RAT E INeT rgoirMOS
Ponta" Menard JolHt

Al pl o ............................................ 22 1% 26.5% 28.4%Ho o ................................................ 14 8 46.8 70.6
Ne 'er-do-mmG.............................................. 32.8 25.6 63.0
M es" m 8...................................... .. 30.0 9,5
D runkard. ........... 7.5 38.9 22.7
Ga ter............................................... 22.7 28.2 24.1Rae" ,t nal ant.......................................... 86.8 16.7 4.0Fa m b ................................................. 11.0 10.2 16.7
D rug . . ............................. . . . . . . . .7 8 .

Figure 1.5: Risk score proposed to predict success on parole by Burgess (1928). The model
assigns a total score for each prisoner by summing the points from 21 factors (selected by
domain expertise). We show the table used to determine risk (top) along with the table
used to determine points for the "social type" factor (bottom). Here, a person receives a
point if the violation rate for their social type exceeds the "average for all persons"
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1.1 Background

In what follows, we discuss related work in applied domains, machine learning, and
discrete optimization. We aim to provide background on the use and development of
scoring systems and to describe relevant work in machine learning and optimization
at a high level. We include a discussion of related work from a technical perspective
in later chapters.

1.1.1 Scoring Systems

In Table 1.1, we present a short list of well-known scoring systems used in medicine,
criminal justice, and finance. All of these models are developed for prediction prob-
lems where the outcome of interest is a binary variable (e.g. yi = +1/ - 1 if a client
default/does not default on a loan). Although this is the case for most models, some
scoring systems are developed for prediction problems where the outcome variable is
ordinal (e.g. the pain scales of Payen et al., 2001).

The widespread deployment of scoring systems in these domains is related to the
fact that sparse linear models are easy to use, understand, and validate. In Table
1.2, we provide a list of statements where authors in each of the previous domains
describe the benefits of this format.

Explicitly, sparsity and small integer coefficients affect usability, understandability,
and validation as follows:

- Usability: Sparse linear models with small integer coefficients let users make quick
predictions without a computer or a calculator. In many medical applications, for
example, models are designed so that they can be memorized using a mnemonic

(see e.g., the HEART score of Six et al., 2008).

- Understandability: Scoring systems help overcome well-known deficiencies in hu-
man cognition, such as limitations in handling more than 4 cognitive entities in
working memory (Cowan, 2010), and limitations in estimating the association be-
tween 3+ variables (Jennings et al., 1982). In light of these limitations, sparsity lim-
its the number of items in working memory. Linear models impose a flat structure
that allows users to gauge the influence of each variable by comparing coefficients,
which is easier when a model uses small integer coefficients Reyna and Brainerd
(2007). Lastly, when a scoring system uses binary input variables, the decision rule
has a Boolean representation, which can further help users understand interactions
between multiple variables (see Section 2.1.3).

- Potential for Validation: The ability to understand how the model works allows
users to validate its predictions, which is crucial in high-stakes applications such
as sentencing (Pennsylvania Bulletin, 2017). In particular, a user can see all of
the variables that a scoring system uses, gauge the importance of each variable,
and understand how the variables interact to produce the predicted outcome. This
allows users to validate the model during deployment and override the prediction
in an informed way if needed.
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Medicine
SAPS 1, 11, 111, to assess ICU mortality risk

APACHE 1, 11, 111, to assess ICU mortality risk

CHADS 2 , to assess stroke risk

TIMI, to assess risk of death and ischemic events

SIRS, to detect system inflammatory response syndrome

CURB-65, to screen for pneumonia

HEART, to screen for adverse cardiac events

EDACS, to screen for adverse cardiac events

AUDIT, to detect harmful alcohol consumption

ASRS, to screen for adult ADHD

PCL, to screen for PTSD

Criminal Justice
Ohio Risk Assessment System

Kentucky Pretrial Risk Assessment Instrument

Salient Factor Score

Criminal History Category

Offense Gravity Score

Finance
Z-Score, to predict bankruptcy

F-Score, to assess the strength of a company's balance sheet

M-Score, to detect manipulation in reported earnings

Moreno et al. (2005)

Knaus et al. (1981, 1985, 1991)

Gage et al. (2001)

Antman et al. (2000)

Bone et al. (1992)

Lim et al. (2003)

Six et al. (2008)

Than et al. (2014)

Babor et al. (2001)

Kessler et al. (2005b)

Weathers et al. (2013)

Altman et al. (2000)

Piotroski (2000)

Beneish et al. (2013)

Table 1.1: Scoring systems used in medicine, criminal justice, and finance. An extensive
list of scoring systems used in medicine can be found at www.mdcalc.com. This list does
not include models that are used for credit scoring, which have the same format but are not
published due to their proprietary nature (see Finlay, 2012).
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Hoffman (1994)

U.S. Sentencing Commission (1987)
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Domain Reference Quote

"Ease of use might be facilitated by presenting a

rule developed from logistic regression as a score,
where the original predictor weights have been

Medicine Than et al. (2014) converted to integers that are easy to add

together... Though less precise than the original

regression formula, such presentations are less

complex, easier to apply by memory and usable

without electronic assistance."

"It is commonplace... for fine-tuned regression

coefficients to be replaced with a simple-point
Criminal Justice Duwe and Kim (2016) system... to promote the easy implementation,

transparency, and interpretability of

risk-assessment instruments. "

"presenting a linear model in the form of a
scorecard is attractive because it's so easy to

Finance Finlay (2012) explain and use. In particular, the score can be
calculated using just addition to add up the
relevant points that someone receives"

Table 1.2: Recent quotes on why sparse linear models with small integer coefficients are
used in domains such as medicine, criminal justice, and finance.

1.1.2 Model Development

The approaches used to create scoring systems can vary significantly within the same
domain (see e.g. the various techniques used in criminal justice described in Got-
tfredson and Snyder, 2005; Bobko et al., 2007; Duwe and Kim, 2016), and even within
similar applications (see e.g. the different approaches used to create models to assess
the risk heart-related illness Six et al., 2008; Antman et al., 2000; Than et al., 2014).

A key reason for this is because predictive models in domains such as medicine
and criminal justice need to obey additional operational constraints to be used and
accepted. In some cases, these constraints can be explicitly stated. Reilly and Evans
(2006), for example, describe the requirements put forth by physicians when building
a model to detect major cardiac complications for patients with chest pain:

" Our physicians... insisted that a new left bundle-branch block be consid-
ered as an electrocardiographic predictor of acute ischemia. In addition,
they argued that patients who are stratified as low risk by the prediction rule
could inappropriately include patients presenting with acute pulmonary
edema, ongoing ischemic pain despite maximal medical therapy, or unsta-
ble angina after recent coronary revascularization (52). They insisted that
such emergent clinical presentations be recommended for coronary care
unit admission, not telemetry unit admission."

In other cases, however, operational constraints may depend on qualities that are
difficult to define a priori. Consider for example, the following statement in Than
et al. (2014), that describes the importance of sensibility for deployment:
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"An important consideration during development is the clinical sensibility
of the resulting prediction rule [..] Evaluation of sensibility requires judg-
ment rather than statistical methods. A sensible rule is easy to use, and
has content and face validities. Prediction rules are unlikely to be applied
in practice if they are not considered sensible by the end-user, even if they
are accurate."

Terminology Meaning

(a)
Sensibility This refers to whether a prediction rule is both clinically reasonable and easy to use. This is more

based on opinion than statistical methodology.
1. Content validity For a rule to have content validity, the items included must be sensible, with no obvious omissions and

the way that these variables are organised appears suitable for the objectives of the rule.
2. Face validity This is a subjective interpretation of the validity of the rule by the user. The face validity of a rule will

depend on the expectations and beliefs of the user, and may not be associated with statistical
validity, but is essential for end-user uptake.

To maximise face validity and ensure end-user trust, it may be necessary to include variables found to
be statistically suboptimal in the final prediction model.

3. User friendliness This refers to how easy the rule is to use. This depends on the demands the rule will place on memory,
complexity of calculations in the absence of electronic devices, format and layout of the rule.

Figure 1.6: Table of qualitative requirements for the EDACS scoring system (see Box 1(a)
in Than et al., 2014).

Techniques used in Model Development

Common techniques used in model development include:

* Heuristic Feature Selection: Many approaches use heuristic feature selection to
reduce the number of variables in the model. Model development pipelines can
often involve multiple rounds of feature selection, and may use different heuristics
at each stage (e.g. Antman et al. 2000 uses a significance test to remove weak
predictors, then uses approximate feature selection via forward stepwise regression).

* Heuristic Rounding: Many approaches use rounding heuristics to produce models
with integer coefficients. In the simplest case, this involves scaling and rounding the
coefficients from a logistic regression model (Goel et al., 2016) or a linear probability
model (U.S. Department of Justice, 2005). The SAPS II score (Le Gall et al., 1993),
for example, was built in this way ("the general rule was to multiply the # for each
range by 10 and round off to the nearest integer.")

- Empirical Risk Assessment: In risk assessment applications, many approaches de-
termine the coefficients of the model using logistic regression. Although these mod-
els are capable of generating a predicted risk estimates for each score through the
logit function, the final model typically uses empirical risk estimates determined
using an out-of-sample population (Six et al., 2008).

* Expert Judgement: A common approach to model development involves having a
panel experts build a model by hand, and using data to validate the model after it
is built (e.g. for the CHADS 2 score for stroke prediction of Gage et al. 2001, and
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the National Early Warning Score to assess acute illness in the ICU of McGinley

and Pearse 2012). Expert judgement can also be used in data-driven approaches

to model development. In developing the EDACS score (Than et al., 2014), for

example, the model was learned from data and expert judgement was used to: (i)
determine a scaling factor for the coefficients (" The beta coefficients were multiplied

by eight, which was the smallest common multiplication factor possible to obtain a

sensible score that used whole numbers and facilitated clinical ease of use.") (ii)

convert a continuous variable into a binary variables ("Age was the only continuous

variable to be included in the final score. It was converted to a categorical variable,

using 5-year age bands with increasing increments of +2 points.")

Unit Weighting: This technique aims to produce a score by adding all variables

that are significantly correlated with the outcome of interest. Unit weighting is

prevalent in the criminal justice community (see e.g. Bobko et al., 2007; Duwe and

Kim, 2016), where it is referred to as the Burgess method (as it was first proposed

in Burgess, 1928). Unit weighting is often motivated by empirical work showing

that linear models with unit weights may perform surprisingly well (see e.g. Einhorn

and Hogarth, 1975; Dawes, 1979; Holte, 1993, 2006; Bobko et al., 2007).

T fraining Pipelines

Many scoring systems are built using complex training pipelines that combine tradi-

tional statistical techniques, heuristics, and expert judgement. The TIMI Risk Score

of Antman et al. (2000), for example, was developed using the following training

pipeline:

1. "A total of 12 baseline characteristics arranged in a dichotomous fashion were

screened as candidate predictor variables of risk of developing an end-point

event"

2. "After each factor was tested independently in a univariate logistic regression

model, those that achieved a significance level of P<.20 were [retained]."

3. "[The remaining factors]... selected for testing in a multivariate step-wise (back-

ward elimination) logistic regression model. Variables associated with P < .05

were retained in the final model."

4. "After development of the multivariate model, the [risk predictions were deter-

mined]... for the test cohort using those variables that had been found to be

statistically significant predictors of events in the multivariate analysis.

5. "The score was then constructed by a simple arithmetic sum of the number of

variables present."

Here, the training pipeline combines well-known statistical techniques. The pipeline

is unlikely to produce in a scoring system that attains the best possible performance

for several reasons, namely:

* Decisions involving feature selection and rounding are made sequentially (e.g. Steps

1-3 involve feature selection, Step 5 involves rounding).
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* The objective function that is optimized at each step differs from the performance
metric of the final model (i.e. the calibration error, which measures the reliability

of risk estimates).

- Some steps optimize conflicting objective functions (e.g. backward elimination

optimizes the error rate, while the final model is fit to optimize the logistic loss).

- Some steps do not fully optimize their own objective function (i.e. backward elim-

ination does not return a globally optimal feature set).

- Some steps depend free parameters that are set without validation (e.g. the thresh-

old significance level to keep each feature).

* The final model was not fit with all of the training data. Here, Steps 4 and 5 use

data from a test cohort that may have been useful in improving the fit of the model.

* The final model uses an empirical risk estimate for each score (i.e. the predicted risk

for each score simply represents the % of patients in the test cohort with y = + 1).

* The final model uses unit weights.

Reasons for Ad Hoc Development

There are several potential reasons to explain the prevalence of ad hoc approaches in

applied domains, and the lack of concern surrounding performance guarantees.

* It is difficult to design methods that can address the wide range of constraints that

are required for each application.

- There are few empirical studies that benchmark the performance effects of different

approaches (e.g. preliminary feature selection via significance testing vs. backward

stepwise regression). It is difficult to design a study given the number of distinct

approaches that are used in practice. It is also unlikely that such a study will pro-

duce impactful findings given that many approaches incorporate domain expertise

(e.g. for feature selection, or rounding).

- Models are primarily developed by researchers in applied domains. In light of this,
the methods used to build the model only represent a single stage of the overall

model development process. Other important aspects of model development include

data collection, prescribing treatment options for each score, and validating the

performance of the model on a new population.

- Models are primarily developed for tasks that are traditionally performed by hu-

mans (e.g. diagnosing illness, approving loans, granting parole). In these appli-

cations, any model may be acceptable so long as it outperforms random guessing

(i.e. if the task is currently performed exclusively by humans), or outperforms an
existing model.

Consequences of Ad Hoc Development

The lack of a standard methodology to build scoring systems has several important

consequences, namely:
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* Suboptimal Performance: Models can perform poorly compared to models built us-

ing modern data-driven methods (see e.g., the performance of CHADS 2 in Letham

et al. 2015 and "Burgess" scoring systems in Duwe and Kim 2016).

- No Feasibility Guarantee: Ad hoc approaches cannot guarantee that they will pro-

duce a feasible model in new settings (e.g. under additional operational constraints,
on a different dataset, in a different application).

* No Performance Guarantee: Ad hoc approaches cannot guarantee that they will

produce the best possible model. In an application such as sentencing in the crim-

inal justice, a model must be easy to use but also perform well. In light of the

trade-offs between accuracy and usability, practitioners need to provide extensive

additional analysis to show that their proposed model does not sacrifice too much
performance in order to be usable (see e.g. validation studies for the sentencing

tool in Figure 1.1, described in Pennsylvania Commission on Sentencing 2012).

* No Performance Objective: The lack of a formally defined problem affects the

development of both models and methods. Without a clear performance objective
in place, scoring systems are often built using the wrong techniques and evaluated

using the wrong metrics. In criminal justice, for instance, tools that are used for

decision-making are built using methods for risk assessment (e.g. logistic regression)
and evaluated using metrics for ranking (e.g. AUC). In medicine, for example, many
physicians are unaware of the correct performance metric for a risk assessment tool

(e.g. calibration error), which leads to the proliferation of techniques that affect
risk calibration (e.g. scaling before rounding).

1.1.3 Related Work in Machine Learning

Sparse Linear Classification

Although many scoring systems are built using traditional classification methods,
modern methods for sparse linear classification are ill-suited to build them because:

(i) they need to be paired with a rounding heuristic to produce models with inte-
ger coefficients; (ii) they may not include built-in controls to address operational
constraints; and (iii) they optimize surrogate measures to ensure scalability.

The use of surrogate measures merits further discussion given the prevalence of
methods that optimize surrogate measures. The methods in this dissertation do not
optimize surrogate measures for two reasons:

1. Methods that optimize surrogate measures (e.g the hinge loss and the fi-penalty)
do not fit models that attain the best possible trade-off between accuracy and
sparsity. Surrogate loss functions, for example, are not robust to outliers (Wu and

Liu, 2007; Long and Servedio, 2010). Similarly, fi-penalization is only guaranteed
to recover the correct sparse solution (i.e. the one that minimizes the to-norm)
under restrictive conditions that may not be satisfied in practice (see Lin et al.,
2008, for a discussion).

The empirical results in this work suggest that the loss in performance due to
convex surrogates is substantial in constrained settings (e.g. when fitting highly
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sparse models with real-valued coefficients, or when these methods are paired with
rounding heuristics to produce integer coefficients). This may be true in other
settings, as recent methods have aimed to replace surrogate with exact measures,
such as methods that optimize the 0-1 loss for accuracy (see e.g. Brooks, 2011;
Nguyen and Sanner, 2013), and penalize the to for exact feature selection (see e.g.
Neumann et al., 2005; Liu and Wu, 2007).

2. Methods that optimize surrogate measures typically introduce free parameters. In
practice, this means that users have to tune the free parameters, and use nested
cross-validation (CV) to obtain an unbiased estimate of model performance. In a
standard nested CV setup, methods have to be run multiple times (e.g. 1 lOP times
for a nested CV setup with 10 outer folds and 10 inner folds over a free parameter
grid with P total instances). The time required to complete the training process
can be substantial if each run does not terminate quickly (e.g. for methods such as
to-penalized SVM that use optimize both surrogate measures and exact measures).
In this case, it is faster to use an approach that does not require parameter tuning.

Linear Classification with Integer Coefficients

There have been some methods proposed for the purpose of building simple linear
models with integer coefficients, namely:

- Chevaleyre et al. (2013) aim to fit models for decision-making by solving an integer
programming problem that optimizes the hinge loss and rounding coefficients to
+1 or -1.

- Carrizosa et al. (2016) aim to fit models for decision-making by solving an integer
programming problem that optimizes the hinge loss and restricts coefficients to
small values.

* Ertekin and Rudin (2015) propose a Bayesian approach to produce models for
risk-assessment. This approach has the benefit in that it produces a posterior
distribution on the coefficients.

- Jung et al. (2017) propose a method that combines stepwise forward feature selec-
tion, logistic regression, scaling, and rounding. The resulting method produces risk
assessment tools with high AUC, but poor risk calibration (see e.g. Chapter 6.4).

The optimization techniques in this dissertation can be used to solve the same
optimization problems as the ones considered by these methods. Further, they can
also be applied to learn certain classes of boolean classification models (see Chapter
2), such as AND-of-OR models for decision-making (Malioutov and Varslney, 2013)
and risk assessment (Wang et al., 2015). In contrast to these methods, the approach
in this dissertation can recover a globally optimal solution, provide a certificate of
optimality, address operational constraints, and scale seamlessly with the number of
samples in the training data when the problems use a convex loss function.

Although there has not been much theoretical work that has explicitly focused on
the problem of learning sparse linear classifiers with small integer coefficients, there
are two noteworthy results with practical value. In settings where the training data
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contains only binary variables, the decision-making models are effectively threshold
gates (Muroga, 1971; Long and Servedio, 2014). We can make use of results in
this area to understand regularization due to small integer coefficients, and establish
connections between discrete linear classification models and other kinds of rule-based
models. We discuss these connections in greater detail in Chapter 2.

Interpretable Machine Learning

Scoring systems are examples of interpretable predictive models. Such models are
becoming increasingly important for applications where predictive models output de-
cisions that significantly affect humans, as evidenced by several press surrounding the
use of predictive models in healthcare (Mukherjee, 2017) and criminal justice (Starr,
2014; Barry-Jester et al., 2015; Tashea, 2017; Angwin et al., 2016). In some appli-
cations, interpretable predictive models may be required by law. The Fair Credit
Reporting Act, for instance, requires an explanation when consumers are denied ac-
cess to credit in the United States. Similarly, upcoming EU regulations that require a
"right to an explanation" from algorithmic decision-making tools that affect humans
(Goodman and Flaxman, 2016).

Proposed approaches to handle interpretability in machine learning include:

- Sparsity: In statistics, sparsity refers to the number of terms in a model and
constitutes a standard measure of model complexity (Sommer, 1996; Riiping, 2006).
Several approaches aim to handle the interpretability through sparsity, as measured
by the number of coefficients in a linear model, the number of nodes in a decision
tree, and the number of rules in a rule set (Tibshirani, 1996; Zou and Hastie, 2005;
Efron et al., 2004; Hesterberg et al., 2008; Quinlan, 1999; Breslow and Aha, 1997;
Kohavi and John, 1997; Guyon and Elisseeff, 2003).

- Monotonicity: Several methods have focused on learning models that enforce mono-
tonic relationships between certain input variables and the predicted outcome (Paz-
zani et, al., 2001; Verbeke et al., 2011; Martens et al., 2011; Gupta et al., 2016).

* Transparency: A large body of work has aimed to develop transparent models,
which provide a textual or visual representation of the relationship between input
variables and the predicted outcome (as opposed to black-box models). Examples
of transparent classification models include linear models, decision trees (Quinlan,
1986; Utgoff, 1989; Quinlan, 2014), decision tables (Kohavi, 1995), rule lists (Rivest,
1987; Letham et al., 2013), and rule sets (Lakkaraju et al., 2016).

- Diagnostics: These techniques extract rules and prototype examples to illustrate
the relationship between input variables and the predicted outcome (Meinshausen
et al., 2010; Van Assche and Blockeel, 2007; Fung et al., 2005; Martens et al.,
2007; Bien and Tibshirani, 2011; Kim et al., 2015). Many diagnostics are model-
agnostic, meaning that they can be used to troubleshoot and generate insights from
predictive model. However, they are unable to address issues that they may reveal.

The approach in this dissertation can fit simple transparent models that are sparse,
that obey monotonicity constraints, and that do not require additional diagnostics to
extract rules.
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Handling Interpretability and Qualitative Constraints

The challenges of building interpretable models has been frequently discussed up
in the machine learning community for over two decades (see e.g., Pazzani, 2000;
Kodratoff, 1994; Freitas, 2014; Doshi-Velez and Kim, 2017). This discussion highlights
two major issues that make it difficult to handle interpretability from a methodological
perspective:

1. How to define interpretability? Pazzani (2000), for example, writes: "[There is
a].. conflicting... [and unfounded].. set of claims in the literature as to which

[type of model] ... is easiest to understand." User studies on interpretability, for
instance, often conclude that different predictive models are "most" interpretable
in different domains for different reasons (Subramanian et al., 1992; Kohavi and
Sommerfield, 1998; Allahyari and Lavesson, 2011; Huysmans et al., 2011). The no-
tion is subjective, domain-dependent, and multifaceted (Kodratoff, 1994; Pazzani,
2000; Freitas, 2014). Models that are interpretable to one audience may not be
interpretable for a different audience due to differences in their affinity for certain
types of knowledge representation, their exposure to the data, and their domain
expertise (see Kodratoff, 1994; Riiping, 2006; Freitas, 2014).

2. How to strike a balance between performance and interpretability? It is well-known
that there is a trade-off between performance and interpretability. However, the
precise trade-off depends on how we define interpretability, whether our method
returns a pareto-optimal model, and the difficulty of the learning problem. In
practice, this means that the trade-off changes significantly across each applica-
tion and should be re-evaluated each time. A related problem for practitioners
is that the target audience does not wish to explicitly define exact requirements
for interpretability, or know how much performance they are willing to sacrifice
for interpretability (e.g., Kodratoff 1994, mentions that interpretability is an "ill-
defined" concept, which is echoed by Doshi-Velez and Kim 2017). In this case, the
audience would rather have the flexibility to choose a model from a set of models
that do not violate interpretability related constraints.

The discrete optimization approach in this work provides a practical alternative to
address these issues. Instead of adopting a particular definition of interpretability, it
provides users with the ability to incorporate their exact requirements in the training
process, and recovers a model that optimizes performance under these constraints.
Since we fit models from a constrained hypothesis space, these models generalize, so
the performance on training data is reflective of the performance on test data. In this
way, users can evaluate the impact of their requirements on predictive performance,
and navigate these trade-offs in an informed manner.

This approach provides a promising alternative to handle other qualitative con-
straints, such as safety (Amodei et al., 2016) and fairness (Kamishima et al., 2011;
Dwork et al., 2012; Zafar et al., 2015). Such constraints are similar to interpretability
in that they depend on multiple model qualities, change across applications, and im-
pose unclear performance trade-offs. As a result, building models that address these
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constraints will require an approach that offers the flexibility to deal with different
definitions, and optimality guarantees that allow us to make informed comparisons
between different models.

1.1.4 Related Work in Optimization

The discrete optimization approach in this dissertation is broadly related to the ap-
plication of mixed-integer programming in supervised learning. In particular, our
work is related to linear classification methods that solve mixed-integer program-
ming problems (see the survey papers of Rubin, 2009; Lee and Wu, 2009; Fan and
Chaovalitwongse, 2009).

Early work in this area was primarily focused on the misclassification minimization
problem, which aims to fit a linear model that optimizes the 0-1 loss (Rubin, 1990;
Mangasarian, 1994; Asparoukhov and Stain, 1997). The first attempts at misclassifi-
cation minimization were able to fit models on small datasets with at most n = 200
examples (Joachimsthaler and Stam, 1990; Erenguc and Koehler, 1990). Subsequent
work was able to recover solutions for datasets with around n = 500 by developing
specialized algorithms and heuristics (Soltysik and Yarnold, 1994; Yanev and Balev,
1999; Rubin, 1997; Asparouhov and Rubin, 2004). The size of the datasets used in
these early applications may explain why MIP-based approaches have not been widely
used by the machine learning community.

Over the last three decades, commercial MIP solvers have been able to solve in-
creasingly large discrete optimization problems (Bixby et al., 2004; Bixby and Roth-
berg, 2007). This is due to improvements in computer hardware and implementations
that incorporate new techniques to improve branch and bound. Accordingly, recent
work has been able to solve MIPs to fit classification models for much larger datasets

(see e.g. Brooks, 2011; Nguyen and Sanner, 2013, for the misclassification minimiza-
tion problem), and that handle additional constraints (e.g. feature selection Glen,
1999; Liui and Wu, 2007; Goldberg and Eckstein, 2012; Guan et al., 2009; Nguyen
and Franke, 2012; Bertsimas et al., 2015; Sato et al., 2015, 2016).

The results from this stream of work show that MIP-based methods can now be
used to fit classification models that perform well on real-world datasets. These mod-
els typically correspond to feasible solutions with large optimality gaps (e.g. Brooks,
2011; Carrizosa et al., 2016; Bertsimas et al., 2015). In other words, they do not
necessarily reflect the performance of the best models that can be obtained using an
exact approach. In light of this, the fact that feasible models outperform state-of-
the-art methods suggests that "an approximate solution to the exact problem may
outperform an exact solution to the approximate problem" (Lin et al., 2008).

The discrete optimization approach in this dissertation differs from other MIP-
based methods in that it aims to not only improve performance, but address op-
erational constraints, and recover a certificate of optimality. Our results show that
certifiably optimal solutions to our problems correspond to models that not only have
better performance but that also have various other benefits in real-world applica-
tions.
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1.2 Organization

The remainder of this dissertation is organized as follows.
In Chapter 2, we introduce basic concepts, notation, and themes used in this dis-

sertation. We formally define an optimization problem to learn discrete linear classi-
fication models from data. We describe the kinds of models that can be built using
this framework and list the various operational constraints that they can address. We
discuss key properties of discrete linear classification models, such as generalization,
regularization, and complexity. We then describe how the optimization problems
are solved by modern MIP solvers, and how we can improve their ability to recover
certifiably optimal solutions in our setting.

In Chapter 3, we consider the problem of learning scoring systems for decision-
making. We formulate a discrete optimization problem to fit scoring systems that
fully optimized for accuracy, sparsity, and small integer coefficients. Our scoring sys-
tem problem is an integer program (IP), which minimizes the 0-1 loss for accuracy,
penalizes the to-norm for sparsity, and restricts coefficients to small coprime integers.
We refer to the optimal solution to this problem as a Supersparse Linear Integer Model
(SLIM). We present tight designed IP formulations for SLIM and techniques to im-
prove the ability of commercial MIP solvers to recover a certifiably optimal solution.
In addition, we present new theoretical results for scoring systems, including general-
ization bounds to motivate why these simple models perform well, and discretization
bounds that can be used to control the regularization due to small integer coefficients.
We end with an extensive set of numerical experiments to benchmark the accuracy
and sparsity of SLIM scoring systems against popular classification methods. These
results show that our approach can learn models that are accurate and sparse in a
matter of minutes.

We illustrate the benefits of our approach through two real-world applications. In
Chapter 4, we use SLIM to create a scoring system for sleep apnea screening in col-
laboration with the Massachusetts General Hospital Sleep Clinic. The results in this
chapter show our approach can address operational constraints related to accuracy
and model form without parameter tuning, and highlight the performance benefits
in solving an exact problem under such constraints. We discuss the importance of
our approach from a clinical standpoint, as our model can screen for sleep apnea
using information that can be extracted from electronic health records, without the
need for patient-reported symptoms. In Chapter 5, we use SLIM to develop decision-
making tools for a collection of recidivism prediction problems. Our work addresses
several important questions that have been raised by the criminal justice community
regarding trade-offs between accuracy, transparency, and interpretability. We show
that there may exist simple models for common recidivism prediction problems, and
discuss the importance of producing models that can be validated in this domain.

In Chapter 6, we turn to the the problem of learning scoring systems for risk
assessment, which we refer to as risk scores. We consider a discrete optimization
problem to fit risk scores that have good risk calibration and rank accuracy, and are
optimized for feature selection and small integer coefficients. The risk score problem
is a mixed-integer non-linear problem (MINLP), which minimizes the logistic loss,
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penalizes the fo-norm, and restricts coefficients to small integers. We refer to the op-

timal solution to this problem as a Risk-Calibrated Supersparse Linear Integer Model

(RiskSLIM). We show that solving the risk score problem using commercial MINLP
solvers can be time-consuming even on small instances. Accordingly, we present a

new cutting plane algorithm to recover the optimal solution to the risk score prob-

lem in a way that scales linearly in the number of samples and can be implemented

using a MIP solver. We further improve our algorithm with specialized techniques

to generate feasible solutions, narrow the optimality gap, and reduce data-related

computation. We illustrate the benefits of this approach through an extensive set of

numerical experiments, in which we compare the performance of RISKSLIM models

to those built using advanced heuristics.

We use RISKSLIM to create risk assessment tools for two real-world problems. In

Chapter 7, we create a customized risk score for ICU seizure prediction. In Chapter

8, we create a risk score for ADHD diagnosis from a self-reported questionnaire. Both

applications show how our approach can produce highly usable models by formulating

operational constraints.

PREDICT PATIENT HAS OBSTRUCTIVE SLEEP APNEA IF SCORE > 1

1. Age > 60 4 points ...

2. Hypertension 4 points + -
3. BMI > 30 2 points +

4. BMI > 40 2 points +

5. Female -6 points + -

ADD POINTS FROM ROWS 1 - 5 SCORE =_--_

Figure 1.7: SLIM scoring system for sleep apnea screening, developed in Chapter 4. This
model achieves a 10-CV mean test TPR/FPR of 61.4/20.9%.

PREDICT ARREST FOR ANY OFFENSE IF SCORE > 1
1. Age at Release 18 to 24 2 points

2. Prior Arrests > 5 2 points + -
3. Prior Arrest for Misdemeanor 1 point + - .

4. No Prior Arrests -1 point + -..

5. Age at Release > 40 -1 point + -.

ADD POINTS FROM ROWS 1-5 SCORE =__-_

Figure 1.8: SLIM scoring system for recidivism prediction, developed in Chapter 5. This
model has a test TPR/FPR of 76.6%/44.5%.
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1. AnyBriefRhythmicDischarge 2 points ...

2. PatternsInclude LPD 2 points + -
3. AnyPriorSeizure 1 point + -
4. Epiletiform or Discharge 1 point + -

ADD POINTS FROM ROWS 1-4 SCORE =-

SCORE 0 1 2 3 4 5 6
SEIZURE RISK 4.7% 11.9% 26.9% 50.0% 73.1% 88.1% 95.3%

Figure 1.9: RISKSLIM risk score for ICU seizure prediction, developed in Chapter 7. This
model has a 5-CV mean test CAL/AUC of 2.5%/0.801.

Never Rarely Sometimes Often Very Often

How often do you have trouble

concentrating on what people say to you 0 4 4 5 5
even when they speak to you directly?

How often do you leave your seat

in meetings or other situations in which 0 0 1 1 5
you are expected to remain seated?

How often do you have difficulty

unwinding and relaxing when you have 0 4 4 6 6
time to yourself?

How often do you find yourself finishing
the sentences of the people you talk to 0 0 2 2 2
before they can finish them themselves?

How often do you put things off until 0 2 2 4 4
the last minute?

How often do you depend on others

to keep your life in order and attend to 0 2 3 3 3
details?

SCORE < 13 14 15 16 17 18 > 19
ADHD RISK <5.0% 11.9% 26.9% 50.0% 73.1% 88.1% >95.0%

Figure 1.10: RISKSLIM risk score for DSM-5 adult ADHD, developed in Chapter 8. This
model has a 10-CV CAL/AUC of 1.5%/0.978.
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Binary Classification Pipeline.
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Chapter 2

Preliminaries

In this chapter, we introduce several important concepts related to scoring systems.
We define a general optimization problem that we solve to learn scoring systems from
data. Next, we present results related to the performance, generalization, and inter-
pretation of scoring systems. Lastly, we discuss how to solve the discrete optimization
problems using a modern mixed integer programming approach.

2.1 Optimization Problem

We start with a dataset of n i.i.d. training examples D = {(X,, yj)n_1} where xi E
X C Rd+' denotes a vector of features [1,, 1,. . . , T and y E 3 = {-1, 1} denotes
a class label. We consider linear classification models of the form

9 = sign((A, x)),

where A = [Ao, A,,... , Ad]T represents a vector of coefficients and A0 represents an
intercept. We learn the coefficients by solving an optimization problem of the form:

min l(A) + C - (D(2)
A (2.1)

s.t. A EL.

Here:

* 1(A) : Rd+1 x (X X y )n - R+ is a loss function that controls the overall fit of the
model;

- (D(A) : Rd+1 - R+ is a penalty function that induce qualities that are desirable but
may be sacrificed for greater accuracy;

- L c Zd+1 is a finite discrete coefficient set that encodes hard qualities that must
be satisfied;

SC > 0 is a trade-off parameter that controls the balance between accuracy and soft
qualities.
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2.1.1 Notation, Terminology and Assumptions

We provide a list of all notation used in later chapters in Table 2.1.
We denote the objective function of the optimization problem in (2.1) as

V(A) = l(A) + C - <D(A),

and an optimal solution as

A* E argmin V(A).
AcEr

We bound the optimal value as V(A*) E [Vmi", Vamx]. The optimality gap refers to
the quantity

vmin

In practice, the upper bound Vmax V(Abest) is set as the objective value of the best
feasible solution Abest E C, and Vmin is set using B&B algorithm (see Algorithm 1).
Solving the problem to optimality means that we have recovered a solution with an
optimality gap of E = 0.0%. This implies that we have found the best integer feasible
solution to (2.1) and paired with a lower bound Vm" = V.

For clarity of exposition, we make the following assumptions about the training
dataset D,:

(Al) n+, n- > 1 (at least one example from each class);

(A2) for all i E I, ij 0 for some j = 1, . . . , d (no null examples);

(A3) for all j E {1, . . , d}, xij $ 0 for some i E I (no null features);

(A4) for all j, k {1, ... , d}, xzj $ Xi,k for some i C I (no duplicate features).

2.1.2 Model Classes and Operational Constraints

The optimization problem in (2.1) generalizes a rich class of models based on the
choice of loss function, coefficient set, and training data. We provide a list of models
in Table 2.2. In this dissertation, we focus on scoring systems (Chapter 3) and risk
scores (Chapter 6). The techniques discussed in these chapters are broadly applicable
to any problem with the form of (2.1) so long as: (i) the loss function is discrete or
convex; (iii) the penalty function is discrete or linear; (iii) the coefficient set is discrete
and bounded.

The choice of a loss function and penalty function is an important design decision.
In this dissertation, we consider problems that avoid the use of surrogate measures. In
the scoring system problem, for example, the objective optimizes the 0-1 loss lo(A)
and penalizes the eo-norm. In the risk score problem, the objective optimizes the
logistic loss liog(A) and penalizes the fo-norm.

Given that exact measures result in difficult optimization problems, there are
several reasons to use them: (i) optimizing exact measures produce models that
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number of examples
number of dimensions

training dataset with n examples
index set of all examples
feature space
label space
feature vector for example i
label for example i
number of examples with features x = xi
index set for positive/negative examples
number of positive/negative examples

Model

94 predicted label for example i
A = (Ao, A 1,..., Ad) coefficient vector
Ao intercept term

set of coefficient vectors
/2j feasible coefficients for feature j
A 11", Aa min/max coefficient for feature j
A"'i, A"ax min/max coefficient for any feature j

trivial set of coefficient vectors for trivial models

Optimization Problem

Co fo penalty parameter
w+, w- misclassification cost for a positive/negative example
A* optimal set of coefficients

optimality gap

V(-) objective value function

l(.) loss function

101 () 0-1 loss function

liog() logistic loss function

[vmin, vmax] bounds on optimal objective value V(A*)

[Rmin, R"ma] bounds on optimal number of non-zero coefficients ||A*H1 0
[L"i", L max] bounds on optimal value of loss function 1(A*)

Table 2.1: Notation.
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attain Pareto-optimal trade-offs on the training data; (ii) problems that use exact
measures have trade-off parameters that can be set a priori; (iii) problems that use
exact measures can directly incorporate operational constraints that involve these
quantities in their feasible region. We provide further motivation for these choices
in Chapter 3 and Chapter 6, and illustrate their benefits through applications in
Chapters 4, 5, 7, and 8.

Model Class Optimization Problem

Scoring min loi(A) +Co lHAX
System s.t. A E

Risk min liog(A) + Co IIAI1 0A
Score s.t. A E L

Rulet min loi(A) + Co ||A1HOA
Set s.t. A E {o, 1 }d+1

min 10 1(A) + Co |HA|l0
Predictivet A
Checklist s.t. AO c {1,... , d}

A3 c {0, 1} j 1, ... , d

min lo 1(A) + Co 11A1 0

d

s.t. Aj=Z2kuk j 1,.,
Decisiont A 2.

List

u jk 1j 1 d
k=1

Ui O = o,1} j, k d

Table 2.2: Types of predictive models that can be represented as linear classifiers with
finite integer coefficients. Here we have used the penalty function <D(A) = ||A ll. All of these
models can be built by solving optimization problem in (2.1). Model classes marked with t
require training data that only uses binary input variables.
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Model Requirement Example

Feature Selection Choose up to 5 features

Group Sparsity Include either Male or Female, not both

Optimal Thresholding Use at most 3 thresholds for Age: E00 1 [Age < k] < 3

Hierarchical Structure If Male is in model, then include Hypertension

Monotonicity Ensure that the coefficient for Male is positive

Side Information Predict 9 = +1 when Male = TRUE and Hypertension = TRUE

Fairness Limit disparate impact between i E A, B to 80%: Pr 5=+1 iEA < 0.8
Pr q=+1jiEBj

Accuracy Restrict FPR to 20%

Table 2.3: Operational constraints that can be added to the feasible region of the opti-
mization problem (2.1).

2.1.3 Connections with Linear Threshold Gates

In problems where the training data contains only binary input variables, a linear clas-
sification model with finite integer coefficients is a Boolean function. As an example,
consider the linear model,

Q = sign (-1 + 2Male - 2Hypertension),

which can be viewed as the Boolean function,

Q = Male A -,Hypertension.

The relationship between linear classification models and Boolean functions has
been studied in early work in circuit design (Muroga, 1971) as well as more recent
work in computational learning theory (see e.g., HAstad, 1994; Servedio, 2007). For-
mally stated, every linear classifier with integer coefficients can be represented as a
Boolean function. However, not every Boolean function can be represented as a linear
classification model with integer coefficients. The class of Boolean functions that can
be represented as linear classification models are called linear threshold gates. The
theoretical results pertaining to linear threshold gates have several practical benefits
in our setting:

- We can use bounds on the size of the largest coefficient for a threshold gate to
determine a coefficient set that will guarantee no loss in training accuracy due to
the use of finite integer coefficients. In Theorem 2.1, for example, we use a bound
on the largest coefficient of a threshold gate from Schmitt (2012) to determine a
coefficient set L that is large enough to guarantee that we do not lose training
accuracy due to the use of finite integer coefficients.

- We can extract a Boolean function from any linear classification model with inte-
ger coefficients, which can help users understand the interactions between multiple
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variables. In practice, users can extract the Boolean function through inspection

(see e.g. the sleep apnea model in Chapter 4). Alternatively, the Boolean func-
tion can also be extracted by means of an auxiliary technique (see e.g. Fiat and
Pechyony, 2004, for an algorithm to extract a minimal height decision tree).

Theorem 2.1 (Coefficient Set for No Loss in Training Accuracy)
Given a training dataset D = (xi, yj)t1 with binary features xi E {O, 1}d+1, let
p E Rd+' denote the coefficients of a standard linear classifier.

If the coefficients of a discrete linear classifier are restricted to a finite set of
integer values A E L such that:

L= A E Zd+1 2l +d72d(d+ (2.2)
A| ' $(d +1)2 for j = 1,...,d

then, the most accurate classifier with finite integer coefficients will attain the same
training accuracy as the most accurate classifier with real-valued coefficients:

min 10,(A) = min loi(p),
AEL pERd+1

That is, there will be no loss in training accuracy in the optimal classifier due to
the use of finite integer coefficients.

2.1.4 Generalization

One of the key properties of scoring systems is that they generalize well. This obser-
vation is supported by the empirical results in this dissertation, and often mentioned
in the literature from applied domains (see e.g. work on the out-of-sample perfor-
mance of linear models with unit weights in Einhorn and Hogarth, 1975; Wainer,
1976; Dawes, 1979; Bobko et al., 2007).

We can motivate the generalization of these models from a machine learning per-
spective using ideas from structural risk minimization (Vapnik, 1998). Consider fit-
ting a classifier f : X -+ Y with data D, = (xi, yi)7 1 , where xi E X C Rd and
y E y = {-,1}. In Theorem 2.2, we present a well-known uniform generalization
guarantee on the predictive accuracy of all functions, f E F. This guarantee bounds
the true risk,

Rtrue(f) = Ex,yl [f(x) 5 y],

by the empirical risk,

RemnP(f) = 1 [f(Xi) # y]
i=1

and other quantities important to the learning process.
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Theorem 2.2 (Generalization of Discrete Linear Classifiers)
Let F denote the set of linear classifiers with coefficients A E L:

F= {f : X-+Y I f(x) =sign((A,x)) and AEL}.

For every 6 > 0, with probability at least 1 - 6, every classifier f E F obeys:

Rt rue(f) ; Remp"(f) + .O(I) - log(S)
2n

A proof of Theorem 2.2 can be found in Section 3.4 of Bousquet et al. (2004). The
result shows that more restrictive hypothesis spaces can lead to better generalization.
The bound is vacuous for most real-world problems unless the sample size n is suffi-
ciently large or the coefficient set C is sufficiently small. However, it provides some
motivation for using sparse linear models with integer coefficients without necessarily
expecting a loss in predictive accuracy.

We further improve the generalization bound in Theorem 2.2 for scoring systems in
Chapter 3.5, and use them to design a subsampling procedure to reduce data-related
computation in Chapter 6.3.3.
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2.2 Mixed Integer Programming

We aim to recover certifiably optimal scoring systems using a mixed integer pro-
gramming approach (see Wolsey, 1998, for an introduction). More precisely, given a
discrete optimization problem with the form of (2.1), we first formulate the problems
as an integer program (IP) or mixed integer program (MIP). We then solve these for-
mulations with a MIP solver (see Table 2.4). In what follows, we briefly describe the
branch and bound search process used by MIP solvers, then discuss how we aim to
improve this process for our setting.

MIP Solver Reference

CBC Forrest and Ralphs (2017)

CPLEX ILOG (2017)

SCIP Ganirath et al. (2016)

Symphony Ralphs et al. (2017)

Xpress FICO (2017)

Table 2.4: A list of commercial and open-source MIP solvers that can solve the optimization
problems in this dissertation. Annual performance benchmarks of several MIP solvers can
be found in http://plato.asu.edu/ftp/liilpc.html.

2.2.1 Branch and Bound

MIP solvers recover a certifiably optimal solution to discrete optimization problems
through branch and bound (B&B) search (Land and Doig, 1960). In what follows, we
describe the main components of B&B using Algorithm 1.

Algorithm 1 recovers a globally optimal solution to a discrete optimization problem
through a smart exhaustive search process. The search process recursively splits
the feasible region into disjoint partitions, and solves a linear programming (LP)
relaxation of the discrete problem over each partition at each iteration. This process
tracks the following quantities across iterations:

" Abest - the best integer feasible solution found (i.e. the incumbent solution);

" V"ax - an upper bound on the optimal value, set as the objective value of the
incumbent solution;

- Vm" - a lower bound on the optimal value, set as the smallest objective value of
the LP relaxation over all unexplored partitions.

- ,A = (Rt, vt)lxi - a collection of nodes that represent unexplored areas of the
feasible region. Each node is a convex partitions of the feasible region Rt and a
lower bound for the LP relaxation over that region vt.

Each B&B iteration aims to determine if a partition contains an integer feasible
solution that has a better objective value than the incumbent solution. The LP
relaxation can be used to assess this whenever:
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Algorithm 1 Branch and Bound Search

Input
MIP MIP formulati

SelectNode
SplitPartition
Estop E [0, 1]

on for optimization problem with the form of (2.1)

rule to choose a node from collection of nodes

rule to split a partition into disjoint subsets

optimality gap of acceptable solution

Initialize

(vmin, Vmax) +- (0, 0)
1o <- conv (C)
V4 0 vmin

N+- {(R, vo)}
E <- 00

1: while E > Estop do
2: (R', vt) & SelectNode (M)
3: solve LP(Rt)
4: VLP + optimal value to LP(R)
5: ALP optimal solution to LP('R
6: if ALP is integer feasible then
7: if VLP < V max then
8: Vmax _ P

9: Abest ALP

10: end if
11: else if ALP is not integer feasible

12: (7Z1i , t2) - S piit Partition (Rt
13: (vti, vt2) (VLP, VLP)
14: A <- .A U { (Rt1, Vtl), ( 7Zt2, Vt2

15: end if
16: +- AJ\ {(Zs, Vs) I vs Vmax}

17: Vmin ÷ ming v'

18: E <- 1- Vminymax
19: end while

Output: Abest

bounds on the optimal value

partition at root node

lower bound at root node

initial node set

initial optimality gap

>t is index of removed node

>update upper bound

>update incumbent solution

>R11, R12 are disjoint subsets of Rt

aVLP is lower bound for R1,t Rt2

>add child nodes to K

>prune suboptimal nodes

>global lower bound is smallest among nodes in K
>update optimality gap

> E-optimal solution to MIP
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(i) The LP relaxation is feasible and has an integral solution. In this case, the
search has found the best integer feasible solution for this partition.

(ii) The LP relaxation is feasible and has a continuous solution whose objective
value exceeds the current upper bound. In this case, the search has shown that
any integer feasible solution contained in this partition is provably suboptimal.

(iii) The LP relaxation is infeasible. In this case, the search has determined that
there is no integer feasible solution over this partition.

If none of these conditions hold, then the LP relaxation cannot be used to determine
if a partition contains a better integer feasible solution. In this case, the search splits
the region into two disjoint partitions that will be solved at later iterations.

B&B terminates when: (i) it has found an integer feasible solution and shown
that all other regions do contain a better solution; or (ii) the search has not found
any integer feasible solution, and shown that all other regions do not contain one.
In the first case, the incumbent solution corresponds to an optimal solution to the
discrete optimization problem. Here, the proof of optimality follows from the fact
that the search process has only discarded regions that did not contain an integer
feasible solution with a better objective value than the incumbent.

B&B search can be visualized in terms of a search tree (i.e. the B&B tree).
Here, each branch corresponds to disjoint region of the feasible region, and each node
represents a partition of the feasible region for which we solve an LP relaxation. The
total number of nodes in the tree reflects the total computation required to obtain
a certifiably optimal solution. In our setting, the size of the B&B tree is limited by
the number of distinct combinations of discrete variables in the MIP formulation of
the optimization problem 2.1. Since the number of discrete variables in (2.1) is finite,
the computation required to find an optimal solution is also finite. Formally, the
worst-case running time of any B&B algorithm is O(Tbh) where T is the maximum
time to process any given node, b is the maximum number of children generated at
any node (i.e. b = 2 for most MIP solvers), and h is the maximum depth of the tree
(i.e. h < min(n, ILI) for the problems that we consider).

The practical running time of a B&B algorithm depends on several factors:

* Node Processing Speed: The overall running time of B&B search is directly depen-
dent on the time to solve an LP at each node. This depends on the LP solver and
the LP formulation.

* Node Selection: The node selection rule affects the order in which the nodes are
processed (e.g. first-in-first-out, last-in-first-out, or node that defines the lower
bound).

- Branching Rule: When the LP returns a continuous solution that is not provably
suboptimal, the search process splits the partition into two subpartitions by means
of a branching rule. This rule typically uses splits by choosing a continuous variable,
and a direction to split (e.g. upward or downward).

- Strength of LP Relaxation: Stronger LP relaxations restrict the feasible region
without discarding the optimal solution. The optimal value to these problems is
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larger, which results in stronger lower bounds, and improves the ability of the search
to discard provably suboptimal regions (e.g. in Step 16). Stronger LP relaxations
may also improve the ability to find an integer feasible solution by eliminating
non-integer solutions that would otherwise be solutions of the LP relaxation.

- Symmetry: If a problem has multiple optima, then the size of the B&B tree will be
large because the algorithm will be unable to discard regions of the search space
that contain optimal solutions.

2.2.2 Working Effectively with a MIP Solver

Modern MIP solvers are able to substantially improve the performance of B&B search
through several techniques (see e.g. Achterberg, 2009, for a comprehensive overview).
Some common techniques include:

- Preprocessing. These techniques are designed to eliminate redundant variables and
constraints in the IP formulation. The goal is to reduce the size of the B&B tree
and speed up LP solution times (Gamirath et al., 2015; Achterberg et al., 2016).

* Variable Selection. Choosing good variables to branch on often leads to a dramatic
reduction in terms of the number of nodes needed to solve an instance PNtursson.

- Cuts. These techniques produce constraints ("cuts") that can be included in the
feasible region of the LP relaxation to eliminate non-integer solutions that would
otherwise be solutions of the LP relaxation. Cuts reduce the size of the B&B tree as
the additional constraints in the LP relaxation are either infeasible (which prevents
branching), or with larger objective values (which improves the effectiveness of
pruning).

- Heuristics. These techniques include: feasibility heuristics, to produce integer fea-
sible solutions; and polishing heuristics, to improve integer feasible solutions found
by the solver.

Although these techniques can dramatically improved the performance of B&B search
in modern solvers (Achterberg and Wunderling, 2013), they are also designed to
handle a broad class of discrete optimization problems. In practice, MIP solvers may
not effectively identify the structure within a specific class of problems and may use
techniques that lead to ineffective B&B search (see Klotz and Newman, 2013, for
a discussion). On difficult problems, this can significantly increase the computation
required to find good feasible solutions, and the time to recover a proof of optimality1 .

In order to address this, we develop several specialized techniques for our class of
problems that can be used effectively with modern solvers to recover provably optimal
solution. The key strategies that we use include:

'Klotz and Newman (2013), for example, mention: "[There] are many mathematically equivalent
ways in which to express a model, and each optimizer has its own set of default algorithmic parameter
settings. Choosing from these various model expressions and algorithmic settings can profoundly
influence solution time. Although it is theoretically possible to try each combination of parameters
settings, in practice, random experimentation would require vast amounts of time and would be
unlikely to yield significant improvements."
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* Tighter Formulations: We develop careful formulations that result in stronger LP
relaxations and tighter lower bounds throughout B&B.

- Symmetry Reduction: We aim to reduce symmetry in our problem by enforcing
preferences between solutions that would otherwise have the same objective value.
In scoring system problem, for instance, we require that solutions have coprime co-
efficients, and use a small fr-penalty to discard coprime solutions via perturbation.

- Reducing Data-Related Computation: We present a data reduction technique that
can be used to discard training redundant data (see Algorithm 3). We also present
a cutting-plane algorithm that decouples data-related computation from the B&B
search (see Algorithm 5).

- Cuts, Bounds, Heuristics: We design techniques to improve the lower bounds in
B&B search (Algorithms 2, 8, which can be viewed as cuts). We also propose
heuristics to polish solutions found by the MIP solver (Algorithm 6), and to produce
integer feasible solutions via rounding (Algorithm 7). Since these techniques are
used during B&B search, it is important for them to run quickly. Otherwise using
the techniques will end up slowing progress due to overhead.

2.2.3 Computational Complexity

The optimization problems that we consider in Chapters 3 and 6 involve NP-hard
decision problems, such as 0-1 loss minimization (Ben-David et al., 2003), Lo regular-
ization (Amaldi and Kann, 1998), and minimization over integers (Gary and Johnson,
1979). NP-hardness is a property that describes the worst-case computational com-
plexity for a general class of problems. Explicitly, these results state that there exists
certain instances of the optimization problems for which the time to find a certifiably
optimal solution using any algorithm has to scale exponentially with the size of the
instance. Such results do not fully characterize the running time associated with
solving these optimization problems. It may be that the datasets and constraints will
result in instances that do not correspond to the worst-case instance. Moreover, even
if running time scales exponentially, it may be manageable for instances that we need
to solve.

2.2.4 Scalability

The performance benchmarks in Chapters 3 and 6 show that we can find provably
optimal solutions to these problems for many real-world datasets. The running time
and scalability of this approach depends on several factors, namely:

* Constraints on Model Form. The constraints on model form affect the number of
feasible models and govern the size of the search space for the problem. For a fixed
dataset, the time to recover a provably optimal solution will decrease as the con-
straints become more stringent. If the constraints are too stringent, however, then
it may require more time to find a feasible solution that satisfies these constraints.
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- Convexity of the Loss Function. If the problem uses a convex loss (e.g. the risk
score problem), then running time scales linearly in the number of samples when
the number of dimensions is fixed (see e.g. the cutting-plane algorithm in Chapter
6). In this case, the overall running time is characterized by feature selection,
integrality restriction, and operational constraints.

* Separability of the Classification Problem. If the dataset contains more features
than samples, the classification problem is likely to be linearly separable. In this
setting, it becomes easy to find a solution that minimizes the 0-1 loss. Scalability
then depends on the difficulty of feature selection, integer restriction, and opera-
tional constraints.

- Desired Optimality Gap. B&B may find the optimal solution early on in the search
process, but require longer to pair it with a certificate of optimality. In practice,
a good feasible solution without a certificate of optimality corresponds to a model
that performs well on the training data. This model may still be deployed, as it
satisfies obeys all constraints and its performance can be evaluated on a test set.
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Chapter 3

Optimized Scoring Systems

In this chapter, we consider the problem of learning scoring systems for decision-
making.

Organization

This chapter is organized as follows. In Section 3.1, we define the scoring system
problem and discuss its special properties. In Section 3.2, we present IP formulations
for SLIM. In Section 3.3, we describe how SLIM can enforce operational constraints
on accuracy and model form. In Section 3.5, we present theoretical bounds on the
training and testing accuracy of scoring systems. In Section 3.4, we discuss techniques
to reduce computation. In Section 3.6, we present experimental results to benchmark
the accuracy, sparsity, and computation SLIM relative to other classification methods.

Notes

This chapter draws upon material in Ustun and Rudin (2016b), Zeng et al. (2016), Us-
tun et al. (2013). Software for SLIM is available at: http://github.com ustunb/slim-
python and littp:///github. coi/ustunb/slimi-imatlab.
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3.1 Problem Statement

We formalize the scoring system problem as follows. We start with a dataset of n
i.i.d. training examples D = (X,, y2 )n_ 1 where xi E X C Rd+1 is a vector of features

[1,i, .. . ,X ,d]T and y E Y = {-1, +1} is a class label. We represent a scoring
system as a linear classification model:

.in(A ) +1 if (A, X) > 0,
y= sign ((A, x)) = >0

-I if (A, X) < 0.

Here, A C L C Rd+1 is a vector of coefficients [Ao, A1,... , Ad]T and AO is an intercept
term.

In this setup, the coefficient vector A determines all parameters of a scoring system.
In particular, the coefficient A3 represents the points for feature j for j = 1,... , d.
Given an example with features xi, users first tally the points for all features such
that A3 7 0 to obtain a score >_> Ajxi,j, then obtain the prediction by comparing
the score and the value of the intercept AO as:

d

+1 if Z Ajxi,j > Ao,

-1 if Z Ajxi,j < Ao.
j=1

We learn the values of coefficients by solving a discrete optimization problem that
we refer to as scoring system problem (SLIMIP), shown in Definition 3.1.
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Definition 3.1 (Scoring System Problem, SLIMIP)
The scoring system problem is a discrete optimization problem with the form:

min loi(A) + Co I|A loA

s.t. A EC, (3.1)

ged(A) = 1.

where:

- loi(A) = Z=1 1[i ' y,] is the 0 - -1 loss function;

- ||A|lb = 1 1 [A3 0 0] is the to-seminorm;

- C Zd+1 is a finite set of feasible coefficient vectors (user-provided);

- Co > 0 is a trade-off parameter to balance accuracy and sparsity (user-provided);

* gcd(A) = 1 is a symmetry-breaking constraint to ensure coefficients are coprime.

Definition 3.2 (Supersparse Linear Integer Model, SLIM)
A Supersparse Linear Integer Model (SLIM) is a scoring system built using the
optimal solution to SLIMIP.

SLIMIP is designed to learn scoring systems that are fully optimized for accuracy,
sparsity, small integer coefficients, and operational constraints. Here, the objective
minimizes the 0-1 loss function for accuracy, penalizes the to-norm for sparsity. The
feasible region restricts the coefficients to a small set of bounded integers such as C =
{-10, ... , 10}d+1, and can be further customized to include additional operational
constraints (see Section 3.3). Since the 0-1 loss and to-norm are scale invariant, we
include an additional constraint to restrict coefficients to coprime integers. As shown
in Figure 3.4, this can substantially reduce the set of feasible coefficients, which can
reduce computation within B&B by removing symmetry and improve generalization
(see Section 3.5).

The scoring system problem is designed to fit models that attain a pareto-optimal
trade-off between accuracy and sparsity: when we minimize 0-1 loss and the to-
penalty, we only sacrifice classification accuracy to attain higher sparsity, and vice
versa. Minimizing the 0-1 loss produces scoring systems that are completely robust
to outliers and attain the best learning-theoretic guarantee on predictive accuracy
(see e.g. Brooks, 2011; Nguyen and Sanner, 2013). Similarly, controlling for sparsity
via to-norm prevents an additional loss in accuracy due to er-regularization (see Lin
et al., 2008, for a discussion).
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Figure 3.1: Proportion of d-dimensional integer vectors with I Aj < A that are coprime. We
plot the value of IC(A)/{-A,.. .,A}d I where C(A) = {A E Zd I gcd (A) = 1 and IAj1 <; A}.
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3.1.1 Assumptions, Notation, and Terminology

We make the following assumptions regarding the coefficient set L

(i) L contains the trivial set of coefficients Ltrivial = {A+, \- .

(ii) the intercept Ao is not penalized in the objective.

(iii) the intercept Ao is not regularized by the constraints.

Assumption (i) ensures that the scoring system problem always has a feasible solution.
The coefficient vectors A+ E CtriviaL and A- E trivial can be set as the smallest
coefficients required to predict the same class for all examples xi E X. The exact
coefficients can be set as: A+ = 1 and A,+ = 0 for j = 1,..., d,A- = -land
A7 = 0 for j =1, ... , d. If the dataset contains only binary features, then we can use
Ao =0 and Ai =0 for j=1,...,d.

Assumption (ii) means that the more precise version of the to-penalty is Co I|A[,4 I o
where A = [Ao, A[i,4]. Assumption (iii) can be satisfied by setting the bounds of the
intercept as described in Proposition 3.3.

Proposition 3.3 (Coefficient Set for Intercept Term)
Given a training dataset D., denote a finite discrete set of coefficient vectors as

L = Ao E Lo, A[l:d E L[1:

where:

- Lo = { Amin,... Aoma} is a finite set of feasible values for the intercept;

- L[1:d] = {(A1, ... , Ad) I Aj E L} is a finite set of feasible coefficient vectors.

Denote a set of coefficient vectors where the intercept is not bounded as:

K = f{\ I Ao E ZA[1:] E E[1:d]}.

If we choose,

d
Ag" > max Z Ajxi,j, (3.2)

A\EC[l:d] =

d

A " < min ZAxi (3.3)
AEL[1:a=

Then,

argmin lo(A) + Co ||A|lo E argmin lo(A) + Co ||Ailo
Ae i AEc r

Thus, the bounds on the intercept will not affect the performance of the model.
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3.1.2 Setting the Trade-off Parameter

One of the key benefits of using an exact formulation is that we can set the values
of parameters such as Co purposefully (i.e. without the need for cross-validation).
In the following remarks, we how the trade-off parameter Co can be set to achieve a
desired trade-off between accuracy and sparsity, or to obtain a scoring system with
the minimal (or maximal) level of sparsity.

Remark 3.4 (Meaning of the trade-off parameter)
The trade-off parameter Co in the objective of the scoring system problem (SLIMIP)
represents the maximum accuracy that will be sacrificed to remove a feature from
an optimal model.

In other words, given the non-zero coefficients of an optimal scoring system At $ 0
for j = 1, ... , d, setting Aj +- 0 will reduce the training accuracy of the model by at
least Co.

Remark 3.5 (Bounds on the trade-off parameter)
Denote an optimal solution of the scoring system problem for a fixed trade-off
parameter Co as:

A*(Co) E argmin lo1 (A) + Co hAi 0.AEL

The trade-off parameter Co can be bounded to values within the interval

[Co"" , Coax] g , min(n+, n-)
(nd' nd

Setting Co <; Co"" will fit a scoring system with maximal training accuracy:

A*(Co) E argmin lo,(A).
AEC

Setting Co > Co ' will fit a scoring system with maximal sparsity:

A*(Co) E argmin |Al 0 .
AEC
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3.1.3 Using the Optimality Gap

A separate benefit of working with an exact formulation is that the optimality gap is
also meaningful.

Remark 3.6 (Rule of Thumb for the Optimality Gap)
Given a feasible solution to the scoring system problem Af with a non-zero opti-
mality gap e > 0, the accuracy and sparsity of an optimal scoring system can be
bounded using the following rules-of-thumb:

1(,\f) - 1(A\*) 61(A\,)

IIA1 0 - IIA*Io 5 [6 I|AfIj

In other words, if we had a solution Af with an optimality gap of e = 10%. Then we
would know that the optimal scoring system could have an error rate within 10% of
the current model (i.e. error rate of and/or use 10% fewer features).

In practice, the bounds on the accuracy and sparsity of the best scoring system
can be further improved as shown in Remark 3.7. Here, we make use of prior lower
bounds on the error rate L"" and the number of non-zero coefficients R""" as well as
the fact that accuracy and sparsity must be integer-valued.

Remark 3.7 (Bounds from the Optimality Gap)
Given a feasible solution Af to the scoring system problem with a non-zero opti-
mality gap e > 0, the accuracy and sparsity of an optimal scoring system can be
bounded as:

[n[(1 - e)V(Af) - CoR"""]1 (<
n

(1 - e)V(A\) - L"""
C(1 Lmi 1 <5 li'110

where 0 < L"ain <1(*) is a lower bound on the 0-1 loss function, and 0 < R"nh is
a lower bound on the number of terms in the model.
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3.2 Methodology

In the remainder of this section, we consider a minor extension of the scoring system
problem for imbalanced classification problems. Here, we replace the 0-1 loss function
in the objective with the weighted 0-1 loss. The weighed 0-1 loss incorporates unit
misclassification costs for positive and negative examples, w+ and w-, which can be
set to control the relative accuracy between positive and negative examples.

Definition 3.8 (Scoring System Problem for Imbalanced Data)
For a given training dataset 'D = (xi, yi)L 1 , trade-off parameter Co > 0, and
coefficient set L C Zd+1, SLIMIP(V, , Co, w+) is a discrete optimization problem
with the form:

m0 -l+1(A) + -l-(A) + CO h1A\l0
s.t. AEI2 (3.4)

gcd(A) = 1,

where:

* l+1() = EiEI+ 1 [Qi +1];

- 1(-)N = EiEI- [Pi 0 - 11;
* w+ > 0 is the unit misclassification cost for positive examples;

- w- > 0 is the unit misclassification cost for negative examples.

We assume that w+ + w- = 2 so that the imbalanced formulation is equivalent to
the standard scoring system problem in Definition 3.1 when w+ = 1. This assumption
also allows us to control the relative accuracy using only w+ (i.e. given any value
of w+, we would set w- = 2 - w+). In addition, this assumption ensures that
the trade-off CO parameter can be interpreted as the price between the normalized
misclassification cost and sparsity for different values of w+. The value of w+ can
also be bounded and set purposefully as shown in Remark 3.9.
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Remark 3.9 (Bounds on Misclassification Costs Parameters)
Denote an optimal solution of the scoring system problem in (3.4) for a fixed unit
misclassification cost w+ as and no to-regularization as:

A*(w+) E argmin -- 1(A) + - (A).
AEC n n

The value of w+ can be bounded to values in the interval:

[W +,mnn1W +,nmj E 2 2n-
1+n+' 1+n-

Setting w+ > w+,mn will fit a scoring system with maximal training accuracy on
the positive examples:

A*(w+) E argminl+(A).
AEC

Setting w+ < W+,inn will fit a scoring system with maximal training accuracy on
the negative examples:

A*(w+) E argmin l- (A).
AEL

In what follows, we show two IP formulations to fit SLIM: the first formulation
is for a general setting; the second is for a setting where the features are binary. The
formulations have minor differences and could be combined into a single formulation.
Here, we present the formulations separately, instead of combining them, because: (i)
the formulations return slightly different scoring systems; (ii) the differences between
formulations can significantly affect computation in B&B; (iii) we use both formu-
lations in this dissertation SLIM (in particular, the formulation in (3.5) is used for
the benchmarks in Sections 3.6 and the sleep apnea problem in Chapter 4 while the
formulation in (3.7a) is used for the recidivism prediction application in Chapter 5.
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3.2.1 IP Formulation

We fit a SLIM scoring system using the IP formulation in (3.5).

Definition 3.10 (SLIM IP Formulation)
The optimal solution to the scoring system problem SLIMIP('D, 4,Co, w+) can be
obtained by solving the following integer program:

min V (3.5a)
d

s.t. V = L + CoR + e /3j obj. value (3.5b)
j=1

L = W Zi + - zi total loss (3.5c)

iEI+ -iEI
d

R = Eai total size (3.5d)
j=1

d

Mze y - YiAjXij i = 1,...,n 0-1 loss (3.5e)
j=0

Ajxaj Aj j = 1,...,d to-norm (3.5f)
Aj"'uaj -Aj j = 1,...,d eo-norm (3.5g)

#j Aj j = 1,...,d Li-norm (3.5h)
/j -Aj j = 1,...,d ti-norm (3.5i)
Aj E Cj j = 0,...,d coefficient set

zi E {0, 1} i = 1,...,n error indicators

aj E {0, 1} j = 1,...,d to variables

/3j E R+ j = 1,...,d 11 variables

Here, the constraints in (3.5e) set the loss variables zi = 1 [ytATX, <; 0] to 1 if a
linear classifier with coefficients A misclassifies example i. This is a Big-M constraint
for the 0-1 loss that depends on scalar parameters -y and Mi (see e.g., Rubin, 2009).
The value of Mi represents the maximum score when example i is misclassified, and
can be set as Mi = maxEc:(7y - yiATX2 ) which is easy to compute since is finite.
The value of 7 represents the "margin" and should be set as a lower bound on yA TXj.
When the features are binary, -y can be set to any value between 0 and 1. In other
cases, the lower bound is difficult to calculate exactly so we set y = 0.1, which
makes an implicit assumption on the values of the features. The model size is set to
R in constraint (3.5d) via the indicator variables a := 1 [Aj $ 0]. These variables
are defined by Big-M constraints in (3.5f) - (3.5g), and 3j : Aj I is defined by the
constraints in (3.5h)-(3.5i).
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Big-M Parameters

Restricting coefficients to a finite set A E C has a major benefit for the SLIM IP
formulation in comparison to other formulations that minimize the 0-1-loss and/or
penalize the fo-norm. Many IP formulations compute the 0-1 loss and to-norm by
means of indicator constraints that require users to specify Big-M constraints (see
Wolsey, 1998, for a description).

Restricting the coefficients to a finite set allows us to bound the Big-M constants
in the SLIM IP formulation. The Big-M constant for computing the 0-1 loss in
constraints (3.5e) can be bounded as Mi max.e(y - yATX,), and the Big-M
constant used to compute the to-norm in constraints (3.5f) can be bounded as Aj 5
maxAg, LI| (c.f. Brooks, 2011; Guan et al., 2009, where these parameters have to be
set using sufficiently large constants). Bounding these constants ensures that the IP
formulation has a tighter LP relaxation, which improves the ability of a MIP solver
to prune effectively and recover a certifiably optimal solution (see Cami et al., 1990;
Belotti et al., 2016, for a discussion).

Perturbation Penalty

We address the coprimality requirement in the scoring system problem gcd(A) = 1
using a perturbation technique (see e.g., Margot, 2010, for a discussion). Specifically,
we include a small f1-penalty in the objective function so the optimal solution corre-
sponds to the classifier with the smallest (i.e. coprime) coefficients, Q = sign (x1 + X 2 ).
To illustrate the use of the f1 penalty, consider a classifier such as = sign (xi + X 2 ). If
the objective only minimized the 0-1 loss and an o-penalty, then = sign (2x, + 2x 2 )
would attain the same objective value as Q = sign (x1 + X 2 ) because it makes the same
predictions and has the same number of non-zero coefficients. In Remark 3.11, we
show how e can be set to a value that is small enough to avoid any fi-regularization
(i.e. to guarantee that SLIMIP never sacrifices accuracy or sparsity to attain a smaller
e1-penalty).
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Remark 3.11 (Setting the Perturbation Penalty to Prevent er-Regularization)
Given an instance of the scoring system problem SLIMIP(D, Co, L), let

~ma =min (,Co)
maXAE 1

If the perturbation parameter is set to a value such that E E (0, emax) then any
optimal solution to the scoring system problem

A* E argmin lo,(A) + Co I|Ai lI,
AEC

satisfies

A* C argmin lo, (A) + Co JJAilO and gcd({A} 0 ) = 1. (3.6)
AEC

Thus, the optimal solution is a scoring system with coprime coefficients that attains
a Pareto-optimal trade-off between accuracy and sparsity.

Auxiliary Variables

The IP formulation includes auxiliary variables V, L, R to represent the values of the
objective, the loss, and the model size respectively. These variables are redundant
in the sense that they are fully determined by other constraints in the formulation
and could be dropped without impacting the optimal solution (e.g. since R = E aj
we would substitute all values of R with E, aj, which would reduce the size of the
formulation by 1 variable and 1 constraint). In light of this, we include them so that
we can update bounds on these quantities during the solution process when we use
control callbacks. If we did not have these variables in the formulation, then it may
still be able to do this by adding cuts. In comparison to this approach, however,
auxiliary variables have the benefit in that they reduces overhead (e.g. it is much
faster to update a bound on R, than to add a cut that restricts E a < Rma) and
do not increase the size of the formulation. This approach also has some flexibility in
that we can make use of a larger class of callback functions (e.g. most of the control
callbacks in the CPLEX API let us update the bounds on a single variable, but do
not necessarily let us add an additional constraint).

3.2.2 IP Formulation for Binary Data

In Definition 3.7a, we present an IP formulation for settings with binary features
Xe E {0, 1}d+1. This formulation provides a tighter relaxation by exploiting the fact
that we are likely to get repeated feature values among observations. In what follows,
we assume that the training dataset is composed of unique examples (xi, y2) # (x, yj')
for all i, i' E I. If the dataset does contain duplicate examples, then we count the
number of duplicates for each example using the sample weights nt and n-.
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Definition 3.12 (SLIM IP Formulation for Binary Data)
Given a training dataset D with binary features xi E {, 1 }d for i = 1,...,
the optimal solution to the scoring system problem SLIMIP(D, L,Co,w+) can be
obtained by solving the following integer program:

min
A

V

W+ w d
s.t. V =-L+ + -L- + CoR + EY,8n n

j=1
L+ = nt zt

iEI+
L~=(ni z-
iEI-

d

R=Zaj
j=1

d

Mizt 1-- Ax

j=0
d

Mi - 1 Ajxi~j
j=0

1=z +z-
Am"aa, > Aj
Aj""naj > -Aj

18i -Ai

i E I+

i E I-

i, i' E Iconflict

j = 1,...,d
j = ... ,d

i = 1 ,..., d

obj. value(3.7a)

total loss(3.7b)

total loss(3.7c)

total size(3.7d)

error on +(3.7e)

error on - (3.7f)

conflict bound(3.7g)

to indicators(3.7h)

to indicators (3.7i)
ei-norm (3.7j)
1i-norm(3.7k)

E [ vm"" i
E [Lm", Lm]
E R ,... , }

E {A g ,. , Ar }
E (0, 1}
E {0, 1}
E {0, 1}
E {0,... , max(Aj"", A ma)}

j = 0,...,d
i E I+
i E I-
j =

j =

objective

loss

to norm

coefficient values

error indicators

error indicators

to indicators

e1 variables

There are
3.10.

three key differences between this IP formulation and the one in Definition

1. The loss constraints are expressed in terms of the number of distinct points in
the dataset. Here, the set I+ represents the set of distinct points with positive
labels, and the set I- represents the set of distinct points with negative exam-
ples. Here, nt count the number of points in the original dataset with features
xi and y = +1. Similarly, ni counts the number of points with features xi and
yi = -1. Thus, n+ = EiE,+ ni and n- = EiEI- ni. This reduces the size of the
problem that we pass to an MIP solver.
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2. We can include a lower bound on the error rate by counting the number of points

i, i' with identical features but opposite labels (i.e., xi = xi but yj = -yi). This

strengthens the lower bound of the LP relaxation and speeds up the progress

of B&B.

3. We set the margin for the negative examples is 0 while the margin for the

positive examples is 1. This means that for positive examples, we have a correct

prediction if and only if the score > 1. For negative points, we have a correct

prediction if and only if the score < 0. This provides a slight computational

advantage since the negative points do not need to have scores below -1 to be

correctly classified, which reduces the size of the Big-M parameter and required

coefficient set. For instance, say we would to produce a linear model that
encode: "predict = +1 unless x1 or x 2 are true." Using the IP formulation
with the margin of -y E (0, 1) on both positives and negatives, the optimal SLIM

classifier would be: Q = sign (1 - 2x1 - 2x 2 ). In contrast, the margin of the
current formulation is: y = sign (1 - x, - x 2), which uses smaller coefficients,
and produces a slightly simpler model.

The first two changes could also be incorporated in (3.5), though they would not
necessarily be effective in this setting because it is far less likely for a dataset to have
duplicate rows using real-valued features.
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3.3 Operational Constraints

One of the key benefits of SLIM is that it can address operational constraints related
to the accuracy and sparsity of predictive models. The following techniques provide
users with a practical approach to customize prediction models. They are made
possible by the facts that: (i) the variables used to model the 0-1 loss zi and eo-penalty
aj in the SLIM IP formulation can also be used to enforce additional constraints
related to accuracy and sparsity; and (ii) the free parameters in the SLIM objective
can be set without tuning.

3.3.1 Class-Based Accuracy

The majority of classification problems in the medical domain are imbalanced. Han-
dling imbalanced data is incredibly difficult for most classification methods since
maximizing classification accuracy often produces a trivial model (i.e., if the proba-
bility of heart attack is 1%, a model that never predicts a heart attack is still 99%
accurate). SLIM has a unique benefit in these settings because it can fit a model
at a specific point on the ROC curve without parameter tuning. Given hard con-
straints on sensitivity (or specificity), we can encode these as loss constraints into the
IP formulation, then solve a single IP to obtain the least specific (or most sensitive)
model.

Example 3.13 (Most Sensitive Model subject to an FPR Constraint)
To fit a scoring system that maximizes the true positive rate while maintaining a
false positive rate of at most -y E [0, 1], we can solve an IP formulation with the
constraint

~zi : [-ynJ]
iEI-

where w+ > W+,max.

Assuming that w+ + w- = 2, we set w+ > w+nm so that the objective weighs a
mistake on a single positive example as much as all of the negative examples. In a
typical setting, this would return a scoring system that classifies all positive examples
correctly at the expense of misclassify all of the negative examples in order to classify
an additional positive example correctly. In this case, however, the loss constraint
explicitly limits the error on negative examples to y. Thus, the optimal solution
corresponds to a scoring system that attains the highest sensitivity among models
with a maximum error of 7 on negative examples.

Similar versions can be used to fit models that satisfy constraints related to a
range of accuracy-related measures, such as limits on sensitivity and specificity.
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3.3.2 Fairness

The loss variables in the SLIM IP formulation can also be used to address constraints
related to fairness. In comparison to existing approaches, this has the advantage that
it can deal with a range of different measures. Consider, for example, the 80% rule
(Feldman et al., 2015) that is commonly used to limit disparate impact among two
groups of individuals A and B:

PrQ 1Ii EA) < 80% = -r.
Pr (=+1i E B) -

Example 3.14 (Disparate Impact)
To fit a scoring system that limits disparate impact to r E [0, 1]
data, we can solve an IP formulation with the constraint:

A iEA+ A iEA-

- zi) = (S z 1
BiEB+

+
nB iEB-

where,

A+ = A n I+, A-= A n I-, n+ =|A+, n- =A-

- B+ = B n I+, B- =B n I-, n+ =B+|, n- =IB-

3.3.3 Monotonicity and Side Information

The simplest way to incorporate side information is to enforce monotonic relation-
ships between input variables and the predicted outcome (Feelders and Pardoel, 2003;
Ben-David, 1995; Gupta et al., 2016). In Example 3.15, we show how this can be
addressed by changing bounds on the coefficient variables in the IP formulations.
Note that by adding these bounds, we can also drop the e1-norm variables 3j from
the formulation.

Example 3.15 (Basic Monotonicity)
To fit a scoring system where Aj has a positive relationship with the predicted
outcome for j E 3+ and A E J- has a negative relationship with the predicted
outcome, set the variable bounds of SLIM IP formulation:

A > 0 for j E J+,
A, 0 for j E 3 .

We can extend monotonicity requirements to several variables. In an extreme
case, this can be used to enforce a constraint to fix the predicted output as shown
in Example 3.16. Such constraints could be used to fit scoring systems with safety
guarantees (Amodei et al., 2016). This may also be a useful tool when domains experts
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disagree with the predictions of a model. As a example, say domain experts expect
a model to predict ^ = +1 for a prototypical example with features x,, then we can
enforce this condition by means of a prediction constraint. We can then compare the
training accuracy of both models to report the loss in accuracy due to this constraint.

Example 3.16 (Prediction Constraints)
To fit a scoring system that guarantees that yp = y, for an example with features
XP, we can solve an IP formulation with the constraint:

zp = -yp.

3.3.4 Feature-Based Constraints

SLIM provides fine-grained control over the composition of input variables in a scoring
system by formulating feature-based constraints using the indicator variables for the
to-norm aj := 1 [A3 5 0]. In the following examples, we describe how the indicator
variables aj can be used to limit the model size, or to formulate logical constraints
between features such as "either-or" conditions and "if-then" conditions. This presents
a practical alternative to create classification models that obey structured sparsity
constraints (Jenatton et al., 2011) or hierarchical constraints (Bien et al., 2013).

Example 3.17 (Limited Model Size)
To fit a scoring system with at most Rm' input variables, we can solve an IP
formulation with the constraint:

d

Z aj Rm a"
j=1

Setting Co = Co"il guarantees that the optimal solution to the scoring system prob-
lem with return the accurate scoring system with at most R"'" non-zero coefficients.

Example 3.18 (Optimized Thresholding)
To fit a scoring system that chooses the best threshold for a real-valued feature, we
can include a set of binary threshold variables to the training data

Xj,k= 1 [X tk] for k = 1,... , K

Then add then constraint:
K

Zai,k 1
k=1

where aj,k = 1 [Aj,k j 0].
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Example 3.19 (Hierarchical Constraints)
To fit a scoring system that guarantees that it will include Hypertension and HeartAt-
tack if it also includes Stroke, we can solve an IP formulation with the constraint:

aeartAttack + aHypertension 2 aStroke-

3.3.5 Feature-Based Preferences

Domain experts often have soft preferences between different input variables. SLIM
allows practitioners to encode these preferences by specifying a distinct trade-off pa-
rameter for each coefficient Coj.

Example 3.20 (Variable Prices)
To fit a scoring system that will only use feature j if it provides an additional
improvement in training accuracy of at least 6 > 0, set the trade-off parameter in
the IP formulation to

CO = Co + 6.

This approach can also be used to handle problems with missing data.

Example 3.21 (Missing Data)
Consider training a model where feature j contains m < n missing points. Instead
of dropping these points, we can impute the values of the m missing examples, and
adjust the trade-off parameter Coj so that our model only uses feature j if it yields
an additional gain in accuracy of more than m examples:

Co = Co + Mmin(n+,n-).
n

The adjustment factor in Example 3.21 is chosen so that: if m = 0 then Co, = Co;
and if m = n then CO, ;> min(n+, n-) and the coefficient is dropped entirely. This
ensures that features with lots of imputed values are more heavily penalized than
features with fewer imputed values.
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3.4 Algorithmic Improvements

3.4.1 Active Set Polishing

We now discuss a polishing procedure to optimize the values of coefficients over a
fixed set of features. This procedure takes as input a feasible set of coefficients from
the SLIM IP, Afeasible and solves the polishing IP shown in (3.8) to obtain a set of
polished coefficients Apolished. The polished coefficients Apolished represent the optimal
solution to the scoring system problem over the active set A := {j Afeasible 40}.

min L (3.8a)

s.t. L= n zi + - E niz7 total error(3.8b)

iEI+ iEI-

Mi z 1- Ajxij i E I+ error for +ve (3.8c)
jEA

Miz7 ;> Ajx%,, i E I- error for -ve(3.8d)
jEA

1 = Z + z (i, i') E 1 conflict conflicting labels (3.8e)

L E [L min, L m  ] total loss

Aj c f Ain ax j E A coefficient set

Z4, Z E {O, 1} i C I+ error indicators

The polishing IP can be solved to optimality very quickly because: (i) the IP
contains far fewer variables since it does involve feature selection, and only optimizes
coefficients in the active set A; (ii) the IP can be initialized with good upper and lower
bounds on the loss using the objective value of V(Afeasible); (iii) for problems with
binary input variables, the number of loss constraints can be significantly reduced
by eliminating duplicates (e.g. if JAl = 5 then any dataset will contain at most

I{-1, +1} x I{0, 1}5 = 64 possible unique data points, and thus the same number
of possible loss constraints).

The polishing procedure can be used as a post-processing technique if SLIM does
not return a provably optimal solution. In this case, we would aim to keep a pool
of solutions discovered by the MIP solver and polish all solutions within this pool.
In Chapter 5, for example, we use the polishing procedure on all a subset of good
feasible solutions when we are unable to recover a certifiably optimal solution. In all
cases, we can solve the polishing IP to optimality in <1 second.

Alternatively, the polishing procedure can also be called dynamically via a con-
trol callback (i.e. to polish solutions that are found by a MIP solver). In Algorithm
2, we present a technique that we call polish-and-cover to illustrate this approach.
This strategy works as follows: when the MIP solver discovers a new integer feasible
solution, we call the polishing procedure to obtain a polished solution. We use the
solution from the polished solution to update the upper bound in the IP. If the pol-
ishing procedure returns an optimal solution, we also include a cover cut to eliminate
this particular solution from the search region. Thus, using the strategy improves
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both the upper and lower bound in B&B.

Algorithm 2 Polish-and-Cover

Input
SLIMIP(DP, L, Co, w+)
POLISHSOLUTION(-)

Estop G [0, 1]
trmax

valid instance of scoring system problem

function to formulate and solve polishing IP

optimality gap of acceptable solution

time limit to run polishing heuristic

repeat
Afeasible <- integer feasible solution to SLIMIP
(Apolished I/polished I polished) <- POLISHSOLUTION(Afeasible)
if Vpolished <vnax then

Vmax _ Vpolished

Abest A best

end if
if 6 polished = 0.0 then

A <- {j : Apolished 0 for j = 0, ... , d
update feasible region of SLIMIP with constraint:

>update upper bound

>update best solution

Z(1-aj)+Zaj < JAI - 1
jEA jOA

>done using callback

e-optimal solution to SLIMIP
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10:

11: end if
12: until E < Estop

Output: Abest



3.4.2 Data Reduction

Data reduction is a technique to reduce computation by discarding redundant training
data. This technique can be used with any binary classification method where the
model is fit by solving an optimization problem. However, it is best suited for methods
where the algorithm used to solve the optimization problem scales poorly with the
number of examples. In what follows, we present data reduction in general setting,
then describe how it can be used to reduce computation in our setting.

Data Reduction for Binary Classification

Consider fitting a binary classification model f : X -+ Y by solving an optimization
problem with the form:

min V(f; D,) (3.9)
fET

Data reduction aims to reduce the computation in the training process by removing
redundant examples from D, = (xi, yi) _1 (i.e., examples that can be omitted without
changing the optimal solution). The technique requires a surrogate problem that is
cheaper to optimize:

min V(f; D,) (3.10)
f E

Given training data D, = (xi, yi) L, data reduction solves n + 1 variants of the
surrogate to identify redundant examples. These examples are then removed to output
a reduced dataset Dm C DC that is guaranteed to yield the same optimal classifier as
D,. Thus, the computational gain from data reduction comes from training a model
with Dm (i.e., solving an instance of the original problem with n - m fewer examples).

We show the data reduction procedure in Algorithm 3. In what follows, we de-
scribe how this procedure works in greater detail. We use the following notation:

- original objective function: V(.) : F x (X x y) -+ R
* surrogate objective function: V(-) : F x (X x y)n -+ R

- original feasible classifiers: F
- surrogate feasible classifiers: F

- optimizers for the original problem: f* E F* = argminfET V(f)
* optimizers for the surrogate problem: f J * = argmin f Y( f )

Data reduction can be used with any surrogate so long as the E-level set of the
surrogate contains the optimizers of the original problem. That is, we can use any
feasible set F and any objective function V(.) so long as we can specify a value of E
such that

V(f*) V(f) + E Vf* E F* and f E*. (3.11)

The width of the the surrogate level set e is related to the amount of data that will be
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removed. If e is too large, the method will not remove very many examples and will be
less helpful for reducing computation (see Figure 3.3). In Theorem 3.23, we provide
sufficient conditions for a surrogate loss function to satisfy the level set condition in
(3.11).

In the first stage of data reduction, we solve the surrogate to: (i) compute the
upper bound on the objective value of classifiers in the surrogate level set V(f) + 6;

and (ii) to identify a baseline label 94 := sign (f(Xi)) for each example i = 1, ... , n.

In the second stage of data reduction, we solve a variant of the surrogate problem
for each example i = 1, . . . , n. The ith variant of the surrogate problem includes an
additional constraint that forces example i to be classified as -94:

min f(f; Dn) s.t. f E F and Pif(xi) < 0 (3.12)
f

We denote an optimal classifier to the ith variant as f.i. If f-i lies outside of the
surrogate level set (i.e., V(f.) > V(f) + e) then no classifier in the surrogate level set
can label point i as -Pi. In other words, all classifiers in the surrogate level set must
label this point as Pi. Since the surrogate level set contains the optimal classifiers to
the original problem, we can remove example i from the reduced dataset Dm because
an optimal classifier to the original problem must label i as Pi. We illustrate this
situation in Figure 3.2.

In Theorem 3.22, we prove that we obtain the same set of optimal classifiers if we
train a model with the initial data E), or the reduced data D

Figure 3.2: We initialize the data reduction procedure with a value of e large enough so
that V(f*) < V(f) +e for all f* E Y* and all f E F*. Here, f* E F* is an optimal classifier
to the original problem and f E Y* is the optimal classifier to the surrogate problem. Data
reduction fits a classifier f. for each example in D by solving a variant of the surrogate
with a constraint that forces f. to classify i in a different way than f. If V(f.) > V(f) + E,
then we know the predicted class of example i under f* and can remove it from D.
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Algorithm 3 Data Reduction from Dn to Dm
Input

(X 2 , yi) i
E > 0
min V (f; Dn) s-t. f E J

training data

width of the surrogate level set

surrogate problem

Initialize
Dm +- 0
f +- argminf V(f; DV)

1: for i = 1 .. .n do
2: Qi < sign(f(xi))
3: f.. +- argmin V(f; DE) s.t. f E F and ?jif(xi) < 0
4: if V(f.-; En) 5 V(f; D) + e then
5: Dm <- Dm U (xi, yi)
6: end if
7: end for

Output: Dm

reduced training data

surrogate value

reduced training data
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Theorem 3.22 (Equivalence of the Reduced Data)
Consider an optimization problem to fit a classifier f E F with data Dn,

min V(f;; ),
fEF

as well as a surrogate problem to fit a classifier f E F with data Vn,

min V(f;VD).
fEF

Denote the optimizers of these problems as:

f* E F* = argminV(f ;Vn)
fEY

f E F* = argminV(f ; Vn)
f EY

If we choose a value of e so that

V(f*; Vn) V(f; VE) + e Vf* E F* and f E F*, (3.13)

then Algorithm 3 will output a reduced dataset Em C Dn such that

argmin V(f; D) = argmin V(f; ?m). (3.14)
fEY fEY



Theorem 3.23 (Sufficient Conditions to Satisfy the Level Set Condition)
Consider an optimization problem whose objective minimizes the 0-1 loss function
101 : Rd -+ R and a surrogate problem that minimizes a surrogate loss function
Is : Rd -+ R. Denote the optimizers to these respective problems as:

Ai E argmin lol(A),
AERd

A E argmin l,(A).
AERd

If the surrogate loss l satisfies the following properties for all A, A01, A,:
I. Upper bound on the 0-1 loss: lo1(A) l8(A)

II. Lipschitz near A;1 : IA - A*| < A ==> l8(A) - I(*) < L|A - A*|I
III. Curvature near.\*: |A| - A*|1 > C == 1,(A) - ls(A*) > Cs

IV. Closeness of loss near N1: Il8(A 1) - lo1(AM1)I <.e

then it will also satisfy a level-set condition required for data reduction,

10(41) : ls(A*) + VA1 and A*,

whenever e = LCA obeys C, > 2e.

Data Reduction for SLIM

Data reduction can applied to SLIM by using the LP relaxation of the SLIMIP as
the surrogate problem. This can be used as a preprocessing technique to reduce the
size of the IP formulation before training, or as an iterative procedure that is called
by the solver during the training process as feasible solutions are found.

When we use the LP relaxation to SLIMIP as the surrogate problem, we can
determine a suitable width for the surrogate level set E using a feasible solution.
To see this, let us denote the SLIMIP as minf V(f) s.t. f E F, and denote its LP
relaxation as minf V(f) s.t. f E F. In addition, let us denote the optimal solution to
SLIMIP as f* and the optimal solution to the LP relaxation as f. Since F C F, we
have that V(f) V(f*). For any feasible solution to SLIMIP f E F, we also have
that V(f*) < V(f). Combining both inequalities, we see that,

V(f) V(f*) V(f).

Thus, use any feasible solution to SLIMIP f E F to set the width of the surrogate
level set as

e(f) := V() - V(f).
In Figure 3.3, we show much training data can be discarded when we train a SLIM

scoring system on the bankruptcy dataset (see Table 3.1 for details). Here, we show
the percentage of data removed for e E [ein, 6 'a] where emin and Fma represent the
smallest and largest widths of the surrogate level set that can be used in practice. In
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particular, e"" is computed using the optimal solution to the IP as:

E"mn:= V(f*) -V )

and em' is computed using a trivial solution A = 0):

6 "ax := V(O) - VYf).

In this case, we can discard over 40% of the training data by using the trivial solution
A = 0, and discard over 80% of the training data by using a higher quality feasible
solution.

100%

80%/-

60%

CU 40%
o

20%

0%

1 2 3 4 5

Figure 3.3: Effectiveness of data reduction on the bankruptcy dataset. We show the
proportion of training data filtered across the full range of e. Here, the original problem is
an instance of SLIMIP with Co = 0.01 and L = {-10, ... , 1 0}d+1.

77



3.5 Bounds on the Accuracy of Scoring Systems

In this section, we present bounds on the training and testing accuracy of SLIM
classifiers.

3.5.1 Generalization Bounds

In Theorem 3.24, we improve the generalization bound from Theorem 2.2 by excluding
models that are provably suboptimal from the hypothesis space. Here, we exploit the
fact that we can bound the number of non-zero coefficients based in terms of the
trade-off parameter Co.

Theorem 3.24 (Generalization of Sparse Discrete Linear Classifiers)
Let F denote the set of linear classifiers with coefficients A from a finite set C such
that:

F= {f :X-Y I f(x) = sign ((A, x))}

A E argmin lo, (A) + Co I|AIl0AEC

For every 6 > 0, with probability at least 1 - 6, every classifier f E F obeys:

Rle(f) Rp(f) + log(J|hd,c01) - log(6)
2n

where:

Wd,Co {A E I11A11 0  J.

This theorem relates the trade-off parameter Co in the SLIM objective to the
generalization of SLIM scoring systems. It indicates that increasing the value of the
Co parameter will produce a model with better generalization properties.

In Theorem 3.25, we show an alternative generalization bound by exploiting the
fact that SLIM scoring systems use coprime integer coefficients (see Remark 3.11).
In particular, we express the generalization bound from Theorem 2.2 using the d-
dimensional Farey points of level A (see Marklof, 2012, for a definition).
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Theorem 3.25 (Generalization of Coprime Discrete Linear Classifiers)
Let F denote the set of linear classifiers with coprime integer coefficients bounded
by A:

F= {f : X -+Y I f(x) =sign((A,x)) andA E},

S= {A E Zd |I | II A for j = 1, ... ,d},

Zd = z E Zd gcd(z) = 1.

For every 6 > 0, with probability at least 1 - 6, every classifier f E F obeys:

Rt rue(f) R m (f) + log(ICd,A) - log(6)
2n

where Cd,A denotes the set of Farey points of level A:

Cd,A = E [oi)d (Aq) E Za4 and 1 q : A}.

The proof involves a counting argument over coprime integer vectors, using the
definition of Farey points from number theory. In Figure 3.4, we plot the generaliza-
tion bound for different values of d and A for a setting where 6 = 0.05 and n = 5000.
We see that the generalization bound can be significant, except in cases where the
data are high dimensional and A is small.
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Figure 3.4: Bound on Rtrue(f) - Remp(f) from Theorem 3.25 for 6 = 0.05 and n = 5000.

79



3.5.2 Discretization Bounds for Binary Data

Theorem 3.26 (Coefficient Set for No Loss in Training Accuracy or Sparsity)
Given a dataset D = (xi, yj)U1 with binary features xi E {0, 1}d+1, let

p* E argmin loi(p) + Co |Ipi|o,
PERd+1

denote the coefficients of the most accurate to-regularized linear classifier for a
trade-off parameter Co > 0.

If we solve an instance of the scoring system problem SLIMIP(D, Co, ) where:

XIAj (Rm  +2)2 f (3.15)=A L Rmax < I min( n-,]1

then the optimal solution A* will satisfy:

loi(A*) = lol(p*) and ||A* 0 = I1p*1.
Thus, the optimal scoring system is guaranteed to attain the same training accuracy
and sparsity as the most accurate to-regularized linear classifier.

Theorem 3.26 is an extension of Theorem 2.1 for the scoring system problem. The
proof uses an upper bound on value of the largest coefficient for a linear classifier
(Long and Servedio, 2014) for settings where the features are restricted to sparse
Boolean vectors (i.e. maxi 11xil k).

The coefficient set in Theorem 3.26 represents a coefficient set that is large enough
to guarantee that the optimal scoring system will attain the same level of accuracy
and sparsity as a linear classifier with real-valued coefficients. In other words, for any
dataset with binary features, the coefficient set in (3.15) will guarantee that there
will be no loss in training accuracy due to the integrality constraint.
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3.5.3 Discretization Bounds for Real-Valued Data
Our first result shows that we can find a set of coefficients L that is large enough to
ensure that the training accuracy of a linear classifier with discrete coefficients A E L
(e.g. SLIM) is no worse than the training accuracy of a baseline linear classifier with
real-valued coefficients p E Rd (e.g. SVM).

Theorem 3.27 (Minimum Margin Resolution Bound)
Let p = [P1,... , P]T E Rd denote the coefficients of a baseline linear classifier
trained using data D = (xi, yt)! 1. Let Xm, = maxi |xii| 2 and -yi. = mini jpu

denote the largest magnitude and minimum margin achieved by any training exam-
ple, respectively.

Consider training a linear classifier with coefficients A = [A1,..., Ad]T from the
set = {-A,..., A}". If we choose a resolution parameter A such that:

A > Xmax,/d (3.16)2-ymlin

then there exists A E L such that:

101(A) loi(p).

The proof of Theorem 3.27 uses a rounding procedure to choose a resolution
parameter A so that the coefficient set L contains a classifier with discrete coefficients
A that has the same 0-1 loss as the baseline classifier with real-valued coefficients p.
If the baseline classifier p is obtained by minimizing a convex surrogate loss, then the
optimal SLIM classifier fit using the coefficient set from Theorem 3.27 may attain a
lower 0-1 loss than 1 [yipTx, 5 0] as SLIM directly minimizes the 0-1 loss.

The next corollary yields additional bounds on the training accuracy by consid-
ering progressively larger values of the margin. These bounds can be used to relate
the resolution parameter A to a worst-case guarantee on training accuracy.
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Corollary 3.28 (kth Margin Resolution Bound)
Let p = [p1,... , pd] E Rd denote the coefficients of a linear classifier trained with
data D = (x,yj)! 1 . Let -1(k) denote the value of the kth smallest margin,(k)
denote the set of points with < (k) , and X(k) = maxiI(k) Xi||1I 2 denote the
largest magnitude of any example xi E D for i ' I(k).

Consider training a linear classifier with coefficients A = [A 1,... , Ad jT from the
set C = {-A, . . . , A}d. If we set the resolution parameter A such that:

X(k)V

then there exists X E L such that the 0-1 loss of A and the 0-1 loss of p differ by
at most k - 1:

101(A) - loi(p) < k - 1.

We have shown that good discretized solutions exist and can be constructed easily.
This motivates that optimal discretized solutions, which by definition are better than
rounded solutions, will also be good relative to the best non-discretized solution.
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3.6 Performance Benchmarks

In this section, we benchmark the accuracy and sparsity of SLIM scoring systems
against other popular classification models. Our goal is to illustrate the off-the-shelf
performance of SLIM and show that it can fit accurate scoring systems for real-world
datasets in minutes.

3.6.1 Datasets

We ran experiments on 8 datasets from the UCI Machine Learning Repository (Bache
and Lichmian, 2013) summarized in Table 3.1. We chose these datasets to explore the
performance of each method as we varied the size and nature of the training data.
We processed each dataset by binarizing all categorical features and some real-valued
features.

Dataset Reference n d Classification Task

adult Kohavi (1996) 32561 36 predict if a U.S. resident earns over $50K

breastcancer Mangasarian et al. (1995) 683 9 detect breast cancer using a biopsy

bankruptcy Kim and Han (2003) 250 6 predict if a firm will go bankrupt

haberman Haberman (1976) 306 3 predict survival after cancer surgery

heart Detrano et al. (1989) 303 32 identify patients a high risk of heart disease

mammo Elter et al. (2007) 961 12 detect breast cancer using a mammogram

mushroom Schlimmer (1987) 8124 113 predict if a mushroom is poisonous

spambase Cranor and LaMacchia (1998) 4601 57 predict if an e-mail is spam

Table 3.1: Datasets used for performance benchmarks.

3.6.2 Methods

We summarize our training setup for all methods in Table 3.2. We fit SLIM scor-
ing systems using CPLEX 12.6.0, and models with baseline methods using different
packages in R 3.1.1 (R Core Team, 2014). For each method, each dataset, and each
unique combination of free parameters, we trained 10 models using subsets of the
data to estimate predictive accuracy via 10-fold cross-validation (10-CV), and 1 final
model using all of the data to assess sparsity and interpretability. We ran all baseline
methods without time constraints over a large grid of free parameters. We produced
an f0 -regularization path for SLIM by solving 6 x 11 IPs for each dataset (6 values
of Co x 11 training runs per CO). We capped the runtime for each IP at 10 minutes,
and solved 12 IPs in parallel on a 12-core 2.7 GHz CPU with 48 GB RAM. Thus, it
took at most 1 hour to train SLIM scoring systems for each dataset. Since the adult

and haberman datasets were imbalanced, we trained all methods on these datasets
with a weighted loss function where we set w+ = n-/n and w- = n+/n.
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Method Acronym Software Settings and Free Parameters

CART Decision Trees CART rpart default settings
Thierneau et al. (2012) dfutstig

C5.0 Decision Trees C5.0T C50 default settings

C5.0 Rule List C5.0 (2012) default settings
Kuhn et al. (2012) dfutstig

Fi-Penalized LR Lasso (2010) 1000 values of A chosen by glmnet

i2-Penalized LR Ridge (2010) 1000 values of A chosen by glmnet

6 + f2-Penalized LR Elastic Net glmnet 1000 values of A chosen by glmnet
Friedman et al. (2010) x 19 values of a E {0.05,0.10,...,0.95}

SVM Linear Kernel SVM Linear e1071 25 values of C E f10 3, 10-2.75, ... , 103
Meyer et al. (2012) 25vleofCe{0,12. .1}

SVM RBF Kernel SVM RBF e1071 25 values of C E {10-3, 10-2.75,..., 1o3
Meyer et al. (2012) 2 auso i-,1-.5 i~

Co E {0.01, 0.075,0.05,0.025,0.001, 0.9/nd}
SLIM Scoring Systems SLIM slim-matlab Aj E {-10, . 10}

Ao E {-100, ., 100}

Table 3.2: Classification methods used for performance benchmarks.

3.6.3 Results

We summarize the results of our experiments in Table 3.3 and Figures 3.5 to3.6.
We benchmark the sparsity of models using the model size, which is the number of
coefficients for linear models (Lasso, Ridge, Elastic Net, SLIM, SVM Linear), the
number of leaves for decision tree models (C5.OT, CART), and the number of rules
for rule-based models (C5.OR). For completeness, we set the model size for black-box
models (SVM RBF) to the number of features in each dataset.

We show the accuracy and sparsity of all methods on all dataset in Figures 3.5
to 3.6. For each dataset, and each method, we plot a point at the 10-CV mean test
error and final model size, and surround this point with an error bar whose height
corresponds to the 10-CV standard deviation in test error. In addition, we include
eo-regularization paths for SLIM and Lasso on the right side of Figures 3.5 to 3.6 to
show how the test error varies at different levels of sparsity for sparse linear models.

We make the following observations regarding our results:

On Accuracy, Sparsity and Computation

Our results show that many methods are unable to produce models that attain the
same levels of accuracy and sparsity as SLIM. As shown in Figures 3.5 to 3.6, SLIM
always produces a model that is more accurate than Lasso at some level of spar-
sity, and sometimes more accurate at all levels of sparsity (e.g., spambase, haberman,
mushroom, breastcancer). Although the optimization problems to train SLIM scor-
ing systems were NP-hard, we did not find any evidence that computational issues
hurt the performance of SLIM on any of the datasets. We obtained accurate and
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Dataset Details Metric SLIM Lasso Ridge Elastic Net C5.OR C5.OT CART SVM Lin. SVM RBF

n 32561 test error 17.4 1.4% 17.3 A 0.9% 17.6 0.9% 17.4 A 0.9% 26.4 A 1.8% 26.3 A 1.4% 75.9 A 0.0% 16.8 0.8% 16.3 0.5%
d 37 train error 17.5 1.2% 17.2 A 0.1% 17.6 A 0.1% 17.4 A 0.1% 25.3 A 0.4% 24.9 A 0.4% 75.9 A 0.0% 16.7 A 0.1% 16.3 A 0.1%

adult Pr(y=+1) 24% model size 18 14 36 17 41 87 4 36 36
Pr(y=-1) 76% model range 7-26 13-14 36-36 16-18 38- 46 78-99 4-4 36-36 36-36

n 683 test error 3.4 A 2.0% 3.4 A 2.2% 3.4 A 2.0% 3.1 A 2.1% 4.3 A 3.3% 5.3 A 3.4% 5.6 1.9% 3.1 A 2.0% 3.5 A 2.5%

breastcancer d 10 train error 3.2 1 0.2% 2.9 A 0.3% 3.0 A 0.3% 2.8 A 0.3% 2.1 A 0.3% 1.6 A 0.4% 3.6 A 0.3% 2.7 A 0.2% 0.3 A 0.1%
Pr(y=+1) 35% model size 2 9 9 9 8 13 7 9 9
Pr(y=-1) 65% model range 2-2 8-9 9-9 9-9 6- 9 7-16 3-7 9-9 9-9

n 250 test error 0.8 A 1.7% 0.0 A 0.0% 0.4 A 1.3% 0.0 A 0.0% 0.8 A 1.7% 0.8 A 1.7% 1.6 A 2.8% 0.4 A 1.3% 0.4 A 1.3%

bankruptcy d 7 train error 0.0 A 0.0% 0.0 A 0.0% 0.4 A 0.1% 0.4 A 0.7% 0.4 A 0.2% 0.4 A 0.2% 1.6 A 0.3% 0.4 A 0.1% 0.4 A 0.1%
Pr(y=+1) 57% model size 3 3 6 3 4 4 2 6 6
Pr(y=-1) 43% model range 2-3 3-3 6-6 3-3 4- 4 4-4 2-2 6-6 6-6

n 306 test error 29.2 A 14.0% 42.5 A 11.3% 36.9 A 15.0% 40.9 A 14.0% 42.7 A 9.4% 42.7 A 9.4% 43.1 A 8.0% 45.3 A 14.7% 47.5 A 6.2%

haberman d 4 train error 29.7 A 1.5% 40.6 A 1.9% 41.0 A 9.7% 45.1 A 12.0% 40.4 A 8.5% 40.4 A 8.5% 34.3 A 2.8% 46.0 A 3.6% 5.4 1.5%
Pr(V=+1) 74% model size 3 2 3 1 3 3 9 3 4
Pr(y=-1) 26% model range 2-3 2-2 3-3 1 - 1 0-3 1-3 4-9 3-3 4-4

n 961 test error 19.5 A 3.0% 19.0 A 3.1% 19.2 A 3.0% 19.0 A 3.1% 20.5 A 3.3% 20.3 A 3.5% 20.7 A 3.9% 20.3 A 3.0% 19.1 A 3.1%

mammo d 15 train error 18.3 A 0.3% 19.3 A 0.3% 19.2 A 0.4% 19.2 A 0.3% 19.8 A 0.3% 19.9 A 0.3% 20.0 A 0.6% 20.3 A 0.4% 18.2 A 0.4%
Pr(y=+1) 46% model size 9 13 14 14 5 5 5 14 14
Pr(y=-1) 54% model range 9-11 12-13 14-14 13-14 3- 5 4-6 3- 5 14-14 14-14

n 303 test error 16.5 A 7.8% 15.2 A 6.3% 14.9 A 5.9% 14.5 A 5.9% 21.2 A 7.5% 23.2 A 6.8% 19.8 A 6.5% 15.5 A 6.5% 15.2 A 6.0%

heart d 33 train error 14.9 A 1.1% 14.0 A 1.0% 13.1 A 0.8% 13.2 A 0.6% 10.0 A 1.8% 8.5 A 2.0% 14.3 A 0.9% 13.6 A 0.5% 10.4 1 0.8%
Pr(y=+1) 46% model size 3 12 32 24 7 16 6 31 32
Pr(y=-1) 54% model range 3-3 10-13 30-32 22- 27 9-17 12-27 6-8 28- 32 32-32

n 8124 test error 0.0 A 0.0% 0.0 A 0.0% 1.7 A 0.3% 0.0 A 0.0% 0.0 A 0.0% 0.0 A 0.0% 1.2 A 0.6% 0.0 A 0.0% 0.0 A 0.0%

mushroom d 114 train error 0.0 A 0.0% 0.0 A 0.0% 1.7 A 0.0% 0.0 A 0.0% 0.0 A 0.0% 0.0 A0.0% 1.1 A 0.3% 0.0 A 0.0% 0.0 A 0.0%
Pr(y=+1) 48% model size 7 21 113 108 8 9 7 98 113
Pr(y=-1) 52% model range 7-7 19-23 113- 113 106- 108 8- 8 9-9 6-8 98-108 113- 113

n 4601 test error 6.3 A 1.2% 10.0 A 1.7% 26.3 A 1.7% 10.0 A 1.7% 6.6 A 1.3% 7.3 A 1.0% 11.1 A 1.4% 7.8 A 1.5% 13.7 A 1.4%

spambase d 58 train error 5.7 A 0.3% 9.5 A 0.3% 26.1 A 0.2% 9.6 A 0.2% 4.2 A 0.3% 3.9 A 0.3% 9.8 A0.3% 8.1 A 0.8% 1.3 A 0.1%
Pr(y=+1) 39% model size 34 28 57 28 29 73 7 57 57
Pr(y=-1) 61% model range 28-40 28-29 57-57 28-29 23- 31 56-78 6-10 57- 57 57-57

Table 3.3: Accuracy and sparsity of all methods on all datasets. Here: test error refers to
the 10-CV mean test error the 10-CV standard deviation in test error; train error refers to
the 10-CV mean training error the 10-CV standard deviation in training error; model size
refers to the final model size; and model range refers to the 10-CV minimum and maximum
model size. The results reflect the models produced by each method when free parameters
are chosen to minimize the 10-CV mean test error. We report the 10-CV weighted test and
training error for adult and haberman.
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sparse models for all datasets in 10 minutes using CPLEX 12.6, and a proof of op-
timality (i.e., a MIPGAP of 0.0%) for all models we trained for mammo, mushroom,
bankruptcy, breastcancer.

On the Loss in Training Accuracy due to Discrete Coefficients

We expect that methods that directly optimize accuracy and sparsity will achieve
the best possible accuracy at every level of sparsity (i.e. the best possible trade-

off between accuracy and sparsity). SLIM directly optimizes accuracy and sparsity.
However, it may not necessarily achieve the best possible accuracy at each level of
sparsity because it restricts coefficients to a finite discrete set L.

By comparing SLIM to Lasso, we can identify a baseline loss in training accuracy
due to this C set restriction. In particular, we know that when Lasso's performance
dominates that of SLIM, and the SLIM scoring systems are certifiably optimal, then
the loss in accuracy is due to the discrete or bounded nature of L. Our results show
that this tends to happen mainly at large model sizes (see e.g., the regularization
path for breastcancer, heart, mammo). This suggests that the C set restriction has a
more noticeable impact on accuracy at larger model sizes.

One interesting effect of the C set restriction is that the most accurate SLIM
scoring system may not use all of the features in the dataset. In our experiments, we
fit a SLIM scoring system for Co = 0.9/nd to obtain the model with highest training
accuracy among linear models with coefficients in A E L. On the bankruptcy dataset,
for example, we find that the optimal scoring system only uses 3 out of 6 features.
This is due to the 1 set restriction: if the A E 1 constraint were relaxed, then the
method would use all features to improve its training accuracy (as is the case with
Ridge or SVM Linear).
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Figure 3.5: Accuracy and sparsity of all classification methods on all datasets. For each
dataset, we plot the performance of models when free parameters are set to values that
minimize the 10-CV mean test error (left), and plot the performance of SLIM and Lasso
across the full to-regularization path (right).
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On Interpretability

To discuss interpretability, we focus on the mushroom dataset, which provides a nice
basis for comparison as multiple methods fit a model that attains perfect predictive
accuracy. In Figures 3.7 to 3.10, we show the sparsest models that achieve perfect
predictive accuracy. We omit models from some methods because they do not attain
perfect accuracy (CART), or use far more features (Ridge, SVM Lin, SVM RBF).

Here, the SLIM scoring system uses 7 integer coefficients. However, it can be
simplified into a 5 line scoring system since odor=none, odor=almond, and odor=anise
are mutually exclusive variables with the same coefficient. The model lets users make
predictions by hand, and uses a linear form that helps users gauge the influence of
each input variable with respect to the others. Note that only some of these qualities
are found in the other models. The Lasso model, for instance, has a linear form but
uses far more features. In contrast, the C5.0 models let users to make predictions by
hand, but have a hierarchical structure that makes it difficult to gauge the influence
of each input variable with respect to the others.

PREDICT MUSHROOM IS POISONOUS IF SCORE > 3
1. spore _print _color = green 4 points ...

2. stalk surface _above _ring = grooves 2 points + -
3. population = clustered 2 points + -
4. gill-size = broad -2 points + ---
5. odor c {none, almond, anise} -4 points + -

ADD POINTS FROM ROWS 1-5 SCORE

Figure 3.7: SLIM scoring system for mushroom (10-CV mean test error of 0.0 0.0%).

10.86 spore _print _color = green + 4.49 gill size= narrow + 4.29 odor = foul
+2.73 stalk_ surface below ring=scaly + 2.60 stalk_ surface_ above ring = grooves + 2.38 population = clustered
+0.85 sporeprint_ color = white + 0.44 stalk_ root = bulbous + 0.43 gill spacing = close
+0.38 cap_ color = white + 0.01 stalk_ color below ring = yellow - 8.61 odor = anise
-8.61 odor = almond - 8.51 odor = none - 0.53 cap_ surface = fibrous
-0.25 population = solitary - 0.21 stalk_ surface below_ ring = fibrous - 0.09 spore print color = brown
-0.00 cap-shape = convex - 0.00 gill spacing = crowded - 0.00 gill-size = broad
+0.25

Figure 3.8: Lasso score function for mushroom (10-CV mean test error of 0.0 0.0%).
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odor = none
NO

odor almond
NO YES

poisonous

NO

stalk surface below-ring
NO

gill_ size = narrow
NO YES

YES

spore_ print color = green
YES

= scaly
YES

gill size = narrow
NO YES

bruises = true
NO YES

Figure 3.9: C5.0 decision tree for mushroom (10-CV mean test error of 0.0 0.0%).

Rule

odor = none A gill size A narrow A spore _print_ color $ green

bruises = false A odor = none A stalk surface _below ring : scaly

odor E anise, almond

odor = anise

odor $ almond A odor 5 anise A odor 5 none

sporeprint _color = green

gill _size = narrow A stalk surf ace _below_ring = scaly

=+ safe

= safe

= safe

=> poisonous

=. poisonous

== poisonous

Confidence Support Lift

1.00 3216 1.9

0.999 1440 1.9

0.998 400 1.9

0.998 400 1.9

1.000 3796 2.1

0.986 72 2.9

0.976 40 2.0

90

NO

odor = anise
YES

poisonous

Figure 3.10: C5.0 rule list for mushroom (10-CV mean test error of 0.0 t 0.0%).
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3.7 Discussion

In this chapter, we presented a machine learning approach to create scoring systems
for decision-making, called a Supersparse Linear Integer Model (SLIM). Our approach
is designed to build scoring systems that are fully optimized for accuracy, sparsity,
small integer coefficients, and operational constraints. In contrast to traditional ma-
chine learning approaches, our approach requires the solution to an computationally
challenging discrete optimization problem as it uses exact quantities on model fit and
model form. We discussed how to solve this problem using mixed-integer program-
ming (MIP), and presented techniques to recover certifiably optimal solutions that
can be paired effectively with a MIP solver.

Our results in Section 3.6 show that we can build data-driven scoring systems for
a large class of real-world datasets, and recover a certificate of optimality for small
to mid-sized instances. These models perform well in comparison to state-of-the-art
models, but are easier to use, understand and validate. In particular, SLIM scoring
systems outperform popular sparse linear classification methods at small model sizes.
This is due to the fact that we avoid the use of surrogate functions for accuracy and
sparsity, can recover certifiably optimal solutions, and are may not incur a loss in
training accuracy due to use of small integer coefficients (i.e. which is guaranteed for
datasets with binary features as per Theorem 3.26). In Chapters 4 and 5, we show
that the performance of these models is far superior in the presence of operational
constraints. In addition, we will discuss other benefits that are difficult to benchmark,
such as the ability to produce models that can be validated, that can be customized
without parameter tuning, and that have a meaningful certificate of optimality.

The fact that we can recover certifiably optimal solutions for a large class of
real-world problems is surprising as other MIP-based approaches typically produce
models with large optimality gaps for this problem. Although one would have to
carry out further experiments to identify why this is the case, some of it is likely
due to the nature of the scoring system problem and the way in we have been able
to exploit it. In contrast to other MIP-based approaches for 0-1 loss minimization
(Brooks, 2011; Nguyen and Sanner, 2013), for example, the coefficients in our problem
are restricted to a finite discrete set and we can use this to produce tight Big-M
constants for the 0-1 loss (which lead to tighter relaxations, and more effective B&B).
In addition, elements of the scoring system problem that may deteriorate the worst-
case computational complexity can result in more effective improved B&B search.
By using integer coefficients, for example, a MIP solver may search more effectively

(e.g. it can generate cutting-planes to discard non-integer solutions, such as Gomory
cuts; further it can discard parts of the feasible region by splitting nodes on the most
fractional integer). These are meant to illustrate some potential differences between
our approach and others in the literature which merit further study.
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Potential Improvements

The performance of the scoring systems in our experiments primarily reflects the
effect of using a tighter MIP formulation with the CPLEX MATLAB API, which
does not support callback functions that allow us to intervene in the B&B search. In

light of this, we note that we could further improve by using the techniques in this
chapter and from Chapter 6 more effectively. In particular, a revised approach for

SLIM would involve the following steps:

1. Find a good initial solution by rounding the solutions from a linear SVM (if the

data is real), or via exhaustive search using low-dimensional threshold gates (if

the data is binary).

2. Apply the data reduction procedure (Algorithm 3.4.2) to identify redundant
examples in the training data.

3. Use a callback function to run the chained updates procedure (Chapter 6.3.2)
to restrict the search region, and strengthen the LP relaxation.

4. Use a callback function to run the polish-and-cover procedure (Algorithm 2) to
polish incumbent updates and add cover-cuts.

There are also other techniques in the literature that could be adapted to our set-
ting. In particular, we could devise node selection rules in order to branch more effec-
tively on the 0-1 loss indicators (by adapting the branching technique from Nguyen
and Sanner, 2013). Similarly, one could also devise rules to branch more effectively
on the fo-norm indicators (e.g., using the feature selection technique of Soiol et al.,
2004). Adapting these techniques would require callback functions that are only
available in commercial solvers, but may further reduce computation if they can be
implemented without introducing additional overhead.
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Chapter 4

Sleep Apnea Screening

In this chapter, we present results a collaboration with the Massachusetts General
Hospital Sleep Laboratory where we used SLIM to create a scoring system for sleep

apnea screening. Our work illustrates how our approach can handle operational con-
straints on accuracy and model form without parameter tuning, and highlights the
performance benefits of optimizing an exact objective under such constraints.

Notes

This chapter draws on material from Ustun and Rudin (2016b) and Ustun et al.
(2016). An editorial regarding the clinical significance of the work from this chapter
can be found in Combs et al. (2016).
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4.1 Background

Obstructive sleep apnea (OSA) is a sleep disorder where a patient intermittently
starts and stops breathing during sleep. The condition is a treatable contributor to
morbidity and mortality, leading to decreased work performance and quality of life
(AlGhanim et al., 2008). Recent studies estimate that OSA affects over 12 million
people in the United States along (Kapur, 2010). In spite of this, a large number of
patients with OSA remain undiagnosed (Collop et al., 2007).

The vast majority of OSA diagnoses originate from physician suspicion or patient-
reported symptoms. Expert clinical impression has weak sensitivity and specificity
(<70% each) for predicting OSA (Skoinro and Kryger, 1999). This pathway of clinical
suspicion may itself be a potential reason for under-recognition, as classic symptoms
OSA are not strongly predictive of the presence of OSA. For example, the Epworth
Sleepiness Scale (ESS) carries minimal predictive value for OSA (Gottlieb et al., 1999),
or even objective measures of sleepiness (Chervin and Aldrich, 1999).

Although recent predictive models have shown improvements over the ESS (Abr-
ishani et al., 2010), the best validated model - the STOP-BANG tool of Chung F
(2008) - has important limitations when for screening applications. This is partially
due to performance (i.e., STOP-BANG has a sensitivity of 83.6% and a specificity of
56.4%), but also due to its reliance on symptom-based features (e.g. snoring, noctur-
nal gasping, and sleepiness) which are hard to assess reliably in a clinical setting.

4.2 Problem Description

4.2.1 Data

The data for this study were collected from patients at the Massachusetts General
Hospital Sleep Laboratory. The training dataset covers a cohort of n = 1922 patients
and contains d = 33 features for each patient. Here, y, = +1 if patient i has obstruc-
tive sleep apnea (OSA). There is significant class imbalance as Pr (yi = +1) = 76.9%.
The features include: (i) standard medical information on demographics and co-
morbidity (e.g. Age, Male, Hypertension, Diabetes); (ii) self-reported information
related to sleep habits (e.g. CaffeineConsumption, Wakes UpAtNight).

4.2.2 Model Requirements

Our collaborators specified three operational constraints to ensure that the scoring
system we produced would be used and accepted by physicians:

1. Limited FPR: The model had to achieve the highest possible true positive rate
(TPR) while maintaining a maximum false positive rate (FPR) of 20%. This would
ensure that the model could diagnose as many cases of sleep apnea as possible but
limit the number of faulty diagnoses.

2. Limited Model Size: The model had to be transparent and use at most 5 features.
This would ensure that the model was could be explained and understood by other
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physicians in a short period of time.

3. Monotonicity: The model had to obey established relationships between well-known
risk factors and the incidence of sleep apnea (e.g. it could not suggest that a patient
with hypertension had a lower risk of sleep apnea since hypertension is a positive
risk factor for sleep apnea).

4.2.3 Training Setup

We trained a SLIM scoring system with integer coefficients A3 E {-10,... ,10}. We
addressed all operational constraints without parameter tuning, as follows:

- We added a loss constraint using the loss variables to limit the maximum FPR at
20%. We then set w+ = r-/(1 + n-) to guarantee that the optimization would
yield a classifier with the highest possible TPR with a maximum FPR less than
20% (see Section 3.3).

- We added a feature-based constraint using the loss variables to limit the maximum
number of features to 5 (see Section 3.3.4). We then set the trade-off parameter
to Co = 0.9w-/nd so that the optimization would yield a classifier that did not
sacrifice accuracy for sparsity (see Remark 3.5).

- We added sign constraints to the coefficients to ensure that our model would not
violate established relationships between features and the predicted outcome (i.e.,
we set A, > 0 if there had to be a positive relationship, and A < 0 if there had to
be a negative relationship).

With this setup, we trained 10 models with subsets of the data to assess predictive
accuracy via 10-fold cross validation (10-CV), and 1 final model with all of data to
hand over to our collaborators. We used the IP formulation in (3.5) and solved each
IP for 1 hour, in parallel, on 12-core 2.7GHz machine with 48GB RAM using CPLEX
12.6.0. Thus, the entire training process for SLIM required 1 hour of computing time.

As a comparison, we also trained models with 8 baseline classification methods
shown in Table 4.1. We dealt with the class imbalance by using a cost-sensitive
approach, where we used a weighted loss function and varied its sensitivity parameter
W+ across a large range of possible values. When possible, we addressed the remaining
operational constraints by searching over a fine grid of free parameters.

Model selection was difficult for baseline methods because they could not acco-
modate operational constraints in the same way as SLIM. For each baseline method,
we chose the best model that satisfied all operational constraints by: (i) dropping
any instance of the free parameters where operational constraints were violated; (ii)
choosing the instance that maximized the 10-CV mean test TPR. We ruled that
an instance of the free parameters violated an operational constraint if any of the
following conditions were met:

- the 10-CV mean test FPR of the model produced with the instance was greater
than the 10-CV mean test FPR of the SLIM model (20.9%)
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" the model sizel of the final model produced with the instance was greater than 5;

- the final model produced did not obey sign constraints. Note that this model
selection procedure may have biased the results in favor of the baseline methods
because we mixed testing and training data by looking at the final model to ensure
that operational constraints were satisfied.

Method Controls # Instances Settings and Free Parameters

CART Mode e 39 39 values of w+ E {0.025,0.05,...,0.975}

C5.OT Max FPR 39 39 values of w+ E {0.025,0.05,...,0.975}

C5.0R Mdel Sie 39 39 values of w+ E {0.025, 0.05,...,0.975}

Max FPR 39 values of w+ E {0.025,0.05,...0.975}Lasso odel Size 39000 x 1000 values of A chosen by ghnnet

Ridge Max FPR 39000 39 values of w+ E {0.025, 0.05,-.,0.975}
Signs x 1000 values of A chosen by ghnnet

Max FPR 39 values of w+ E {0.025, 0.05,...,0.975}
Elastic Net Model Size 975000 x 1000 values of A chosen by ghnnet

Signs x 19 values of a E {0.05, 0.10,...,0.95}

SVM Lin. Max FPR 39 values of w+ E {0.025, 0.05,...,0.975}
x 25 values of C E {10-3, 10-2.75, .. . , i03}

SVM RBF Max FPR 39 values of w+ E {0.025, 0.05,...,0.975}
x 25 values of C E {10- 3

, 10 -2.75,...,10 3 
}

Max FPR W+ = 2n-/(1 + n-)

SLIM Model Size 1 Co 0.9w/dn,
Signs ~ Ao E 1-100,.,100}

Aj E {-10, . , 10}

Table 4.1: Methods, software, and free parameters used to build screening models for
obstructive sleep apnea. An instance is a unique combination of free parameters. Controls
refer to operational constraints that we expect each method to handle.

'Model size represents the number of coefficients for linear models (Lasso, Ridge, Elastic Net,
SLIM, SVM Linear), the number of leaves for decision trees (C5.OT, CART), and the number of
rules for rule-based lists (C5.0R). For completeness, we set the model size for black-box models
(SVM RBF) to the number of features d.
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4.3 Results

We show the performance of the best model from each method in Table 4.2, and
summarize the operational constraints they satisfied in Table 4.3. In what follows,
we report our observations
and interpretability.

related to operational constraints, predictive performance

OBJECTIVE CONSTRAINTS OTHER INFO.

Constraints Test Test Final Final Final
Method Satisfied TPR FPR Model Train Train

Size TPR FPR

SLIM All 61.4% 20.9% 5 62.0% 19.6%
55.5 - 68.8% 15.0 - 30.4% - - -

Lasso All 29.3% 8.6% 3 22.1% 3.8%
19.2 - 60.0% 0.0 - 33.3% - - -

Elastic Net All 44.2% 18.8% 3 54.3% 20.7%
0.0- 64.1% 0.0 - 37.0% - - -

Ridge Max FPR 66.0% 20.6% 30 66.0% 18.9%
60.5 - 68.5% 8.6 - 32.6% - - -

SVM RBF Max FPR 64.3% 20.8% 33 67.8% 12.4%
59.2 - 71.1% 10.0 - 30.4% - - -

SVM Linear Max FPR 62.7% 19.8% 31 63.1% 17.1%
57.9 - 69.0% 7.5 - 28.6% - - -

C5.0R None 84.0% 43.0% 26 85.5% 32.9%
78.9 - 87.7% 32.6 - 54.2% - - -

C5.OT None 81.3% 42.9% 39 84.5% 28.4%
77.4 - 84.8% 29.6 - 62.5% - - -

CART None 93.0% 70.4% 8 95.9% 73.9%
88.8- 96.1% 61.1 - 83.3% - - -

Table 4.2: TPR, FPR and model size for all methods. We report the 10-CV mean TPR
and FPR. The ranges in each cell represent the 10-CV minimum and maximum.
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4.3.1 On the Difficulties of Handling Operational Constraints

Among the 9 classification methods that we used, only SLIM, Lasso and Elastic Net
could produce a model that satisfied all of operational constraints given to us by
physicians. Tree and rule-based methods such as CART, C5.0 Tree and C5.0 Rule
were unable to produce a model with a maximum FPR of 20% (see Figure 4.1).
Methods that used 2 -regularization such as Ridge, SVM Lin. and SVM RBF were
unable to produce a model with the required level of sparsity.

We did not expect all methods to satisfy all of the operational constraints. How-
ever, we included them to emphasize the following important points. Namely, popular
methods for applied predictive modeling do not:

- Handle simple operational constraints that are crucial for models to be used and
accepted. Implementations of popular classification methods do not have a mech-
anism to adjust important model qualities. That is, there is no mechanism to
control sparsity in C5.OT (Kuhn et al. 2012) and no mechanism to incorporate sign
constraints in SVM (Meyer et al. 2012). Finding a method with suitable controls
is especially difficult when a model has to satisfy multiple operational constraints.

- Have controls that are easy-to-use and/or work correctly. When a method has
suitable controls to handle operational constraints, producing a model often requires
a tuning process over a high-dimensional free parameter grid. Even after extensive
tuning, however, it is possible that we may never obtain a model that satisfies all
operational constraints (e.g. CART, C5.OR, C5.OT for the Max FPR constraint as
shown in Figure 4.1).

- Allow tuning to be portable when the training set changes. Consider a standard
model selection procedure where we choose free parameters to maximize predictive
accuracy. In this case, we would train models on several folds for each instance
of the free parameters, choose an instance of the free parameters that maximized
our estimate of predictive accuracy among the instances that met all operational
constraints, and then train a final model using these values of the free parameters.
Unfortunately, there is no guarantee that the final model will obey all operational
constraints.
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% of Instances that Satisfied

Max FPR Max FPR Max FPR
Method Model Size Model Size

Signs

SLIM 100.0% 100.0% 100.0%

Lasso 19.6% 4.8% 4.8%

Elastic Net 18.3% 1.0% 1.0%

Ridge 20.9% 0.0% 0.0%

SVM Linear 18.7% 0.0% 0.0%

SVM RBF 15.8% 0.0% 0.0%

C5.OR 0.0% 0.0% 0.0%

C5.OT 0.0% 0.0% 0.0%

CART 0.0% 0.0% 0.0%

Table 4.3: Percentage of instances that satisfied various combinations of operational con-
straints. Each instance is a unique combination of free parameters for a given method.

a-
Li-

CO

100%

80%

60%

Aol

O5.OR
*O C5.T
*CART

20%

0%
0.0 0.4 0.8 1.2 1.6 2.0

Figure 4.1: 10-CV mean test FPR for CART, C5.OR and C5.OT models across the full
range of the misclassification cost for positive examples w+. These methods cannot produce
a model that satisfies the max FPR < 20% constraint.
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4.3.2 On Performance Trade-offs under Operational Constraints

Among the three methods that produced acceptable models, the scoring system pro-
duced by SLIM had significantly higher sensitivity than the models produced by
Lasso and Elastic Net - a result that we expected given that SLIM minimizes the
0-1 loss and an to-penalty while Lasso and Elastic Net minimize convex surrogates
of these quantities.

This result held true even when we relaxed various operational constraints. In
Figure 4.2, for instance, we plot the sensitivity and sparsity of models that satisfied
the max FPR and sign constraints. Here, we see that Lasso and Elastic Net need at
least 8 coefficients to produce a model with the same degree of sensitivity as SLIM.
In Figure 4.3, we plot the TPR and FPR of models that satisfied the sign and model
size constraints. As shown, SLIM scoring systems dominate Lasso and Elastic Net
models across the entire ROC curve.

These sensitivity advantages are also evident in Table 4.2. Here, SLIM yields a
model with a similar level of sensitivity and specificity as Ridge and SVM Linear even
as it is fitting models from a far smaller hypothesis space.

60% -

) 50%

.: 40% + Elastic Net
Lasso

3 SLIM
U30% '

20%

0 2 4 6 8
Model Size

Figure 4.2: Sensitivity and model size of Lasso and Elastic Net models that satisfy the
sign and FPR constraints. For each method, we plot the instance that attains the highest
10-CV mean test TPR at model sizes between 0 and 8. Lasso and Elastic Net need at least
8 variables to attain the same sensitivity as SLIM.
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Figure 4.3: ROC curve for SLIM, Lasso and Elastic Net models that satisfy the sign
and model size constraints. For each method, we plot the instance that attains the highest
10-CV mean test TPR for 10-CV mean FPR values of 5%, 10%,... , 95%. Note that we had
to train 19 additional instances of SLIM to create this plot.

4.3.3 On the Usability and Interpretability of Feasible Models

We compare the best models from the baseline methods that satisfied all operational
constraints in Figure 4.4, and present the SLIM scoring system in Figure 4.5.

Lasso Score = 0.13 Snoring + 0.12 Hypertension - 0.26 Female - 0.17

Elastic Net Score = 0.03 Snoring + 0.02 Hypertension - 0.09 Female - 0.02

Figure 4.4: Score functions of the most sensitive models that satisfy all operational con-
straints. The baseline models have very poor sensitivity as shown in Table 4.2.

In this case, our collaborators found that all three models were aligned with do-
main knowledge as they obeyed sign constraints and had large coefficients for well-
known risk factors such as BMI, Female, Age, Snoring and/or Hypertension. Un-
fortunately, the Lasso and Elastic Net models could not be deployed as screening
tools due to their poor sensitivity (29.3% for Lasso and 44.2% for Elastic Net). This
was not the case for the SLIM model, which had much higher sensitivity (i.e. 61.4%).

Our results highlighted some of benefits of sparse linear models with small integer
coefficients. Specifically, our collaborators were able to understand how the model
worked by making quick predictions on prototypical examples. Using this process,
they were list the exact conditions when the score exceeds the threshold and obtain a
simple rule-based explanation for when the model predicted that a patient has OSA:

If Male, predict OSA if at least 1 of {BMI > 30, Age > 60, Hypertension}
If Female, predict OSA if at least 2 of {BMI > 40, Age > 60, Hypertension}

101



PREDICT PATIENT HAS OBSTRUCTIVE SLEEP APNEA IF SCORE > 1

1. Age > 60 4 points ...

2. Hypertension 4 points + -
3. BMI > 30 2 points + -

4. BMI > 40 2 points + -

5. Female -6 points + -

ADD POINTS FROM ROWS 1 - 5 SCORE =_-__

Figure 4.5: SLIM scoring system for sleep apnea screening. This model achieves a 10-CV
mean test TPR/FPR of 61.4/20.9%, obeys all operational constraints, is certifiably optimal,
and was trained without parameter tuning. It also generalizes well due to the simplicity of
the hypothesis space (training TPR/FPR of the final model is 62.0/19.6%).
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4.4 Discussion

The scoring system in Figure 4.5 is noteworthy in that it performs well, is certifiably
optimal, was built without parameter tuning, and can be validated by inspection.

The results from this chapter may explain why so many medical scoring sys-
tems are not built in a way that is entirely data-driven. Software tools for modern
machine learning methods are developed under the assumption that practitioners
can address operational constraints by incorporating auxiliary techniques into their
training pipeline. In turn, an approach that is entirely data-driven requires a training
pipeline that combines suitable methods, tunes the necessary free parameters, and
performs nested cross-validation. As our results show, there is no guarantee that
such a pipeline will produce an acceptable model. In such cases, it may be easier to
address certain model requirements using expert judgement, or even have a panel of
experts craft the entire model by hand.

In this case, the operational constraints of our collaborators were relatively mild
compared to the constraints of other medical scoring systems (see e.g. Section ??).
However, we were unable to address these requirements using modern machine learn-
ing methods. In most cases, the software for these methods did not contain built-in
controls to directly address these requirements. When such controls did exist, they
introduced free parameters, which could to be tuned. Ultimately, only two methods
were able to handle these constraints (e.g. Lasso and Elastic Net), and produced
models that performed poorly. Further, the resulting trade-offs then make it appear
as if it were impossible to learn a screening tool that performs well while satisfying
the constraints required for deployment.

Clinical Significance

One of the key insights from the scoring system in Figure 4.5 was it did not use any
of the symptom-based features in the dataset. This result was important because
it meant that our model could screen effectively using features that can be derived
through electronic health records (i.e. without the need for information related to
sleep habits or symptoms). It made sense to our collaborators, as symptoms are
self-reported, noisy, and less valuable for screening. However, it was unexpected as
even sparse Lasso and Elastic Net models used symptom-based features (see Figure
4.4). Since that our model was optimized for exact feature selection, however, this
suggested that we could drop self-reported symptoms entirely.

We investigated the value of self-reported symptoms in predicting obstructive sleep
apnea in Ustun et al. (2016). In Figure 4.6, we illustrate the value of this information
by showing the ROC curves for SLIM scoring systems built using three different sets
of features: all features; only features for patient-reported symptoms; and features
that could be extracted from an electronic health record. In this case, the finding held
across every machine learning method that we used: models that used only patient-
reported symptoms performed poorly, whereas models that used only features from
electronic health records performed almost as well (often as well) as models that used
both sets of information.
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The clinical significance of this finding is further discussed in the editorial of
Combs et al. (2016). We note that it not have been possible had we not built a model
that our collaborators could understand, and that had selected an optimal subset of
features for screening.
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Figure 4.6: Decision points of SLIM models over the full ROC curve for: (i) all features
(gray); (ii) features that can be extracted from an electronic health record (dashed); (iii)
features related to patient-reported symptoms (black).
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Chapter 5

Recidivism Prediction

In this chapter, we use SLIM to build scoring systems for a collection of recidivism
prediction problems. Our results highlight the performance of the IP formulation in
and polishing techniques on a large dataset. We use these models to address two
key questions in the criminal justice community, such as whether there is a trade-off
between accuracy and simplicity, and whether we should be using predictive models
for recidivism prediction.

Notes

The material from this chapter is drawn from Zeng et al. (2016). Code to process the
ICPSR data used in this chapter can be found at https://github.coin/ustunb/recidivism-
prediction. Code for the experimental comparisons can be found at http: github.con/
uistunb/classification-pipeliiie.

105



5.1 Background

Forecasting has been used for criminal justice applications since the 1920s (Borden,
1928; Burgess, 1928) when various factors derived from age, race, prior offense his-
tory, employment, grades, and neighborhood background were used to predict parole
violation.

Since then the use of recidivism prediction instruments has grown substantially,
and several U.S. states now mandated the use of predictive models for sentencing
decisions (Wroblewski, 2014). Outside of the U.S., other countries that currently use
recidivism prediction instruments include Canada (Hanson and Thornton, 2003), the
Netherlands (Tollenaar and van der Heijden, 2013), and the U.K. (Howard et al.,
2009).

Modern applications of recidivism prediction models include evidence-based sen-
tencing (Hoffman, 1994), corrections and prison administration (Belfrage et al., 2000),
informing release on parole (Pew Center of the States, Public Safety Performance
Project Washington, 2011), determining the level of supervision during parole (Barnes
and Hyatt, 2012; Ritter, 2013), determining appropriate sanctions for parole viola-
tions (Turner et al., 2009), and targeted policy interventions (Lowenkamp and Latessa,
2004).

5.2 Problem Description

We consider a total of 6 recidivism prediction problems. Each problem is a binary
classification problem with n = 33, 796 prisoners and d = 48 input variables. The
goal is to predict whether a prisoner will be arrested for a certain type of crime within
3 years of being released from prison.

5.2.1 Data and Sample Description

We defined recidivism problems using raw data from the study "Recidivism of Pris-
oners Released in 1994" (U.S. Department of Justice, Bureau of Justice Statistics,
2014). The data from this study is currently the largest publicly available database
on recidivism in the United States. It tracks a sample of 38,624 prisoners for 3 years
following their release from prison in 1994. These prisoners are representative of the
population of all prisoners released from 15 states, and account for over 65% of all
prisoners released from prison in 1994.

The raw data contains 6,427 features for each of the 38,624 prisoners. The in-
formation was sourced from record-of-arrest-and-prosecution sheets maintained by
state law enforcement agencies and the FBI. The 6,427 features consist of 91 fields
recorded before or during release from prison in 1994 (e.g., date of birth, effective
sentence length), and 64 fields that were recorded for up to 99 different arrests in the
3 year follow-up period.

In order to exclude extraordinary or unrepresentative release cases, we restricted
our analysis to a subsample of 33,796 prisoners as defined by the U.S. Bureau of
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Justice Statistics (Langan and Levin, 2002). Explicitly, our analysis only includes
prisoners who were alive over the entire 3 year follow-up period, and were released
from prison in 1994 after serving a sentence of at least 1 year. Prisoners with certain
release types - release to custody/detainer/warrant, absent without leave, escape,
transfer, administrative release, and release on appeal - were excluded.

5.2.2 Recidivism Prediction Problems

We created 6 recidivism prediction problems as follows. We defined binary outcome
variables yj E {-1, +1} where yj = +1 if a prisoner is arrested for a particular
type of crime within 3 years after being released from prison (see Table 5.2). We
considered the following types of crime: an arrest for any crime (arrest); an arrest
for a drug-related offense (drug); or an arrest for a certain type of violent offense
(general violence, domesticviolence, sexualviolence, fatalviolence).

We paired each outcome with the same set of d = 48 input variables shown in
Table 5.1. We selected variables that: (i) could be easily obtained by law enforcement
officials; (ii) were not directly related to socioeconomic factors (e.g. race), as this
would rule out the potential to use these tools in applications such as sentencing.
The final set of variables represent well-known predictors of recidivism (Bushway and
Piehl, 2007; Crow, 2008) that have been used in recidivism prediction tools 1928 (see
e.g., Borden, 1928; Maxfield et al., 2005; Berk et al., 2006; Baradaran, 2013).

The variables in our problems were all binary variables. There were two reasons
for this. Binary variables produced scoring systems that were easier to use and un-
derstand as the scores could be computed without multiplication (this is the standard
for many tools e.g., Pennsylvania Bulletin, 2017). Binarizing the input variables was
useful for SLIM as it let us use the tighter IP formulation in (3.7a). Since the effect
of binarization on the performance of other methods was not clear, we also looked
at whether other methods would perform better if they used continuous variables or
both continuous and binary variables (see Appendix E of Zeng et al., 2016). Specifi-
cally, we examined the change in predictive accuracy if continuous variables are used
and showed that the changes in performance are minor for most methods (with the
following exceptions: CART and C5.OT experienced an improvement of 4.6% for drug
and SVM RBF experienced a 7.7% improvement for fatalviolence).

107



Input Variable Pr (xij = 1) Conditions required for xij = 1

female 0.06 prisoner i is female
prior_ alcohol- abuse 0.20 prisoner i has history of alcohol abuse
prior_ drug_ abuse 0.16 prisoner i has history of drug abuse

age_ at_ release<17 0.00 prisoner i was <17 years old at release in 1994
age at_ release_ 18_ to_ 24 0.19 prisoner i was 18-24 years old at release in 1994
age_ at_ release_ 25 to_ 29 0.21 prisoner i was 25-29 years old at release in 1994
age_ at_ release_ 30 to_ 39 0.38 prisoner i was 30-39 years old at release in 1994
age_ at_ release 40 0.21 prisoner i was >40 years old at release in 1994

released_ unconditional 0.11 prisoner i released at expiration of sentence
released_ conditional 0.87 prisoner i released by parole or probation

time_ served< 6mo 0.23 prisoner i served <6 months
time_ served_ 7 to_ 12mo 0.20 prisoner i served 7-12 months
time_ served_ 13_ to_ 24mo 0.23 prisoner i served 13-24 months
time_ served 25_ to_ 60mo 0.25 prisoner i served 25-60 months
time_ served>61mo 0.10 prisoner i served >61 months

infraction_ in_ prison 0.24 prisoner i has a record of misconduct in prison

age_ 1st_ arrest<17 0.14 prisoner i was 17 years old at 1st arrest
age 1st_ arrest_ 18 to _ 24 0.61 prisoner i was 18-24 years old at 1st arrest
age_ 1st_ arrest_ 25_ to_ 29 0.10 prisoner i was 25-29 years old at 1st arrest
age_ 1st_ arrest_ 30 to_ 39 0.09 prisoner i was 30-39 years old at 1st arrest
age_ 1st_ arrest 40 0.04 prisoner i was >40 years at 1st arrest

age_ lst_ confinement<17 0.03 prisoner i was 17 years old at 1st confinement
age 1st_ confinement_ 18_ to_ 24 0.46 prisoner i was 18-24 years old at 1st confinement
age_ 1st_ confinement_ 25_ to_ 29 0.18 prisoner i was 25-29 years old at 1st confinement
age_ 1st_ confinement_ 30 to_ 39 0.21 prisoner i was 30-39 years old at 1st confinement
age_ 1st_ confinement 40 0.12 prisoner i was 40 years at 1st confinement

prior_ arrest_ for drug 0.47 prisoner i was once arrested for drug offense
prior_ arrest_ for_ property 0.67 prisoner i was once arrested for property offense
prior_ arrest_ for_ public_ order 0.62 prisoner i was once arrested for public order offense
prior_ arrest for_ general_ violence 0.52 prisoner i was once arrested for general violence
prior arrest_ for_ domestic_ violence 0.04 prisoner i was once arrested for domestic violence
prior_ arrest for_ sexual_ violence 0.03 prisoner i was once arrested for sexual violence
prior_ arrest_ for fatal_ violence 0.01 prisoner i was once arrested for fatal violence

prior_ arrest for_ multiple_ types 0.77 prisoner i was once arrested for multiple types of crime
prior_ arrest_ for_ felony 0.84 prisoner i was once arrested for a felony
prior_ arrest_ for_ misdemeanor 0.49 prisoner i was once arrested for a misdemeanor
prior arrest_ for_ local_ ordinance 0.01 prisoner i was once arrested for local ordinance
prior_ arrest_ with firearms_ involved 0.09 prisoner i was once arrested or an incident involving firearms
prior_ arrest_ with_ child_ involved 0.17 prisoner i was once arrested for an incident involving children

no_ prior arrests 0.12 prisoner i has no prior arrests
prior_ arrests> 1 0.88 prisoner i has at least 1 prior arrest
prior_ arrests>2 0.78 prisoner i has at least 2 prior arrests
prior arrests>5 0.60 prisoner i has at least 5 prior arrests

multiple_ prior_ prison_ time 0.43 prisoner i has been to prison multiple times
any_ prior jail_ time 0.47 prisoner i has been to jail at least once
multiple_ prior_ jail_ time 0.29 prisoner i has been to prison multiple times
any_ prior_ probation_ or fine 0.42 prisoner i has been on probation or paid a fine at least once
multiple_ prior_ probation_ or-fine 0.22 prisoner i has been on probation or paid a fine multiple times

Table 5.1: Input variables for all recidivism prediction problems. Each variable is a binary
variable xij E {0, 11.
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Prediction Problem Pr (yj = +1) Conditions Required for yt = +1

arrest 59.0% prisoner i is arrested for any offense within 3 years of release from
prison

drug 20.0% prisoner i is arrested for drug-related offense (e.g., possession, traffick-
ing) within 3 years of release from prison

general-violence 19.1% prisoner i is arrested for a violent offense (e.g., robbery, aggravated
-v eassault) within 3 years of release from prison

domestic-violence 3.5% prisoner i is arrested for domestic violence within 3 years of release
from prison

sexualviolence 3.0% prisoner i is arrested for sexual violence within 3 years of release from
prison

fatal-violence 0.7% prisoner i is arrested for murder or manslaughter within 3 years of
release from prison

Table 5.2: Outcomes for recidivism prediction problems. The values of Pr (yj = +1) do
not add up to 100% because each arrest can be associated with more than one type of crime,
and a prisoner may be arrested multiple times over the 3 year follow-up period.
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5.3 Methodology

We compared SLIM scoring systems to models produced by 8 baseline classification

methods shown in Table 5.3.

Setup

For each recidivism prediction problem and each method, we fit 19 decision-making

models using a standard cost-sensitive approach. We chose 19 values of the mis-
classification cost parameter w+ to fit models across the full ROC curve. Thus, our
comparison involved required fitting a total of 1,026 decision-making models (i.e. 6
recidivism problems x 9 methods x 19 values of w+).

By default, we used values of w+ E {0.1, 0.2,. . . , 1.9} and set w = 2- w+. These
values of w+ were inappropriate for problems with significant class imbalance because
many methods would produce trivial models for most values of w+. Thus, for sig-
nificantly imbalanced problems, such as domesticviolence and sexualviolence,
we used values of w+ E {1.815, 1.820, ... , 1.995}. For fatalviolence, which was

extremely imbalanced, we used w+ E {1.975, 1.976, ... , 1.995}.
We fit the "best" model for a given value of w+ as follows. We used 2/3 of the

data as the training set and 1/3 of the data as an out-of-sample test set. We used

a standard 5-fold cross-validation (5-CV) setup for parameter tuning, and chose an
instance of the parameters that minimized the mean weighted 5-CV validation error.

Using these free parameter values, we then fit final model using the entire training

set, and reported its performance on the test set (1/3). We used the same test set,
training set, and validation folds in order to allow for comparisons across methods

and prediction problems.

Computation

We fit models for baseline methods using publicly available packages in R 3.2.2 with-
out imposing time constraints. We fit SLIM scoring systems by solving the IP for-
mulation in (3.7a) using the CPLEX 12.6 API in MATLAB 2013a. We solved each
IP for 4 hours on a computing cluster with 2.7GHz CPUs. Each time we solved a IP
we kept 500 feasible solutions, and polished them using the polishing IP in Section
3.4.1. We then used the same CV setup as the other methods to tune the number of
terms in the final model. Polishing all 500 solutions took less than 1 minute. Thus,
the total number of optimization problems we solved were 500 polishing IPs x (5
folds + 1 final model) x 6 problems x 19 values of w+ = 342,000 IPs.

Performance Metrics

We summarize the overall classification performance for each method over the ROC

curve using a metric that we refer to as mA UC (i.e. method AUC). Here, we use
mAUC to clearly distinguish this metric from AUC, which we will use as a perfor-

mance metric for ranking. The mAUC of a given method reflects the area under the

ROC curve built using all models from that method (i.e. the best models obtained
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using the 19 values of w+). A method that with mAUC = 1 always produces models
that are more accurate than a method with mAUC = 0. Other than this basic case,
however, it is not possible to state that a method with high mAUC always produces
models that are more accurate than a method with low mAUC.

Limitations

Our setup in this chapter differs from the experimental setup in Chapter 3.6.1 as
we sought to abide by guidelines for methodological benchmarks in the criminology
literature (see Berk and Bleich, 2013). In particular, we had to ensure that all methods
used the same cost weighting scheme to deal with imbalanced problems. Certain
classification methods may fare better on imbalanced problemsif we dealt with class
imbalance using an alternative approach (e.g. by using sampling instead of weighing).
This also applies to SLIM, which would have have performed better at several decision
points if we used FPR constraints (as these improve the effectiveness of B&B by
strengthening the formulation and allowing the solver to prune more effectively as in
Chapter 4).

Method Acronym Software Free Parameters and Settings

CART Decision Trees CART rpart minSplit E (3,5,10,15,20) x
(Therneau et al., 2012) CP E (0.0001,0.001,0.01)

C5.0 Decision Trees C5.OT Kuhn et a. (2012) default settings

C5.0 Decision Rules C5.OR C50 default settings
Kuhn et al. (2012) dfutstig

Logistic Regression Laso ghnnet 100 values of fi-penalty
+fli-Penalty Friedman et al. (2010) chosen by glmnet

Logistic Regression Ridge glnnet 100 values of f 2 -penalty
+t2-Penalty Friedman et al. (2010) chosen by glmnet

randomForest sampsize E (0.632n,0.4n,0.2n) x
Random Forests RF Liaw and Wiener (2002) nodesize E (1, 5, 10, 20)

with unbounded tree depth

SVM with RBF Kernel SVM RBF e1071 C E (0.01,0.1,1,10) x
Meyer et al. (2012) C(1,1 1,1,2 '5' 0

shrinkage E (0.001,0.01, 0.1) x
Stochastic Gradient Boosting SGB Ridgeway (2006) interaction.depth E (1,2,3,4) x

ntrees E (100, 500, 1500,3000)

Co and E set to find most accurate model

SLIM Scoring Systems SLIM CPLEX 12.6 with < 8 coefficients where
Ao E {-100..., 100}
Aj E {-10,. ,101

Table 5.3: Classification methods used to fit models for all recidivism prediction problems.
We ran each method for 19 values of w+ and all combinations of free parameters shown in
the table. For each value of w+, we selected the model that minimized the mean weighted
5-CV validation error.
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5.4 Results

We show ROC curves for all methods and prediction problems in Figure 5.1 and
summarize the test mAUC of each method in Table 5.4. We make the following ob-
servations, which we believe carry over to a large class of problems beyond recidivism
prediction:

- All methods did well on the general recidivism prediction problem, arrest. In this
case, we observe only small differences in predictive accuracy of different methods.
All methods other than CART attain a test mAUC above 0.72; the highest test
mAUC of 0.73 was achieved by SGB, Ridge, and RF. This multiplicity of good
models reflects the Rashomon effect of Breiman (2001b).

- Major differences between methods appeared in their performance on imbalanced
prediction problems. We expected different methods to respond differently to
changes in the misclassification costs, and therefore trained each method over a
large range of misclassification costs. Even so, it was difficult to tune certain meth-
ods to produce models at certain points of the ROC curve (see e.g., problems with
significant imbalance, such as fatalviolence).

- SVM RBF, SGB, Lasso and Ridge were able to produce accurate models at differ-
ent points on the ROC curve for most problems. SGB usually achieved the highest
mAUC on most problems (e.g., arrest, drug, general violence). Lasso, Ridge,
and SVM RBF often produce comparable mAUCs. We find that these methods
respond well to cost-sensitive tuning, but it is difficult to determine suitable mis-
classification costs on highly imbalanced problems (e.g. fatalviolence) to fit

models at specific points on the ROC curve.

- C5.0T, C5.0R and CART were unable to produce accurate models across the full
ROC curve on imbalanced prediction problems. We found that these methods
do not respond well to cost-sensitive tuning. For drug and general violence,

for instance, these methods could not produce models with high TPR. The issue
becomes more severe as problems become more imbalanced. For fatalviolence,

sexualviolence, and domesticviolence, these methods typically produced triv-
ial models that predict 94 = +1 or ji = -1 (resulting in mAUCs of 0.5). This result
may be attributed to the greedy nature of the algorithms used to fit the trees, as
opposed to the use of tree models in general. The issue is unlikely to be software-
related as it affects both C5.0 and CART, and has been observed by others (see
e.g., Goh and Rudin, 2014).

- SLIM performs well despite being restricted to a small class of simple linear models

(e.g., models with at most 8 non-zero integer coefficients from -10 to 10). Even on
highly imbalanced problems such as domestic_.violence and sexualviolence, it

responds well to changes in misclassification costs. This is expected by nature of
its exact formulation.
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Figure 5.1: ROC curves for recidivism prediction problems. We plot SLIM models using
large blue dots. All models perform similarly except for C5.R, C5.T, and CART.
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Problem Lasso Ridge C5.OR C5.OT CART RF SGB SLIM
RBF SB SI

arrest 0.72 0.73 0.72 0.72 0.68 0.73 0.72 0.73 0.72

drug 0.74 0.74 0.63 0.63 0.59 0.75 0.73 0.75 0.74

generalviolence 0.72 0.72 0.56 0.57 0.56 0.71 0.70 0.72 0.71

domesticviolence 0.77 0.77 0.50 0.50 0.53 0.64 0.77 0.78 0.76

sexualviolence 0.72 0.72 0.50 0.50 0.51 0.54 0.69 0.70 0.70

fatalviolence 0.67 0.68 0.50 0.50 0.50 0.50 0.69 0.70 0.62

Table 5.4: Test mAUC for all methods on all prediction problems.

5.4.1 On Performance under a Model Size Constraint

Baseline methods were unable to maintain the same level of accuracy under a sim-
ple model size constraint. In this setting, the only methods that can consistently
produce accurate models along the full ROC curve and also have the potential for
interpretability are SLIM and Lasso. Tree and rule-based methods such as CART,
C5.0T and C5.0R were generally unable to produce models that attain high degrees
of accuracy. Worse, even for balanced problems such as arrest, where these methods
did produce accurate models, the models are complicated and use a very large number
of rules or leaves (similar behavior for C5.OT/C5.OR is also observed by, for instance,
Lim et al., 2000).

In Table 5.5, we show the percentage change in test mAUC for the methods due to
the model size restriction. As shown, the overall accuracy of the models produced by
each method are significantly affected by the model size constraint. Note that C5.0R
and C5.OT are unable to produce a suitably sparse model for some of the problems
as their implementation does not provide control over model sparsity.

Problem Lasso C5.OR C5.OT CART SLIM

arrest -3.8% - - -2.8% 0.0%

drug -4.0% - - -15.7% 0.0%

general-violence -2.2% -11.0% -12.7% -10.3% 0.0%

domesticviolence -4.1% - - -5.4% 0.0%

sexualviolence -2.2% - - -1.8% 0.0%

fatalviolence -11.2% - - 0.0% 0.0%

Table 5.5: Percentage change in Test mAUC when transparent methods are restricted to
models with at most 8 coefficients, 8 leaves or 8 rules.
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5.4.2 On the Interpretability of Equally Accurate Models

To discuss interpretability, we show the models from SLIM, Lasso and CART for the
arrest problem in Figures 5.5 - 5.4. This setup provides a nice basis for comparison
as all methods fit transparent models at roughly the same degree of accuracy and
sparsity. For this comparison, we considered any transparent model with at most 8
coefficients (Lasso), 8 rules (C5.OR) or 8 leaves (C5.0T, CART) and had a test FPR
of below 50%. In this case, neither C5.0R nor C5.0T could produce an acceptable
model with at most 8 rules or 8 leaves. We make the following observations:

* All three models attain similar levels of predictive accuracy. Test TPR values ranged
between 70-79% and test FPR values ranged between 43-48%. There may not exist
a classification model that can attain substantially higher accuracy. The highest
test TPR attained by models with test FPR < 50% was produced by the SVM RBF
model which had a TPR of 80%.

- The SLIM model uses 5 input variables and small integer coefficients. Here, the
model can be further simplified by combining age_ at_ release into single variable

(see e.g., Figure 5.5). There is a natural rule-based interpretation. In this case,
the model implies that if the prisoner is young (age_ at release_ of 18 to_24)
or has a history of arrests (prior_ arrests 5), we should predict that they will be
rearrested. On the other hand, if the prisoner is older (age_ at_ release 40) or has
no history of arrests (no_ prior_ arrests), we should not.

* The Lasso model allows users to gauge the importance of each feature by comparing
the size of different coefficients, as the size of each coefficient reflects an odds ratio.
The composition of variables in this model is similar to that of the SLIM model -
as both prior_ arrest and age_ at_ release-40 are important factors. In comparison
to the SLIM model, the Lasso model is slightly more difficult to comprehend as it
uses 7 input variables (instead of 4) with real coefficients that range between (0.61
to 0.005). The Lasso model does not benefit from the ability to collapse mutually
exclusive features, make hands-on predictions, or yield the same kind of rule-based
insights as the SLIM model.

- The CART model also allows users to make predictions without a calculator. In
comparison to the SLIM model, however, the hierarchical structure of the CART
model makes it difficult to gauge the relationship of each input variable on the pre-
dicted outcome. Consider, for instance, the relationship between age at release and
the outcome. In this case, users are immediately aware that there is an effect, as the
model branches on the variables age_ at release>40 and age_ at_ release_ 18 to_ 24.
However, the effect is difficult to comprehend since it depends on prior arrests for
misdemeanor: if prior_ arrests>5 = 1 and age_ at_ release_ 18 to_ 24 = 1 then
the model predicts = +1; if prior_ arrests>5 = 0 and age_ at_ release>40 = 0
then = +1; however, if prior_ arrests>5 = 0 and age_ at_ release>40 = 1 then

= +1 only if prior arrest for_ misdemeanor = 1. Such issues do not affect linear
models such as SLIM and Lasso, where users can immediately gauge the direction
and strength of the relationship between a input variable and the predicted outcome
by the size and sign of a coefficient.
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>21

PREDICT ARREST FOR ANY OFFENSE IF SCORE > 1
1. age_ at_ release_ 18 to_ 24 2 points ...

2. prior_ arrests> 5 2 points +
3. prior_ arrestfor_ misdemeanor 1 point + -
4. no_ prior_ arrests -1 point + -
5. age_ at_ release>40 -1 point + -

ADD POINTS FROM ROWS 1-5 SCORE =

Figure 5.2: SLIM scoring system for arrest. This model has a test TPR/FPR of
76.6%/44.5%, and a mean 5-CV validation TPR/FPR of 78.3%/46.5%.

PREDICT ARREST FOR ANY OFFENSE IF SCORE > 31
1. prior_ arrests>5 63 points -..

2. age_1st confinement_ 18 to 24 15 points +
3. prior_ arrestforproperty 9 points +
4. prior_ arrestformisdemeanor 5 points + ---
5. age_ at_ release>40 -20 points +

ADD POINTS FROM ROWS 1-5 SCORE =

Figure 5.3: Lasso model for arrest with coefficients rounded to two significant digits
and scaled by 100. This model has a test TPR/FPR of 70.9%/43.8%, and a mean 5-CV
validation TPR/FPR of 72.2%/44.0%.

prior arrests>5
NO YES

-pge_ at_ release_ 18 to_ 24
NO YES

age at release > 40 1
YES

prior arrest for_ misdemeanor
NO YES

Figure 5.4: CART decision tree for arrest. This model has a test TPR/FPR of
79.1%/47.9%, and a mean 5-CV validation TPR/FPR of 79.9%/48.5%.

Scoring Systems for Recidivism Prediction

We present SLIM scoring systems for other problems in Figures 5.5 to 5.8. The

models are chosen for the decision-point 5-CV FPR< 50%, and would be suitable

for screening applications. To produce a model for sentencing, a point on the ROC

curve with a much higher TPR would be needed. Once again, we observe that these

models generalize well, as evidenced by the close match between test TPR/FPR and

training TPR/FPR.
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PREDICT ARREST FOR DRUG OFFENSE IF SCORE > 7
1. prior _ arrest for_ drugs 9 points ...

2. age_ at_ release_ 18 to_ 24 5 points + -
3. age_ at_ release_ 25 to_ 29 3 points + ---
4. prior_ arrest_ for_ multiple_ types_ of crime 2 points +
5. prior_ arrestfor-property 1 points +
6. age_ at_ release_ 30 to_ 39 -1 point +
7. no_ prior_ arrests -6 points + -

ADD POINTS FROM ROWS 1-7 SCORE I=---

Figure 5.5: SLIM scoring system for drug. This model has a test TPR/FPR of
85.7%/51.1%, and a mean 5-CV validation TPR/FPR of 82.3%/49.7%.

PREDICT ARREST FOR GENERAL VIOLENCE IF SCORE > 7
1. prior arrestfor general violence 8 points ...
2. prior arrest for misdemeanor 5 points + ---
3. infraction_ in_ prison 3 points + -
4. prior arrestfor local_ ord 3 points +
5. prior_ arrestfor property 2 points +
6. prior_ arrest for fatal violence 2 points + -
7. prior_ arrest_ withfirearms involved 1 point +
8. age_ at release>40 -7 points + -

ADD POINTS FROM ROWS 1-8 SCORE I =--

Figure 5.6: SLIM scoring system for generalviolence. This model has a test
TPR/FPR of 76.7%/45.4%, and a mean 5-CV validation TPR/FPR of 76.8%/47.6%.

PREDICT ARREST FOR DOMESTIC VIOLENCE IF SCORE > 3
1. prior_ arrest for_ misdemeanor 4 points -..

2. prior _ arrest for felony 3 points + - .
3. prior arrest for domestic_ violence 2 points +
4. age_ 1st_ confinement_ 18 to_ 24 1 point +
5. infraction_ in_ prison -5 points +

ADD POINTS FROM ROWS 1-5 SCORE

Figure 5.7: SLIM scoring system for domesticviolence. This model has a test
TPR/FPR of 85.5%/46.0%, and a mean 5-CV validation TPR/FPR of 81.4%/48.0%.

PREDICT ARREST FOR FATAL VIOLENCE OFFENSE IF SCORE > 4
1. age 1st confinement<17 5 points ...

2. prior arrest_ withfirearms involved 3 points +
3. age_1st_ confinement_ 18 to_ 24 2 points + ---
4. prior arrest for felony 2 points + -..

5. age_ at_ release_ 18 to_ 24 1 point +
6. prior_ arrest for_ drugs 1 point +

ADD POINTS FROM ROWS 1-6 SCORE I = -

Figure 5.8: SLIM scoring system for f atal violence. This model has a test TPR,/FPR
of 55.4%/35.5%, and a mean 5-CV validation TPR/FPR of 64.2%/42.4%
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5.5 Discussion

Trade-offs Between Simple and Complex Predictive Models

There has been some controversy in the criminology community as to whether mod-
ern machine learning methods such as random forests (see e.g., Breinan, 2001b; Berk
et al., 2009; Ritter, 2013) are necessary to produce accurate predictive models of
recidivism, or if "traditional" approaches such as logistic regression and linear dis-
criminant analysis would suffice (see e.g., Tollenaar and van der Heijden, 2013; Berk
and Bleich, 2013; Bushway, 2013).

Our results in this chapter show that the answer can be far subtle than a simple yes
or no. In particular, the answer depends on how the models will be used for decision-
making. For each use case (e.g., sentencing, parole decisions, policy interventions),
one might need a different true positive rate (TPR) and/or false positive rate (FPR)

(see also Ritter, 2013). In order to determine if one method is better than another,
one must consider the appropriate point along the ROC curve for decision-making.

As we show, for a wide range of recidivism prediction problems, many machine
learning methods (support vector machines, random forests) produce equally accurate
predictive models along the ROC curve. However, there are trade-offs between accu-
racy, transparency, and interpretability: methods that are designed to yield transpar-
ent models (CART, C5.0) cannot be tuned to produce as accurate models along the
ROC curve, and do not consistently output models that are easy to use, understand,
or validate.

This is not to say that such models for not exist. The fact that many methods
produce models with similar levels of predictive accuracy indicates that there is a large
class of approximately-equally-accurate predictive models (called the "Rashomon"
effect by Breiian 2001a). In this case, there may exist scoring systems that also
attain the same level of accuracy as other predictive models. Finding such models,
however, may be computationally challenging.

On the Importance of Validation

Historically, the use of recidivism prediction models was fueled by work on clinical
versus actuarial judgment, which showed that humans - on their own - are not as
good at decision-making assessment as statistical models (Dawes et al., 1989; Grove
and Meehl, 1996). Recently, however, the use and development of models in the
modern criminal justice system has been a controversial topic among policy-makers
and legal scholars (see e.g. the critiques of Harcourt, 2008; Hannah-Moffat, 2013).

Several articles (e.g. Barry-Jester et al., 2015; Angwin et al., 2016) have led to
broader public awareness that predictive models in the criminal justice system may
lead to unintended consequences, such as discrimination. In light of these articles, the
central question within the legal community is not whether we can build predictive
models that do not discriminate among individuals, but whether it is ethical to use a
predictive model to make decisions that affect humans in the first place. Starr (2014),
for instance, calls the use of these models "unconstitutional", and states that the "I
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doubt many policy makers would publicly defend the claim that people should be
imprisoned longer because they are poor, for instance."

Modern predictive modeling, in general, does not provide a good approach to
address this concern. In particular, one approach to show that income is not an
important predictor (e.g. by pairing a predictive model with a variable importance
plot). This is misleading as the model can still discriminate based on income through
correlations with proxy variables. A different approach would be to provide some
evidence that the predictive model does not discriminate on the basis of income on the
training data (by analysis, or through a fairness constraint). This approach can more
effectively address the potential to discriminate through proxy variables. However it
does not guarantee that the model will not discriminate when it is deployed on a new
population of individuals (Barry-Jester et al., 2015).

Such issues are inherently difficult to address from a methodological standpoint.
In fact, there may be no practical approach to address them other than through
careful validation before and during deployment. Validation does guarantee that the
model will not discriminate based on income, but it can reduce the potential for the
discrimination to go unchecked. In light of this, a simple scoring system such as the
one in Figure is valuable as users can extract a boolean function that represents the
exact decision-rule. This allows users to fully understand the interactions between the
variables, and validate predictions each time they are used. This degree of validation
differs from other techniques in that it does not require access to the data, in that it
can be done without training, and in that it provides an exact representation of how
the model operates.

5.5.1 On the Importance of Certifiable Optimality

The results from this chapter highlight the value of a certificate of optimality for
predictive models in criminal justice.

Model development in criminal justice not only involves significant methodological
work (to address operational constraints), but also requires extensive validation (to
prove to policy-makers that the models attain a reasonable performance trade-off).
As a example, note that the scoring system developed by the Pennsylvania Sentencing
Commission in Figure 1.1 was developed over 7 years (Pennsylvania Bulletin, 2017).

SLIM scoring systems can address this need for validation through meaningful
performance guarantees. In particular, a certifiably optimal scoring system attains
the best training accuracy among all scoring systems. In addition, since the models
can be expected to generalize, the training accuracy can be used as a proxy for their
testing accuracy. These guarantees provide an effective way to address real-world
applications that involve performance guarantees and constraints.

Say, for example, that policy makers ask a practitioner to create a scoring system
for parole violation. We note:

- If practitioner is unable to recover a certifiably model, a small optimality gap may
still be useful because the objective function involves meaningful quantities (e.g.
if the gap is 5%, then a certifiable optimal model will be no more than 5% more
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accurate).

* If a certifiably optimal scoring system performs poorly at a certain point on the
ROC curve (e.g. the model has low TPR at the maximum FPR that policy makers
are willing to tolerate), then a practitioner can tell policy-makers that they will
need to tolerate a larger FPR.

* If a certifiably optimal scoring system performs poorly at a certain point on the
ROC curve, then no scoring system for risk assessment will contain a decision-
point that does better (this is useful given that many tools are developed for risk
assessment).

- If the policy-makers imposed additional constraints on the scoring system (e.g on
fairness), then the practitioner can evaluate the impact of these constraints by
comparing the performance of a certifiably optimal scoring system with/without
these constraints.

- If a certifiably scoring system performs worse than a human-decision maker given
their constraints, then policy makers can make an informed decision on whether or
not it should be deployed.

Such guarantees do not apply to many predictive models, as methods often do not
produce a model that attains the best performance in the model class: the model may
perform well in terms of the performance metric that policy makers care about, such
as accuracy or risk calibration, but there may exist a model that performs better.
In some cases, the models may not generalize reliably (which introduces additional
trade-offs that are difficult to work with). Lastly, the performance of the model may
suffer due to disproportionality under certain constraints, which makes it difficult to
evaluate the impact of their constraints (i.e. if the performance of the model suffers,
it is difficult to tell if this is because of the constraint, or because the method cannot
handle it).

In theory, scoring systems can achieve the best possible training accuracy within
the class of linear models (see Theorem (3.26)) In practice, this requires a dataset with
binary features, and may be difficult to recover for models that use a large number
of variables. In domains such as criminal justice, however, this guarantee may be
relevant as: (i) The vast majority of tools that have been deployed have been sparse
linear models with binary features. Domain experts may only be interested in such
models as they are more usable. (ii) The applications involve small datasets (e.g.
there is only a limited number prisoners within the criminal justice system at any
time. Even if the performance of the tool would increase by using a larger dataset,
it may not necessarily be ethical to do so as this would use prisoners from a different
population, or a different time period.)

120



Chapter 6

Optimized Risk Scores

In this chapter, we consider the problem of learning sparse linear classification models
with small integer coefficients for risk assessment (risk scores).

Organization

This chapter is organized as follows. In Section 6.1, we formally define the risk
score problem and discuss its special properties. In Section 6.2, we briefly review
cutting plane algorithms, and present a new cutting plane algorithm for the risk
score problem, LCPA. In Sections 6.3 and 6.3.3, we present specialized techniques
to improve the performance of LCPA for the risk score problem. In Section 6.4, we
present experimental results to benchmark risk scores built using RISKSLIM and
other advanced heuristics.

Notes

This chapter primarily contains material from Ustun and Rudin (2016a, 2017), which
builds upon our earlier work in (Ustun and Rudin, 2014), where we proposed solving
problems such as the risk score problem in (6.1) using the CPA algorithm in Algorithm
4. Software for RISKSLIM is available online at littp://github.com/ustunb/risk-sliim.
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6.1 Problem Statement

Our goal is to build scoring systems for risk assessment (i.e., risk scores) such as the
one in Figure 6.1.

1. Congestive Heart Failure 1 point .-.

2. Hypertension 1 point + -
3. Age > 75 1 point +
4. Diabetes Mellitus 1 point +
5. Prior Stroke or Transient Ischemic Attack 2 points + -

ADD POINTS FROM ROWS 1-5 SCORE = -

ISCOREIO0 112131 4 5161
RISK 1.9% 02.8% 14.0% 15.9% 8.5% 112.5% 118.2

Figure 6.1: CHADS 2 risk score of Gage et al. (2001) for assessing stroke risk.

We formalize this problem as follows. We start with a dataset of n i.i.d. training

examples (xi, yi)_ where xi c Rd+ denotes a vector of features [1, Xi,... ,
and y E {--1, +1} denotes a class label. We consider a linear score function (A, x)
where A C Rd+1 is a vector of coefficients [Ao, A1,..., Ad]T, and A0 is an intercept
term. We estimate the predicted risk that example i belongs to the positive class
using the logistic link function as

Pr (y = +1 1 2 ) = p.
I + exp(- (A, xi))

In this setup, each coefficient Aj represents the number of points for a given feature.
Given an example with features xi, users tally the points to obtain a total score
si := (A, xi), and use the total score si to obtain an estimate of predicted risk.
Alternatively, users can obtain a predicted label Qj E { 1} by comparing the predicted
risk to a threshold risk (e.g., predict j = +1 if and only if Pr (yj = +1) > 50%).

In practice, the desirable performance characteristics of a risk score include:

* Rank Accuracy: A rank-accurate model is a model with high AUC. Such a model
outputs scores that can be used to order examples in terms of their true risk.

- Risk Calibration: A risk-calibrated model yields risk predictions that match ob-
served risk. A risk-calibrated model has high AUC, but the converse is not neces-
sarily true.
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Risk Score Problem

We learn the values of the coefficients from data by solving the following mixed
integer nonlinear program (MINLP), which we refer to as the risk score problem or
RISKSLIMMINLP. We provide a formal description of this problem in Definition 6.1.

Definition 6.1 (Risk Score Problem, RISKSLIMMINLP)
The risk score problem is a discrete optimization problem with the form:

min 1(A) + Co All 0 (.A (6.1)
s.t. A E L.

where:

* 1(A) = 1 log(1 + exp(-(A, Y~X))) is the logistic loss function;

- ||All0 = 1 [A3 # 0] is the to-seminorm;

- L C Zd+1 is a set of feasible coefficient vectors (user-provided);

- Co > 0 is a trade-off parameter to balance fit and sparsity (user-provided);

Definition 6.2 (Risk-calibrated Supersparse Linear Integer Model, RISKSLIM)
A Risk-calibrated Supersparse Linear Integer Model (RISKSLIM) is a scoring sys-
tem built using the optimal solution to RiSKSLIMMINLP.

Here, the objective minimizes the logistic loss for AUC and risk calibration, and
penalizes the to-norm for sparsity. The trade-off parameter Co controls the balance
between these competing objectives, and represents the maximum log-likelihood that
is sacrificed to remove a feature from the optimal model. The feasible region restricts
coefficients to a small set of bounded integers such as = {-5,... , 5 }d+1, and may
be further customized to include operational constraints, such as those in Table 6.1.

Constraint Type Example

Feature Selection Choose up to 5 features

Group Sparsity Include either Male or Female in the model but not both

Optimal Thresholds Use < 3 thresholds for Age: E 1 [Age < k] 5 3

Logical Structure If Male is in model, then include Hypertension or BMI > 30 as a control

Probability Predict Pr (y = lx) > 0.90 if Male = TRUE and Hypertension = TRUE
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Table 6.1: Operational constraints that can be enforced on risk scores by including addi-
tional constraints in the feasible region of RISKSLIMMINLP.



RISKSLIMMINLP aims to capture the exact objectives and constraints of risk
scores, so that its optimizer attains the minimum logistic loss among feasible models

on the training data. In particular, an optimal solution to RISKSLIMMINLP attains
the lowest value of the logistic loss among feasible models on the training data -
provided that Co is small enough (see Appendix B for a proof). In Section 6.4, we
show that models that minimize the logistic loss achieve high AUC and risk calibration
on training data, and that this generalizes to test data due to the simplicity of our

hypothesis space.

There are some theoretical results to motivate why minimizers of the logistic loss
have good risk calibration and AUC. In particular, the logistic loss is a strictly proper
loss (Reid and Williamson, 2010) which yields calibrated estimates of predicted risk
under the parametric assumption that the true risk can be modeled using a logistic
link function (see Menon et al., 2012). In addition, the work of Kotlowski et al. (2011)
shows that a "balanced" version of the logistic loss forms a lower bound on 1-AUC,
which means that minimizing the logistic loss indirectly maximizes a surrogate of
AUC (i.e., a lower bound on a "scaled" AUC).

Trade-off Parameter

Using an exact formulation provides an alternative way to set the trade-off parameter
Co:

* If we are given a limit on the model size (e.g. IA 110 < k), we can add this as a
constraint in the formulation and set Co to a small value (e.g. Co = 10-8). In this
case, the optimal solution corresponds to the best model that obeys the model size
constraint, provided Co is small enough (see Appendix B).

. Alternatively, we can choose the model size based on cross-validated (CV) per-
formance. In this case, we would repeat the previous process for |Ail 0 < k for
k = 1 ... d. This lets us fit the full range of risk scores (i.e. the full eo-regularization
path) by solving at most d instances of RISKSLIMMINLP. In comparison, a stan-
dard CV-based approach (i.e. where we treat Co as the hyperparameter) is likely
to require solving more than d instances as one cannot determine d values of Co to
return the full range of risk scores a priori.

Computational Complexity

Optimizing RISKSLIMMINLP is a difficult computational task given that to -regularization,
minimizing over integers, and MINLP problems are all NP-hard (Bonami et al.,
2012). These worst-case complexity results mean that finding an optimal solution to
RISKSLIMMINLP may be intractable for high dimensional datasets. As we show,
however, RISKSLIMMINLP can be solved to optimality for many real-world datasets
in minutes, and in a way that scales linearly in n.
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Assumptions, Notation and Terminology

We denote the objective function of RISKSLIMMINLP as

V(A) = l(A) + CO llA1I I, (6.2)

and denote an optimal solution as A* E argmin\, V(A). We bound the values of
objective value function and its components at the optimal solution A* as follows:
V(A*) E [vmninvmax], l(A*) E [Lni", Lnax], IIA*1I 0 E [Rrni", Rax]. In addition, we
define the set of feasible values for each coefficient as A, E L for j = 0,... , d, and
denote bounds as AT" = minAEr, A, and = maxAEr, Ay.

We make two following assumptions for clarity of exposition: (i) 0 E L, which
ensures that RISKSLIMMINLP is always feasible; (ii) the intercept is not regularized,
which means the precise version of the RISKSLIMMINLP objective is V = l(A) +
Co IIA[1,d I1 0 where A = [Ao, A[i,d]].

6.2 Methodology

In this section, we introduce the cutting plane algorithm that we use to solve the
risk score problem, RISKSLIMMINLP. In Section 6.2.1, we discuss a simple cutting

plane algorithm to explain the benefits of using cutting plane algorithms to solve

RISKSLIMMINLP and explain why such algorithms stall in non-convex settings. In

Section 6.2.2, we present a new cutting plane algorithm that does not stall in non-
convex settings. In Section 6.2.3, we compare the performance of both algorithms to
a commercial MINLP solvers on difficult instances of RISKSLIMMINLP.

6.2.1 Cutting Plane Algorithms

In Algorithm 4, we present a simple cutting plane algorithm to solve RISKSLIM-
MINLP that we refer to as CPA. In what follows, we use CPA to briefly introduce
cutting plane algorithms, explain why they are well-suited to solve RISKSLIMMINLP,
and why they stall on risk minimization problems with non-convex constraints and

regularizers.

CPA recovers the optimal solution to RISKSLIMMINLP by repeatedly solving a
mixed-integer programming (MIP) surrogate problem. We refer to this surrogate prob-
lem as RISKSLIMMIP, and provide a MIP formulation in Definition 6.3. RISKSLIM-
MIP replaces the original loss function l(A) with a linear approximation composed of
cutting planes. A cutting plane or cut is a supporting hyperplane to the loss function
at a point At E L with the form

1(A t) + (Vl(AV), A - At)

where l(At) E R+ and Vl(At) E R d are cut parameters that represent the value and
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gradient of the loss function at At

l(At) = log(1 + exp(-(A', yixi)))

(6.3)

Vl (At) = Yx
n 1 + exp(-(At, yixi))'

Multiple cuts can be combined to produce a piecewise linear approximation of the
loss function as shown in Figure 6.2. We denote the cutting plane approximation of
the loss function built using k cuts at the points Al, ... \A as

ik(A) = max l(At) + (Vl(At), A - At).
t=1...k

0 0

1(A)
1i (A)A 2 A1 A

6 1(,\
2
) + (V(A) A > ~ 1(A\2) + (Vl(A\ 2), A

0 >1(A\1 ) + (VI('),A - A> 1 (,\) + (Vl(A',A -A'

Figure 6.2: Cutting plane algorithms such as CPA build a piecewise linear approximation of
the loss function using cutting planes (i.e., cuts). The plot on the left shows the loss function
1(A) with cuts at the points A' and A2 . The plot on the right shows the approximate loss
function 1 2(A) = maxt=1,2 l(At) + (Vl(At), A - At).

On iteration k, CPA solves the surrogate RISKSLIMMIP(fk(A)) whose objective
contains the approximate loss ik(A). CPA uses the optimizer of the surrogate (9 k Ak)
to: (i) improve lk(A) with a new cut at Ak; (ii) compute bounds on the optimal value
of RISKSLIMMINLP to check convergence. The upper bound is set as the objective
value of the best solution from all iterations V m ' = mint=,...k l(At) + CollAtlo. The
lower bound is set as the optimal value of the surrogate at the last iteration V"' =

tk(Ak) + Co||Ak|l.
CPA converges to an e-optimal solution of RISKSLIMMINLP in a finite number

of iterations (see Kelley, 1960, for a proof). The cutting plane approximation of a
convex loss function improves with each cut:

k (A) 5 ik+m(A) <; 1(A) for all A E L and k, m E N.

Since the cuts at each iteration are not redundant, the lower bound improves monoton-

ically as CPA progresses. Once the optimality gap e is less than a stopping threshold
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Estop, CPA terminates and returns an E-optimal solution Abest to RISKSLIMMINLP.

Algorithm 4 Cutting Plane Algorithm (CPA)

Input

(Xi, y)1=1

CO
Estop E [0, 1]

training data
constraint set for RISKSLIMMINLP

Lo penalty parameter for RISKSLIMMINLP

maximum optimality gap of acceptable solution

Initialize
k -- 0
io(A) <- {}
(Vrmin, Vnax) +- (0, 00)
6 +- o0

1:

2:

3:

4:

5:

6:

7:
8:

9:

10:
11: k - k + 1
12: end while
Output: Abest

iteration counter

initial approximation of loss function

bounds on the optimal value

optimality gap

E-optimal solution to RISKSLIMMINLP

RISKSLIMMIP(f(-)) is a MIP surrogate of RISKSLIMMINLP where the loss function l(.) is

replaced by the cutting plane approximation 1(-):

min 0 + Co ||A||00 "\

(6.4)s.t. 0 > i(A)
A c L.

We provide a MIP formulation for RISKSLIMMIP in Definition 6.3.
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while E > EstoP do

(Ok, Ak) - provably optimal solution to RISKSLIMMIP(Ik(.))
compute cut parameters l(Ak) and Vl(Ak)
jk+1(A) +- maxflk(A),l(Ak) + (VI(Ak) -k) >update approximation VA

vmin <- ok + Co || Ak jj >optimal value of RISKSLIMMIP is lower bound
if V(Ak) <vrnax then

Vmax _ V(Ak) >update upper bound

Abest \k Aupdate best solution

end if
E <- 1 - V min/vmax



Definition 6.3 (MIP Formulation for RISKSLIMMIP)
The optimal solution to RISKSLIMMIP(l (-)) can be obtained by solving the fol-
lowing MIP formulation:

mm V

s.t. V = 0 + CoR objective value (6.5a)
d

R = E aj to norm (6.5b)

j=1
0 ; l(At) + (Vl(At), A - At) t = 1,...,k loss cuts

A3 < Amaj j = 1,...,d set to indicators
A ;> -A,""naj j = 1,...,d set to indicators

(6.5c)
V E [ V"",V objective bounds (6.5d)
9 E [L"i", L max loss bounds (6.5e)
R E {R m , ... , 

t o bounds (6.5f)

Aj E {Ajnn . } j = 1,...,d coefficient bounds

aj E 0, 11 j = 1,... ,d to-indicators

The MIP formulation in (6.5) uses 2d + 3 variables and k + 2d + 2. Here, the
constraints in (6.5g) bound Aj to finite integer values. The approximate loss function

is captured through cuts constraints in (6.5c). Here, 9 E R+ is an auxiliary variable

that represents the value of the approximate loss function. The to-norm is computed

through binary indicator variables aj = 1 [Aj , 0] in constraints (6.5c) and (6.5c).

The formulation includes two additional variables that will be useful for specialized

techniques presented in Section 6.3: V which captures the objective value as per

(6.5a); and R, which captures the to-norm as per (6.5b). Including these variables will

be useful for setting bounds during B&B without introducing additional constraints

(i.e. via a HeuristicCallback in CPLEX 12.6).

Benefits of Solving RISKSLIMMINLP with a Cutting Plane Algorithm

CPA highlights two major benefits of cutting plane algorithms for empirical risk mini-

mization: (i) scalability in the sample size; (ii) control over data-related computation.

Since cutting plane algorithms only use the training data to compute cut parameters,
which can be achieved using elementary matrix-vector operations in O(Nd) time at

each iteration, running time scales linearly in n for fixed d (see Figure 6.3). Since cut

parameters are computed in an isolated step (e.g. Step 3 in Algorithm 4), users can

further reduce data-related computation by easily customizing their implementation

to compute cut parameters efficiently (e.g. via parallelization, or techniques that

exploit structural properties of their model class such as those in Section 6.3.3).

CPA also highlights a unique benefit of cutting plane algorithms in our setting.
Specifically, it recovers the optimal solution to the non-linear problem RisKSLIM-

MINLP by iteratively solving a linearized surrogate RISKSLIMMIP. In practice, this

allows us to fit risk scores with a MIP solver instead of a MINLP solver. As shown in
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Figure 6.6, this can substantially improve our ability to solve RISKSLIMMINLP since
MIP solvers typically exhibit better off-the-shelf performance than MINLP solvers (as
MIP solvers have better implementations of branch-and-bound, and MINLP solvers
are designed to handle a far more diverse set of optimization problems).

1000

500

8
200

(D

*E 100

50

103  l0 105  10 107

N

Figure 6.3: CPA runtime (log-scale) on RISKSLIMMINLP instances for simulated datasets
with d = 10 and n E [103, 108] (see Appendix B.3 for details). As n increases, total running
time (black) scales at O(n), which reflects the time to compute cut parameters. Solver time
(grey) remains roughly constant.

Cutting Plane Algorithms Stall in Non-Convex Settings

Cutting plane algorithms for empirical risk minimization (Joachims et al., 2009; Franc
and Sonnenburg, 2009; Teo et al., 2009) are similar to CPA in that they solve a surro-
gate problem at each iteration (i.e., on Step 5 of Algorithm 4). When these algorithms
are used to solve convex problems, the surrogate problem is convex and therefore
tractable. When these algorithms are applied to problems with non-convex regulariz-
ers or constraints, the surrogate problems are non-convex and may require an unrea-
sonable amount of time to solve to optimality (especially on on higher-dimensional
problems). In practice, this prevents the algorithm from improving the cutting plane
approximation and computing a valid lower bound. We refer to this behavior as
stalling.

There is no easy fix to prevent cutting plane algorithms such as CPA from stalling
in non-convex settings. This is because they need a provably optimal solution at
each iteration to compute a valid lower bound (i.e., a solution with an optimality gap
of 0.0%). If, for example, CPA only solved RISKSLIMMIP until it found a feasible
solution with a non-zero optimality gap, the resulting lower bound could exceed the
true optimal value, leading the algorithm to terminate early and return a suboptimal
solution. Seeing how stalling is related to the mechanism to check convergence, a
tempting (but flawed) solution is to use a cutting plane algorithm that adds cuts at
central points of RISKSLIMMIP (e.g., the center of gravity as in Levin 1965, or the

analytic center as in Atkinson and Vaidya 1995), as these algorithms are guaranteed
to converge in a fixed number of iterations and do not require computing a lower
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bound. In this case, however, stalling would still occur as we would have to solve a
non-convex optimization problem at each iteration to compute central points.

In Figure 6.4, we provide insight into the stalling behavior of CPA. Here, the first
few iterations are quick as the surrogate problem is easy to solve to optimality when it
contains a trivial approximation of the loss function. However, the surrogate becomes
increasingly difficult to optimize with each iteration. On the d = 10 instance, CPA
does not stall as the MIP solver is powerful enough to solve the surrogate problem
RISKSLIMMIP for all iterations. On the d = 20 instance, however, the time to
solve RISKSLIMMIP increases exponentially with each iteration and CPA stalls on
iteration k = 87 as it attempts to optimize the surrogate MIP. In this case, the best
feasible solution that we recover after 6 hours has a large optimality gap as well as a
highly suboptimal loss (which makes sense as the solution optimizes a cutting plane
approximation that uses at most 86 cuts). Given that the value of the loss is closely
related to the performance of the model, this means that the risk score we obtain
after 6 hours performs poorly.

No Stalling
d= 10

100%
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Figure 6.4: Progress of CPA on RISKSLIMMINLP for simulated datasets with d = 10
(left) and d = 20 (right) and n = 50,000 (see Appendix B.3 for details). We show the
optimality gap (top) and time per iteration (bottom, in log-scale) for each iteration over 6
hours. CPA solves the d = 10 instance, but stalls on the d = 20 instance as the time to solve
RISKSLIMMIP to optimality increases exponentially starting on iteration 86, and the best
solution obtained after 6 hours corresponds to a risk score with poor performance.
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6.2.2 Lattice Cutting Plane Algorithm

In order to avoid the stalling behavior of existing cutting plane algorithms in non-
convex settings, we solve the risk score problem using the lattice cutting plane algo-
rithm (LCPA; Algorithm 5).

LCPA is a cutting plane algorithm that recovers the optimal solution to RISKSLIM-

MINLP via branch-and-bound (B&B) search. The search recursively splits the fea-
sible region of RISKSLIMMINLP into disjoint partitions, discarding partitions that
are infeasible or provably suboptimal. LCPA solves a surrogate linear program (LP)
over each partition. In this approach, the cutting plane approximation is updated
whenever the surrogate LP yields an integer feasible solution. The lower bound is set
as the smallest possible value of the surrogate LP over the remaining search region.

As shown in Figure 6.5, LCPA (in red) does not stall. This is because, unlike CPA,
LCPA does not need to optimize a non-convex surrogate to add cuts and compute a
valid lower bound. Even so, LCPA retains the key benefits of CPA such as: scalability
in the sample size, control over data-related computation, and the ability to use a
MIP solver.

10000 100%

1000 80%

100 60%

C 10 cc
0 o ~40%

CD) 1 00
0.1 20%

0.01 0%
10 100 1000 10000 10 100 1000 10000

Cuts Added Cuts Added

Figure 6.5: Progress of LCPA (red) and CPA (black) on the RISKSLIMMINLP instance
with d = 20 from Figure 6.4. Unlike CPA, LCPA does not stall. The algorithm finds a
solution corresponding to a high-quality risk score in 9 minutes after adding 4655 cuts, and
the optimal solution in 234 minutes after adding 11,665 cuts. The remaining time is used
to reduce the optimality gap.

In what follows, we describe the main elements of LCPA in greater detail.

Branch and Bound Search

In Algorithm 5, we represent the state of the B&B search using a B&B tree. This
tree is composed of nodes (i.e. leaves) in the node set K. Each node (Vz, vt) E K
consists of a partition of the convex hull of the coefficient set R! C conv (L), and a
lower bound for the optimal value of the surrogate over this partition, v .

Each iteration of LCPA starts by removing a node (Rt, vt) from the node set

K and solving the surrogate over Rt. The next steps depend on the feasibility of

RISKSLIMLP(fk(-), R!):

131



* If RISKSLIMLP(lk(-), lz) is infeasible, the node is discarded.

- If RISKSLIMLP(lk(-),RI) yields an integer solution ALP E L, LCPA updates the
cutting plane approximation ik(.) with a cut at ALP in Step 8.

- If RISKSLIMLP(ik(-),VR) yields a continuous solution ALP 0 L, then LCPA splits
the partition R into disjoint subsets R' and R". Each subset is paired with the
optimal value of the surrogate LP to yield the child nodes (R', vLP) and (R", vLP).
The child nodes are added back into AP in Step 18.

The search process uses two rules that are typically provided by a MIP solver:
- SelectNode, which takes as input the node set M and outputs a node (R, vt) (e.g.,

the node with the smallest vt).

- SplitPartition, which takes as input a partition Rt and the current solution ALP
and outputs disjoint partitions that do not cover R (e.g. split on a fractional
component of the solution Aj , which returns RI = {A E IRLP P> [A -} and
R" = {A E RLP I ALP } [A LP]}). The output conditions ensure that: (i) the
partitions of all nodes in the node set remain disjoint; (ii) the search region shrinks
even if the solution to the surrogate is not integer feasible; (iii) the number of nodes
is finite.
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Algorithm 5 Lattice Cutting Plane Algorithm (LCPA)

Input

(Xi, yi)=
1

Co
Estop E [0, 1]
SelectNode
SplitPartition

training data

coefficient set for RisKSLIMMINLP

to penalty parameter

optimality gap of acceptable solution

rule to pick a node from a node set (provided by MIP solver)

rule to split a partition into disjoint subsets (provided by MIP solver)

Initialize
k <-- 0
N0(A) ÷- {0}
(Vmi", vmiax) +- (0, 00)
e +- 00

R-- conv (L)
V 0 <- v1T"

K+- {(RO, vo)}

number of cuts
cutting plane approximation of loss function

bounds on the optimal value

optimality gap

partition for initial node

lower bound for initial node

initial node set

1: while E > E'toP do
2: (R, v) +- SelectNode (K) >t is index of removed node
3: solve RISKSLIMLP(k (.), Rt)
4: ALP +- coefficients from optimal solution to RISKSLIMLP(lk() Rt)
5: vLP <- optimal value of RISKSLIMLP(k (),Rt)
6: if optimal solution is integer feasible then
7: compute cut parameters l(ALP) and Vl(ALP)
8: [k+1 (A) - max{fk (A), l(ALP) + (VI(Ak), A _ ALP)} >update approximation VA
9: if vLP < VmIax then

10: Vmax <- vLP >update lower bound
11: Abest A ALP >update best solution

12: K *- K \ {( Rs, V 8 ) | Vs > Vax} >prune suboptimal nodes
13: end if
14: k - k + 1
15: else if optimal solution is not integer feasible then
16: (R', R") <- SplitPartition(R', ALP) >R', R" are disjoint subsets of V?
17: (v', v") +- (vLP, VLP) >vLP is lower bound for R', R"
18: K <- K u {(R', v'), (R", v")} >add child nodes to V
19: end if
20: Vmin +- ming v 5  

>ower bound is smallest lower bound among nodes in K
21: e +- I - vmin/vmax >update optimality gap
22: end while
Output: Abest c-optimal solution to RISKSLIMMINLP

RISKSLIMLP(f(A), R) is the LP relaxation of RISKSLIMMIP(f(A)) over the partition R C conv (L):

d

min 0 + CO
j=1

s.t. A E 7Z

o > 1(A)

ai = max(Aj, 0)/Amax + min(Aj, 0)/Ami" for j 1... d.
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Definition 6.4 (Formulation for RISKSLIMLP)
The optimal solution to RISKSLIMLP(lk(-), R) can be obtained by solving the fol-
lowing linear programming formulation:

min

s.t.

V

V = 0 + CoR
d

objective value (6.7a)

to norm (6.7b)R = af
j=1

0 l(At) + (Vl(At), A - At)
k ; Ajax"aj

kj -Aj""naj

E
E
E
E
E
E

R

[Vlin, VM"]
[L", Lm x]

[ndn gni"]
[AjI A"]
[0,1]

t = 1, ..., A
j = ... ,d
j = 1,...,d

j = 1,...,d
j = ... ,d

loss cuts
set to indicators

set to indicators

(6.7c)
B&B partition (6.7d)

objective bounds (6.7e)
loss bounds (6.7f)

to bounds (6.7g)
coefficient bounds

to indicators

Convergence

LCPA checks convergence using bounds on the optimal value of RISKSLIMMINLP.
The upper bound V" is set as the objective value of the best integer feasible so-
lution in Step 11. The lower bound V" is set as the smallest lower bound among
all nodes in Step 20. This quantity is a lower bound on the optimal value of the
surrogate over the remaining search region Ut Rt; that is, the optimal value of
RISKSLIMLP(lk(-), Ut Rt). Thus, V""" improves when we add cuts or reduce the
remaining search region.1

Each iteration of LCPA reduces the remaining search region as it either finds an
integer feasible solution, identifies an infeasible partition, or splits a partition into
disjoint subsets. Thus, V "in increases monotonically as the search region becomes
smaller, and cuts are added at integer feasible solutions. Likewise, V"' decreases
monotonically as the search is guaranteed to find the optimal solution. Since there
are a finite number of nodes in the worst-case, LCPA terminates after a finite number
of iterations and returns an e-optimal solution to the risk score problem (see 6.6).

'Observe that the LCPA lower bound is typically weaker than the CPA lower bound. Specifically,
the CPA lower bound is built by solving a surrogate problem that requires an integer feasible solution
while the LCPA lower bound is built by solving a surrogate problem that does not require an integer
feasible solution. As such, on instances where it does not stall, CPA may converge faster than the
LCPA since it produces a stronger lower bound at each iteration.
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Remark 6.5 (Worst-Case Data-Related Computation for LCPA)
Given any training dataset (xi,yi) 1, any trade-off parameter Co > 0, and any
finite coefficient set C Zd+1, Algorithm 5 will return an optimal solution to the
risk score problem after computing at most |L| cutting planes.

Remark 6.6 (Worst-Case Termination for LCPA)
Given any training dataset (xi,yi)!1, any trade-off parameter Co > 0, and any
finite coefficient set L c Zd+1, Algorithm 5 will return an optimal solution to the
risk score problem after processing at most 2D(C) - 1 nodes, where

d

D(L) =J (Am"x - Ajr"i + 1).
j=0

Implementation and Optional Improvements

We implement LCPA using a MIP solver that provides control callbacks, such as
CPLEX. The solver handles all B&B related steps in Algorithm 5 and control call-
backs let update the cutting plane approximation by intervening in the search. In
a basic implementation, we use a control callback to intervene when Algorirthm 5
reaches Step 6. Our code retrieves the integer feasible solution, computes the cut
parameters, adds a cut, and returns control back to solver by Step 9.

LCPA can be substantially improved using techniques that we present in Section
6.3. In what follows, we describe these techniques at a high level.

- Polishing Heuristic. We polish all integer feasible solutions that are found by the
MIP solver in Step 6 using a technique that we call discrete coordinate descent
(Algorithm 6; Section 6.3.1). Polished solutions may update the best solution
found by LCPA, which results in stronger upper bounds over the course of LCPA,
and reduces the time for LCPA to return a high-quality solution.

- Rounding Heuristic. We produce new integer feasible solutions using a new round-
ing technique that we call sequential rounding (Algorithm 7; Section 6.3.1). Specif-
ically, we round the continuous solution to the surrogate LP in Step 15, and polish
the resulting integer feasible solution using discrete coordinate descent. Rounded
solutions may improve the best solution found by LCPA, which produces stronger
upper bounds over the course of LCPA, and reduces the time to find a high-quality
solution.

. Bounds on Objective Terms. We design a procedure to strengthen bounds on the
optimal values of the objective function, loss function, and number of non-zero
coefficients (Algorithm 8; Section 6.3.2). We call this procedure whenever the
solver updates the upper bound in Step 11 or the lower bound in Step 20. Using
this procedure improves the lower bound and the optimality gap over the course of
LCPA.

* Initialization Procedure: Since solution quality is affected by the fidelity of the
approximate loss function, and LCPA only adds cuts at integer feasible solutions,
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early solutions from LCPA may correspond to low-quality models. In Section 6.3.2,
we present an initialization procedure to mitigate this issue by quickly generating a
set of cutting planes to warm-start LCPA. This reduces the time required for LCPA
to return a high-quality solution, and improves both the upper and the lower bound
over the course of LCPA.
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6.2.3 Experimental Comparison with an MINLP Solver

To illustrate the computational properties of CPA and LCPA, we used each algorithm

to solve difficult instances of RISKSLIMMINLP on simulated datasets with varying

dimensions d and sample sizes n (see Appendix B.3 for details). As a baseline, we
also solved these using 3 MINLP algorithms as implemented in a commercial MINLP
solver2 3

In Figure 6.6, we compare all methods in terms of the following metrics:

* time to find a near-optimal solution: that is, a solution whose loss is within 10% of

the optimal loss. This measures the time needed to fit a risk score with good AUC
and risk calibration, but without a proof of optimality.

* optimality gap of best solution at termination, which is 0.0% if and only if the
method finds the optimal solution and provides the proof of optimality within a
6-hour time limit.

* % of time spent on data-related computation, meaning the time spent evaluating
the value/gradient/Hessian of the loss function.

As shown, a basic implementation of LCPA finds the optimal solution to RISKSLIM-
MINLP for almost all instances, and pairs it with a small optimality gap. This per-
formance reflects a basic implementation of LCPA on difficult instances of RISKSLIM-
MINLP. We improve the performance of LCPA with regards to these metrics using
specialized techniques in Section 6.3, and use LCPA to recover the optimal solution
to larger real-world problems in Section 6.4 and Chapters 7 and 8.

CPA performs similarly to LCPA on low-dimensional instances. On instances with
d > 15, however, CPA stalls after a few iterations and ultimately returns a highly
suboptimal solution that corresponds to a risk score with poor performance.

In comparison to the cutting plane algorithms, the MINLP solver could only
handle instances of RISKSLIMMINLP for datasets with limited sample sizes and/or
dimensions - regardless of the algorithm that we used to solve the problem. On large
instances, the solver spends the majority of its time dealing with operations that
involve data-related computation, fails to converge in the 6-hour time limit, and fails
to yield high quality feasible solution. Seeing how a MINLP solver is designed to
solve a diverse set of optimization problems, it is unlikely that it can identify and
exploit the structure of the risk score problem in the same way as the cutting plane
algorithms.

2Since all 3 MINLP algorithms behave similarly, we only show the best performing algorithm in
Figure 6.6 (i.e., ActiveSetMINLP), and include results for other MINLP algorithms in Appendix B.3.

3There exist several off-the-shelf MINLP solvers (see Bussieck and Vigerske, 2010, for a list).
We used Artelsys Knitro 9.0 (i.e., an updated version of the MINLP solver from Byrd et al., 2006)
because it let us: (i) monitor and minimize data-related computation, by letting us write our own
functions to evaluate the objective, its gradient and Hessian; and (ii) solve LP subproblems using
CPLEX, which is the same solver used in CPA and LCPA.
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Figure 6.6: Performance of algorithms on hard instances of RISKSLIMMINLP for simu-
lated datasets with varying dimensions d and sample sizes n (see Appendix B.3 for details).
ActiveSetMiNLP fails on instances with large d or n as it struggles with data-related com-
putation. In comparison, CPA and LCPA scale linearly in n - that is, if they can solve an
instance for fixed d, then they can solve instances for larger n in 0(n) time. CPA stalls on all
instances when d > 15 and returns highly suboptimal solutions when d > 20. In contrast,
LCPA does not stall on any instances, and recovers a near optimal solution in all cases,
pairing them with optimality gaps between 0.0 - 62.2% depending on d. Results for LCPA
reflect the performance for basic implementation without the improvements in Sections 6.3
and 6.3.3. We include results for additional MINLP algorithms in Appendix B.3 as they
perform similarly to ActiveSetMINLP.
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6.3 Algorithmic Improvements

In this section, we describe specialized techniques to improve the performance of the
lattice cutting plane algorithm (LCPA) on the risk score problem (RISKSLIMMINLP).

6.3.1 Generating Feasible Solutions

In what follows, we present two techniques to generate and improve integer feasible
solutions for RISKSLIMMINLP. We pair these techniques with LCPA to produce
new integer solutions by rounding continuous solutions and to polish integer feasible
solutions obtained by rounding, or found by the MIP solver. In Section 6.4, we make
further use of these techniques to design new heuristics for risk scores.

Discrete Coordinate Descent

Discrete coordinate descent (DCD) is a technique for polishing integer feasible solu-
tions (Algorithm 6). It takes as input an integer feasible solution A = (O, . . . , Ad) E L

and iteratively moves along a single dimension j to attain an integer feasible solution
with a lower objective value. The descent direction at each iteration is chosen greedily
as the dimension that minimizes the objective value j E argmin V(A + 6jej).

DCD terminates once it can no longer strictly improve the objective value along
any dimension. This eliminates the possibility of cycling, and ensures that it ter-
minates after a finite number of iterations. The polished solution satisfies a type of
local optimality guarantee in the discrete setting: formally, the solution is 1-opt with
respect to the objective, meaning that the objective cannot improve in any single
dimension (see e.g., Park and Boyd, 2015, for a technique to find a 1-opt point for a
different optimization problem).

In practice, the most expensive part of DCD involves determining a step-size
6j E A3 that minimizes the objective in dimension j (Step 4 of Algorithm 6). The
computation for this step can be significantly reduced by using a bisection search
algorithm that exploits the convexity of the loss function, to reduce the number of
loss function evaluations. This approach requires a total of log 2 (jL3 )Nd flops per
iteration, which is an improvement over the (ICjI - 1)Nd flops per iteration required
from the naive exhaustive search strategy (i.e., where we evaluate the loss for all

KLIJ - 1 feasible values of A3 other than current value).
In Figure 6.7, we show how DCD can improve the performance of LCPA when we

use it to polish feasible solutions found by the MIP solver (Step 6 of Algorithm 5).
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Algorithm 6 Discrete Coordinate Descent (DCD)

Input

(Xi, yi) 'Z1 training data
constraint set for RISKSLIMMINLP

Lo penalty parameter for RISKSLIMMINLP
integer feasible solution to RIsKSLIMMINLP

Initialize
V -V(A)
J <-10, ... , d}l

objective value at current solution

valid search dimensions

dim j

dim j
dim j

ective

ration

1: repeat
2: for j E J do
3: A *- {6 G Z A + 6ej EL }list feasible moves along
4: 6j - argminoe. V(A + 6) >find best move along
5: V - V(A + 6j ej) >store objective value for best move along
6: end for
7: m <- argmin3 jg vj >descend along dim that minimizes obj
8: if vm < V then
9: V Vm

10: A- A + 6mem
11: J - {0, ... , d} \ {m} >ignore dim m on next ite
12: end if
13: until Vm > V

Output: A, solution that is 1-opt with respect to the objective of RISKSLIMMINLP
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Figure 6.7: Performance profile of LCPA in a basic implementation (black) and with DCD

(red). We use DCD to polish every integer feasible solution found by the MIP solver whose
objective value is within 10% of the current upper bound. We plot large points to show when
LCPA updates the incumbent solution. Results reflect performance on RISKSLIMMINLP
for a simulated dataset with d = 30 and n = 50,000 (see Appendix B.3 for details).
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Sequential Rounding

Sequential rounding (Algorithm 7) is a technique to round continuous solutions in a
way that accounts for objective of RISKSLIMMINLP. Given a continuous solution

Acts C conv (L), SequentialRounding rounds one component at a time, either up or

down, in a way that minimizes the objective value of RISKSLIMMINLP. In compari-

son to nafve rounding, which returns the closest rounding from a set of 2d+1 possible

roundings, SequentialRounding returns a rounding that optimizes the value of the

objective function.

On Step k, the technique has already rounded k components, and needs to round

one of the remaining d - k + 1 components to either [Agts] or [Acts]. To this end, it

computes the objective value of each feasible component-direction pair, and chooses

the best one. The minimization on Step k requires -k+1 2i = (d-k+1)(d-k+2)
evaluations of the loss function. Thus, given that there are d + 1 steps, the technique
terminates after jd(d 2 + 3d + 2) evaluations of the loss function.

In Figure 6.8, we show the impact of using SequentialRounding in LCPA to round
the continuous solution to RISKSLIMLP when the lower bound changes (i.e., Step 3 of

Algorithm 5). We then polish the rounded solution via DCD to increase the likelihood

that it will update the incumbent solution. As shown, this reduces the time needed
for LCPA to produce a higher quality risk score, and attain a lower optimality gap.

Algorithm 7 SequentialRounding

Input

(Xi, y0)1 = training data

constraint set for RISKSLIMMINLP

fo penalty parameter for RISKSLIMMINLP

feasible solution to RISKSLIMLP
Co
A C conv (L)

Initialize
Jcts +- {0,... , d} index set of features that need to be rounded

1: repeat

2: Afloor(j) + (Al,..., [Ajj ,..., Ad) for all j .e J's

3: Aceil(j) - (A 1 ,..., FAj1,. . . , Ad) for all j E J ts

4: vfloor +- minjsjcts V(Afloor(i))
5: Vceil - minjEjcts V(Aceil())
6: if Vfoor < Vceil then

7: k <- argminjcg V(Afloor(i))
8: Ak -- [Ak]
9: else

10: k +- argminjEj V(Aceil(i))
11: Ak <- [Ak]
12: end if
13: Jcts _ Jcts \ {k}
14: until Jcts _ 0

Output: A E L, integer feasible solution
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RISKSLIMLP, and the integer feasible solution using DCD. We plot large points to show
when LCPA updates the incumbent solution. Results reflect performance on RISKSLIM-
MINLP for a simulated dataset with d = 30 and n = 50,000 (see Appendix B.3 for details).
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6.3.2 Reducing the Optimality Gap

We will present two techniques to reduce the optimality gap produced by LCPA. These
techniques require that we run LCPA with a formulation of RISKSLIMLP that includes
auxiliary variables to bound the values of the objective function, loss function, and
to-penalty at the optimal solution A*. Our proposed techniques are designed to
strengthen the bounds on these quantities over the course of a B&B search. In doing
so, they effectively restrict the search region without discarding the optimal solution,
thereby improving the lower bound and reducing the optimality gap.

Chained Updates

Chained updates (Algorithm 8) is a simple procedure to strengthen the values of V"'
Vmax, L"mi", Lmax and R"'x over the course of LCPA. It requires no assumptions, is
easy to implement, and involves minimal computation.

Initial Bounds on the Objective, Loss and Model Size

To initialize the procedure, we need bounds that can be computed using only the
training data (Xi, yi) 1 and the coefficient set C. We start with Proposition 6.7, which
bounds on the logistic loss by exploiting the fact that C is bounded.

Proposition 6.7 (Bounds on Logistic Loss over a Bounded Coefficient Set)
Let (Xi, yi)t1 denote a dataset where Xi E Rd and yi E {-1, +1} for i = 1, ... , n.
Consider the value of the normalized logistic loss for a linear classifier with coeffi-
cients A E C C Rd

1(A) = log(1 + exp(-(A, yaix))).
ni=1

If the coefficient set C is bounded, then 1(A) E [L"in, L"] for all A E where

L"'in = log (1 + exp(-s"ax)) + log (1+ exp(s?"n)),n %
i:yi=+:y=-1

L"max = log (1+ exp(-smi")) + log (1+ exp(sm")),
ni:yi=+ i:yi=- 1

s7" = min (A, xi) for i = 1,.., n,

max = max(A, xi) for i = ... , n.
AEL

The value of Lm"' in Proposition 6.7 represents the best-case loss in a perfectly
separable setting when we assign each positive example the largest possible score
sT', and each negative example the smallest possible score s?". Conversely, L"
represents the worst-case loss when we assign each positive example the smallest
score s?", and each negative example the largest score sax. Both L"'i" and L"
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can be computed in 0(n) flops using only the training data and the coefficient set by
evaluating s?" and sa as follows:

d

smi" = min (A, i) = 1 [xij > 0] XjAi" + 1 (6

Aj=O d

s? =max(A, xi) = 1 [xij > 0] xi f + 1 [xis < 0] xi f" (6.9)
j=0

The values of L'i" and Lm"a may be strengthened when we have a non-trivial limit
on the number of features (i.e., R"ax < d).

We set the initial bounds for the number of non-zero coefficients R to [0, d], triv-
ially. In some cases, however, these bounds are stronger since users limit the number
of non-zero coefficients (e.g., if we wish to fit models with at most 5 features, then
R E [0, 5]). In this case, the values of L ml" and L"' are further restricted since
s?" and sT are also bounded by the number of non-zero coefficients. Here, s "
or sT" can still be computed efficiently in O(n) flops by choosing the Rm smallest
or largest terms in the left-hand side of equation (6.8) or (6.9). Having initialized
L""", L"mx, R"""n and R"'x, we can set the bounds on the optimal objective value as
Vin = L"min + CoRmn and Vm'x = Lm'* + CoRm, respectively.

Dynamic Bounds on the Objective, Loss and Model Size

In Propositions 6.8-6.10, we provide additional bounds that can strengthen the initial
values of L""", L"mx R"a, Vmin and Vm' using information provided by the MIP
solver in LCPA.

Proposition 6.8 (Upper Bound on Optimal Number of Non-Zero Coefficients)
Given an upper bound on the optimal objective value Vm' > V( A*), and a lower
bound on the optimal loss L"n" < 1(*), we can derive an upper bound on the
optimal number of non-zero coefficients R"' > II|A*110 as

R"ma = .Va i

Co

Proposition 6.9 (Upper Bound on Optimal Loss)
Given an upper bound on the optimal objective value Vm" > V(A*), and a lower
bound on the optimal number of non-zero coefficients R""" ; IIA*\|o, we can derive
an upper bound on the optimal loss Lm > 1(V\*) as

L"max= V"ax - CoR"mi.
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Proposition 6.10 (Lower Bound on Optimal Loss)
Given a lower bound on the optimal objective value Vin V(X*), and an upper
bound on the optimal number of non-zero coefficients R'" ;> IA*| 1, we can derive
a lower bound on value of the loss function Ln"n < 1(*) as

L"min= Vmin - CoR'.

Chained Updates Procedure

In Algorithm 8, we present a simple procedure that uses Propositions 6.8-6.10 to
strengthen the values of V""", Vm ', L""", Lm x, and Rm x in RISKSLIMLP.

Algorithm 8 ChainedUpdates

Input
Co
v""", vmax, L""", L"'", R""", R"ma

1: repeat
2: V" <- max (v""", L""" + CoRmin)
3: Vm <- min (v"x, L"'" + CoRmax)
4: L""" +- max (Lmin, vnin - CoRmx)
5: L" +- min (Lm, Vm - CoR" n)
6: Rm  - min (Rmax, Vm- minJ)

7: until there are no more bound updates due

Output: Vmin, V"ax, L""", L"1 ", R""", R"ax

Lo penalty parameter for RIsKSLIMMINLP
initial bounds on V(A*), l(A*) and IA*11 0

>update lower bound on V( A*)
>update upper bound on V( A*)
>update lower bound on l( A*)
>update upper bound on 1( \*)

>update upper bound on IIA*110
to Steps 2 to 6.

Propositions 6.8-6.10 impose dependencies between the values of V", Vm ,
L""", Lmax, Rm" and R"1 that may lead to a complex "chain" of updates. As shown
in Figure 6.9, it may be possible to update more than one value, and update some
values multiple times. Consider a case where we call the procedure once our MIP
solver improves the lower bound on the objective value Vin. If it updates Lin" on
Step 4, but does not update R"" in Step 6, then it will not update V", L""", L"',
Vin at the next iteration. However, if R"m" is updated after rounding, then Vm,
L"""n , L"ax, Vin will be updated.

In light of these dependencies, Algorithm 8 cycles through Propositions 6.8-6.10
until it cannot update any of the values of Vin, Vma, Li", L"", and R"'. This
ensures that Algorithm 8 returns the strongest possible bounds, regardless of the term
that was first updated. In addition, it allows us to call Algorithm 8 in other settings,
such as the initialization procedure in Section 6.3.2.

In Figure 6.10, we show how the chained updates procedure improves the lower
bound and optimality gap produced over the course of LCPA. Here, we call ChainedUp-
dates whenever LCPA updates Vm in Step 11, or Vin in Step 20. If the bounds
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V max L"ax

V'"%, v max M L""e-w a

L"" OMWl V"

Figure 6.9: All possible update chains in Algorithm 8. We circle terms that can be
updated externally by the MIP solver in LCPA. When any of these terms is updated, we
run Algorithm 8 and potentially strengthen all terms in the outward path marked by the
arrows. The numbers inside each arrow refer to the relevant step in Algorithm 8.

improve as a result of this call, we pass this information to the MIP solver by updating

the bounds in the LP formulation in Definition 6.4.
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Figure 6.10: Performance of LCPA in a basic implementation (black) and with ChainedUp-
dates (red). Results reflect performance on an RISKSLIMMINLP instance for a simulated
dataset with d = 30 and n = 50,000 (see Appendix B.3 for details).
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Initialization Procedure

In Algorithm 9, we present an initialization procedure to kick-start LCPA with a high

quality feasible solution, a set of initial cutting planes, and strong bounds on the

values of the objective, loss, and number of non-zero coefficients. The procedure uses

all techniques presented so far, as follows:

1. Run CPA on RISKSLIMLP: We apply CPA to solve the surrogate LP, RISKSLIMLP

until a time limit is reached (or any other user-specified stopping condition). We

store the cuts from RISKSLIMLP to initialize LCPA, and record the lower bound

from CPA on the objective value of RISKSLIMLP as it is also a lower bound on

the optimal value of RISKSLIMMINLP.

2. Sequential Rounding and Polishing: We collect the solutions produced at each

iteration of CPA. For each solution, we run SequentialRounding (Algorithm 7) to

obtain an integer feasible solution for RISKSLIMMINLP. We then polish this

solution using DCD (Algorithm 6). We use the best solution to update the upper

bound on the optimal value to RISKSLIMMINLP.

3. Chained Updates: Having obtained strong bounds on Vmin and Vmax, we update

all bounds using ChainedUpdates (Algorithm 8).

In Figure 6.11, we show how the initialization procedure in Algorithm 9 improves

the lower bound and the optimality gap over the course of LCPA.
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Algorithm 9 Initialization Procedure for LCPA

training data
constraint set for RISKSLIMMINLP

fo penalty parameter for RIsKSLIMMINLP
initial bounds on V(A*), l(A*) and ||A*1l 0

time limit for CPA on RIsKSLIMLP

initial approximation of loss function

Step I: Solve RISKSLIMLP with CPA

Solve RISKSLIMLP(f0 (A), conv (L)) using CP
k <- number of CPA iterations completed in
Pinitial(\ _ k(\

Qcts kAt}1

Vmin < lower bound from CPA

>Algorithm 4

>'store cuts

>store solutions

>CPA LB for RISKSLIMLP is LB for V(A*)

Step II: Round and Polish Continuous Solutions from CPA

for each Acts e QCtS do
Asr <- SequentialRounding (Acts, L, Co)
Adcd - DCD (Asr, L, CO)

Qint _ Qint u {Adcd}
end for
Abest - argmin\EQnt V(A)
Vmax _ V(Abest) >best i

>store polished integer feasible solutions

nteger feasible solution is upper bound for V( A*)

Step III: Update Bounds on Objective Terms

13: (v'mn, vmax, Lmin , Lmax, Rm"", R"'x) <- ChainedUpdates (Vmin,..., Rmax, CO)

Output: Abest, i-nitia1(A), vmin, vmax, Lmi", Lmax, Rmin, Rmax
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Figure 6.11: Performance profile of LCPA in a basic implementation (black) and with the
initialization procedure in Algorithm 9 (red). Results reflect performance on an RISKSLIM-
MINLP instance for a simulated dataset with d = 30 and n = 50,000 (see Appendix B.3
for details).
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6.3.3 Reducing Data-Related Computation

In this section, we present techniques to reduce data-related computation for the
risk score problem. The reduction is achieved by exploiting the fact that coefficients
belong to a bounded discrete set L.

Fast Loss Evaluation via a Lookup Table

The first technique aims to reduce computation when evaluating the loss function
and its gradient, which affects runtime when we compute cut parameters (6.3) and
run the rounding and polishing procedures in Section 6.3.1. The technique requires
that the features xi and coefficients A belong to sets that are bounded, discrete, and
regularly spaced, such as xi E X C {0, 1}d and A E C {-10,... , 1 0 }d1.

Evaluating the logistic loss, log(1 + exp(- (A, yiXi)), is a relatively expensive com-
putation because it involves exponentiation and must be carried out in multiple steps
to avoid numerical overflow/underflow when the scores si = (A, Xiyi) are too small
or large4 . When the training data and coefficients belong to discrete bounded sets,
the scores si = (A, xiyi) belong to a discrete and bounded set

S={(A, xy) i=1,...,n and A E f.

If the elements of the feature set X and the coefficient set L are regularly spaced,
then the scores belong to the set of integers S c Z n [Smin, smax] where:

smin = min {(A, xiyi) for all (xi, y) E D and A E C},

smax = max {(Ax yi) for all (xi, yi) E D and A E C}.
i,'A

Thus, we can precompute and store all possible values of the loss function in a lookup
table with smax - min + 1 rows, where row m contains the value of [log(1 +exp(-(m+
smin 1)))]

This strategy can reduce the time to evaluate the loss as we replace a computa-
tionally expensive operation with a simple lookup operation. In practice, the lookup
table is usually small enough to be cached in memory, which yields a substantial
runtime speedup. Further, since the values of s"in and smax can be computed exactly
in O(n) time, the lookup table can be narrowed down as Rmax is updated over the
course of LCPA.

As shown in Figure 6.12, using a lookup table reduces the total amount of data-
related computation compared to a standard high performance numerical computa-
tion library. The reduction in data-related computation may translate into a signifi-
cant difference in the ability of the algorithm to return a high-quality risk score, with
a stronger proof of optimality under a time constraint.

4 The value of exp(s) can be computed reliably using IEEE 754 double precision floating point
numbers for s E [-700, 700]. The term will overflow to oc when s < -700, and underflow to 0 when
when s > 700.
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Figure 6.12: Time spent on data-related computation and optimality gap for LCPA when
we evaluate the loss function using a standard high performance numerical computation
library (black) and a lookup table (red). Results reflect performance on a simulated dataset
with d = 30 and n = 106 (see Appendix B.3 for details).

Faster Heuristics via Subsampling

The next technique aims to reduce data-related computation for heuristics such as
SequentialRounding by using a subsample of the full training dataset.

In theory, we wish to run heuristic procedures frequently because they can yield
feasible solutions to RISKSLIMMINLP that may update the incumbent solution. In
practice, however, each procedure requires multiple evaluations of the loss function,
which means that runs that fail to update the incumbent solution effectively slow
down the progress of LCPA. If, for example, we ran SequentialRounding each time we
found a new set of continuous coefficients in LCPA (i.e, in Step 15 in Algorithm 5),
then we would spend too much time rounding, without necessarily finding a better
solution.

Our proposed technique works as follows. Before running LCPA, we set aside
a heuristics dataset Dm by sampling m points without replacement from the full
training dataset D,. Once we run LCPA, we then reduce data-related computation
by running heuristics with Din. To clarify when the loss and objective are computed
using Dm or Da, we let 1i(A) = log(1 + exp((A, yixi, ))) and define:

lm(A) = ()

n

l,(A) = li(A),

Vm(A) = m(A) + Co 11A110,

V(A) = ln(A) + CO IA lb.

Consider a case where a heuristic procedure returns a promising solution Ahr such
that:

Vm(Ahr) <vmn (6.10)

153

E

I-

150

100

50

0



In this case, we compute the objective value on the full training dataset D by eval-
uating the loss at each of the n - m points that were not included in D2 m. As usual,
we then update the incumbent solution if Ahr attains an objective value that is less
than the current upper bound on RISKSLIMMINLP:

V ,hr) <: Vmax. (6.11)

Note that, although we need to evaluate the loss for the full training dataset D, to
confirm an incumbent update, this strategy still reduces data-related computation
because heuristic procedures require multiple evaluations of the loss functions (e.g.,
sequential rounding requires id(d2 - 1) evaluations of the loss). In the interest of
reducing computation, this technique also ignores "false negative" solutions Ahr that
do poorly on the heuristics dataset Vm(Ahr) > V1m but would update the incumbent
on the true dataset V,(Ahr) <V ma.

The main draw of using the subsampling technique is the following generalization
bound that guarantees that any solution that updates the incumbent when the objec-
tive is evaluated with Dm will also update incumbent when the objective is evaluated
with D (i.e., that any solution that satisfies (6.10) will also satisfy (6.11)).

Theorem 6.11 (Generalization of Sampled Loss on Finite Coefficient Set)
Let Dn = (xi, yi)?U 1 denote a training dataset with n > 1 points, and let Dm =

(xi, yi)T 1 denote a sample of m points drawn without replacement from Di9. Let
A denote the coefficients of a linear classifier from a finite set L. For all e > 0, it
holds that

Pr max (ln(A) - lm(A)) > e) < Il exp - +2X)( ))22Aer ( )(1 - )(1+ M)AmaxGC,Ep)2

where:

A"(GC, Dn) = max max li(A) - min li(A).
I XAEL (i=1,...,n i=l,...,n

Theorem 6.11 is a generalization bound that is derived from a concentration in-
equality for problems where we are sampling without replacement, known as the
Hoeffding-Serfling inequality (see Bardenet et al., 2015). The Hoeffding-Serfling in-
equality can be significantly tighter than the classical Hoeffding inequality as it en-
sures that Pr (ln(A) - lm(A) ;> e) -÷ 0 as m -+ n for all e > 0. Here, Am "(C, Dn) is
a normalization term that represents the maximum range of loss values on the full
training dataset Dn for the coefficient set L. This term can be computed cheaply
using the smallest and largest values of the coefficients and features as shown in
Proposition 6.7 from Section 6.3.2.

Most machine learning settings are unlike the one we consider here. In such
settings, the ILI term in Theorem 6.11 produces a bound that is infinite, and thus
vacuous. In this case, however, rounding ensures that the ILI term has at most 2d

elements, which effectively constrains the difference between ln(A) and lm(A). Thus,
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Theorem 6.11 can be used to assess the probability that a proposed incumbent update
will lead to an actual incumbent update, as shown in Corollary 6.12. Alternatively,
it can be used to choose the size of the subsampled dataset m so that an incumbent
update on Dm is yield an incumbent update on D. In either case, the bound can
be strengthened by recomputing the normalization term A m"(L(p), D) separately
for each continuous solution p, or periodically over the course of LCPA (as the MIP
solver reduces the set of feasible coefficients via B&B).

Corollary 6.12 (Update Probabilities of Rounding Heuristics on Sampled Data)
Consider a rounding heuristic that takes as input a vector of continuous coefficients
p = (p1,... , pd) E conv(L) and produces as output a vector of integer coefficients
A E L(p) where

L(p) = (A E L AjE pj], pjj} for j = 1..., d).

Consider evaluating the rounding heuristic using a sample of m points D. =

(xi, y )Yi drawn without replacement from the full training dataset Vn = (xi, yr %=1.
Pick a tolerance 6 > 0. Given rounded coefficients A E L(p), compute Vm(A). If

Vm(A) < V m a,

then w.p. at least 1 - 6, we have

V(A) < Vma,

where

Am, m(C (P) DO0log(1/6) + dlog(2) ( (
2 - n + n
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6.4 Performance Benchmarks

In this section, we benchmark several methods to learn risk scores with few terms and
small integer coefficients. In addition to RISKSLIM, we consider advanced heuristics
that process the coefficients of penalized logistic regression using the rounding and
polishing techniques from Section 6.3.1.

6.4.1 Setup

Datasets

We ran experiments on 6 publicly available datasets shown in Table 6.2. We picked
these datasets to explore the performance of each method as we varied the size and
nature of the training data. Other than arrest, all datasets can be found at the UCI
ML repository (Lichman, 2013). The arrest dataset must be requested from ICPSR
as described in Zeng et al. (2016).

Dataset Reference n d Classification Task

adult Kohavi (1996) 32561 36 predict if a U.S. resident earns over $50K

arrest Zeng et al. (2016) 22530 48 predict if a prisoner is arrested after release

bank Moro et al. (2014) 41188 57 predict if a firm will go bankrupt

mammo Elter et al. (2007) 961 14 detect breast cancer using a mammogram

mushroom Schlimmer (1987) 8124 113 predict if a mushroom is poisonous

spambase Cranor and LaMacchia (1998) 4601 57 predict if an e-mail is spam

Table 6.2: Datasets used for benchmarking RISKSLIM.

Methods

For each dataset, we fit a risk score with small integer coefficients Aj E {-5,5} and
limited model size |Ail10  5 to match models used in practice (e.g., Gage et al., 2001).
We used a total of 8 methods, described below.

- RISKSLIM (Optimized Risk Score): We formulate an instance of RISKSLIMMINLP
with the following constraints: Ao E {-100, ... , 100}, Aj E {-5,. . . , 5}, and

|Al1 0 K 5. We set Co to a small value (10-8) to recover the best model under
these constraints (see Appendix B.1). We solve each instance using LCPA along
with the improvements in Sections 6.3 and 6.3.3. We cap runtime to 20 minutes,
and use the CPLEX 12.6.3 Python API on a 3.33GHz CPU with 16GB RAM.

- PLR (Penalized Logistic Regression): We use the glmnet package (Friedman et al.,
2010) to fit logistic regression models with a combined f + e2 penalty. We add con-
straints to bound Aj E [-5,5], and consider models for 1,100 distinct combinations
of free parameters: 11 values of the mixing parameter {0.0, 0.1, .... , 1.0} x 100 val-
ues of the regularization penalty (chosen by glmnet). These free parameters mean
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that PLR also covers the following variants of logistic regression as special cases:
standard logistic regression (no penalty); Lasso (pure ri-penalty); and Ridge (pure

f2 -penalty).

* RD (PLR + Naive Rounding): We fit a pool of models with PLR. For each model in

the pool, we round each coefficient to the nearest integer in {-5, ... , 5} by setting
A1 +- [min(max(Aj, -5), 5)j. We round the intercept to the nearest integer by
setting Ao <- [Aoj.

- RsRD (PLR + Rescaled Rounding): We fit a pool of models with PLR. For each
model in the pool, we rescale coefficients so that the largest coefficient is 5, then

round to the nearest integer (i.e. Aj -+ ['yAj] where -y = 5/maxj 1Aj). Rescaling
aims to prevent rounding coefficients to zero when JAjI < 0.5 for many j.

- SEQRD (PLR + Sequential Rounding): We fit a pool of models using PLR. For each
model in the pool, we round the coefficients using SequentialRounding (Algorithm

7).

- RD*/RsRD*/SEQRD* (Polished Versions of RD/RsRD/SEQRD): We fit a pool of
models using RD/RsRD/SEQRD and polish the coefficients using DCD (Algorithm
6). To ensure that the number of non-zero coefficients does not increase (which

would violate the model size constraint), we only run DCD on the set of non-zero
coefficients {j A Ay -f 0}.

Performance Metrics

We evaluate all models in terms of risk-calibration (measured by CAL) and rank
accuracy (measured by AUC). We use reliability diagrams to show how the predicted
risk (x-axis) matches the observed risk (y-axis) for each distinct score (see DeGroot
and Fienberg, 1983). We estimate the observed risk at each score s as

S= 1 E 1 [y, =
l{i : si = s} ]

We summarize calibration over the full reliability diagram using the calibration error

(see Caruana and Niculescu-Mizil, 2004, 2006).

CA L=(p- )2

A model with perfect calibration yields predicted risk estimates that are perfectly
aligned with observed values, meaning that the points on the reliability diagram
should fall on the x = y line, and CAL should equal 0.0%.
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Model Selection

We used a standard nested 5-fold cross-validation (5-CV) to select a final model and
assess its predictive accuracy. We fit a final model using all of training data for
the instance of the free parameters that: (i) satisfied the model size constraint; and
(ii) maximized the 5-CV mean test AUC. Since 5-CV statistics are used to choose
free parameters for the final model, they provide an optimistic measure of expected
performance for this model. To avoid this bias, we used a nested CV setup where we
ran the previous model selection procedure for each fold. Explicitly, for each of the
5 "outer" folds, we ran an "inner" 5-CV and fit a final model using all the data for
that fold. We picked a final model for each outer fold for the free parameter instance
that: (i) satisfied the model size constraint; and (ii) maximized the inner 5-CV mean
test AUC. We do not tune parameters for RISKSLIM since we include the model size
constraint in the coefficient set.

6.4.2 Results

In Table 6.3, we summarize the performance of risk scores from all methods on all
datasets, and provide reliability diagrams to show calibration performance of these
models in greater detail in Figure 6.13. In Figures 6.14-6.15, we plot to-regularization
paths to show how the CAL and AUC of risk scores change with the model size
constraint. In Figures 6.16-6.18, we show RISKSLIM models for arrest, adult and
bank. In what follows, we discuss these results.

On Performance

As shown in Table 6.2, RISKSLIM models have superior risk calibration and rank
accuracy compared to models built with other methods. Specifically, RISKSLIM
models have the best 5-CV mean test CAL (i.e.,test CAL) on 6/6 datasets, and the
best 5-CV mean test AUC (i.e., test A UC) on 5/6 datasets. In comparison, models
built using baseline methods (i.e., all methods other than PLR) perform slightly
worse in terms of test AUC and significantly worse in terms of test CAL. As shown in
Figures 6.14 and 6.15, the relative performance advantages of RISKSLIM models are
more notable for smaller model sizes - which is beneficial since risk scores typically
need to have few terms.

Most of these results can be explained by noting that: (i) models that attain
low values of the logistic loss have good risk calibration (as shown in Table 6.3, and
observed by Caruana and Niculescu-Mizil, 2004); and, (ii) since we are fitting from
a simple class of models, almost all risk scores in Table 6.2 generalize well (i.e., the
test CAL/AUC is very close to their training CAL/AUC). RISKSLIM models attain
the smallest value of the logistic loss as they minimize the loss over exact constraints
on model form. As such, they perform well in terms of training CAL as per (i), and
subsequently in terms of test CAL as per (ii). Likewise, baseline methods that use
loss minimizing heuristics such as DCD and SequentialRounding (i.e., RD*, RSRD*
and SEQRD*) produce models with lower loss relative to baseline methods that do
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not use such techniques (i.e., RD, RsRD, and SEQRD). As a result, models built
using RD*, RsRD* and SEQRD* have improved risk calibration.

The results in Table 6.2 suggest a similar relationship between the logistic loss
and rank accuracy, but this has some caveats. In particular, a method such as RSRD,
can provably improve AUC by rescaling coefficients before rounding. However, given
that the logistic loss is not scale invariant, the rescaled models have high loss and
poor risk calibration (see e.g., the reliability diagrams for RSRD in Figure 6.13). In
addition, it is possible for a model that minimizes the logistic loss to have the best
training AUC (see e.g., mammo where the RISKSLIM model has an optimality gap of
0.0%).

On Computation

RISKSLIM is the only method to pair models with a measure of optimality. Although
the risk score problem is NP-hard, we fit models with small optimality gaps in < 20
minutes by pairing LCPA with the techniques in Sections 6.3 and 6.3.3.

There are also some practical benefits that are difficult to measure. In particu-
lar, RISKSLIM can build and assess the predictive risk scores without the need for
parameter tuning and nested CV, meaning that we had to train only 6 models. In
comparison, baseline methods do require parameter tuning and nested CV, meaning
that we had to run rounding and polishing techniques and compute AUC for over
33,000 models. Thus, even though the baseline methods are sometimes much faster
to run for a single choice of parameters, when we consider the computation time
needed for parameter tuning, the entire training process could take far longer than
the time used to fit RISKSLIM, especially on large datasets.

On Pitfalls and Best-Practices for Heuristic Methods

Our results show that the performance of risk scores built with heuristics methods
depends on a range of factors, including: the rounding technique; the constraints on
model form; and the range of feature values. In some cases, risk scores built by simply
rounding coefficients to the nearest integer perform well (see e.g., RD on bank). In
others, however, performance can falter (see e.g., RD for spambase).

In practice, performance issues are often overlooked as common heuristics result
in good AUC but poor CAL (e.g. the rescaling in RSRD, used by U.S. Department of
Justice, 2005; Pennsylvania Commission on Sentencing, 2012, and many others). In
addition, summary statistics such as AUC and CAL may conceal performance issues
over the full reliability diagram and ROC curve. The fact that that risk scores built
with heuristic methods may have inconsistent performance highlights the importance
of an optimality gap, which can help determine if performance issues are due to overly
restrictive constraints on the model class. The optimality gap is especially valuable
in this setting because PLR models, which would provide a natural performance
baseline for risk scores as they do not obey the integrality constraints, may perform
poorly due to suboptimal feature selection and overfitting (see e.g., adult, mushroom
and spambase in Table 6.3).
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To mitigate these issues, we recommend the following practices when using or
designing heuristics:

1. Select models after rounding. If we selected a final model from the pool of PLR
models before rounding the coefficients, we could greatly alter the loss and thus
reduce performance. To mitigate this risk, we first round the coefficients of all
models in the pool, and then select among the rounded models.

2. Avoid scaling. Rescaling coefficients may improve AUC but drastically reduces
CAL. This is because the logistic loss is not scale invariant (see e.g. the reliability
diagram for RSRD in Figure 6.13). The decrease in CAL due to scaling is reflected
by the much higher values of the loss for RsRD in Table 6.3.

3. Select models that optimize K-CV AUC instead of K-CV CAL. We compared both
procedures. Choosing a model that optimizes the K-CV CAL leads to models with
slightly better CAL (though not as good as RISKSLIM) but far worse AUC. This
is because trivial and near-trivial models have low CAL on problems with class
imbalance.

4. Binarize real-valued features. When datasets contain real-valued features (e.g.
spambase), PLR may assign small coefficients to features with large values. In
such cases, rounding can greatly impact performance by removing features such
that IA3I < 0.5. This issue is best addressed by binarizing: rescaling coefficients
before rounding affects calibration; normalizing reduces usability as it requires
users to also normalize when using the model.

These recommendations are for heuristics only. RISKSLIM does not need them.
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Dataset Metric PLR RD RsRD SEQRD RD* RsRD* SEQRD* RisKSLIM

test cal 5.5% 4.3% 9.1% 4.3% 4.2% 6.3% 4.2% 2.6%
adult test auc 0.817 0.830 0.830 0.830 0.832 0.832 0.832 0.854
n = 32561 model size 4 4 4 4 4 4 4 5
d = 36 loss value 0.451 0.417 0.484 0.417 0.417 0.458 0.417 0.385

optimality gap - - - - - - - 9.7%

test cal 7.5% 5.7% 20.8% 5.7% 3.8% 15.6% 3.8% 1.7%
arrest test auc 0.700 0.691 0.691 0.691 0.677 0.690 0.677 0.697
n = 22530 model size 5 5 5 5 4 5 4 5
d = 48 loss value 0.638 0.626 1.282 0.626 0.624 0.895 0.624 0.609

optimality gap - - - - - - - 4.0%

test cal 2.2% 1.4% 9.5% 1.4% 1.3% 7.2% 1.3% 1.3%
bank test auc 0.725 0.759 0.759 0.759 0.760 0.749 0.760 0.760
n = 41188 model size 2 5 5 5 5 2 5 5
d = 57 loss value 0.339 0.289 0.953 0.289 0.289 0.333 0.289 0.289

optimality gap - - - - - - - 3.5%

test cal 7.3% 8.1% 15.3% 8.1% 7.4% 7.2% 7.4% 5.0%
mammo test auc 0.845 0.845 0.845 0.845 0.845 0.836 0.845 0.843
n = 961 model size 3 3 3 3 3 3 3 5
d = 14 loss value 0.482 0.480 0.624 0.480 0.480 0.496 0.480 0.469

optimality gap - - - - - - - 0.0%

test cal 20.9% 12.3% 6.5% 12.3% 5.4% 3.1% 5.4% 1.8%
mushroom test auc 0.976 0.973 0.977 0.973 0.978 0.980 0.978 0.989
n = 8124 model size 5 5 5 5 5 5 5 5
d = 113 loss value 0.362 0.200 0.162 0.200 0.144 0.139 0.144 0.069

optimality gap - - - - - - - 0.0%

test cal 10.5% 24.2% 23.6% 24.2% 17.9% 10.3% 17.9% 11.7%
spambase test auc 0.823 0.908 0.862 0.908 0.908 0.913 0.908 0.928
n = 4601 model size 4 5 5 5 5 5 5 5
d = 57 loss value 0.553 0.472 5.670 0.472 0.402 0.381 0.402 0.349

optimality gap - - - - - - - 27.8%

Table 6.3: Performance of risk scores with model size 1A 10 < 5 and integer coefficients
A c {-5, . . , 5}. Note PLR models have real-valued coefficients Aj E [-5,5]. Here: test
cal is the 5-CV mean test CAL; test auc is the 5-CV mean test AUC; model size, loss value
and optimality gap pertain to a final model fit using the entire dataset.
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Figure 6.13: Reliability diagrams for risk scores with model size |IA l0 <; 5 and integer
coefficients Aj E {-5, ... , 5}. Note PLR models have real-valued coefficients Aj E [-5,5].
We plot results for models from each fold on the test data in grey, and for the final model

on training data in black.
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Figure 6.14: Test CAL (left) and test AUC (right) of risk scores with integer coefficients
A3 E {-5,...,5} and model sizes hAil 0 <; R"1" for Rma E {1,2,.. .,10,20, 30, 40,50, oo}.
Note that PLR risk scores have real-valued coefficients A, E [-5,5].

163



PLR 0Rd RsRd # SeqRd-* RiskSLIM

15% 0.840

0.820
10%

Viomammo

0.800

5%
0.780

0 2 4 6 8 10 0 2 4 6 8 10
Model Size Model Size

1.000
20%

0.980

15%
-J 00.960

mushroom 10% 00.940

5% 0.920

0.900
0%

0 20 40 60 80 0 20 40 60 80
Model Size Model Size

25%

0.900

0J

o 15% 4 0.800

spambase
10% 0.700

5%
0.600

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Model Size Model Size
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164

I



1. Prior Arrests > 2 1 point -..

2. Prior Arrests > 5 1 point +
3. Prior Arrests for Local Ordinance 1 point + ---

4. Age at Release between 18 to 24 1 point + -

5. Age at Release > 40 -1 points + -
ADD POINTS FROM ROWS 1-5 SCORE =

SCORE -1 0 1 2 3 4
RISK 11.9% 26.9% 50.0% 73.1% 88.1% 95.3%

Figure 6.16: RISKSLIM model for the arrest dataset. RISK represents the predicted
probability that a prisoner is arrested for any offense within 3 years of release from prison.
This model has a 5-CV mean test CAL/AUC of 1.7%/0.697 and training CAL/AUC of
2.6%/0.701.

1. Married 3 points -..

2. Reported Capital Gains 2 points +
3. Age between 22 to 29 -1 point +
4. Highest Level of Education is High School Diploma -2 points + -
5. No High School Diploma -3 points + -

ADD POINTS FROM ROWS 1-5 SCORE =-_--

SCORE <-1 0 1 2 3 4 5
RISK 5.0% 11.9 26.9% 50.0% 73.1% 88.1% 95.3

Figure 6.17: RISKSLIM model for the adult dataset. RISK represents the predicted prob-

ability that a US resident earns over $50 000. This model has a 5-CV mean test CAL/AUC

of 2.4%/0.854 and training CAL/AUC of 4.1%/0.860.

1. Call between January and March 1 point ...

2. Called Previously 1 point + -
3. Previous Call was Successful 1 point + -..

4. Employment Indicator < 5100 1 point + -
5. 3 Month Euribor Rate > 100 -1 point +

ADD POINTS FROM ROWS 1-5 SCORE =-

SCORE -1 0 1 2 3 4

RISK 4.7% 11.9 26.9% 50.0% 73.1% 88.1%

Figure 6.18: RISKSLIM model for the bank dataset. RISK represents the predicted

probability that a client opens a new bank account after a marketing call. This model has

a 5-CV mean test CAL/AUC of 1.3%/0.760 and a training CAL/AUC of 1.1%/0.760.
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6.5 Discussion

Our goal in this chapter was to develop a machine learning method to build data-
driven risk scores. As in Chapter 3, we approached this problem by formulating a

hard optimization problem to produce risk scores that were optimized for feature
selection, small integer coefficients, and operational constraints. We then solved the
risk score problem using a specialized cutting plane method that did not stall on non-

convex problems, and that we paired with specialized techniques to generate feasible

solutions, narrow the optimality gap, and reduce data-related computation.
An important characteristic of these is that they are more powerful when used

together. For instance, using SequentialRounding and DCD to generate a feasible
solution can lead to a tighter bound on model size via ChainedUpdates, which can
subsequently reduce computation by reducing the size of the lookup table. As we
discuss below, these techniques were also important in improving the performance of
a cutting plane method within a B&B framework.

One of the key benefits of our approach is that it can learn risk scores using a
MIP solver. Using a MIP solver was important in that practitioners who purchase
a commercial solver (e.g. CPLEX and Gurobi) could use the same solver for SLIM
and RISKSLIM. However, it was also important as MINLP solvers were not able
to handle our problem off-the-shelf, and may not have performed well through a
specialized approach given that their B&B implementations are typically slower and
offer fewer callbacks to intervene in the search process.

In the scoring system problem in Chapter 3, we could define an exact performance
measure (e.g. accuracy) and directly include it in the optimization problem (via the
0-1 loss). In this setting, however, the relevant performance measure of a model is risk-
calibration, and the performance guarantee of our models depends on the assumption
that a logistic risk model with small integer coefficients is a good approximation for
the true risk model for a classification dataset. Our empirical results in Section 6.4
suggest that this is a reasonable assumption, as models with lower loss typically attain
better risk calibration, and models with optimal loss typically attain the best possible
calibration.

In Chapter 7, we see that the performance improvements shown in Section 6.4
are more significant in the presence of constraints, where even advanced heuristics
that avoid pitfalls can perform poorly. In addition, we discuss several of the practical
benefits of our approach, namely that: (i) it can fit models that obey complex oper-
ational constraints without parameter tuning, which greatly reduces the number of
models that are required to build a risk score and evaluate its performance; and (ii) it
can assess the optimality of each model, which can help users tell if poor performance
is due to the model class or the fitting process.
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Technical Discussion

The performance of RISKSLIM models hinges on the ability to fit models that attain
optimal or near-optimal values of the logistic loss. In this chapter, we found these
models using a cutting plane algorithm (LCPA) that decoupled the loss from the
optimization problem, and provided scalability and control over data-related com-
putation. LCPA can be used to learn models for other problems with non-convex
regularizers and or non-convex feasible regions. In practice, however, its effective-
ness depends on how cutting planes are generated and incorporated in a B&B search
process. In our implementation, we were able to overcome several pitfalls of using a
cutting plane algorithm within a B&B framework using the following strategies:

- Initialization: Since LCPA only adds cuts when it discovers an integer feasible
solution, B&B search may be slow at first, as it would have to discover feasible
solutions before it can construct a useful approximation of the loss function. To
address this, we start B&B with an initial set of cuts (generated through traditional
CPA on the convex relaxation).

* Limited # of Cuts: LCPA has a limited number of cuts it only adds cuts at integer
feasible solutions. In theory, this could be further reduced as LCPA would converge
if cuts are added at solutions that update the incumbent.

- Lazy Cut Evaluation: If cuts are incorporated in the LP formulation at each node,
then adding a large number of cuts increases the time to process each node, and
slows down the B&B search. In our implementation, which uses CPLEX (ILOG,
2017), we address this by adding cuts as lazy constraints. This means the cuts are
not included in the LP formulation at each node, but stored in memory until the
B&B finds an integer feasible solution (at which point they are checked). Lazy
evaluation reduces the time to solve the LP relaxation at each node, improving
the effectiveness of B&B search. Since we only evaluate the cuts when we find an
integer feasible solution, this strategy also reduces the marginal computational cost
for each cut. This mitigates the risk slowing down progress by adding redundant
cuts.

* Loss Bounds in the LP Relaxation: The downside of lazy cut evaluation is that
information related to the loss function is not included in individual nodes, which
leads to weaker relaxations. In this case, we addressed this by including an auxiliary
variable for the loss in our formulation, and by updating the bounds on this variable
through the Initialization Procedure and ChainedUpdates. The lower bound on the
loss provides a stronger LP relaxation, which helps the B&B process prune nodes.
The effectiveness of ChainedUpdates in this setting suggests that incorporating in-
formation from the loss function in the LP relaxation can improve the performance
of LCPA so long as it does not greatly increase node processing time. This could
be done by generating a small set of judiciously chosen cuts.
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Chapter 7

ICU Seizure Prediction

In this chapter, we discuss a collaboration with the Massachusetts General Hospital
where we used RISKSLIM to build a customized risk score to predict seizures in
intensive care units (ICUs).

Notes

This chapter primarily draws upon material in Ustun and Rudin (2017) and Struck
et al. (2017).

7.1 Background

Seizure prediction in the ICU is a difficult problem. Current clinical practice is
based on continuous electroencephalography (cEEG), which is a technique to monitor
electrical activity in the brain by means of electrodes placed on the scalp (see Figure
7.1).

Neurologists are trained to recognize a large set of patterns in cEEG output, some
of which may be predictive of seizures (see e.g., Hirsch et al., 2013). The presence
and characteristics of cEEG patterns are then used to assess seizure risk, and to
decide if patients require a medical intervention, which may be dangerous, or further
monitoring, which is expensive.
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Figure 7.1: cEEG shows electrical activity in the brain as measured by electrodes placed
at 16 standard locations on the scalp. Here, we show two well-known cEEG patterns:
Generalized Periodic Discharges (GPDs; left); and Lateralized Periodic Discharges (LPDs;
right). In comparison to GPDs, LPIs only occur on one side of the brain.
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7.2 Problem Description

Our goal was to build a risk score for seizure prediction that would be easy to use
in an intensive care unit and aligned with the domain expertise of the medical com-
munity. This required a model that was risk-calibrated, sparse, aligned with domain
knowledge, and that let clinicians make predictions without checking too many cEEG
patterns.

7.2.1 Data

The training dataset for this problem was built from an extensive set of cEEG record-
ings of patients at 41 hospitals, curated by the Critical Care EEG Monitoring Research
Consortium. It contains a total of n = 5,427 recordings and d = 87 input variables
for each recording. Here, the outcome is yj = +1 if a patient who has been in the ICU
for 24 hours will have seizure over the next 24 hours. The classes are highly imbal-
anced, with Pr (y, = +1) = 12.5% patients having a seizure. The input variables for
each recording include information on patient medical history, secondary neurological
symptoms, and the presence/ characteristics/frequency of 5 well-known cEEG pat-
terns: Lateralized Periodic Discharges (LPD); Lateralized Rhythmic Delta (LRDA);
Generalized Periodic Discharges (GPD); Generalized Rhythmic Delta (GRDA); Bi-
lateral Periodic Discharges (BiPD).

7.2.2 Model Requirements

Our collaborators were interested in customizing the risk assessment tool so that it
would prevent doctors from having to check an extensive set of cEEG patterns to
make a prediction, and would choose between a large set of potentially redundant
cEEG patterns. To this end, we worked with them to identify a large set of op-
erational constraints related to model size, monotonicity, thresholding, and feature
composition, namely:

* Limited Model Size: In order to be easy to remember, validate, and use by hand in
an ICU, our collaborators wanted the model to use at most 4 input variables.

* Sign Constraints for Established Risk Factors: To be aligned with domain knowl-
edge, the model had to obey established relationships between well-known risk
factors for seizures (e.g., it could not suggest that prior seizures lower seizure risk).

- No Redundancy between Categorical Variables: In order to be easy to understand,
the model could not use sets of variables that were linearly dependent (e.g., it could
include Male or Female but not both).

- Specific cEEG Patterns or Any cEEG Pattern: The dataset included variables
for the presence and characteristics of 5 specific cEEG patterns (e.g., MaxFrequen-

cyLPD) as well as variables for the presence and characteristics of any pattern (e.g.,
MaxFrequencyAnyPattern'). To reduce redundancy, our collaborators wanted the

'Here, MaxFrequencyAnyPattern := max (MaxFrequencyLPD,..., MaxFrequencyBiPD)
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model to use variables for specific patterns or any pattern, but not both.

- Frequency in Continuous Encoding or Thresholded Encoding: The dataset included
two kinds of variables to represent frequency of each cEEG pattern: (i) a real-
valued variable (e.g., MaxFrequencyLPD E [0, 3.0]); and (ii) 7 binary threshold
variables (e.g., MaxFrequencyLPD< 0.5Hz,.. .,MaxFrequencyLPD;> 3.0 Hz). Here,
our collaborators preferred the binary threshold variables as were easier to check
while scanning cEEG output. Since it was not clear if the real-valued variable would
result in a better-performing model, however, we included a constraint to ensure
that models either used the real-valued variable or the thresholded variable, but
not both.

- Limited # of Thresholds for Thresholded Encoding: The model could include at
most 2 binary thresholded variables related to the frequency of any cEEG pattern.
This was done to prevent clinician from having to check multiple thresholds.

We provide a full list of input variables and constraints in Appendix C.

7.2.3 Training Setup

We used the same methods and metrics as in Section 6.4, adapting them to han-
dle the operational constraints as follows. We fit an optimized risk score by solv-
ing RISKSLIMMINLP with the operational constraints (RISKSLIM). The resulting
MINLP had 20 additional constraints, 2 additional variables, and could be solved to
optimality in < 20 minutes.

We compared the RISKSLIM risk score to baseline models that were built using
advanced heuristics. These methods were designed to avoid the pitfalls of traditional
approaches described in Section 6.4. Each method processed the coefficients from fi +
f2 penalized logistic regression (PLR) with different kinds of rounding and polishing
techniques. These include: na~ive rounding (RD); rescaling then rounding (RsRD);
sequential rounding (SEQRD); and versions of these methods where we polished and
rounded the coefficients with DCD (i.e., RD*, RsRD*, and SEQRD* respectively).

All baseline methods had built-in mechanisms to handle sign constraints and
model size constraints, but could only handle the other operational constraints by
tuning. We used a nested 5-fold cross-validation setup (5-CV) and selected a final
model that: (i) satisfied all operational constraints and (ii) maximized the mean 5-CV
test AUC.

172



7.3 Results

We show the performance of the best risk score from all methods in Table 7.3.1. We
show the best RISKSLIM, RD, and RsRD models along with reliability diagrams and
ROC curves in Figures 7.2 to 7.4. We include results for other baselines methods
in Appendix C, as they perform similarly to RD model for this problem. Here, RD,
SEQRD, SEQRD*, RD* produce the same final model. However, RD*, SEQRD*
produce slightly different models on the training folds, which have slightly better
performance in terms of test calibration. We show the RD and RsRD models since
they were built using the simplest post-processing techniques.

OBJECTIVE CONSTRAINTS OTHER INFORMATION

Method Test Test Model Instances % Feasible Loss Opt. Train Train
CAL AUC Size Trained Instances Value Gap CAL AUC

RiskSLIM 2.5% 0.801 4 1 100% 0.293 0.0% 2.0% 0.806
1.9 - 3.4% 0.758 - 0.841

PLR 4.5% 0.731 2 1100 0% 0.326 - 3.9% 0.731
3.4 - 6.6% 0.712 - 0.772

RD 3.7% 0.738 3 1100 12% 0.313 - 1.9% 0.767
2.9 - 5.0% 0.712 - 0.805

RsRD 11.5% 0.738 3 1100 11% 1.003 - 10.3% 0.767
10.7 - 12.7% 0.712 - 0.805

SEQRD 3.7% 0.738 3 1100 12% 0.313 - 1.9% 0.767
2.9 - 5.0% 0.712 - 0.805

RD* 3.3% 0.738 3 1100 12% 0.313 - 1.9% 0.767
2.8 - 3.7% 0.712 - 0.805

RsRD* 8.2% 0.738 3 1100 12% 0.553 - 9.7% 0.766
6.6 - 10.0% 0.712 - 0.804

SEQRD* 3.3% 0.738 3 1100 12% 0.313 - 1.9% 0.767
2.8 - 3.7% 0.712 - 0.805

Table 7.1: Performance of risk scores for seizure prediction built using RISKSLIM, PLR,
and advanced heuristics (see 6.4.1 for details). We report the mean 5-CV mean test CAL and
5-CV mean test AUC. The ranges in each cell represent the 5-CV minimum and maximum.
An instance is a unique combination of free parameters for a given method.
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1. AnyBriefRhythmicDischarge 2 points ---

2. PatternsInclude LPD 2 points + -

3. AnyPriorSeizure 1 point + -

4. Epiletiform or Discharge 1 point + -

ADD POINTS FROM ROWS 1-4 SCORE =

SCOREI 0 1 1 1 2 1 3 1 4 6
RISK 14.7% 11.9% 126.9% 150.0% 173.1% 188.1% 195.3%
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Figure 7.2: RISKSLIM risk score (top), reliability diagram (bottom left), and ROC curve

(bottom right) for the seizure dataset. We plot results for the final model on training data

in black, and results for the fold models on test data in grey. This model has a 5-CV mean

test CAL/AUC of 2.5%/0.801.
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1. AnyPriorSeizure 1 point ...

2. PatternsIncludeBiPDorLRDA_ or LPD 1 point + ---
3. MaxfrequencyLPD x 1 point per Hz + -

ADD POINTS FROM ROWS 1-3 SCORE =

ISCOREI 0.01 1.0 j2.0 2.5 3.0 3.5 4.0 4.5 j5.0
RISK 4.7% 11.9% 26.9% 37.8% 50.0% 62.2% 73.1% 81.8% 88.1%
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Figure 7.3: RD risk score (top), reliability diagram (bottom left), and ROC curve (bottom

right) for the seizure dataset. We plot results for the final model on training data in
black, and results for the fold models on test data in grey. This model has a 5-CV mean
test CAL/AUC of 0.738/3.7%.
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1. AnyPriorSeizure 5 points ...

2. PatternsIncludeBiPD_ orLRDA_ or LPD 1 point + ---

3. MaxFrequencyLPD 5 points per Hz + -

ADD POINTS FROM ROWS 1-3 SCORE =

SCORE 0 to 10 12.5 15.0 20.0 20to25
RISK < 5.0% 7.6% 50.0% 92.4% > 95.0%
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Figure 7.4: RsRD model (top), reliability diagram (bottom left), and ROC curve (bottom
right) for the sei zure dataset. We plot results for fold models on test data in grey, and for
the final model on training data in black. This model has a 5-CV mean test CAL/AUC of
11.5%/0.738.
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7.3.1 On Performance

Table illustrates the performance benefits of an optimization based approach in a
constrained setting: the RISKSLIM model has a 5-CV mean test CAL/AUC of
2.5%/0.801 while the best model from the baseline methods has a 5-CV mean test

CAL/AUC of 3.7%/0.738.
As shown in Figures 7.2 to 7.4, models may have important differences in risk

calibration over the full reliability diagram despite small differences in CAL. Here:
RISKSLIM risk estimates are roughly monotonic and stable; RD risk estimates are
unstable and non-monotonic; and RSRD are skewed towards extreme values due to
scaling. As noted by our collaborators, the non-monotonicity of RD and RsRD risk
estimates is problematic as it suggests patients with a score of 3.5 may have more
seizures compared to patients with a score of 4.0.

Although the baseline methods did not handle some operational constraints well,
these methods still do not achieve the same level of performance as RISKSLIM even
when we relax these constraints. If we only consider simple constraints on model
size and integer coefficients, for instance, the best model that we can produce using
the baseline methods is a SEQRD* model that has a 5-CV mean test CAL/AUC of
2.6%/0.754. To ensure that the operational constraints were not overly restrictive, we
also compared the RISKSLIM model to an unconstrained PLR model. In this case,
the unconstrained PLR model attains a 5-CV mean test CAL/AUC of 2.7%/0.845.
However, our collaborators emphasized that the improved AUC of the PLR model did
not outweigh the usability benefits as the PLR model uses 27 terms, does not allow
for quick predictions or validation, and violates almost all operational constraints.

7.3.2 On Usability

The RISKSLIM and RD models have some subtle differences in terms of usabil-
ity. Here, the RISKSLIM model includes three cEEG patterns (i.e., PatternsIn-

cludeLPD, BriefRhythmicDischarges, and EpiletiformDischarge) while the RD model
includes two (i.e., PatternsInclude_ BiPD_ or_ LRDA_ or_ LPD and MaxFrequen-
cyLPD). Thus, the RISKSLIM model requires clinicians to scan cEEG to see if LPD,
BriefRhythmicDischarges, and EpiletiformDischarge are present. In comparison, the
RD model requires clinicians to check if BiPD, LRDA, LPD are present, and to also
record the frequency of LPD - which requires slightly more time and training.

Figures 7.2 to 7.4 also highlight some of the usability benefits of linear models with
small integer coefficients. When input variables belong to a small discrete set, scores
also belong to a small discrete set. This reduces the number of operating points
on the ROC curve and reliability diagram and makes it easy to pick an operating
point. When input variables are binary, risk scores have yet another benefit in that
the decision rule at each operating point is a Boolean function. For the RISKSLIM
model, for example, the decision rule

predict Qj = +1 if score > 2
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is equivalent to the Boolean function:

predict Seizure if A nyBriefRhythmicDischarge

V PatternsIncludeLPD

V (AnyPriorSeizure A EpiletiformDischarge).

Small integer coefficients make it easy to extract such rules by listing the conditions

when the score exceeds the threshold. To illustrate this, we show the score function

of the PLR model in Table 7.3.1 below.

score = - 2.35

+ 0.91 PatternsIncludeBiFD or LRDA or LPD

+ 0.03 AnyPriorSeizure.

+ 0.61 x MaxFrequencyLPD

In this case, it is much harder for users to extract a Boolean function as the score

function uses real-valued coefficients, and computing the score requires multiplication
due to a real-valued feature (MaxFrequencyLPD).
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7.3.3 Benefits of Direct Customization

It was difficult to coerce baseline methods to fit models that satisfied the operational

constraints as software implementations of penalized logistic regression cannot handle

non-trivial operational constraints (e.g., on feature composition).
In practice, when risk scores do not obey constraints, practitioners tweak their

model to satisfy the constraints (see e.g., tweaks for EDACS Than et al., 2014, dis-

cussed in Section 1.1) . Potential approaches include: manually changing the model

to obey constraints (e.g., if the model uses 3 binary threshold variables, remove one);

(ii) training models with a dataset that satisfies the constraints a priori (i.e., to satisfy

the "frequency in continuous form or thresholded form" constraint, drop the thresh-

olded variables from the dataset), which can impact accuracy and/or usability; or

(iii) some kind of exhaustive search over datasets, which is intractable.

In this case, we could find suitable risk scores with the baseline methods by first

producing a "pool" of models for over 1,100 free parameter instances, and discarding

models that violated any of the operational constraints. As shown in Table 7.3.1,
at most 12% of the instances satisfied these constraints for any baseline - which was

fortunate given that this approach had no guarantee of producing models that satisfied

the operational constraints. Since our approach involved tuning free parameters, we

also had to use nested CV to obtain unbiased estimates of performance for each

instance, which required fitting a total of 33,000 models for each baseline method

(our nested CV setup had 5 outer folds and 5 inner folds on 1,100 free parameter

instances, which requires fitting 1, 100 x 5 x (5 + 1) = 33, 000 models.).

In comparison, RISKSLIM does provide such a guarantee because it explicitly

encodes constraints into the risk score problem. Since this approach does not involve

parameter tuning, we only need to fit 6 models: 1 model with all the data for deploy-

ment, and 5 models with subsets of the data to assess performance using 5-fold CV

- far fewer than the 33,000 required with the baseline methods.
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7.4 Discussion

Our results in this chapter highlight the benefits of an exact approach in terms of
flexibility and performance when learning with operational constraints. In this case,
we can address all operational constraints without the need for parameter tuning,
nested CV, or post-processing. More importantly, we can recover a certifiably optimal
risk score, which attains far superior calibration and AUC. In comparison to the
sleep apnea application in Chapter 4, the performance of the model in this chapter is
noteworthy because the problem involves a larger number of operational constraints,
and because risk calibration is a more difficult performance objective (i.e. we are
assuming that the true risk can be modeled as a logit function).

A key question is whether the model in Figure 7.5 that we developed would outper-
form a model developed using existing methods? Answering this question is difficult
given that the model is likely to be developed through an ad hoc training pipeline
and make use of domain expertise. We can, however, state the following. A risk score
built from using an ad hoc training pipeline would attain lower logistic loss as deci-
sions regarding feature selection and rounding would be made sequentially instead of
simultaneously. Unless practitioners could specify a better approximation for the true
risk model than the logit model (which would be difficult as the logit model appears
to fit the data well), then the ad hoc model would have worse risk calibration. In
addition, the ad hoc model could also perform worse than the baseline in this Chapter
(which are representative of advanced heuristics that use modern penalized logistic
regression, have been extensively tuned, and are designed to avoid several pitfalls
listed in Section 6.4).

Clinical Significance

The risk score from this chapter is valuable as the literature in this area has mostly
focused on identifying individual cEEG patterns associated with seizures, without
controlling for other patterns (see e.g., Shafi et al., 2012). In addition to this model, we
show an earlier risk score that we developed for this problem in Figure 7.5 (see Struck
et al., 2017, for details). This model was developed using RISKSLIM, outperforms
our baselines and those of our collaborators, but does not adhere to the operational
constraints of the model presented in this chapter.
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1. Any cEEG Pattern with Frequency > 2 Hz 1 point ..
2. Epileptiform Discharges 1 point +

3. Patterns include LPD or LRDA or BIPD 1 point +
4. Patterns Superimposed with Fast, or Sharp Activity 1 point +
5. Prior History of Seizures 1 point + ---

6. Brief Rhythmic Discharges 2 points +
ADD POINTS FROM ROWS 1-6 SCORE =_-_-_

ISCOREI0 1112131415 16+
RISK <5% 12% 27% 150% 73% 88 % >95%

Figure 7.5: 2HELPS2B risk score built by RISKSLIM (see Struck et al., 2017, for details).
This model has a 5-CV mean test CAL/AUC of 2.7%/0.819.
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Automated Seizure Prediction with Humans in the Loop

Our interesting area for future work is to design a hybrid system for automated
seizure prediction where we build a risk score such as the one in Figure 7.2 to predict
seizures, and use black-box models (e.g. recurrent convolutional neural nets) to detect
individual cEEG patterns.

In comparison to a fully automated model for seizure prediction (see e.g., Thodo-
roff et al., 2016), where, for example, we train a single neural network to directly
predict seizures from cEEG input, a hybrid system would be more difficult to de-
velop. It would require a dataset where individual cEEG patterns are labeled by
humans and would require training several neural networks. In light of these difficul-
ties, a hybrid model would provide physicians with the ability to validate predictions,
which may lead to improved adoption and performance during deployment.

A hybrid model would not outperform the risk score (unless the cEEG patterns
in the dataset were mislabeled). However, it may outperform a fully automated
model because it may be easier to detect individual cEEG patterns rather than the
final output, and because we can train the risk score using far more data (e.g., the
model in Thodoroff et al., 2016, was built using n = 23 patients). In this approach,
operational constraints could also be used to reduce the number of neural networks
that need to be trained. For instance, we could use hierarchical feature selection
constraint to enforce priorities between increasingly difficult prediction problems (e.g.
predict specific cEEG pattern -- predict any cEEG pattern).
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Chapter 8

Adult ADHD Diagnosis

In this chapter, we discuss a collaboration where we used RISKSLIM to develop a risk

score for adult ADHD diagnosis (Ustun et al., 2017). Our results provide insight into

the different aspects of real-world model development, and illustrates the flexibility

and performance benefits our approach in this setting.

Notes

This chapter primarily contains material from Ustun et al. (2017). An editorial re-
garding the clinical significance of this work can be found in Shaw et al. (2017).
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8.1 Background

Attention-Deficit/Hyperactivity Disorder (ADHD) is a common childhood-onset dis-
order often persisting into adulthood (Faraone et al., 2006). Adult ADHD is associ-
ated with work impairment (Kessler et al., 2005a), accidents (Kiipper et al., 2012),
and early mortality (London and Landes, 2016). Nevertheless, the condition remains
undetected in the general population(Fayyad et al., 2017), and untreated despite ev-
idence that treatment may be effective (Surman et al., 2013). As a result, there has
been substantial interest in effective screening tools for adult ADHD in primary care
(Minkoff, 2009) and workplace settings (Kessler et al., 2009). The vast majority of
screening tools for adult ADHD calibrated to older diagnostic criteria (Taylor et al.,
2011), and built through ad hoc training pipelines that combine statistical techniques
with expert judgment.

Previous ASRS Model

The RISKSLIM risk score in this chapter replaces a widely used scoring system, known
as the Adult ADHD Self-Report Scale (ASRS v1.1 by Kessler et al., 2005b), shown in
Figure 8.1. In comparison to its predecessor, which was designed as a decision-making
model, our model outputs risk estimates that provide several decision-points. The
risk estimates are calibrated for the general population of the United States, and that
reflect the most recent diagnostic criteria for adult ADHD.

As many other scoring systems and screening tools, ASRS v1.1 was also built using
an ad hoc training pipeline (see Kessler et al., 20051), for details). In this case, the
approach used statistical significance tests to transform the responses to each question
into thresholded binary variables. The authors then used stepwise feature selection
determine a subset of thresholded responses. The coefficients in the final model were
rounded so that the score could be computed by hand. This procedure was repeated
model times to find a model that performed well for different subpopulations at a
clinically relevant decision point (e.g. for males and females).
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Never Rarely Sometimes Often Very Often

How often do you have trouble wrapping up
the final details of a project, once the challenging 0 0 1 1 1
parts have been done?

How often do you have difficulty
getting things in order when you have to 0 0 1 1 1
do a task that requires organization?

How often do you have problems 0 0 1 1 1
remembering appointments or obligation?

When you have a task that requires a lot
of thought, how often do you avoid 0 0 1 1 1
or delay getting started?

How often do you fidget or squirm
with your hands or feet when you have 0 0 0 1 1
to sit down for a long time?

How often do you feel overly active
and compelled to do things, like you 0 0 0 1 1
were driven by a motor?

SCREEN PATIENT for ADULT ADHD IF SCORE > 3

Figure 8.1: Previous version of the Adult ADHD Self-Report Scale (ASRS v1.1) developed
by Kessler et al. (20051)). This model was to diagnose DSM-4 adult ADHD. It was built
using an ad hoc training pipeline that was designed over the course of several months in
order to effectively balance predictive accuracy with other constraints on model form. The
model is designed to be used as a decision-making tool, which reduces its applicability in
other settings.
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8.2 Problem Description

We built our model using a national sample and validated it on a clinical sample.
In what follows, we describe the outcome variable, input variables, and the various
samples associated with the problem. Additional details related to data collection
and study design can be found in (Ustun et al., 2017).

Outcome Variable

The outcome variable is a clinical diagnosis for adult ADHD (i.e. ih = +1 if patient i
has received a DSM-5 diagnosis for adult ADHD). The clinical diagnosis is based on
a well-established semi-structured research diagnostic interview, known as the Adult
Clinician ADHD Diagnostic Scale (ACDS). The ACDS provides specific prompts to
assess the presence and severity of ADHD symptoms during childhood and adulthood.
The clinical diagnosis is determined as per DSM-5 criteria for adult ADHD, which
uses presence and severity of these symptoms. Explicitly, the DSM-5 criteria for adult
ADHD require:

(A) At least 5-of-9 symptoms of attention (6-of-9 for patients under 17) OR 5-of-9
symptoms of hyperactivity (6-of-9 for patients under 17).

(B) Several symptoms were present prior to age 12.

(C) Evidence that several symptoms occur in 2 or more settings (e.g. at work,
school, or home) over the past 6 months.

(D) Evidence that several symptoms result in clinically significant impairment over
the same time period over the past 6 months.

(E) Evidence that symptoms do not occur exclusively during the course of a perva-
sive developmental disorder or psychotic disorder, and are not better accounted
for by another mental disorder.

Our study not did consider the DSM-5 requirement of impairment before age 12
(Criterion B), or the possibility that ADHD may have been better explained by a
different mental illness (Criterion E). If these requirements would have resulted in an
ADHD diagnosis, then they were not diagnosed.

Input Variables

The input variables were derived from a self-administered questionnaire about adult
ADHD used for the ASRS v1.1 Kessler et al. (2005b). We show the full set of 27 ques-
tions in Table 8.1. The questions were developed by two board-certified psychiatrists
and a World Health Organization advisory group in order to effectively determine
the presence and severity of a particular symptom of adult ADHD (see Kessler et al.,
2010, for details). The responses to each question recorded on a 5-level Likert scale
as Never, Rarely, Sometimes, Often, or Very Often.
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ASRS Question

How often do you have trouble wrapping up a project, once the challenging parts are done?t

How often do you have difficulty getting things in order when you have to do a task that requires organization?

How often do you have problems remembering appointments or obligations?

When you have a task that requires a lot of thought, how often do you avoid or delay getting started?

How often do you fidget or squirm with your hands or feet when you have to sit down for a long time?

How often do you feel overly active and compelled to do things, like you were driven by a motor?

How often do you make careless mistakes when you have to work on a boring or difficult project?

How often do you have difficulty keeping your attention when you are doing boring or repetitive work?

How often do you have difficulty concentrating on what people say to you, even if they speak to you directly?t

How often do you misplace or have difficulty finding things at home or at work?

How often are you distracted by activity or noise around you?

How often do you leave your seat in meetings or other situations in which you are expected to remain seated?

How often do you feel restless or fidgety?

How often do you have difficulty unwinding and relaxing when you have time to yourself?

How often do you find yourself talking too much when you are in social situations?

How often do you find yourself finishing the sentences of the people you are talking to?

How often do you have difficulty waiting your turn in situations when turn-taking is required?

How often do you interrupt others when they are busy?

How often do you waste or mismanage time?

How often do you have trouble making a plan and sticking to it in situations where planful behavior is needed?t

How often do you have difficulty prioritizing work when you are in a situation where setting priorities is needed?

How often do you depend on others to keep your life in order and attend to details?

How often do you put things off until the last minute?

How often is it hard for you to complete tasks in the allotted time?

How often do you have trouble remembering the main idea in things that you have read?

How often do you find that your mood is easily changeable?

How often do you feel more easily hassled or overwhelmed than other people in your situation?

How often do you have a hard time controlling your temper?

How often are your feelings easily hurt when you are criticized?

Table 8.1: Questions in the Adult ADHD Self-Report Scale (Kessler et al., 2005b). Ques-
tions marked with t have been abridged in order to fit in the table (see Kessler et al., 2010,
for a full list).
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National Sample

The data for the national sample was collected through two general population sur-
veys: (i) a national household survey that covered a cohort of 119 patients; (ii) a
survey from a large managed healthcare plan that covered a cohort of 218 patients.

Both studies first administered the full ASRS questionnaire to each patient, then
followed up with a semi-structured diagnostic interview to pair these responses with a
DSM-5 adult ADHD diagnosis. To ensure the final model could output risk estimates
that were calibrated to the general population, each patient in the national sample
was paired with a sampling weight wi to adjust for differential sampling across strata.

Clinical Sample

The clinical sample covered a cohort of 300 patients who were obtaining a free eval-
uation for adult ADHD at the NYU Langone Medical Center. As with the national
sample, all patients were administered the full ASRS questionnaire, and then given a
DSM-5 adult ADHD diagnosis through a blinded semi-structured interview. In con-
trast to the national sample, the overall prevalence of adult ADHD is much higher in
the clinical sample (8.2% in the national sample vs. 57.7% in the clinical sample).

8.3 Methodology

We aimed to create a DSM-5 ASRS screening scale with the same form as its prede-
cessor: a simple risk score that used a few questions and small integer coefficients.

Model Requirements

Our collaborators specified the following requirements for the model:

* Limited Number of Questions: Like its predecessor, the model has to output a
prediction using the answers to at most 6 questions.

- Additive Model: The model had to be highly usable. In particular, we were required
to use only addition, minimize the use of subtraction, and avoid multiplication.

- Monotonicity in the Presence of Symptoms: Since the response to each was associ-
ated with a well-known symptom for ADHD, responses such as Rarely, Sometimes,
Often and Very Often had to increase predicted risk (i.e. the points for these re-
sponses had to be > 0). In the same way, a response such as Never had to decrease
the predicted risk (i.e. the points for these responses had to be ; 0).

* Monotonicity in the Severity of Symptoms: Since the response to each question
captured the severity of each symptom, the predicted risk of the model had to in-
crease when the response to each question went from less frequent to more frequent.
(i.e. the points for Rarely could not exceed the points for Sometimes).
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Data Processing

We processed the dataset before training as follows.
We defined 4 nested threshold variables using the responses to each question.

Specifically, given the response of patient i to question k,

ri,k E {Never, Rarely, Sometimes, Often, Very Often},

we defined:

Xi,ki = 1 [rk E {Rarely, Sometimes, Often, Very Often}] ,

Xi,k= 1 [rk E {Sometimes, Often, Very Often}] ,

Xi,k3  I [rk E { Often, Very Often}] ,

Xi,k4 = 1 [rk E { Very Often}].

The nested threshold variables let us address monotonicity requirements in a way
that reduced the size of the problem. Specifically, with the nested threshold variables,
each coefficient represents the number of additional points received for each response
level. Thus, we can ensure that the number of points for each response level increases
by constraining the sign of each coefficient to be positive. This also allowed to capture
information for the Never option via the intercept as

1 [ri,k E {Never}] = 1 - 1 [rk E {Rarely, Sometimes, Often, Very Often}].

In other words, the points would be "hidden" in the intercept term (assuming that
the coefficient were negative, and the intercept is large enough).

In addition, we removed the sampling weights as follows. We divided the original
weights in each sample by the smallest weight, rounded the scaled weight to the
nearest whole number, and duplicated records for each respondent a number of times
equal to the rounded weight.

As a result of these changes, the final training dataset had n = 33,672 points and
d = 116 variables. Since the clinical sample did not contain sampling weights, the
validation dataset had n = 300 points and d = 116 variables.
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MINLP Formulation

We trained our model by solving a customized version of the risk score problem. We
present the formulation in Definition (8.1) as it can be used to reproduce a popular
format for scoring systems used in the field of mental health (see e.g. the models
of Altman et al., 1997; Weathers et al., 2013, which also use responses on a Likert
scale).

Definition 8.1 (RISKSLIMMINLP for Risk Scores with a Likert Questionnaire)
Given a dataset where the features are responses to questions on a 5-level Likert scale, the
coefficients of a risk score that uses at most Qma questions can be determined by solving
the following MINLP:

min V

s.t. V=L+CoQ
1n

L = n log(1

K

Q= E9Ak

k=1
d

R = Eaj
j=1

pk E Z aj
jEJk

Am 'aj A,
Aj aj

+ exp(-(A, yixi)))

k = 1,...21

(8.1a)

objective (8.1b)

total loss (8.1c)

total questions (8.1d)

total coefs (8.1e)

indicator for q k (8. 1f)

j = 1,...,d indicator for coef j (8.1g)
j = 1,...,d indicator for coef j (8.1h)

4R < Q
R>Q

Ao
A,
oji

E

E

E

E

V E
L E
Q E
R E

max4 coefs/q (8.1i)
min 1 coef/q (8.lj1)

j = 1,...,d
j = 1,..., d
i =1 ,...,lk

{-4A"axQ"ax, ... , 0}
{0, .'. . , A"ax}
{0, 1}
{0,1}

[L"", Lm x]
to, .... , Q"ax}
{R min , . ai

intercept

coefficient values

coefficient indicators

question indicators

objective value

loss value

total questions

total coefs
__a

The MINLP formulation includes several changes to address operational constraints
and reduce computation, namely:

We define an integer variable Q to represent the total number of questions in the
model. We set the value of Q in Constraint (8.1d) as the sum of binary indicator
variables Ilk for k = 1,... , 21. Here, we force 1k = 1 when the model uses a
non-zero coefficient from question k in Constraint (8.1f).
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* We penalize the total number of questions Q instead of the number of coefficients R

in (8.1b). We restrict the total number of questions to 6 through variable bounds on
Q. We then set Co = 10-8 to recover a solution from the Co-level set of minimizers
to the logistic loss.

- We strengthen the LP relaxation used in LCPA using additional constraints. Specif-
ically, we include variable bounds on V and L, which we set using values from the
initialization procedure in Chapter 9). Since there can be at most 4 non-zero co-
efficients for each question, we limit the maximum number of non-zero coefficients
using Constraint (8.1i). Since there must be at least 1 non-zero coefficient when-
ever a question is included, we force this condition in Constraint (8.li). This also

requires an additional constraint (8.1h) so that a3 = 1 if A3 > 0.

Computation

We trained our model using a standard 10-CV setup on the national sample (i.e. we fit
10 instances on subsets of the training dataset, and 1 instance using the full training
dataset). For each instance, we first ran the initialization procedure (Algorithm 9)
to produce an initial collection of cutting planes. We paired LCPA with the lookup
technique from Section 6.3.3 to reduce data-related computation. We solved each

instance using LCPA using the CPLEX 12.6.3 Python API on a 3.33GHz CPU with
16GB RAM, setting a time limit of 6 hours.
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8.4 Results

We show the RISKSLIM model that we built in Figure 8.2, and summarize its perfor-
mance via a reliability diagram and ROC curve in Figure 8.3. As shown, the model
is highly usable and obeys all constraints specified by our collaborators. Here, the
model attains near optimal loss (optimality gap of 6.1%), has excellent CAL/AUC,
and generalizes (training CAL/AUC of 1.5%/0.973; the 10-CV CAL ranges 1.4 to
2.1% and the 10-CV AUC ranges between 0.965 to 0.980).

Never Rarely Sometimes Often very Often

How often do you have trouble
concentrating on what people say to you 0 4 4 5 5
even when they speak to you directly?

How often do you leave your seat
in meetings or other situations in which 0 0 1 1 5
you are expected to remain seated?

How often do you have difficulty
unwinding and relaxing when you have 0 4 4 6 6
time to yourself?

How often do you find yourself finishing
the sentences of the people you talk to 0 0 2 2 2
before they can finish them themselves?

How often do you put things off until 0 2 2 4 4the last minute?

How often do you depend on others
to keep your life in order and attend to 0 2 3 3 3
details?

-SCORE 0 to 13 14 15 16 17 18 19 to 26
RISK <5.0% 11.9 26.9% 50.0% 73.1% 88.1% >95.0

Figure 8.2: RISKSLIM risk score for DSM-5 Adult ADHD.
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Figure 8.3: Performance of RISKSLIM
sample.

risk score for DSM-5 adult ADHD on the national

One of the advantages in building a risk assessment
that it provided a range of decision rules that would be

tool for this problem was
useful in different settings

(e.g. for screening on a new clinical population, or for a non-clinical application such

as an epidemiological study). In Table 8.2, we present the performance of decision

rules from the RISKSLIM model at various threshold scores on the national sample.

Using this table, our collaborators determined several thresholds for different use

cases. They decided, for instance, that the suitable threshold for screening was 14.

At this threshold score, the decision rule achieves a sensitivity of 91.4%, specificity of

96.0% and PPV of 67.3% (i.e. we are expected to screen around 11.2% of respondents,
capturing 91.4% of cases, and expect 67.3% of screened positives to be diagnosed with

ADHD). For an epidemiological study, they recommended that a suitable threshold

was 16, as this would result in an estimated prevalence that matched the estimated

prevalence of adult ADHD in the literature.
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Threshold Predicted % Cases
Score Risk Screened Sensitivity Specificity PPV

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.01%

0.03%

0.09%

0.25%

0.67%

1.80%

4.74%

11.92%

26.89%

50.00%

73.11%

88.08%

95.26%

98.20%

99.33%

99.75%

99.91%

99.97%

99.99%

100.00%

97.46%

94.83%

94.79%

92.24%

90.71%

80.87%

69.91%

64.86%

63.03%

52.44%

37.48%

27.52%

21.79%

11.16%

9.33%

7.82%

6.97%

5.88%

3.80%

0.58%

0.19%

0.12%

0.12%

0.05%

0.04%

100.00%

99.75%

99.75%

99.75%

99.75%

99.75%

99.75%

99.75%

99.39%

99.39%

99.24%

99.24%

94.00%

92.59%

91.43%

86.98%

84.06%

79.21%

69.27%

45.08%

6.51%

2.13%

1.45%

1.45%

0.61%

0.43%

Table 8.2: Performance of decision rules from the RISKSLIM model on the national sample.
Each row shows accuracy metrics for the decision rule "predict +i + 1 if score > s" for
scores between 0 to 25.

194

0.00%

2.74%

5.61%

5.65%

8.43%

10.10%

20.81%

32.76%

38.23%

40.22%

51.74%

68.05%

78.43%

84.54%

96.02%

97.61%

99.00%

99.49%

99.78%

99.89%

99.95%

99.98%

100.00%

100.00%

100.00%

100.00%

8.21%

8.40%

8.63%

8.64%

8.88%

9.03%

10.12%

11.71%

12.58%

12.94%

15.53%

21.74%

28.04%

34.88%

67.26%

76.53%

88.24%

93.23%

96.62%

97.35%

91.37%

90.77%

100.00%

100.00%

100.00%

100.00%



8.4.1 Impact of Heuristic Feature Selection and Rounding

Our collaborators were interested to see how the performance of the RISKSLIM model
in Figure 8.2 fared against two other baseline models:

* ASRS v1.1 (Figure 8.1), to see how this model would perform on the national
sample;

- A RISKSLIM model that used the same questions as ASRS v1.1 (Figure 8.4), which
would be useful for researchers in the field who had already collected data using
ASRS v1.1.

In Table 8.3, we compare the RISKSLIM and these baselines on the national
sample. As shown, ASRS v1.1 fares poorly in terms of risk calibration and AUC,
which is expected given that the model was trained using a different dataset, and
designed to optimize performance at a particular decision point. In comparison, the
RISKSLIM model built using the same questions attains far better CAL and AUC
as it can search effectively over a far larger set of acceptable models. However, it still
underperforms compared to a model that optimizes the choice of questions. These
results highlight the performance benefits from an optimization-based approach, as
well as the need for a principled method to build such models. Without such a method
in place, the ASRS v1.1 would still be used in practice and lead to poor decisions.

Model Heuristic CAL AUC Loss
Components

RISKSLIM - 1.5% 0.973 0.082
1.4 - 2.1 0.965 - 0.980 0.073 - 0.098

RISKSLIM with Feature Selection 2.8% 0.928 0.156
ASRS v1.1 Questions 1.6 - 3.4 0.914 - 0.937 0.144 - 0.174

ASRS v1.1 Feature Selection 89.6% 0.822 3.978
Coefficient Values 89.0 - 90.1 0.803 - 0.835 3.937 - 4.027

Table 8.3: Performance of the RISKSLIM model (Figure 8.2), ASRS v1.1 (Figure 8.1),
and a baseline model built using the same questions as ASRS v1.1 (Figure 8.4). We show
the CAL, AUC, and logistic loss of the model trained on the full national sample (top) and
the 10-CV min-max (bottom).
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Never Rarely Sometimes Often Very Often

How often do you have trouble wrapping up
the final details of a project, once the challenging 0 3 3 4 6
parts have been done?

How often do you have difficulty
getting things in order when you have to 0 0 1 1 2
do a task that requires organization?

How often do you have problems 0 0 0 0 2remembering appointments or obligation?

When you have a task that requires a lot
of thought, how often do you avoid 0 1 1 1 1
or delay getting started?

How often do you fidget or squirm
with your hands or feet when you have 0 1 1 3 3
to sit down for a long time?

How often do you feel overly active
and compelled to do things, like you 0 3 3 3 6
were driven by a motor?

-SCORE 0 to 9 10 11 12 13 14 15 to20
RISK <5.0% 11.9 26.9% 50.0% 73.1% 88.1% >95.0

Figure 8.4: RISKSLIM model fit using the same 6 questions as ASRS v1.1.
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8.4.2 Clinical Validation

In Figure 8.5, we show the performance of the RISKSLIM model from Figure 8.2 on
the clinical sample. As shown, the performance of the model decreases in terms of
risk calibration (CAL of 10.0% vs 2.0% on the national sample) and rank accuracy
(AUC of 0.921 vs. 0.978 on the national sample). However, the performance is still
remarkable given the significant differences in the demographic composition of the
national and clinical samples (e.g. the prevalence of adult ADHD is 8.2% in the
national sample, but 57.7% in the clinical sample).

As shown in Table 8.4, the RISKSLIM model maintains its sensitivity across
several decision-points and the previous screening rule (i.e. predict ADHD if the total
score > 14) captures 91.9% of patients with adult ADHD. In light of the increased
prevalence of ADHD in the clinical population, the false positive rate (26.0%) is
considerably higher than in the national sample, and PPV quite high (82.8%). As in
the national sample, however, the screening ability decreases markedly if we change
the threshold score to 13. In this case, our collaborators determined that the marginal
increase in the false positive rate (37.0%) did not justify the marginal increase in
sensitivity (93.1%). Thus, they determined that a threshold of 14 was still appropriate
for a clinical setting.
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Figure 8.5: Reliability diagram (left) and ROC curve
national sample (black), and the clinical sample (blue)
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Threshold Predic ted % Cases

Screened Sensitivity Specificity PPVScore

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Risk

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.01%

0.03%

0.09%

0.25%

0.67%

1.80%

4.74%

11.92%

26.89%

50.00%

73.11%

88.08%

95.26%

98.20%

99.33%

99.75%

99.91%

99.97%

99.99%

100.00%

99.00%

97.67%

97.67%

97.33%

95.67%

91.00%

90.33%

88.00%

86.67%

81.67%

80.00%

73.00%

69.33%

64.00%

59.33%

53.33%

47.00%

37.00%

29.33%

23.33%

16.33%

6.33%

5.67%

4.00%

3.67%

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%

98.84%

98.27%

97.69%

97.69%

97.11%

97.11%

95.38%

93.06%

91.91%

89.02%

82.66%

76.30%

61.27%

50.29%

40.46%

28.32%

10.98%

9.83%

6.94%

6.36%

Table 8.4: Performance of decision rules from the RIsKSLIM model on the clinical sample.
Each row shows accuracy metrics for the decision rule "predict 9i = +1 if score > " for
thresholds t = 0,... , 25.
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0.00%

2.36%

5.51%

5.51%

6.30%

10.24%

19.69%

20.47%

25.20%

28.35%

39.37%

43.31%

57.48%

62.99%

74.02%

81.10%

86.61%

92.91%

96.06%

99.21%

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%

57.67%

58.25%

59.04%

59.04%

59.25%

60.28%

62.64%

62.73%

64.02%

65.00%

68.57%

70.00%

75.34%

77.40%

82.81%

86.52%

89.38%

93.62%

95.50%

98.86%

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%



8.5 Discussion

Our work in this chapter illustrates how our approach can build a risk assessment tool
that performs well and adheres to a strict set of requirements on model form. In this
case, our model can reproduce DSM-5 ADHD diagnosis in a way that is effective but

also provides users with the ability to make quick predictions and to fully validate
the model (see Ustun et al. 2017 and the editorial of Shaw et al. 2017).

The MINLP formulation in this chapter captures the exact requirements of many
scoring systems developed for mental health applications (see e.g. the models of
Altman et al., 1997; Weathers et al., 2013, which also use questions on a Likert
scale). In comparison to current models, the optimization-based approach used in
this chapter avoids the need for an ad hoc training pipeline that can take several
months to design. As shown by the results in Section 8.4.1, the resulting models
are likely to be attain better risk-calibration and AUC. They may also be easier to
use in other aspects of model development as they generalize, have a clearly defined
performance metric, and a certificate of optimality.

One of the key lessons from this chapter was that, although our collaborators
wanted a model that could output calibrated risk estimates on the general population,
the broader acceptance of our model was implicitly dependent on other performance
metrics (e.g. a decision point with good specificity/sensitivity, performance on a
clinical population). Here, we were fortunate as our model that performed well on
the national sample as well as the clinical sample, and produced a suitable decision-
point for both settings. Nevertheless, our experience revealed a need for further
methodological work in this area. Specifically:

(i) Methods that can enforce constraints to ensure calibration across subpopula-
tions.

(ii) Methods that can produce risk assessment models that are guaranteed to pro-
duce at least one good decision rule.

It may be possible to address both issues using the methods presented in this disserta-
tion. In particular, the first issue could be addressed by including fairness constraints
on major demographic groups in the RISKSLIMMINLP formulation in Definition 8.1

(e.g. to limit the disparity in FPR across males, female, and major age groups).
The second issue could be addressed by exploiting the fact that the decision rules
of an optimized risk score cannot outperform the decision rule of an optimized scor-
ing system (assuming that both models have to obey the same constraints). As a
result, the latter issue could be addressed by first training a SLIM scoring system
that optimizes TPR subject to an FPR constraint as in the sleep apnea problem in
Chapter 4, and then using the training TPR of the SLIM to formulate appropriate
TPR and FPR constraints for the RISKSLIMMINLP formulation in Definition 8.1.
In this case, suitable constraints would force RISKSLIMMINLP to fit a risk score such
that TPRRiskSLIM TPRSLIM - ETPR and FPRRiskSLIM FPRSLIM - EFPR for at
least one threshold A0 , where ETPR 0 and EFPR > 0 are acceptable deviations in the
TPR and FPR.
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Why Discrete Linear Models Perform Well in Mental Health Applications

The performance of the RISKSLIM model in Figure 8.2 is noteworthy. It has a 10-
CV test AUC ranging between 0.965-0.980 on the national sample, and a test AUC
of 0.921 on the clinical sample. From a machine learning perspective, one possible
explanation for this result is that there exists a well-defined "true model" for this
prediction problem, and that we can learn a very good approximation of this model
from a real-world dataset.

In this case, the true model is a DSM-5 diagnostic rule for adult ADHD. In our
study, this is based on the following explicitly-defined criteria:

1. Patient has at least 6-of-9 symptoms associated with hyperactivity OR at least
6-of-9 symptoms associated with inattention;

2. At least 1 symptom appears in 2 or more settings (e.g. work, home);

3. At least 1 symptom interferes with functioning.

In other words, the true model is a Boolean function of the form

fDSM : (symptom, setting, interference) -* {-1, +1.

Here, we have sought to fit approximate this model using models of the form

f ASRS : (question, response) -+ {-1, +1}.

Our result suggests that we can approximate fDSM using fASRS, where fASRS uses
small integer coefficients, only considers a small subset of all symptoms, and produces
calibrated risk estimates. There are several reasons to explain why this is the case:

- The questions from the ASRS are designed to not only identify symptoms, but also
assess severity, and capture to key interactions with the diagnosis (e.g. setting,
interference).

- We can learn the model from data because the outcome variable is obtained through
a careful application of the DSM-5 guidelines (i.e., the labels represent the true
output of fDSM and are recorded without noise).

* The true model fDsM is very similar to a linear threshold rule, which can be rep-
resented by a linear classifier with finite integer coefficients as per Theorem 2.1

(or approximated, as suggested by the results in Long and Servedio, 2014). In
particular, the diagnostic rule primarily depends on two 5-of-9 rules, and the ad-
ditional conditions may be captured through the ASRS questionnaire or may be
unimportant.

Given that a wide range of mental health conditions have similar rule-based DSM
diagnoses, it should be possible to build scoring systems that perform similarly for
these conditions. These models would not only help in screening, but may help inform
future DSM guidelines (which are typically decided by a committee of experts). Say,
for example, that we are able to construct a predictive model to replicate the DSM
diagnoses on a broad population. If this model can consistently replicate a DSM
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diagnosis using a subset of symptoms, different questions, or alternative criteria, then
it may be possible use this result to reduce the number of symptoms in future DSM
iterations.
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Appendix A

Supporting Material for

Chapter 3

A.1 Omitted Proofs

Proof (Theorem 3.24). Let V(A) = lo(A) + Co |hAil0 . Note that A = 0 is a
feasible solution since we assume that 0 E L. Since A = 0 achieves an objective
value of V(O) 5 1, any optimal solution, A E argmin.\EC V(A), must attain an
objective value V(A) 1. This implies

V(A) 1

nZI [yi =$ ATX, 0] + Co 11A110  1,

Co 11A1 0  1,

T s il| 0 s i|

The last line uses that IIAil 0 is an integer.U
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Proof (Theorem 3.22). Let us denote the set of classifiers whose objective value
is less or equal to V (f ; D,,) as

E' = If E J V(f; Dn) (f; Dn) +e},

and the set of examples that have been removed by the data reduction algorithm

S=Dn\Dm.

By definition, data reduction only removes an example if its sign is fixed.
means that sign (f(xi)) = sign (f(xi)) for all i E S and f E F. Thus, we c

V(f; Dn) = V(f; D) + 1 [yif(xi) 5 0]
iES

= V(f; DM) + 1 [yif(xi) 0
iES

= V(f; Dm) + constant.

This

an see

(A.1)

(A.2)

(A.3)

We now proceed to prove the statement in (3.14). For the case when S = 0,
then Dn = Di, and (3.14) follows trivially. For the case when S # 0, we note that

V(f; Dn) = argmin V(f; Dm U S),
f ET

= argmin V(f; Dm) + V(f; S),
fEY

= argmin V(f; Dm) + constant,
fET

= argmin V(f; DM).
f ET

Here, the statement in (A.4) follows directly from (A.1).
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that for all classifiers f E Jf,

T* = argmin
fI

(A.4)
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Proof (Theorem 3.23). We assume that we have found a surrogate function, s,
that satisfies conditions I-IV and choose C, > 2e.

Our proof uses the following result: if ||A*1 - A*| > C then A*1 cannot be a
minimizer of lo 1(A). To see this, consider condition III for the case where A = A01.
In this case, condition III states:

IIA*1 - As* > Cx ==> is(A 1) - ls(AS*) > Cs.

Thus,

ls(A*) + Cs < ls(A*1)

ls(A) + Cs < l0 1 (A*1 ) + e (A.5)
ls(A*) + Cs - e < l01 (A*1)
ls(As) + Cs - e < ls(A*1) (A.6)

s(A*) + e < ls(A*1). (A.7)

Here the inequality in (A.5) follows from condition IV, the inequality in (A.6)
follows from condition I, and the inequality in (A.7) follows from our choice that
Cs > 2e.

We proceed by looking at the LHS and RHS of (A.7) separately. Using condition
I on the LHS of (A.7) we get that:

loi(AS*) + < is (As) + E. (A.8)

Using condition IV on the RHS of (A.7) we get that:

ls(A 1i) loi(A* 1) + F. (A.9)

Combining the inequalities in (A.7), (A.8) and (A.9), we get that:

loi(A\*) < lo1(A3*1). (A. 10)

The statement in (A. 10) is a contradiction of the definition of A31 . Thus, we know
that our assumption was incorrect and thus ||A*1 - A* 5 C\. We plug this into
the Lipschitz condition II as follows:

ls(A*) - ls(A*) LI|A*1 - A*11 < LC,

ls(XA 1 ) < LC + ls(A*).

Thus, we have satisfied the level set condition with e = LCA. 0
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Proof (Theorem 3.27). We will prove the statement of the theorem for normalized
versions of the vectors, P| 11p1 2 and A/A. This is without loss of generality because
the 0-1 loss is scale invariant:

1 [ ynx n] - _

101(A) = 1 [yikTX, < 0] = 1 yAx 0,

n n
loi(p) = n 1 [yipTXi 5 0] = y 01n .n p1 1y 12 .1

We set A > Xm as in (3.16). Given A, we then set Aj/A as pj/ 1|piI 2 rounded
to the nearest 1/A for j = 1,... , d. In order to prove the statement of the theorem,
we need to show that these choices of A and A ensure that pIP 11 2 and A/A classify
each point in the same way.

We will first show that A and A guarantees that the difference between the
margin of p/ 11PI2 and the margin of A/A on all training examples is always less
than the minimum margin of p1 11pI2 defined as -min = mini To see this,11P112note that for all i E I:

ATX, pTxi <
_\T -, _T A| ____ II|iII2 (A.11)

A 11I12 A IIP12 2
d 2 1/2

j=1 A 1I1~2

d 1/2

< E (2A)2 It*iII2 (A. 12)
(j=1

vfd
2A Xma

< (A.13)
2 (Xm.aV

2mini 2I

= min . (A.14)

Here: the inequality in (A.11) uses the Cauchy-Schwarz inequality; the inequality
in (A.12) is due to the fact that the distance between pj/ 11p1 2 and Aj/A is at most
1/2A; and the inequality in (A.13) is due to our choice of A.

We can now show that p/ 11pI 2 and A/A classify each point in the same way.
We consider three cases: first, the case where xi lies on the margin; second, the
case where p has a positive margin on xi; and third, the case where p has a negative
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margin on xi.

For the case when xi lies on the margin, mini IpT xi| = 0 and the theorem holds
trivially.

For the case where p has positive margin, pT xi > 0, the following calculation

using (A.14) is relevant:

pTX _ ATx, ATx, pTX < pTI

11p1 2  A - A 11P112  i 11PI1 2

We will use the fact that for any i' E I, by definition of the minimum:

0 < - min
- |1P||2 i 11PI12

and combine this with a rearrangement of the previous expression to obtain:

1pTxIl |pTxj pTxi . pTx4l ATxi
0 < - min - - mm <

- ||PI 2  i11P112  11P112  11P1 2  A

Thus, we have shown that ATX, > 0 whenever pTx, > 0.
For the case where p has a negative margin on xi, pTxi < 0, we perform an

analogous calculation:

ATx, pTX, ATx, pTX < pTx
|1A\|2 11p1 2 - A 11P112 11PI1 2

and then using that pTxi < 0,

- T mn -pTxi IpTxil ATX,-mi 2 11P1 2 -mmi <
i ||P 2 |P||2 !|2

Thus, we have shown ATx, < 0 whenever pTx, < 0. Combining the results from
the cases where the margin is positive and the margin is negative, we get

1 [ypTx. < 0] = 1 [y.ATx. < 0] for all i E I.

Summing over i and dividing both sides by n
M

yields the statement of the theorem.
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0 < IpTXI
-|pI2

Proof (Corollary 3.28). The proof follows by applying Theorem 3.27 to the reduced
dataset V)n\I(k). -
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Appendix B

Supporting Material for

Chapter 6

B. 1 Small Trade-off Parameters do not Influence Ac-
curacy

In Section 6.1, we state that if the trade-off parameter Co in the objective of the
risk score problem is sufficiently small, then its optimal solution will attain the best

possible trade-off between logistic loss and sparsity. Here, we formalize this statement.

In what follows, we will omit the intercept term for clarity and explicitly show the
regularization parameter CO in the RISKSLIM objective so that V(A; Co) := 1(A) +
Co ||IIA1. We also make use of some new notation shown in Table B.1.

Notation Description

M = argminNL 1 (A) minimizers of the logistic loss

L(k) = {A c L I ||AJIO I k} feasible coefficients of models with model size < k

M(k) = argminXEL(k) 1(A) minimizers of the logistic loss with model size < k

L(k) minAEL(k) 1(A) logistic loss of minimizers with model size < k

AOPt E argminAEM 111A110 sparsest minimizer among all minimizers of the logistic loss

koPt = Aopt||O model size of sparsest minimizer

Table B.1: Notation used in Remarks B.1 and B.2
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Proof (Remark B.1). Since L(k) is the minimal value of
models with at most k non-zero coefficients, we have:

L(k) + Cok < l(A) + Cok for any A EL

the logistic loss for all

(k) (B.1)

Denote a feasible minimizer of V(X; Co) as ' E argminAEL V(A; Co), and let k' =

|I'110 . Since A' E (k'), we have that:

L(k') + Cok' < V(A'; Co) (B.2)

Taking the minimum of the left hand side of (B.2):

min L(k) + Cok < L(k') + Cok' (B.3)
kE{0,1,2,...,koPt}

Combining (B.2) and (B.3), we get:

min L(k) + Cok < L(k') + Cok' < min V(\; Co)
kE{0,1,2,...,kOPt} AEL

If these inequalities are not all equalities, we have a contradiction with the definition
of X' and k' as the minimizer of V(A; CO) and its size. So all must be equality.
This proves the statement.

Remark B.2 (Small Trade-Off Parameters Do Not Influence Accuracy)
There exists an integer z > 1 such that if

1
CO - [L(koPt - z) - L(koPt )]

z

then
A* E argmin V(A; Co).

AEL

For this z, the right hand side ; [L(kOPt - z) - L(kOPt)] is strictly greater than 0.
Thus, as long as CO is sufficiently small, the regularized objective is minimized by
any model A* which has the smallest size among the most accurate feasible models.
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Remark B.1 (Minimizers of the Risk Score Problem)
Any optimal solution to the risk score problem will achieve a logistic loss of L(k)
for some k > 0:

min V(\; Co)= min L(k) + Cok.
AEC kE{0,1,...,kOPt}



Proof (Remark B.2). Note that if Co = 0, then any minimizer of V(A; Co) has
koPt non-zero coefficients. Say we increase the value of Co in the objective starting
from zero until we attain a threshold value C"'o such that the optimal solution
will sacrifice some loss to remove at least one non-zero coefficient. Let z > 1 be
the number of non-zero coefficients removed to obtain the smaller model. At C"o"0
where we choose the smaller model rather than the one with size kP', we have

L(koPt) + Cin0 k t > L(k '* - z) + Co(k t - z).

Simplifying, we obtain:

1 (L(k*** - z) - L(koPt)] < Co.
z

Thus RisKSLIM does not sacrifice sparsity for logistic loss when

1
- [L(koPt - z) - L(koP t )] > Co.
z

Here, we know that the value on the left side is strictly greater than 0 because
otherwise it would contradict the definition of k* as the smallest size at which the
optimal value of the loss would be achieved.

Remark B.2 states that there exists a small enough value of CO to guarantee that we
will obtain the best possible solution. Since we do not know z in advance and since
it is just as difficult to compute L as it is to solve the risk score problem, we will not
know in advance how small Co must be to avoid sacrificing sparsity. However, it does
not matter which value of Co we choose as long as it is sufficiently small. In practice,
we set Co = 10', which is the smallest value that we can use without running into
numerical issues with the MIP solver.
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B.2 Omitted Proofs

Proof (Remarks 6.5 and 6.6). We first explain why LCPA attains the optimal
objective value, and then justify the upper bounds on the number of cuts and number
of nodes.

Observe that LCPA finds the optimal solution to RisKSLIMMINLP through an
exhaustive search over the feasible region L. Thus, LCPA is bound to encounter the
optimal solution, since it only discards a node (vt, Rt) if: (i) the surrogate problem
is infeasible over R' (in which case RisKSLIMMINLP is also infeasible over R);
or (ii) the surrogate problem has an objective value that exceeds than V " (in
which case, there any integer feasible solution Rt is also suboptimal).

The bound on the number of cuts follows from the fact that Algorithm ?? only
adds cuts at integer feasible solutions, of which there are at most I LI. The bound on
the number of processed nodes represents a worst-case limit produced by bounding
the depth of the branch-and-bound tree. To do this, we exploit the fact that the
splitting rule SplitPartition splits a partition into two mutually exclusive subsets
by adding integer-valued bounds such A3 > [Aj] and A3 ; [A J - 1 on a single
coefficient to the feasible solution. Consider applying SplitPartition a total of Aj"-
Aj" + 1 times in succession on a fixed dimension j. This results in a total of
Ajm' - Ai" + 1 nodes where each node fixes the coefficient in dimension j to an
integer value A3 E {Ami",..., Afx}. Pick any node and repeat this process for
coefficients in the remaining dimensions. The resulting B&B tree will have at most
D( L) leaf nodes where A is restricted to integer feasible solutions. U

232



Proof (Proposition 6.7). Since the coefficient set is bounded, the data (xi, y)=1
are bounded, and the normalized logistic loss l(A) is continuous, it follows that the
value of l(A) is also bounded:

1(A) E [min l(A), max, l(A)] for all A E L.

Thus we only need to show that L"ri" < minAec l(A), and L"ax > maxxeC 1(A). For
the lower bound, we observe that:

min l(A) = minl- log(1+ exp(-(A, ysix)))
\EL AEI =

log(1 + exp((A, xi)))

exp(-(A, xi))) + 1 E min log(1 + exp((A, xi)))
i:yj=-1

1log(l + exp(- max(A, xi))) +
i:yi=+1 AEL

log(1 + exp(min(A, xi)))
AEC

1 Z: log(1 + exp(-s m') + 1 E log(1 + exp(s mi))
:ys=+ s iy =-r

The upper bound can be derived in a similar manner.

Proof (Proposition 6.8). We are given that Vm ' > V where V:= l( A*)+Co IIA*||O
by definition. Thus, we can recover the upper bound from Proposition 6.8 as follows:

l(A*) + Co IIA* 11 V ma,
V"0- - 1(A*)

CO

v" --x L min
A*Io CO (B.5)

Here, (B.4) follows from the fact that Lmi"
from the fact that the number of non-zero

< l( A*) by definition, and (B.5) follows
coefficients is a natural number. U
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min 1 log(1 +
i:yi=+1

1Z min log(1 +
i:y =+1

U

eXp(-A xi))) + E
Z:yj=-1



Proof (Proposition 6.9). We are given that V"" > V where V:= l(A\*)+Co IX*11
by definition. Thus, we can recover the upper bound from Proposition 6.9 as follows:

1(*) + CO IIA* 110 Vm ax
1(A*) V m  - CO I* l1,
1(\*M) < V" o -.

Here, the last line follows from the fact that R"' < I |A*|I 1 by definition. U

Proof (Proposition 6.10). We are given that Vi" < V where V := 1(*) +
Co ||A*110 by definition. Thus, we can recover the lower bound from Proposition
6.10 as follows:

1(*) + CO IIA*I 0 Vm ,

1(*) Vmin - C0 |A*11 0
1(M\*) V""" - CoRm x.

Here, the last line follows from the fact that Rm' > I A*| 1 by definition. U
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Proof (Theorem 6.11). For a fixed set coefficients A E , consider a finite
sample of n points composed of the values for the loss function li(A) for each
example in the full training dataset D, = (xi, yO), 1 . Let ln(A) = _ 1(1A) and
im(A) = ( li(A). Then, the Hoeffding-Serfling inequality (see e.g., Theorem
2.4 in Bardenet et al., 2015) guarantees the following for all e > 0:

Pr (ln(A) - lm(A) > e) < exp (- 262 
-~~M - (M )1-)(+ M)A(, Dn)2/

where

(A, Dn) = max li(A) - min li(A).
i=.,...,n i=1....,n

We recover the desired inequality by generalizing this bound to hold for all A E L
as follows.

Pr (Max (ln(A) - ln(A)) >- =Pr U (ln(A) - lm(A) >

< Z Pr (ln(A) - lm(A) .e),
AEf

(B.6)

< exp 22)
F ( )(1 - .)(1+ M)A(A ) '

(B.7)

LCI exp (A)(1 - (1 + 2)Amax(, Dn)
(B.8)

Here, (B.6) follows from the union
inequality, (B.8) follows from the
A E C.

bound, (B.7) follows from the Hoeffding Serling
fact that A(A, Dn) ! A'a(L, Dn) given that

N
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Proof (Proof of Corollary 6.12). We will first show that for any tolerance that
we pick 6 > 0, the prescribed choice of es will ensure that Vn(A) - Vm(A) -,5 w.p.
at least 1 - 6. Restating the result of Theorem 6.11, we have that for any e > 0:

Pr max ln(A) - lm(A) LI eXp 262\E) )- 2)2
E' (a)(1 -I)(1+ M)Ama(L ) +)

(B.9)

Note that ln(A) - lm(A) = Vn(A) - Vm(A) for any fixed A. In addition, note that the
set of rounded coefficients L(p) contains at most |L(p) I 2 d coefficients vectors.
Therefore, in this setting, (B.9) implies that for any e > 0,

Pr (V(A) - Vm(A) > c) < 2d exp (- - 262  (B.10)
- \ (m)( -)(1 + M) A(L (p) , Dn) 27

By setting e = E6 and simplifying the terms on the right hand side in (B.10), we
can see that

Pr (V(A) - Vm(A) > ) 6.

Thus, the prescribed value of E ensures that Vn(A) - V,(A) e6 w.p. at least
1-6.

Since we have set e6 so that Vn(A)-V (A) 66 w.p. at least 1-6, we now only
need to show any A that satisfies Vm(A) < V m' - 66 will also satisfy V(A) Vm x
to complete the proof. To see this, observe that:

V(A) - Vm(A) 66,

Vn(A) Vm(A) + E6,

V(A) < V"'". (B. 11)

Here, (B.11) follows from the fact that Vm(A) < V"x - e ==> Vm(A) +e6 < Vm'a
E
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B.3 Simulation Procedure

We simulated data from the breastcancer dataset (Mangasarian et al., 1995). The

original dataset can be obtained from the UCI ML repository (Lichian, 2013), and

has a total of n = 683 samples and d = 9 features xij E {0,... , 10}. Using the
original dataset, we generated a collection of simulated datasets using the procedure

in Algorithm B.1. Specifically, we first simulated the largest dataset we needed (with

nmax = 5 x 106 samples and dmax = 30 features) by replicating features and samples
from the original dataset and adding a small amount of normally distributed noise.
Next, we created smaller datasets by taking nested subsets of the samples and the

features. This ensured that any simulated dataset with d features and n samples
contains all of the features and examples for a simulated dataset with d' < d features

and n' < n samples. We designed this procedure to have two useful properties:

* It would produce difficult instances of the risk score problem. Here, RISKSLIM-

MINLP instances for simulated datasets with d > 9 are challenging in terms of

feature selection because they contain replicates of the original 9 features, which
are strongly correlated with each another. Feature selection becomes exponentially
harder when collections of highly correlated features are used, since this means that

there are an exponentially larger number of slightly suboptimal solutions.

- We could make inferences about the optimal objective value of RISKSLIMMINLP

instances we may not have been able to solve. Say, for example, that we could

not solve an instance of the risk score problem for the simulated dataset with

(d, n) = (20, 106), but could solve an instance for the simulated dataset with (d, n) =

(10,106). In this case, we knew that the optimal objective value of the (d, n) =
(20, 106) instance had to be less than or equal to the optimal objective value of the

(d, n) = (10, 106) instance because the (d, n) = (20, 106) dataset contained all of the

features as the (d, n) = (10, 106) dataset.

B.3.1 Implementation Details

We fit risk scores for all datasets by formulating an RISKSLIMMINLP instance where
CO = 10-8, Ao C {-100, 100}, and A3 = {-10, ... ,10} for j = 1,... ,d. We solved
this instance using: (i) CPA (Algorithm 4); (ii) LCPA (Algorithm 5); (iii) an active
set MINLP algorithm (ActiveSetMINLP); (iv) an interior point MINLP algorithm

(InteriorMINLP); (v) an interior CG MINLP algorithm (InteriorCGMINLP).
We solved all instances on a 3.33 GHz Intel Xeon CPU with 16GB of RAM for

up to 6 hours. If an algorithm could not solve the problem to optimality before the

6 hour time limit, we reported results for the best feasible solution it had found. We

implemented both CPA and LCPA using the CPLEX 12.6.3 Python API. We solved
instances using MINLP algorithms using the Artelsys Knitro 9.0 MINLP solver (Byrd

et al., 2006), which we accessed using MATLAB 2015b.
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Algorithm B.1 Simulation Procedure

Input
Xoriginal & [ij]j=1...noriginalj=... doriginal

yoriginal & [yi =1 .. noriginal

d. . . dmax s.t. 0 < d . dmax
I nmax st <nnmax

Initialize
j original _-[1. .I original]

Jmax +- []
mfull Ldmaxd original

mremainder max - doriginal

feature matrix of original dataset

labels of original dataset

desired dimensions for simulated datasets

desired sample sizes for simulated datasets

index array for original features

index array of features for largest simulated dataset

Step I: Generate Largest Dataset

1: for m= 1,..., mfull do
2: jmax +- [Jmax, RandomPermute(Joriginal)

3: end for

jmax - [Jma, RandomSam pleWithout Replacement(Joriginal , mremainder

4:

5:

6:
7:

8:

9:

10:
11:

12:

13:
14:
15:

for i = 1 ... nmax do
sample I with replacement from 1,... noriginal

max

for j= dmax do
k - J x[j]

sample 6 from Normal(0, 0.5)

xmax + Fxi, + E] >new features are noisy versions of original features
X max - min(10, max(0, Xmax)) >new features have same bounds as old features

end for
end for

Xmax - [Xij]=1...maxj=1...dmax

ymax _ [y.nax]j.max

Step II: Generate Smaller Datasets

16: for d = [dl,..., dmax] do
17: for n = [ni, .. , nmax] do
18: X(n,d) - Xmaxr: n, 1: d]

19: Y = Y m ax[1 : n]

20: end for
21: end for

Output: simulated datasets (X(nd), Y') for all ni ... nmax and d' ... dmax.
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B.3.2 Results for All MINLP Algorithms

We examined the performance of 3 MINLP algorithms in Artelsys Knitro 9.0:

. ActiveSetMINLP: an active set algorithm.

* InteriorMINLP: an interior-point algorithm.

* InteriorCGMINLP: an interior-point algorithm where the primal-dual KKT system
is solved with a conjugate gradient method.

We only show results from ActiveSetM IN LP in Chapter 6 as all three algorithms behave
similarly. For completeness, we show the results for the omitted MINLP algorithms
in Figure B.1.

_ ActiveSetMINLP InteriorMINLP InteriorCGMINLP

<1 min 1x10 6flflf fl ******
Time to <10min 510 flfflf ****** MENNEN
Find Near <1hour N
Optimal MENEM *ENNE "MNEM
Solution 5 4 M MENNEN LENNON

6+hours 1X10 MENEM xENEM MEN

5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
d d d

5x106 MENEM *****N

1 x 100 EEE MNEM MNEM
Optimality N 5610: MENEM MNEM MENEM
Gap of Best 20-50% N
Solution at 1 10 N ... N ...
Termination 50-90% 5 10' *ONENON

M90-100% 1 x10 4 OM NO E
5 10 15 20 25 30 5 10 15 20 25 30 5 10 1 2025 3

d d d

0-20% 5o1fllllfff x0ff0f ******
% Time 2% 5: oflE ff EHEEHE MENNEN
Spent on 4 N
Data-Related i f"fl l
Computation U s6D-80flflf4lfllfllfllf fMENNEN

80-10D% 1XoE M E xE M MENNE
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30

d d d

Figure B.1: Performance of MINLP algorithms on hard instances of RISKSLIMMINLP for
simulated datasets with varying dimensions d and sample sizes n. All algorithms perform
similarly. We report results for ActiveSetMINLP in Chapter 6 because it solves the most
instances to optimality.
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Appendix C

Supporting Material for

Chapter 7

In this appendix, we provide additional results pertaining to the seizure prediction
problem in Chapter 7. In Tables C.1 to C.2, we provide a list of all input variables
in the training dataset. In Section C.1, we explicitly list all operational constraints
for the model. In Section C.2, we show risk scores that were built using the baseline
methods that were omitted from the main text.
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Input Variable Range Sign

Male {o, 1}

Female {o, 1}

AnyPriorSeizure {0, 1} +

PosteriorDominantRhythmPresent {o, 1} -

AnyBriefRhythmicDischarge {0, 1} +

No Reactivity ToStimulation {0, 1}

EpileptiformDischarges {O, 1} +

SecondaryDXIncludesMentalStatusFirst {0, 1}

SecondaryDXIncludesCNSInfection {0, 11
SecondaryDXIncludesCNSInflammatoryDisease {o, 1}

SecondaryDXIncludesCNSNeoplasm {0, 1}

SecondaryDXIncludesHypoxisIschemicEncephalopathy {o, 1}

SecondaryDXIncludesIntracerebralHemorrhage {o, 1}

SecondaryDXlncludesIntraventricularHemorrhage {o, 1}

SecondaryDXIncludesMetabolicEncephalopathy {o, 1}

SecondaryDXlncludesIschemicStroke {0, 11

SecondaryDXlncludesSubarachnoidHemmorage {o, 1}

SecondaryDXIncludesSubduralHematoma {o, 1}

SecondaryDXIncludes TraumaticBrainInjury {o, 1}

SecondaryDXIncludesHydrocephalus {0, 11

PatternIsStimuluslnducedAny {0, 11

PatternIsStimuluslnducedBiPD {0, 11

PatternIsStimulusInducedGPD {0, 1}

PatternIsStimulusInducedGRDA {0, 1}

PatternIsStimuluslnducedLPD {0,1}

PatternIsStimulusInducedLRDA {o, 1}

PatternIsSupermposedAny {o, 1} +

PatternIsSuperImposedBiPD {O, 1} +

PatternIsSuperImposedGPD {0, 11 +

PatternIsSuperImposedG RDA {0, 1} +

PatternIsSuperImposedLPD {o, 1} +

PatternIsSuperImposedLRDA {o, 1} +

PatternsInclude_ BiPD {O, 1} +

PatternsInclude_ GPD {0, 1} +

PatternsInclude_ GRDA {o, 1} +

PatternsInclude_ LPD {O, 1} +

PatternsInclude LRDA {O, 1} +

PatternsInclude GRDA or_ GPD {o, 1} +

PatternsInclude_ BiPD_ or_ LRDA_ or_ LPD {o, 1} +

Table C.1: Names, ranges, and sign constraints for input variables in the seizure dataset.
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Input Variable Range Sign

MazFrequencyAnyPattern {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} +

MazFrequencyAnyPattern = 0.0Hz {0, 1}

MazFrequencyAnyPattern> 0.5Hz {0, 1} +

MazFrequencyAnyPattern > 1.0Hz {0, 1} +

MazFrequencyAnyPattern > 1.5Hz {0, 1} +

MazFrequencyAnyPattern > 2.0Hz {0, 1} +

MaxFrequencyAnyPattern > 2.5Hz {0, 1}

MazFrequencyAnyPattern > 3.0Hz {0, 11 +

MazFrequencyBiPD {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} +

MazFrequencyBiPD = 0.0 {0, 1}

MazFrequencyBiPD > 0.5Hz {0, 1} +

MazFrequencyBiPD > 1.0Hz {0, 11 +

MazFrequencyBiPD > 1.5Hz {0, 1} +

MazFrequencyBiPD > 2.0Hz {0, 1} +

MazFrequencyBiPD > 2.5Hz {0, 1} +

MazFrequencyBiPD > 3.0Hz {0, 1} +

MazFrequencyGPD {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} +

MazFrequencyGPD = 0.0 {0, 1}

MazFrequencyGPD > 0.5Hz {0, 1} +

MaxFrequencyGPD > 1.0 Hz {0, 1} +

MazFrequencyGPD > 1. 5Hz {0, 1} +

MazFrequencyGPD > 2.0Hz {0, 1} +

MaxFrequencyGPD > 2.5Hz {0, 1} +

MazFrequencyGPD > 3.0Hz {0, 1} +

MazFrequencyGRDA {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} +

MaxFrequencyGRDA = 0.0 {0, 11

MazFrequencyGRDA > 0.5Hz {0, 1} +

MazFrequencyGRDA > 1.0Hz {0, 1} +

MaxFrequencyGRDA > 1.5Hz {0, 1} +

MazFrequencyGRDA > 2.0Hz {0, 1} +

MazFrequencyGRDA > 2.5Hz {0, 1} +

MazFrequencyGRDA > 3.0Hz {0, 1} +

MazFrequencyLPD {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} +

MazFrequencyLPD = 0.0 {0, 11

MazFrequencyLPD > 0.5Hz {0, 1}

MazFrequencyLPD > 1.0Hz {0, 11
MazFrequencyLPD > 1.5Hz {0, 11 +

MazFrequencyLPD > 2.0Hz {0, 11 +

MazFrequencyLPD > 2.5Hz {0, 1} +

MazFrequencyLPD > 3.0 Hz {0, 1}

MazFrequencyLRDA {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} +

MazFrequencyLRDA = 0.0 {0, 1}

MazFrequencyLRDA > 0.5Hz {0, 1} +

MazFrequencyLRDA > 1.0Hz {0, 1} +

MazFrequencyLRDA > 1.5Hz {0, 1} +

MaxFrequencyLRDA > 2.0Hz {0, 11 

MazFrequencyLRDA > 2.5Hz {0, 1} +

MazFrequencyLRDA > 3.0Hz {0, 1} +

Table C.2: Names, ranges, and sign constraints for input variables in the sei zure dataset.
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C.1 Operational Constraints

No Redundancy between Categorical Variables

1. Use either Male or Female.

2. Use either PatternsInclude_ GRDA_ or_ GPD or any one of
(PatternsInclude_ GRDA, PatternsInclude_ GPD).

3. Use either PatternsInclude BiPD or_ LRDA or_ LPD or any one of
(PatternsInclude_ BiPD, PatternsInclude_ LRDA, PatternsInclude_ LPD).

4. Use either MaxFrequencyAnyPattern= 0.0 or MaxFrequencyAnyPattern> 0.5.

5. Use either MaxFrequencyLPD = 0.0 or MaxFrequencyLPD > 0.5.

6. Use either MaxFrequencyGPD= 0.0 or MaxFrequencyGPD> 0.5.

7. Use either MaxFrequencyGRDA = 0.0 or MaxFrequencyGRDA> 0.5

8. Use either MaxFrequencyBiPD = 0.0 or MaxFrequencyBiPD > 0.5.

9. Use either MaxFrequencyLRDA = 0.0 or MaxFrequencyLRDA > 0.5.

Frequency in Continuous Encoding or Thresholded Encoding

10. Choose between MaxFrequencyAnyPattern or
(MaxFrequencyAnyPattern= 0.0, ... , MaxFrequencyAnyPattern> 3.0).

11. Choose between MaxFrequencyGPD or
(MaxFrequencyGPD= 0.0, ... , MaxFrequencyGPD> 3.0).

12. Choose between MaxFrequencyLPD or
(MaxFrequencyLPD= 0.0, ... , MaxFrequencyLPD> 3.0).

13. Choose between MaxFrequencyGRDA or
(MaxFrequencyGRDA = 0.0, ... , MaxFrequencyGRDA > 3.0).

14. Choose between MaxFrequencyBiPD or
(MaxFrequencyBiPD= 0.0, ... , MaxFrequencyBiPD> 3.0).

15. Choose between MaxFrequencyLRDA or
(MaxFrequencyLRDA = 0.0, ... , MaxFrequencyLRDA > 3.0).

Limited # of Thresholds for Thresholded Variables

16. Use at most 2 of the following: MaxFrequencyAnyPattern= 0.0,
MaxFrequencyAnyPattern> 0.5, ... , MaxFrequencyAnyPattern> 3.0.

17. Use at most 2 of the following: MaxFrequencyLPD= 0.0, MaxFrequencyLPD>

0.5, ... , MaxFrequencyLPD> 3.0.

244



18. Use at most 2 of the following: MaxFrequencyGPD= 0.0, MaxFrequencyGPD >
0.5, ... , MaxFrequencyGPD> 3.0.

19. Use at most 2 of the following: MaxFrequencyGRDA = 0.0, MaxFrequencyGRDA >
0.5, ... , MaxFrequencyGRDA > 3.0.

20. Use at most 2 of the following: MaxFrequencyBiPD= 0.0, MaxFrequencyBiPD >
0.5, .. ., MaxFrequencyBiPD > 3.0.

21. Use at most 2 of the following: MaxFrequencyLRDA = 0.0, MaxFrequencyLRDA >
0.5, . .. ,MaxFrequencyLRDA > 3.0.

Specific cEEG Patterns or Any cEEG Pattern

22. Use either PatternlsStimulusInducedAny or any one of (PatternIsStimulusIn-
ducedBiPD, PatternIsStimulusInducedGRDA, PatternIsStimulusInducedGPD, Pat-
ternIsStimulusInducedLPD, PatterrIsStimulusInducedLRDA).

23. Use either PatternIsSuperImposed or any one of (PatternIsSuperImposedBiPD,
PatternIsSupermposedGPD, PatternIsSuperImposedGRDA, PatternIsSupermpos-
edLPD, PatternIsSupermposedLRDA).

24. Use either MaxFrequencyAnyPattern (or its thresholded versions) or any one
of MaxFrequencyBiPD, MaxFrequencyGRDA, MaxFrequencyGPD, MaxFrequen-
cyLPD, MaxFrequencyLRDA, (or their thresholded versions).
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C.2 Risk Scores for Omitted Baseline Methods

1. AnyPriorSeizure 1 point ...

2. PatternsIncludeBiPD_ or_ LRDA_ or_ LPD 1 point + --
3. MaxFrequencyLPD x 1 point per Hz + ..

ADD POINTS FROM ROWS 1-3 SCORE =

ISCOREI 0.01 1.0 12.0 1 2.5 1 3.0 I3.5 _ 4.0 14.5 I5.071
RISK 14.7%o 11.9% 1 26.9% 1 37.8% 1 50.0% 62.2%0 73.1% o181.8%o 88.1% 0

0
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Figure C.1: SEQRD model (top), reliability diagram (bottom left), and ROC curve (bottom
right). We plot results for fold models on test data in grey, and for the final model on training
data in black. This model has a 5CV mean test CAL/AUC of 3.7%/0.738.
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1. AnyPriorSeizure 1 point ...

2. PatternsInclude_BiPD_or_ LRDAorLPD 1 point + - -
3. MaxPrequencyLPD x 1 point per Hz + -

ADD POINTS FROM ROWS 1-3 SCORE =

ISCOREI 0.01 1.0 2.0 2.5 j3.0 3.5 j4.0 j4.5 J5.0
RISK 4.7% 11.9% 26.9% 37.8% 50.0% 62.2% 73.1% 81.8% 88.1%
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Figure C.2: RD* model (top), reliability diagram (bottom left), and ROC curve (bottom
right). We plot results for fold models on test data in grey, and for the final model on
training data in black. This model has a 5-CV mean test CAL/AUC of 3.3%/0.738.

1. AnyPriorSeizure 5 points ...

2. PatternsIncludeBiPD_orLRDAorLPD 5 points + ---
3. MaxPrequencyLPD x 2 points per Hz + -

ADD POINTS FROM ROWS 1-3 SCORE =

ISCOREl0 to 5 7 8 9 10 j11 112to 16
RISK 1<5.0% 11.9% 26.9% 50.0% 73.1% 81.8% 1>95.0
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Figure C.3: RsRD* model (top), reliability diagram (bottom left), and ROC curve (bottom
right). We plot results for fold models on test data in grey, and for the final model on training
data in black. This model has a 5-CV mean test CAL/AUC of 8.2%/0.738.
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1. AnyPriorSeizure 1 point ...

2. PatternsIncludeBiPD_ or_ LRDA_ or_ LPD 1 point + - -
3. MaxFrequencyLPD x 1 point per Hz + -

ADD POINTS FROM ROWS 1-3 SCORE =

ISCOREI 0.01 1.0 2.0 1 2.5 13.0 1 _3.5__ 4.0___t_4.5 15.0
RISK I4.7H% 11.9%d 26.9% 137.8% 0 50.0% 162.2% 1 73.1% 081.8% 0 88.1%0
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Figure C.4: SEQRD* model (top), reliability diagram (bottom left), and ROC curve

(bottom right). We plot results for fold models on test data in grey, and for the final model

on training data in black. This model has a 5-CV mean test CAL/AUC of 3.3%/0.738.
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